Intel® UHD Graphics Open Source #### **Programmer's Reference Manual** For the 2020 Intel Core™ Processors with Intel Hybrid Technology based on the "Lakefield" Platform Volume 2d: Command Reference: Structures May 2021, Revision 1.0 #### **Notices and Disclaimers** Intel technologies may require enabled hardware, software or service activation. No product or component can be absolutely secure. Code names are used by Intel to identify products, technologies, or services that are in development and not publicly available. These are not "commercial" names and not intended to function as trademarks. Customer is responsible for safety of the overall system, including compliance with applicable safety-related requirements or standards. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein. Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others. #### **Table of Contents** | 3DSTATE_BINDING_TABLE_POINTERS_BODY | 1 | |-------------------------------------|-----| | 3DSTATE_BLEND_STATE_POINTERS_BODY | 2 | | 3DSTATE_CC_STATE_POINTERS_BODY | 3 | | 3DSTATE_CLEAR_PARAMS_BODY | 4 | | 3DSTATE_CLIP_BODY | 5 | | 3DSTATE_CONSTANT_ALL_DATA | 10 | | 3DSTATE_CONSTANT(Body) | 11 | | 3DSTATE_CPS_BODY | 14 | | 3DSTATE_DS_BODY | 18 | | 3DSTATE_GS_BODY | 26 | | 3DSTATE_HS_BODY | 36 | | 3DSTATE_INDEX_BUFFER_BODY | 44 | | 3DSTATE_MULTISAMPLE_BODY | 46 | | 3DSTATE_PS_BLEND_BODY | 48 | | 3DSTATE_PS_BODY | 50 | | 3DSTATE_PS_EXTRA_BODY | 57 | | 3DSTATE_PTBR_MARKER_BODY | 62 | | 3DSTATE_PTBR_TILE_SELECT_BODY | 63 | | 3DSTATE_RASTER_BODY | 65 | | 3DSTATE_SAMPLE_MASK_BODY | 70 | | 3DSTATE_SAMPLER_STATE_POINTERS_BODY | 71 | | 3DSTATE_SBE_BODY | 72 | | 3DSTATE_SBE_SWIZ_BODY | 79 | | 3DSTATE_SCISSOR_STATE_POINTERS_BODY | 81 | | 3DSTATE_SF_BODY | 82 | | 3DSTATE_STREAMOUT_BODY | 86 | | 3DSTATE_TE_BODY | 91 | | 3DSTATE_URB_DS_BODY | 94 | | 3DSTATE_URB_GS_BODY | 96 | | 3DSTATE_URB_HS_BODY | 97 | | 3DSTATE_URB_VS_BODY | 98 | | 3DSTATE VF BODY | 100 | | 3DSTATE_VF_INSTANCING_BODY | 3DSTATE_VF_COMPONENT_PACKING_BODY | 101 | |--|---|-----| | 3DSTATE_VF_SGVS_BODY 10 3DSTATE_VF_TOPOLOGY_BODY 10 3DSTATE_VIEWPORT_STATE_POINTERS_CC_BODY 11 3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP_BODY 11 3DSTATE_VS_BODY 11 3DSTATE_VS_BODY 11 3DSTATE_WM_BODY 12 3DSTATE_WM_CHROMAKEY_BODY 12 3DSTATE_WM_DEPTH_STENCIL_BODY 12 3DSTATE_WM_DEPTH_STENCIL_BODY 13 3A32 Buffer Base Address Message Header Control 13 3A32 Scaled Header Present Message Descriptor Control Field 13 3A32 Sideband Scale and Offset Enable Message Descriptor Control Field 13 3A64 Data Size Message Descriptor Control Field 13 3A64 Hword Blocks Message Descriptor Control Field 14 3A64 Oword Data Blocks Message Descriptor Control Field 14 3A64 Oword Block Message Descriptor Control Field 14 3A64 Scaled Header Present Message Descriptor Control Field 14 3A64 Scaled Header Present Message Descriptor Control Field 14 3ACHIEL STATE 14 3ACHIEL STATE 15 3ACHI | 3DSTATE_VF_INSTANCING_BODY | 102 | | 3DSTATE_VF_TOPOLOGY_BODY | 3DSTATE_VF_SGVS_2_BODY | 103 | | 3DSTATE_VIEWPORT_STATE_POINTERS_CC_BODY | 3DSTATE_VF_SGVS_BODY | 106 | | 3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP_BODY | 3DSTATE_VF_TOPOLOGY_BODY | 108 | | 3DSTATE_VS_BODY | 3DSTATE_VIEWPORT_STATE_POINTERS_CC_BODY | 109 | | 3DSTATE_WM_CHROMAKEY_BODY | 3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP_BODY | 110 | | 3DSTATE_WM_CHROMAKEY_BODY | 3DSTATE_VS_BODY | 111 | | 3DSTATE_WM_DEPTH_STENCIL_BODY | 3DSTATE_WM_BODY | 120 | | 3DSTATE_WM_HZ_OP_BODY | 3DSTATE_WM_CHROMAKEY_BODY | 126 | | A32 Buffer Base Address Message Header Control | 3DSTATE_WM_DEPTH_STENCIL_BODY | 127 | | A32 Scaled Header Present Message Descriptor Control Field | 3DSTATE_WM_HZ_OP_BODY | 131 | | A32 Sideband Scale and Offset Enable Message Descriptor Control Field | A32 Buffer Base Address Message Header Control | 136 | | A64 Data Size Message Descriptor Control Field | A32 Scaled Header Present Message Descriptor Control Field | 137 | | A64 Hword Block Message Header | A32 Sideband Scale and Offset Enable Message Descriptor Control Field | 138 | | A64 Hword Data Blocks Message Descriptor Control Field | A64 Data Size Message Descriptor Control Field | 139 | | A64 Oword Block Message Header | A64 Hword Block Message Header | 140 | | A64 Oword Data Blocks Message Descriptor Control Field | A64 Hword Data Blocks Message Descriptor Control Field | 141 | | A64 Scaled Header Present Message Descriptor Control Field | A64 Oword Block Message Header | 142 | | AddrSubRegNum | A64 Oword Data Blocks Message Descriptor Control Field | 143 | | Any Binding Table Index Message Descriptor Control Field | A64 Scaled Header Present Message Descriptor Control Field | 144 | | Atomic Float Binary Operation Message Descriptor Control Field | AddrSubRegNum | 145 | | Atomic Float Ternary Operation Message Descriptor Control Field | Any Binding Table Index Message Descriptor Control Field | 146 | | Atomic Integer Binary Operation Message Descriptor Control Field | Atomic Float Binary Operation Message Descriptor Control Field | 147 | | Atomic Integer Ternary Operation Message Descriptor Control Field | Atomic Float Ternary Operation Message Descriptor Control Field | 148 | | Atomic Integer Unary Operation Message Descriptor Control Field | Atomic Integer Binary Operation Message Descriptor Control Field | 149 | | Audio Power State Format | Atomic Integer Ternary Operation Message Descriptor Control Field | 150 | | AVC CABAC | Atomic Integer Unary Operation Message Descriptor Control Field | 151 | | AVC CAVLC | Audio Power State Format | 152 | | Barrier Data Payload | AVC CABAC | 153 | | BaseAddress4KByteAligned15 | AVC CAVLC | 154 | | • | Barrier Data Payload | 156 | | | Base Address 4 KByte Aligned | 158 | | BCS Hardware-Detected Error Bit Definitions15 | BCS Hardware-Detected Error Bit Definitions | 159 | | BINDING_TABLE_EDIT_ENTRY | 160 | |--|-----| | Bit Definition for Interrupt Control Registers - Media | 161 | | BLEND_STATE | 163 | | BLEND_STATE_ENTRY | 165 | | Blitter Interrupt Vector | 169 | | Block Dimensions Message Header Control | 170 | | Block Message Header | 171 | | BR00 - BLT Opcode and Control | 172 | | BR01 - Setup BLT Raster OP, Control, and Destination Offset | 176 | | BR05 - Setup Expansion Background Color | 179 | | BR06 - Setup Expansion Foreground Color | 180 | | BR07 - Setup Blit Color Pattern Address Lower Order Address bits
| 181 | | BR09 - Destination Address Lower Order Address Bits | 182 | | BR11 - BLT Source Pitch (Offset) | 183 | | BR12 - Source Address Lower order Address bits | 184 | | BR13 - BLT Raster OP, Control, and Destination Pitch | 185 | | BR14 - Destination Width and Height | 187 | | BR15 - Color Pattern Address Lower order Address bits | 188 | | BR16 - Pattern Expansion Background and Solid Pattern Color | | | BR17 - Pattern Expansion Foreground Color | 190 | | BR18 - Source Expansion Background and Destination Color | 191 | | BR19 - Source Expansion Foreground Color | 192 | | BR27 - Destination Higher Order Address | 193 | | BR28 - Source Higher Order Address | 194 | | BR29 - Color Pattern Higher Order Address | 195 | | BR30 - Setup Blit Color Pattern Higher Order Address | 196 | | Byte Masked Media Block Message Header | 197 | | Byte Masked Media Block Message Header Control | 198 | | CC_VIEWPORT | 200 | | Channel Mask Message Descriptor Control Field | 201 | | Channel Mode Message Descriptor Control Field | 202 | | Clear Color | 203 | | Clock Gating Disable Format | 205 | | COLOR_CALC_STATE | 206 | | COLOR_PROCESSING_STATE - ACE State | 208 | |--|-----| | COLOR_PROCESSING_STATE - CSC State | 214 | | COLOR_PROCESSING_STATE - PROCAMP State | 218 | | COLOR_PROCESSING_STATE - STD/STE State | 219 | | COLOR_PROCESSING_STATE - TCC State | 231 | | Color Calculator State Pointer Message Header Control | 236 | | Color Code Message Header Control | 237 | | Context Descriptor Format | 238 | | Context Status | 241 | | CSC COEFFICIENT FORMAT | 245 | | Data Port 0 Message Types | 246 | | Data Port 1 Message Types | 247 | | Data Port 2 Extended Message Descriptor | 248 | | Data Port 2 Message Types | 249 | | Data Port Bindless Surface Extended Message Descriptor | 250 | | Data Size Message Descriptor Control Field | 251 | | Depth Clear Value Format | 252 | | Deptrh Clear Value Format | 253 | | Display Engine Render Response Message Definition | 254 | | DstRegNum | 260 | | DstSubRegNum | 261 | | DUALSUBSLICE_HASH_TABLE_8x8 | 262 | | DUALSUBSLICE_HASH_TABLE_16x8 | 263 | | Dword Data Payload Register | 264 | | Dword SIMD8 Atomic Operation CMPWR Message Data Payload | 266 | | Dword SIMD8 Data Payload | 267 | | Dword SIMD16 Atomic Operation CMPWR Message Data Payload | 268 | | Dword SIMD16 Data Payload | 269 | | Encoder Base Address Parameters1 | 270 | | Encoder Base Address Parameters2 | 274 | | Encoder Base Address Parameters3 | 276 | | Encoder Base Address Parameters4 | 280 | | Encoder Control State Parameters0 | 281 | | Encoder Statistics Format | 287 | | Engine ID Definition | 291 | |--|-----| | EU_INSTRUCTION_ALIGN1_THREE_SRC | 293 | | EU_INSTRUCTION_BASIC_ONE_SRC | 297 | | EU_INSTRUCTION_BASIC_THREE_SRC | 298 | | EU_INSTRUCTION_BASIC_TWO_SRC | 301 | | EU_INSTRUCTION_BRANCH_CONDITIONAL | 302 | | EU_INSTRUCTION_BRANCH_ONE_SRC | 304 | | EU_INSTRUCTION_BRANCH_TWO_SRC | 305 | | EU_INSTRUCTION_COMPACT_THREE_SRC | 306 | | EU_INSTRUCTION_COMPACT_TWO_SRC | 309 | | EU_INSTRUCTION_CONTROLS_A | 314 | | EU_INSTRUCTION_CONTROLS_B | 317 | | EU_INSTRUCTION_CONTROLS | 319 | | EU_INSTRUCTION_HEADER | 320 | | EU_INSTRUCTION_ILLEGAL | 321 | | EU_INSTRUCTION_MATH | 322 | | EU_INSTRUCTION_NOP | 323 | | EU_INSTRUCTION_OPERAND_CONTROLS | 324 | | EU_INSTRUCTION_OPERAND_DST_ALIGN1 | 326 | | EU_INSTRUCTION_OPERAND_DST_ALIGN16 | 327 | | EU_INSTRUCTION_OPERAND_SEND_MSG | 329 | | EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1 | 330 | | EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16 | 331 | | EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC | 332 | | EU_INSTRUCTION_SEND | 333 | | EU_INSTRUCTION_SENDS | 335 | | EU_INSTRUCTION_SOURCES_IMM32 | 338 | | EU_INSTRUCTION_SOURCES_REG | 339 | | EU_INSTRUCTION_SOURCES_REG_IMM | 340 | | EU_INSTRUCTION_SOURCES_REG_REG | 341 | | Event Data Payload | 343 | | Execution_Unit_Extended_Message_Descriptor | 344 | | Extended Message Descriptor - Execution Unit | 345 | | Extended Message Descriptor Render Target | 346 | | Extended Message Descriptor - Sampling Engine | 348 | |--|-----| | ExtMsgDescpt | 349 | | ExtMsgDescptImmediate | 351 | | FFTID Message Header Control | 353 | | Filter_Coefficient | 354 | | Filter_Coefficients | 355 | | FrameDeltaQp | 356 | | FrameDeltaQpRange | 357 | | FunctionControl | 358 | | Gamut_Expansion_Gamma_Correction | 359 | | GraphicsAddress63-1 | 534 | | GraphicsAddress63-12 | 535 | | GTC Interrupt Bit Definition | 536 | | GTPM Interrupt Vector | 538 | | Half Precision Dual Source SIMD8 Message Data Payload Register | 539 | | Half Precision OM Replicated SIMD16 Render Target Data Payload | 542 | | Half Precision OM S0A SIMD8 Render Target Data Payload | 543 | | Half Precision OM S0A SIMD16 Render Target Data Payload | 545 | | Half Precision OM SIMD8 Dual Source Render Target Data Payload | 547 | | Half Precision OM SIMD8 Render Target Data Payload | 548 | | Half Precision OM SIMD16 Render Target Data Payload | 549 | | Half Precision OS OM S0A SIMD8 Render Target Data Payload | 550 | | Half Precision OS OM SIMD8 Dual Source Render Target Data Payload | 552 | | Half Precision OS OM SIMD8 Render Target Data Payload | 554 | | Half Precision OS S0A SIMD8 Render Target Data Payload | 555 | | Half Precision OS SIMD8 Dual Source Render Target Data Payload | 557 | | Half Precision OS SIMD8 Render Target Data Payload | 558 | | Half Precision OS SZ OM S0A SIMD8 Render Target Data Payload | 559 | | Half Precision OS SZ OM SIMD8 Dual Source Render Target Data Payload | 561 | | Half Precision OS SZ OM SIMD8 Render Target Data Payload | 563 | | Half Precision OS SZ S0A SIMD8 Render Target Data Payload | 565 | | Half Precision OS SZ SIMD8 Dual Source Render Target Data Payload | 567 | | Half Precision OS SZ SIMD8 Render Target Data Payload | 568 | | Half Precision Replicated Pixel Render Target Data Payload Register | 570 | | Half Precision Replicated SIMD16 Render Target Data Payload | 571 | |---|-----| | Half Precision S0A SIMD8 Render Target Data Payload | 572 | | Half Precision S0A SIMD16 Render Target Data Payload | 573 | | Half Precision SIMD8 Dual Source Render Target Data Payload | 574 | | Half Precision SIMD8 Message Data Payload Register | 575 | | Half Precision SIMD8 Render Target Data Payload | 577 | | Half Precision SIMD16 Message Data Payload Register | 578 | | Half Precision SIMD16 Render Target Data Payload | 581 | | Half Precision SZ OM S0A SIMD8 Render Target Data Payload | 582 | | Half Precision SZ OM S0A SIMD16 Render Target Data Payload | 584 | | Half Precision SZ OM SIMD8 Dual Source Render Target Data Payload | 586 | | Half Precision SZ OM SIMD8 Render Target Data Payload | 587 | | Half Precision SZ OM SIMD16 Render Target Data Payload | 589 | | Half Precision SZ S0A SIMD8 Render Target Data Payload | 591 | | Half Precision SZ S0A SIMD16 Render Target Data Payload | 593 | | Half Precision SZ SIMD8 Dual Source Render Target Data Payload | 595 | | Half Precision SZ SIMD8 Render Target Data Payload | 596 | | Half Precision SZ SIMD16 Render Target Data Payload | 597 | | Hardware-Detected Error Bit Definitions | 599 | | Hardware Status Page Layout | 600 | | HCP_PAK_INSERT_OBJECT_INDIRECT_PAYLOAD | 605 | | HCP_REF_LIST_ENTRY | 606 | | HCP_TILE_POSITION_IN_CTB | 608 | | HCP_TILE_POSITION_IN_CTB_MSB | 609 | | HCP_WEIGHTOFFSET_CHROMA_ENTRY | 611 | | HCP_WEIGHTOFFSET_CHROMA_EXT_ENTRY | 613 | | HCP_WEIGHTOFFSET_LUMA_ENTRY | 614 | | Header Forbidden Message Descriptor Control Field | 615 | | Header Present Message Descriptor Control Field | 616 | | Header Required Message Descriptor Control Field | 617 | | HEVC_ARBITRATION_PRIORITY | 618 | | HEVC_VP9_RDOQ_LAMBDA_FIELDS | 619 | | HW Generated BINDING_TABLE_STATE | 620 | | | | | Hword 2 Block Data Payload | 622 | |--|-----| | Hword 4 Block Data Payload | 623 | | Hword 8 Block Data Payload | 624 | | Hword Channel Mode Message Header Control | 626 | | Hword Register Blocks Message Descriptor Control Field | 627 | | Ignored Message Header | 628 | | Inline Data Description for MFD_AVC_BSD_Object | 629 | | Inline Data Description in MPEG2-IT Mode | 636 | | Inline Data Description - VP8 PAK OBJECT | 639 | | INTERFACE_DESCRIPTOR_DATA | 645 | | INTERRUPT | 651 | | Invalidate After Read Message Descriptor Control Field | 653 | | JPEG | 654 | | LOD Message Address Payload Control | 655 | | Lower Oword Block Data Payload | 656 | | LRI Data Entry | 657 | | Manageability Engine Interrupt Vector | 658 | | MBHRD State Parameters1 | 659 | | MBHRD State Parameters2 | 664 | | MBHRD State Parameters3 | 667 | | MEDIA_SURFACE_STATE | 668 | | Memory Address Attributes | 679 | | Merged Media Block Message Header | 681 | | Merged Media Block Message Header Control | 682 | | Message Descriptor - Render Target Write | 685 | | Message Descriptor - Sampling Engine | 687 | | MFD_MPEG2_BSD_OBJECT Inline Data Description | 690 | | MFX_REFERENCE_PICTURE_BASE_ADDR | 692 | | Motion Decision Setting Parameters0 | 693 | | Motion Decision Setting Parameters1 | 695 | | MPEG2 | 696 | | MSAA Sample Number Message Address Control | 697 | | MsgDescpt31 | 698 | | No Event Data Payload | 699 | | Normal Media Block Message Header | 700 | |--|-----| | Normal Media Block Message Header Control | 701 | | oMask Message Data Payload Register | 703 | | OM Replicated SIMD16 Render Target Data Payload | 706 | | OM S0A SIMD8 Render Target Data Payload | 707 | | OM S0A SIMD16 Render Target Data Payload | 708 | | OM SIMD8 Dual Source Render Target Data Payload | 710 | | OM SIMD8 Render Target Data Payload | 712 | | OM SIMD16 Render Target Data Payload | 713 | | OS OM S0A SIMD8 Render Target Data Payload | 715 | | OS OM SIMD8 Dual Source Render Target Data Payload | 717 | | OS OM SIMD8
Render Target Data Payload | 719 | | OS S0A SIMD8 Render Target Data Payload | 721 | | OS SIMD8 Dual Source Render Target Data Payload | 722 | | OS SIMD8 Render Target Data Payload | 724 | | OS SZ OM S0A SIMD8 Render Target Data Payload | 725 | | OS SZ OM SIMD8 Dual Source Render Target Data Payload | 727 | | OS SZ OM SIMD8 Render Target Data Payload | 729 | | OS SZ S0A SIMD8 Render Target Data Payload | 731 | | OS SZ SIMD8 Dual Source Render Target Data Payload | 733 | | OS SZ SIMD8 Render Target Data Payload | 735 | | Oword 2 Block Data Payload | 737 | | Oword 4 Block Data Payload | 738 | | Oword 8 Block Data Payload | 739 | | Oword A64 SIMD8 Atomic Operation CMPWR16B Message Data Payload | 740 | | Oword Data Blocks Message Descriptor Control Field | 742 | | Oword Data Payload Register | 743 | | Oword Dual Data Blocks Message Descriptor Control Field | 744 | | PALETTE_ENTRY | 745 | | Performance Counter Report Format 101b | 746 | | Per Thread Scratch Space Message Header Control | 749 | | PIXEL_HASH_TABLE_1BIT_32ENTRY | 750 | | PIXEL_HASH_TABLE_1BIT_64ENTRY | 751 | | PIXEL HASH TABLE 1BIT 128ENTRY | 753 | | PIXEL_HASH_TABLE_2BIT_64ENTRY | 755 | |--|-----| | PIXEL_HASH_TABLE_2BIT_128ENTRY | 762 | | Pixel Sample Mask Render Target Message Header Control | 776 | | Power Clock State Format | 777 | | PPHWSP_LAYOUT | 780 | | Predicate Barrier Message Data Payload | 785 | | Qword Data Payload Register | 786 | | Qword SIMD8 Atomic Operation CMPWR8B Message Data Payload | 787 | | Qword SIMD8 Atomic Operation CMPWR Message Data Payload | 788 | | Qword SIMD8 Atomic Operation Return Data Message Data Payload | 789 | | Qword SIMD8 Data Payload | 790 | | Qword SIMD16 Atomic Operation CMPWR8B Message Data Payload | 791 | | Qword SIMD16 Atomic Operation Return Data Message Data Payload | 793 | | Qword SIMD16 Data Payload | 794 | | Read-Only Data Port Message Types | 795 | | Read Surface Info 32-Bit Address Payload | 796 | | Read Surface Info Data Payload | 797 | | RENDER_SURFACE_STATE | 799 | | Render Data Port Message Types | 834 | | Render Engine Interrupt Vector | 835 | | Render Target Index Message Header Control | 836 | | Render Target Message Header | 837 | | Render Target Message Header Control | 840 | | Replicated Pixel Render Target Data Payload Register | 843 | | Replicated SIMD16 Render Target Data Payload | 844 | | Reversed SIMD Mode 2 Message Descriptor Control Field | 845 | | Rounding Precision Table_3_Bits | 846 | | S0A SIMD8 Render Target Data Payload | 847 | | S0A SIMD16 Render Target Data Payload | 848 | | SAMPLER_BORDER_COLOR_STATE | 850 | | SAMPLER_INDIRECT_STATE_BORDER_COLOR | 853 | | SAMPLER_INDIRECT_STATE | 856 | | SAMPLER_STATE_8x8_1D_CONVOLVE | 859 | | SAMPLER STATE 8x8 AVS COEFFICIENTS | 862 | | SAMPLER_STATE_8x8_AVS | 866 | |--|-----| | SAMPLER_STATE_8x8_CONVOLVE_COEFFICIENTS | 879 | | SAMPLER_STATE_8x8_CONVOLVE | 881 | | SAMPLER_STATE_8x8_ERODE_DILATE_MINMAXFILTER | 885 | | SAMPLER_STATE | 886 | | SCALER_COEFFICIENT_FORMAT | 899 | | SCISSOR_RECT | 900 | | Scratch Hword Block Message Header | 902 | | SF_CLIP_VIEWPORT | 903 | | SF_OUTPUT_ATTRIBUTE_DETAIL | 905 | | SFC_8x8_AVS_COEFFICIENTS | 907 | | SFC_AVS_CHROMA_COEFF_TABLE_BODY | 910 | | SFC_AVS_LUMA_COEFF_TABLE_BODY | 913 | | SFC_AVS_STATE_BODY | 918 | | SFC_FRAME_START_BODY | 920 | | SFC_HDR_STATE | 921 | | SFC_IEF_STATE_BODY | 923 | | SFC_LOCK_BODY | 934 | | SFC_STATE_BODY | 935 | | SIMD1 Untyped BUFFER Surface 64-Bit Address Payload | 970 | | SIMD8 Dual Source Render Target Data Payload | 971 | | SIMD8 LOD Message Address Payload Control | 973 | | SIMD8 MSAA Typed Surface 32-Bit Address Payload | 975 | | SIMD8 Render Target Data Payload | 977 | | SIMD8 Typed Surface 32-Bit Address Payload | 978 | | SIMD8 Untyped BUFFER Surface 32-Bit Address Payload | 979 | | SIMD8 Untyped BUFFER Surface 64-Bit Address Payload | 980 | | SIMD8 Untyped STRBUF Surface 32-Bit Address Payload | 981 | | SIMD8 URB Channel Mask Message Address Payload | 982 | | SIMD8 URB Offset Message Address Payload | 983 | | SIMD16 Render Target Data Payload | 984 | | SIMD16 Untyped BUFFER Surface 32-Bit Address Payload | 986 | | SIMD16 Untyped BUFFER Surface 64-Bit Address Payload | 987 | | SIMD16 Untyped STRBUF Surface 32-Bit Address Payload | 988 | | SIMD 32-Bit Address Payload Control | 989 | |---|------| | SIMD 64-Bit Address Payload Control | 991 | | SIMD8 32-Bit Address Payload | 992 | | SIMD8 64-Bit Address Payload | 993 | | SIMD16 32-Bit Address Payload | 994 | | SIMD16 64-Bit Address Payload | 995 | | SIMD Mode 2 Message Descriptor Control Field | 996 | | SIMD Mode 3 Message Descriptor Control Field | 997 | | SLICE_HASH_TABLE | 998 | | SLM Block Message Header | 999 | | Slot Group 2 Message Descriptor Control Field | 1000 | | Slot Group 3 Message Descriptor Control Field | 1001 | | Slot Group Select Render Cache Message Descriptor Control Field | 1002 | | SO_DECL | 1003 | | SO_DECL_ENTRY | 1005 | | Split_coding_unit_flags | 1006 | | SplitBaseAddress4KByteAligned | 1007 | | SplitBase Address 64 Byte Aligned | 1008 | | SrcRegNum | 1009 | | SrcSubRegNum | 1010 | | Stateless Binding Table Index Message Descriptor Control Field | 1011 | | Stateless Block Message Header | 1012 | | Stateless Surface Message Header | 1013 | | Stateless Surface Pixel Mask Message Header | 1014 | | Static Frame Control Parameters0 | 1015 | | Stencil Message Data Payload Register | 1016 | | Subset Atomic Integer Trinary Operation Message Descriptor Control Field | 1017 | | Subset Reversed SIMD Mode 2 Message Descriptor Control Field | 1018 | | Subset SIMD Mode 2 Message Descriptor Control Field | 1019 | | Subset SIMD Mode 3 Message Descriptor Control Field | 1020 | | Subspan Render Target Message Header Control | 1021 | | Surface Binding Table Index Message Descriptor Control Field | 1022 | | Surface or Stateless Binding Table Index Message Descriptor Control Field | 1023 | | Surface Pixel Mask Message Header | 1024 | | SW Generated BINDING_TABLE_STATE | 1025 | |---|------| | SZ OM S0A SIMD8 Render Target Data Payload | 1026 | | SZ OM S0A SIMD16 Render Target Data Payload | 1027 | | SZ OM SIMD8 Dual Source Render Target Data Payload | 1029 | | SZ OM SIMD8 Render Target Data Payload | 1031 | | SZ OM SIMD16 Render Target Data Payload | 1032 | | SZ SOA SIMD8 Render Target Data Payload | 1034 | | SZ S0A SIMD16 Render Target Data Payload | 1035 | | SZ SIMD8 Dual Source Render Target Data Payload | 1037 | | SZ SIMD8 Render Target Data Payload | 1039 | | SZ SIMD16 Render Target Data Payload | 1040 | | Thread EOT Message Descriptor | 1042 | | TILE_RECT | 1043 | | TileW SIMD8 Data Control Dword | 1044 | | TileW SIMD8 Data Payload | 1045 | | Timeout Data Payload | 1046 | | Transpose Message Header | 1047 | | TS_CONSTANTS_REMOVED | 1048 | | TS_CONSTANTS_REMOVED | 1049 | | Untyped Write Channel Mask Message Descriptor Control Field | 1050 | | Upper Oword Block Data Payload | 1051 | | URB Channel Mask Payload Control | 1052 | | URB Handle Message Header | 1053 | | URB Handle Message Header Control | 1054 | | VC1 | 1055 | | VCS Hardware-Detected Error Bit Definitions | 1056 | | VD_CONTROL_STATE_BODY | 1057 | | VDENC_64B_Aligned_Lower_Address | 1058 | | VDENC_64B_Aligned_Upper_Address | 1059 | | VDENC_Block_8x8_4 | 1060 | | VDENC_Colocated_MV_Picture | 1061 | | VDENC_Down_Scaled_Reference_Picture | 1062 | | VDENC_Original_Uncompressed_Picture | 1063 | | VDENC Reference Picture | 1064 | | VDENC_Reference_Surface_State_Fields | 1065 | |--|------| | VDENC_Row_Store_Scratch_Buffer_Picture | 1070 | | VDENC_Streamin_Data_Picture | 1071 | | VDENC_Sub_Mb_Pred_Mode | 1072 | | VDENC_Surface_Control_Bits | 1073 | | VDENC_Surface_State_Fields | 1075 | | VEB_DI_IECP_COMMAND_SURFACE_CONTROL_BITS | 1081 | | VEBOX_ACE_LACE_STATE | 1082 | | VEBOX_ALPHA_AOI_STATE | 1089 | | VEBOX_CAPTURE_PIPE_STATE | 1091 | | VEBOX_CCM_STATE | 1095 | | VEBOX_Ch_Dir_Filter_Coefficient | 1098 | | VEBOX_CSC_STATE | 1099 | | VEBOX_DNDI_STATE | 1102 | | VEBOX_Filter_Coefficient | 1120 | | VEBOX_FORWARD_GAMMA_CORRECTION_STATE | 1121 | | VEBOX_FRONT_END_CSC_STATE | 1129 | | VEBOX_GAMUT_CONTROL_STATE | 1132 | | VEBOX_IECP_STATE | 1138 | | VEBOX_PROCAMP_STATE | 1140 | | VEBOX_RGB_TO_GAMMA_CORRECTION | 1141 | | VEBOX_Scalar_State | 1142 | | VEBOX_STD_STE_STATE | 1147 | | VEBOX_TCC_STATE | 1162 | | VEBOX_VERTEX_TABLE | 1168 | | VEBOX_VERTEX_TABLE_ENTRY | 1171 | | VECS Hardware-Detected Error Bit Definitions | 1172 | | VERTEX_BUFFER_STATE | 1173 | | VERTEX_ELEMENT_STATE | 1175 | | Vertical Line Stride Override Message Descriptor Control Field | 1179 | | VideoDecoder Interrupt Vector | 1180 | | VideoEnhancement Interrupt Vector | 1182 | | VP8 Encoder StreamOut Format | 1183 | | WDBoxOAInterrupt Vector | 1185 | | WDE Packetization Parameters0 | 1186 | |-------------------------------|------| | WDE Packetization Parameters1 | 1187 | | WD Interrupt Bit Definition | 1189 | | WiGig Parameters | 1190 | ### 3DSTATE_BINDING_TABLE_POINTERS_BODY | | | 3D9 | STATE_BINDING_TABLE_POIN | ITERS_BODY | | | | | |------------|--------|--
---|--|--|--|--|--| | Source: | | Re | nderCS | | | | | | | Size (in b | oits): | 32 | | | | | | | | Default \ | Value: | 0x0 | 0000000 | | | | | | | DWord | Bit | | Description | | | | | | | 0 | 31:21 | Reserve | 3 | | | | | | | | | Format: | | MBZ | | | | | | | 20:16 | Reserve | d | | | | | | | | | Format: | | MBZ | | | | | | | 15:5 | Pointer t | to Binding Table | | | | | | | | | Format: | SurfaceStateOffset[15:5] When Binding Table Po
Alignment is not set to 256B alignment. | ol is disabled and HW Binding Table | | | | | | | | Format: SurfaceStateOffset[16:6] When Binding Table Pool is enabled and HW Binding Table Alignment is not set to 256B alignment. | | | | | | | | | | Format: | SurfaceStateOffset[18:8] When HW Binding Tabl | e Alignment is set to 256B alignment. | | | | | | | | and align
Binding Alignmen
alignmen
not set to
is 64B . If
the offse
Binding A | s an aligned address offset of the function's BIND ament differ depending on whether HW Binding Table Alignment field: If HW Binding Table Pool is not set to 256B, the offset is relative to Surfa at is 32B . If HW Binding Table Pool is enabled and 256B, the offset is relative to the Binding Table HW Binding Table Pool is disabled and the HW is relative to the Surface State Base Address at Table Pool is enabled and the HW Binding Table of the Binding Table Of the Binding Table Pool Base Address and the | Table is enabled and the setting of HW is disabled and the HW Binding Table ace State Base Address and the id the HW Binding Table Alignment is a Pool Base Address and the alignment Binding Table Alignment is set to 256B, and the alignment is 256B. If HW Alignment is set to 256B, the offset is | | | | | | | 4:0 | Reserve | d | | | | | | | | | Format: | | MBZ | | | | | ### 3DSTATE_BLEND_STATE_POINTERS_BODY | | | 3DST/ | ATE_BLEND_STATE_ | POIN | TERS_BODY | | | |------------|--------|---|-----------------------------------|------------|---|--|--| | Source: | | RenderCS | 5 | | | | | | Size (in b | oits): | 32 | | | | | | | Default \ | /alue: | 0x000000 | 000 | | | | | | DWord | Bit | | Desci | iption | | | | | 0 | 31:6 | Blend State Poi | nter | | | | | | | | Format: DynamicStateOffset[31:6]BLEND_STATE*8 | | | | | | | | | Specifies the 64 | -byte aligned offset of the BLENI | D_STATE. | This offset is relative to the Dynamic | | | | | | State Base Address. | | | | | | | | 5:1 | Reserved | | | | | | | | | Format: | | | MBZ | | | | | 0 | Blend State Poi | nter Valid | | | | | | | | Format: | | Enabl | e | | | | | | This bit, if set, in fetched. | dicates that the BLEND_STATE p | ointer has | s changed and new state needs to be | | | ### 3DSTATE_CC_STATE_POINTERS_BODY | | | 31 | DSTATE_CC_S | STATE_POINT | ERS_BODY | | | | |--------------------|------------------|---------------|----------------------|--|------------------------|-------------------|--|--| | Source: | Source: RenderCS | | | | | | | | | Size (in bits): 32 | | | | | | | | | | Default \ | /alue: | 0x000 | 000000 | | | | | | | DWord | Bit | | | Description | | | | | | 0 | 31:6 | Color Calc S | tate Pointer | | | | | | | | | Format: | DynamicStateOffs | set[31:6]COLOR_CALC_ | STATE | | | | | | | Specifies the | 64-byte aligned offs | set of the COLOR_CALC | _STATE. This offset is | s relative to the | | | | | | Dynamic Sta | te Base Address. | | | | | | | | 5:1 | Reserved | | | | | | | | | | Format: | | | MBZ | | | | | | 0 | Color Calc S | tate Pointer Valid | | | | | | | | | Format: | | Ena | ble | | | | | | | is considered | | CC state. This bit is co
bit is cleared due to th | | | | | ### 3DSTATE_CLEAR_PARAMS_BODY | | | RenderCS - 3DSTA | TE_CLE | AR_PAI | RAMS_BODY | | | |------------|--------------|---|--------------|--------------|---|--|--| | Source: | ource: BSpec | | | | | | | | Size (in b | oits): | 64 | | | | | | | Default \ | √alue: | 0x00000000, 0x00000000 | | | | | | | DWord | Bit | | Desc | ription | | | | | 0 | 31:0 | Depth Clear Value | _ | | | | | | | | Format: | IEEE_FLOA | Т32 | | | | | | | This field defines the clear value tha field is enabled. It is valid only if Dep | | | depth buffer if the Depth Buffer Clear all dis set. | | | | | | | Program | ming Note | s | | | | | | The clear value must be between th CC_VIEWPORT. If the depth buffer f range of +0.0f and 1.0f inclusive; va | format is D3 | 2_FLOAT, th | nen values must be limited to the | | | | 1 | 31:1 | Reserved | | | | | | | | | Format: | | | MBZ | | | | | 0 | Depth Clear Value Valid | | | | | | | | | Format: | | Boolean | | | | | | | | xel of the p | rimitive ren | h clear value is obtained from
dered with Depth Buffer Clear set in
obtained from the Depth Clear Value | | | ### 3DSTATE_CLIP_BODY | | | | | 3D | STATE_CLIP_BODY | | | | | |------------|---|---|-------------|-----------------|---|--|--|--|--| | Source: | | R | RenderC | S | | | | | | | Size (in b | oits): | 9 | 16 | | | | | | | | Default \ | /alue: | 0 | x00000 | 000, 0x00000 | 000, 0x0000000 | | | | | | DWord | Bit | | Description | | | | | | | | 0 | 31:21 | Reserv | ed | | | | | | | | | | Forma | t: | | MBZ | | | | | | | 20 | Force U | Jser Cli | p Distance C | ull Test Enable Bitmask | | | | | | | | Forma | t: | | Enable | | | | | | | | This fie | eld prov | ides a work a | round override for the computation of SOL_INT::Render_Enable | | | | | | | | Value | Name | | Description | | | | | | | | 0h | Norma | al Clip_INT::U | ser Clip Distance Cull Test Enable Bitmask normally | | | | | | | | 1h | Force | - | _INT::User Clip Distance Cull Test Enable Bitmask to use the value in CLIP:: User Clip Distance Cull Test Enable Bitmask | | | | | | | 19 | Vertex | Sub Pi | xel Precision | Select | | | | | | Format: U1 | | | | | | | | | | | | | Selects the number of fr | | | of fractional bits maintained in the vertex data | | | | | | | | Val | ue | Name | Description | | | | | | | | 0h | | 8 Bit | Bit 8 sub pixel precision bits maintained | | | | | | | | 1h | 4 | 4 Bit | 4 sub pixel precision bits maintained | | | | | | | 18 | Early C | ull Enal | ble | | | | | | | | | Forma | at: Enable | | | | | | | | | | | | | disable the EarlyCull function. When this bit is set triangles are culled before proceeding through must clip function. | | | | | | | | Programming Notes | | | | | | | | | | | Setting this bit must not impact functionality, this state only controls the performance of the must clip function. | | | | | | | | | | | Vertex Sub Pixel Precision Select precision must be set to "8 bit" in order avoid precision issues. | | | | | | | | | | In POSH pipe, this state will be used to control the forcing of Z-Only clipped triangles to Trivia accept. This is similar functionality as early cull in replay pipe. This bit must be set for better performance. | | | | | | | | | | | 17 | Force U | Jser Cli | p Distance C | lip Test Enable Bitmask | | | | | | | | Forma | t: | | Enable | | | | | | | | This fie | eld prov | ides a work a | round override for the computation of SOL_INT::Render_Enable. | | | | | | | | Value | Name | • | Description | | | | | | | | 0b | Norma | al Clip_INT:: l | Jser Clip Distance Clip Test Enable Bitmask normally | | | | | | | | 1b | Force | | _INT:: User Clip Distance Clip Test Enable Bitmask to use the value in
CLIP::User Clip Distance Clip Test Enable Bitmask | | | | | | | | | | 3DSTA | TE_CLIP_BODY | / | | |---|-------|---|---|---------------------|----------------------------|---|--| | | 16 | Force Clip Mode | | | | | | | | | Format: | | | Enabl | e | | | | | This field | This field provides a work around override for the computation of SOL_INT::Render_Enable. | | | | | | | | Value | Name | | Descri | ption | | | | | 0b N | Normal | Clip_INT::Clip Mo | de is computed normal | ly. | | | | | 1b Force Forces Clip_INT::Clip Mode to use the value in 3DSTATE_CLIP::User Clip Mode. | | | | | | | | 15:12 | Reserved | ı | | | | | | | | Format: | MBZ | | | | | | | 11:10 | Clipper S | | | -specific statistics regis | ter(s)
can be incremented. | | | | | Value | | Name | specific statistics regis | Description | | | | | 00h | Disabl | e | CL INVOCATIONS CO | DUNT cannot increment | | | | | 01h | Incren | nent by one | CL_INVOCATIONS_CO | | | | | | 03h | Reserv | <u> </u> | | | | | | 9:8 | Reserved | 1 | | 1 | | | | | | Format: MBZ | | | | | | | | 7:0 | User Clip Distance Cull Test Enable Bitmask | | | | | | | | | Format: Enable[8] | | | | | | | | | accept de | etermina | ation needs to be | • | nces against which trivial reject / trivial a must clip).DX10 allows simultaneous nces. | | | 1 | 31 | Clip Enak | | | · | | | | | | Format: | | | Enabl | е | | | | | Specifies | whethe | er the Clip functio | n is enabled or disabled | l (pass-through). | | | | 30 | API Mod Controls | _ | inition of the NEA | R clipping plane | | | | | | Valu | е | Name | | Description | | | | | 0h | С | GL NEA | R VP boundary == 0.0 | (NDC) | | | | 29 | Reserved | ł | | | | | | | | Format: | | | | MBZ | | | | 28 | Viewport | t XY Cli | p Test Enable | | | | | | | Format: | | | Enabl | e | | | | | | | to control whether | er the Viewport X, Y exte | ents [-1,1] are considered in | | | | | | e Guard | • | | BLED, all vertices are considered | | | | 27 | | | pect to the XY dire | ecuons. | | | | | 27 | Reserved Format: | ı | | | MBZ | | | | | 1 Offiliat. | | | | IVIDA | | #### **3DSTATE CLIP BODY** 26 **Guardband Clip Test Enable** Enable Format: This field is used to control whether the Guardband X, Y extents are considered in VertexClipTest for non-point objects. If the Guardband ClipTest is DISABLED but the Viewport XY ClipTest is ENABLED, ClipDetermination operates as if the Guardband were coincident with the Viewport. If both the Guardband and Viewport XY ClipTest are DISABLED, all vertices are considered "visible" with respect to the XY directions. 25:24 Reserved Format: MBZ 23:16 User Clip Distance Clip Test Enable Bitmask Format: Enable[8] This 8 bit mask field selects which of the 8 user clip distances against which trivial reject / trivial accept / must clip determination needs to be made.DX10 allows simultaneous use of ClipDistance and Cull Distance test of up to 8 distances. 15:13 **Clip Mode** This field specifies a general mode of the CLIP unit, when the CLIP unit is ENABLED. Value Name **Description** 0h **NORMAL** TrivialAccept objects are passed down the pipeline, MustClip objects Clipped in the Fixed Function Clipper HW, TrivialReject and BAD objects are discarded Reserved 1h Reserved 2h 3h REJECT ALL All objects are discarded 4h ACCEPT ALL All objects (except BAD objects) are trivially accepted. This effectively disables the clip-test/clip-determination function. Note that the CLIP unit will still filter out adjacency information, which may be required since the SF unit does not accept primitives with adjacency. 5h-7h Reserved 12:10 Reserved Format: MBZ 9 **Perspective Divide Disable** Format: Disable This field disables the Perspective Divide function performed on homogeneous position read from the URB. This feature can be used by software to submit pre-transformed "screen-space" geometry for rasterization. This likely requires the W component of positions to contain "rhw" (aka 1/w) in order to support perspective-correct interpolation of vertex attributes. Likewise, the X, Y, Z components will likely be required to be X/W, Y/W, Z/W. Note that the device does not support clipping when perspective divide is disabled. Software must specify CLIPMODE_ACCEPT_ALL whenever it disables perspective divide. This implies that software must ensure that object positions are completely contained within the "guardband" screen-space limits imposed by the SF unit (e.g., by clipping in CPU SW before submitting the objects). | 8 | Non-Perspective Barycentric Enable | | | | | | | |-----|--|--|--|--|--|--|--| | | Format: Enable | | | | | | | | | | on of non-perspective barycentric parameters in the clipper, wh
st clip case. This field must be enabled if any non-perspective
d in pixel shader. | | | | | | | | | Programming Notes | | | | | | | | | ever Enable bits 3 or 4 or 5 of 3DSTATE_WM:Barycentric nis indicates that one of the Non-perspective barycentric ed. | | | | | | | | This field must be set if the 3 Plane Coefficients is set. | BDSTATE_PS_EXTRA:Pixel Shader Requires Non-Perspective Bary | | | | | | | 7:6 | Reserved | | | | | | | | | Format: | MBZ | | | | | | | 5:4 | Triangle Strip/List Provokir | ng Vertex Select | | | | | | | | Format: U2 | | | | | | | | | | | | | | | | | | enumerated type | | | | | | | | | This field selects which vertex of a triangle (in a triangle strip or list primitive) is considered th "provoking vertex". | | | | | | | | | Value | Name | | | | | | | | 0h | 0 | | | | | | | | 1h | 1 | | | | | | | | 2h | 2 | | | | | | | | 3h | Reserved | | | | | | | | Line Strip/List Provoking Vertex Select | | | | | | | | 3:2 | Line Strip/List Provoking v | ertex Select | | | | | | | 3:2 | Format: | U2 | | | | | | | 3:2 | | | | | | | | | 3:2 | | | | | | | | | 3:2 | Format: | | | | | | | | 3:2 | Format: enumerated type This field selects which verte | U2 | | | | | | | 3:2 | Format: enumerated type This field selects which verte "provoking vertex". | ex of a line (in a line strip or list primitive) is considered the | | | | | | | 3:2 | Format: enumerated type This field selects which verte "provoking vertex". | ex of a line (in a line strip or list primitive) is considered the Name | | | | | | | 3:2 | Format: enumerated type This field selects which verte "provoking vertex". Value Oh | ex of a line (in a line strip or list primitive) is considered the Name | | | | | | | 3:2 | Format: enumerated type This field selects which verte "provoking vertex". Value 0h 1h | ex of a line (in a line strip or list primitive) is considered the Name 0 1 | | | | | | | | | 3DS | TATE_CLIP_E | ODY | | | | | | | |---|-------|--|-----------------------|--------|------|--|--|--|--|--| | | | Format: | | | U2 | enumerated type | | | | | | | | | | | | This field selects which vertex of a triangle (in a triangle fan primitive) is considered the "provoking vertex". | | | | | | | | | | | | Value | | | Name | | | | | | | | | 0h | 0 | | | | | | | | | | | 1h | 1 | | | | | | | | | | | 2h | 2 | | | | | | | | | | | 3h | Reserved | | | | | | | | | 2 | 31:28 | Reserved | | | | | | | | | | | | Format: | | MBZ | | | | | | | | | 27:17 | Minimum Point Width | | | | | | | | | | | | Format: U8.3 pixels | | | | | | | | | | | | This value is used to clamp read-back PointWidth values. | | | | | | | | | | | 16:6 | Maximum Point Width | | | | | | | | | | | | Format: | U8.3 pix | | | | | | | | | | | This value is used to clamp read-back PointWidth values. | | | | | | | | | | | 5 | Force Zero RTA Index Enable | • | | | | | | | | | | | Format: | | Enable | | | | | | | | | | If set, the Clip unit will ignore the read-back RTAIndex and operate as if the value 0 was read-back. If clear, the read-back value is used. | | | | | | | | | | | 4 | Reserved | | , | | | | | | | | | | Format: | | MBZ | | | | | | | | | 3:0 | Maximum VP Index | | | | | | | | | | | | Format: U4-1 inde | ex value (# of viewpo | orts) | This field specifies the maximum valid VPIndex value, corresponding to the number of active viewports. If the source of the VPIndex exceeds this maximum value, a VPIndex value of 0 is passed down the pipeline. Note that this clamping does not affect a VPIndex value stored in the URB. | | | | | | | | | ### 3DSTATE_CONSTANT_ALL_DATA | | | 3DSTAT | TE_CONSTANT_ALL_DATA | | | | |------------------|--|--------------------------------|--|--|--|--| | Source: RenderCS | | | | | | | | Size (in bits): | | 64 | | | | | | Default \ | /alue: | 0x00000000, 0x0000 | 00000 | | | | | DWord | Bit | | Description | | | | | 01 | 63:5 | Pointer To Constant Buffe | er | | | | | | | Format: | GraphicsAddress63-5 | | | | | | | The value of this field is the | e virtual address of the location of the push constant buffer. | | | | | | | Programming Notes | | | | | | | Constant buffers must be allocated in linear (not tiled) graphics memory. | | | | | | | | 4:0 Constant Buffer Read Length | | | | | | | Format: | | Format: | U5 | | | | | | This field specifies the length of the constant data to be loaded from memory in 2 | | | | | | | | Programming Notes | | | | | | | | d length fields for all pointers must be less than or equal to the size of | | | | | | | | | Zero means there notes | o data to fetch for this buffer pointer. | | | | ### 3DSTATE_CONSTANT(Body) | | | 3DSTATE_CONSTANT(Body) | | | | |------------|----------|---|--|--|--| | Source: | RenderCS | | | | | | Size (in b | oits): | 320 | | | | | Default \ | /alue: | 0x0000000, 0x00000000, 0x00000000, 0x00000000 | | | | | DWord | Bit | Description | | | | | 0 | 31:16 | Constant Buffer 1 Read Length | | | | | | | Format: U16 read length | | | | | | | This field specifies the length of the constant data to be loaded from memory in 256-bit units. | | | | | | | Programming Notes | | | | | | | The sum of all four read length fields must be less than or equal to the size of 64 | | | | | | | Setting the
value of the register to zero will disable buffer 1. | | | | | | | If disabled, the Pointer to Constant Buffer 1 must be programmed to zero. | | | | | | 15:0 | Constant Buffer 0 Read Length | | | | | | | Format: U16 read length | | | | | | | This field specifies the length of the constant data to be loaded from memory in 256-bit units. | | | | | | | Programming Notes | | | | | | | The sum of all four read length fields must be less than or equal to the size of 64 | | | | | | | Setting the value of the register to zero will disable buffer 0. | | | | | | | If disabled, the Pointer to Constant Buffer 0 must be programmed to zero. | | | | | 1 | 31:16 | Constant Buffer 3 Read Length | | | | | | | Format: U16 read length | | | | | | | This field specifies the length of the constant data to be loaded from memory in 256-bit units. | | | | | | | Programming Notes | | | | | | | The sum of all four read length fields must be less than or equal to the size of 64 | | | | | | | Setting the value of the register to zero will disable buffer 3. | | | | | | | If disabled, the Pointer to Constant Buffer 3 must be programmed to zero. | | | | | | 15:0 | Constant Buffer 2 Read Length | | | | | | | Format: U16 read length | | | | | | | This field specifies the length of the constant data to be loaded from memory in 256-bit units. | | | | | | | Programming Notes | | | | | | | The sum of all four read length fields must be less than or equal to the size of 64 | | | | | | | Setting the value of the register to zero will disable buffer 2. | | | | | | | 3DSTATE_CONSTANT(Be | ody) | | | | |----|------|---|--------------------------------|--|--|--| | | | If disabled, the Pointer to Constant Buffer 2 must be programmed to zero. | | | | | | 23 | 63:5 | Pointer To Constant Buffer 0 | | | | | | | | Format: GraphicsAddress63-5 | | | | | | | | | | | | | | | | Description | | | | | | | | The value of this field is the virtual address of the location of the push constant buffer 0. GraphicsAddress [63:48] are ignored by the HW and assumed to be in correct canonical form [63:48] == [47]. | | | | | | | | Programming Note | es | | | | | | | Constant buffers must be allocated in linear (not tiled) gra | | | | | | | 4:0 | Reserved | . , | | | | | | | Format: | MBZ | | | | | 45 | 63:5 | Pointer To Constant Buffer 1 | | | | | | 5 | | Format: GraphicsAddress63-5 | | | | | | | | This field points to the location of Constant Buffer 1. | | | | | | | | If gather constants are enabled This field is an offset of constant Buffer1 from the Gather Pool BASE ADDRESS. If gather constants is disabled, the value of this field is the virtual address of the location of the push constant buffer. GraphicsAddress [63:48] are ignored by the HW and assumed to be in correct canonical form [63:48] == [47]. | | | | | | | | Programming Note | es | | | | | | | Constant buffers must be allocated in linear (not tiled) graphics memory. | | | | | | | 4:0 | Reserved | | | | | | | 1.0 | Format: | MBZ | | | | | 67 | 63:5 | Pointer To Constant Buffer 2 | | | | | | | | Format: GraphicsAddress63-5 | | | | | | | | The value of this field is the virtual address of the location of the push constant buffer 2. GraphicsAddress [63:48] are ignored by the HW and assumed to be in correct canonical forn [63:48] == [47]. | | | | | | | | Programming Notes | | | | | | | | Constant buffers must be allocated in linear (not tiled) graphics memory. | | | | | | | 4:0 | Reserved | | | | | | | | Format: | MBZ | | | | | 89 | 63:5 | Pointer To Constant Buffer 3 | | | | | | | | Format: GraphicsAddress63-5 | | | | | | | | The value of this field is the virtual address of the location | of the push constant buffer 3. | | | | | | 3DSTATE_CONSTANT(Body) | | | | | | | |---|------------------------|---|-----|--|--|--|--| | GraphicsAddress [63:48] are ignored by the HW and assumed to be in correct canonical for [63:48] == [47]. | | | | | | | | | | | Programming Note | es | | | | | | | | Constant buffers must be allocated in linear (not tiled) graphics memory. | | | | | | | | 4:0 Reserved | | | | | | | | | | Format: | MBZ | | | | | ### 3DSTATE_CPS_BODY | | | | | 3DS | E_CPS_BOD | ΟY | | | |---|-------|--|-------|--|--------------------|---------------|---|--| | Source: RenderCS Size (in bits): 256 | | | | | | | | | | Default Value: 0x00000000, 0x000000000, 0x000000000, 0x00000000 | | | | | | | 0000, 0x00000000, | | | DWord | Bit | | | | Description | | | | | 0 | 31:27 | Reserve | ed | | | | | | | | | Format | t: | | | MBZ | | | | | 26:16 | MinCPS | SizeY | | | | | | | | | Format | t: | | | S3.7 | | | | | | This bit-field defines the minimum shading ratio in Y dimension in screen space. This value is used only when Coarse Pixel Shading is enabled. It also defines the floor of the non-quantized CPSizeY for Mode 1. HW quantizes this value to determine Decoupled Rate. This value is used to clamp the CPSizeY for the lowest bound. | | | | | | | | | 15 | Reserve | ed | | | | | | | | | Format | t: | | | MBZ | | | | | 14 | ScaleA | kis | | | | | | | | | Format: U1 | | | | | | | | | | This bit defines which dimension (along X- or Y- axis) should be scaled when computing Coarse Pixel Size values along ellipse in Mode1. | | | | | | | | | | Value Name | | Description | | | | | | | | 0h | | X axis | pect to scale X-di | mension | | | | | | 1h Y axis Us | | se aspect to scale Y-dimension | | | | | | | 13:12 | Coarse Pixel Shading Mode | | | | | | | | | | Format: U2 | | | | | U2 | | | | | This bit-field defines Coarse Pixe | | el Shading Mode. | | | | | | | | Value | | Name | | Descrip | otion | | | | | 0h | CPS_N | IODE_NONE | _ | der inputs e. | HW may be required to drive
g. ScaleX = ScaleY = 1 and | | | | | 1h | CPS_M | iode_constan | _ | | lefined per DRAW based on
ds in this state (constant | | | | | 2h CPS_MODE_RADIAL | | Coarse Pixel Shading Ratio varies radially from a focal point defined by (X_Focal, Y_Focal). This mode is typically used when there is Depth of Field or Ring of Confusion camera effects are desired. | | | | | | | | | 3D | STATE_CPS | S_BODY | | | |---|-------|---|---|---|--|----------------|--| | | | 3h | Reserved | | | | | | | | | | Duamer | and an Materia | | | | | | 14: | | | nming Notes | | | | | | It is a valid configuration to set the CPS mode other than CPS_MODE_NONE and request perpixel dispatch in 3DSTATE_PS_EXTRA. In such case, 3DSTATE_PS_EXTRA configuration override 3DSTATE_CPS configuration, and effective CPS mode is set to CPS_MODE_NONE for this draw primitive. | | | | | | | | | It is an INVALID configuration to set the CPS mode other than CPS_MODE_NONE and req per-sample dispatch in 3DSTATE_PS_EXTRA. Such configuration should be disallowed at t level, and rendering results are undefined. It is a valid configuration to set the CPS mode to CPS_MODE_NONE and at the same time Pixel Shader Is Per Coarse Pixel in 3DSTATE_PS_EXTRA. In such case, 3DSTATE_PS_EXTRA i ignored and shader is dispatched at pixel-rate; shader inputs specific to coarse-rate have undefined value (ActualCoarsePixelSize for example). | | | | | | | | | | | | | | | | | 11 | Statist | ics Enable | | | | | | | | Forma | at: | | Enable | | | | | | This b | it-field defines statisti | cs gathering. Whe | n enabled, CPS Invocation Counter | is enabled. | | | | 10:0 | MinCF | PSizeX | | | | | | | | Forma | at: | | S3.7 | | | | | | This bit-field defines the minimum shading ratio in X dimension in screen space. This value is used only when Coarse Pixel Shading is enabled. It also defines the floor of the non-quantized ScaleX for Mode 1. HW quantizes this value to determine Decoupled Rate. | | | | | | | 1 | 31:27 | Programme Reserved | | | | | | | | | Forma | at: | | MBZ | | | | | 26:16 | MaxC | PSizeY | | | | | | | | Forma | at: | | S3.7 | | | | | | This bit-field defines the maximum shading ratio in Y dimension in screen space. This value is used only when Coarse Pixel Shading is enabled and Coarse Pixel Shading Mode is set to CPS_MODE_RADIAL. This value is used to clamp the CPSizeY for the highest bound. MaxCPSizeY must be greater
than or equal to MinCPSizeY when this value is used. | | | | | | | | 15:11 | Reserv | | | | | | | | | Forma | at: | | MBZ | | | | | 10:0 | MaxC | PSizeX | | | | | | | | Forma | at: | | S3.7 | | | | | | used c | nly when Coarse Pixel
ODE_RADIAL. This val | Shading is enable
ue is used to clam | cio in X dimension in screen space. The and Coarse Pixel Shading Mode in the CPSizeX for the highest boun MinCPSizeX when this value is used | s set to
d. | | | | | 3DSTATE_CPS_BODY | |---|-------|--| | | | | | 2 | 31:16 | Reserved | | | | Format: MBZ | | | 15:0 | Y_Focal | | | | Format: S15 The valid data range is (-2^14 to 2^14-1) | | | | This field defines the Y-coordinate for a focal point with respect to which shading ratio is computed in Mode1. | | 3 | 31:16 | Reserved | | | | Format: MBZ | | | 15:0 | X_Focal | | | | Format: S15 The valid data range is (-2^14 to 2^14-1) | | | | This field defines the X-coordinate for a focal point with respect to which shading ratio is computed in Mode1. | | 4 | 31:0 | Му | | | | Format: IEEE_FLOAT32 | | | | This field defines the slope of the Transfer function for computing CPSizeY for Mode1. | | | | Programming Notes | | | | SW needs to compute this from API supplied parameters: | | 5 | 31:0 | Mx | | | | Format: IEEE_FLOAT32 | | | | This field defines the slope of the Transfer function for computing CPSizeX for Mode1. | | | | Programming Notes | | | | SW needs to compute this from API supplied parameters: | | | | $(M_x, M_y) = (S_x^{\text{max}} - S_x^{\text{min}}, S_y^{\text{max}} - S_y^{\text{min}})$ | | | | R _{max} -R _{min} R _{max} -R _{min} | | | | Mx must be greater than or equal to zero | | 6 | 31:0 | Rmin | | | | Format: IEEE_FLOAT32 | | | | This field defines (smaller) radius of the inner ellipse for Mode1. All points on inner ellipse have coarse point size = (MinCPSizeX, MinCPSizeY). | | 7 | 31:0 | Aspect | #### 3DSTATE_CPS_BODY Format: IEEE_FLOAT32 This field defines aspect for both inner and outer ellipses in Mode1. The aspect parameter must be within <0,1> range and Driver must program it as ratio of smallest ellipse radius to larger ellipse radius: Aspect = min(radiusX, radiusY) / max(radiusX, radiusY) where radiusX and radiusY define ellipse radius along x- and y- axes respectively. Note: Aspect must be same for both inner and outer ellipses. ### 3DSTATE_DS_BODY | | | | | 3DSTATE | _DS_BODY | | | |---|------------------|--|------------------------------------|---|--|--|--| | Source: | Source: RenderCS | | | | | | | | Size (in b | its): | 320 | | | | | | | Default Value: 0x00000000, 0x000000000, 0x000000000, 0x00000000 | | | | | | | | | DWord | Bit | | | | Description | | | | 01 | 63:6 | Kernel | Start Po | ointer | | | | | | | Forma | t: | InstructionBase | Offset[63:6] | | | | | | unit. It i | s specifi | | r offset from the In | ram run by threads spawned by this FF
struction Base Address. This field is | | | - | 5:0 | Reserve | ed | | | | | | | | Forma | t: | | | MBZ | | | 2 | 31 | Reserve | ed | | | | | | | | Forma | t: | | | MBZ | | | = | 30 | Vector | Mask E | nable | | | | | | | Forma | t: | Enable Enume | erated Type | | | | | | - | - | - - | | into the EU's Vector Mask Enable or the definition and use of VME state. | | | | | Value | Name | Description | | | | | | | 0h | Dmask | The EU will use the Dispexecution. | ed by the DS stage) for instruction | | | | | | 1h | Vmask | The EU will use the Vector Mask (derived from the Dispatch Mask) for instruction execution. | | | | | | | Programming Notes | | | | | | | | | approp
SIMD4
EU wo | oriate to
x2 threa
uld use a | SIMD4x2 or SIMD8 thre
d execution, the DS stag | ead execution (as a
ge will generate a D
SIMD8 execution t | OS stage will provide a Dispatch Mask function of dispatch mode). E.g., for bispatch Mask that is equal to what the here is no known usage model for use | | | | 29:27 | Sampler Count | | | | | | | | | Format: U3 | | | | | | | | | Specifies how many samplers (in multiples of 4) the kernel uses. Used only for prefetching the associated sampler state entries. | | | | | | | | | This field is ignored if DS Function Enable is DISABLED. | | | | Description | | | | | Valu | ie | Name | | Description | | | | | | 3D | STATE_D | S_B | BODY | | | |----|--|---|---|--|-------------------------------|--|--|--| | | 0h | No Sa | mplers | No | samp | olers used | | | | | 1h | 1-4 Sa | mplers | bet | between 1 and 4 samplers used | | | | | | 2h | 5-8 Sa | Samplers between 5 and 8 samplers used | | | 5 and 8 samplers used | | | | | 3h | 9-12 S | amplers | bet | ween | 9 and 12 samplers used | | | | | 4h | 13-16 | Samplers | bet | ween | 13 and 16 samplers used | | | | 2 | 6 Rese | rved | | | | | 1 | | | | Forn | nat: | | | | MBZ | | | | 25 | :18 Bind i | ing Table Ent | ry Count | | | | | | | | Forn | nat: | | | | U8 | | | | | to ze igno Whe | kernel uses. Used only for prefetching of the binding table entries and associated surface st Note: For kernels using a large number of binding table entries, it may be wise to set this fit to zero to avoid prefetching too many entries and thrashing the state cache. This field is ignored if DS Function Enable is DISABLED. When HW Generated Binding Table bit is enabled: This field indicates which cache lines (51 units - 32 Binding Table Entry section) should be fetched. Each bit in this field corresponds cache line. Only the 1st 4 non-zero Binding Table entries of each 32 Binding Table entry sec | | | | | set this field
field is
e lines (512bit
responds to a | | | | [0.25 | Value [0,255] | | | | Name | | | | | [[0/25 | | | | | | | | | | | Programming Notes | | | | | | | | | | When HW binding table bit is set, it is assumed that the Binding Table Entry Count field will be generated at JIT time. | | | | | | | | | gene | erated at JIT ti | me. | | | and the binding rable thay coun | t field will be | | | 1 | | erated at JIT ti
ad Dispatch F | | | | That the binding rable thay could | t field will be | | | 1 | 7 Threa | ad Dispatch F
nat: | Priority | U1 Enumerated | | 2 | | | | 1 | 7 Threa | ad Dispatch F
nat:
ifies the priori | Priority | | | <u> </u> | | | | 1 | 7 Threa | ad Dispatch F
nat:
ifies the priori | Priority | | | 2 | | | | 1 | 7 Three Forn Spec DISA Oh | ad Dispatch F
nat:
ifies the priori
BLED. | Priority | hread for dispa | atch: T | e
This field is ignored if
DS Function | | | | 1 | 7 Threa | ad Dispatch F
nat:
ifies the priori
BLED. | Priority
Ity of the t | hread for dispa | atch: T | E
This field is ignored if DS Function
Description | | | | | 7 Three Form Spec DISA Oh 1h | ad Dispatch F
nat:
ifies the priori
BLED.
Value
ing Point Mo | Priority Ity of the t Norma High | Name | atch: T | Priority Place This field is ignored if DS Function Description Normal Priority High Priority | | | | | 7 Threa Forn Special DISA Oh The Float Forn | ad Dispatch F
nat:
ifies the priori
BLED.
Value
ing Point Mo | ty of the t Norma High | Name Al U1 Enumerated | atch: T | Description Normal Priority High Priority | n Enable is | | | | 7 Three Form Special Oh 1h Form Special | ad Dispatch Finat: ifies the priorist BLED. Value ing Point Monat: ifies the initia | Priority Ity of the t Norma High Ide | Name Name al U1 Enumerated point mode use | atch: T | Priority Place This field is ignored if DS Function Description Normal Priority High Priority | n Enable is | | | | 7 Three Form Special Oh 1h Form Special | ad Dispatch F
nat:
ifies the priori
BLED.
Value
ing Point Mo | Priority ty of the t Norma High de I floating p DISABLED. | Name Name al U1 Enumerated point mode use | atch: T | Description Normal Priority High Priority | n Enable is | | | | | | 3DSTAT | E_DS_BODY | / | | | |------------|-------|--|---|--|---|--|--| | | | 1h | Alternate | Use altern | ate rules | | | | | 15 | Reserved | | | | | | | | | Format: | | | MBZ | | | | | 14 | Accesses UAV | | | | | | | | | Format: | | Enak | ole | | | | | | This bit gets load | | 2] (note the bit # dif | fference). See Exceptions and ISA | | | | | | | | Programming No | tes | | | | | | This field must no | ot be set when DS F | unction Enable is d | isabled. | | | | | 13 | Illegal Opcode Ex | ception Enable | | | | | | | | Format: | | Enak | ole | | | | | | _ | | | fference). See Exceptions and ISA on Enable is DISABLED. | | | | | 12:8 | Reserved | | | | | | | | | Format: | | | MBZ | | | | | 7 | Software Exception Enable | | | | | | | | | • | | | | | | | | | Format: | | Enak | ole | | | | | | This bit gets loaded into EU CR0.1[13] (note the bit # difference). See Exceptions and ISA Execution Environment. This field is ignored if DS Function Enable is DISABLED. | | | | | | | | 6:0 | Reserved | | | | | | | | | Format: | | | MBZ | | | | 34 | 63:32 | Reserved | | | | | | | 5 . | 00.02 | Format: | | | MBZ | | | | | 31.10 | Scratch Space Ba | se Pointer | | <u> </u> | | | | | 31.10 | Format: | | eOffset[31:10] | | | | | | | aligned offset fror
unit will be allocat
computed offset of
Space Offset. The
scratch space, who | ring location of the on the General State ed some portion of the thread-specifithread is expected ere the DataPort will | scratch space area
Base Address. If red
f this space, as spec
ic portion will be pa
to utilize "stateless"
Il cause the General | allocated to this FF unit as a 1K-byte quired, each thread spawned by this FF ified by Per-Thread Scratch Space. The assed in the thread payload as Scratch DataPort read/write requests to access State Base Address to be added to the if DS Function Enable is DISABLED. | | | | | 9:4 | Reserved | | | | | | | | | Format: | | | MBZ | | | | | 3:0 | Per-Thread Scrat | ch Space | | | | | | | | | 3DSTA | TE_DS_ | BODY | | | | |---|-------|---|----------------------|-----------------------------|---------------------------|--|-----------------------------------|--| | | | Format: | U4 power of 2 B | Bytes over 1 | K Bytes | | | | | | | Specifies the amount of scratch space to be allocated to each thread spawned by this FF unit. The driver must allocate enough contiguous scratch space, starting at the Scratch Space Base Pointer, to ensure that the Maximum Number of Threads can each get Per-Thread Scratch Space size without exceeding the driver-allocated scratch space. This field is ignored if DS Function Enable is DISABLED. | | | | | | | | | | Value Name | | | | | | | | | | [0,11] | indicating [1K Byt | tes, 2M Byte | es] | | | | | | | | | | ming Note | | | | | | | | | | • | v. It will be passed v
e access messages, | · · | | | 5 | 31:25 | Reserved | | | | | , | | | | | Format: | | | | MBZ | | | | | 24:20 | Dispatch GRF Start Register For URB Data | | | | | | | | | | Format: | | | | U5 | | | | | | Description | | | | | | | | | | thread payload. T
When SIMD8_SIN | his field is ignored | I if DS Funct
TCH dispat | tion Enable
ch mode is | selected, HW shall | retices) of the increment the GRF | | | | | Value | Name | | | Description | | | | | | [0,31] indicating GRF [R0, I | | | | 31] | | | | | 19:18 | Reserved | Format: | | | | MBZ | | | | | 17:11 | Patch URB Entry | Read Length | | | | | | | | | Format: | | | | U7 | | | | | | • | • | | | | entry and passed in | | | | | the DS thread pay | Value | gnored if D | Function | Enable is DISABLED Name |).
 | | | | | [0,64] | 74140 | | | | | | | | 10 | Reserved | Format: | | | | MBZ | | | | | | | 3D | STATE_DS_ | BODY | | | | | |---|-------|--|---|----------------------|--------------|-----------|---|--|--| | | 9:4 | Patch URB Entr | y Read Offs | et | Format: | | | | | U6 | | | | | | - | | | | | be read from the URB before inction Enable is DISABLED. | | | | | | being included i | Value | payload. This field | is ignored | 11 03 1 0 | Name | | | | | | [0,63] | | | | | | | | | | 3:0 | Reserved | Format: | | | | MBZ | | | | | 6 | 31 | Reserved | | | | 1 | | | | | | | | | | | | | | | | | | Format: | | | | MBZ | | | | | | 30:21 | Maximum Nun | nber of Thre | ads | Format: | | U10-1 Thread Cou | nt | | | | | | | | • | Specifies the maximum number of simultaneous DS threads allowed to be active. Used to avoid | | | | | | | | | | using up the scratch space. Programming the value of the max threads over the number of threads based off number of threads supported in the execution units may improve performance | | | | | | | | | | | since the archite | ecture allows | threads to be buffe | red betwe | en the c | check for max threads and the | | | | | | actual dispatch into the EU. Programming the max values to a number less than the number of threads supported in the execution units may reduce performance. This field is ignored if DS | | | | | | | | | | | Function Enable | | • | duce perio | ormance | e. This field is ignored if DS | | | | | | Value | Name | | | Descrip | tion | | | | | | [0,363] | | indicating thread | count of | [1,364] | | | | | | 20:11 | Reserved | Format: | | | | MBZ | | | | | | 10 | Statistics Enabl | e | Format: | | | Enable | | | | | | | | If ENABLED, this FF unit will engage in statistics gathering. Refer to the Statistics Gathering | | | | | | | | | | | section. If DISABI FD. sta | tistics inform | ation associated wi | th this FF s | stage wi | II be left unchanged. | | | | | | · · | | nction Enable is DIS | | g | | | | | | 9 | Reserved | Format: | | | | MBZ | | | | | | | 3DSTATE_I | DS_BC | DY | | | | | | |--|------------------------------------|--|--|-------------------------|----------|------------------------------|------------------------------|--|--| | 8:5 | Reserve | ed | | | | | | | | | | | | | N 41 | D.7 | | | | | | 4.2 | Format | <u> </u> | | M | ВД | | | | | | 4:3 | Dispatch Mode | | | | | | | | | | | Format | t: | | | | U2 | | | | | This field specifies how the DS stage generates DS thread requests, and co | | | | | | • | | | | | | | thread payload. The setting of this disignored if DS Function Enable | | _ | th ho | w the DS kern | el was compiled. | | | | | Value | Name | | Descri | iptioı | 1 | Programming Notes | | | | | 1h | SIMD8_SINGLE_PATCH | DS threa | ds are pas | ssed c | one patch, up | | | | | | | | | nain point
vertex ha | - | s, and up to | | | | | | | | | | | ciated with | | | | | | | | the single input patch. The DS
kernel (at KSP) is expected to run in
SIMD8 execution mode. The | |
 | | | | | | | | | | | | | | | | | | | DUAL_PA | ATCH KSP | is ign | ored. | | | | | | 2h | SIMD8_SINGLE_OR_DUAL_PATCH | _ | SINGLE_OR | _ | AL_PATCH of both the | At least 2 HS
URB handles | | | | | | | KSP and the DUAL_PATCH KSP. The must be | | | | | | | | | | | KSP kernel operates just like in SIMD8_SINGLE_PATCH mode. See | | | allocated in order to enable | | | | | | | | DUAL_PATCH Thread Execution for this mode. | | | | | | | | | | | | sion of hov
ATCH KSP | | nd | | | | | | 3h | Reserved | DOAL_F | ATCHROF | is use | | | | | | | 5 1.0551.55 | | | | | | | | | | | Programming Notes | | | | | | | | | | | SIMD4X2 mode is no longer allowed. | | | | | | | | | | 2 | Compu | te W Coordinate Enable | | | | | | | | | | Format | <u> </u> | | Enable | | | | | | | | | BLED, the DS unit will (for each dom | | | | | | | | | | | s a floating point value in the DS th
ust only be ENABLED for the tessell | | | | | | | | | | require | d. This field must be DISABLED for | other don | nains (as t | hey o | nly require U\ | / coordinates) | | | | | otherwi | se the computed W coordinate is L | JNDEFINE | D. This fie | eld is i | ignored if DS | Function Enable | | | | | .5 515/1 | | | | | | | | | | 1 | Cache I | Disable | | | | | | | | | | | 3DSTATE_DS_I | BODY | | | | | | |---|-------|--|-----------|--------------------------------|--|--|--|--| | | | | | | | | | | | | | Format: Disable | | | | | | | | | | This bit controls the operation of the DS Cache. This field is ignored if DS Function Enable DISABLED. If the DS Cache is DISABLED and the DS Function is ENABLED, the DS Cache is used and all incoming domain points will be passed to DS threads. If the DS Cache is ENA and the DS Function is ENABLED, incoming domain points that do not hit in the DS Cache passed to DS threads. The DS Cache is invalidated whenever the DS Cache becomes DISAI whenever the DS Function Enable toggles, and between patches. | | | | | | | | | 0 | Function Enable | Format: | Enable | | | | | | | | | If ENABLED, DS threads will be spawned to proc
DS cache. If DISABLED, the DS stage goes into pa
processing. This field is always used. | | | | | | | | | | Programn | ning Note | es | | | | | | | | The tessellation stages (HS, TE and DS) must be commands can only be issued if all three stages otherwise the behavior is UNDEFINED. | | | | | | | | 7 | 31:27 | Reserved | Format: | MBZ | | | | | | | | 26:21 | Vertex URB Entry Output Read Offset | | | | | | | | | | Format: | | U6 | | | | | | | | Specifies the offset (in 256-bit units) at which Ve SBE. | ertex URB | | | | | | | | | Value | | Name | | | | | | | | [0,63] | | | | | | | | | 20:16 | Vertex URB Entry Output Length | | | | | | | | | | Format: | | U5 | | | | | | | | Specifies the amount of URB data written for ea | ch Vertey | | | | | | | | | increments. | ch vertex | one entry, in 250 bit register | | | | | | | | Value | | Name | | | | | | | | [1,16] | Programn | ning Note | | | | | | | | | Programn This length does not include the vertex header. | ning Note | es . | | | | | | | | | 3DSTATE_DS_BODY | | | | | |----|---|--|-----------------------------|----------------------------------|--|--|--| | | | Format: U8 This 8 bit mask field selects which of the 8 user clip distances against which trivial reject accept / must clip determination needs to be made. DX10 allows simultaneous use of ClipDistance and Cull Distance test of up to 8 distances. | | | | | | | | 7:0 | User Clip Distance Cu | ll Test Enable Bitmask | | | | | | | | Format: | U8 | | | | | | | This 8 bit mask field selects which of the 8 user clip distances against which trivial reject accept determination needs to be made (does not cause a must clip). DX10 allows simulate of ClipDistance and Cull Distance test of up to 8 distances. | | | | | | | | 89 | 63:6 | DUAL_PATCH Kernel | Start Pointer | | | | | | | | Format: | InstructionBaseOffset[63:6] | TH karnal program rup by throads | | | | | | | This field specifies the starting location of the DUAL_PATCH kernel program run by threads spawned by this FF unit. It is specified as a 64-byte-granular offset from the Instruction Base Address. This field is ignored if DS Function Enable is DISABLED. See DUAL_PATCH Thread Execution for a discussion of how the DUAL_PATCH KSP is used. | | | | | | | | 5:0 | Reserved | | | | | | | | | | | | | | | | | | Format: | | MBZ | | | | # 3DSTATE_GS_BODY | | | | | 3DST | ATE_GS_BC | DDY | | | | |------------|----------------|---|--|---|------------------------------|----------------|---|--|--| | Source: | | R | enderCS | , | | | | | | | Size (in b | (in bits): 288 | | | | | | | | | | Default V | /alue: | 0 | x000000 | 00, 0x00000000, 0 | 0x00000000, 0x000 | 00000 | , 0x00000000, 0x00000000, | | | | | | 0 | x000000 | 00, 0x00000000, 0 | 0x00000000 | | | | | | DWord | Bit | | | | Descript | tion | | | | | 01 | 63:6 | Kernel | Start Po | ointer | Format | | | onBaseOffset[63:6] | | | | | | | | | spawne | | | | uction) of the kernel program run by e-granular offset from the Instruction | | | | - | 5:0 | Reserve | ed | Format | t: | | | | MBZ | | | | 2 | 31 | Single Program Flow | | | | | | | | | | | Format: Enable | | | | | | | | | | | Specifies the initial condition of the kernel program as either a single program flow (SIMDnxm with m = 1) or as multiple program flows (SIMDnxm with m > 1). See CR0 description in ISA Execution Environment. | | | | | | | | | | | | lue | Name | | | Description | | | | | | 0h | | Disable | Single Program Flow disabled | | | | | | | | 1h | | Enable | Single Program F | low en | nabled | | | | = | 30 | Vector Mask Enable | | | | | | | | | | | Format | t: | Enable | Enumerated Type | | | | | | | | Upon subsequent GS thread dispatches, this bit is loaded into the EU's Vector Mask Enable | | | | | | | | | | | | | :hread state. Refei | | | or the definition and use of VME state. | | | | | | Value | | The Fill will was al | | Descrip | | | | | | | 0h | Dmask | execution. | ne Dispatch iviask | (suppii | ed by the GS stage) for instruction | | | | | | 1h | Vmask | The EU will use the Vector Mask (derived from Dispatch Mask) for instruction execution. | | | | | | | | | | | | Programmin | g Note | es | | | | | | approp | Under normal conditions SW shall specify DMask, as the GS stage will provide a Dispatch Mask appropriate to SIMD4x2 or SIMD8 thread execution (as a function of dispatch mode). E.g., for SIMD4x2 execution, the GS stage will generate a Dispatch Mask that is equal to what the EU | | | | | | | # **3DSTATE GS BODY** would use as the Vector Mask. For SIMD8 execution there is no known usage model for use of Vector Mask (as there is for PS shaders). ## 29:27 Sampler Count Format: U3 Specifies how many samplers (in multiples of 4) the geometry shader kernel uses. Used only for prefetching the associated sampler state entries. | Value | Name | Description | | | |-------|----------------|---------------------------------|--|--| | 0h | No Samplers | No Samplers used | | | | 1h | 1-4 Samplers | Between 1 and 4 samplers used | | | | 2h | 5-8 Samplers | Between 5 and 8 samplers used | | | | 3h | 9-12 Samplers | Between 9 and 12 samplers used | | | | 4h | 13-16 Samplers | Between 13 and 16 samplers used | | | | 5h-7h | Reserved | | | | #### 26 Reserved ## 25:18 **Binding Table Entry Count** Format: U8 When **HW Generated Binding Table** is disabled: Specifies how many binding table entries the kernel uses. Used only for prefetching of the binding table entries and associated surface state. Note: For kernels using a large number of binding table entries, it may be wise to set this field to zero to avoid prefetching too many entries and thrashing the state cache. When **HW Generated Binding Table** bit is enabled: This field indicates which cache lines (512bit units - 32 Binding Table Entry section) should be fetched. Each bit in this field corresponds to a cache line. Only the 1st 4 non-zero Binding Table entries of each 32 Binding Table entry section prefetched will have its surface state prefetched. #### **Programming Notes** When HW
binding table bit is set, it is assumed that the Binding Table Entry Count field will be generated at JIT time. #### 17 | Thread Dispatch Priority Specifies the priority of the thread for dispatch. | Value | Name | Description | |-------|--------|---------------------------------| | 0h | Normal | Normal thread dispatch priority | | 1h | High | High thread dispatch priority | ### 16 | Floating Point Mode Specifies the initial floating point mode used by the dispatched thread. | Value | Name | Description | |-------|-----------|---------------------| | 0h | IEEE-754 | Use IEEE-754 Rules | | 1h | Alternate | Use alternate rules | #### 15:14 **Reserved** | | | 3DSTATE_GS_ | BODY | | | | | | |----|-------|--|--|--|--|--|--|--| | | | Format: | MBZ | | | | | | | | 13 | Illegal Opcode Exception Enable | | | | | | | | | | Format: | Enable | | | | | | | | | This bit gets loaded into EU CR0.1[12] (note the Execution Environment. | bit # difference). See <i>Exceptions and ISA</i> | | | | | | | | 12 | Accesses UAV | | | | | | | | | | Format: | Enable | | | | | | | | | This field must be set when GS has a UAV access | | | | | | | | | | | ning Notes | | | | | | | | | This field must not be set when GS Function En | able is disabled. | | | | | | | | 11 | Mask Stack Exception Enable | | | | | | | | | | Format: | Enable | | | | | | | | | This bit gets loaded into EU CR0.1[11]. See Exce | ptions and ISA Execution Environment. | | | | | | | | 10:8 | Reserved | | | | | | | | | | Format: | MBZ | | | | | | | | 7 | Software Exception Enable | | | | | | | | | | Format: | Enable | | | | | | | | | This bit gets loaded into EU CR0.1[13] (note the bit # difference). See Exceptions and ISA Execution Environment. | | | | | | | | | 6 | Reserved | | | | | | | | | | Format: | MBZ | | | | | | | | 5:0 | Expected Vertex Count | | | | | | | | | | Format: | U6 | | | | | | | | | Specifies the number of vertices per input object | | | | | | | | | | not matching this expect value are discarded. Note that DiscardAdjacency is also considered (e.g., if the value programmed is 3 and DiscardAdjacency is set, TRILIST_ADJ and TRISTRIP_ADJ | | | | | | | | | | topologies are <u>not</u> discarded as they will pass 3 | | | | | | | | | | Value | Name | | | | | | | | | [1,32] | | | | | | | | 34 | 63:32 | Reserved | | | | | | | | | | Format: | MBZ | | | | | | | | 31:10 | Scratch Space Base Pointer | Format: GeneralStateOffset[31: | 10] | | | | | | | | | Specifies the starting location of the scratch spa | | | | | | | | | | aligned offset from the General State Base Addr | · | | | | | | | | | unit will be allocated some portion of this space | , as specified by Per-Thread Scratch Space. The | | | | | | | | | | 3DS | TATE_GS_BODY | | | | | | | | |---|-------|---|--|---|------------------------------------|--|--|--|--|--|--| | | | Space Offset. The scratch space, w | computed offset of the thread-specific portion will be passed in the thread payload as Scratch Space Offset. The thread is expected to utilize "stateless" DataPort read/write requests to access scratch space, where the DataPort will cause the General State Base Address to be added to the offset passed in the request header. This field is ignored if VS Function Enable is DISABLED. | | | | | | | | | | | 9:4 | Reserved | | | ı | | | | | | | | | | Format: | | | MBZ | | | | | | | | | 3:0 | Per-Thread Sci | ratch Space | | | | | | | | | | | | | | (0.D.) 4K.D.; | | | | | | | | | | | Format: | | of 2 Bytes over 1K Bytes | ach thre | ead spawned by this FF unit. | | | | | | | | | The driver must
Pointer, to ensu | allocate enough
are that the Max | h contiguous scratch space | , starting | | | | | | | | | | Value | Name | | Descrip | tion | | | | | | | | | [0,11] | | indicating [1K Bytes, 2M By | ytes] | | | | | | | | 5 | 31 | Reserved | | | ı | Format: | | | MBZ | | | | | | | | | 30:29 | Dispatch GRF S | Start Register F | or URB Data [5:4] | | Τ | Format: U2 | | | | | | | | | | | | | Specifies bit [5:4] of the starting GRF register number for the URB portion (Constant + Vertices) of the thread payload. The Dispatch GRF Start Register For URB Data [3:0] field is used to specify bits [3:0] of the starting GRF register number. | | | | | | | | | | | | 28:23 | Output Vertex | Size | | | Γ | Format: | | | | U6 | | | | | | | | | [0,63] indicatin | g [1,64] 16B un | its | | | | | | | | | | | Specifies the si | ze of each verte | ex stored in the GS output e | entry (fol | lowing any Control Header | | | | | | | | | data) as a num | ber of 128-bit ι | units (minus one). | | | | | | | | | | | | | Programming Note | 25 | | | | | | | | | | Programming | Restrictions: The | | | as a multiple of 32B units with | | | | | | | | | the following e
output by the obe programme | exception: Rend
GS thread is 161
ed as a multiple | ering is disabled (as per SOI
3. If rendering is enabled (as | L stage s
s per SO
s, the on | tate) and the vertex size L state) the vertex size must ly time software can program | | | | | | | 22:17 | Output Top | ology | | | | | | | | |-------|--|---|--|--|--|--|--|--|--| | | Format: | | 3D_Prim_Topo_Type | | | | | | | | | This field specifies the topology type (3DPrimType) to be associated with GS-thread output | | | | | | | | | | | vertices (if ar | ny). | | | | | | | | | 16:11 | Vertex URB | • | | | | | | | | | | Specifies the amount of URB data read and passed in the thread payload for each Vertex URB entry, in 256-bit register increments. | | | | | | | | | | | entry, in 230 | -bit register ii | Programming Notes | | | | | | | | | Programmin | na Restriction: | :This field must be a non-zero value if Include Vertex Handles is | | | | | | | | | cleared to ze | - | in this field mast se a non-zero value il melade vertex mandres is | | | | | | | | 10 | Include Vert | tex Handles | | | | | | | | | | Format: | | Boolean | | | | | | | | | L | input Vertex | URB handles are included in the payload. These are referred to as ' | | | | | | | | | | • | ne thread will use them to read from the URB. | | | | | | | | | | | Programming Notes | | | | | | | | | Programming Restriction: This field must be set if Vertex URB Entry Read Length is cleared to | | | | | | | | | | | zero. | | | | | | | | | | 9:4 | Vertex URB | Entry Read C | | | | | | | | | | Format: | | U6 | | | | | | | | | Specifies the offset (in 256-bit units) at which Vertex URB data is to be read from the URB before | | | | | | | | | | | · · | | | | | | | | | | | being include | | | | | | | | | | | · · | | | | | | | | | | 3:0 | being include
thread. | ed in the thre | | | | | | | | | 3:0 | being include
thread. | ed in the thre | ead payload. This offset applies to all Vertex URB entries passed to t | | | | | | | | 3:0 | being include thread. Dispatch GR | ed in the thre | ster For URB Data U4 | | | | | | | | 3:0 | being include thread. Dispatch GR Format: | ed in the thre | ead payload. This offset applies to all Vertex URB entries passed to tester For URB Data U4 Description | | | | | | | | 3:0 | being include thread. Dispatch GR Format: Specifies the | ed in the three | ster For URB Data U4 | | | | | | | | 3:0 | being include thread. Dispatch GR Format: Specifies the thread paylo | ed in the three EF Start Regis e starting GRF pad. | ster For URB Data U4 Description F register number for the URB portion (Constant + Vertices) of the | | | | | | | | 3:0 | being include thread. Dispatch GR Format: Specifies the thread paylor. The Dispatch | ed in the three RF Start Regis e starting GRF pad. h GRF Start Re | ster For URB Data U4 Description F register number for the URB portion (Constant + Vertices) of the degister for URB Data [5:4] field is used to extend the range of the | | | | | | | | 3:0 | being include thread. Dispatch GR Format: Specifies the thread paylor. The Dispatch | ed in the three RF Start Regis e starting GRF pad. h GRF Start Re | ster For URB Data U4 Description F register number for the URB portion (Constant + Vertices) of the | | | | | | | | 3:0 | being include thread. Dispatch GR Format: Specifies the thread paylor. The Dispatch | ed in the three RF Start Regis e starting GRF pad. h GRF Start Re | ster For URB Data U4 Description F register number for the URB portion (Constant + Vertices) of the degister for URB Data [5:4]
field is used to extend the range of the | | | | | | | | 3:0 | being include thread. Dispatch GR Format: Specifies the thread paylor. The Dispatch starting GRF | e starting GRF
bad.
h GRF Start Register num | Description F register number for the URB portion (Constant + Vertices) of the egister for URB Data [5:4] field is used to extend the range of the other to [0,63]. | | | | | | | | 3:0 | being include thread. Dispatch GR Format: Specifies the thread paylor. The Dispatch starting GRF. | e starting GRF
bad.
h GRF Start Register num | Description F register number for the URB portion (Constant + Vertices) of the egister for URB Data [5:4] field is used to extend the range of the nber to [0,63]. Description | | | | | | | | 3:0 | being include thread. Dispatch GR Format: Specifies the thread paylor. The Dispatch starting GRF. | e starting GRF
bad.
h GRF Start Register num | Description F register number for the URB portion (Constant + Vertices) of the egister for URB Data [5:4] field is used to extend the range of the other to [0,63]. Description Description | | | | | | | | 3:0 | being include thread. Dispatch GR Format: Specifies the thread paylor The Dispatch starting GRF Value [0,15] | estarting GRF bad. h GRF Start Register num Name | Description Fregister number for the URB portion (Constant + Vertices) of the egister for URB Data [5:4] field is used to extend the range of the nber to [0,63]. Description indicating bits [3:0] of the GRF number | | | | | | | | 3:0 | being include thread. Dispatch GR Format: Specifies the thread paylor. The Dispatch starting GRF Value [0,15] If Include Ver For simd4x2 | estarting GRF bad. h GRF Start Register num Name ertex Handles | Description F register number for the URB portion (Constant + Vertices) of the egister for URB Data [5:4] field is used to extend the range of the nber to [0,63]. Description Indicating bits [3:0] of the GRF number Programming Notes It is enabled (pull or hybrid handles case), then | | | | | | | | 3:0 | being include thread. Dispatch GR Format: Specifies the thread paylor The Dispatch starting GRF Value [0,15] If Include Ver For simd4x2 For DUAL_O | estarting GRF bad. h GRF Start Register num Name ertex Handles | Description F register number for the URB portion (Constant + Vertices) of the degister for URB Data [5:4] field is used to extend the range of the aber to [0,63]. Description Indicating bits [3:0] of the GRF number Programming Notes | | | | | | | | | | | 3DSTA | TE | _GS_E | BODY | | | | | | |---|-------|--|--|-------|-------------|--------------|----------------------------------|--|--|--|--| | | | '' | rObject +8 - 1)/8)
ive ID is set, then a | | I to the va | alue obtai | ned by using the above | | | | | | | | If Include Vertex Handles is enabled (pull or hybrid handles case), then For simd8: For InstanceCount == 1: numVerticesPerObject 2 For InstanceCount > 1: ((numVerticesPerObject 8 - 1)/8) 2 If Include Primitive ID is set, then add 1 to the value obtained by using the above | | | | | | | | | | | 6 | 31:26 | Reserved | | | | | | | | | | | | | Format: MBZ | | | | | | | | | | | | 25:24 | Reserved | | | | | | | | | | | | | Format: | | | | | MBZ | | | | | | | 23:20 | Control Data He | eader Size | | | | | | | | | | | | Format: | | | | | U4 | | | | | | | | entry. The value (
and neither Cut r
Header Size is su
the GS thread. It | Specifies the number of 32B units of control data header located at the start of the GS URB entry. The value 0 indicates there is no control data header, and Control Data Format is ignored and neither Cut nor StreamID bits are defined. Software must ensure that the Control Data Header Size is sufficient to accommodate the maximum number of vertices possibly output by the GS thread. It is UNDEFINED for a GS thread to report more output vertices than can be accommodated in a non-zero-sized header. | | | | | | | | | | | | Value | | | | | Name | | | | | | | | [0,8] 32B Units | | | | | | | | | | | | 19:15 | Instance Control | | | | | | | | | | | | | Format: | L | J5-1 | #Instance | ·S | | | | | | | | | document uses the InstanceCount > DUAL_INSTANCE InstanceCount = DUAL_OBJECT m DUAL_INSTANCE | | | | | | | | | | | | | Value | Name | | | | Description | | | | | | | | [0,31] | | Indi | cating [1, | 31] instan | ces | | | | | | | 14:13 | Default Stream | ld | | | | | | | | | | | | Format: | | | | | U2 | | | | | | | | When the GS is enabled, unless the GS output entry contains StreamID bits in the control header, this field specifies the default StreamID associated with any GS-thread output vertices. When the GS is disabled, StreamID will be output as 0. | | | | | | | | | | | | 12:11 | Dispatch Mode | | | | | | | | | | | | | Format: | | | | | U2 | | | | | | | | This field specifie | es how the GS uni | t dis | oatches m | nultiple ins | stances and/or multiple objects. | | | | | | | | Value Name | Descript | ion | | | Programming Notes | | | | | | _ | | | 3D9 | STATE_GS_ | BODY | | | | | | |-----|--|---|--|--|--|--|--|--|--|--| | | 3h | 1 | different obje | t >1) 8 instances | [] The driver must send pipe control with a cs stall after a 3dstate_gs state change and the Dispatch Mode is simd8 and the number of handles allocated to gs is less than 16. | | | | | | | | Programming Notes | | | | | | | | | | | | | The GS must be allocated at least two URB handles or behavior is UNDEFINED for Dual Instance or Dual Object mode. | | | | | | | | | | | The on | ly valid D | ispatch Mode | e is SIMD8. | | | | | | | | 10 | Statisti | cs Enable | • | | | | | | | | | | Format | : | | | Enable | | | | | | | | | | whether GS- | unit-specific statis | tics register(s) can be incremented. | | | | | | | | Value | Name | | | Description | | | | | | | | 0h | Disable | GS_INVOCA | TIONS_COUNT an | d GS_PRIMITIVES_COUNT cannot increment | | | | | | | | 1h | Enable | GS_INVOCA | TIONS_COUNT an | d GS_PRIMITIVES_COUNT can increment | | | | | | | 9:5 | Invocat | ions Inc | rement Value | 9 | | | | | | | | | Format | :: | | | U5 | | | | | | | | in a sing
for each
will be i
instance
dispatch
dispatch | gle kerne
n dispatch
ncremen
e), otherw
n mode, t | invocation. In
a (as it's only of
ted by the valuise the count
he counter w | e to process multiple instances (from an API POV) mode, the counter will increment by this value ne object). In DUAL_INSTANCE mode, the counter cance is included in the dispatch (i.e., the last odd nted by twice this value. In DUAL_OBJECT by the value if only one object is included in the otherwise the counter will be incremented by | | | | | | | | | Val | ue | Name | | Description | | | | | | | | [0,31] | | | indicating an incr | rement of [1,32] | | | | | | | 4 | Include | Primitiv | re ID | | | | | | | | | | Format | : | | | Boolean | | | | | | | | | | payload is wri
he payload R | | e ID value(s). If clear, these Primitive ID values are | | | | | | | 3 | Hint | | | | | | | | | | | | Format | : | | | U1 | | | | | | | | | | simply passed
are operation | | oads for use by the GS kernel - it has no other | | | | | | | 2 | Reorde | r Mode | | | | | | | | | | | This bit | controls | | | s resulting from TRISTRIP[_ADJ][_REV] topologies ayload See Object Vertex Ordering table (below). | | | | | | | | | | | 3DSTATE_GS_BODY | | | | | | |---|----|---
--|--|--|--|--|--|--| | | | Value | Name | Description | | | | | | | | | 0h | LEADING | Reorder the vertices of alternating triangles of a TRISTRIP[_ADJ] such that the leading (first) vertices are in consecutive order starting at v0. A similar reordering is performed on alternating triangles in a TRISTRIP_REV. | | | | | | | | | TRAILING Reorder the vertices of alternating triangles of a TRISTRIP[_ADJ] such trailing (last) vertices are in consecutive order starting at v2. A similar reordering is performed on alternating triangles in a TRISTRIP_REV. | | | | | | | | | | 1 | Discard | l Adjacen | су | | | | | | | | | Forma | t: | Enable | | | | | | | | | are prowithout used the variant silently When primiting adjace must contact the programment of the primiting adjace must contact the parchamaters are parchamaters. | ocessed. In
tradjacend
hat does not
so of the poly
discard a
clear, adja
ve type. So
nt vertices
lear this b | ent vertices will not be passed in the GS payload when objects with adjacency instead, only the non-adjacent vertices will be passed in the same fashion as the cry form of the primitive. Software should set this bit whenever a GS kernel is not expect adjacent vertices. This allows both with-adjacency/without-adjacency rimitive to be submitted to the pipeline (via 3DPRIMITIVE) - the GS unit will my adjacent vertices and present the GS thread with only the internal object. In cent vertices will be passed to the GS thread, as dictated by the incoming oftware should only clear this bit when a GS kernel is used that does expect is. E.g., if the GS kernel is compiled to expect a TRIANGLE_ADJ object, software it. Software should also clear this bit if the GS kernel expects a POINT or ject (which don't have with-adjacency variants). | | | | | | | | | primitiobject. this bitotherwensure object LINELIS unprecobject | ve when on (E.g., when it is the same that the same transfer or | per assistance is to allow the submission of a with-adjacency variant of a operating with a GS kernel that expects the without-adjacency variant of the en the GS kernel is compiled to expect a TRIANGLE object, software should set see a TRILIST_ADJ is submitted to the pipeline.) Note that the GS unit is ware of the object type that is expected by the GS kernel. It is up to software to submitted primitive type (in 3DPRIMITIVE) is otherwise compatible with the exted by the GS kernel. (E.g., if the GS kernel expects a LINE_ADJ object, only LINESTRIP_ADJ should be submitted, otherwise the GS kernel will produce sults.) Also note that it is possible to craft a GS kernel which can accept any is thrown at it by first examining the PrimType passed in the payload. | | | | | | | | 0 | Enable | | | | | | | | | | | Format | | Enable | | | | | | | | | Specifi | es whethe | r the GS stage is enabled or disabled (pass-through). | | | | | | | 7 | 31 | Contro | l Data Fo | rmat | | | | | | | | | Format | t: | U1 | | | | | | | | | | | es the format of the control data header (if any). | | | | | | | | | | Name | Description | | | | | | | | | 0h | | he control data header contains Cut bits. | | | | | | | | | 1h | SID T | he control data header contains StreamID bits. Output Topology must be set to | | | | | | | | | | 3DS | STATE_GS_ | BOI | DY | | | | |---|-------|---|--|--|----------------------------|---|--|--|--| | | | | POINTLIST, or | behavior is UNDE | FINEC |). | | | | | | 30 | Static Output | | | | | | | | | | | Format: | | | E | Enable | | | | | | | Specifies whether the GS shader outputs a static number of vertices per invocation. If this bit is clear, the number of vertices output by each GS shader invocation is stored by the GS thread in Vertex Count at the very beginning of the output URB entry (see GS URB Entry description). | | | | | | | | | | 29:27 | Reserved | | | | | | | | | | | Format: | | | | MBZ | | | | | | 26:16 | Static Output \ | /ertex Count | | | | | | | | | | Format: | U11 Cc | ount of object vert | ices | | | | | | | | vertices output
DISABLED (i.e., v | each GS shade
/ariable GS out
thread at the v | er invocation. If GS
cput), the total nurvery beginning of | Enab
mber | ED, this field specifies the total number of le is ENABLED and StaticOutput is of vertices output by a GS shader invocation utput URB entry, and this field is ignored. | | | | | | | | Value | | | Name | | | | | | | [0,1024] | | | | | | | | | | 15:9 | Reserved | | | | | | | | | | | Format: | | | | MBZ | | | | | | 8:0 | Maximum Number of Threads | Format: | U9-1 Thread count | | | | | | | | | | using up the scr
threads based c
since the archite
actual dispatch | ratch space. Pro
off number of t
ecture allows th
into the EU. Pr | ogramming the va
hreads supported
nreads to be buffe | in the
ered b
nax va | ads allowed to be active. Used to avoid f the max threads over the number of execution units may improve performance etween the check for max threads and the lues to a number less than the number of performance. | | | | | | | Value | Name | | | Description | | | | | | | [0,223] | | indicating thread | l cour | nt of [1,224] | | | | | 8 | 31:27 | Reserved | | | | | | | | | | | Format: | | | | MBZ | | | | | | 26:21 | Vertex URB En | try Output Re | ad Offset | | | | | | | | | Format: | | | | U6 | | | | | | | Specifies the of SBE. | fset (in 256-bi | t units) at which V | ertex | URB data is to be read from the URB by | | | | | | | | Value | | | Name | | | | | | | [0,63] | | | | | | | | | | 3DSTATE_GS | S_BODY | | | | | | | | | |-------|--|---|--|--|--|--|--|--|--|--| | 20:16 | Vertex URB Entry Output Length | | | | | | | | | | | | Format: | U5 | | | | | | | | | | | Specifies the amount of URB data written for increments. | each Vertex URB entry, in 256-bit register | | | | | | | | | | | Value | Name | | | | | | | | | | | [1,16] | | | | | | | | | | | | Programming Notes | | | | | | | | | | | | This length does not include the vertex header. | | | | | | | | | | | 15:8 | User Clip Distance Clip Test
Enable Bitmask | | | | | | | | | | | | Format: | Enable[8] | | | | | | | | | | | This 8 bit mask field selects which of the 8 user clip distances against which trivial reject / trivial accept / must clip determination needs to be made. DX10 allows simultaneous use of ClipDistance and Cull Distance test of up to 8 distances. | | | | | | | | | | | 7:0 | User Clip Distance Cull Test Enable Bitmasl | (| | | | | | | | | | | Format: | Enable[8] | | | | | | | | | | | | ser clip distances against which trivial reject / trivial s not cause a must clip). DX10 allows simultaneous up to 8 distances. | | | | | | | | | # 3DSTATE_HS_BODY | | | | 3DSTATE | _HS_BODY | | | | | | | | |---|--------|---|---|---------------------------------------|------------|----------------------------------|--|--|--|--|--| | Source: | | Rend | erCS | | | | | | | | | | Size (in b | oits): | 256 | | | | | | | | | | | Default Value: 0x00000000, 0x000000000, 0x000000000, 0x00000000 | | | | | | | | | | | | | DWord | Bit | Description | | | | | | | | | | | 0 | | Reserved | | | | | | | | | | | Ŭ | 31.30 | Reserved | | | | | | | | | | | | | Format: | | | MBZ | | | | | | | | | 29:27 | Sampler Co | ount | Format: | | | | U3 | | | | | | | | | • | ow many samplers (in multip
sampler state entries. | oles of 4) the HS ker | nels use | e. Used only for prefetching the | | | | | | | | | Value | Name | | Des | cription | | | | | | | | | 0h | No Samplers | no samplers used | | | | | | | | | | | 1h | 1-4 Samplers | between 1 and 4 s | amplers | used | | | | | | | | | 2h | 5-8 Samplers | between 5 and 8 s | | | | | | | | | | | 3h | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | 4h 13-16 Samplers between 13 and 16 samplers used | | | | | | | | | | | | | 5h-7h Reserved Reserved | | | | | | | | | | | | 26 | Reserved | Format: | | | MBZ | | | | | | | | | 25:18 | Binding Table Entry Count | Format: | | | | U8 | | | | | | | | | When HW Generated Binding Table is disabled: | | | | | | | | | | | | | • | ow many binding table entri
le entries and associated su | | Used or | nly for prefetching of the | | | | | | | | | _ | | | ntries, it | may be wise to set this field to | | | | | | | | | zero to avo | id prefetching too many ent | ries and thrashing t | he state | e cache. | | | | | | | | | | P | rogramming Note | S | | | | | | | | | | | binding table bit is set, it is at JIT time. | assumed that the B | inding T | able Entry Count field will be | | | | | | | | 17 | Thread Dis | patch Priority | - | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | 3DSTATE_H | S_BC | DDY | | | | | | | |---|-------|--|---------------------------|---------|-----------------|---|--|--|--|--|--| | | | Specifies the priority | of the thread for dispate | ch | | | | | | | | | | | Value | Name | | | Description | | | | | | | | | 0h | Normal | No | Normal Priority | | | | | | | | | | 1h | High | Hi | gh Prio | rity | | | | | | | | 16 | Floating Point Mode | loating point mode used | by the | e dispat | | | | | | | | | | Value | Name | | | Description | | | | | | | | | | IEEE-754 | | EEE-754 | | | | | | | | | | | alternate | Use a | lternate | e rules | | | | | | | | 15:14 | Reserved | Format: | | | | MBZ | | | | | | | | 13 | Illegal Opcode Exc | eption Enable | | 1 | | | | | | | | | | _ | | | | | | | | | | | | | Format: Enable This bit gets loaded into EU CR0.1[12] (note the bit # difference). See Exceptions and ISA | | | | | | | | | | | | | Execution Environment. | 12 | Software Exception | n Enable | Format: | 2 | | | | | | | | | | | | This bit gets loaded into EU CRO1[13] (note the bit # difference). See Exceptions and ISA Execution Environment. | | | | | | | | | | | | | Execution Environment. | | | | | | | | | | | | 11:8 | Reserved | Format: | | | | MBZ | | | | | | | | 7:0 | Reserved | Format: | | | | MBZ | | | | | | | 1 | 31 | Enable | Format: | | | Enable | • | | | | | | | | | • | | | | pass-through). If ENABLED | | | | | | | | | | | - | - | topologies that the HS kernel is not | | | | | | | | | | | | | .IST_32 topologies, MI_TOPOLOGY_FILTER jies can reach the enabled HS. | | | | | | | | | 221 20 001 10 1711 | | 2120100 | J. 20 Cal | | | | | | | | | | 3DS | STATE_HS_BC | DY | | | | | |-------|--|----------------------|--|--|--|--|--|--| | | | | Programmin | g Note | 25 | | | | | | | only be issued | l if all three stages are | abled/disabled as a group. I.e., draw
e enabled or all three stages are disabled, | | | | | | 30 | Reserved | | | | | | | | | | Format: | | | | MBZ | | | | | 29 | Statistics Enabl | e | | | | | | | | | | | | | | | | | | | Format: | | | Enable | | | | | | | This bit control | s whether HS-ι | unit-specific statistics | registe | er(s) will increment (for each patch). | | | | | 28:27 | Reserved | | | | | | | | | | Format: | | | | MBZ | | | | | 26:18 | Reserved | Format: | | | | MBZ | | | | | 17 | Reserved | Format: | | | | MBZ | | | | | 16:8 | Maximum Nun | nber of Thread | ds | | | | | | | | _ | | | | | | | | | | Format: | ما مدر مرسم المسادرة | or of simultaneous th | | U9-1 | | | | | | Specifies the maximum number of simultaneous threads allowed to be active. Used to avoid using up the scratch space. Programming the value of the max threads over the number of | | | | | | | | | | threads based off number of threads supported in the execution units may improve performance | | | | | | | | | | since the architecture allows threads to be buffered between the check for max threads and the actual dispatch into the EU. Programming the max values to a number less than the number of | | | | | | | | | | • | | ogramming the max v
ution units may reduc | | | | | | | | Value | Name | | | Description | | | | | | [0,223] | | indicating thread co | unt of | [1,224] | | | | | 7:5 | Reserved | | | | , | | | | | | | | | | | | | | | | Format: | | | | MBZ | | | | | 4 | Reserved | Format: | | | | MBZ | | | | | 3:0 | Instance Count | | | | | | | | | | | | | 3 | BDST | ATE_HS_BODY | 1 | | | |----|-------|--|--|-------------|----------|---------------------------|---|--|--| | | | | | | | | | | | | | | Forma | t: | | | | U4-1 | | | | | | This field determines the number of threads (minus one) spawned per input patch. If the HS kernel uses a barrier function, software must restrict the Instance Count to the number of threads that can be simultaneously active within a subslice. Factors which must be considered includes scratch memory availability. | | | | | | | | | | | | lue | Nam | | | Description | | | | | | [0,15] | | | | representing [1,16] insta | nces | | | | | | | | | | Programming Not | | | | | | | | ce Count
AL_PATC | | prograr | nmed to 0 (1 instance) w | henever DispatchMode is programmed | | | | 23 | 63:6 | Kernel | Start Po | ointer | | | | | | | | | Format | | | | on Base Offset [63:6] | | | | | | | | spawne | | _ | | uction) of the kernel program run by
te-granular offset from the Instruction | | | | | 5:0 | Reserved | Forma | t: | | | | MBZ | | | | 45 | 63:32 | Reserve | ed | Format | | | | | MBZ | | | | | 31:10 | Scratch | Space | Base Poin | iter | | | | | | | | Forma | t: | (| General | StateOffset[31:10] | | | | | | | Value | Name | | | Descri | ation | | | | | | | Ivaille | Specifies t | the loca | | | | | | | | [0,51] | [0,31] Specifies the location of the scratch space area allocated to this FF unit, specifies as a 1KB-granular offset from the General State Base Address. If required, each thread spawned by this FF unit will be allocated some portion of this space, a specified by Per-Thread Scratch Space. | | | | | | | | | 9:4 | Reserved Format: MBZ | 3:0 | Per-Th | read Sci | ratch Spac | ce | BDST | ATE_HS_BC | DDY | | | | | |---|------------------
--|--|---|--------------------|--------------------|---------------------|------------|---|--|--| | | | Format | : | U4 p | ower of | 2 Bytes over 1K By | /tes | | | | | | | | The driv
Pointer, | er must
to ensu | t allocate
ire that th | enough
ie Maxim | contiguous scratch | n space
ireads c | , starting | ead spawned by this FF unit.
g at the Scratch Space Base
n get Per-Thread Scratch Space | | | | | | Va | lue | Name Description | | | | | | | | | | | [0,11] | | Indicating[1K Bytes, 2M Bytes | | | | | | | | | 6 | 6 31:29 Reserved | | | | | | | | | | | | | | Format | ·• | | | | | MBZ | | | | | | 28 | Dispato | h GRF | Start Reg | ister Fo | r URB Data [5] | Format | | | | | | | U1 | | | | | | the thre | ad payl | oad. The I | Dispatch | | | | ortion (Constant + Vertices) of
ata [4:0] field is used to specify | | | | | 27 | Single Program Flow | | | | | | | | | | | | | J | <u> </u> | | | | | | | | | | | | Format | : | | Enable | | | | | | | | | | Specifies the initial condition of the kernel program as either a single program flow (SIMDI with m = 1) or as multiple program flows (SIMDIN with m > 1). See CR0 description in ISA Execution Environment. | | | | | | | | | | | | | Value Name | | | | Description | | | | | | | | | 0h | | Reserved | | | | | | | | | | | 1h Enable Single Program Flow | | | | | | ow Enabled | | | | | | 26 | Vector | Mask E | nable | | | | | | | | | | | Format | ·• | | Enable | Enumerated Type | | | | | | | | | | | | | | | | EU's Vector Mask Enable Edefinition and use of VME | | | | | | Value | Name | | | | Descrip | tion | | | | | | | 0h | Dmask | The EU will use the Dispatch Mask (supplied by the HS stage) for instruction execution. | | | | | | | | | | | 1h | Vmask | | | | | | | | | | | | | | | | Programmin | g Note | es | | | | | | | Under | Under normal conditions SW shall specify DMask, as the HS stage will provide a Dispatch Mask | | | | | | | | | | | | 3 | DSTATE_HS_ | BC | DDY | | | |-------|--|----------------|--------------------------|-------|----------------|---|--| | | appropriate to SIMD4x2 or SIMD8 thread execution (as a function of dispatch mode). E.g., for SIMD4x2 thread execution, the HS state will generate a Dispatch Mask that is equal to what the EU would use as a Vector Mask. For SIMD8 execution there is no known usage model for use of Vector Mask (as there is for PS shaders). | | | | | Mask that is equal to what the | | | 25 | Accesses UA | ٨V | | | | | | | | | | | | | | | | | Format: | | | | Enable | | | | | This field mu | ist be set whe | n HS has a UAV acces | | | | | | | -1 · C · 1 · | | Programi | | | | | | | | | when HS Function En | able | e is disabled. | | | | 24 | Include Ver | tex Handles | | | | | | | | Format: | | | Boo | olean | | | | | | input Vertex | URB handles are inclu | | | his field is ignored if HS | | | | - | able is DISAB | | | an payroads. T | ins held is ignored if 115 | | | | Programming Notes | | | | | | | | | Programming Restriction: This field must be set if value if Vertex URB Entry Read Length is cleared to zero. | | | | | | | | 23:19 | Dispatch GF | RF Start Regis | ster For URB Data | | | | | | | - | | | | | luc. | | | | Format: | | | | | U5 | | | | Description | | | | | | | | | Specifies the starting GRF register number for the URB portion (Constant + Vertices) of the thread payload. This field is ignored if HS Function Enable is DISABLED. | | | | | | | | | The Dispatch GRF Start Register for URB Data [5] field is used to extend the range of the starting GRF register number to [0,63]. | | | | | | | | | Value | Name | | | Description | on | | | | [0,31] | | indicating bits [4:0] of | of th | <u>-</u> | | | | | | | | | | | | | | Programming Notes | | | | | | | | | When Include Vertex Handles is set for non-instanced 8_PATCH dispatch of PATCHLIST_objects, pushed vertex data and/or pushed constants cannot be used as they would need start in the payload beyond the range of this field (i.e., beyond R31). When Include Prime is also set, this issue extends to non-instanced 8_PATCH dispatch of PATCHLIST_2932 of | | | | | sed as they would need to 1). When Include PrimitiveID | | | 18:17 | Dispatch M | | | | · | • | | | | | | | | | | | | | Format: | | | | | U2 | | | | 6: 1.1. | 1 | the current thread dis | | | LIC | | | | | | 3DSTATE_HS_ | | | | | | |-------|---|---|---|---|------------------------------------|---------------------------|-----------|--| | | Value Name Description | | | | | | | | | | 0h | SINGLE_PATCH | HS threads are passed single input patch. | HS threads are passed inputs and an output handle associated with a single input patch. | | | | | | | 2h | 8_PATCH | HS threads are passed to) 8 patches in SIMD8 | • | • | | | | | | 3h | Reserved | | | | | | | | | | | | ning Note | es | | | | | | | PATCH is not sup | • | | | | | | | 16:11 | Vertex | URB Entry Read | l Length | | | | | | | | Forma | <u> </u> | | | | U6 | | | | | Specifi | es the amount of | f URB data read and pas | | | payload <u>for each V</u> | | | | | | Val | lue | | | Name | | | | | [0,63] | | | | | | | | | | Due manager to a No. 4 | | | | | | | | | | | | D | | _ | | | | | | Duogue | amming Postviet | | ming Note | | Include Ventey L | Jandlas i | | | | | amming Restrict | Programition: This field must be | | | Include Vertex F | landles i | | | 10 | | d to zero. | | | | Include Vertex H | landles i | | | 10 | cleared | d to zero. | | | | Include Vertex F | landles i | | | 10 | cleared | d to zero. | | | | Include Vertex F | landles i | | | 9:4 | Reserve | d to zero. | tion: This field must be a | | value if | Include Vertex H | landles i | | | | Reserve | t: URB Entry Read | tion: This field must be a | | value if | Include Vertex H | landles i | | | | Reserve Forma Vertex Forma Specifi being in | t: URB Entry Read t: es the offset (in 2 included in the th | tion: This field must be a | ertex URB | value if MBZ data is to all Vert | U6
o be read from th | e URB be | | | | Reserve Forma Vertex Forma Specifi being in | t: URB Entry Read t: es the offset (in 2 included in the th | I Offset 256-bit units) at which V read payload. This offser | ertex URB | value if MBZ data is to all Vert | U6
o be read from th | e URB be | | | | Reserve Forma Vertex Forma Specifi being in | t: URB Entry React t: es the offset (in 2 included in the th | I Offset 256-bit units) at which V read payload. This offser | ertex URB | value if MBZ data is to all Vert | U6
o be read from th | e URB be | | | | Forma Vertex Forma Specifi being in thread. | t: URB Entry React t: es the offset (in 2 included in the the This field is igno | I Offset 256-bit units) at which V read payload. This offser | ertex URB | value if MBZ data is to all Vert | U6
o be read from th | e URB be | | | 9:4 | Forma Vertex Forma Specifi being in thread. [0,63] Reserve | t: URB Entry Reac t: es the offset (in 2 ncluded in the th This field is igno | I Offset 256-bit units) at which V read payload. This offser | ertex URB | MBZ data is to all Vert | U6
o be read from th | e URB be | | | 9:4 | Forma Specifi being in thread. [0,63] Reserve | t: URB Entry Reac t: es the offset (in 2 necluded in the th This field is igno Val ed t: | I Offset 256-bit units) at which V read payload. This offser | ertex URB | value if MBZ data is to all Vert | U6
o be read from th | e URB be | | | 9:4 | Forma Specifi being in thread. [0,63] Reserve | t: URB Entry Reac t: es the offset (in 2 ncluded in the th This field is igno | I Offset 256-bit units) at which V read payload. This offser | ertex URB | MBZ data is to all Vert | U6
o be read from th | e URB be | | | 9:4 | Forma Specifi being in thread. [0,63] Reserve | t: URB Entry Reac t: es the offset (in 2 included in the the This field is igno Val ed t: e Primitive ID | I Offset 256-bit units) at which V read payload. This offser | ertex URB | data is to all Vert
LED. | U6
o be read from th | e URB be | | | | 3DSTATE_HS_BODY | | | | | | | |---|-----------------|---|-----|--|--|--|--| | | | Programming Notes | | | | | | | | | This field is only used when DUAL_PATCH DispatchMode is specified. In SINGLE_PATCH, the single Primitive ID is always passed in R0. | | | | | | | 7 | 31:0 | Reserved | | | | | | | | | | | | | | | | | | Format: | MBZ | | | | | # 3DSTATE_INDEX_BUFFER_BODY | | | 3D | STAT | E_INDEX | _BUFFER_ | BODY | | | |------------|--|--|----------|-----------------|---
---|--|--| | Source: | | RenderCS | | | | | | | | Size (in b | ize (in bits): 128 | | | | | | | | | Default \ | Default Value: 0x00000000, 0x00000000, 0x000000000, 0x00000000 | | | | | | | | | DWord | Bit | | | | Description | | | | | 0 | 31:12 | Reserved | Format: | | | | MBZ | | | | | 11 | Reserved | Format: | | | | MBZ | | | | | 10 | Reserved | | | 1 | | | | | | | | | | | | | | | | | Format: | | | MBZ | | | | | | 9:8 | Index Format | | | | | | | | | | _ | | 1 | | | | | | | | Format: | the data | U2 Enumerat | • | index values are UNSIGNED. | | | | | | • | Value | i ioimat or the | index burier. Air | Name | | | | | | 0h | varac | | ВУТЕ | | | | | | | 1h | | | WORD | | | | | | | 2h | | | DWORD | | | | | | 7 | Reserved | Format: | | | | MBZ | | | | | 6:0 | Memory Object C | ontrol S | tate | | | | | | | | | | | | | | | | | | Format: | MEMOR | RY_OBJECT_CO | NTROL_STATE | | | | | | | Specifies the memory object control state for this index buffer. | | | | | | | | 12 | 63:0 | Buffer Starting A | ddress | | | | | | | | | | | | | | | | | | | Format: | | GraphicsAddre | ess[63:0] | | | | | | | | | | - | Format) Graphics Address LSBs of the | | | | | | | | | | nust program this value with the ource and the byte offset from the | | | | | | combination (sull) | or the D | ase address of | the inclinity les | oaree and the byte onset from the | | | | | 3DSTATE_INDEX_BUFFER_BODY | | | | | | | |---|---------------------------|---|---------------------------------------|---------|--|--|--| | | | base address to the starting s | tructure within the buffer. | | | | | | | | | Programming Notes | | | | | | | | Index Buffers can only be allo | ocated in linear (not tiled) graphics | memory. | | | | | 3 | 31:0 | Buffer Size | | | | | | | | | | | | | | | | | | Format: | U32 Count of bytes | | | | | | | | This field specifies the size of the buffer in bytes. Index accesses which straddle or go past the end of the buffer will return 0Note that BufferSize=0 indicates that there is no valid data in the buffer. | | | | | | | | | Value Name | | | | | | | | | [0, FFFFFFFh] | | | | | | # 3DSTATE_MULTISAMPLE_BODY | | | | 3DSTATE_M | IULTISAMP I | LE_BO | DY | | | | | |---------------------------|--------------------|---|--------------------------|-----------------------|-----------|-------------------|------------------|--|--|--| | Source: | | Reno | derCS | | | | | | | | | Size (in b | Size (in bits): 32 | | | | | | | | | | | Default Value: 0x00000000 | | | | | | | | | | | | DWord | Bit | | | Description | n | | | | | | | 0 | 31:6 | Reserved | Format: | | | MBZ | 7 | | | | | | | 5 | Pixel Positi | on Offset Enable | | | | 1 | | | | | | | | | | | | | | | | | | | Format: | | | nable | | | | | | | | | Enables the | device to offset pixel p | • | | ontal and vertica | l directions. | | | | | | | | | Programming I | | | | | | | | | | Setting this field along with setting the Pixel Location to upper left and number of multisample to greater than one will cause the device to offset pixel positions by 0.5 both in horizontal and vertical directions. It is to be noted this is done to adjust the pixel co-ordinate system to DX9 like, so any WM_HZ_OP screen space rectangles (eg: legacy HiZ Clear, Resolve etc) generated internally by driver in this mode needs to be aware of this offset adjustment and send the rectangles according to alignment restriction taking this offset adjustment into consideration. SW can choose to set this bit only for DX9 API. DX10/OGL API's should not have any effect by setting or not setting this bit. | | | | | | | | | | | 4 | Pixel Locati | ion | | | | | | | | | | | Г - ··· t- | | | | 114 | | | | | | | | Format: | pecifies where the devic | e evaluates "nivel" / | vs centro | U1 | dues/attributes | | | | | | | Value | Name | e evaluates pixel (| | scription | nacs/attributes. | | | | | | | 0h | CENTER | Use the pixel cent | | | | | | | | | | 1h | UL_CORNER | Use the pixel upp | Programming Notes | | | | | | | | | | | | The programming of this field is assumed to be a function of the API being supported. Specifically, it is expected that OpenGL and DX10+ APIs require CENTER selection, while DX9-APIs require UL_CORNER selection. | | | | | | | | | | | | When 3DSTATE_RASTER:: ForcedSampleCount is other than NUMRASTSAMPLES_0, this field must be 0h. | | | | | | | | | | | 3:1 | Number of | Multisamples | | | _ | | | | | | | | | | | | | | | | | #### 3DSTATE_MULTISAMPLE BODY Format: U3 This field specifies how many samples/pixel exist in all RTs and the Depth Buffer, as log2(#samples). This field is valid regardless of the setting of Multisample Rasterization Mode. **Value** Name **Description** 1 0h 1 sample/pixel 2 1h 2 samples/pixel 2h 4 4 samples/pixel 8 3h 8 samples/pixel 4h 16 16 samples/pixel 5h-7h Reserved **Programming Notes** The setting of this field must match the **Number of Multisamples** field in SURFACE_STATE of all bound render targets. 0 Reserved Format: MBZ # 3DSTATE_PS_BLEND_BODY | | | 3 | DSTATE_PS_BLENG | D_BODY | | | | |------------------------------------|-------|--|-----------------------------------|---|--|--|--| | Source:
Size (in b
Default V | • | RenderCS
32
0x00000000 | | | | | | | DWord | Bit | | Descrip | tion | | | | | 0 | 31 | Alpha To Coverage | Enable Enable | | | | | | | | | | | | | | | | | Format: | | Enable | | | | | | | If set, indicates that in the MRT case. | AlphaToCoverage is on RT[0], | since this bit must be set the same for all RTs | | | | | | 30 | Has Writeable RT | | | | | | | | | | | | | | | | | | Format: | | Enable | | | | | | | When set indicates the there is at least one non-null RT w/ at least one channel write enabled | | | | | | | | 29 | Color Buffer Blend Enable | | | | | | | | | | | | | | | | | | Format: | | Enable | | | | | | | When set indicates that RT[0] has color buffer blend enabled. | | | | | | | | 28:24 | Source Alpha Blend Factor | | | | | | | | | | | | | | | | | | Format: | 3D_Color_Buffer_Blend_Fact | or | | | | | | | Indicates the "source factor" in alpha Color Buffer Blending stage for RT[0] | | | | | | | | 23:19 | Destination Alpha | Blend Factor | | | | | | | | Format: | 3D_Color_Buffer_Blend_Fact | or | | | | | | | Indicates the "destination factor" in alpha Color Buffer Blending stage for RT[0] | | | | | | | | | | | | | | | | | 18:14 | Source Blend Facto | or
 | | | | | | | | Format: | 3D_Color_Buffer_Blend_Fact | or | | | | | | | | ce factor" in Color Buffer Blendi | | | | | | | 13:9 | Destination Blend Factor | | | | | | | | 3DSTATE_PS_BLEND_BODY | | | | | | | |---|-----------------------|--------------------------------|--|--|-----------------|--|--| | | | Format: Indicates the "destin | 3D_Color_Buffer_Blend_Fact nation factor" in Color Buffer Bl | | stage for RT[0] | | | | | 8 | Alpha Test Enable | | | | | | | | | Format: Indicates the AlphaT | TestEnable for RT[0] | Enable | | | | | | 7 | Independent Alpha Blend Enable | | | | | | | | | instruction control th | ne combination of the alpha co | Enable d Enable for RT[0] When enabled, the other fields in this the alpha components in the Color Buffer Blend stage. are combined in the same fashion as the color | | | | | 6 | 5:0 | Reserved | | | | | | | | | Format: | | | MBZ | | | # 3DSTATE_PS_BODY | | | | | | 3DSTATE | PS_BODY | | | |---------------------|----------------|--|--------------------|----------------|---|--------------------------------|--|--| | Source: | urce: RenderCS | | | | | | | | | Size (in bits): 352 | | | | | | | | | | Default \ | /alue: | | | | | | 0x00000000, 0x00000000, | | | | | 0x00 | 000000 | , 0x0 | 0000000, 0x0000 | 00000, 0x00000000, | 0x0000000 | | | DWord | Bit | | | | | Description | | | | 01 | 63:6 | Kernel Sta | rt Poin | ter 0 | ı | | 1 | | | | | Format: | | | Instruction | | | | | | | • | | - | aligned address o
ion Base Addres | | struction in the kernel[0]. This pointer is | | | | 5:0 | Reserved | | | | | | | | | | Format: | | | | | MBZ | | | 2 | 31 | program fl | gram Fl
ow (SIM | ow (S
1Dnxi | | as multiple progra | f the kernel program as either a single
m flows
(SIMDnxm with m > 1). See | | | | | Valu | e | Name | | | Description | | | | | 0h | | Multiple | | Multiple Program Flows | | | | | | 1h | | Single | | Single Program Flows | | | | | 30 | Vector Mask Enable | | | | | | | | | | Format: Enable | | | | | | | | | | When SPF=0, Vector Mask Enable (VME) specifies which mask to use to initialize the initial channel enables. When SPF=1, VME specifies which mask to use to generate execution channel enables. | | | | | | | | | | Value | Nam | ie | Description | | | | | | | 0h | Dmask | | Channels are enabled based on the dispatch mask | | | | | | | 1h | Vmask | | Channels are enabled based on the vector mask | | | | | | 29:27 | - | now mai | • | mplers (in multip
Ited sampler stat | | shader 0 kernel uses. Used only for | | | | | Value | | | Name | Description | | | | | | [0,4] | | | | | | | | | | 0h | No Sa | ample | ers | no samplers used | | | | | | 1h | 1-4 Sa | 1-4 Samplers | | between 1 and 4 samplers used | | | | | | 2h | 5-8 Sa | ampl | ers | between 5 and 8 samplers used | | | | | | 3h | 9-12 9 | Samp | olers | between 9 and 12 samplers used | | | | | | 4h | 13-16 | Sam | nplers | between 13 and 1 | 6 samplers used | | | | | 5h-7h | 13-16 Samp | | | Reserved | | | # **3DSTATE PS BODY** ### 26 | Single Precision Denormal Mode Specifies the single precision denornal mode used by the dispatched thread. | Value | Name | Description | |-------|-----------------|--| | 0h | Flushed to Zero | Single Precision denormals are flushed to zero | | 1h | Retained | Single Precision denormals are retained | ### 25:18 **Binding Table Entry Count** ### **Description** Specifies how many binding table entries the kernel uses. Used only for prefetching of the binding table entries and associated surface state. **Note:** For kernels using a large number of binding table entries, it may be advantageous to set this field to zero to avoid prefetching too many entries and thrashing the state cache. This field is ignored if [PS Function Enable] is DISABLED. When [HW Generated Binding Table] bit is enabled: This field indicates which cache lines (512bit units - 32 Binding Table Entry section) should be fetched. Each bit in this field corresponds to a cache line. Only the 1st 4 non-zero Binding Table entries of each 32 Binding Table entry section prefetched will have its surface state prefetched. See 3D Pipeline for more information. ### **Programming Notes** When HW binding table bit is set, it is assumed that the Binding Table Entry Count field will be generated at JIT time. ### 17 **Thread Dispatch Priority** Specifies the priority of the thread for dispatch. | Value | Name | Description | |-------|--------|-----------------| | 0h | Normal | Normal Priority | | 1h | High | High Priority | ### 16 | Floating Point Mode Specifies the floating point mode used by the dispatched thread. | Value | Name | Description | |-------|-----------|---------------------| | 0h | IEEE-754 | Use IEEE-754 rules | | 1h | Alternate | Use alternate rules | #### 15:14 Rounding Mode Specifies the rounding mode used by the dispatched thread. | Value | Name | Description | |-------|------|------------------------| | 0h | RTNE | Round to Nearest Even | | 1h | RU | Round toward +infinity | | 2h | RD | Round toward -infinity | | 3h | RTZ | Round toward zero | ### 13 Illegal Opcode Exception Enable | | | | 3DSTATE_PS_BODY | | | | |----|-------|---|---|--|--|--| | | | Format: | Enable | | | | | | | This bit gets loaded into EU CR0.1[12] (note the bit # difference). See Exceptions and ISA Execution Environment. | | | | | | | 12 | Reserved | | | | | | | | Format: | MBZ | | | | | | 11 | Mask Stack Exception Enable | | | | | | | | Format: | Enable | | | | | | | This bit gets loaded into EU CR0.1[12] (note the bit # difference). See Exceptions and ISA Execution Environment. | | | | | | | 10:8 | Reserved | | | | | | | | Format: | MBZ | | | | | | 7 | Software Ex | ception Enable | | | | | | | Format: | Enable | | | | | | | This bit gets loaded into EU CR0.1[13] (note the bit # difference). See Exceptions and ISA Execution Environment. | | | | | | | 6:0 | Reserved | | | | | | | | Format: | MBZ | | | | | 34 | 63:32 | Reserved | | | | | | | | Format: | MBZ | | | | | | 31:10 | Scratch Space | ce Base Pointer | | | | | | | Format: | GeneralStateOffset[31:10]ScratchSpace | | | | | | | Specifies the 1k-byte aligned address offset to scratch space for use by the kernel. This pointer is relative to the General State Base Address. | | | | | | | | Programming Notes | | | | | | | | Scratch Space per slice is computed based on 4 sub-slices. SW must allocate scratch space enough so that each slice has 4 slices allowed. | | | | | | | 9:4 | Reserved | | | | | | | | Format: | MBZ | | | | | | 3:0 | Per Thread S | Scratch Space | | | | | | | Format: | U4 | | | | | | | Specifies the amount of scratch space allowed to be used by each thread. The driver must allocate enough contiguous scratch space, pointed to by the Scratch Space Pointer, to ensure | | | | | | | | | imum Number of Threads each get Per Thread Scratch Space size without exceeding | | | | | | | the driver-all | ocated scratch space. | | | | | | | Value | Name | | | | | | | [0,11] | indicating [1k bytes, 2M bytes] in powers of two | | | | | 5 | 31:23 | Maximum N | lumber of Threads Per PSD | | | | | | | Specifies the maximum number of simultaneous virtual threads allowed to be active per Plander Dispatch(PSD). PSD serves a pair of subslices. This bit-field can be programmed in the subslices. | | | | | | | | 3D | STATE_PS_BODY | | | | | |-------|--|------------------|--------------------|--------------------------|--|--|--| | | range: [0,63] each integer in the range linearly maps to maximum number of threads in the range: [2, 128]. If a programmed value is k, it implies 2(k+1) threads. | | | | | | | | | Programming Notes | | | | | | | | | If this field is changed between 3DPRIMITIVE commands, a PIPE_CONTROL command with Stall at Pixel Scoreboard set is required to be issued. | | | | | | | | 22 | Reserve | ed | | | | | | | | Format | : | | MBZ | | | | | 21 | Reserve | ed | | | | | | | | Format | : | | MBZ | | | | | 20 | Reserve | | <u> </u> | | | | | | | Format | ·· | | MBZ | | | | | 19:12 | | | | | | | | | | Format | : | | MBZ | | | | | 11 | Push Co | onstant Enable | <u> </u> | | | | | | | Format | | Enable | | | | | | | This field must be enabled if the sum of the PS Constant Buffer [3:0] Read Length fields in 3DSTATE_CONSTANT_PS is nonzero, and must be disabled if the sum is zero. | | | | | | | | 10 | Reserve | Reserved | | | | | | | | Format | : | | MBZ | | | | | 9 | Reserve | ed | | | | | | | | Format | | | MBZ | | | | | 8 | Render Target Fast Clear Enable | | | | | | | | | Format: Enable | | | | | | | | | This field is set to enable fast clear of the bound render targets. See "Render Target Fast Clear" for restrictions on enabling this field. | | | | | | | | | Programming Notes | | | | | | | | | For PoSH based Tiled Rendering, Color Fast clear operation is recommended to be performed outside of tile pass, for performance reasons. After Fast clear, render cache flush is required. | | | | | | | | | When this bit is set, corresponding BTI for the render target that is being cleared must be equal to 0. | | | | | | | | | When this bit is set, RENDER_SURFACE_STATE type must not be NULL. | | | | | | | | 7:6 | Render Target Resolve Type | | | | | | | | | Format | :: | U2 Enumerated Type | | | | | | | Specifies what type of Render Target Resolve is needed for the surface to be consumed properly by the end Client. Programming notes below. | | | | | | | | | Value | Name | Description | Programming Notes | | | | | | 0h | RESOLVE_DISABLED | No Resolve Needed | | | | | | | | | | | | | | | 3DSTATE_PS_BODY | | | | | | | | |-----------------|--|---|---|--|--|--|--| | | | n | T for clear values i.e. it leaves
o cache lines at implied clear
alue. | unresolved clear values in the display buffer, hence this resolve is required before binding any compressed RT to the display via flip commands. | | | | | | 2h | P.
B
Lo | ast Clear to 0 during Clear
ass; Used to Initialize CCS
uffer with 0s to support
ossless Compressed Without
lear. | This state has to be programmed only with Render Target Fast Clear Enable described above. If the Render Target Fast Clear = 0, this Field Cannot be programmed to 2h. | | | | | | 3h | R | ull Resolve is for Resolving
T for Clear/Compressed to
ncompressed State | | | | | | | Programming Notes | | | | | | | | | When this bit is set, corresponding BTI for the render target that is being resolved must be equal to 0. | | | | | | | | | When | When this bit is set, RENDER_SURFACE_STATE type must not be NULL. | | | | | | | 5 | Reserved | | | | | | | | | 1 | Format: MBZ | | | | | | | 4:3 | | Position XY Offset Select | | |
 | | | | Format: U2 Enumerated Type This field specifies if/what Position XY Offset values are passed in the PS payload. Note that these are per-slot (pixel sample) offsets, and therefore separate from the subspan XY coordinates passed in R1. | | | | | | | | | Value | Name | D | escription | | | | | | 0h | POSOFFSET_NONE | No Position XY Offsets are i | No Position XY Offsets are included in the PS payload. | | | | | | 1h | Reserved | | | | | | | | 2h | POSOFFSET_CENTROID | Position XY Offsets will be passed in the PS payload, and these will reflect the Centroid position(s). | | | | | | | 3h | POSOFFSET_SAMPLE | Position XY Offsets will be passed in the PS payload, and these will reflect the multisample position(s). | | | | | | | Programming Notes | | | | | | | | | SW Recommendation: If the PS kernel needs the Position Offsets to compute a Position XY value, this field should match Position ZW Interpolation Mode to ensure a consistent position.xyzw computation | | | | | | | | | If the PS kernel does not need the Position XY Offsets to compute a Position Value, then this field should be programmed to POSOFFSET_NONE, as the PS kernel should be using the various barycentric inputs to evaluate other-than-position attributes. However, this field can be | | | | | | | | | | 3DSTATE_PS_B | ODY | | | | | |---|-------|---|--|--|--|--|--| | | | used to pass Centroid or Sample offsets in the payload for special test modes (e.g., where barycentric coordinates are computed in the PS vs. being HW-generated and passed in the payload). | | | | | | | | | MSDISPMODE_PERSAMPLE is required in order t | o select POSOFFSET_SAMPLE. | | | | | | | 2 | 32 Pixel Dispatch Enable | | | | | | | | | Format: | Enable | | | | | | | | Enables the Windower to dispatch 8 subspans in Pixel Grouping (Dispatch size) control for valid pix | · · | | | | | | | | Programm | ing Notes | | | | | | | | When NUM_MULTISAMPLES = 16 or FORCE_SAME be enabled for PER_PIXEL dispatch mode. | MPLE_COUNT = 16, SIMD32 Dispatch must not | | | | | | | 1 | 16 Pixel Dispatch Enable | | | | | | | | | Format: | Enable | | | | | | | | Enables the Windower to dispatch 4 subspans in Pixel Grouping (Dispatch size) control for valid pix | · | | | | | | | 0 | 8 Pixel Dispatch Enable | | | | | | | | | Format: | Enable | | | | | | | | Enables the Windower to dispatch 2 subspans from 1 object (polygon) in one payload. Variable Pixel Dispatch in Section: Pixel Grouping (Dispatch size) control for valid pixel dispatch combinations. | | | | | | | | | Programm | ing Notes | | | | | | | | When Render Target Fast Clear Enable is ENABLED or Render Target Resolve Type = RESOLVE_PARTIAL or RESOLVE_FULL, this bit must be DISABLED. | | | | | | | 6 | 31:23 | Reserved | | | | | | | | | Format: | MBZ | | | | | | | 22:16 | Dispatch GRF Start Register For Constant/Setu | p Data 0 | | | | | | | | Format: | U7 | | | | | | | | Specifies the starting GRF register number for the for kernel[0]. | e Constant/Setup portion of the thread payload | | | | | | | | Value | Name | | | | | | | | [0,127] | | | | | | | | 15 | Reserved | | | | | | | | | Format: MBZ | | | | | | | | 14:8 | Dispatch GRF Start Register For Constant/Setu | p Data 1 | | | | | | | | Format: | U7 | | | | | | | | Charifies the starting CDE register number for th | - C | | | | | | | | for kernel[1]. | e Constant/Setup portion of the thread payload | | | | | | | | , , | Name | | | | | | | 3DSTATE_PS_BODY | | | | | | | | |-----|---|--|---|-------------|---|--|--|--| | | 7 | Reserved | | | | | | | | | | Format: MBZ | | | | | | | | | 6:0 Dispatch GRF Start Register For Constant/Setup Data 2 | | | | | | | | | | | Format: | | | U7 | | | | | | | Specifies the startir for kernel[2]. | ng GRF register number for the | Constar | nt/Setup portion of the thread payload | | | | | | | | Value | | Name | | | | | | | [0,127] | | | | | | | | 78 | 63:6 | Kernel Start Pointer 1 | | | | | | | | | | Format: InstructionBaseOffset[63:6]Kerne | | | | | | | | | | | te aligned address offset of the action Base Address. | e first ins | struction in kernel[1]. This pointer is | | | | | | 5:0 | Reserved | | | | | | | | | | Format: | | | MBZ | | | | | 910 | 63:6 | Kernel Start Pointe | er 2 | | | | | | | | | Format: | InstructionBaseOffset[63:6]Ke | ernel | | | | | | | | Specifies the 64-byte aligned address offset of the first instruction in kernel[2]. This pointer relative to the Instruction Base Address . | | | | | | | | | 5:0 | Reserved | | | | | | | | | | Format: | | | MBZ | | | | # 3DSTATE_PS_EXTRA_BODY | | | 3DSTATE_PS_EXTRA_BODY | | | | | | |------------|-------|--|--|--|--|--|--| | Source: | | RenderCS | | | | | | | Size (in b | its): | 32 | | | | | | | Default V | alue: | 0x00000000 | | | | | | | DWord | Bit | Description | | | | | | | 0 | 31 | Pixel Shader Valid | | | | | | | | | Format: Enable | | | | | | | | | When set indicates a valid pixel shader. When this bit clear the rest of this command should also be clear. | | | | | | | | 30 | Pixel Shader Does not write to RT | | | | | | | | | Format: Enable | | | | | | | | | When set indicates the pixel shader does not write to render target. | | | | | | | | | Programming Notes | | | | | | | | | When Pixel Shader writes to UAV but does not write to RT, a dummy render target write is required to convey EOT to the PS dispatch function. Hence, this bit must be reset in this case. Whenever, there is a render target write message even to the NULL render target, this bit must be reset. | | | | | | | | | When Pixel Shader Kills Pixel is set, SW must perform a dummy render target write from the shader and not set this bit, so that Occlusion Query is correct. | | | | | | | | 29 | oMask Present to Render Target | | | | | | | | | Format: Enable | | | | | | | | | This bit is inserted in the PS payload header and made available to the DataPort (either via the message header or via header bypass) to indicate that oMask data from the shader (one or two phases) is included in Render Target Write messages. If present, the oMask data is used to mask off samples. | | | | | | | | 28 | Pixel Shader Kills Pixel | | | | | | | | | Format: Enable | | | | | | | | | This bit, if ENABLED, indicates that the PS kernel has the ability to kill (discard) pixels or samples, other than due to depth or stencil testing. This bit is required to be ENABLED in the following situations: • The API pixel shader program contains "killpix" or "discard" instructions, or other code in the pixel shader kernel that can cause the final pixel mask to differ from the pixel mask received on dispatch. | | | | | | | | 27:26 | Pixel Shader Computed Depth Mode | | | | | | | | | Format: U2 Enumerated Type | | | | | | | | | This field specifies the computed depth mode for the pixel shader. | | | | | | | | | 3DST | ATE_PS_EXTRA_BODY | | | | | | | |----|--|-----------------------|--|--|--|--|--|--|--| | | Value | Name | Description | | | | | | | | | 0h | PSCDEPTH_OFF | Pixel shader does not compute depth | | | | | | | | | 1h | PSCDEPTH_ON | Pixel shader computes depth with no guarantee as to its value | | | | | | | | | 2h | PSCDEPTH_ON_GE | [] Pixel shader computes depth and guarantees that oDepth >= SourceDepth. If the Position ZW interpolation mode in 3DSTATE_WM does not match the DX Multisample Rasterization mode in 3DSTATE_RASTER, HW will internally convert to PSCDEPTH_ON. | | | | | | | | | 3h | PSCDEPTH_ON_LE | Pixel shader computes depth and guarantees that oDepth <= SourceDepth If the Position ZW interpolation mode in 3DSTATE_WM does not match the DX Multisample Rasterization mode in 3DSTATE_RASTER, HW will internally convert to PSCDEPTH_ON. | | | | | | | | | | | Programming Notes | | | | | | | | | If this field is set to any value other than PSCDEPTH_OFF, a multi-phase shader (i.e. dispatch RATE_COARSE or RATE_PIXEL with pixel/sample loops or sample loop respectively) must output depth and render targets only at the last phase. | | | | | | | | | | | When | PS dispatch rate is C | OARSE_RATE, this field must be programmed to PSCDEPTH_OFF. | | | | | | | | 25 | Force Computed Depth | | | | | | | | | | | Format | t: | Enable | Programming Notes This field should be left DICARIED. This field should not be a seed for functional cultivation. | | | | | | | | | | | This field should be left DISABLED. This field should not be tested for functional validation. | | | | | | | | | | 24 | | hader Uses Source | | | | | | | | | | Format | | Enable | | | | | | | | | This bit, if ENABLED, indicates that the PS kernel requires the source
depth value (vPos.z) to be passed in the payload. The source depth value is interpolated according to the Position ZW Interpolation Mode state. | | | | | | | | | | | | | Programming Notes | | | | | | | | | This bit cannot be enabled when dispatch rate is RATE_COARSE | | | | | | | | | | 23 | Pixel S | hader Uses Source | W | | | | | | | | | Forma | | Enable | | | | | | | | | This bit, if ENABLED, indicates that the PS kernel requires the interpolated source W value (vPos.w) to be passed in the payload. The W value is interpolated according to the Position ZW Interpolation Mode state. | | | | | | | | | | 22 | | | uested Coarse Pixel Shading Size | | | | | | | | | Format | | Enable | | | | | | | | | | | tes that the PS kernel requires values of requested coarse pixel
n the payload for each 2x2 coarse pixel quad. Note: Actual coarse | | | | | | | | | 3DSTATE_PS | S_EXTRA_BODY | | | | | | | | | |-------|--|--|--|--|--|--|--|--|--|--| | | pixel shading rate is always delivered (constant across thread slot). This bit can only be set when dispatch rate is RATE_COARSE. | | | | | | | | | | | 21 | Pixel Shader Requires Source Depth and/or W Plane Coefficients | | | | | | | | | | | | Format: Enable | | | | | | | | | | | | | PS kernel requires the source depth and/or W plane
Note: both attributes are always delivered in same
d. | | | | | | | | | | 20 | Pixel Shader Requires Perspective Bary Plane Coefficients | | | | | | | | | | | | Format: | Enable | | | | | | | | | | | This bit, if ENABLED, indicates that the passed in the payload. | PS kernel requires the perspective plane coefficients to be | | | | | | | | | | 19 | Pixel Shader Requires Non-Perspecti | ive Bary Plane Coefficients | | | | | | | | | | | Format: | Enable | | | | | | | | | | | This bit, if ENABLED, indicates that the PS kernel requires the non-perspective plane coefficients to be passed in the payload. | | | | | | | | | | | 18 | Pixel Shader Requires Subpixel Samp | ple Offsets | | | | | | | | | | | Format: | Enable | | | | | | | | | | | This bit, if ENABLED, indicates that the PS kernel requires the sub-pixel sample offsets to be passed in the payload. | | | | | | | | | | | 17 | Reserved | | | | | | | | | | | | Format: | MBZ | | | | | | | | | | 16:12 | Reserved | | | | | | | | | | | | Format: | MBZ | | | | | | | | | | 11 | Reserved | | | | | | | | | | | | Format: | MBZ | | | | | | | | | | 10 | Reserved | | | | | | | | | | | | Format: | MBZ | | | | | | | | | | 9 | Reserved | | | | | | | | | | | 9 | Reserved | | | | | | | | | | | 9 | Reserved Attribute Enable | | | | | | | | | | | | | Enable | | | | | | | | | | | Attribute Enable Format: This field must be enabled if the Numb | ber of SF Output Attributes field in 3DSTATE_SBE is | | | | | | | | | | 8 | Attribute Enable Format: This field must be enabled if the Numb nonzero, and must be disabled if that fi | ber of SF Output Attributes field in 3DSTATE_SBE is ield is zero. | | | | | | | | | | | Attribute Enable Format: This field must be enabled if the Number nonzero, and must be disabled if that firms a prize of the | ber of SF Output Attributes field in 3DSTATE_SBE is field is zero. | | | | | | | | | | 8 | Attribute Enable Format: This field must be enabled if the Numb nonzero, and must be disabled if that fi Pixel Shader Disables Alpha To Cover Format: | ber of SF Output Attributes field in 3DSTATE_SBE is rield is zero. rage Enable | | | | | | | | | | 8 | Attribute Enable Format: This field must be enabled if the Numb nonzero, and must be disabled if that fi Pixel Shader Disables Alpha To Cover Format: | ber of SF Output Attributes field in 3DSTATE_SBE is field is zero. Frage Enable phaToCoverage should be disabled due to oMask output | | | | | | | | | | 8 | Attribute Enable Format: This field must be enabled if the Number nonzero, and must be disabled if that first pixel Shader Disables Alpha To Cover Format: When set indicates the pixel shader Alpha | ber of SF Output Attributes field in 3DSTATE_SBE is field is zero. Frage Enable phaToCoverage should be disabled due to oMask output. | | | | | | | | | ### **3DSTATE PS EXTRA BODY** This bit, when ENABLED, indicates that the pixel shader is dispatched at the per sample shading rate. If this bit is DISABLED, the dispatch rate is determined by the value of Pixel Shader Is Per Coarse Pixel. If this bit is ENABLED, Pixel Shader Is Per Coarse Pixel bit must be DISABLED. ### **5 Pixel Shader Computes Stencil** Format: Enable This field when set indicates that the pixel shader computes the stencil reference value. ### **Programming Notes** If this field is ENABLED, a multi-phase shader (i.e. dispatch RATE_COARSE or RATE_PIXEL with pixel/sample loops or sample loop respectively) must output stencil and render targets only at the last phase. WhenPixel Shader is at COARSE RATE, this field must not be set. ### 4 Pixel Shader Is Per Coarse Pixel Format: Enable If Pixel Shader Is Per Sample is DISABLED and this bit is ENABLED, the pixel shader is dispatched at the per coarse pixel shading rate. If Pixel Shader Is Per Sample is DISABLED and this bit is DISABLED, the pixel shader is dispatched at the per pixel shading rate. If Pixel Shader Is Per Sample is ENABLED, this bit must be DISABLED. #### **Restriction** SIMD32 kernel version cannot be configured when this bit is ENABLED. #### 3 Pixel Shader Pulls Bary Format: Enable This bit indicates if Pixel Shader uses Pull Bary i.e. PI message. If this bit is reset, PS does not do Pull Bary. ### 2 Pixel Shader Has UAV | Format: | Enable | |---------|--------------------| | Format: | U1 Enumerated Type | This field when set indicates that the pixel shader has a UAV attached to it. #### 1:0 Input Coverage Mask State Format: U2 This field indicates the type of input coverage mask that the PS kernel requires to be passed in the payload. | Value | Name | Description | Programming Notes | |-------|--------------------|--|-----------------------------| | 0h | NONE | Pixel shader does not use input coverage masks. | | | 1h | NORMAL | Input Coverage masks based on outer conservatism and factors in SAMPLE_MASKs. If Pixel is conservatively covered, all samples are enabled. | | | 2h | INNER_CONSERVATIVE | Input Coverage masks based on | When PS Dispatch Rate is at | | | | 3DSTAT | E_PS_EXTRA_BODY | | |----|---|----------------|---|---| | | | | inner conservatism. If Pixel is conservatively fully covered all samples are enabled else none of the samples are covered. | Coarse Pixel, requesting this Input Coverage Mask mode is illegal and not supported by HW. Input converage masks based on inner consevatism incorrectly ANDs SAMPLE_MASK in HW. Therefore, PS must retrieve the INNER coverage mask per pixel by bit-wise OR operation. []
Input converage masks based on inner consevatism incorrectly ANDs SAMPLE_MASK in HW. Therefore, PS must retrieve the INNER coverage mask per pixel by bit-wise OR operation. [] Input converage masks based on inner consevatism incorrectly ANDs SAMPLE_MASK in HW. Therefore, PS must retrieve the INNER coverage masks based on inner consevatism incorrectly ANDs SAMPLE_MASK in HW. Therefore, PS must retrieve the INNER coverage mask per pixel by bit-wise OR operation. | | 3h | h | DEPTH_COVERAGE | Input coverage masks are computed after factoring depth/stencil test results, only if Early Depth Stencil Test is enabled. If Early Depth Stencil Test is not enabled, HW uses NORMAL Input Coverage Masks. | | # 3DSTATE_PTBR_MARKER_BODY | | | 3DSTATE_PTE | BR_MARKER_ | BODY | | | |---------------|-----------------|---|-------------|------|--|--| | Source: | | RenderCS | | | | | | Size (in bits | s): | 32 | | | | | | Default Va | lue: | 0x00000000 | | | | | | DWord | Bit | | Description | | | | | 0 | 31:2 | Reserved | | | | | | | | Format: | | MBZ | | | | | 1 | End of Tile | | | | | | | | Format: | Enab | le | | | | | | When set, indicates marker stating End of Tile in the command sequence. | | | | | | | 0 Start of Tile | | | | | | | | | Format: | Enab | le | | | | | | When set, indicates marker stating Start of Tile in the command sequence. | | | | | # 3DSTATE_PTBR_TILE_SELECT_BODY | | 3DSTATE_PTBR_TILE_SELECT_BODY | | | | | | | | |------------|-------------------------------|--------------------------|--|-------|---|--|--|--| | Source: | | R | enderCS | 5 | | | | | | Size (in b | Size (in bits): 32 | | | | | | | | | | pefault Value: 0x00000000 | | | | | | | | | DWord | Bit | | | | Description | | | | | 0 | 31 | Free Render List Disable | | | | | | | | | | Forma | t: | | Disable | | | | | | | This bit | controls | s th | e recycling (Freeing up, add back to the free pool) of the visibility data pages | | | | | | | | er pipe. | | | | | | | | | Value | Name | | Description | | | | | | | 0 | | | nder pipe will free the pages to be recycled after consuming the visibility data the current tile. | | | | | | | 1 | | | nder pipe will not free the pages to be recycled after consuming the visibility a for the current tile. | | | | | | 30 | Geome | | | cs Disable | | | | | | 30 | Format | | 13(1) | Disable | | | | | | | | This bit controls the incrementing statistics counters in geometry units (VF, VS, HS, TE, TDS, GS, | | | | | | | | | SOL, CL | | | | | | | | | | Value | Name | е | Description | | | | | | | 0 [Default] | | | Geometry units (VF, VS, HS, TE, TDS, GS, SOL, CL, SF) will increment their pipeline statistics counters. | | | | | | | 1 | | | Geometry units (VF, VS, HS, TE, TDS, GS, SOL, CL, SF) will not increment their pipeline statistics counters. | | | | | | 29 | Reserved | | | | | | | | | | Forma | | | MBZ | | | | | | | | | | | | | | | | | Description | | | | | | | | | | Bit 29 i | s reserve | ed f | or HW use only. | | | | | | 28 | Reserve | ed | | | | | | | | | Format | t: | | MBZ | | | | | | 27:24 | Reserve | ed | | | | | | | | | Format: MBZ | | | MBZ | | | | | | 23:16 | Render | List Inc | lex | | | | | | | | Forma | t: | | U8 | | | | | | | • | fetch th | | in to the Render-List for the current Tile. Range [0127]. tarting page offset for the visibility data of the current tile from below memory | | | | | | 3DSTATE_PTBR_TILE_SELECT_BODY | |-----|---| | | [{render_list_base_address[47:12], 12'b0} + {render_list_pointer[31:6], 6'b0} + (Render List Index «1)] | | | Programming Notes | | | Render List Index must be set to "0" when 3DSTATE_TILE_PASS_INFO:Tile Count is 0x0 for the corresponding Tile Pass. | | 15: | 10 Reserved | | | Format: MBZ | | 9: | 0 Tile Rect Array Index | | | Format: U10 | | | Specifies the index in to the Tile Rect Array of the current Tile Pass. Rang [01023].HW will fetch the RECT_STATE of the current tile from below memory location [{dynamic_state_base_addres[47:12], 12'b0} + {Tile Rect Array Pointer[31:6], 6'b0} + (Tile Index«3)] | | | Programming Notes | | | Tile Rect Array Index must be set to "0" when 3DSTATE_TILE_PASS_INFO:Tile Count is 0x0 for the corresponding Tile Pass. | # 3DSTATE_RASTER_BODY | | | | 3DSTATE_R | ASTER_ | BOD | Υ | | | | | | |---|---------------------|---|---------------------------------|----------------|--------|--|--|--|--|--|--| | Source: | | Rende | erCS | | | | | | | | | | Size (in b | Size (in bits): 128 | | | | | | | | | | | | Default Value: 0x00210000, 0x000000000, 0x000000000 | | | | | | | | | | | | | DWord | Bit | Description | | | | | | | | | | | 0 31:28 Reserved | | | | | | | | | | | | | | | Format: | | | | MBZ | | | | | | | | 27 | Reserved | | | | | | | | | | | | | Format: | | | | MBZ | | | | | | | | 26 | Viewport Z | Far Clip Test Enable | | | | | | | | | | | | Format: | | | Enable | | | | | | | | | | This field is | used to control whether the | e Viewport Z | Far ex | tent is considered in VertexClipTest. | | | | | | | | 25 | Reserved | | | ı | | | | | | | | | | Format: | | | | MBZ | | | | | | | | 24 | Conservativ | ve Rasterization Enable | | | | | | | | | | | | Format: | | | Enable | | | | | | | | | | This field when set enables conservative rasterization rules for all primitives except rectangles, points and lines. For rectangle, points and lines, setting this bit is ignored by hardware. | | | | | | | | | | | | | Programming Notes | | | | | | | | | | | | | This bit must not be set for primitives with poly-stippling enabled. When this bit is set, sampling mode must be set to "Centre" sampling i.e 3DSTATE_MULTISAMPLE::Pixel Location set to CENTER | | | | | | | | | | | | 23:22 | | ets this field according to the | | | se bits are set for DX9 or | | | | | | | | | | Value | | | Name | | | | | | | | | 0h | | DX9/OGL | | | | | | | | | | | 1h | | DX10.0 | | | | | | | | | | | 2h | | DX10.1+ | | | | | | | | | | | 3h | | Reserved | | | | | | | | | | 21 | positions, w | whether a triangle object is | esult in a clo | | facing" if the screen space vertex e (CW) or counter-clockwise (CCW) | | | | | | | | | Value | Description | | | | | | | | | | | | 0h | Clockwise | | | FRONTWINDING_CW | | | | | | | | | 1h | Counter Clockwise [Defaul | t] | | FRONTWINDING_CCW | | | | | | ### **3DSTATE RASTER BODY** ### 20:18 Forced Sample Count Format: U3 Enumerated Type This field specifies how many samples/pixel exist for RT Independent Rasterization | Value | Name | Description | |-------|-------------------|---------------------------------| | 0h | NUMRASTSAMPLES_0 | No RT Independent Rasterization | | 1h | NUMRASTSAMPLES_1 | 1 rast-sample/pixel | | 2h | NUMRASTSAMPLES_2 | 2 rast-samples/pixel | | 3h | NUMRASTSAMPLES_4 | 4 rast-samples/pixel | | 4h | NUMRASTSAMPLES_8 | 8 rast-samples/pixel | | 5h | NUMRASTSAMPLES_16 | 16 rast-samples/pixel | | 6h-7h | Reserved | | ### **Programming Notes** When 3DSTATE_MULTISAMPLE::Number of Multisamples != NUMSAMPLES_1, this field must be either NUMRASTSAMPLES_0 or NUMRASTSAMPLES_1. When 3DSTATE_MULTISAMPLE::Number of Multisamples == NUMSAMPLES_1, this field must not be NUMRASTSAMPLES_1. #### 17:16 **Cull Mode** Controls removal (culling) of triangle objects based on orientation. The cull mode only applies to triangle objects and does not apply to lines, points or rectangles. | Value | Name | Description | |-------|-------------------------|---| | 0h | CULLMODE_BOTH | All triangles are discarded (i.e., no triangle objects are drawn) | | 1h | CULLMODE_NONE [Default] | No triangles are discarded due to orientation | | 2h | CULLMODE_FRONT | Triangles with a front-facing orientation are discarded | | 3h | CULLMODE_BACK | Triangles with a back-facing orientation are discarded | #### **Programming Notes** Orientation determination is based on the setting of the Front Winding state. ### 15 Reserved Format: MBZ ### 14 Force Multisampling This field provides a work around override for the computation of SF_INT::Multisample Rasterization Mode and WM_INT::Multisample Rasterization Mode. | Value | Name | Description | |-------|------|--| | 0h | | Multisampling mode is computed by HW according to formula for signal | | | | SF_INT::Multisample Rasterization Mode and WM_INT::Multisample Rasterization Mode in 3DSTATE_WM. | | | | | 3DSTATE_RASTE | R_BODY | | | |-------|---|------------------------|---|--|--|--| | | 1h | Force | Forces the DX Multisampling mo | ode to be used directly | | | | 13 | Smooth Point Enable | | | | | | | | Forma | t: | | Enable | | | | | | | is according to API. When OGL a
HW ignores this bit for
primitives | and smooth point rasterization is required, this sother than points. | | | | 12 | DX Mu | ltisampl | e Rasterization Enable | | | | | | Forma | t: | | Enable | | | | | Softwa | re sets th | is according to the API's multisa | mple enable | | | | | | | Programm | ning Notes | | | | | depen-
by sett | ding on s
ing SF_II | ome other states. This state mair | Multisample Rasterization Mode are set nly modifies the how the line rendering is done zation Mode to either OFF* or ON* . Please zation Mode. | | | | 11:10 | DX Mu | Itisampl | e Rasterization Mode | | | | | | Forma | | U2 enumerated type | е | | | | | This field determines whether multisample rasterization is turned on/off, and how the pixel sample point(s) are defined. Software sets this according to the API's multisample state setting (if any) | | | | | | | | | alue | | Name | | | | | 0h | | MSRASTMODE_ OFF_PIXEL | | | | | | 1h | | MSRASTMODE_ OFF_PATTERN | MSRASTMODE_ OFF_PATTERN | | | | | 2h | | MSRASTMODE_ ON_PIXEL | | | | | | 3h | | MSRASTMODE_ ON_PATTERN | I | | | | | Programming Notes | | | | | | | | This field is used to directly set the SF_INT/WM_INT::Multisample Rasterization Mode when DX Multisample Rasterization Enable is set. Please refer to equation of SF_INT::Multisample Rasterization Mode. | | | | | | | 9 | Global | Depth C | ffset Enable Solid | | | | | | Forma | t: | | Enable | | | | | Enable | s compu | ation and application of Global [| Depth Offset for SOLID objects. | | | | 8 | Global | Depth C | ffset Enable Wireframe | | | | | | Forma | t: | | Enable | | | | | Enables computation and application of Global Depth Offset when triangles are rendered in WIREFRAME mode. | | | | | | | 7 | Global | Depth C | ffset Enable Point | | | | | | Forma | | | Enable | | | | | Enable
POINT | | ation and application of Global [| Depth Offset when triangles are rendered in | | | | 6:5 | Front F | ace Fill | Mode | | | | | | | | | | | | | | | | 3 | BDSTATE_RASTER_BODY | | | |---|------|--|-----------------|--|--|--| | | | Forma | t: | U2 enumerated type | | | | | | This sta | ate controls ho | ow front-facing triangle and rectangle objects are rendered. | | | | | | Value | Name | Description | | | | | | 0h | SOLID | Any triangle or rectangle object found to be front-facing is rendered as a solid object. This setting is required when rendering rectangle (RECTLIST) objects. | | | | | | 1h | WIREFRAME | Any triangle object found to be front-facing is rendered as a series of lines along the triangle boundaries (as determined by the topology type and controlled by the vertex EdgeFlags). | | | | | | 2h | POINT | Any triangle object found to be front-facing is rendered as a set of point primitives at the triangle vertices (as determined by the topology type and controlled by the vertex EdgeFlags). | | | | | | 3h | Reserved | | | | | | 4:3 | Back Fa | ace Fill Mode | | | | | | | Forma | t: | U2 enumerated type | | | | | | This sta | ate controls ho | ow back-facing triangle and rectangle objects are rendered. | | | | | | Value | Name | Description | | | | | | 0h | SOLID | Any triangle or rectangle object found to be back-facing is rendered as a solid object. This setting is required when rendering rectangle (RECTLIST) objects. | | | | | | 1h | WIREFRAME | Any triangle object found to be back-facing is rendered as a series of lines along the triangle boundaries (as determined by the topology type and controlled by the vertex EdgeFlags). | | | | | | 2h | POINT | Any triangle object found to be back-facing is rendered as a set of point primitives at the triangle vertices (as determined by the topology type and controlled by the vertex EdgeFlags). | | | | | | 3h | Reserved | | | | | | 2 | Antialiasing Enable | | | | | | | | Forma | | Enable | | | | | | This field enables "alpha-based" line antialiasing. | | | | | | | | Programming Notes | | | | | | | | This field must be disabled if any of the render targets have integer (UINT or SINT) surface format. | | | | | | | 1 | Scissor | Rectangle Er | nable | | | | | | | Format: Enable | | | | | | | | • | Scissor Rectangle. | | | | | 0 | | | p Test Enable | | | | | | Forma | | Enable Clark | | | | | | | | control whether the Viewport Z Near extent is considered in VertexClipTest. | | | | 1 | 31:0 | Global | Depth Offset | t Constant | | | | | 3DSTATE_RASTER_BODY | | | | | |--|----------------------|--|-------------------------------|--|--| | | | Format: | IEEE_FLOAT32 | | | | | | Specifies the constant term in the G | ilobal Depth Offset function. | | | | 2 | 31:0 | 11:0 Global Depth Offset Scale | | | | | | Format: IEEE_FLOAT32 | | IEEE_FLOAT32 | | | | | | Specifies the scale term used in the Global Depth Offset function. | | | | | 3 | 31:0 | Global Depth Offset Clamp | | | | | | | Format: | IEEE_FLOAT32 | | | | Specifies the clamp term used in the Global Depth Offset function. | | e Global Depth Offset function. | | | | # 3DSTATE_SAMPLE_MASK_BODY | | | 3DSTATE_SAMPLE_MASK_BODY | |------------|--------|--| | Source: | | RenderCS | | Size (in b | oits): | 32 | | Default \ | /alue: | 0x00000000 | | DWord | Bit | Description | | 0 | 31:16 | Reserved | | | | Format: MBZ | | | 15:0 | Sample Mask | | | | Format: Enable[16] Right-justified bitmask (Bit 0 = Sample0). Number of bits that are used is determined by Num Multisamples (3DSTATE_MULTISAMPLE) | | | | A per-multisample-position mask state variable that is immediately and unconditionally ANDed with the sample coverage mask as part of the rasterization process. This mask is applied prior to centroid selection. This mask must be ignored for centroid selection when RTIR is enabled i.e. Forced_Sample_Count > 0. | | | | Programming Notes | | | | If Number of Multisamples is NUMSAMPLES_1, bits 15:1 of this field will be zeroed by
HW. | | | | If Number of Multisamples is NUMSAMPLES_2, bits 15:2 of this field will be zeroed by
HW. | | | | If Number of Multisamples is NUMSAMPLES_4, bits 15:4 of this field will be zeroed by
HW. | | | | If Number of Multisamples is NUMSAMPLES_8, bits 15:8 of this field will be zeroed by
HW. | | | | When pixel shader writes to UAV but does not have actual render target write (i.e. no RT is bound to pixel shader, eventhough, RT write message is sent for EOT), appropriate SAMPLE_MASK must be all set depending on Number of Multisamples. | # 3DSTATE_SAMPLER_STATE_POINTERS_BODY | | | 3DSTA | TE_SAMPLER_STATE_POIN | NTERS_BODY | | |------------|----------|--|--|------------|--| | Source: | RenderCS | | | | | | Size (in b | its): | 32 | | | | | Default \ | /alue: | 0x00000 | 000 | | | | DWord | Bit | | Description | | | | 0 | 31:5 | Pointer to Sam | pler State | | | | | | Format: | Format: DynamicStateOffset[31:5]SAMPLER_STATE*16 | | | | | | Specifies the 32-byte aligned address offset of the function's SAMPLER_STATE table. This offset is relative to the Dynamic State Base Address. | | | | | = | 4:0 | Reserved | | | | | | | Format: | | MBZ | | # 3DSTATE_SBE_BODY | | | | | 3DSTATE_SBE_ | BODY | 7 | | |------------|--------
---|---|------------------------------|--------------------------------------|-----------------------------------|--| | Source: | | Re | enderCS | | | | | | Size (in b | its): | 16 | 50 | | | | | | Default V | /alue: | 0× | :00000000, 0x0 | 0000000, 0x00000000, 0x | 00000000 | , 0x00000000 | | | DWord | Bit | Description | | | | | | | 0 | 31 | Reserve | d | | | | | | | | Format: | | | | MBZ | | | = | 30 | Reserved | | | | | | | - | 29 | Force V | ertex URB Ent | ry Read Length | | | | | | | Format: | | | Enable | e | | | | | Read Le | This field provides a work around override for the computation of SBE_INT::Vertex URB Entry Read Length. If asserted, 3DSTATE_SBE::Vertex URB Entry Read Length is be used directly. Otherwise, SBE_INT::Vertex URB Entry Read Length is computed normally. | | | | | | = | 28 | Force V | ertex URB Ent | ry Read Offset | | | | | | | Format: | | | Enable | e | | | | | This field provides a work around override for the computation of SBE_INT::Vertex URB Entry Read Offset. If asserted, 3DSTATE_SBE::Vertex URB Entry Read Offset is be used directly. Otherwise, SBE_INT::Vertex URB Entry Read Offset is computed normally. | | | | | | | | 27:22 | Number of SF Output Attributes | | | | | | | | | Format: | | U6 count of attribut | es | | | | | | • | s the number of Position). | of vertex attributes passe | e SF stage to the WM stage (does not | | | | | | | Va | alue | | Name | | | | | [0,32] | | | | | | | - | 21 | Attribut | e Swizzle Ena | ble | | | | | | | Format: | | | Enable | e | | | | | | the SF to perfo
tributes are pa | ne first 16) | vertex attributes. If DISABLED, all | | | | - | 20 | Point Sp
This sta
attribute | are generated (when enabled on a per- | | | | | | | | Value | Name | | Des | scription | | | | | 0h | UPPERLEFT | Top Left = (0,0,0,1)Botto | m Left = (| (0,1,0,1)Bottom Right = (1,1,0,1) | | | | | 1h | LOWERLEFT | Top Left = $(0,1,0,1)$ Botto | m Left = (| (0,0,0,1)Bottom Right = (1,0,0,1) | | | 3DSTATE_SBE_ | BODY | | | | |--|--|--|--|--| | Primitive ID Override Component W | | | | | | at: | Enable | | | | | If set, the W component of output attribute selected by Primitive ID Override Attribute Select is overridden with the Primitive ID. | | | | | | tive ID Override Component Z | | | | | | at: | Enable | | | | | the Z component of output attribute selected dden with the Primitive ID. | cted by Primitive ID Override Attribute Select is | | | | | tive ID Override Component Y | | | | | | at: | Enable | | | | | the Y component of output attribute selected dden with the Primitive ID. | cted by Primitive ID Override Attribute Select is | | | | | tive ID Override Component X | | | | | | at: | Enable | | | | | the X component of output attribute selected dden with the Primitive ID. | cted by Primitive ID Override Attribute Select is | | | | | Vertex URB Entry Read Length | | | | | | at: | U5 | | | | | fies the amount of URB data read for each | Vertex URB entry, in 256-bit register increments. | | | | | Value | Name | | | | | 1 | | | | | | | | | | | | | ning Notes | | | | | Programn JNDEFINED to set this field to 0 indicating et to the minimum length required to read | no Vertex URB data to be read. This field should the maximum source attribute. The maximum alue of the enabled Attribute # Source Attribute | | | | | Programn JNDEFINED to set this field to 0 indicating et to the minimum length required to read the attribute is indicated by the maximum varibute Swizzle Enable is set, Number of Our | no Vertex URB data to be read.This field should the maximum source attribute. The maximum alue of the enabled Attribute # Source Attribute tput Attributes-1 if enable is not set. | | | | | Programn UNDEFINED to set this field to 0 indicating set to the minimum length required to read see attribute is indicated by the maximum varibute Swizzle Enable is set, Number of Outlength = ceiling((max_source_attr+1)/2) x URB Entry Read Offset | no Vertex URB data to be read. This field should the maximum source attribute. The maximum alue of the enabled Attribute # Source Attribute tput Attributes-1 if enable is not set. ertex URB data is to be read from the URB. | | | | | Programn UNDEFINED to set this field to 0 indicating set to the minimum length required to read the attribute is indicated by the maximum varibute Swizzle Enable is set, Number of Outlength = ceiling((max_source_attr+1)/2) x URB Entry Read Offset set if it is the offset (in 256-bit units) at which Vertice ID Override Attribute Select set if its which attribute is overridden w/ the Program in the set of | no Vertex URB data to be read. This field should the maximum source attribute. The maximum alue of the enabled Attribute # Source Attribute tput Attributes-1 if enable is not set. ertex URB data is to be read from the URB. | | | | | Programn UNDEFINED to set this field to 0 indicating set to the minimum length required to read see attribute is indicated by the maximum varibute Swizzle Enable is set, Number of Our length = ceiling((max_source_attr+1)/2) In the control of th | no Vertex URB data to be read. This field should the maximum source attribute. The maximum alue of the enabled Attribute # Source Attribute to the tribute struct Attributes - 1 if enable is not set. Pertex URB data is to be read from the URB. | | | | | | at: the W component of output attribute selected with the Primitive ID. tive ID Override Component Z at: the Z component of output attribute selected with the Primitive ID. tive ID Override Component Y at: the Y component of output attribute selected with the Primitive ID. tive ID Override Component Y at: the Y component of output attribute selected with the Primitive ID. tive ID Override Component X at: the X component of output attribute selected with the Primitive ID. x URB Entry Read Length at: fies the amount of URB data read for each | | | | | | | | 3DSTATE_SBE_BODY | | | | |---|-------|---|--|--|--|--| | | | Format: | Enable[32] | | | | | | | copied to the point of Attribute is selected assigned a pre-defin | point primitives, the attributes from the incoming point vertex are typically object corner vertices. However, if a bit is set in this field, the
corresponding as a Point Sprite Texture Coordinate, in which case each corner vertex is ed texture coordinate as defined by the Point Sprite Texture Coordinate corresponds to output Attribute 0. | | | | | 2 | 31:0 | Constant Interpolat | tion Enable | | | | | | | Format: | Enable[32] | | | | | | | This field is a bitmask containing a Constant Interpolation Enable bit for each corresponding attribute. If a bit is set, that attribute will undergo constant interpolation, and the corresponding WrapShortest Enable bits (if defined) will be ignored. If a bit is clear, components which are not enabled for WrapShortest interpolation (if defined) will be linearly interpolated. | | | | | | 3 | 31:30 | Attribute 15 Active | Component Format | | | | | | | Format: | Attribute_Component_Format | | | | | | | This state indicates which components of Attribute 15 are being used by the pixel shader Kernel. SBE will not perform attribute delta calculations for any disabled components. Operation is UNDEFINED if kernel uses attribute vertex delta for any disabled component. | | | | | | | 29:28 | Attribute 14 Active | Component Format | | | | | | | Format: | Attribute_Component_Format | | | | | | | SBE will not perform | which components of Attribute 14 are being used by the pixel shader Kernel attribute delta calculations for any disabled components. Operation is I uses attribute vertex delta for any disabled component. | | | | | | 27:26 | Attribute 13 Active | Component Format | | | | | | | Format: | Attribute_Component_Format | | | | | | | SBE will not perform | which components of Attribute 13 are being used by the pixel shader Kernel attribute delta calculations for any disabled components. Operation is I uses attribute vertex delta for any disabled component. | | | | | | 25:24 | Attribute 12 Active | Component Format | | | | | | | Format: | Attribute_Component_Format | | | | | | | This state indicates | which components of Attribute 12 are being used by the pixel shader Kerne | | | | | | | SBE will not perform attribute delta calculations for any disabled components. Operation is UNDEFINED if kernel uses attribute vertex delta for any disabled component. | | | | | | | 23:22 | Attribute 11 Active | Component Format | | | | | | | Format: | Attribute_Component_Format | | | | | | | SBE will not perform | which components of Attribute 11 are being used by the pixel shader Kernel attribute delta calculations for any disabled components. Operation is I uses attribute vertex delta for any disabled component. | | | | | | | 3DSTATE_SBE_BODY | | | |-------|---|---|--|--| | 21:20 | Attribute 10 Active Component Format | | | | | | Format: | Attribute_Component_Format | | | | | SBE will not perfor | rs which components of Attribute 10 are being used by the pixel shader Kerne
m attribute delta calculations for any disabled components. Operation is
nel uses attribute vertex delta for any disabled component. | | | | 19:18 | Attribute 9 Active | Component Format | | | | | Format: | Attribute_Component_Format | | | | | SBE will not perfor | es which components of Attribute 9 are being used by the pixel shader Kernel m attribute delta calculations for any disabled components. Operation is nel uses attribute vertex delta for any disabled component. | | | | 17:16 | Attribute 8 Active | Component Format | | | | | Format: | Attribute_Component_Format | | | | | This state indicates which components of Attribute 8 are being used by the pixel shader Kernel. SBE will not perform attribute delta calculations for any disabled components. Operation is UNDEFINED if kernel uses attribute vertex delta for any disabled component. | | | | | 15:14 | Attribute 7 Active | e Component Format | | | | | Format: | Attribute_Component_Format | | | | | This state indicates which components of Attribute 7 are being used by the pixel shader Kernel. SBE will not perform attribute delta calculations for any disabled components. Operation is UNDEFINED if kernel uses attribute vertex delta for any disabled component. | | | | | 13:12 | Attribute 6 Active | Component Format | | | | | Format: | Attribute_Component_Format | | | | | SBE will not perfor | rs which components of Attribute 6 are being used by the pixel shader Kernel m attribute delta calculations for any disabled components. Operation is nel uses attribute vertex delta for any disabled component. | | | | 11:10 | Attribute 5 Active | Component Format | | | | | Format: | Attribute_Component_Format | | | | | This state indicate | es which components of Attribute 5 are being used by the pixel shader Kernel | | | | | SBE will not perform attribute delta calculations for any disabled components. Operation is UNDEFINED if kernel uses attribute vertex delta for any disabled component. | | | | | 9:8 | Attribute 4 Active | Component Format | | | | | Format: | Attribute_Component_Format | | | | | SBE will not perfor | rs which components of Attribute 4 are being used by the pixel shader Kernel m attribute delta calculations for any disabled components. Operation is nel uses attribute vertex delta for any disabled component. | | | | | | I | 3DSTATE_SBE_BODY | | | | | |---|-------|---|---|--|--|--|--| | | 7:6 | Attribute 3 Active C | omponent Format | | | | | | | | Format: | Attribute_Component_Format | | | | | | | | This state indicates v
SBE will not perform | This state indicates which components of Attribute 3 are being used by the pixel shader Kernel. SBE will not perform attribute delta calculations for any disabled components. Operation is UNDEFINED if kernel uses attribute vertex delta for any disabled component. | | | | | | | 5:4 | Attribute 2 Active C | omponent Format | | | | | | | 3.1 | Format: | Attribute_Component_Format | | | | | | | | This state indicates v | which components of Attribute 2 are being used by the pixel shader Kernel. attribute delta calculations for any disabled components. Operation is uses attribute vertex delta for any disabled component. | | | | | | | 3:2 | Attribute 1 Active C | omponent Format | | | | | | | | Format: | Attribute_Component_Format | | | | | | | | This state indicates which components of Attribute 1 are being used by the pixel shader Kernel. SBE will not perform attribute delta calculations for any disabled components. Operation is UNDEFINED if kernel uses attribute vertex delta for any disabled component. | | | | | | | | 1:0 | Attribute 0 Active C | | | | | | | | | Format: | Attribute_Component_Format | | | | | | | | SBE will not perform | which components of Attribute 0 are being used by the pixel shader Kernel. attribute delta calculations for any disabled components. Operation is uses attribute vertex delta for any disabled component. | | | | | | 4 | 31:30 | Attribute 31 Active | Component Format | | | | | | | | Format: | Attribute_Component_Format | | | | | | | | This state indicates v | which components of Attribute 31 are being used by the pixel shader Kernel. attribute delta calculations for any disabled components. Operation is uses attribute vertex delta for any disabled component. | | | | | | | 29:28 | Attribute 30 Active | Component Format | | | | | | | | Format: | Attribute_Component_Format | | | | | | | | This state indicates which components of Attribute 30 are being used by the pixel shader Kernel. SBE will not perform attribute delta calculations for any disabled components. Operation is UNDEFINED if kernel uses attribute vertex delta for any disabled component. | | | | | | | | 27.26 | Attribute 29 Active | Component Format | | | | | | | 27.20 | Format: | Attribute_Component_Format | | | | | | | | This state indicates v | which components of Attribute 29 are being used by the pixel shader Kernel. attribute delta calculations for any disabled components. Operation is uses attribute vertex delta for any disabled component. | | | | | | | | 3DSTATE_SBE_BODY | | | | |-------|--|--|--|--|--| | 25:24 | Attribute 28 Acti | ve Component Format | | | | | | Format: | Attribute_Component_Format | | | | | | SBE will not perfor | es which components of Attribute 28 are being used by the pixel shader Kerm attribute delta calculations for any disabled components. Operation is nel uses attribute vertex delta for any disabled component. | | | | | 23:22 | Attribute 27 Acti | ve Component Format | | | | | | Format: | Attribute_Component_Format | | | | | | SBE will not perfor | es which components of Attribute 27 are being used by the pixel shader Kerm attribute delta calculations for any disabled components. Operation is nel
uses attribute vertex delta for any disabled component. | | | | | 21:20 | Attribute 26 Acti | ve Component Format | | | | | | Format: | Attribute_Component_Format | | | | | | SBE will not perfor | es which components of Attribute 26 are being used by the pixel shader Kerm attribute delta calculations for any disabled components. Operation is nel uses attribute vertex delta for any disabled component. | | | | | 19:18 | Attribute 25 Acti | ve Component Format | | | | | | Format: | Attribute_Component_Format | | | | | | This state indicates which components of Attribute 25 are being used by the pixel shader Kerne SBE will not perform attribute delta calculations for any disabled components. Operation is UNDEFINED if kernel uses attribute vertex delta for any disabled component. | | | | | | 17:16 | Attribute 24 Acti | ve Component Format | | | | | | Format: | Attribute_Component_Format | | | | | | SBE will not perfor | es which components of Attribute 24 are being used by the pixel shader Kerm attribute delta calculations for any disabled components. Operation is nel uses attribute vertex delta for any disabled component. | | | | | 15:14 | Attribute 23 Acti | ve Component Format | | | | | | Format: | Attribute_Component_Format | | | | | | This state indicate | es which components of Attribute 23 are being used by the pixel shader Ke | | | | | | • | rm attribute delta calculations for any disabled components. Operation is nel uses attribute vertex delta for any disabled component. | | | | | 13:12 | Attribute 22 Acti | ve Component Format | | | | | | Format: | Attribute_Component_Format | | | | | | This state is discass | es which components of Attribute 22 are being used by the pixel shader Ke | | | | | | 1 | 3DSTATE_SBE_BODY | | | | |-------|---|---|--|--|--| | 11.10 | Attribute 21 A | ctive Component Format | | | | | 11.10 | Format: | Attribute_Component_Format | | | | | | This state indic | rates which components of Attribute 21 are being used by the pixel shader Ke form attribute delta calculations for any disabled components. Operation is sernel uses attribute vertex delta for any disabled component. | | | | | 9:8 | Attribute 20 A | ctive Component Format | | | | | | Format: | Attribute_Component_Format | | | | | | SBE will not per | rates which components of Attribute 20 are being used by the pixel shader Ker
form attribute delta calculations for any disabled components. Operation is
sernel uses attribute vertex delta for any disabled component. | | | | | 7:6 | Attribute 19 A | ctive Component Format | | | | | | Format: | Attribute_Component_Format | | | | | | SBE will not per | rates which components of Attribute 19 are being used by the pixel shader Ker
form attribute delta calculations for any disabled components. Operation is
sernel uses attribute vertex delta for any disabled component. | | | | | 5:4 | Attribute 18 Active Component Format | | | | | | | Format: | Attribute_Component_Format | | | | | | This state indic | ates which components of Attribute 18 are being used by the pixel shader Kei | | | | | | SBE will not perform attribute delta calculations for any disabled components. Operation is UNDEFINED if kernel uses attribute vertex delta for any disabled component. | | | | | | | | | | | | | 3:2 | Attribute 17 A | ctive Component Format | | | | | 3:2 | Attribute 17 A | ctive Component Format Attribute_Component_Format | | | | | 3:2 | Format:
This state indic
SBE will not per | Attribute_Component_Format | | | | | 3:2 | Format:
This state indic
SBE will not per
UNDEFINED if k | Attribute_Component_Format Tates which components of Attribute 17 are being used by the pixel shader Ker The form attribute delta calculations for any disabled components. Operation is | | | | | | Format:
This state indic
SBE will not per
UNDEFINED if k | Attribute_Component_Format Tates which components of Attribute 17 are being used by the pixel shader Ker The form attribute delta calculations for any disabled components. Operation is The format were delta for any disabled component. | | | | # 3DSTATE_SBE_SWIZ_BODY | | | 3DS | STATE_SBE_SWIZ_BODY | | | | | |-----------------|-------|------------------------------------|--|--|--|--|--| | Source: | Ren | iderCS | | | | | | | Size (in bits): | 320 | | | | | | | | Default Value: | | | 000000, 0x00000000, 0x00000000, 0x00000000 | | | | | | DWord | Bit | | Description | | | | | | 07 | 255:0 | Attribute | • | | | | | | | | Format: | SF_OUTPUT_ATTRIBUTE_DETAIL[16] | | | | | | 89 | 63:60 | Attribute 15 | Wrap Shortest Enables | | | | | | | | Format: | WRAP_SHORTEST_ENABLE | | | | | | | 59:56 | Attribute 14 | Wrap Shortest Enables | | | | | | | | Format: | WRAP_SHORTEST_ENABLE | | | | | | | 55:52 | Attribute 13 | Attribute 13 Wrap Shortest Enables | | | | | | | | Format: | WRAP_SHORTEST_ENABLE | | | | | | | 51:48 | Attribute 12 | 2 Wrap Shortest Enables | | | | | | | | Format: | WRAP_SHORTEST_ENABLE | | | | | | - | 47:44 | Attribute 11 Wrap Shortest Enables | | | | | | | | | Format: | WRAP_SHORTEST_ENABLE | | | | | | - | 43:40 | Attribute 10 Wrap Shortest Enables | | | | | | | | | Format: | WRAP_SHORTEST_ENABLE | | | | | | - | 39:36 | Attribute 09 Wrap Shortest Enables | | | | | | | | | Format: | WRAP_SHORTEST_ENABLE | | | | | | - | 35:32 | Attribute 08 | 3 Wrap Shortest Enables | | | | | | | | Format: | WRAP_SHORTEST_ENABLE | | | | | | - | 31:28 | Attribute 07 | Wrap Shortest Enables | | | | | | | | Format: | WRAP_SHORTEST_ENABLE | | | | | | - | 27:24 | Attribute 06 | Wrap Shortest Enables | | | | | | | | Format: | WRAP_SHORTEST_ENABLE | | | | | | | 23:20 | Attribute 05 Wrap Shortest Enables | | | | | | | | | Format: | WRAP_SHORTEST_ENABLE | | | | | | | 19:16 | Attribute 04 | Wrap Shortest Enables | | | | | | | | Format: | WRAP_SHORTEST_ENABLE | | | | | | | 15:12 | Attribute 03 | Wrap Shortest Enables | | | | | | | | Format: | WRAP_SHORTEST_ENABLE | | | | | | 3DSTATE_SBE_SWIZ_BODY | | | | | | | |--|-------------------|------------------------------------|--|--|--|--| | 11:8 | Attribute 02 Wrap | Attribute 02 Wrap Shortest Enables | | | | | | | Format: | WRAP_SHORTEST_ENABLE | | | | | | 7:4 | Attribute 01 Wrap | Shortest Enables | | | | | | | Format: | WRAP_SHORTEST_ENABLE | | | | | | 3:0 Attribute 00 Wrap Shortest Enables | | | | | | | | | Format: | WRAP_SHORTEST_ENABLE | | | | | # 3DSTATE_SCISSOR_STATE_POINTERS_BODY | | 3DSTATE_SCISSOR_STATE_POINTERS_BODY | | | | | | |------------|-------------------------------------|---|--|-----|--|--| | Source: | | RenderCS | RenderCS | | | | | Size (in b | oits): | 32 | | | | | | Default \ | /alue: | 0x000000 | 000 | | | | | DWord | Bit | | Description | | | | | 0 | 31:5 | Scissor Rect Poi | nter | | | | | | | Format: | DynamicStateOffset[31:5]SCISSOR_RECT*1 | 6 | | | | | | Specifies the 32 | Specifies the 32-byte aligned address offset of the SCISSOR_RECT state. This offset is relative to | | | | | | | the Dynamic State Base Address . | | | | | | | 4:0 | Reserved | eserved | | | | | | | Format: | | MBZ | | | # 3DSTATE_SF_BODY | "thinnest" (one-pixel-wide), non-antialiased lines. Note that this effectively overrides of AAEnable (though the AAEnable state variable is not modified). Programming Notes Software must not program a value of 0.0 when running in MSRASTMODE_ON_xxx is zero-width lines are not available when multisampling rasterization is enabled. Legacy Global Depth Bias Enable Format: Enable Enable Enables the SF to use the Global Depth Offset Constant state unmodified. If this bit is the SF will scale the Global Depth Offset Constant as described in section Error! Reference not found, of this document. Programming Notes This bit should be set whenever non zero depth bias (Slope, Bias) values are used. So bit may have some degradation of performance for some workloads. Statistics Enable Format: Enable If ENABLED, this FF unit will increment CL_PRIMITIVES_COUNT on behalf of the CLIP DISABLED, CL_PRIMITIVES_COUNT will be left unchanged. | | Υ | 3DSTATE_SF_BOD | | | | | | |--|--------------
---|--|--------|------------|--|--|--| | Default Value: 0x00000000, 0x000000000 Description 0 31:30 Reserved Format: MBZ 29:12 Inne Width Format: U11.7 Range: [0.0, 2047.9921875] Controls width of line primitives. Setting a Line Width of 0.0 specifies the rasterization thinnest" (one-pixel-wide), non-antialiased lines. Note that this effectively overrides of AAEnable (though the AAEnable state variable is not modified). Programming Notes Software must not program a value of 0.0 when running in MSRASTMODE_ON_xxx is zero-width lines are not available when multisampling rasterization is enabled. 11 Legacy Global Depth Bias Enable Format: Enable Enables the SF to use the Global Depth Offset Constant state unmodified. If this bit the SF will scale the Global Depth Offset Constant as described in section Error! Reference for some workloads. 10 Statistics Enable Format: Enable If ENABLED, this FF unit will increment CL_PRIMITIVES_COUNT on behalf of the CLIP DISABLED, CL_PRIMITIVES_COUNT will be left unchanged. | | | RenderCS | | Source: | | | | | DWord Bit Description 31:30 Reserved Format: MBZ 29:12 Line Width Format: U11.7 Range: [0.0, 2047.9921875] Controls width of line primitives. Setting a Line Width of 0.0 specifies the rasterization thinnest" (one-pixel-wide), non-antialiased lines. Note that this effectively overrides of AAEnable (though the AAEnable state variable is not modified). Programming Notes Software must not program a value of 0.0 when running in MSRASTMODE_ON_xxx is zero-width lines are not available when multisampling rasterization is enabled. 11 Legacy Global Depth Bias Enable Format: Enable Enables the SF to use the Global Depth Offset Constant state unmodified. If this bit the SF will scale the Global Depth Offset Constant as described in section Error! Reference for some workloads. 10 Statistics Enable Format: Enable If ENABLED, this FF unit will increment CL_PRIMITIVES_COUNT on behalf of the CLIP DISABLED, CL_PRIMITIVES_COUNT will be left unchanged. | | | 96 | oits): | Size (in b | | | | | 31:30 Reserved Format: MBZ 29:12 Line Width Format: U11.7 Range: [0.0, 2047.9921875] Controls width of line primitives. Setting a Line Width of 0.0 specifies the rasterizatic "thinnest" (one-pixel-wide), non-antialiased lines. Note that this effectively overrides of AAEnable (though the AAEnable state variable is not modified). Programming Notes Software must not program a value of 0.0 when running in MSRASTMODE_ON_xxx is zero-width lines are not available when multisampling rasterization is enabled. Legacy Global Depth Bias Enable Format: Enable Enable Enable Enable This bit should be set whenever non zero depth bias (Slope, Bias) values are used. S bit may have some degradation of performance for some workloads. 10 Statistics Enable Format: | | Default Value: 0x00000000, 0x00000000, 0x00000800 | | | | | | | | Format: MBZ | | Description | | | | | | | | 29:12 Line Width Format: Range: [0.0, 2047.9921875] Controls width of line primitives. Setting a Line Width of 0.0 specifies the rasterization "thinnest" (one-pixel-wide), non-antialiased lines. Note that this effectively overrides of AAEnable (though the AAEnable state variable is not modified). Programming Notes Software must not program a value of 0.0 when running in MSRASTMODE_ON_xxxx is zero-width lines are not available when multisampling rasterization is enabled. 11 Legacy Global Depth Bias Enable Format: Enable Enable Enables the SF to use the Global Depth Offset Constant state unmodified. If this bit is the SF will scale the Global Depth Offset Constant as described in section Error! Referenct found, of this document. Programming Notes This bit should be set whenever non zero depth bias (Slope, Bias) values are used. So bit may have some degradation of performance for some workloads. 10 Statistics Enable Format: If ENABLED, this FF unit will increment CL_PRIMITIVES_COUNT on behalf of the CLIP DISABLED, CL_PRIMITIVES_COUNT will be left unchanged. | | | Reserved | 31:30 | 0 | | | | | Format: Range: [0.0, 2047.9921875] Controls width of line primitives. Setting a Line Width of 0.0 specifies the rasterization "thinnest" (one-pixel-wide), non-antialiased lines. Note that this effectively overrides of AAEnable (though the AAEnable state variable is not modified). Programming Notes | | MBZ | Format: | | | | | | | Range: [0.0, 2047.9921875] Controls width of line primitives. Setting a Line Width of 0.0 specifies the rasterization "thinnest" (one-pixel-wide), non-antialiased lines. Note that this effectively overrides of AAEnable (though the AAEnable state variable is not modified). Programming Notes Software must not program a value of 0.0 when running in MSRASTMODE_ON_xxx is zero-width lines are not available when multisampling rasterization is enabled. Legacy Global Depth Bias Enable Format: Enables the SF to use the Global Depth Offset Constant state unmodified. If this bit the SF will scale the Global Depth Offset Constant as described in section Error! Reference for some found. of this document. Programming Notes This bit should be set whenever non zero depth bias (Slope, Bias) values are used. Sobit may have some degradation of performance for some workloads. Statistics Enable Format: Enable If ENABLED, this FF unit will increment CL_PRIMITIVES_COUNT on behalf of the CLIP DISABLED, CL_PRIMITIVES_COUNT will be left unchanged. | | | Line Width | 29:12 | | | | | | Range: [0.0, 2047.9921875] Controls width of line primitives. Setting a Line Width of 0.0 specifies the rasterization "thinnest" (one-pixel-wide), non-antialiased lines. Note that this effectively overrides of AAEnable (though the AAEnable state variable is not modified). Programming Notes Software must not program a value of 0.0 when running in MSRASTMODE_ON_xxx is zero-width lines are not available when multisampling rasterization is enabled. Legacy Global Depth Bias Enable Format: Enables the SF to use the Global Depth Offset Constant state unmodified. If this bit the SF will scale the Global Depth Offset Constant as described in section Error! Reference for some found. of this document. Programming Notes This bit should be set whenever non zero depth bias (Slope, Bias) values are used. Sobit may have some degradation of performance for some workloads. Statistics Enable Format: Enable If ENABLED, this FF unit will increment CL_PRIMITIVES_COUNT on behalf of the CLIP DISABLED, CL_PRIMITIVES_COUNT will be left unchanged. | | | | | | | | | | Controls width of line primitives. Setting a Line Width of 0.0 specifies the rasterization "thinnest" (one-pixel-wide), non-antialiased lines. Note that this effectively overrides of AAEnable (though the AAEnable state variable is not modified). Programming Notes Software must not program a value of 0.0 when running in MSRASTMODE_ON_xxx is zero-width lines are not available when multisampling rasterization is enabled. 11 Legacy Global Depth Bias Enable Format: Enable Enable Enables the SF to use the Global Depth Offset Constant state unmodified. If this bit is the SF will scale the Global Depth Offset Constant as described in section Error! Reference found, of this document. Programming Notes This bit should be set whenever non zero depth bias (Slope, Bias) values are used. So bit may have some degradation of performance for some workloads. 10 Statistics Enable Format: Enable If ENABLED, this FF unit will increment CL_PRIMITIVES_COUNT on behalf of the CLIP DISABLED, CL_PRIMITIVES_COUNT will be left unchanged. | | U11.7 | Format: | | | | | | | "thinnest" (one-pixel-wide), non-antialiased lines. Note that this effectively overrides of AAEnable (though the AAEnable state variable is not modified). Programming Notes Software must not program a value of 0.0 when running in MSRASTMODE_ON_xxx is zero-width lines are not available when multisampling rasterization is enabled. Legacy Global Depth Bias Enable Format: Enable Enable Enables the SF to use the Global Depth Offset Constant state unmodified. If this bit is the SF will scale the Global Depth Offset Constant as described in section Error! Reference not found. of this document. Programming Notes This bit should be set whenever non zero depth bias (Slope, Bias) values are used. So bit may have some degradation of performance for some workloads. Statistics Enable Format: Enable If ENABLED, this FF unit will increment CL_PRIMITIVES_COUNT on behalf of the CLIP DISABLED, CL_PRIMITIVES_COUNT will be left unchanged. | | | Range: [0.0, 2047.9921875] | | | | | | | Software must not program a value of 0.0 when running in MSRASTMODE_ON_xxx is zero-width lines are not available when multisampling rasterization is enabled. 11 Legacy Global Depth Bias Enable Format: Enable Enables the SF to use the Global Depth Offset Constant state unmodified. If this bit the SF will scale the Global Depth Offset Constant as described in section Error! Referenct found. of this document. Programming Notes This bit should be set whenever non zero depth bias (Slope, Bias) values are used. So bit may have some degradation of performance for some workloads. 10 Statistics Enable Format: Enable If ENABLED, this FF unit will increment CL_PRIMITIVES_COUNT on behalf of the CLIP DISABLED, CL_PRIMITIVES_COUNT will be left unchanged. | | Controls width of line primitives. Setting a Line Width of 0.0 specifies the rasterization of the "thinnest" (one-pixel-wide), non-antialiased lines. Note that this effectively overrides the effect of AAEnable (though the AAEnable state variable is not modified). | | | | | | | | Zero-width lines are not available when multisampling rasterization is enabled. Legacy Global Depth Bias Enable | | | | | | | |
	Format: Enable Enables the SF to use the Global Depth Offset Constant state unmodified. If this bit the SF will scale the Global Depth Offset Constant as described in section Error! Refe not found. of this document. Programming Notes This bit should be set whenever non zero depth bias (Slope, Bias) values are used. So bit may have some degradation of performance for some workloads. 10 Statistics Enable Format: Enable If ENABLED, this FF unit will increment CL_PRIMITIVES_COUNT on behalf of the CLIP DISABLED, CL_PRIMITIVES_COUNT will be left unchanged.	x modes -									Enables the SF to use the Global Depth Offset Constant state unmodified. If this bit the SF will scale the Global Depth Offset Constant as described in section Error! Reference not found. of this document. Programming Notes This bit should be set whenever non zero depth bias (Slope, Bias) values are used. So bit may have some degradation of performance for some workloads. Statistics Enable Format: Enable If ENABLED, this FF unit will increment CL_PRIMITIVES_COUNT on behalf of the CLIP DISABLED, CL_PRIMITIVES_COUNT will be left unchanged.		11								the SF will scale the Global Depth Offset Constant as described in section Error! Refe not found. of this document. Programming Notes This bit should be set whenever non zero depth bias (Slope, Bias) values are used. So bit may have some degradation of performance for some workloads. 10 Statistics Enable Format: Enable If ENABLED, this FF unit will increment CL_PRIMITIVES_COUNT on behalf of the CLIP DISABLED, CL_PRIMITIVES_COUNT will be left unchanged.		nable	Format: End							Programming Notes This bit should be set whenever non zero depth bias (Slope, Bias) values are used. So bit may have some degradation of performance for some workloads. 10 Statistics Enable Format: Enable If ENABLED, this FF unit will increment CL_PRIMITIVES_COUNT on behalf of the CLIP DISABLED, CL_PRIMITIVES_COUNT will be left unchanged.			the SF will scale the Global Depth Offset Constant as de							bit may have some degradation of performance for some workloads. 10 Statistics Enable Format: Enable If ENABLED, this FF unit will increment CL_PRIMITIVES_COUNT on behalf of the CLIP DISABLED, CL_PRIMITIVES_COUNT will be left unchanged.		Notes								Format: Enable If ENABLED, this FF unit will increment CL_PRIMITIVES_COUNT on behalf of the CLIP DISABLED, CL_PRIMITIVES_COUNT will be left unchanged.	Setting this									If ENABLED, this FF unit will increment CL_PRIMITIVES_COUNT on behalf of the CLIP DISABLED, CL_PRIMITIVES_COUNT will be left unchanged.			Statistics Enable	10						If ENABLED, this FF unit will increment CL_PRIMITIVES_COUNT on behalf of the CLIP DISABLED, CL_PRIMITIVES_COUNT will be left unchanged.										DISABLED, CL_PRIMITIVES_COUNT will be left unchanged.		nable	Format: Ena								IP stage. If									Programming Notes										This bit should be set whenever clipping is enabled and the Statistics Enable bit is see CLIP_STATE. It should be cleared if clipping is disabled or Statistics Enable in CLIP_STATE.										9:2 Reserved			Reserved	9:2						Format: MBZ		MBZ											3DSTATE_SF_B	ODY								---	-------	--	-------------------------------	------------	--	--	--	--	--	--			1	Viewport Transform	Enable											Format:		Enable										This bit controls the Viewport Transform function.											0	Reserved												Format:			MBZ							1	31:29	Reserved																							28	Reserved											27:18	Reserved																								Format:			MBZ								17:16	Line End Cap Antialia	sing Region Width											Format: U2												-	distances over which the c	overage	of anti-aliased line end caps are									computed.												Value	Name		Description									0h	0.5 pixels		5 pixels									1h	1.0 pixels		0 pixels									2h	2.0 pixels		0 pixels									3h	4.0 pixels	4.	0 pixels								15	Reserved																							14	Reserved			1									_			1									Format: MBZ											13	Reserved											12	Reserved											11:0	Reserved			1407									Format:			MBZ							2	31	Last Pixel Enable												Format:	ival of a diamond line will b	Enabl										=	not affect wide lines or anti		s state will only affect the rasterization lines).										Programm											Last pixel is applied to	all lines of a LINELIST, and										30:29	Triangle Strip/List Pro	ovoking Vertex Select												3DS1	ATE	SF_BOD	Y				-------	--	--	--------------	---------------	---	-------------------------------------	-------------------------------	-------			Format: U2										Selects which vertex of a triangle (in a triangle strip or list primitive) is considered the "provoking vertex". Used for flat shading of primitives. Does current implementation send provoking vertex first?						_					Value	•				Name				0h				0						1h				1						2h				2						3h				Reserved					28:27	Line St	rip/List Provok	ina Verte	x Sele	ct							,			<u> </u>						Format	<u> </u>					U2				Selects	which vertex o	f a line (in	a line s	strip or list prim	itive) is con	sidered the "provoking ver	tex".				Value		Naı	me		Description				0h		0			Vertex 0					1h		1			Vertex 1					2h		Reserved			Reserved					3h	Reserved			Reserved					26:25	Triangle Fan Provoking Vertex Select									_0.23	Irrangi	e Fan Provokir	ng Vertex	Select						20.23	Format		ng Vertex	Select	:		U2			20.23	Format	:: which vertex o				nitive) is co	U2 nsidered the "provoking			20.23	Format Selects	:: which vertex o	f a triangle				L ⁻			20.23	Format Selects	t: which vertex o	f a triangle				nsidered the "provoking			20.23	Format Selects vertex".	t: which vertex o	f a triangle		triangle fan prin		nsidered the "provoking			20.23	Format Selects vertex".	t: which vertex o	f a triangle		triangle fan prin		nsidered the "provoking			20.23	Format Selects vertex". Oh	t: which vertex o	f a triangle		triangle fan prim 0 1		nsidered the "provoking			24:15	Format Selects vertex". Oh 1h 2h	t: which vertex o Value	f a triangle		triangle fan prim 0 1		nsidered the "provoking				Format Selects vertex". Oh 1h 2h 3h	t: which vertex o Value	f a triangle		triangle fan prim 0 1		nsidered the "provoking				Format Selects vertex". 0h 1h 2h 3h Reserve	t: which vertex o Value	f a triangle		triangle fan prim 0 1		nsidered the "provoking			24:15	Format Selects vertex". 0h 1h 2h 3h Reserve	which vertex o Value ed ::	f a triangle		triangle fan prim 0 1		nsidered the "provoking			24:15	Format Selects vertex". 0h 1h 2h 3h Reserve Format Format	which vertex o Value ed :: e Distance Mod ::	f a triangle	e (in a t	triangle fan prim 0 1	MBZ	Name			24:15	Format Selects vertex". 0h 1h 2h 3h Reserve Format Format	which vertex o Value ed :: e Distance Mod ::	f a triangle	e (in a t	o 1 2 Reserved	MBZ	Name U1			24:15	Format Selects vertex". 0h 1h 2h 3h Reserve Format This bit	which vertex o Value ed :: e Distance Mod :: t controls the di	f a triangle	mputat	triangle fan prim 0 1 2 Reserved	MBZ sed lines. Descriptation. This	Name U1			24:15	Format Selects vertex". Oh 1h 2h 3h Reserve Format This bit Value 1h	which vertex o Value Value Ed E Distance Mod C C C Name	f a triangle	mputat	triangle fan prim 0 1 2 Reserved tion for antialias	MBZ sed lines. Descriptation. This	Name U1			24:15	Format Selects vertex". Oh 1h 2h 3h Reserve Format This bit Value 1h	which vertex o Value Value ed :: Distance Mod :: t controls the di Name AALINEDISTAN	f a triangle	mputat True c	triangle fan prim 0 1 2 Reserved tion for antialias	MBZ sed lines. Descriptation. This	Name U1					31	DSTATE_S	F_BODY				------	---	------------------	------------------------------------	----------------------------	---	--			Programming Notes								If Enabled, S	F will treat poi	nts in the same fa	ashion that AA	lines are processed			12	Vertex Sub F	Pixel Precision	Select						Format:				U1				Selects the n	umber of fract	ional bits mainta	ined in the ver	tex data				Value	Name		De	escription				0h	8	8 sub pixel prec	ision bits main	tained				1h	4	4 sub pixel prec	ision bits main	tained																																																																																																																																																																																																																																																																																																																																																																																																																																													
			Programming Notes								When Conservative Rasterization is enabled, this bit must be programmed to 0.							11	Point Width Controls who primitives.		width passed or	the vertex or	from state is used for rendering point				Value	N	ame		Description				0h	Vertex		Use Point Width on Vertex					1h	State [Defau	lt]	Use Point Width from State				10:0	Point Width								Format:				U8.3													5, 255.875] pix									(width) of point point width infor	•	xels. This field is overridden (though sed in the FVF		# 3DSTATE_STREAMOUT_BODY			3DSTATE_STREAMOUT_BO	ODY						------------	--------	---	--	--	--	--	--		Source:		RenderCS							Size (in b	its):	128							Default V	'alue:	: 0x00000000, 0x00000000, 0x00000000, 0x00000000							DWord	Bit								0	31	SO Function Enable									Format:	U1								overflow detection) as controlled by the various SO-related function is disabled, and therefore no vertex data will be strendering Disable and Render Stream Select fields will still be stream.	If set, the SO function is enabled. Vertex data will be streamed out to memory (subject to overflow detection) as controlled by the various SO-related state variables. If clear, the SO function is disabled, and therefore no vertex data will be streamed out to memory. However, the Rendering Disable and Render Stream Select fields will still be used to determine which vertices (if any) are forwarded down the pipeline for (possible) rendering.						 	30	API Rendering Disable									Format:	U1								If set, Indicates the API wants the SO stage not to forward any topologies down the pipeline. If clear, Indicates the API wants the SO stage to forward topologies associated with Render Stream Select down the pipeline. This bit is used even if SO Function Enable is DISABLED.									Programming Notes									The SOL unit generates an SOL_INT::Render_Enable which ultimately controls whether rendering occurs or not.							=	29	Reserved									Format:	MBZ							28:27	Render Stream Select									Format:	U2								Description									This field specifies which stream has been selected to be forwarded down the pipeline for possible rendering. Topologies from other streams will not be passed down the pipeline. If Rendering Disable is set, this field is ignored, as no topologies are sent down the pipeline.									SO Function Enable must also be ENABLED in order for this field to select a stream for rendering. When SO Function Enable is DISABLED and Rendering Disable is cleared (i.e., rendering is enabled), StreamID is ignored downstream of the SO stage, allowing any stream to be rendered.								26	Reorder Mode This bit controls how vertices of triangle objects in TRISTRIP[_ADJ] and TRISTRIP_REV are reordered for the purposes of stream-out only (does not impact rendering). See table in Input Buffering.									Value Name Descrip	otion									3	BDSTA	TE_STREAMOUT_BODY				---	------------	-------------	------------	---	--	--	--			0h LEADING		leading	Reorder the vertices of alternating triangles of a TRISTRIP[_ADJ] such that the leading (first) vertices are in consecutive order starting at v0. A similar reordering is performed on alternating triangles in a TRISTRIP_REV.							1h	TRAILIN	trailing	Reorder the vertices of alternating triangles of a TRISTRIP[_ADJ] such that the railing (last) vertices are in consecutive order starting at v2. A similar reordering is performed on alternating triangles in a TRISTRIP_REV.					25	SO Stat	tistics En	able							Format	t:		Enable						This bi	t controls	whether S	StreamOutput statistics register(s) can be incremented.						Value	Name		Description						0h	Disable	SO_NUM_ cannot ind	PRIMS_WRITTEN[03] and SO_PRIM_STORAGE_NEEDED[03] registers crement.						1h	Enable	SO_NUM_ can incren	PRIMS_WRITTEN[03] and SO_PRIM_STORAGE_NEEDED[03] registers nent.					24:23		Renderin	_	around override for the computation of SOL_INT::Render_Enable						Valu	e l	Name	Description						0h	Norr	nal	SOL_INT::Render_Enable is computed normally						1h Resrev		eved							2h	Force	e_Off	Forces the rendering to be disabled.						3h	Force	e_on	Forces the rendering to be enabled.					22:21	Reserve	ed																	Format	t:		MBZ					20:12	Reserve	ed																	Format	t:		MBZ					11:8	Reserve	ed								Forma	t:		MBZ					7:0	Reserve	ed																	Format: MBZ							1	31:30	Reserve	ed																	Format	t:		MBZ					29	Stream	3 Verte	x Read Of	fset															-							3DSTATE STREAMOUT BODY								------------------------	---	--------------------------------------	--	--	--	--			Format: U1 count of 256-bit units								Specifies amount of Vertex Read Offset)	data to skip over before reading bac	k Stream 3 vertex data. (See Stream 0					28:24	Stream 3 Vertex Read Length																Format:	U5-1 count of 256-bit units							(See Stream 0 Vertex Read Length)							23:22	Reserved																Format:		MBZ					21	Stream 2 Vertex Read Offset								Format:	U1 count of 256-bit units							Specifies amount of data to skip over before reading back Stream 2 vertex data. (See Stream 0 Vertex Read Offset)							20:16	Stream 2 Vertex Read Length								Format:	U5-1 count of 256-bit units						15:14	Reserved							13.14	Reserved								Format:		MBZ					13	Stream 1 Vertex Read Offset																Format:	U1 count of 256-bit units							Specifies amount of data to skip over before reading back Stream 1 vertex data. (See Stream 0 Vertex Read Offset)							12:8	Stream 1 Vertex Read Length								Format:	U5-1 count of 256-bit units							(See Stream 0 Vertex Read Length)							7:6	Reserved																Format: MBZ							5	Stream 0 Vertex Read Offset								3DSTATE_STREAMOUT_BODY										-------------------------------------	--	---	-----------	-----------------------------	--------	-----	--	--	--															Format:	U1 co	ts									Specifies amount of data to skip over before reading back Stream 0 vertex data. Must be zero if the GS is enabled and the Output Vertex Size field in 3DSTATE_GS is programmed to 0 (i.e., one 16B unit).										4:0	Stream 0 Vertex Read Length											_									Format: U5-1 count of 256-bit units												Specifies amount of vertex data to read back for Stream 0 vertices, starting at the Streat Vertex Read Offset location. Maximum readback is 17 256-bit units (34 128-bit vertex at Read data past the end of the valid vertex data has undefined contents, and therefore stream out data. Must be zero (i.e., read length = 256b) if the GS is erand the Output Vertex Size field in 3DSTATE_GS is programmed to 0 (i.e., one 16B unit).										2	31:28	Reserved																						Format:				MBZ						27:16	Buffer 1 Surface Pitc	:h																				15:12	2 Reserved											_		1.45-									Format:				MBZ						11:0	Buffer 0 Surface Pitch																																																																																																																																																																																																																																																																																																																																																																																																																																												
						Format: U12 pitch in Bytes													e pitch o	of the SO buffer in #Bytes.									Value	_			ame							[0,2048]	Must be (or a multiple of 4	Bytes.																			Programming Notes											A Surface Pitch of 0 indicates an un-bound buffer. No writes are performed. Surface Base Address is ignored.									3	31:28	Reserved																						Format:				MBZ						27:16 Buffer 3 Surface Pitch																							Format:				U12					3DSTATE_STREAMOUT_BODY								------------------------	------------------------	-----	--	--	--	--		15:12	Reserved																Format:	MBZ						11:0	Buffer 2 Surface Pitch																Format:	U12					#### 3DSTATE_TE_BODY				30	DSTATE_TE_BODY								------------	--	----------	------------------------	--	--	-----------------------------	--	--	--	--		Source:		R	RenderCS									Size (in b	oits):	9	96									Default \	ault Value: 0x00000000, 0x427C0000, 0x42800000											DWord	Bit			Description								0	31:24	Reserv	ed											Forma	t:		MBZ							•	23:22	Reserv	ed											Forma	t:		MBZ								21	Reserv	ed											Forma	t:		MBZ								20	Reserv	ed											Forma	t:		MBZ								19	Reserv	ed											Forma	t:		MBZ								18:17	Reserv	ed											Forma	t:		MBZ								16	Reserved												Forma	t:		MBZ								15:14	Reserv	ed											Forma	t:		MBZ								13:12	Partitio	oning											Forma	t:			U2								This fie	eld specifies how edg	es are partitioned based on te	d on tessellation factor.									Value			escripti									0h	INTEGER	Outside/inside edges are divi sized segments.	ded into	an integer number of equal-								1h	ODD_FRACTIONAL	Outside/inside edges are divi unequal-sized segments.	ded into	an odd number of possibly-								2h	EVEN_FRACTIONAL	Outside/inside edges are divi unequal-sized segments.	livided into an even number of possibly-								11:10	Reserv	ed											Forma			MBZ								9:8	Output	t Topology										, -	Forma				U2								This fie	eld specifies which pr	imitive types are to be output.									_		31	DSTATE_TE_BC	DY					-----	--	--	---------------------	---	---	---------	---	--			Value	Name			Descrip	otion					0h	POINT	Points are	e output (as POINTLIST t	topolog	jies)					1h	LINE	Lines are selected.	Lines are output (as LINESTRIP topologies). Only valid if ISOLINE domain is selected.							2h	TRI_CW		Clockwise-ordered triangles are output (either as TRISTRIP, TRISTRIP_REV or TRILIST topologies). Not valid if ISOLINE domain is selected.							3h TRI_CCW Count-clockwise-ordered triangles are output (either as T TRISTRIP_REV or TRILIST topologies). Not valid if ISOLINE									7:6	Reserve	ed																			Format	t:				MBZ				5:4	TE Don	nain																			Format	t:					U2						s which ty	pe of domain is to be te	essellate	ed.					Valu	ie N	lame	lame Description			on				0h	QUA									1h	TRI		Triangular (U, V, W) doi			ssellated				2h	ISOLINE 2D (U, V) domain is tessellated.								3	Reserve	ed			1																Forma	t:			MBZ					2:1	TE Mod	de									_										L	Format:					U2					i E Enable i I if TE Enab		•	overall	operati	ion of the TE stage.This field is				Value	Name			Descrip	ption					0h	HW_TESS	entry, an		e. The TessFactors are read from the patch URB n fixed-function hardware tessellation of the					0	TE Enal	ole																			Format	t:			Enable						TE Mod	le field det	ermines h	ow this tessellation oper	ration p	_	ncoming patch primitives. The s.If DISABLED, the TE goes into				pass-th	rough mod	de. All oth	er state fields are ignore Programmin		S							BDSTAT	TE_TE_BODY						---	-------------------	--	-----------------	---	--	--	--	--				The tessellation stages (HS, TE and DS) must be enabled/disabled as a group. I.e., draw commands can only be issued if all three stages are enabled or all three stages are disabled, otherwise the behavior is UNDEFINED.								1	31:0	Maximum Tessellation I	Factor Odd									•	i	IEEE_FLOAT32 isFactor for ODD_FRACTIONAL partitioning when in								HW_TESS mode.	Name	Description								ValueNameDescription[427c0000h,427c0000h]63Per API Spec, For normal operation software this value to 63.0												Programming Notes								Note that ISOLINE's Line the Partitioning state.	Density TF i	s always subjected to INTEGER partitioning regardless of						2	31:0	Maximum Tessellation I	Factor Not	Odd								Format:		IEEE_FLOAT32								This field specifies the management partitioning when in HW_		sFactor for EVEN_FRACTIONAL, INTEGER or POW2								Value	Name	Description								[42800000h,42800000h]	64 [Default]	Per API Spec, For normal operation software should set this value to 64.0							Programming Notes											Note that ISOLINE's Line the Partitioning state.	Density TF i	s always subjected to INTEGER partitioning regardless of								If Partioning is set to PO	W2, this fiel	d must be programmed to a power of 2 number.					#### 3DSTATE_URB_DS_BODY			31	OSTA 1	ΓE_URB_D	S_BOD	ΟY					------------	--------	--	---------------	-------------------	-------------	--	--	--	--		Source:		RenderCS									Size (in b	oits):	32									Default \	Value:	0x0000000									DWord	Bit	Description									0	31:25	DS URB Starting Add	ress		-																			Format:				U7							Offset from the start o 8 KB.	f the URB	memory where	DS starts i	ts allocation, specified in multiples of							1	/alue			Name							[0,127]													Programn	ning Note	S							If CTXT_SR_CTL::POSH_Enable is set and Push Constants are required orDevice[SliceCount] GT 1, the lower limit is 8. If CTXT_SR_CTL::POSH_Enable is clear and Push Constants are required orDevice[SliceCount] GT 1, the lower limit is 4. If Push Constants are not required andDevice[SliceCount] == 1, the lower limit is 0.										24:16	DS URB Entry Allocation Size											,											Format: U9-1 Count of 512-bit units											Specifies the length of each URB entry owned by DS. This field is always used (even if DS											Function Enable is DISABLED).												alue		Name								[0,9]										15:0	DS Number of URB E	ntries		ı																			Description											Specifies the number of URB entries that are used by DS, based on only 1 slice enabled. When multiple slices are enabled, HW will multiply the value programmed by the number of slices in order to determine the total number of entries. SW shall ensure that the total number of entries does not exceed the relevant ValidValue range listed below. This field is always used (even if DS Function Enable is DISABLED).											If Domain Shader Three be allocated is 34 URB	•	tch is Enabled th	en the mir	nimum number of handles that must							Value		Name													J						3DSTATE_URB_DS_BODY											---	---------------------	-------------------	--	--	--	--	--	--	--	--			[0,2384]	RenderCS							
		Programming Notes										DS Number of URB Entries must be divisible by 8 if the DS URB Entry Allocation Si programmed to a value less than 9, which is 10 512-bit URB entries. "2:0" = reserve											#### 3DSTATE_URB_GS_BODY			3DSTA1	TE_URB_GS	BOD	γ					------------------------------------	---	--	--------------------	------------	--	--	--	--		Source: Size (in b Default V		RenderCS 32 0x0000000								DWord	Bit		Descrip	tion						0	31:25	GS URB Starting Address										Format:			U7							Offset from the start of the URB 8 KB.	memory where G	S starts i	ts allocation, specified in multiples of							Value			Name							[0,127]											D	NI - 4 -	_							If CTVT CD CTI "DOCUL Facilities in	Programmi									the lower limit is 8.	set and Push Cor	istants ar	re required orDevice[SliceCount] GT 1,								clear and Push Co	onstants	are required orDevice[SliceCount] GT							1, the lower limit is 4.								_		If Push Constants are not require	ed andDevice[Slic	eCount]	== 1, the lower limit is 0.						24:16	GS URB Entry Allocation Size	10 4 542 1 %									Format: U Specifies the length of each URE	19-1 512-bit units	CS Thick	field is always used (even if GS							Function Enable is DISABLED).	dentity owned by	O. 11115 1	neid is always used (even ii ds						15:0	GS Number of URB Entries										•		-	ased on only 1 slice enabled. When							•			grammed by the number of slices in number of entries							does not exceed the relevant Val										This field is always used (even if	GS Function Enab	le is DISA	ABLED).							Value	Name									[0,1032]			RenderCS							Programming Notes										Only if GS is disabled can this field be programmed to 0. If GS is enabled this field shall be										programmed to a value greater than 0. For GS Dispatch Mode "Single", this field shall be									ner GS Dispatch Modes, refer to the values of this field.											GS Number of URB Entries must 9 512-bit URB entries. "2:0" = re	•	if the GS	URB Entry Allocation Size is less than									umber o	f GS Number of URB Entries must be				# 3DSTATE_URB_HS_BODY			3DSTA	TE_URB_HS	BOD	Υ						--------------------	--------	--	---	---	--	--	--	--	--		Source:		RenderCS									Size (in bits): 32											Default \	/alue:	0x00000000									DWord	Bit		Descrip	tion							0	31:25	HS URB Starting Address											Format:			U7								Offset from the start of the UR 8 KB.	B memory where H	S starts i	ts allocation, specified in multiples of								Value			Name								[0,127]																							Programmi										If CTXT_SR_CTL::POSH_Enable the lower limit is 8.	s set and Push Cor	istants ar	e required orDevice[SliceCount] GT 1,									is clear and Push Co	onstants	are required orDevice[SliceCount] GT								1, the lower limit is 4.											If Push Constants are not requ	ired andDevice[Slic	eCount]	== 1, the lower limit is 0.							24:16	HS URB Entry Allocation Size												ount of 512-bit unit										Specifies the length of each UF Function Enable is DISABLED).	RB entry owned by	HS. This	field is always used (even if HS							15:0	HS Number of URB Entries											multiple slices are enabled, HW order to determine the total nu does not exceed the relevant V. This field is always used (even in	will multiply the va mber of entries. SV alidValue range list f HS Function Enab umber of URB Entri	alue prog W shall e ed below le is DISA es must k	ABLED). De divisible by 8 if the HS URB Entry								Value	Name	0 - 103	letved 555								[0,1032] RenderCS																							Programmi	ng Note	S									oer of URB Entries r n Mode is set to du	nust be s	ch Mode is set to 8 patch, the et to 16. When 3DSTATE_HS:Enable is the minimum number of HS Number					#### 3DSTATE_URB_VS_BODY			3DSTATI	E_URB_VS	BOD	Υ					------------------------------------	-------	--	------------------	------------	--	--	--	--		Source: Size (in b Default V		RenderCS 32 0x00000000								DWord	Bit		Descrip	tion						0	31:25	VS URB Starting Address										Format:			U7							Offset from the start of the URB n KB.	nemory where V	S starts i	ts allocation, specified in multiples of 8							Value			Name							[0,127]																					Programmi									If CTXT_SR_CTL::POSH_Enable is s 1, the lower limit is 8.	et and Push Cor	istants ar	re required or Device[SliceCount] GT							1 -	lear and Push Co	onstants	are required or Device[SliceCount] GT							1, the lower limit is 4.										If Push Constants are not required and Device[SliceCount] == 1, the lower limit is 0.									24:16	VS URB Entry Allocation Size										Format: U9-1 count of 512-bit units										Specifies the length of each URB entry owned by VS. This field is always used (even if VS Function Enable is DISABLED).										Programming Notes										Programming Restriction: As the VS URB entry serves as both the per-vertex input and output of the VS shader, the VS URB Allocation Size must be sized to the maximum of the vertex input and output structures.									15:0	VS Number of URB Entries										Format:			U16							Specifies the number of URB entries that are used by VS, based on only 1 slice enabled. When										multiple slices are enabled, HW will multiply the value programmed by the number of slices in										order to determine the total number of entries. SW shall ensure that the total number of entries										does not exceed the relevant ValidValue range listed below. This field is always used (even if VS Function Enable is DISABLED).										Value	Name									[64,2384] RenderCS										[64,1024]			PositionCS																		Programmi	ng Note	s							Programming Restriction: VS Nun	nber of URB Ent	ries must	be divisible by 8 if the VS URB Entry				# 3DSTATE_URB_VS_BODY Allocation Size is less than 9 512-bit URB entries."2:0" = reserved "000b" # 3DSTATE_VF_BODY	3DSTATE_VF_BODY										-----------------	--------	--	--	--	--	--	--	--		Source:		RenderCS								Size (in l	oits):	32								Default Value:		0x00000000								DWord	Bit	Description								0	31:0	Cut Index This field specifies the index value that is considered the "cut index" which vertex indices are compared to if a Cut Index Enable is set. The Cut Index is compared to the fetched (and possibly-										sign-extended) vertex index, and if these values are equal, the current primitive topology is terminated. Note that, for index buffers less than 32bpp, it is possible to set the Cut Index to a (large) value that will never match a sign-extended vertex index.							#### 3DSTATE_VF_COMPONENT_PACKING_BODY		3DSTATE_VF_COMPONENT_PACKING_BODY									-----------------	-----------------------------------	---	-----------------------	--	--	--	--	--		Source:	RenderCS	;								Size (in bits):	128									Default Value:	0x000000	0000000, 0x00000000, 0x00000000, 0x00000000								DWord	Bit		Description							03	127:0	Vertex Elements Enables										Format:	COMPONENT_ENABLES[32]						# 3DSTATE_VF_INSTANCING_BODY				30	STATE_VF_INSTAI	NCING_BO	DY							--	--------																																																																																																																																																																																																																																																																																																																																						
--	--------------	--	-------------	--	--	--	--	--	--		Source:			RenderCS										Size (in b	oits):		64										Default \	/alue:	e: 0x00000000, 0x00000000											DWord	Bit		Description										0	31:9	Reserv	ed												Forma	t:		MBZ									8	Instanc	ing Enabl	e											Forma	t:		Enable																							Value			Description								Oh Disabled This vertex element is not instanced and therefore vertice each receive different data for this vertex element. Within source vertex data for this vertex element is determined a Access Type of the 3DPRIMITIVE command. There is no listate defined for this vertex element.						nt. Within each instance, the ermined according the Vertex									1h	Enabled	This vertex element is instanced and therefore vertices within instances we receive the same data for this vertex element. The source pointer for this particular vertex element will be (a) initialized at the start of 3DPRIMITIVE processing, (b) held constant for all vertices within an instance, and (c) advanced between instances as a function of Instance Data Step Rate.										7:6	Reserv	ed												Forma	t:		MBZ									5:0	Vertex Element Index													Forma	t:		U6										This fie	eld identifi	ies which vertex element state is to be modified by this command.													Value		Name									[0,33]											1	31:0	Instance Data Step Rate If Instancing Enable is ENABLED, this field determines the rate at which data for this particular vertex element is changed between instances. Only after the number of instances specified by this field is generated is new (sequential) vertex element data provided. This process continues for each group of instances defined in the 3DPRIMTIVE command. For example, a value of 1 in this field causes new data to be supplied for this vertex element with each sequential (instance) group of vertices. A value of 2 causes every other instance group of vertices to be provided with new vertex element data. The special value of 0 causes all vertices of all instances generated by the 3DPRIMITIVE command to be provided with the same data for this vertex element. (The same effect can be achieved by setting this field to its maximum value.) If Instancing Enable is DISABLED, this field is ignored.										#### 3DSTATE_VF_SGVS_2_BODY				3DS1	TATE_VF_SGV	S_2 _	BC	DDY			---------------------------------------	-------	---------------------	-------------------------------	---	--------------	-------------	---	--		Source:		Rei	nderCS							Size (in b	its):	64								Default Value: 0x00000000, 0x00000000										DWord	Bit			Desc	ription	1				0	31	XP1 Enable																				Format:			Boolea	an						V-l	Nama			D						Value	Name	VD1 is used in senteral		Des	scription					0h		XP1 is not inserted	1 C	C	alaak) ia iraaarka d			_		1h		XP1 (as defined by XP	1 Source	ce Se	elect) is inserted.				30:29		nponent Numberable is ENABLED		32-hit	t con	nponent location (within the 4-						ent VUE) where it		. JZ DIC	COI	inponent location (within the 4					If XP1 En	able is DISABLED	, this field is ignored.								Value	Name			Description						0	COMP_0	If enabled, XP1 is inserted in component 0 (.x)								1	COMP_1				mponent 1 (.y)					2	COMP_2	If enabled, XP1 is inserted in component 2 (.z)								3	COMP_3	If enabled, XP1 is inserted in component 3 (.w)							28	If XP1 Endinserted.		, this field selects betw	een the	e ava	ailable sources for the XP1 SGV to be					Value	Name	Description			Programming Notes						itart Instance ocation	The XP1 value is sourced from the Sta Instance Location Parameter.	art val		nstance Location is the only valid f 3DSTATE_VF::InstanceIDOffsetEnable					Oh X	(P1_PARAMETER	The XP1 value is sourced from the XP parameter as defined by 3DPRIMITIVE.							27:22	Reserved	I									Format:					MBZ				21:16	XP1 Elen	nent Offset									3DS1	TATE_VF_SGV	S_2_BC	DDY					-------	---	--	--	--	-----------------------------------	--	--	--			Format	:: U6	5 Offset of 128-bit eler	nent							where it		•	nis field specifies the VUE element offset of the 128-bit element e XP1 Component Number specifies where in the specified element								Valu	ie		Name						[0,33]									15	XP0 Enable																				Format			Boolean							Value	e Name		De	scription						0h	Disabled	XP0 is not inserted								1h	Enabled	XP0 (as defined by XP	0 Source S	elect) is inserted					14:13	XP0 Component Number If XP0 Enable is ENABLED, this field specifies the 32-bit component location (within the 4-component VUE) where it is inserted. If XP0 Enable is DISABLED, this field is ignored.										Value	e Name		De	escription						0	COMP_0	If enabled, XP0 is inse	erted in co	mponent 0 (.x)						1	COMP_1	If enabled, XP0 is inse	erted in co	mponent 1 (.y)						2	COMP_2	If enabled, XP0 is inse	f enabled, XP0 is inserted in component 2 (.z)							3	COMP_3	If enabled, XP0 is inse	f enabled, XP0 is inserted in component 3 (.w)						12	XPO Source Select If XPO Enable is ENABLED, this field selects between the available sources for the XPO SGV to be inserted. If XPO Enable is DISABLED, this field is ignored.										Value	Name	Description								1h	VERTEX_LOCATIO	parameters passed SEQUENTIAL, the S								0h	XP0_PARAMETER	The XP0 value is so 3DPRIMITIVE.	ourced fron	n the XPO parameter as defined by					11:6	Reserve	ed									Format	:			MBZ					5:0	XP0 Ele	ment Offset									Format	:: U6	6 Offset of 128-bit eler	nent							where it	Format: U6 Offset of 128-bit element If XP0 Enable is ENABLED, this field specifies the VUE element offset of the 128-bit element where it is to be inserted. The XP0 Component Number specifies where in the specified element it is to be inserted. If XP0 Enable is DISABLED, this field is ignored.											1	3DS	TATE_VF_SGV	S_2_BC	DDY					---	-------	---	---	-------	---	---	------------------------------------	--	--	--						Val	lue		Name							[0,33]										1	31:16	Reserved												Format	t:				MBZ						15	XP2 Enable												Format	t:			Boolean								Value	Name			Descri	ntion							0h		XP2 i	s not inserted	Descri	ption							1h				the XP2 pa	arameter as defined by 3DPRIMITIVE						14:13		1h Enabled XP2 is inserted, sourced from the XP2 parameter as defined by																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
3DPRIMITIVE. (P2 Component Number										14.13	If XP2 Enable is ENABLED, this field specifies the 32-k component VUE) where it is to be inserted. If XP2 Ena					•							Value Name				De	escription							0	COMP	P_0	If enabled, XP2 is inse	If enabled, XP2 is inserted in component 0 (.x)								1	COMF	P_1	If enabled, XP2 is inserted in component 1 (.y)									2	COMF	2_2	If enabled, XP2 is inse	f enabled, XP2 is inserted in component 2 (.z)								3	COMF	2_3	If enabled, XP2 is inse	If enabled, XP2 is inserted in component 3 (.w)							12:6	Reserve	ed																							Format					MBZ						5:0		ement Off											Format			U6 Offset of 128-bit eler		and offers of the 120 bit slament							If XP2 Enable is ENABLED, this field specifies the VUE element offset of the 128-bit element where it is to be inserted. The XP2 Component Number specifies where in the specified eleit is to be inserted. If XP2 Enable is DISABLED, this field is ignored.														Va		Name								[0,33]									#### 3DSTATE_VF_SGVS_BODY					3D	STATE_V	F_SG\	/S_I	BOI	DY			------------	--------	--	--------	----------------------------------	--	--	--------	------------------------------	--------------------	--		Source:		Ren	derCS									Size (in b	its):	32										Default V	'alue:	0x00	00000	00								DWord	Bit					Desci	riptio	n				0	31	InstanceID Enable												Format:					E	inable	2					Value			Name				Description							Disabl		Instancel	D is n	not in	·							Enable		Instancel							30:29	Instancell	D Com	ponen	t Number																					If InstanceID Enable is ENABLED, this field specifies the 32-bit component location (within the 4-component VUE) where it is inserted. If InstanceID Enable is DISABLED, this field is ignored.												Value		me				Description						0	СОМІ	P_0	If enabled, Ins	tanceID is	inser	rted i	n component 0 (.x)					1	СОМІ	P_1	1 If enabled, InstanceID is inserted in component 1 (.y)									2	COMI	P_2 If enabled, InstanceID is in			inser	inserted in component 2 (.z)						3	COM	P_3	If enabled, Ins	anceID is inserted in component 3 (.w)							28:22	Reserved																								Format:							MBZ				21:16	Instancell	D Elen	nent O	ffset									F t-			IIC Off+ - (12	0 1-14 -1	4							Format:	alD En			8-bit element								If InstanceID Enable is ENABLED, this field specifies the VUE element offset of the 128-bit element where it is to be inserted. The InstanceID Component Number specifies where in the												specified element it is inserted.												Value					Name							[0,33]											15	VertexID	Enable	е										Forms - to					-	'n e le l						Format:					E	nable	=			1			3D	STATE_VF	_SG\	/S_BO	DY			-------	--	--------	-------------	--	---------------	--------------	-----------	--			Valu	е	Name		Description						0h		Disabled Ve		VertexI	D is not in	serted				1h		Enabled V		VertexI	D is inserte	ed			14:13	VertexID Component Number										If VertexID Enable is ENABLED, this field specifies the 32-bit component location (within the 4-component VUE) where it is inserted. If VertexID Enable is DISABLED, this field is ignored.										Value	Na	me			Des	scription				0	СОМР	00	If enabled, VertexID is inserted in component 0 (.x)							1	COMP_1		If enabled, VertexID is inserted in component 1 (.y)							2	COMP		If enabled, VertexID is inserted in component 2 (.z)							3	СОМР	2_3	If enabled, VertexID is inserted in component 3 (.w)						12:6	Reserved																MD7				Format: MBZ						MBZ			5:0	VertexID	Elemer	nt Offse	et							Format:		ι	J6 Offset of 128-	8-bit element						If VertexID Enable is ENABLED, this field specifies the VUE element offset of the 128-bit element where it is to be inserted. The VertexID Component Number specifies where in the specified element it is inserted. This is also the vertex element index. If VertexID Enable is DISABLED, this field is ignored.										[0,33]		Val	ue			Name		# 3DSTATE_VF_TOPOLOGY_BODY			3DSTATE_VI	TOPOLOGY_BO	DDY					-----------------	------	-------------------------------	---------------------------	-----	--	--	--		Source:	Rei	nderCS							Size (in bits):	32								Default Value:	0x0	0000000							DWord	Bit	Description							0	31:6	Reserved																		Format:		MBZ						5:0	Primitive Topology Typ)e																	Format:	3D_Prim_Topo_Type								This field specifies the V	F stage's Topology state.					# 3DSTATE_VIEWPORT_STATE_POINTERS_CC_BODY			3DSTATE	VIEWPORT_STATE_POIN	TERS_CC_BODY								---------------------------	---	----------------	---------------------------------------	--------------	--	--	--	--	--	--		Source:		RenderC	RenderCS									Size (in b	oits):	32										Default Value: 0x00000000												DWord	Bit		Description									0	31:5	CC Viewport Po	CC Viewport Pointer																							Format:	DynamicStateOffset[31:5]CC_VIEWPORT*1	6									Specifies the 32-byte aligned address offset of the CC_VIEWPORT state. This offset is relative to the Dynamic State Base Address.												4:0	Reserved																								Format:		MBZ							# 3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP_BODY		3D	STATE_V	IEWPORT_STATE_POINTE	RS_SF_CLIP_BODY					---------------------------	--	---------------	---	-----------------	--	--	--		Source:		Render	CS						Size (in bits): 32									Default Value: 0x00000000									DWord	Bit	Description							0	31:6	SF Clip Viewp	SF Clip Viewport Pointer																	Format:	DynamicStateOffset[31:6]SF_CLIP_VIEWPOF	RT*16						Specifies the 64-byte aligned address offset of the SF_CLIP_VIEWPORT state. This offset is relative to the Dynamic State Base Address.									5:0	Reserved									Format:		MBZ				#### 3DSTATE_VS_BODY					3DSTATE_VS_BC	DY					------------	---	---	--	--	---------	--	--	--		Source:		F	RenderCS							Size (in b	oits):	2	256							Default \	/alue:			00, 0x00000000, 0x00000000, 0x000 00, 0x00000000	00000	, 0x00000000, 0x00000000,				DWord	Bit			Descript	ion					01	63:6	Kernel	Start Po	inter																		Forma		InstructionBaseOffset[63:6]												ram run by threads spawned by the VS					pipeline stage. It is specified as a 64-byte-granular offset from the Instruction Base Addres field is ignored if VS Function Enable is DISABLED.										5:0	Reserv	ed									Forma	t:			MBZ				2	31	Reserv	ed																			Forma	t:			MBZ					30	Vector Mask Enable																				Forma	t:		Enable	Enable						Upon subsequent VS thread dispatches, this bit is loaded into the EU's Vector Mask Enable (VME, cr0.0[3]) thread state. Refer to EU documentation for the definition and use of VME state.										Value	Name		escrip	otion						0h	Dmask	The EU will use the Dispatch Mask (execution.	(suppli	ed by the VS stage) for instruction						1h	1h Vmask The EU will use the Vector Mask (derived from the Dispatch Mask) for instruction execution.									Programming Notes										Under normal conditions SW																																																																													
shall specify DMask, as the VS stage will provide a Dispatch Mask appropriate to SIMD4x2 or SIMD8 thread execution (as a function of SIMD8 Dispatch Enable).												x2 thread execution, the VS stage wi ould use as the Vector Mask. For SIM		erate a Dispatch Mask that is equal to								of Vector Mask (as there is for PS sha							29:27	L	er Count										. 																#### **3DSTATE VS BODY** U3 Format: This field specifies (in multiples of 4) the number of sets of sampler state that will be prefetched for use by the VS kernel. While the prefetching of sampler state is optional and does not impact functionality, it may improve performance. This field is ignored if the Function Enable state is set to DISABLED. Value Name **Description** 0h No Samplers no samplers used 1h 1-4 Samplers between 1 and 4 samplers used 2h 5-8 Samplers between 5 and 8 samplers used 3h 9-12 Samplers between 9 and 12 samplers used 4h 13-16 Samplers between 13 and 16 samplers used 26 Reserved Format: MBZ 25:18 Binding Table Entry Count Format: U8 **Description** Specifies how many binding table entries the kernel uses. Used only for prefetching of the binding table entries and associated surface state. Note: For kernels using a large number of binding table entries, it may be wise to set this field to zero to avoid prefetching too many entries and thrashing the state cache. This field is ignored if VS Function Enable is DISABLED. When HW Generated Binding Table bit is enabled: This field indicates which cache lines (512bit units - 32 Binding Table Entry section) should be fetched. Each bit in this field corresponds to a cache line. Only the 1st 4 non-zero Binding Table entries of each 32 Binding Table entry section prefetched will have its surface state prefetched. **Value Name** [0,255]**Programming Notes** When HW binding table bit is set, it is assumed that the Binding Table Entry Count field will be generated at JIT time. 17 **Thread Dispatch Priority U1** Enumerated Type Format: Specifies the priority of the thread for dispatch: This field is ignored if VS Function Enable is DISABLED.	1		3[DSTATE_VS	S_BC	DDY							-------	--	--	--	-----------------------------	---	--	--	--	--	--			Value		Name			Description							0h	Norn	Normal		Normal Priority								1h	High		Hiç	gh Prio	prity						16	Floating Point Mode																								Format: U1 Enumerated Type												· •	Specifies the initial floating point mode used by the dispatched thread. This field is ignored if VS Function Enable is DISABLED.											Value	DISTULLI	Name	ame Description										IEEE-754	1	Use IE	EEE-754								1h	Alternat	e	Use A	Alternat	e Rules						15:14	Reserved																								Format:					MBZ						13	Illegal Opcode Exception Enable													_											Format:				Enable	e							•	This bit gets loaded into EU CR0.1[12] (note the bit # difference). See Exceptions and ISA Execution Environment. This field is ignored if VS Function Enable is DISARIED.											Execution Environment. This field is ignored if VS Function Enable is DISABLED.																	Eliable 13 DISABLED.						12	Accesses UAV					TENDOC IS DISKUELD.						12	Accesses UAV Format:				Enable							12		set wher	n VS has a UAV ac		1							12	Format:	set wher	n VS has a UAV ac Progra	cess.	Enable	е						12	Format:		Progra	cess.	Enable	e es						12	Format: This field must be	t be set v	Progra when VS Function	cess. mmin Enable	Enable g Note e is disa	e es abled.						12	Format: This field must be This field must not	t be set v	Progra when VS Function	cess. mmin Enable	Enable g Note e is disa	e es abled.							Format: This field must be This field must not This bit shall not b	t be set v	Progra when VS Function	cess. mmin Enable	Enable g Note e is disa	es abled. n the PCS pipeline.							Format: This field must be This field must not This bit shall not b	t be set v	Progra when VS Function	cess. mmin Enable	Enable g Note e is disa	e es abled.							Format: This field must be This field must not This bit shall not b Reserved	t be set v	Progra when VS Function en the command	cess. mmin Enable	Enable g Note e is disa	es abled. n the PCS pipeline.						11:8	Format: This field must be This field must not This bit shall not b Reserved Format: Software Exception	t be set v	Progra when VS Function en the command	cess. mmin Enable	Enable g Note e is disacuted in	essabled. In the PCS pipeline. MBZ						11:8	Format: This field must be This field must not This bit shall not b Reserved Format: Software Exception Format:	t be set v	Progra when VS Function en the command	cess. mmin Enable is exec	g Note e is disa cuted in	essabled. In the PCS pipeline. MBZ						11:8	Format: This field must be This field must not This bit shall not b Reserved Format: Software Exception Format: This bit gets loade	t be set whee set when Enable	Progra when VS Function en the command e U CR0.1[13] (note	cess. mmin Enable is exec	Enable e is disacuted in Enable t # diffe	essabled. In the PCS pipeline. MBZ eeerence). See Exceptions and ISA						11:8	Format: This field must be This field must not This bit shall not b Reserved Format: Software Exception Format: This bit gets loade	t be set whee set when Enable	Progra when VS Function en the command e U CR0.1[13] (note	cess. mmin Enable is exec	Enable e is disacuted in Enable t # diffe	essabled. In the PCS pipeline. MBZ						11:8	Format: This field must be This field must not This bit shall not b Reserved Format: Software Exception Format: This bit gets loade	t be set whee set when Enable	Progra when VS Function en the command e U CR0.1[13] (note	cess. mmin Enable is exec	Enable e is disacuted in Enable t # diffe	essabled. In the PCS pipeline. MBZ eeerence). See Exceptions and ISA						7	Format: This field must be This field must not This bit shall not b Reserved Format: Software Exception Format: This bit gets loade Execution Environm	t be set whee set when Enable	Progra when VS Function en the command e U CR0.1[13] (note	cess. mmin Enable is exec	Enable e is disacuted in Enable t # diffe	essabled. In the PCS pipeline. MBZ eeerence). See Exceptions and ISA						4	63:32	Reserved										---	-------	---	------	---------------------------------	-----	--	--	--	--	--																Format:		MBZ	MBZ								31:10	Scratch Space Base Pointer																								Format:	Gene	ralStateOffset[31:10]										Specifies the starting location of the scratch space area allocated to this FF unit as a 1K-byte aligned offset from the General State Base Address. If required, each thread spawned by this FF unit will be allocated some portion of this space, as specified by Per-Thread Scratch Space. The computed offset of the thread-specific portion will be passed in the thread payload as Scratch Space Offset. The thread is expected to utilize "stateless" DataPort read/write requests to access scratch space, where the DataPort will cause the General State Base Address to be added to the offset passed in the request header. This field is ignored if VS Function Enable is DISABLED. In												64b OS all pointers need to be seen by SW as 48b. HW does not support a Scratch Space Base Pointer larger than 32b, therefore SW must ensure Bits < 63:32 > are set to 0's.												Programming Notes												The scratch spaces allocated to the POCS VSR stage and RCS VS stage shall not overlap with each other or the scratch space allocations of any other enabled stage in the RCS pipeline.											9:4	Reserved																								Format:		MBZ									3:0	Per-Thread Scratch Space																								Format: U4 power of 2 Bytes over 1K Bytes												Specifies the amount of scratch space to be allocated to each thread spawned by this FF unit. The driver must allocate enough contiguous scratch space, starting at the Scratch Space Base Pointer, to ensure that																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
the Maximum Number of Threads can each get Per-Thread Scratch Space size without exceeding the driver-allocated scratch space. This field is ignored if VS Function Enable is DISABLED.												Value	Name	Description										[0,11]		Indicating [1K Bytes, 2M Bytes]										Programming Notes												This amount is available to the kernel for information only. It will be passed verbatim (if not altered by the kernel) to the Data Port in any scratch space access messages, but the Data Port will ignore it.										5	31:25	Reserved										_		Format: MBZ										,		TOTTIAL.		1.1.2.—											3DST/	ATE_VS_	BODY							---	-------	--	---	---------------	------------	----------	--------------------------------------	--	--	--				Format:					U5							payload.	J			B consta	ants and vertices) of the thread							Value	is field is ignored if VS Function Enable is DISABLED. Value											[0,31]		31]	•								19:17													Format:				MBZ							16:11	Vertex URB Entr	y Read Length											Format:					U6 ssed into the payload for each							element requires double the value GRFs of payload programmed in t vertex pushed int the practical limit execution or drop	vertex. This field is ignored if VS Function Enable is DISABLED. For SIMD4x2 dispatch, each vertex element requires one GRF of payload data, therefore the number of GRFs with vertex data will be double the value programmed in this field. For SIMD8 dispatch, each vertex element requires 4 GRFs of payload data, therefore the number of GRFs with vertex data will be 8 times the value programmed in this field. The EU limit of 128 GRFs imposes a maximum limit of 30 elements per vertex pushed into the payload, though the practical limit may be lower. If input vertices exceed the practical limit, software must decide between resorting to pulling elements during thread execution or dropping back to SIMD4x2 dispatch. Note that the VUE is used for both input and output, so when using the pull-model software must ensure inputs are not overwritten before											Value	Name			Descri	iption							[1,63]		if SIMD8 disp	atch disab	led								[0,15]		if SIMD8 disp	atch enab	led							10	Reserved				ı																				Format:				MBZ							9:4	Vertex URB Entry Read Offset												Format:					116							Format: U6 Specifies the offset (in 256-bit units) at which Vertex URB data is to be read from the URB before being included in the thread payload. This offset applies to all Vertex URB entries passed to the thread. This field is ignored if VS Function Enable is DISABLED.												10.50	Value				Name							[0,63]											3:0	Reserved												Cown at:				MDZ						-	24.00	Format:				MBZ						6	31:22	Maximum Num	per of Threads												3DSTATE_VS_E	BODY							-------	--	----------------	---------------------------	-------------	-----	------------	--	--	--														Format: U10-1 Thread count											Specifies the maximum number of simultaneous threads allowed to be active. Used to avoid using up the scratch space. Programming the value of the max threads over the number of threads based off number of threads supported in the execution units may improve performs since the architecture allows threads to be buffered between the check for max threads and threads actual dispatch into the EU. Programming the max values to a number less than the number of threads supported in the execution units may reduce performance. This field is ignored if VS Function Enable is DISABLED.																						Value	Name	De	Description								[0,363]		indicating thread count	of [1,364]							[0,191]		indicating thread count	of [1,192]	PositionCS					21:13	Reserved																						Format:				MBZ						12:11	Reserved																						Format:				MBZ						10	Statistics Enable																						Format:				e							If ENABLED, the VS stage will perform statistics gathering. See the Statistics Gathering subsection. If DISABLED, statistics information associated with the VS stage will be left unchanged.											Programming Notes											When a 3DPRIMITIVE command with POSH Enable set is executed from the RCS command stream, VS statistics gathering is inhibited for that command.										9	SIMD8 Sing	le Instance	Dispatch Enable																				Format:			Enabl	е							This field is used to specify whether vertices from different instances can be combined in a single SIMD8 dispatch. This bit is <u>ignored</u> if SIMD4x2 dispatches are enabled (i.e., SIMD8 Dispatch Enable is DISABLED). If ENABLED, SIMD8 VS thread dispatches <u>will not</u> combine vertices from different instances. This allows the VS kernel to handle instance-specific operations (e.g., read constants indexed by the InstanceID) in a global fashion, as these operations pertain to all vertices of the dispatch. If DISABLED, SIMD8 VS thread dispatches can combine vertices from different instances. The VS kernel must determine if instance-specific operations can be handled globally (vs. per-vertex). E.g., it can examine the Single Instance payload bit.											L.y., It can ex	Carrille the 3	ingle histarice payload t	JIL.									3DSTATE_VS_BC	DDY											---	---	--	---------	-------	--	--	--	--	--	--	--	--			SIMD8 Single Instance Dispatch Enable is not supported for HPCXTs.														8:3	Reserved														Format:		MBZ											2	SIMD8 Dispatch Enable														Format:	Enable	2											This field determines how VS threads are dispatched and how the thread payloads are ge The setting of this field must agree with how the VS kernel was compiled. If ENABLED, SIMD8 VS thread dispatches are performed. The Single Vertex Dispatch field ignored. If DISABLED, SIMD4x2 thread dispatches are performed. The Single Vertex Dispatch field															used to force single-vertex dispatches. Programmin	g Note	es es												The only supported mode is SIMD8 Dispatch Enab													1	Vertex Cache Disable																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																									
		Format:	Disable													This bit controls the operation of the Vertex Cache. This field is always used. If the Vertex Cache is DISABLED and the VS Function is ENABLED, the Vertex Cache is not used all incoming vertices will be passed to VS threads. If the Vertex Cache is ENABLED and the VS Function is ENABLED, only incoming vertices the not hit in the Vertex Cache will be passed to VS threads. If the Vertex Cache is ENABLED and the VS Function is DISABLED, input vertices that miss in Vertex Cache will be assembled and written to the URB (by the VF stage), and subsequently passed through the VS stage unmodified (i.e, no VS threads are spawned). The Vertex Cache is invalidated whenever the Vertex Cache becomes DISABLED, whenever Function Enable toggles, between 3DPRIMITIVE commands and between instances within a 3DPRIMITIVE command.													0	Function Enable														Format:	Enable													This bit determines whether or not the VS stage spawns VS threads, which comprises the bulk the VS stage functionality. If ENABLED, VS threads may be spawned to process VF-generated vertices before the resulting vertices are passed down the pipeline. If DISABLED, VF-generated vertices will pass thru the VS function and are sent down the pipeli unmodified. The Vertex Cache (if enabled) is still available.												7	31:27	Reserved																											3DSTATE_VS_	BODY										-------	--	----------------------	--------------------------------	--	--	--	--	--	--	--			Format:	MBZ										26:21	Vertex URB Entry Output Read Offset																								Format:		U6										Specifies the offset (in 256-bit units) at which Ve		•										Setup Back-End (SBE) function. The offset programmer passed in subsequent Pixel Shader thread paylo	•	='										documentation.		Title and the polaries of tap										Value		Name										[0,63]												Drograms	ning Notes												ming Notes	nto de minello en locare de la										As the vertex header data located at the start o 3D pipeline FFs (i.e., Clipper, Setup FrontEnd) as												Plxel Shader threads, it is expected that SW will	·	•										header.												This offset value is ignored if SBE's Number of S												attributes are defined beyond the position read	i irom the vertex r	<u> </u>									20:16	Vertex URB Entry Output Length												Format:		U5										Specifies the amount of Vertex Attribute URB da	ata to be read by th											each Vertex URB entry, in 256-bit units. The attr	•	•										specified by the Vertex URB Entry Output Read Offset state.												Value		Name										[1,16]												Programming Notes												This length value is ignored if SBE's Number of SF Attributes state is programmed to 0 (i.e., no												attributes are defined beyond the position read from the Vertex Header).											15:8	User Clip Distance Clip Test Enable Bitmask																								Format:		U8										This 8 bit mask field selects which of the 8 Clip Distance Values (if any) are to be included in the												Clip stage's trivial reject / trivial accept / must clip determination function. The Clip Distance Values (if present) are located in DW8-15 of the VLIE Vertex Header located at												The ClipDistance Values (if present) are located in DW8-15 of the VUE Vertex Header located at the beginning of VUE URB entries. Bit 0 of this field corresponds to Clip Distance Value 0.											7:0	User Clip Distance Cull Test Enable Bitmask												•										#### 3DSTATE_VS_BODY Format: U8 This 8 bit mask field selects which of the 8 Clip Distance Values (if any) are to be included in the Clip stage's trivial reject / trivial accept determination function. Note that must clip determination is not included in this function. The ClipDistance Values (if present) are located in DW8-15 of the VUE Vertex Header located at the beginning of VUE URB entries. Bit 0 of this field corresponds to Clip Distance Value 0. # 3DSTATE_WM_BODY		3DSTATE_WM_BODY											------------	-----------------	--	--	-------------------	--	--	--	--	--	--		Source:		RenderCS										Size (in b	its):	32										Default V	'alue:	0x0000000										DWord	Bit	Descripti	ion									0	31	Statistics Enable																								Format:	Enable											If ENABLED, the Windower and pixel pipeline will er statistics information associated with this FF stage w Gathering.												Programming	g Note	es										This bit must be disabled if any of these bits is set: 3DSTATE_WM::Legacy Hierarchical Depth Buffer Depth Buffer Resolve Enable.											30	Legacy Depth Buffer Clear Enable																								Format:	Enable											When set, the depth buffer is initialized as a side-ef	ffect of	rendering pixels.										Programming	g Note	es										If this field is enabled,												the Depth Test Enable field in DEPTH_STENCIL_STATE must be disabled.												2. 3DSTATE_DEPTH_BUFFER::Depth Write Enab													DEPTH_BUFFER::Stencil Write Enable must be set if STENCIL_BUFFER::Stencil buffer enable is set. Additionally the following must be correct values.											1. DEPTH_STENCIL_STATE::Stencil Write	Mask must be 0xFF											2. DEPTH_STENCIL_STATE::Stencil Test Mask must be 0xFF												3. DEPTH_STENCIL_STATE::Back Face Stencil Write Mask must be 0xFF												4. DEPTH_STENCIL_STATE::Back Face Ste	tencil Test Mask must be 0xFF											Refer to section 0 "Depth Buffer Clear" for additional restrictions when this field is enabled. If this field is enabled, Pixel Shader Kill Pixel must be disabled.											29	Reserved																								Format:		MBZ									28	Legacy Depth Buffer Resolve Enable																							3DSTATE_WI	M_BODY							-------	---	--	--	--	--	--	--			Format:	Enable								•	nsistent with the hierarchical depth buffer as a side- be used when the depth buffer is to be used as a n.								Progra	mming Notes								If this field is enabled,									the Legacy Depth Buffer Clear and fields must both be disabled.	egacy Hierarchical Depth Buffer Resolve Enable								2. 3DSTATE_DEPTH_BUFFER::Depth Writ	e Enable must be set.								·	lve" for additional restrictions when this field is le is disabled, enabling this field will have no effect.							27	Legacy Hierarchical Depth Buffer Resolve	Enable																	Format:	Enable								·	nde to be consistent with the depth buffer as a side- be used when the depth buffer has been modified								Programming Notes									both be disabled. 2. 3DSTATE_DEPTH_BUFFER::Depth Write Refer to section 11.5.4.3 "Hierarchical Depth this field is enabled. If Hierarchical Depth E have no effect. Performance Note: expect to performance to be reduced for some period hierarchical depth buffer is initialized to a st	a Buffer Resolve" for additional restrictions when uffer Enable is disabled, enabling this field will he hierarchical depth buffer's impact on of time after this operation is performed, as the ate that makes it ineffective. Further rendering will								tend to bring the hierarchical depth buffer b	ack to a more effective state.							26	Legacy Diamond Line Rasterization									- -	5 11								Format:	Enable								This bit, if ENABLED, indicates that the Windower will rasterize zero width lines using the DX9 rasterization rules. If DISABLED, the Windower will rasterize zero width lines using the DX10 rasterization rules (see Strips Fans chapter).								25:23	Reserved																		Format:	MBZ							22:21	Early Depth/Stencil Control																#### **3DSTATE WM BODY**		Format:	U2 Enumerated Type							--	---------																																																																																																																																																																																																																																																																																																																										
--------------------	--	--	--	--	--		This field specifies the behavior of early depth (stepsil test								This field specifies the behavior of early depth/stencil test.	Value	Name	Description		-------	----------	---		0h	NORMAL	Depth/Stencil Test/Write behaves as if it happens post-shader, however the pixel shader is not necessarily executed if the pixel fails depth or stencil test (this is the legacy behavior)		1h	PSEXEC	Depth/Stencil Test/Write behaves as if it happens post-shader, and the pixel shader is executed if the pixel fails depth or stencil test (although pre-shader actions such as primitive inclusion, stipple, etc. will still cause the shader not to execute)		2h	PREPS	Depth/Stencil Test/Write behaves as if it happens pre-shader. The pixel shader is not executed if the pixel fails depth or stencil test. Depth and stencil writes occur even if the pixel is killed by the shader or post-shader by alpha test, etc. Depth output by the pixel shader is ignored.		3h	Reserved		#### **Programming Notes** The Early Depth/Stencil Control field cannot be set to PREPS (value = 2h) if ForceKillpix = ForceON or Forced Thread Dispatch = ForceON #### 20:19 Force Thread Dispatch Enable	Value	Name	Description		-------	----------	---		0h	Normal	WM_INT::ThreadDispatchEnable is computed normally		1h	ForceOff	Forces WM_INT::ThreadDispatchEnable Off		2h	ForceON	Forces WM_INT::ThreadDispatchEnable On		3h	Reserved		#### **Programming Notes** This should must always be set to Normal. This field should not be tested for functional validation #### 18:17 **Position ZW Interpolation Mode**	Format:	U2 Enumerated Type		---------	--------------------	This field elects "interpolation mode" associated with the Position Z (source depth) and W coordinates passed in the PS payload when the PS requires Position as input. This field does not determine whether these coordinates are actually included in the payload (see Pixel Shader Requires Depth, Pixel Shader Requires W).	Value	Name	Description														-------	--------------	-------------	---	---	---	----	-----	-------	--------	----	----	--------	-----	--		0h	INTERP_PIXEL	Evaluate	Z	&	W	at	the	pixel	center	or	UL	corner	(as					3D	STATE_WI	M_BODY	7								------	--	--	--	---	--------------------------------------	---	--	--	--	--	--			specified by Pixel Location of 3DSTATE_MULTISAMPLE) 1b Reserved													1h	Reserved												2h	INTERP_CENTROID												3h	INTERP_SAMPLE														Progra	amming Note	25										T::RT Independent _SAMPLE.				n order to select									MODE_PERSAMPLI	E is required in or	der to select I	NTERP_S	SAMPLE.							16:1	1 Barycen	tric Interpolation	Mode	Γ																							Format:			Enable[6]										Perspect required barycent	ive Pixel Location b Bit 2: Perspective S	parycentric is requ Sample barycentri : Non-perspective ntric is required	ired Bit 1: Per ic is required E e Centroid bar	rspective Bit 3: Noi rycentric	o the pixel shader kernel. Bit 0: Centroid barycentric is n-perspective Pixel Location is required Bit 5: Non-											mming Note										set, all c corner of MSDISP	If contiguous dispatch modes are enabled, only bit 3 (non-perspective pixel location) can be set, all other bits in this field must be zero. Pixel Location below refers to either the upper left corner or pixel center depending on the Pixel Location state of 3DSTATE_MULTISAMPLING). MSDISPMODE_PERSAMPLE is required in order to select Perspective Sample or Non-perspective Sample barycentric coordinates.											10	Reserve	Reserved																									Format:		MBZ										9:8	Line End	l Cap Antialiasing	Region Width																								Format:					U2									This field specifies the distances over which the coverage of anti-aliased line end caps are computed.													Value	Name			Description								0h	0.5	pixels	0.5	5 pixels									1h	1.0	pixels	1.0	0 pixels									2h	2.0	pixels	0 pixels										3h	4.0	pixels	4.0 pixels									7:6	Line Ant	tialiasing Region \	Width											_													Format:	Format: U2														3DSTA	TE_WM_B	ODY	1						-----	---------------	-----------------------------------	---	-------------------	--	---	--	--	--	--			This field	specifies the	distance ov	er which the ant	i-aliase	d line coverage is computed.							Value Name					Description							0h 0.5 pixels				0.	5 pixels							1h 1.0 pixels					0 pixels							2h		2.0 pixels		2.	0 pixels							3h		4.0 pixels		4.	0 pixels						5	Reserved	l																							Format:					MBZ						4	Polygon	Stipple Enabl	е																						Format:				Enabl	e							Enables 1	the Polygon St	ipple funct	ion.								3	Lina Stin	ple Enable											Line Stip	ріе шаріе											Format:				Enabl	e							L	the Line Stippl	e function.		2.1.0.0.1																			2	Point Ras	sterization Ru	ıle														1. 1 1									specifies the ly on a pixel sa			olled wr	nenever the edges of a point primitive							Value	Name				Description							0h R	RASTRULE_UPP	'ER_LEFT	To match "norm	nal" upper left rules for surface primitives								1h R	RASTRULE_UPP	ER_RIGHT	To match Open	GL poin	L point rasterization rules (round to +										.		e upper right direction wrt OpenGL										screen origin of	lower I	ert).						1:0	Force Kil	l Pixel Enable																							Value	Name	Description										0h	Normal	WM_INT::	Pixel Shader Kill	Pixel is	s computed normally							1h	ForceOff	Forces WM_INT:: Pixel Shader Kill Pixel Off										2h	ForceON	Forces WI	M_INT:: Pixel Sha	der Kill	Pixel On							3h	Reserved	ved ved												•													Programmir	ng Note	es					# This should must always be set to Normal. This field should not be tested for functional validation #### 3DSTATE_WM_CHROMAKEY_BODY	3DSTATE_WM_CHROMAKEY_BODY										---------------------------	-----------------	---	---------	-----------------------------------	--	--	--	--		Source: RenderCS										Size (in b	its):	32								Default V	/alue:	0x00000000								DWord	Bit Description									0	31	ChromaKey Kill Enable																				Format:	Enable									If ENABLED, indicates that at least one of the attack	ned san	nplers has ChromaKeyKill enabled.							30:0	Reserved																				Format:		MBZ					#### 3DSTATE_WM_DEPTH_STENCIL_BODY			3DSTATE_\	WM_DEPTH_STENCIL_BODY							--	-------------------------	---	--	--	--	--	--	--		Source:		RenderCS								Size (in b	oits):	96								Default Value: 0x00000000, 0x000000000										DWord	Bit	Description								0	0 31:29 Stencil Fail Op											Format:	3D_Stencil_Operation									This field specifies the operatest fails.	eration to perform on the Stencil Buffer when the (front face) stencil										Programming Notes									if all three stencil ops (Stencil Fail, Stencil Pass Depth Fail, and Stencil Pass Depth Pass) are KEEP, ZERO, or REPLACE, the stencil buffer is not read.									28:26	Stencil Pass Depth Fail O	p																			Format:	3D_Stencil_Operation									This field specifies the operation to perform on the Stencil Buffer when the																																																																																																																																																																																																																																			
(front face) stencil test passes but the depth pass fails.									25:23	Stencil Pass Depth Pass Op																				Format:	3D_Stencil_Operation									This field specifies the operation to perform on the Stencil Buffer when the (front face) stencil test passes but the depth test passes.									22:20	Backface Stencil Test Fur	nction																			Format:	3D_Compare_Function								19:17	Backface Stencil Fail Op																				Format:	3D_Stencil_Operation								16:14	Backface Stencil Pass De	pth Fail Op																			Format:	3D_Stencil_Operation									This field specifies the operation to perform on the Stencil Buffer when the stencil test passes out the depth pass fails.								13:11	Backface Sten	cil Pass Deptl	h Pass Op						-------	---	---	-----------------------	---	--	--	--												Format:		BD_Stencil_Operation							This field spec and the depth	•	•	he Stencil Buffer when the stencil test passe					10:8	Stencil Test Fu	ınction								Format:		D_Compare_Function							This field spec	ifies the comp	parison function used	in the (front face) StencilTest function.					7:5	Depth Test Fu	nction								_	0.7	D. C							Format:		D_Compare_Function							Specifies the c	omparison fur	nction used in Depth							If the Donth To	Programming Notes If the Depth Test Function is ALWAYS or NEVER, the depth buffer is not read.								Double Sided Stencil Enable								4	Double Sided	Stencii Enabi	le							Format:			Enable						Enable double	d sided stenci	il operations.	Endoic						Value	Name		Description						0h	False	Double Sided Ste	encil Disabled						1h	True	Double Sided Ste	encil Enabled						Programming Notes									Back-facing primitives have a vertex winding order opposite to the currently selected Front Winding state.									Culling of primitives is not affected by the double sided stencil state									Back-facing primitives will be rendered, honoring all current device state, as though it were a front-facing primitive with no implicitly overloaded state.								3	Stencil Test Er	able								Format:			Enable						Enables StencilTest function of the Pixel Processing pipeline.											Programm							If any of the render targets are YUV format, this field must be disabled.										3DSTATE_WM_DEPTH	H_ST	ENCIL_B	ODY					---	--	---	-----------	-------------------	-------------------------	--	--	--														Format:		Enable							Enables writes to the Stencil Buffer.											Progra	ammin	g Notes								If this field is enabled, Stencil Test Enable m	ust also	o be enabled.							1	Depth Test Enable																				Format:		Enable								Enables the DepthTest function of the Pixel	Process	sing pipeline.								Value			Name							0h	Disabl	le								1h	Enable	e								Para sara	•	- Mata-										g Notes								If any of the render targets are YUV format,	this fie	id must be disa	bled.						0	Depth Buffer Write Enable																				Format:		Enable								Enables writes to the Depth Buffer.	mmin	g Notes								A Depth Buffer must be defined before enal			poration is LINIDEFINED							This bit must not be set when WM_INT::RT I		<u>-</u>						1	21.24		паереі	ident Nastenza	tion Enable is true.					1	31:24	Stencil Test Mask										Format:			U8							This field specifies a bit mask applied to ster	ncil test	t values. Both th								value read from the stencil buffer will be logi										comparison test is performed.	-																		23:16	Stencil Write Mask										-									Format: U8 This field specifies a hit mask applied to stoppil buffer writes. Only those stoppil buffer hi											This field specifies a bit mask applied to stencil buffer writes. Only those stencil buffer bits corresponding to bits set in this mask will be modified.																			15:8	Backface Stencil Test Mask																				Format:			U8							This field specifies a bit mask applied to backface stencil test values. Both the stencil reference										3DSTATE_WM_DEPTH_STENC	IL_B	ODY		---	-------	---	-----------	---------------------------------				value and value read from the stencil buffer will be logical stencil comparison test is performed.	y ANDe	d with this mask before the			7:0	Backface Stencil Write Mask						Format:		U8				This field specifies a bit mask applied to backface stencil k bits corresponding to bits set in this mask will be modified		ites. Only those stencil buffer		2	31:16	Reserved	T	1										Format:	MBZ				15:8	Stencil Reference Value		,										Format:		U8				This field specifies the stencil reference value to compare function.	against i	in the (front face) StencilTest			7:0	Backface Stencil Reference Value						Format:		U8				This field specifies the stencil reference value to compare	against i	in the StencilTest function.	#### 3DSTATE_WM_HZ_OP_BODY		3DST	ATE	WM_HZ	OP_BODY			-----------------	---	-----	----------------------	-----------------------------------	---		Source:	RenderCS						Size (in bits):	128						Default Value:	Default Value: 0x00000000, 0x000000000, 0x000000000						D	Word	Bit		Descrip	otion			0	31	Stencil Buffer	Clear Enable													Format:		Enable					When set, the	stencil buffer is init	tialized.						Programmi	ng Notes					If this field is	enabled,						Hierar	•	e Enable (full or partial) and er Resolve Enable fields must							:Stencil Write Enable must be :UFFER::Stencil buffer enable				30	Depth Buffer	Clear Enable													Format:		Enable					When set, the	depth buffer is init							Programmii	ng Notes					If this field is	•						Hierar both b	chical Depth Buffe e disabled.	e Enable(full or partial) and er Resolve Enable fields must :Depth Write Enable must be					set.						29	Scissor Recta	ngle Enable													Format:		Enable					Enables opera	ation of Scissor Rect							Programmi	ng Notes					11	clear rectangle to s	nt if this bit is disabled, driver cissor rectangle if scissor test		3DST/	ATE	WM_HZ_OP_BODY			-------	-----	--	---			28	Depth Buffer Resolve Enable										Format:	Enable				When set, the depth buffer is m	ade to be consistent with the				hierarchical depth buffer as a sid	<u> </u>				This is intended to be used wher as a surface outside of the 3D re	•				buffer will be in uncompressed s					Programm	•				If this field is enabled,					the Depth Buffer Clear a Buffer Resolve Enable f	and Hierarchical Depth felds must both be disabled.					::Depth Write Enable must be				Depth Buffer Partial Resortisabled.	lve Enable field should be			27	Hierarchical Depth Buffer Resc	olve Enable									Format:	Enable				When set, the hierarchical depth					consistent with the depth buffer					pixels. This is intended to be use been modified outside of the 3D	•				Programm	<u> </u>				If this field is enabled,	-				1. the Depth Buffer Clear a Enable (full or partial) f	and Depth Buffer Resolve ields must both be disabled.				2. 3DSTATE_DEPTH_BUFFEF set.	t::Depth Write Enable must be				3. Stencil Buffer Resolve En	able must be disabled.				Doing a Hierarchical Depth Buff partial HZ buffer is not permitte					must be done on the entire HZ					Performance Note: expect the	-				impact on performance to be re	•				time after this operation is performed depth buffer is initialized to a st					Further rendering will tend to b					buffer back to a more effective	state.			26	Pixel Position Offset Enable								3DSTA	ATE_	WM_HZ	_0	P_BODY				-------	-------																																																																																																																																																																																					
---	--	---	--	---				Format:	Eı	nable Enumerat	ted T	ype						•	•	tions by 0.5 both in				horizontal and vertical directions.								C		Programmir						upper left an will cause the horizontal an to adjust the WM_HZ_OP Resolve etc) to be aware according to	d nume development	mber of multisatice to offset pixetical directions. I co-ordinate synthese synthese synthese synthese internally soffset adjustment restriction	ample cel po cel po cel tis stem gles (by d nent n tak	_				•				n choose to set this bit buld not have any effect				_		setting this bit.	3 3110	dud not nave any enect			25			h and Stencil C	Clear						•							Format:			Ena	ble														Programmir						cause all the cleared. Softw the entire De for STC-buffe	pixel ware pth s er on	s/samples in an must set this or surface to be cle ly clear without	n the nly w eared : "dep	epth buffer clear" will HZ and Stencil CLs to be when the APP requires d. Setting this field to "1" both buffer clear" will C-CL to get the stc-ref			24	Reserved																Format:				MBZ			23:16	Stencil Clear	Valu	e						Format:				U8.0				This field spe	cifies	the stencil clea	ar val	ue.			15:13	Number of M	lultis	samples														Format:		U3 Enumerated	d Typ	oe				•		•	•	s/pixel exist in the Depth					encil	buffers, as log2	(#sar	•				Value		Name		Description		3DST	ATE	WM	ΗZ	OP_BODY	<i>,</i>			---	-------	---	---------------	--	--	--		35517		0h		1	1 sample/pixel					1h		2	2 samples/pixel					2h		4	4 samples/pixel					3h		8	· · ·					5h-7h			8 samples/pixel					<u> </u>		Reserved					12:0	Reserved	<u>k</u>					1	31:16	Clear Re	ctan	gle Y Min				Programming Notes:								The Clear/Resolve rectangle X and Y Min values must be shifted by the LOD level;		Format:			epth Buffer origin (upper left			i.e. the hardware does not include the LOD in this function. Hence to clear any particular X, Y from the base level, to clear the contents at level "LOD" use (X»LOD) and (Y»LOD).		corner) Specifies Ymin value of (inclusive) of clear rectangle with the Depth Buffer, used for clipping. Pixels with Y coordinates less than Ymin will not be affected.						The final X and Y Min values, after LOD	15:0	Clear Re	ctan	gle X Min				adjustment described above, have to be			ļ					manually 8x4 aligned for Depth and HZ Resolve passes only. For Clears see "Full		Format: U16 in Pixels from Depth Buffer origin (upper left corner)						Surface Depth and Stencil Clear" field in		Specifies			ive) of clear rectangle with the			this command instead.		Depth Buffer, used for clipping. Pixels with X coordinates less						resolve_aligned_y_min = (y_min & ~0x3) //round down to last multiple of 4 resolve_aligned_x_min = (x_min & ~0x7) //round down to last multiple of 8		than or equal to Xmin will not be affected.						2	31:16	Clear Re	ctan	gle Y Max				Programming Notes:								See the programming note in the previous DWORD for the Min values.		Format:	U16		epth Buffer origin (lower right			The Clear/Resolve rectangleX andYMax		Specifies Ymax value of (exclusive) of clear rectangle with the						values must be shifted by the LOD level;		Depth Buffer, used for clipping. Pixels with Y coordinates						i.e. the hardware does not include the LOD in this function. Hence to clear any		greater than Ymax will be not be cleared.						particular X, Y from the base level, to clear the contents at level "LOD" use	15:0	Clear Re	ctan	gle X Max				(X»LOD) and (Y»LOD).	. 5.0	J.Cai Ite		g. • 7a.				The final X and Y Max values, after LOD adjustment described above, have to be		Format:	U16		epth Buffer origin (lower right			manually 8x4 aligned for Depth and HZ Resolve passes only. For Clears see "Full Surface Depth and Stencil Clear" field in this command instead. resolve_aligned_y_max= (y_max & ~0x3)		Depth Bu	Xm. Iffer,	ax value of (exclusions) used for clipping	sive) of clear rectangle with the . Pixels with X coordinates will be not be affected.			3DST.	ATE	WM_HZ_OP_BODY			---	-------	---	--		+ ((y_max & 0x3 == 0) ? 0 : 4) //round up to next multiple of 4 resolve_aligned_x_max= (x_max & ~0x7) + ((x_max & 0x7 == 0) ? 0 : 8) //round up to next multiple of 8					3	31:16	Reserved					Format:	MBZ			15:0	Sample Mask										Format: Right-justified bitmask (Bit Number of bits that are used i Multisamples (3DSTATE_WM_HZ_OF	s determined by Num				A per-multisample-position mask sta immediately and unconditionally AN coverage mask as part of the rasteriz is applied prior to centroid selection.	Ded with the sample ation process. This mask				Programming N	lotes				If Number of Multisamples is NUMS/ this field will be zeroed by HW.If Nur NUMSAMPLES_2, bits 15:2 of this fiel Number of Multisamples is NUMSAM field will be zeroed by HW.If Number NUMSAMPLES_8, bits 15:8 of this field	nber of Multisamples is Id will be zeroed by HW.If IPLES_4, bits 15:4 of this of Multisamples is	# **A32 Buffer Base Address Message Header Control**	MHC	_A32	2_BBA - A32 B	uffer Base Address Message Header Control									------------	--------	------------------------------	--	--	--	--	--	--	--	--		Source:		BSpec										Size (in b	oits):	32										Default \	/alue:	0x0000000										DWord	Bit		Description									0	31:10	Buffer Base Address (Offset											Format:	GeneralStateOffset[31:10]											Specifies the base add	ress offset page [31:10] for A32 stateless messages.												Restriction																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
When using stateless A32 Data Port messages, General State Base Address[47:12] + Buffer Base Address[31:10] must be less than 2^48. It is illegal for this to be greater or equal than 2^48.										9:0	Reserved												Format:	MBZ											Ignored.									# **A32 Scaled Header Present Message Descriptor Control Field**	MDO	MDC_A32_MHP - A32 Scaled Header Present Message Descriptor											------------	--	------------------------	------------------------	---	--	--	--	--	--	--			Control Field											Source:	Source: BSpec											Size (in b	oits):		1									Default \	/alue	e:	0x00000000									DWord	Bit		Description									0	0	Message Header Present																								In com	bination with	the MDC_A32_SSO field, specifies the access type and address calculation. The										access i	s an SLM acce	ess when the Sideband Scale Offset is enabled and the Message Header is not										present												Value	Value Name Description											0h	No	The Sideband Scale Offset field from the Message Descriptor are used as											[Default]	offsets with the Address Payload.							# **A32 Sideband Scale and Offset Enable Message Descriptor Control Field**	MDC_A32_SBSO - A32 Sideband Scale and Offset Enable Message Descriptor Control Field										--	---	------------------------	-----	--	--	--	--	--		Source:		BSpec								Size (in l	oits):	8								Default \	/alue	e: 0x00000000								DWord	Bit	Description								0	7	Sideband Offset Enable										Format:	MBO								Must be set for a scaled SLM access. The 16-bit offset from the Sideband is added to all the offsets in the Address Payload for the SLM access. The 16-bit Sideband Offset is specified in the extended function control field in the SEND instruction.										6:0	Scale								Format: U7										Specifies the scale pitch to be used for SLM messages as (#bytes-1).									# **A64 Data Size Message Descriptor Control Field**	MD	C_	A64_	DS -	A64 Data Siz	ze Messa	ge Descriptor Control Field						------------	------------------------------------	-------------	--	--------------------------------	----------------	---	--	--	--	--		Source:	ource: BSpec											Size (in b	size (in bits): 2											Default \	/alue):	0x0000	00000								DWord	Bit				Descri	ption						0	1:0	Data Si	ze																							Specifi	es the n	umber of data elemer	nts to be read	or written								Value	Name	Description		Programming Notes							00h DE1 1 data element (B, DW, QW)													01h	DE2	2 data elements (B, DW, QW)										02h	DE4	4 data elements (B, DW, QW)										03h	DE8	8 data elements (B, DW, QW)		is supported for DW and QW but not for B. For ximum number of data elements is 4.																				Restriction													The number of elements is constrained by SIMD Mode and Data Width. The max data payload limit is 256B: 2 elements SIMD16 QW, 4 elements SIMD16 DW, or 4 elements SIMD8 QW.								# **A64 Hword Block Message Header**			MH_A64_HWB - A64 Hword Block Message Header									---	------	--	--	--	--	--	--	--	--		Source: EuSubFunctionDataPort1											Size (in bits): 256											Default Value: 0x00000000, 0x000000000, 0x000000000, 0x00000000											DWord	Bit	Description									01	63:0	BlockOffset											Format: U64											Specifies the U64 byte offset of Oword block.											Programming Notes											If the BlockOffset is not in the 48-bit canonical address range, the access is Out-of-Bounds.											Restriction											The byte offset must be aligned to the message's data type. Dwords have [1:0] = 0, Qwords have [2:0] = 0, and Hwords have [4:0] = 0.									24	95:0	Reserved											Format: MBZ											Ignored									5	31:0	Reserved																						Format: MBZ											Ignored									67	63:0	Reserved											Format: MBZ											Ignored								# **A64 Hword Data Blocks Message Descriptor Control Field**	MDC_A64_DB_HW - A64 Hword Data Blocks Message Descriptor Control Field											--	-----	-------------------	---	-------	----------------	--	--	--	--		C											Source:		SSpec									Size (in bits):	3	3									Default Value:	C)x00000001									DWord	Bit		Descri	ption							0	2:0	Data Blocks																						Specifies the nun	fies the number of Hwords to be read or written										Value	Name		Description								01h	HW1 [Default]		1 Hword block								02h	HW2		2 Hword blocks								03h	HW4		4 Hword blocks								04h	HW8		8 Hword blocks								Others	Reserved		Ignored					# **A64 Oword Block Message Header**		N	MH_A64_OWB - A64 Oword Block M	lessage Header						--------------------------------	--------	---	-------------------------	--	--	--	--		Source: EuSubFunctionDataPort1									Size (in bits): 256									Default \	/alue:	0x00000000, 0x00000000, 0x00000000, 0x00000000	0x00000000, 0x00000000,						DWord	Bit	Description							01	63:0	BlockOffset																		Format:	U64								Specifies the U64 byte offset of Oword block.									Programming Notes									If the BlockOffset is not in the 48-bit canonical address range, the access is Out-of-Bounds.									Restriction									The byte offset must be aligned to the message's data type. Dwords have $[1:0] = 0$, Qwords have $[2:0] = 0$, and Hwords have $[4:0] = 0$.							27	191:0	Reserved																		Format:	MBZ								Ignored						# **A64 Oword Data Blocks Message Descriptor Control Field**	MDC	MDC_A64_DB_OW - A64 Oword Data Blocks Message Descriptor Control Field								-------------	--	---	-----------	---	--	--	--		Source:									Size (in bi	ts):	3							Default Va	alue:	0	x00000000						DWord	Bit			Description					0	2:0	Data Blo	ocks																	Specifie	s the num	ber of Oword blocks to be read or written							Value	Name	Description							00h	OW1L	1 Oword, read into or written from the low 128 bits of the destination register							01h OW1U 1 Oword, read into or written from the high 128 bits of the destinative register									02h OW2 2 Owords									03h	OW4	4 Owords							04h	OW8	8 Owords							Others	Reserved	Ignored				# **A64 Scaled Header Present Message Descriptor Control Field**	MDO	MDC_A64_MHP - A64 Scaled Header Present Message Descriptor										------------	--	------------------------	----------------------------------	---	--	--	--	--	--			Control Field										Source:		BSpe	С								Size (in b	oits):	1									Default \	/alue	e: 0x000	000000								DWord	Bit			Description							0	0	Message Hea	der Present																						e message uses n with MDC_A64	the optional message header to modify the A64 address calculation, 4_SSO field.									Value	Name	Description									Oh No N		Message header is not present									1h	Yes	Message header is present									Programming Notes											The access is present.	Out-of-Bounds	if the SideBand Offset is enabled when the Message Header is not									
		#### AddrSubRegNum #### AddrSubRegNum Source: Eulsa Size (in bits): 4 Default Value: 0x00000000 Address Subregister Number This field provides the subregister number for the address register. The address register contains 8 sub-registers. The size of each subregister is one word. The address register contains the register address of the operand, when the operand is in register-indirect addressing mode. This field applies to the destination operand and the source operands. It is ignored (or not present in the instruction word) for an immediate source operand. This field is present if the operand is in register-indirect addressing mode; it is not present if the operand is directly addressed. An address subregister used for indirect addressing is often called an index register.	DWord	Bit	Description						-------	-----	---------------------------------	--	--	--	--		0	3:0	Address Subregister Number																								Value Name								0-15 Address Subregister Number					#### **Any Binding Table Index Message Descriptor Control Field**	MDC	MDC_BTS_SLM_A32 - Any Binding Table Index Message Descriptor Control Field										-------------------	--	------------------	-----------------	---	---	--	--	--	--		Source:	Source: BSpec										Size (in bits): 8											Default \	/alue	e: 0	000000000								DWord	Bit			Descr	iption						0	7:0	Binding 1	Table Index																					Specifies	the surface for	the message, which can l	oe Surface State Model, SLM or Stateless.								Value Name		Description									00h- 0EFh	BTS	Index of Binding Table State Surfaces									F0h- 0FBh	Reserved	Reserved									0FCh	SSO	Specifies a Surface State descriptor	Offset supplied by the extended message								0FEh	SLM	Specifies an SLM access									0FFh	A32_A64	Specifies a A32 or A64 St within a thread group)	ateless access that is locally coherent (coherent								0FDh	A32_A64_NC	Specifies a A32 or A64 St within a thread).	ateless access that is non-coherent (coherent										Restr	iction								When us (64B)	ing A32_A64_N	IC, SW must ensure that 2	threads do not both access the same cache line					# **Atomic Float Binary Operation Message Descriptor Control Field**	MD	C_I	OP2	- Atomi		nary Op	eration Message Descriptor			-----------------------	-----	-------	--------------------------	-------------------------------------	--	--	--		Source: Size (in b		j:	BSpec 3 0x00000001						DWord	Bit				Descr	ption			0	2:0		es the atomic	tion Type float binary oper	ation to be	performed					Value	Name	Description		Programming Notes					01h	AOP_FMAX [Default]	new_dst = fmax(old_dst, src0)	The fmax operation implements the IEEE specification, which differs slightly from the DX and OCL specifications when a source operand is a sNaN. fmax(x,qNaN) = fmax(qNaN,x) = x fmax(x,sNaN) = fmax(sNaN,x) = quietize(sNaN) fmax(sNaN,sNaN) = fmax(qNan,sNaN) = fmax(qNan,sNaN) = quietize(sNaN) fmax(qNaN,qNan) = qNaN fmax(-0, +0) = fmax(+0, -0) = +0 [] Fmax with sNaN operand returns sNaN instead of quietize(sNaN) [] Fmax(-0,+0) returns -0. Should be +0, to match EU Fmax instruction.						02h	AOP_FMIN	new_dst = fmin(old_dst, src0)	which diffe when a sou fmin(qNaN quietize(sN fmin(qNan qNaN fmin(+0, -0 [] Fmin with quietize(sN	-0) returns +0. Should be -0, to match EU Fmin		# **Atomic Float Ternary Operation Message Descriptor Control Field**	MDC_FOP3 - Atomic Float Ternary Operation Message Descriptor Control Field											--	--------	--------	---	--	---------------------	--	--	--	--		Source:			BSpec								Size (in b	oits):		3								Default \	/alue	e:	0x00000003								DWord	Bit				Descr	iption					0	2:0		Atomic Float Operation Type Specifies the atomic float ternary operation to be performed										Value	lue Name Descri		Programming Notes								03h	AOP_FCMPWR [Default]	new_dst = (src0 == old_dst) ? src1 : old_dst	usir as a fcm	fcmpwr operation performs the comparison ng IEEE specification rules, and performs the store raw move (so SNaN is not quietized). pwr(NaN,x,y) = NaN fcmpwr(x, NaN,y) = x pwr(x,x, NaN) = NaN							Others	Reserved	Ignored											•											Prog	ramn	ning Notes							When F	When Return Data Control is set, old_dst is returned.							#### **Atomic Integer Binary Operation Message Descriptor Control Field**	MDC_AC	OP2	- Atom	ic Integer Binary Control I	Operation Message Descriptor Field								-----------------	-----	--------------	--------------------------------	------------------------------------	--	--	--	--	--	--		Source:		BSpec										Size (in bits):		4										Default Value	:	0x000000	01									DWord	Bit			Description								0	3:0	Atomic Int	eger Operation Type																							Specifies tl	he atomic integer binary ope	eration to be performed										Value	Name	Description										01h	AOP_AND [Default]	new_dst = old_dst AND src0										02h	AOP_OR	new_dst = old_dst src0										03h	AOP_XOR	new_dst = old_dst ^ src0										04h	AOP_MOV	new_dst = src0										07h	AOP_ADD	new_dst = old_dst + src0										08h	AOP_SUB	new_dst = old_dst - src0										09h	AOP_REVSUB	new_dst = src0 - old_dst										0Ah	AOP_IMAX	new_dst = imax(old_dst, src0)										0Bh	AOP_IMIN	new_dst = imin(old_dst, src0)										0Ch	AOP_UMAX	new_dst = umax(old_dst, src0)										0Dh	AOP_UMIN	new_dst = umin(old_dst, src0)										Others	Reserved	Ignored											<u> </u>	gramming Notes										When Retu	urn Data Control is set, old_d	st is returned.							# **Atomic Integer Ternary Operation Message Descriptor Control Field**	MDC_AOP3 - Atomic Integer Ternary Operation Message									---	-------	-------------------------	----------------------------	--	--	--	--					Descript	tor Control Field					Source:	BSpec								Size (in bit	ts):	4							Default Va	lue:	0x	000000E						DWord	Bit			Description					0	3:0	Atomic	Integer Operation Type																	Specifie	s the atomic integer terna	ary operation to be performed							Value	Name	Description							00h	AOP_CMPWR_2W	new_dst = (src0_2W == old_dst_2W) ? src1_2W : old_dst_2W							0Eh	AOP_CMPWR [Default]	new_dst = (src0 == old_dst) ? src1 : old_dst							Others Reserved Ignored																		Programming Notes									When R	eturn Data Control is set,	old_dst is returned.				# **Atomic Integer Unary Operation Message Descriptor Control Field**	MDC_AOP1 - Atomic Integer Unary Operation Message Descriptor Control Field										--	-------	----------------	--	-----------------------	--	--	--	--		Source:		BSpec								Size (in b	its):	4								Default V	alue:	0x000	00005							DWord	Bit		Des	scription						0	3:0	Atomic Integ	ger Operation Type																			Specifies the	atomic integer unary operation to	o be performed								Value	Name	Description								05h	AOP_INC [Default]	new_dst = old_dst + 1								06h	AOP_DEC	new_dst = old_dst - 1								0Fh	AOP_PREDEC	new_dst = old_dst - 1								Others	Reserved	Ignored																			Progran	nming Notes								When Returned.	eturned by AOP_PREDEC and otherwise old_dst is						#### **Audio Power State Format**	Audio Power State Format									--------------------------	-------	--------------------	--------------	-------------	--	--	--		Source:	BSpe	BSpec							Size (in bits):	2								Default Value:	0x000	000003							DWord	Bit		Description																																																																																																																																																																																																																																																																																																																																
					0	1:0	Power State									Value	Name	Description							00b	D0	D0							01b,10b	Unsupported	Unsupported							11b	D3 [Default]	D3				#### **AVC CABAC**			AVC CABAC							------------	--------	---	---	--	--	--	--		Source:		VideoCS							Size (in b	oits):	16							Default \	/alue	e: 0x00000000							DWord	Bit	Description							0	15	Reserved									Format:	MBZ							14	Coefficient level out-of-bound Error This flag indicates the coded coefficient level SEs in the bit-	stream is out-of-bound.							13	Reserved									Format:	MBZ						-	12	Reserved									Format:	MBZ							11									10	Reserved MBZ								9	Motion Vector Delta SE Out-of-Bound Error This flag indicates inconsistent Motion Vector Delta SEs coded in the bit-stream.								8	Reference Index SE Out-of-Bound Error This flag indicates inconsistent Reference Index SEs coded in the bit-stream.								7	MacroBlock QpDelta Error This flag indicates out-of-bound MB QP delta SEs coded in the bit-stream.								6	Motion Vector Delta SE Error This flag indicates out-of-bound motion vector delta SEs coded in the bit-stream.								5	Reference Index SE Error This flag indicates out-of-bound Refidx SEs coded in the bit-stream.								4	Residual Error This flag indicates out-of-bound absolute coefficient level S	Es coded in the bit-stream.							3	Slice end Error This flag indicates a pre-matured slice_end SE or inconsistent	nt slice end on the last MB of a slice.							2									1	Luma Intra prediction Mode Error This flag indicates inconsistent luma Intra prediction mode SE coded in the bit-stream.							0		MB Concealment Flag Each pulse from this flag indicates one MB is concealed by hardware.						#### **AVC CAVLC**			AVC CAVLC					------------	--------	---	--	--	--		Source:		VideoCS					Size (in b	oits):	16					Default \	/alu	e: 0x00000000					DWord	Bit	Description					0	15	Total Zero out-of-bound Error This flag indicates the Total zero SE count exceed the max number of coeffs allowed in an intra16x16 AC block.						14	Coefficient level out-of-bound Error This flag indicates the coded coefficient level SEs in the bit-stream is out-of-bound.						13	RunBefore out-of-bound Error This flag indicates the coded RunBefore SE value is larger than the remaining zero block count.						12	Total coefficient Out-of-bound Error This flag indicates the coded total coeff SE count exceed the max number of coeffs allowed in an intra16x16 AC block.						11	Temporal Direction Motion Vector Out-of-Bound Error This flag indicates motion vectors calculated from Temporal Direct Motion Vector is larger than the allowed range specified by the AVC spec.						10	Reserved Reserved						9	Motion Vector Delta SE Out-of-Bound Error This flag indicates inconsistent Motion Vector Delta SEs coded in the bit-stream.						8	Reference Index SE Out-of-Bound Error This flag indicates inconsistent Reference Index SEs coded in the bit-stream.						7	RunBefore/TotalZero Error This flag indicates one or more inconsistent RunBefore or TotalZero SEs coded in the bit-stream.						6	Exponential Golomb Error This flag indicates hardware detects more than 18 leadzero for skip and more than 19 for other SEs from the Exponential Golomb Logic						5	Total Coeff SE Error This flag indicates one or more inconsistent total coeff SEs coded in the bit-stream.						4	Macroblock Coded Block Pattern Error This flag indicates inconsistent CBP SEs coded in the bit-stream.						3	Mbytpe/submbtype Error This flag indicates inconsistent MBtype/SubMBtype SEs coded in the bit-stream.						2	Chroma Intra prediction Mode Error This flag indicates inconsistent Chroma Intra prediction mode SEs coded in the bit-stream.						1	Luma Intra prediction Mode Error This flag indicates inconsistent luma Intra prediction mode SE coded in the bit-stream.				# AVC CAVLC O MB Concealment Flag Each pulse from this flag indicates one MB is concealed by hardware. # **Barrier Data Payload**			MDP_Barrier - Barrier Data	Payload					------------	-------	--	---	--	--	--		Source:		EuSubFunctionGateway	-					Size (in b	its):	256						Default V	alue:	0x00000000, 0x00000000, 0x00000000, 0x00000000	0, 0x00000000, 0x00000000,					DWord	Bit	Description						01	63:0	Reserved								Format:	MBZ					2	31	Reserved								Format:	MBZ						30:24	Barrier ID								Format:	U7							This field indicates which barrier state is updated. Range = [0,63]							23	Predicate Mask Enable																Format: Enable								This bit indicates that the barrier is a predicated barrier and the SIMD channels passing the predicate should be summed. All threads sending this message to the same barrier should have an identical value for this field, and must specify a response length of 1 for the predicate sum response. Note that Global Barriers must not have the Predicate Mask Enable bit set.								Programming Notes								This control is intended only for GPGPU or Media thread barrier is for a Hull Shader thread.	ls. This control must not be set if the						22:16	Reserved								Format:	MBZ						15	Barrier Count Enable								Format: Enab	le							Allows the message to reprogram the terminating barrier count. If set, the stored value of the terminating barrier count is set to the value of Barrier Count field (below), and used for this barrier operation. If clear, the stored value of the terminating barrier count is not modified and the stored value is used for this barrier operation.								Programming Notes								This control is intended only for Hull Shader threads. This control must not be set if the barrier is allocated by a GPGPU or Media thread.							14:8	Barrier Count								Format:	U7						MDP_Barrier - Barrier Data Payload								----	------------------------------------	---	-----	--	--	--	--				If Barrier Count Enable is set, this field specifies the terminating barrier count. Otherwise this field is ignored. All threads that belong to a single barrier must deliver the same value for this field for a particular barrier iteration.								7:0	Reserved									Format:	MBZ						3	31:0	Predicate Mask									Format:	U32								This field has a bit set per SIMD channel that passes the predicate. For SIMD8 and SIMD16 the rest of the bits must be 0. This field is ignored for non-predicated barriers.							47	127:0	Reserved									Format:	MBZ					# ${\bf Base Address 4 KBy te Aligned}$	BaseAddress4KByteAligned									--------------------------	-----------------	------------------------------	-------------------	----------	-----	--	--		Source:	BSpec								Size (in bits):	64								Default Value:	0x00000000	O, 0x00000000							Specifies a 64-bit	(48-bit canonic	al) 4K-byte alig	ned memory base a	address.					DWord	Bit		Description						01	63:12	Base Addres	Base Address								Format: GraphicsAddress63-12								11:0	Reserved	Reserved								Format:			MBZ			#### **BCS** Hardware-Detected Error Bit Definitions			BCS Har	dware-Det	tected Error Bit Definitions				--------------------	---	---	-------------	------------------------------	--	--		Source:	urce: BlitterCS							Size (in bits): 16								Default \	/alue:	0x000000	00					DWord	Bit			Description				0	15:3	Reserved								Format:		MBZ					Command Privilege Violation Error This bit is set if a command classified as privileged is parsed in a non-privileged batch buffer. command will be converted to a NOOP and parsing will continue.								MBZ								struction Parser detects an error while parsing an instruction. the Header) is not supported (only MI, 2D and 3D are									Value	Description																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																													
				1		Instruction Error detected						Programming Notes								This error indications cannot be cleared except by reset (i.e., it is a fatal error).					#### BINDING_TABLE_EDIT_ENTRY		BINDING_TABLE_EDIT_ENTRY							------------	--------------------------	----------------	---	------------	---------------------------------	--		Source:		Render	CS					Size (in b	oits):	32						Default \	/alue:	0x0000	0000					DWord	Bit		Description					0	31:24	Reserved							Format:				MBZ				23:16	Binding Tab	le Index							Format:			U8					This field spe	ecifies the index of binding table entry that w	ill be upo	dated.				15:0	Surface State	e Pointer							Format:	SurfaceStateOffset[21:6]RENDER_SURFACE_	_STATE []							Pointer. This address points to a surface star Base Address.	te block.	This pointer is relative to the		# **Bit Definition for Interrupt Control Registers - Media**		Bi	t Definition for Interrupt Control F	Registers - Media						------------	--------	--	-------------------	--	--	--	--		Source:		VideoCS							Size (in k	oits):	32							Default \	•	0x0000000							DWord	Bit	Description							0	31:16	Reserved									Format:	MBZ							15:12	Reserved									Format:	MBZ								These bits may be assigned to interrupts on future produ	ucts/steppings.							11	Wait on Semaphore Exec-List Scheduling: Set when MI_SEMAPHORE_WAIT command is un-successful and when "Inhibit Synchronous Context Switch" is set. Scheduler can use this interrupt to preempt the context waiting on semaphore wait. Ring Buffer Scheduling: Set when MI_SEMAPHORE_WAIT command is un-successful.								10	Reserved									Format:	MBZ							9	9 Reserved								8	Context Switch Interrupt Set when a context switch has just occurred. Execlist Enable bit needs to be set for this interrupt to occur.								7	Reserved									Format:	MBZ							6	Timeout Counter Expired Set when the VCS timeout counter has reached the timeout thresh-hold value.								5	Reserved								4	MI_FLUSH_DW Notify Interrupt The Pipe Control packet (Fences) specified in 3D pipeline document may optionally generate a Interrupt. The Store QW associated with a fence is completed ahead of the interrupt.								3	Video Command Parser Master Error When this status bit is set, it indicates that the hardware has detected an error. It is set by the device upon an error condition and cleared by a CPU write of a one to the appropriate bit contained in the Error ID register followed by a write of a one to this bit in the IIR. Further information on the source of the error comes from the "Error Status Register" which along with the "Error Mask Register" determine which error conditions will cause the error status bit to be set and the interrupt to occur. Page Table Error: Indicates a page table error. Instruction Parser Error: The Blitter Instruction Parser encounters an error while parsing an							Bit Definition for Interrupt Control Registers - Media									--	---	--------------------------------	--	--	--	--	--			instruction.								2:1	Reserved									Format:	MBZ							0	Video Command Parser User Interrupt This status bit is set when an MI_USER_INTERRUPT instruction Command Parser. Note that instruction execution is not has mechanism such as an MI_STORE_DATA instruction is requited a user interrupt.	alted and proceeds normally. A						### **BLEND_STATE** ### **BLEND STATE** Source: BSpec Size (in bits): 544 The blend state is stored as a structure containing a common DWORD that applies to all RTs and an array of up to 8 elements, each of which contains the two DWords for each. The start of each element is spaced 2 DWords apart. The blend state is aligned to a 64-byte boundary, which is pointed to by a field in 3DSTATE_BLEND_STATE_POINTERS. The 3-bit Render Target Index field in the Render Target Write data port message header is used to select which of the 8 elements from BLEND_STATE that is used on the current message.	DWord	Bit	Description									-------	-----	--	---	--	--	--	--	--	--		0	31	Alpha To Coverage Enable											Format:	Enable										If set, Source0 Alpha is converted to a temporary 1/2/4-bit coverage mask and the mask bit corresponding to the sample# ANDed with the sample mask bit. If set, sample coverage is computed based on src0 alpha value. Value of 0 disables all samples and value of 1 enables all samples for that pixel. The same coverage needs to apply to all the RTs in MRT case. Further, any value of src0 alpha between 0 and 1 monotonically increases the number of enabled pixels. The field is applied to all the RTs in MRT case.										30	Independent Alpha Blend Enable											Format:	Enable										components in the Color Buffer Blend stage. When combined in the same fashion as the color comporcase.	· · · · · · · · · · · · · · · · · · ·									29	Alpha To One Enable	Te										Format:	Enable										If set, Source0 Alpha is set to 1.0f after (possibly) being used to generate the AlphaToCoverage coverage mask.If Dual Source Blending is enabled, this bit must be disabled.The field is applied to all the RTs in MRT case.										28	Alpha To Coverage Dither Enable											Format:	Enable										If set, sample coverage is computed based on src0 coverage based on screen coordinates. Value of 0 samples for that pixel. The same coverage needs to value of src0 alpha between 0 and 1 monotonically	disables all samples and value of 1 enables all o apply to all the RTs in MRT case. Further, any										AlphaToCoverage is disal								-----	-------	--	--	--	--	--	--	--				applied to all the RTs in N	oled, AlphaToCoverage Dither does not have any impact.The field is MRT case.								27	Alpha Test Enable										Format:	Enable									Enables the AlphaTest fu in MRT case.	nction of the Pixel Processing pipeline. The field is applied to all the RTs										Programming Notes									Alpha Test can only be enabled if Pixel Shader outputs a float alpha value. Alpha Test is applied independently on each render target by comparing that render target's alpha value against the alpha reference value. If the alpha test fails, the corresponding pixel write will be supressed only for that render target. The depth/stencil update will occur if alpha test passes for any render target.								2	26:24	Alpha Test Function										Format:	3D_Compare_Function									This field specifies the comparison function used in the AlphaTest functionThe field is applied to all the RTs in MRT case.									23	Color Dither Enable										Format:	Enable									Enables dithering of colors (including any alpha component) before they are written to the Color Buffer. The field is applied to all the RTs in MRT case.										Programming Notes										For YUV render target formats, this field must be programmed to 0.								2	22:21	X Dither Offset										Format:	U2									Specifies offset to apply applied to all the RTs in N	to pixel X coordinate LSBs when accessing dither table. The field is MRT case.							2	20:19	Y Dither Offset										Format:	U2																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
Specifies offset to apply to pixel Y coordinate LSBs when accessing dither table. The fie applied to all the RTs in MRT case.									18:0	Reserved										Format:	MBZ							116	511:0	Entry	<u> </u>								. 1.0		BLEND_STATE_ENTRY[8]						### **BLEND_STATE_ENTRY**					BLEND_STATE_ENTRY					------------	--------	---	--	--	--	--	--		Source:		В:	Spec						Size (in b	oits):	64	4						Default \	/alue:	0:	0x0000000, 0x00000000						DWord	Bit			Description					01	63	Logic O	p Enable								Format	:	Enable							Enables	the Logic	Op function of the Pixel Processing pipeline.									Programming Notes							Enablin	g LogicOp	and Color Buffer Blending at the same time is UNDEFINED						62:59	Logic O	p Functio	n							Format	:	3D_Logic_Op_Function							Pixel Pro "R2_" R0 encodin they coi	ocessing p OP code d gs. Howev ncide with	es the function to be performed (when enabled) in the Logic Op stage of the bipeline. Note that the encoding of this field is one less than the corresponding defined in WINGDI.H, and is a rather contorted mapping of the OpenGL LogicOp ver, this field was defined such that, when the 4 bits are replicated to 8 bits, in the ROP codes used in the Blter. Note: if the Logic Op Function does not the dest buffer is not read.						58:37	Reserve	ed								Format	:	MBZ						36	Pre-Blend Source Only Clamp Enable									Format	:	Enable							blending source0	g is enable and sour	s whether the source(s) are clamped prior to blending, regardless of whether ed. If DISABLED, no clamping is performed prior to blending. If ENABLED, only see 1, if dual source is enabled, are clamped prior to the blend to the range Clamp Range.							Value	Name	Description							0	Disabled	No clamping is performed prior to blending.							1	Enabled	Only Source(s) are clamped prior to blend function. Other inputs to blend must be clamped according to the behavior specified for "pre-blend color clamp disable" in the pre-blend color clamping table .							Programming Notes									This field is ignored (treated as DISABLED) for UINT and SINT RT surface formats. Blending is not supported for those RT surface formats. When this bit is enabled Pre-Blend Color Clamp Enable must be disabled.								35:34	Specifie both of	those fun	ge nped range used in Pre-Blend and Post-Blend Color Clamp functions if one or ctions are enabled. Note that this range selection is shared between those d is ignored if both of the Color Clamp Enables are disabled								BLEND_	STATE_EN	NTRY		----	---	----------	--	------------------------------	---			Value		Name		Description			0	COLORCL	AMP_UNORM	Clamp Range [[0,1]			1	COLORCL	AMP_SNORM	Clamp Range [[-1,1]			2	COLORCL	AMP_RTFORMAT	Alpha compon R11G11B10_FL	ange of the RT surface format (Note: The ent is clamped to FLOAT16 for OAT format). Unsigned Floating Point re clamped to positive zero.			3	Reserved		Reserved														Programmin								or Clamp Range should be programmed to programmed to the RT range.		3	Pre-Ble	nd Color	Clamp Enable					Format				Enable and constant color channels are clamped			prior to blending, regardless of whether blending is enabled.If DISABLED, no clamping is performed prior to blending.If ENABLED, all inputs to the blend function are clamped prior to the blend to the range specified by Color Clamp Range.							Value	Name	Description					0		No clamping is po	<u>`</u>	-			1	Enabled	All inputs to the k specified by Colo		re clamped prior to the blend to the range						Programmin	g Notes			See table in Pre-Blending Color Clamp subsection for programming restrictions as a function RT format. This field is ignored (treated as DISABLED) for UINT and SINT RT surface formats. Blending is not supported for those RT surface formats. The device will automatically clamp source color channels to the respective RT surface range.				ED) for UINT and SINT RT surface formats. mats. The device will automatically clamp		32	Post-Bl	end Colo	r Clamp Enable					Format	t:			Enable			Regardless of whether this clamping is enabled, the blending output channels will be clamped to the RT surface format just prior to being written.										Programmin	ng Notes			This field is ignored (treated as DISABLED) for UINT and SINT RT surface formats. Blending is not supported for those RT surface formats. Post Blend Clamp Enable must be programmed identical to Pre Blend Clamp Enable. The device will automatically clamp source color channels to the respective RT surface range. When this bit is enabled Pre-Blend Source Only Clamp Enable must be disabled.												Enable Enables the ColorBufferBlending (nee "alpha blending") function of the Pixel Processing Pipeline				BLEND_STATE_E	NTR	Υ			-------	--	--------------------------------------	-------------------------------	------------------------------	-------------------------------------	--			for this ren	der target.							Programming Notes								Enabling LogicOp and ColorBufferBlending at the same time is UNDEFINED							30:26	Source Ble	end Factor							Format:		3D_Color_Buffer_Blend_Fa	ctor					Controls the Factor for 6		factor" in the ColorBufferBle	ending fu	unction.Refer to Source Alpha Blend			25:21	Destinatio	n Blend Fa	actor						Format:		3D_Color_Buffer_Blend_Fa	ctor						he "destina or for enco		ferBlendir	ng function. Refer to Source Alpha			20:18	Color Blen	d Function	n						Format:	3	BD_Color_Buffer_Blend_Fun	ction					This field specifies the function used to combine the color components in the ColorBufferBlending function of the Pixel Processing Pipeline. If Independent Alpha Blend Enable is disabled, this field will also control the blending of the alpha components in the ColorBufferBlending function.							17:13	Source Alpha Blend Factor								Format:		3D_Color_Buffer_Blend_Fa	ctor					Controls the "source factor" in alpha Color Buffer Blending stage.Note: For the source/destination alpha blend factors, the encodings indicating "COLOR" are the same as the encodings indicating "ALPHA", as the alpha component of the color is selected.							12:8	Destination Alpha Blend Factor								Format:	Format: 3D_Color_Buffer_Blend_Factor								he "destina or for enco		Buffer Ble	nding stage. Refer to Source Alpha			7:5	Alpha Bler	nd Functio	n						Format:	3	BD_Color_Buffer_Blend_Fun	ction					This field specifies the function used to combine the alpha components in the Color Buffer blend stage of the Pixel Pipeline when the IndependentAlphaBlend state is enabled.							4	Reserved								Format:				MBZ					Write Disable Alpha						3		ble Alpha						3		ble Alpha		Disable				3	Write Disa Format:	controls the	e writing of the alpha compo	onent int				3	Write Disa Format: This field o	controls the	e writing of the alpha compo	onent int	escription			3	Write Disa Format:	controls the	e writing of the alpha compo	onent int	escription			3	Write Disa Format: This field o	controls the	e writing of the alpha compo	onent into De be overw	escription vritten					BI	LEND_STATE_ENTRY						---	------------	--	---	--	--	--	--			For YUV s	urfaces, this fiel	ld must be set to 0B (enabled).						2	Write Disa	Write Disable Red								Format:	Format: Disable								This field	ontrols the wri	iting of the red component into the Render Target.							Value	Name	Description							0b	Enabled																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
Red component can be overwritten							1b	Disabled	Writes to the color buffer will not modify Red.									Programming Notes							For YUV s	For YUV surfaces, this field must be set to 0B (enabled).							1	Write Disa	ble Green								Format:	Format: Disable									This field controls the writing of the green component into the Render Target.								Value	Name	Description							0b	Enabled	Green component can be overwritten							1b	Disabled	Writes to the color buffer will not modify Green.								Programming Notes								For YUV s	For YUV surfaces, this field must be set to 0B (enabled).							0	Write Disa	ble Blue								Format:		Disable								controls the wri	iting of the Blue component into the Render Target.							Value	Name	Description							0b	Enabled	Blue component can be overwritten							1b	Disabled	Writes to the color buffer will not modify Blue.									Programming Notes							For YUV s	urfaces, this fie	ld must be set to 0B (enabled).					# **Blitter Interrupt Vector**			BLITTER_INTR_VEC - Blitter Interrupt Vector							-----------------	-------	---	--	--	--	--	--		Source:		BSpec							Size (in bits):		16							Default Value:		0x00000000							DWord	Bit	Description							0	15	Catastrophic Error																		This interrupt signals that a unrecoverable error (for e.g encountered fault when accessing a									page mapped in Global GTT) during the engine processing.									When Memory interface signals this error, the Command Streamer will stop parsing any more									instructions. Scheduler is expected to reset the engine to evict the context								14:12	Reserved								11	BCS Wait On Semaphore								10	Reserved								9	Reserved																	8	BCS Context Switch Interrupt								7	Legacy Context Per Process Page Fault Interrupt									Fault interrupt is generated by GA fabric, not by the CS									This interrupt is for handling Legacy context PPGTT Page Fault.								6	BCS Watchdog Counter Expired								5	Reserved								4	BCS MI Flush DW Notify								3	BCS Error Interrupt								2:1	Reserved								0	BCS MI User Interrupt						## **Block Dimensions Message Header Control**		ИНС	BDIM - BI	ock Dimen	sions N	lessag	je Header Control				-------------	-------	------------------	---------------------	-----------------------	------------	-----------------------------------	--	--		Source:		BSpec								Size (in bi	its):	32								Default V	alue:	0x00000000	0x00000000							DWord	Bit									0	31:22	Reserved																				Format:				MBZ						Ignored									21:20	Block Height																				Height in rows o	f block being acces	ssed. Range	= [0,3] re	presenting 1 to 8 rows.						Value	Name	Description								0h	H1	Block height = 1 row								1h	H2	Block height = 2 rd		ows						2h	H4	Block hei	ght = 4 rc	ows						03h	Н8	Block height = 8 rows							19:2	Reserved																				Format:		MBZ								Ignored									1:0	Block Width																						cessed. Rang	ge = [0,3]	[0,3] representing 1 to 8 Dwords.						Value	Name			Description						<u>0h</u>	W1	Block width								1h	W2	Block width								2h	W4	Block width								03h	W8	Block width	= 8 Dwo	rds			# **Block Message Header**			MH_BTS_GO - Block Message	e Header						------------	--------	--	--	--	--	--	--		Source:		EuSubFunctionDataPort0							Size (in b	oits):	256							Default \	/alue:	0x00000000, 0x00000000, 0x00000000, 0x00000000	0x0000000, 0x00000000,						DWord	Bit	Description							01	63:0	Reserved									Format:	MBZ								Ignored							2	31:0	Global Offset									Format:	U32								Specifies the global element index into the buffer, in units of Hwords, Owords, Dwords, or Bytes (depending on the message).									Programming Notes									The Global Offset for the Aligned Block operations is specified as a Dword-aligned byte offset (offset bits [1:0] = 0), Oword-aligned byte offset (offset bits [3:0]=0), or Hword-aligned byte offset (offset bits [4:0]=0).									If the address offset calculated with the Global Offset is g access is Out-of-Bounds.	reater than the Surface Size, then the						37	159:0	Reserved									Format:	MBZ								Ignored						# **BR00 - BLT Opcode and Control**			BR00	- BL	Γ Opcode and (Control				------------	--------	--	--	----------------	---	----------------	--		Source:		BlitterCS							Size (in b	its):	32							Default \	/alue:	0x00000000							DWord	Bit			Description					0	31	BLT Engine Busy This bit indicates whether the BLT Engine is busy (1) or idle (0). This bit is replicated in the SETUP BLT Opcode and Control register.				d in the SETUP					Value			Name						0		Idle [Default]							1		Busy						30	Setup Instruction Instr	uction								Default Value:				0					The current instruction	The current instruction performs clipping (1).							29	Setup Monochrome Pattern This bit is decoded from the Setup instruction opcode to identify whether a color (0) or monochrome (1) pattern is used with the SCANLINE_BLT instruction.									Value			Name						0 Color [Default]									1	N	Monochrome						28:22	Instruction Target (Opcode)									Default Value:			0000000b						This is the contents of the Instruction Target field from the last BLT instruction. This field is used by the BLT Engine state machine to identify the BLT instruction it is to perform. The opcode specifies whether the source and pattern operands are color or monochrome.								21:20	32bpp Byte Mask This field is only used for	or 32bp	p.							Value			Name						00b	[Defa	nult]							1xb	Write	Alpha Channel							x1b	Write RGB Channel							19:17	Monochrome Source S	tart								Default Value:			000b						source operand. The mo	onochro	•	osition within a byte per sc ed which means that at the I boundary.						BR	00 - BLT	Opcode and Control				-------	--	--	--	--	--	--		16	_	e Packed	the NT driver.						7 : 1 : 1	Valu		Name					0b			Bit [Default]					1b			Byte				15	Src Tili	ng Enable							Va	alue		Name					0b		Tiling Disabled	(Linear) [Default]					1b		Tiling enabled:	Tile-X or Tile-Y				14:12	Horizo	ntal Patter	n Seed							t Value:		0b					This fie	ixel position which corresponds to $X = 0$.							When set to '1', this means that Blitter is executing in Tiled mode. If '0' it means that Blitter Linear mode. Pre-Dev Blitter never executes in Tiled-Y mode, DevGT+ Blitter supports both and Tile-Y modes. On reset, this bit will be '0'. This definition applies to only X, Y Blits. Value Name								0b Tiling Disabled (Linear blit) [Default]								1b Tiling enabled: T			ile-X or Tile-Y				10:8	Transparency Range Mode These bits control whether or not the byte(s) at the destination corresponding to a given pixel will be conditionally written, and what those conditions are. This feature can make it possible to perform various masking functions in order to selectively write or preserve graphics data alread at the destination.																																																																																																																																																																																												
Value	Name		Description					xx0b	[Default]		sparency mode enabled. This causes normal operation with ing data to the destination.					001b		Equal) (source Less or Equal) pixels. The rar then logically range defined	transparency] The Transparency Color Low: (Pixel Greater of background register) and the Transparency Color High: (Pixel Greater) are compared to the source ange comparisons are done on each component (R, G, B) and ANDed. If the source pixel components are not within the dry by the Transparency Color registers, then the byte(s) at the presponding to the current pixel are written with the result operation.					011b [Source and Alpha color to Greater or Equal) (source High: (Pixel Less or Equal)			Alpha color transparency] The Transparency Color Low: (Pixeual) (source background register) and the Transparency Coless or Equal) (source foreground register) are compared to The range comparisons are done on each component (A, R						BR00 - BLT Opco	de and Control						-----	---	---	---	------------------------	--	--	--				B) and then logically ANDed. If the source pixel components are not wit the range defined by the Transparency Color registers, then the byte(s) destination corresponding to the current pixel are written with the resul the bit-wise operation."								101b	color transparency] The Transpar (source background register) and or Equal) (source foreground regis s. The range comparisons are dor and then logically ANDed. If the of the byte(s) at the destination correct or with the result of the bit-wise of	ter) and the Transparency and register) are compared are done on each If the destination pixels are on corresponding to the							111b	[Destination color transparency] The Transparency Color Low: (Pixel Greater or Equal) (source background register) and the Transparency Color High: (Pixel Less or Equal) (source foreground register) are compared to the destination pixels. The range comparisons are done on each component (R, G, B) and then logically ANDed. If the destination pixels are within the range, then the byte(s) at the destination corresponding to the current pixel are written with the result of the bit-wise operation.							7:5	Pattern Vertical Seed									Default Value: 000b									This field specifies the pattern scan line which corresponds to Y=0.								4	Destination Read Modify Write									Default Valu			0b						This bit is decoded from the last instruction's opcode field and Destination Transparency M to identify whether a Destination read is needed.								3	Color Source									Default Valu	ıe:		0b						This bit is decoded from the last instructions opcode field to identify whether a color (1) source is used.								2	Monochrom	ne Source								Default Valu	ie:		0b						This bit is de source is use		ns opcode field to identify wheth	er a monochrome (1)					1	Color Patter	'n								Default Valu	ie:		0b						This bit is de	ecoded from the last instructio	ns opcode field to identify wheth	er a color (1) pattern						BR00 - BLT Opcode and Control						--	-------------------------------	---	--------------------	--	--			0	Monochrome Pattern	_						Default Value:	0b						This bit is decoded from the last instructions opcode field to identify whethe pattern is used.	r a monochrome (1)			## **BR01 - Setup BLT Raster OP, Control, and Destination Offset**	BH	RO1	- Set	up BLT	Raster OP,	Control, and Destination Offset			-----------------	------------	--	---	--	---	--		Source:		BlitterCS						Size (in bits):		3	2					Default \	/alue:	0	x00000000					DWord	Bit				Description			0	31	Solid Pattern Select This bit applies only when the pattern data is monochrome. This bit determines whether or not the BLT Engine actually performs read operations from the frame buffer in order to load the pattern data. Use of this feature to prevent these read operations can increase BLT Engine performance, if use of the pattern data is indeed not necessary. The BLT Engine is configured to accept either monochrome or color pattern data via the opcode field.								Value	Name		Description					0b	[Default]	BLT Engine procee	I operation with regard to the use of the pattern data. The ds with the process of reading the pattern data, and the d as the pattern operand for all bit-wise operations.					1b		presumption is ma the pattern operar	goes the process of reading the pattern data, the de that all of the bits of the pattern data are set to 0, and defor all bit-wise operations is forced to the background he Color Expansion Background Color Register.			-	30	Clipping Enabled									Va	lue	Name					0b			[Default]					1b							29	This bit the byte also cor make it	t applies or e(s) at the c rresponds v possible to	destination corresponding destination corresponding to the source as a second corresponding to the source as a seconding destination of the se	Mode data is in monochrome. This bit determines whether or not ending to the pixel to which a given bit of the source data en if that source data bit has the value of 0. This feature can a transparency mask. The BLT Engine is configured to source data via the opcode field.					Value	Name		Description					0b	[Default]	Wherever a bit in t the background co operation for the p	I operation with regard to the use of the source data. he source data has the value of 0, the color specified in solor register is used as the source operand in the bit-wise pixel corresponding to the source data bit, and the bytes at cresponding to that pixel are written with the result.					1b		destination corresponds are si	he source data has the value of 0, the byte(s) at the bonding to the pixel to which the source data bit also mply not written, and the data at those byte(s) at the																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
bwed to remain unchanged.				28						### **BR01 - Setup BLT Raster OP, Control, and Destination Offset** This bit applies only when the pattern data is monochrome. This bit determines whether or not the byte(s) at the destination corresponding to the pixel to which a given bit of the pattern data also corresponds will actually be written if that pattern data bit has the value of 1. This feature can make it possible to use the pattern as a transparency mask. The BLT Engine is configured to accepted either monochrome or color pattern data via the opcode field.	Value	Name	Description		-------	-----------	--		0b	[Default]	This causes normal operation with regard to the use of the pattern data. Wherever a bit in the pattern data has the value of 0, the color specified in the background color register is used as the pattern operand in the bit-wise operation for the pixel corresponding to the pattern data bit, and the bytes at the destination corresponding to that pixel are written with the result.		1b		Wherever a bit in the pattern data has the value of 0, the byte(s) at the destination corresponding to the pixel to which the pattern data bit also corresponds are simply not written, and the data at those byte(s) at the destination are allowed to remain unchanged.	### 27:26	**32bpp Byte Mask** This bit applies only when the pattern data is monochrome. This bit determines whether or not the byte(s) at the destination corresponding to the pixel to which a given bit of the pattern data also corresponds will actually be written if that pattern data bit has the value of 1. This feature can make it possible to use the pattern as a transparency mask. The BLT Engine is configured to accepted either monochrome or color pattern data via the opcode field.	Value	Name		-------	---------------------		00b	[Default]		1xb	Write Alpha Channel		x1b	Write RGB Channel	### 25:24 Color Depth	Value	Name		-------	------------------------------		00b	8 Bit Color Depth [Default]		01b	16 Bit Color Depth		10b	Alternate 16 Bit Color Depth		11b	32 Bit Color Depth	#### 23:16	Raster Operation Select These 8 bits are used to select which one of 256 possible raster operations is to be performed by the BLT Engine. #### 15:0 **Destination Pitch (Offset)** For non-XY Blits, the signed 16bit field allows for specifying upto + 32Kbytes signed pitches in bytes (same as before). For X, Y Blits with tiled-X surfaces, the pitch for Destination will be 512Byte aligned and should be programmable upto + 128Kbytes. For X, Y Blits with tiled-Y surfaces, the pitch for Destination will be 128Byte aligned and should be programmable upto + 128Kbytes. In this case, this 16bit signed pitch field is used to specify upto + 32KDWords. For X, Y blits with nontiled surfaces (linear surfaces), this 16bit field can be programmed to byte specification of upto + 32Kbytes (same as before). These 16 bits store the signed memory ### **BR01 - Setup BLT Raster OP, Control, and Destination Offset** address offset value by which the destination address originally specified in the Destination Address Register is incremented or decremented as each scan line's worth of destination data is written into the frame buffer by the BLT Engine, so that the destination address will point to the next memory address to which the next scan line's worth of destination data is to be written. If the intended destination of a BLT operation is within on-screen frame buffer memory, this offset is normally set so that each subsequent scan line's worth of destination data lines up vertically with the destination data in the scan line, above. However, if the intended destination of a BLT operation is within off-screen memory, this offset can be set so that each subsequent scan line's worth of destination data is stored at a location immediately after the location where the destination data for the last scan line ended, in order to create a single contiguous block of bytes of destination data at the destination. ## **BR05 - Setup Expansion Background Color**			BR05 - Setup Expansion Background Color		-------------------	--------	--		Source: BlitterCS		BlitterCS		Size (in b	oits):	32		Default \	/alue:	0x00000000		DWord	Bit	Description		0		Setup Expansion Background Color Bits These bits provide the one, two, or four bytes worth of color data that select the background color to be used in the color expansion of monochrome pattern or source data for either the SCANLINE_BLT or TEXT_BLT instructions. BR05 is also used as the solid pattern for the PIXEL_BLT instruction. Whether one, two, or three bytes worth of color data is needed depends upon the color depth to which the BLT Engine has been set. For a color depth of 32bpp, 16bpp and 8bpp, bits [31:0], [15:0] and [7:0], respectively, are used.	## **BR06 - Setup Expansion Foreground Color**			BR06 - Setup Expansion Foreground Color				------------	-------------------	--	--	--		Source:	Source: BlitterCS					Size (in b	oits):	32				Default \	/alue:	0x00000000				DWord	Bit	Description				0	31:0	Setup Expansion Foreground Color Bits These bits provide the one, two, or four bytes worth of color data that select the foreground color to be used in the color expansion of monochrome pattern or source data for either the SCANLINE_BLT or TEXT_BLT instructions. Whether one, two, or three bytes worth of color data is needed depends upon the color depth to which the BLT Engine has been set. For a color depth of 32bpp, 16bpp and 8bpp, bits [31:0], [15:0] and [7:0], respectively, are used.			## **BR07 - Setup Blit Color Pattern Address Lower Order Address bits**	BR07	7 - 9	Setup Blit Color	Pattern Address Lo	wer Order Address bits		------------	--	-----------------------------	---------------------------------	--		Source:		BlitterCS				Size (in b	oits):	32				Default \	/alue:	0x00000000				DWord	Bit		Description			0	31:6	Setup Blit Color Pattern A	Address					Format:	GraphicsAddress[31:6]					Lower 32bits of the 48bit a	•						-	color pattern from the SETUP_BLT					•	ddress register (BR15), but this version					nmand). The pattern data must b	on (the actual programming for this, is						ary. The pattern is always of 8x8 pixels,					•	ne pixel depth may be 8, 16, or 32 bits					·	pattern must match the pixel depth to				~	•	terns require 8 bytes and is supplied				_	•	s per pixel color depth must start on 64-					te boundaries, respectively.	cho Lino (64byto) aligned			The Pattern Base Address programmed, must always be Cache Line (64byte) aligned.		che Line (04byte) aligned.			-	5:0	Reserved						Format:		MBZ	### **BR09 - Destination Address Lower Order Address Bits**		В	R09 - Destii	nation Address Lower Order Address Bits					------------	-------------------	---	---	--	--	--		Source:	Source: BlitterCS							Size (in k	oits):	32						Default \	√alue:	0x0000000	00					DWord	Bit		Description					0	31:0	Destination Addre	ress Bits							Format:	GraphicsAddress[31:0]							_	abled for XY-blits, this base address should be limited to 4KB. when tiling is							disabled for XY-blits, this base address should be CL (64byte) aligned. These lower 32l									ich specify the starting pixel address of the destination data. This register is also							_	nation address register for the lower 32bits of the address, and changes as the ms the accesses. Used as the scan line address (Destination Y Address and								Idress) for BLT instructions: PIXEL_BLT, SCANLINE_BLT, and TEXT_BLT. In this case								s to the first pixel in a scan line and is compared with the ClipRect Y1 and Y2							•	to determine whether the scan line should be written or not. The Destination Y1							_	scan line to be written for text. Note that for non-XY																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
blits (COLOR_BLT,							SRC_COPY_BLT), th	his address points to the first byte to be written. Note: Some instructions affect							only one scan line	e (requiring only one coordinate); other instructions affect multiple scan lines and							need both coordin	nates.												## **BR11 - BLT Source Pitch (Offset)**			BR11 - BLT Source Pitch (Offset)		------------	--------	---		Source:		BlitterCS		Size (in b	oits):	32		Default \	Value:	0x00000000		DWord	Bit	Description		0	31:16	Reserved			15:0	Source Pitch (Offset) For non-XY Blits with color source operand (SRC_COPY_BLT), the signed 16bit field allows for specifying upto + 32Kbytes signed pitch in bytes (same as before). For X, Y Blits with tiled-X surfaces, the pitch for Color Source will be 512Byte aligned and should be programmable upto + 128Kbytes. For X, Y Blits with tiled-Y surfaces, the pitch for Color Source will be 128Byte aligned and should be programmable upto + 128Kbytes. In this case, this 16bit signed pitch field is used to specify upto + 32KDWords. For X, Y blits with nontiled color source surfaces (linear surfaces), this 16bit field can be programmed to byte specification of upto + 32Kbytes (same as before). When the color source data is located within the frame buffer or AGP aperture, these signed 16 bits store the memory address offset (pitch) value by which the source address originally specified in the Source Address Register is incremented or decremented as each scan line's worth of source data is read from the frame buffer by the BLT Engine, so that the source address will point to the next memory address from which the next scan line's worth of source data is to be read. Note that if the intended source of a BLT operation is within on-screen frame buffer memory, this offset is normally set to accommodate the fact that each subsequent scan line's worth of source data lines up vertically with the source data in the scan line, above. However, if the intended source of a BLT operation is within off-screen memory, this offset can be set to accommodate a situation in which the source data exists as a single contiguous block of bytes where in each subsequent scan line's worth of source data is stored at a location immediately after the location where the source data for the last scan line ended.	### **BR12 - Source Address Lower order Address bits**			BR12 - Source A	Address Lower order Address bits					------------	-------------------	-----------------------------	--	--	--	--		Source:	Source: BlitterCS							Size (in b	its):	32						Default \	/alue:	0x00000000						DWord	Bit		Description					0	31:0	Source Address Bits								Format:	GraphicsAddress[31:0]							Lower 32bits of the 48bit a	ddressing.							•	(Y-blits with Color source surfaces, this base address should be aligned							•	oled for XY-blits, this base address should be CL (64byte) aligned.							to be read.	rith Color Source (SRC_COPY_BLT), this address points to the first byte								8bit address, specify the starting pixel address of the color source data.								The lower 3 bits are used to indicate the position of the first valid byte within the first Quadword							of the source data.								• •	e a Monosource surface, then this Monosource Base Address							programmed, must always	be Cache Line (64byte) aligned.												## **BR13 - BLT Raster OP, Control, and Destination Pitch**		BR13 - BLT Raster OP, Control, and Destination Pitch							---------------------------	--	--	---	---	--	--		Source:	Source: BlitterCS							Size (in bits): 32								Default Value: 0x00000000								DWord	Bit			Description				0 31		Solid Pattern Select This bit applies only when the pattern data is monochrome. This bit determines whether or not the BLT Engine actually performs read operations from the frame buffer in order to load the pattern data. Use of this feature to prevent these read operations can increase BLT Engine performance, if use of the pattern data is indeed not necessary. The BLT Engine is configured to accept either monochrome or color pattern data via the opcode field.								Value	Name	Description						0	[Default]	This causes normal operation with regard to the use of the pattern data. The BLT Engine proceeds with the process of reading the pattern data, and the pattern data is used as the pattern operand for all bit-wise operations.						1		The BLT Engine forgoes the process of reading the pattern data, the presumption is made that all of the bits of the pattern data are set to 0, and the pattern operand for all bit-wise operations is forced to the background color specified in the Color Expansion Background Color Register.				-	30	Clipping Enabled								Defaul	t Value:	0					29	This bit the byte also cor make it	t applies or e(s) at the c rresponds v possible to	urce Transparency Mode Ally when the source data is in monochrome. This bit determines whether or not destination corresponding to the pixel to which a given bit of the source data will actually be written if that source data bit has the value of 0. This feature can be use the source as a transparency mask. The BLT Engine is configured to conochrome or color source data via the opcode field.						Value	Name	Description						0	[Default]	This causes normal operation with regard to the use of the source data. Wherever a bit in the source data has the value of 0, the color specified in the background color register is used as the source operand in the bit-wise operation for the pixel corresponding to the source data bit, and the bytes at the destination corresponding to that pixel are written with the result.						1		Where a bit in the source data has the value of 0, the byte(s) at the destination corresponding to the pixel to which the source data bit also corresponds are simply not written, and the data at those byte(s) at the destination are allowed to remain unchanged.					28	Monochrome Pattern Transparency Mode This bit applies only when the pattern data is monochrome. This bit determines whether or a the byte(s) at the destination corresponding to the pixel to which a given bit of the pattern data of also corresponds will actually be written if that pattern data bit has the value of 1. This feature					### **BR13 - BLT Raster OP, Control, and Destination Pitch** can make it possible to use the pattern as a transparency mask. The BLT Engine is configured to accepted either monochrome or color pattern data via the opcode in the Opcode and Control register.	Value	Name	Description							-------	-----------																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																				
---	--	--	--	--	--		0	[Default]	This causes normal operation with regard to the use of the pattern data. Where a bit in the pattern data has the value of 0, the color specified in the background color register is used as the pattern operand in the bit-wise operation for the pixel corresponding to the pattern data bit, and the bytes at the destination corresponding to that pixel are written with the result.							1		Wherever a bit in the pattern data has the value of 0, the byte(s) at the destination corresponding to the pixel to which the pattern data bit also corresponds are simply not written, and the data at those byte(s) at the destination are allowed to remain unchanged.						#### 27:26 **32bpp Byte Mask** This field is only used for 32bpp.	This held is only used for suppr							----------------------------------	---------------------	--	--	--	--		Value	Name						00b	[Default]						1xb	Write Alpha Channel						x1b	Write RGB Channel					### 25:24 Color Depth	50101 Beptii						--------------	-----------------------------	--	--	--		Value	Name					00b	8 Bit Color Depth [Default]					01b	16 Bit Color Depth					10b	24 Bit Color Depth					11b	Reserved				#### 23:16	Raster Operation Select Default Value: 00000000b These 8 bits are used to select which one of 256 possible raster operations is to be performed by the BLT Engine. #### 15:0 **Destination Pitch(Offset)** These 16 bits store the signed memory address offset value by which the destination address originally specified in the Destination Address Register is incremented or decremented as each scan line's worth of destination data is written into the frame buffer by the BLT Engine, so that the destination address will point to the next memory address to which the next scan line's worth of destination data is to be written. If the intended destination of a BLT operation is within onscreen frame buffer memory, this offset is normally set so that each subsequent scan line's worth of destination data lines up vertically with the destination data in the scan line, above. However, if the intended destination of a BLT operation is within off-screen memory, this offset can be set so that each subsequent scan line's worth of destination data is stored at a location immediately after the location where the destination data for the last scan line ended, in order to create a single contiguous block of bytes of destination data at the destination. ### **BR14 - Destination Width and Height** ### **BR14 - Destination Width and Height** Source: BlitterCS Size (in bits): Default Value: 0x00000000 32 BR14 contains the values for the height and width of the data to be BLT. If these values are not correct, such that the BLT Engine is either expecting data it does not receive or receives data it did not expect, the system can hang.	DWord	Bit	Description								--------------	-------	--	--	--	--	--	--	--		0	31:29	Reserved									28:16	•										These 13 bits specify the height of the destination data in terms of the number of scan lines. This is a working register.										is a working register.									15:13	Reserved									12:0	Destination Byte Width										These 13 bits specify the width of the destination data in terms of the number of bytes per scan										line. The number of pixels per scan line into which this value translates depends upon the color										depth to which the graphics system has been set.							### **BR15 - Color Pattern Address Lower order Address bits**		BR15 - Color Pattern Address Lower order Address bits								------------	--	--	-----------------------------------	---	--	--	--		Source:	re: BlitterCS								Size (in b	oits):	32							Default \	/alue:	0x0000000							DWord	Bit		Description						0	31:6	Color Pattern Address									Format:	GraphicsAddress[31:6]								Lower 32bits of the 48bit ac	ddressing.								There is no change to the Color Pattern address specification due to Non-Power-of-2 change. It									remains the same as before. The pattern data must be located in linear memory.									These 26 bits specify the st	arting address of the (8X8) pixel	color pattern.							The pattern data must be lo	ocated on a pattern-size bounda	ary. The pattern is always of 8x8 pixels,							and therefore, its size is de	pendent upon its pixel depth. Th	ne pixel depth may be 8, 16, or 32 bits							per pixel if the pattern is in	color (the pixel depth of a color	pattern must match the pixel depth to							2 . ,	•	terns require 8 bytes and are applied							9	•	per pixel color depth must start on 64-							byte, 128-byte and 256-byt									The Pattern Base Address p	programmed, must always be Ca	che Line (64byte) aligned.						5:0	Reserved									Format:		MBZ				# **BR16 - Pattern Expansion Background and Solid Pattern Color**	BR	16	- Pattern Expansion Background and Solid Pattern Color		------------	--------	---		Source:		BlitterCS		Size (in b	oits):	32		Default \	/alue:	0x00000000		DWord	Bit	Description		0	31:0	Pattern Expansion Background Color Bits These bits provide the one, two, or four bytes worth of color data that select the background color to be used in the color expansion of monochrome pattern data during BLT operations. Whether one, two, or four bytes worth of color data is needed depends upon the color depth to which the BLT Engine has been set. For a color depth of 32bpp, 16bpp and 8bpp, bits [31:0], [15:0] and [7:0], respectively, are used.	# **BR17 - Pattern Expansion Foreground Color**		BR17 - Pattern Expansion Foreground Color									------------	---	-------------	--	--	--	--	--	--		Source:	Source: BlitterCS									Size (in l	oits):	32								Default \	Value:	0x00000000								DWord	Bit	Description								0	O 31:0 Pattern Expansion Background Color Bits These bits provide the one, two, or four bytes worth of color data that select the foreground of to be used in the color expansion of monochrome pattern data during BLT operations. Whether one, two, or four bytes worth of color data is needed depends upon the color depth to which the BLT Engine has been set. For a color depth of 32bpp, 16bpp and 8bpp, bits [31:0], [15:0] and [7] respectively, are used.								# **BR18 - Source Expansion Background and Destination Color**	В	R18	3 - Source Expansion Background and Destination Color		--	--------	---		Source:		BlitterCS		Size (in b	oits):	32		Default \	/alue:	0x00000000		DWord	Bit	Description		These color t registe two, th BLT En		Source Expansion Background Color Bits These bits provide the one, two, or four bytes worth of color data that select the background color to be used in the color expansion of monochrome source data during BLT operations. This register is also used to support destination transparency mode and Solid color fill. Whether one, two, three, or four bytes worth of color data is needed depends upon the color depth to which the BLT Engine has been set. For a color depth of 32bpp, 16bpp and 8bpp, bits [31:0], [15:0] and [7:0], respectively, are used.	## **BR19 - Source Expansion Foreground Color**		BR19 - Source Expansion Foreground Color							------------	--																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																											
--	--	--	--	--		Source:		BlitterCS						Size (in b	oits):	32						Default \	√alue:	0x00000000						DWord	Bit	Description						0	31:0	Pattern/Source Expansion Foreground Color Bits These bits provide the one, two, or four bytes worth of color data that select the foreground color to be used in the color expansion of monochrome source data during BLT operations. Whether one, two, or four bytes worth of color data is needed depends upon the color depth to which the BLT Engine has been set. For a color depth of 32bpp, 16bpp and 8bpp, bits [31:0], [15:0] and [7:0], respectively, are used.					### **BR27 - Destination Higher Order Address** **BR27 - Destination Higher Order Address** Source: BlitterCS Size (in bits): 32 Default Value: 0x00000000 Upper 32 bits of the starting pixel address for the destination data. This structure is also the working location for the upper bits of the destination address, and changes as the BLT Engine performs the accesses. See BR09 for the lower 32 bits. When tiling is enabled for XY-blits, this base address should be limited to 4KB. Otherwise for XY blits, there is no restriction and it is same as before. Used as the scan line address (Destination Y Address and Destination Y1 Address) for BLT instructions: PIXEL_BLT, SCANLINE_BLT, and TEXT_BLT. In this case the address points to the first pixel in a scan line and is compared with the ClipRect Y1 and Y2 address registers to determine whether the scan line should be written or not. The Destination Y1 address is the top scan line to be written for text. Note that for non-XY blits (COLOR_BLT, SRC_COPY_BLT), the destination address points to the first byte to be written. This structure is always the last location written for a BLT drawing instruction. Writing to BR27 starts the BLT engine execution. Note: Some instructions affect only one scan line (requiring only one coordinate); other instructions affect multiple scan lines and need both coordinates. GraphicsAddress is a 64-bit value [63:0], but only a portion of it is used by hardware. The uppermost reserved bits are ignored and MBZ.	DWord	Bit	Description					-------	-------	---------------------------------	------------------------	-----	--		0	31:16	Reserved														Format:		MBZ				15:0	Destination Address Upper DWORD														Format:	GraphicsAddress[47:32]			# **BR28 - Source Higher Order Address**		BR28 - S	Source Higher Orde	r Ad	dress				--	------------	--	-------	----------	-----------	---------------		Source:	BlitterCS							Size (in bits):	32							Default Value:	0x00000000								DWord		Bit		Descripti	ion			0		31:16	Reserved	l					, specifying the starting pixel								data. When tiling is enabled for		Format:		MBZ		XY-blits with Color source surfaces, this base address should be limited to 4KB. Otherwise for XY blits, there is no restriction and it is same as before, including for monosource and text blits. Note that for non-XY				Source A	ddress Up	per DWORD		blit with Color Source (SRC_COPY_BLT), this address points to the first byte to be read.				Format:	GraphicsA	ddress[47:32]		· •], but only a portion of it is used ed bits are ignored and MBZ.					# **BR29 - Color Pattern Higher Order Address**		BR29 - Color Pattern Higher	Orde	er Address				-----------------	--	-------	-----------------------------	---------------	--		Source:	BlitterCS						Size (in bits):	32						Default Value:	0x00000000							DWord	Bit	Description					0	31:16	Reserved					the Color Pattern address, specifying the starting							location of the (8X8) pixel pattern. s is a 64-bit value [63:0], but only a portion of it is		Format:	MBZ			•	are. The uppermost reserved bits are ignored and	15:0	Color Pattern Address Upper				MBZ.			DWORD														Format: GraphicsAc	ddress[47:32]		## **BR30 - Setup Blit Color Pattern Higher Order Address**	BR30 - Setup Blit Color Pattern Higher Order Address										--	------------	--	--------------------------------------	------------	--------------	--	--	--		Source:	BlitterCS									Size (in bits):	32									Default Value:	0x00000000									DWord			Description							0			Reserved							Upper 32 bits of the										location of the (8X8) pixel pattern. GraphicsAddress is a 64-bit value [63:0], but only a portion of it is used by hardware. The uppermost reserved bits are ignored and MBZ.			Format:		MBZ								Setup Blit Color Pattern Upper DWORD																				Format:	GraphicsAd	dress[47:32]				# **Byte Masked Media Block Message Header**		МН	MBBM - Byte Masked Media	Block Message Header					------------	-------	---	----------------------------------	--	--	--		Source:		EuSubFunctionDataPort1						Size (in b	its):	256						Default V	alue:	0x00000000, 0x00000000, 0x00000000, 0x0 0x00000000, 0x00000000	0000000, 0x00000000, 0x00000000,					DWord	Bit	Descri	ption					0	31:0	X Offset								Format:	S31							X offset (in bytes) of the upper left corner of the block into the surface.								Programming Notes								Must be DWord aligned (Bits 1:0 MBZ) for the write form of the message.						1	31:0	Y Offset								Format:	S31							Y offset (in rows) of the upper left corner of the block into the surface.						2	31:0	Media Block Message Control								Format: MHC_MBBM_CONTRO	L							Specifies the Byte Masked message subtype and its additional input parameters.						3	31:0	Byte Mask								Format:	U32							Specifies the Byte Mask for writes when Message Mode field is BYTE_MASK.								Programming Notes								The Byte mask applies horizontally to each row of output: bit 0 for byte 0, through bit 31 for byte 31.						4	31:0	FFTID								Format: MHC_FFT	ID							Fixed Function Thread ID						57	95:0	Reserved								Format:	MBZ							Ignored					## **Byte Masked Media Block Message Header Control**	M	HC_	MBBI	M_CON1	ROL - Byte Masl Header Cont		ledia	Block Messa	ige			------------	--------------------------	---	--	---	----------	-------	-------------	-----	--		Source:	Source: BSpec										Size (in k	ze (in bits): 32										Default \	pefault Value: 0x0000000										DWord	Bit			Descri	iption						0	31:30	Message Mode																						Specifies the Media Block Write Message subtype is Byte Masked.											Value	Name	Description									02h	BYTE_MASK	The Block Height and Block Width fields are specified in this Dword. The Byte Mask qualifies which bytes are written.			rd. The						Others	Reserved	Reserved.								29	Reserve	d																					Format:				MBZ							Ignored										28:24	Sub-Register Offset											Format	:				U5						This field is ignored (reserved) for Media Block Write message.										23:22	Reserved											Farma at				MBZ							Format:				IVIDZ						ignorea											21:16	Block Height											F 4					116						Format: Height in rows of block being accessed Pange = [0.62] repres			nrecenti	U6							Height in rows of block being accessed. Range = [0,63] representing 1 to 64 rows Restriction												ock Width (bytes), then Maximum Block Height (rows) is constrained by (# Dwords width) * ws) <= 64 Dwords.									15:10											13.10	Nesei veu								#### MHC_MBBM_CONTROL - Byte Masked Media Block Message **Header Control** Format: MBZ Ignored 9:8 **Register Pitch Control** U2 Format: This field is ignored (reserved) for a Media Block Write message. 7:6 Reserved Format: MBZ Ignored 5:0 **Block Width** U6 Format: Width in bytes of the block being accessed. Range = [0,31] representing 1 to 32 Bytes.																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																									
Programming Notes Must be DWord aligned for Media Block Write message. ## **CC_VIEWPORT** ## **CC_VIEWPORT** Source: BSpec Size (in bits): 64 Default Value: 0x00000000, 0x00000000 The viewport state is stored as an array of up to 16 elements, each of which contains the DWords described here. The start of each element is spaced 2 DWords apart. The first element of the viewport state array is aligned to a 32-byte boundary. The Minimum and Maximum Depth legal value ranges are dependant on the depth buffer format.	butter forma	at.				--------------	------	--	---		DWord	Bit		Description		0	31:0	Minimum Depth										Format:	IEEE_Float				Indicates the minimum depth. The interprior to the depth test.	polated or computed depth is clamped to this value				Progr	ramming Notes				The Minimum depth value cannot be NA	than-or-equal to the Maximum depth value. AN (Not-A-Number). alue must not be less than 0.0, also it may not be -		1	31:0	Maximum Depth										Format:	IEEE_Float				Indicates the maximum depth. The interprior to the depth test.	polated or computed depth is clamped to this value				Progr	ramming Notes				The Maximum depth value cannot be sn The Maximum depth value cannot be NA	•				For all depth formats: The Maximum dep		#### **Channel Mask Message Descriptor Control Field** #### **MDC CMASK - Channel Mask Message Descriptor Control Field** Source: **BSpec** Size (in bits): 4 Default Value: 0x00000000 **DWord** Bit **Description** 0 3:0 **Mask** For the read message, indicates that which channels are read from the surface and included in the writeback message. For the write message, indicates which channels are included in the message payload and written to the surface. **Value Name Description** 00h RGBA [Default] Red, Green, Blue, and Alpha are included 01h **GBA** Green, Blue, and Alpha are included 02h RBA Red, Blue, and Alpha are included 03h ВА Blue and Alpha are included 04h RGA Red, Green, and Alpha are included GA 05h Green and Alpha are included 06h RA Red and Alpha are included 07h Α Alpha is included 08h RGB Red, Green, and Blue are included 09h GB Green and Blue are included 0Ah RB Red and Blue are included В 0Bh Blue is included 0Ch RG Red and Green are included G 0Dh Green is included 0Eh R Red is included Ignored 0Fh Reserved # **Channel Mode Message Descriptor Control Field**	MD	C _(СМО	DE - C	Channel Mode Message Descriptor Control Field		------------	-------------	----------	-----------	---		Source:			BSpec			Size (in b	oits):		1			Default \	√alue	e:	0x00000	0000		DWord	Bit			Description		0	0	Channe	l Mode											Two mo	odes of c	hannel-enable are provided: a SIMD8 or SIMD16 Dword channel serial view of a				register	and a SI	MD4x2 view of a register.				Value	Name	Description				0	Oword	All 4 Dwords are read or written if one or more of these channels are enabled				1	Dword	Each Dword is read or written only if its corresponding channel is enabled.	## **Clear Color**	CLEAR_CO	OLC	R - Clear Color			---	-------	--	---		Source: BSpec Size (in bits): 256 Default Value: 0x00000000, 0x00000000, 0x00000000 0x00000000, 0x00000000 0x00000000	0x000	00000, 0x00000000, 0x000000	00, 0x00000000,		DWord	Bit	Descri	ption		0	31:0	Raw Clear Color : Red			Programming Notes:		Format:	F32		Software shall write the Raw Clear Color channels such that the channel order matches		Format:	U32		the "SURFACE_STATE.Shader Channel Select"		Format:	S31		programming.					1	31:0	Raw Clear Color: Blue			Programming Notes: Software shall write the		Format:	F32		Raw Clear Color channels such that the channel		Format:	U32		order matches the "SURFACE_STATE.Shader Channel Select" programming.		Format:	S31		2	31:0	Raw Clear Color : Green			Programming Notes: Software shall write the		Format:	F32		Raw Clear Color channels such that the channel		Format:	U32		order matches the "SURFACE_STATE.Shader Channel Select" programming.		Format:	S31		2	31:0	Raw Clear Color : Alpha			Programming Notes:	31.0	Format:	F32		Software shall write the Raw Clear Color		Format:	U32		channels such that the channel order matches		Format:	S31		the "SURFACE_STATE.Shader Channel Select" programming.		Tomac	55.		4	31:0	Converted Clear Color and (Clear Depth									This DWORD stores the formal of bits per pixel are 32, entire in this DWORD. If bits per pixel are 64, lower lifield. If bits per pixel are 128, this fivalue. This field is packed according	pixel's clear value is stored DOWRD is stored in this deld is not used to store clear		5	31:0	Converted Clear Color								CLEAR_C	OLC	R - Clear Color			---------	------	--	--				This DWORD stores the form If bits per pixel are 64, upper field If bits per pixel are 32 or 128 store clear value. The field is packed according	r DOWRD is stored in this B, this field is not used to		6	31:1	Reserved					Value	Name				0	MBZ			0	Color Discard Enable					Desc	ription				caches do not need to be w	rce's cachelines from on-chip ritten back to memory after a Tile Pass). This bit applies				Programi	ming Notes				This bit must be programm to a Render Pass (Tile Pass) changed during the Tile Pass			7	31:0	Reserved					Formati	MBZ				Format:	IVIDL	# **Clock Gating Disable Format**			C	lock Gati	ing Disable Format		-----------------	-----	-------------	-----------	---------------------------------------		Source:		BSpec				Size (in bits):		1				Default Value:		0x00000000				DWord	Bit			Description		0	0	Clock_Gate_	Disable					Value	Name	Description				0b	Enable	Clock gating controlled by unit logic				1b	Disable	Disable clock gating function	## COLOR_CALC_STATE					COLOR_CALC_STATE						------------	--------	---	---------------------	--------------------------------------	------------	-------------------------------	--	--		Source:		В	Spec							Size (in b	oits):	1	92							Default \	/alue:	0:	x00000000, 0x00	0000000, 0x00000000, 0x00000000	, 0x00000	0000, 0x00000000				This def		is pointe	ed to by a field in	n 3DSTATE_CC_STATE_POINTERS,	and store	d at a 64-byte aligned				DWord	Bit	Description								0	31:16	Reserve																				Format	t:		MBZ						15	Round	Disable Function	on Disable								Format	t:	Disable								Disable	es the round-disa	able function of the color calculate	or.							Value	Name	De	scription							0	Cancelled	Dithering is cancelled based on t	he data us	sed by blend to avoid drift.						1	Not Cancelled	ncelled Dithering is NOT cancelled.						14:	14:1	Reserved										Format									0	Alpha Test Format This field selects the format for Alpha Reference Value and the format in which Alpha Test is performed.										Va	lue	Name		Description						0h	ALPHA	TEST_UNORM8		UNorm8						1h	ALPHA	TEST_FLOAT32		Float32								Programming Not	25							Alpha-	test format is inc	dependent of RT format. When PS		INIT/SINT alpha-value it will								t float number for the purpose of	•	•				1	31:8	Reserve	ed									Exists I	f: [Alpha	Test Format] == 'ALPHATEST_UNC	DRM8'							Format	:: MBZ								31:0	Alpha F	Reference Value	As FLOAT32								Exists I		Test Format] == 'ALPHATEST_FLO	AT32'							Format	:: IEEE_Flo	oat								This fie	ld specifies the a	alpha reference value to compare	against in	the Alpha Test function.								Programming Not	es								COLOR_CAI	LC_STATE		---	------	-----------------	---------------------------------	---				This field show	uld not be programmed to N	JaN.			7:0	Alpha Referei	nce Value As UNORM8					Exists If:	[Alpha Test Format] == 'A	LPHATEST_UNORM8'				Format:	UNORM8 Upper 24 bits M	BZ				This field spec	cifies the alpha reference valu	ue to compare against in the Alpha Test function.		2	31:0	Blend Consta	nt Color Red					Format:		IEEE_Float				This field spec	cifies the Red channel of the	Constant																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
Color used in Color Buffer Blending.		3	31:0	Blend Consta	nt Color Green					Format:		IEEE_Float				This field spec	cifies the Green channel of th	ne Constant Color used in Color Buffer Blending.		4	31:0	Blend Consta	nt Color Blue					Format:		IEEE_Float				This field spec	cifies the Blue channel of the	Constant Color used in Color Buffer Blending.		5	31:0	Blend Consta	nt Color Alpha					Format:		IEEE_Float				This field spec	cifies the Alpha channel of th	e Constant Color used in Color Buffer Blending.	## **COLOR_PROCESSING_STATE - ACE State**			COLOR_PROCESSING	STATE - ACE	State				---	-------	---	--	--------------------------	----	--		Source: Size (in bits): Default Value		BSpec 416 0x00000068, 0x4C382410, 0x9C8874	160 0vERD8C4R0 0v604	C3824 0∨R09C8874				Delault Valu		0x00000000, 0x4C302410, 0x3C0074 0x0000D8C4, 0x00000000, 0x0000000 0x00000000						This state st of the Color		ontains the ACE state used by the cog State.	lor processing function.	It corresponds to DW29DW	41			DWord	Bit		Description					0	31:7	Reserved								Format:	MBZ	7					6:2	Skin Threshold								Format:		U5							Used for Y analysis (min/max) for pixels which are higher than skin threshold.							Value		Name						1-31								26	[Default]						1	Full Image Histogram		1						Default Value:		0						Format:		Enable						Used to ignore the area of interest	t for full image histograr	m.					0	ACE Enable								Format:	Enable					1	31:24	Y3								Default Value:		76						Format:		U8						The value of the y_pixel for point 3	3 in PWL.						23:16	Y2								Default Value:		56						Format:		U8						The value of the y_pixel for point 2	2 in PWL.						15:8	Y1								Default Value:		36						Format:		U8						The value of the y_pixel for point 1 in PWL.			---------	-------	---	-----			7:0	Ymin				7.0	Default Value:	16				Format:	U8				The value of the y_pixel for point 0 in PWL.			2	31:24	Y7					Default Value:	156				Format:	U8				The value of the y_pixel for point 7 in PWL.			Format:		I					Default Value:	136		_			U8				The value of the y_pixel for point 6 in PWL.				15:8						Default Value:	116				Format:	U8				The value of the y_pixel for point 5 in PWL.				7:0	Y4	1				Default Value:	96				Format:	U8				The value of the y_pixel for point 4 in PWL.			3	31:24	Ymax					Default Value:	235				Format:	U8				The value of the y_pixel for point 11 in PWL.				23:16	Y10	Γ				Default Value:	216				Format:	U8				The value of the y_pixel for point 10 in PWL.				15:8	Y9					Default Value:	196				COLOR_PROCESSING_STATE - A	CE State			---	-------	--	----------	----------				Format:	U8					The value of the y_pixel for point 9 in PWL.	,				7:0	У 8						Default Value:	176					Format:	U8					The value of the y_pixel for point 8 in PWL.				4	31:24	B4						Default Value:	96					Format:	U8					The value of the bias for point 4 in PWL.	,	,			23:16	В3						Default Value:	76					Format:	U8					The value of the bias for point 3 in PWL.					15:8	B2		1				Default Value:	56					Format:	U8					The value of the bias for point 2 in PWL.					7:0	B1						Default Value:	36					Format:	U8					The value of the bias for point 1 in PWL.				5	31:24	B8						Default Value:	176					Format:	U8					The value of the bias for point 8 in PWL.					23:16	B7						Default Value:	156					Format:	U8					The value of the bias for point 7 in PWL.					15:8	B6						Default Value:		136				---	-------	---	-----------------------	------	--	--				Format:		U8						The value of the bias for point 6 in PWL.							7:0	B5								Default Value:		116						Format:		U8						The value of the bias for point 5 in PWL.						6	31:16	Reserved								Format:	MBZ						15:8	B10		1						Default Value:		216						Format:		U8						The value of the bias for point 10 in PWL.							7:0	В9								Default Value:		196						Format:		U8						The value of the bias for point 9 in PWL.						7	31:27	Reserved	T							Format:	MBZ						26:16	<u>\$1</u>								Format:	U1.10							The value of the slope for point 1 in PWL. TI	he default is 1024/10)24.					15:11	Reserved								Format:	MBZ						10:0	<u>so</u>								Format:	U1.10							The value of the slope for point 0 in PWL. TI	he default is 1024/10)24.				8	31:27	Reserved								Format:	MBZ						26:16	S3								Format:	U1.10						15:11	Reserved				----	-------	------------------------------------	-----------------------------------	--				Format:	MBZ				10:0	S2	•					Format:	U1.10					The value of the slope for point 2	in PWL. The default is 1024/1024.			9	31:27	Reserved						Format:	MBZ				26:16	S5						Format:	U1.10					The value of the slope for point 5	in PWL. The default is 1024/1024.				15:11	Reserved						Format:	MBZ				10:0	S4						Format:	U1.10					The value of the slope for point 4	in PWL. The default is 1024/1024.			10	31:27	Reserved						Format:	MBZ				26:16	<u>\$7</u>						Format:	U1.10					The value of the slope for point 7	in PWL. The default is 1024/1024.				15:11	Reserved						Format:	MBZ				10:0	S6	<u> </u>					Format:	U1.10					The value of the slope for point 6				11	31:27	Reserved						Format:	MBZ				26:16	S9						Format:	U1.10					The value of the slope for point 9	in PWL. The default is 1024/1024.				15:11	Reserved						Format:					COLOR_PROCESSING_STATE - ACE State							----	------------------------------------	--	----------------------	--	--	--			10:0	S8								Format:	U1.10							The value of the slope for point 8 in PWL. The def	ault is 1024/1024.					12	31:11	Reserved								Format:	MBZ						10:0	S10								Format:	U1.10							The value of the slope for point 10 in PWL. The de	efault is 1024/1024.				## **COLOR_PROCESSING_STATE - CSC State**	COLOR_PROCE	SSING_STATE -	CSC State		-------------	---------------	------------------		-------------	---------------	------------------	Source: BSpec Size (in bits): 288 0x00000000, 0x00000000, 0x00000000 This state structure contains the CSC state used by the color processing function. It corresponds to DW55..DW63 of the Color Processing State.	of the Color Proc	l .	<u> </u>					-------------------	-------	---------------------------	----------------	---------	-----		DWord	Bit		Description				0	31:29	Reserved							Format:		MBZ				28:16	C1							Default Value:	0						Format:	S2.10 2's comp	olement					Transform coefficient						15:3	CO							Default Value:	1024						Format:	S2.10 2's comp	olement					Transform coefficient						2	YUV_IN							Default Value:			0				Format:			YUV				CSC input offset enable.						1	YUV_OUT							Default Value:			0				Format:			RGB				CSC output offset enable.						0	Transform Enable	1						Format:	Ena	ble			1	31:26	Reserved							Format:		MBZ				25:13	C3							Default Value:	0						Format:	S2.10 2's comp	olement				COI	OR PROCESSIN	G_STATE - CSC State				---	-------	------------------------	----------------------	--	--				Transform coefficient.						12:0	C2							Default Value:	0						Format:	S2.10 2's complement						Transform coefficient.			
coefficient.					5	31:20	Reserved						COI	LOR_PROCESSING	STATE - CSC State			---	-------	-------------------------	-------------------	---				Format:	MBZ				19:10	Offset out 1						Default Value:	0					Format:	S9 2's complement					Offset Out for Y/R.					9:0	Offset In 1						Default Value:	0					Format:	S9 2's complement					Offset in for Y/R.				6	31:20	Reserved	I					Format:	MBZ				19:10	Offset out 2						Default Value:	0					Format:	S9 2's complement					Offset out for U/G.					9:0	Offset in 2						Default Value:	0					Format:	S9 2's complement					Offset in for U/G.				7	31:20	Reserved						Format:	MBZ				19:10	Offset out 3						Default Value:	0					Format:	S9 2's complement					Offset out for V/B.					9:0	Offset in 3						Default Value:	0					Format:	S9 2's complement					Offset in for V/B.				8	31:17	Reserved	ſ	1				Format:	MBZ				16	Alpha from State Select				COLOR_PROCESSING_STATE - CSC State								------------------------------------	------	----------------------------	--	-----------------------------	--	--				Format: U1 Enumerated Type								Value Name Description								0		Alpha is taken from message						1		Alpha is taken from state					15:0	Color Pipe Alpha								Format:		U16			## **COLOR_PROCESSING_STATE - PROCAMP State** ## **COLOR_PROCESSING_STATE - PROCAMP State** Source: BSpec Size (in bits): 64 Default Value: 0x00020001, 0x01000000 This state structure contains the PROCAMP state used by the color processing function. It corresponds to DW53..DW54 of the Color Processing State.	DWord	Bit			Description				-------	-------	----------------------------------	--	---------------------	------	--		0	31:28	Reserved								Format:		МВ	Z				27:17	Contrast								Default Value:			1					Format:			U4.7					Contrast magnitude.							16:13	Reserved								Format:		MB	Z				12:1	Brightness								Default Value:		0						Format:		S7.4 2's complement						Brightness magnitude.							0	PROCAMP Enable								Default Value:		1						Format:		Enable				1	31:16	Cos_c_s								Default Value:		256						Format:		S7.8 2's complement						UV multiplication cosine factor.							15:0	Sin_c_s								Default Value:		0						Format:		S7.8 2's complem	ent					UV multiplication sine factor.					## **COLOR_PROCESSING_STATE - STD/STE State**		СО	LOR PROCES	SSING STATE - STD	/STE Sta	te			-----------------	----------------	---	---	--	------------------------	--		Source:		Spec		<u>′ </u>				Size (in bits):		28						Default Value:	0: 0: 0:	xD82E0000, 0x8285EC x00008CC8, 0x000000 x1C180000, 0x000000	00, 0x00001180, 0xFE2F2E00, 0x0 EC, 0x00008282, 0x00000000, 0x 00, 0x01478000, 0x0007C300, 0x 00, 0x00000000, 0x00000000, 0x 00, 0x000000000, 0x000000000, 0x	02117000, 0x/ 000000000, 0x0 0007CF80, 0x0	A38FEC96, 00000000,			This state stru	ıcture cor	ntains the STD/STE sta	te used by the color processing t	function.				DWord	Bit		Description					0	31:24	V_Mid								Default Value:			154					Format:			U8					Rectangle middle-point V coordinate							23:16	U_Mid								Default Value:			110					Format:			U8					Rectangle middle-point U coordinate							15:10	Hue Max								Default Value:			14					Format:			U6					Rectangle half widtl	h					-	9:4	Sat Max								Default Value:			31					Format:			U6					Rectangle half length.							3	Reserved		ı						Format: MBZ							2	Output Control								Value	N	ame						0	Output Pixels [Default]							1	Output STD Decisions						1	STE Enable							CO	LOR_PROCESSING_STA	TE - STD/STE	State				---	-------	--	---------------------------	-----------------	--	--				Format:	Enable						0	STD Enable	·							Format:	Enable					1	31	Reserved								Format:	MBZ						30:28	Diamond Margin								Default Value:		4						Format:		U3					27:21	Diamond du								Default Value:	0							Format:	S6 2's complement							Rhombus center shift in the sat-direct	tion, relative to the red	ctangle center.					20:18	HS Margin								Default Value:		3						Format: U3							17:10	Cos(α)								Format: S0.7 2's Co	mpliment							The default is 79/128							9:8	Reserved								Format:	MBZ						7:0	Sin(α)								Format: S0.7 2's Co	mpliment							The default is 101/128						2	31:21	Reserved								Format:	MBZ						20:13	Diamond Alpha								Format: U2.6								1 / tan(β) The default is 100/64							12:7	Diamond Th								Default Value:		35						Format:		U6						Half length of the rhombus axis in th	e sat-direction.						6:0	Diamond dv							12:7	Diamond Alpha Format: 1 / tan(β) The default is 100/64 Diamond Th Default Value: Format: Half length of the rhombus axis in th	U2.6						СО	LOR_PROCESSING_ST	ATE - STD/STE St	tate				---	-------	--	--------------------------	------	--	--				Default Value:	0							Format:	S6 2's complement					3	31:24	Y_point_3								Default Value:		254						Format:		U8						Third point of the Y piecewise linea	r membership function.						23:16	Y_point_2								Default Value:		47						Format:		U8						Second point of the Y piecewise lin	ear membership function.						15:8	Y_point_1								Default Value:		46						Format:		U8						First point of the Y piecewise linear membership function.							7	VY_STD_Enable								Format:	Enable							Enables STD in the VY subspace.							6:0	Reserved								Format:	MBZ					4	31:18	Reserved								Format:	MBZ						17:13	Y_Slope_2	1	1						Format:	U2.3							Slope between points Y3 and Y4. T	he default is 31/8.						12:8	Y_Slope_1								Format:								Slope between points Y1 and Y2. The default is 31/8.							7:0	Y_point_4								Default Value:		255						Format:		U8						Fourth point of the Y piecewise line	ear membership function					5	31:16	INV_skin_types_margin							CO	LOR_PROC	ESSING_STATE	- ST	D/STE Stat	е		---	-------	--	-----------------------------	--------	--------------	------				Format:			U0.16					1/(2* Skin_types	_margin)							Value	Name		Descrip	tion				20	[Default]	Skin_	_Type_margin				15:0	Inverse Margin	VYL							Format:			U0.16					1 / Margin_VYL	The default is 3300/65536					6	31:24	P1L								Default Value:			2	216				Format:				J8				Y Point 1 of the	lower part of the detection) PWLF	Ē.				23:16	POL								Default Value:				46				Format: U8								Y Point 0 of the lower part of the detection PWLF.							15:0	Inverse Margin	VYU							Format:			U0.16					1 / Margin_VYU	The default is 1600/65536.					7	31:24	B1L								Default Value: 13	
complement							Slope 2 of the lower part of the detection PWLF. The defa	ult is 0/256.					10:0	S1L							Format: S2.8 2's complement							Slope 1 of the lower part of the detection PWLF. The defa	ult is 0/256.				10	31:27	Reserved							Format: MBZ						26:19	P1U							Default Value:	66						Format:	U8						Y Point 1 of the upper part of the detection PWLF.						18:11	POU	ı						Default Value:	46						Format:	U8					CO	LOR_PROCESSING_STATE - STD/S	TE State				----	-------	---	-------------------	--	--				Y Point 0 of the upper part of the detection PWLF.						10:0	S3L							Format: S2.8 2's complement							Slope 3 of the lower part of the detection PWLF. The de	fault is 0/256.				11	31:24	B1U	_						Default Value:	163						Format:	U8						V Bias 1 of the upper part of the detection PWLF.	,					23:16	BOU							Default Value:	143						Format:	U8						V Bias 0 of the upper part of the detection PWLF.						15:8	P3U							Default Value:	236						Format:	U8						Y Point 3 of the upper part of the detection PWLF.						7:0	P2U							Default Value:	150						Format:	U8						Y Point 2 of the upper part of the detection PWLF.					12	31:27	Reserved							Format: ME	3Z					26:16	SOU							Format: S2.8 2's complement							Slope 0 of the upper part of the detection PWLF. The de	fault is 256/256.					15:8	B3U							Default Value:	140						Format:	U8						V Bias 3 of the upper part of the detection PWLF.						7:0	B2U							Default Value:	200						Format:			U8					----	-------	---	----------------------------	-------------------------	------------	--	--	--				V Bias 2 of the uppe	r part of the detection P	WLF.						13	31:22	Reserved										Format:		MBZ							21:11	S2U										Format:	S2.8 2's compleme	nt								Slope 2 of the uppe	r part of the detection P\	WLF. The default is -	179/256.						10:0	S1U										Format:	S2.8 2's compleme	nt								Slope 1 of the upper part of the detection PWLF. The default is -113/256.								14	31:28	Reserved										Format:		MBZ							27:20	Skin Types Margin										Default Value:			20							Format:			U8							Skin types Y margin.									19:12	Skin Types Thresh										Default Value:			120							Format:			U8							Skin types Y thresho	old.								11	Skin Type Enable										Format:		Enable								Treat differently brig	ght and dark skin types.									Value	Name		escription							0	[Default]	Disable							10:0	S3U										Format:	S2.8 2's compleme	nt								Slope 3 of the uppe	r part of the detection P\	WLF. The default is 0,	/256.					15	31	Reserved										Format:		MBZ							30:21	SATB1										Format:	S7.2 2's compleme	nt								First bias for the sat	uration PWLF (bright skir	n). The default is -8/4							CO	LOR PROCESSII	NG_STATE - STD/STE State					----	---------------------------	---	---	--	--	--				_	-						20:14	SATP3								Default Value:	31							Format:	S6 2's complement							Third point for the satura	ation PWLF (bright skin).						13:7									Default Value:	6							Format:	S6 2's complement							Second point for the saturation PWLF (bright skin).							6:0 SATP1								Format: S6 2's complement		S6 2's complement							First point for the satura	tion PWLF (bright skin). The default is -6.					16	31 Reserved									Format:	MBZ						30:20	SATS0								Format:	U3.8							Zeroth slope for the satu	rration PWLF (bright skin). The default is 297/256.						19:10	SATB3								Format:	S7.2 2's complement							Third bias for the saturation PWLF (bright skin). The default is 124/4.							9:0	SATB2								Format:	S7.2 2's complement							Second bias for the satur	ration PWLF (bright skin). The default is 8/4.					17	31:22	Reserved								Format:	MBZ						21:11	SATS2								Format:	U3.8							Second slope for the sat	uration PWLF (bright skin). The default is 297/256.						10:0	SATS1	,							Format:	U3.8							First slope for the satura	tion PWLF (bright skin). The default is 85/256.					18	31:25	HUEP3							CO	LOR_PROCES	SING_S1	TATE - STD	/STE State			----	-------	--	------------------	-----------------------	-----------------------	--				Default Value:		14						Format: S6 2's complemen		ment						Third point for the hue PWLF (bright skin)							24:18	HUEP2								Default Value:	Default Value: 6							Format:		S6 2's compler	ment					Second point for the	e hue PWLF (b	right skin)					17:11	HUEP1								Format:	S6 2's	complement						First point for the h	ue PWLF (brigl	nt skin). The default	t is -6.				10:0	SATS3								Format:			U3.8					Thrid slope for the s	saturation PWI	F (bright skin). The	e default is 256/256.			19	31:30	Reserved								Format:			MBZ				29:20	HUEB3								Format:		complement						Third bias for the hu	ue PWLF (brigh	nt skin). The default	t is 56/4.				19:10	HUEB2								Format:	S7.2 2's	complement						Second bias for the	hue PWLF (bri	ght skin). The defa	ult is 8/4.				9:0	HUEB1								Format:	S7.2 2's	complement						First bias for the hue	e PWLF (bright	t skin). The default	is -8/4.			20	31:22	Reserved		ı						Format:			MBZ				21:11	HUES1								Format:			U3.8					First slope for the hi	ue PWLF (brigl	nt skin) The default	: is 85/256.				10:0	HUES0								Format:			U3.8				CO	LOR_PROCESSING	_STATE - STD/STE State					----	-------	--	--	--	--	--				Zeroth slope for the hue PWI	F (bright skin) The default is 384/256.					21	31:22	Reserved							0	Format:	MBZ						21:11	HUES3	<u> </u>						21.11	Format:	U3.8							Third slope for the hue PWLF	(bright skin) The default is 256/256.						10:0	HUES2								Format:	U3.8							Second slope for the hue PW	LF (bright skin) The default is 384/256.					22	31	Reserved								Format:	MBZ						30:21	SATB1_DARK								Format: S7.2 2's complement								First bias for the saturation PWLF (dark skin) The default is 0/4.							20:14	SATP3_DARK								Default Value:	31							Format:	S6 2's complement							Third point for the saturation PWLF (dark skin)							13:7	SATP2_DARK								Default Value:	31							Format:	S6 2's complement							Second point for the saturation PWLF (dark skin)							6:0	SATP1_DARK								Format: S6	5 2's complement							First point for the saturation	PWLF (dark skin). The default is -11.					23	31	Reserved								Format:	MBZ						30:20	SATS0_DARK								Format:	U3.8					
-------	---	---	--	--	--				Format:	S7.2 2's complement							Third bias for the hue PWLF (dark skin). The default is 56/4.							19:10	HUEB2_DARK								Format:	S7.2 2's complement							Second bias for the	he hue PWLF (dark skin). The default is 0/4.						9:0	HUEB1_DARK								Format:	S7.2 2's complement							First bias for the I	hue PWLF (dark skin). The default is 0/4.					27	31:22	Reserved								Format:	MBZ						21:11	HUES1_DARK								Format:	U3.8							First slope for the	e hue PWLF (dark skin). The default is 0/256.						10:0	HUESO_DARK								Format:	U3.8							Zeroth slope for t	the hue PWLF (dark skin). The default is 256/256.					28	31:22	Reserved								Format:	MBZ						21:11	HUES3_DARK								Format:	U3.8							Third slope for the hue PWLF (dark skin). The default is 256/256.							10:0	HUES2_DARK								Format:	U3.8							Second slope for	the hue PWLF (dark skin). The default is 299/256.				## **COLOR_PROCESSING_STATE - TCC State** **COLOR_PROCESSING_STATE - TCC State** Source: BSpec Size (in bits): 352 Default Value: 0xDCDCDC00, 0xDCDCDC00, 0x1E34CC91, 0x3E3CCE91, 0x02E80195, 0x0197046B, 0x01790174, 0x00096000, 0x00000000, 0x03030000, 0x009201C0 This state structure contains the TCC state used by the color processing function. It corresponds to DW42..DW52 of the Color Processing State.		23:16	SatFactor3 Default Value: Format: The saturation factor for yellow.		220 U1.7				-----	-------	---	----------	-------------	--	--			22:16	Format:						2	22:16			111 7				2	22.16	The saturation factor for yellow.		01.7				-	22.16								23.10	SatFactor2								Default Value:		220						Format:		U1.7						The saturation factor for red.							15:8	SatFactor1								Default Value:		220						Format:		U1.7						The saturation factor for magenta.							7	TCC Enable	<u> </u>							Format:	Enable						6:0	Reserved								Format:	MBZ					1 3	31:24	SatFactor6								Default Value:		220						Format:		U1.7						The saturation factor for blue.		•				i	23:16	SatFactor5								Default Value:		220						Format:		U1.7					15:8	SatFactor4				---	-------	---	-----	-------				Default Value:		220				Format:		U1.7				The saturation factor for green.					7:0	Reserved						Format:	MBZ			2	31:30	Reserved						Format:	MBZ				29:20	Base Color 3						Default Value:		483				Format:		U10			19:10	Base Color 2						Default Value:		307				Format:		U10			9:0	Base Color 1						Default Value:		145				Format:		U10		3	31:30	Reserved						Format:	MBZ				29:20	Base Color 6						Default Value:		995				Format:		U10			19:10	Base Color 5						Default Value:		819				Format:		U10			9:0	Base Color 4						Default Value:		657				Format:		U10		4	31:16	Color Transit Slope 23						Default Value:		744				Format:		U0.16				The calculation result of 1 / (BC3 - BC2) [1/62	2]				15:0	Color Transit Slope 12						Default Value:		405				COLOR_PROCESSING_STATE - 1	FCC State					---	-------	--	------------------	--	--	--				The calculation result of 1 / (BC2 - BC1) [1/57]						5	31:16	Color Transit Slope 45								Default Value:	407							Format:	U0.16							The calculation result of 1 / (BC5 - BC4) [1/57]							15:0	Color Transit Slope 34								Default Value:	1131							Format:	U0.16							The calculation result of 1 / (BC4 - BC3) [1/61]						6	31:16	Color Transit Slope 61								Default Value:	377							Format:	U0.16							The calculation result of 1 / (BC1 - BC6) [1/62]							15:0	Color Transit Slope 56								Default Value:	372							Format:	U0.16							The calculation result of 1 / (BC6 - BC5) [1/62]						7	31:22	Color Bias 3								Default Value:	0							Format:	U2.8							Color bias for BaseColor3.							21:12	Color Bias 2	T							Default Value:	150							Format:	U2.8							Color bias for BaseColor2.							11:2	Color Bias 1	T							Default Value:	0							Format:	U2.8							Color bias for BaseColor1.							1:0	Reserved								Format:	MBZ					8	31:22	Color Bias 6					---	-------	---	-----	------	----				Default Value:		0					Format:		U2.8					Color bias for BaseColor6.						21:12	Color Bias 5		1					Default Value:		0					Format:		U2.8					Color bias for BaseColor5.						11:2	ColorBias4		-					Default Value:		0					Format:		U2.8					Color bias for BaseColor4.						1:0	Reserved							Format:	MBZ	MBZ			9	31	Reserved	·						Format:	MBZ					30:24	UV Threshold							Default Value:			3				Format:			U7				Low UV threshold.						23:19	Reserved							Format:	MBZ					18:16	UV Threshold Bits							Default Value:			3				Format:			U3				Low UV transition width bits.						15:13	Reserved							Format:	MBZ					12:8	STE Threshold							Default Value:			0				Format:			U5				Skin tone pixels enhancement threshold.														COLOR_PROCESSING_STATI	E - TCC S	tate			----	-------	--	-----------------	-----------------------	--				Format:	MBZ					2:0	STE Slope Bits							Default Value:		0					Format:		U3					Skin tone pixels enhancement slope bits.					10	31:16	Inverse UVMax Color							Default Value:		146					Format:		U0.16					1 / UVMaxColor. Used for the SFs2 calculation.						15:9	Reserved							Format:	MBZ					8:0	UVMax Color							Default Value:		448					Format:		U9					The maximum absolute value of the legal UV p	ixels. Used for	the SFs2 calculation.		## **Color Calculator State Pointer Message Header Control**	МН	C_F	RT_CCSP - Colo	r Calculator State	e Pointer Message Header					----------------	--------	--	--------------------------	--------------------------	--	--	--		Source:		BSpec	Control						Size (in k	oits).	32							Default \									DWord	Bit		Descript	ion					0	31:6	Color Calculator State	Pointer																	Format:	GeneralStateOffset[31:6]								Specifies the 64-byte aligned point to the color calculator state. This pointer is relative to the General State Base Address.								5:0	Reserved																Format: Ignore											Ignored						## **Color Code Message Header Control**		N	//HC_RT_CC - Color Code Mess	age Head	ler Control					---------------	--------	--	----------	-----------------------------------	--	--	--		Source: BSpec									Size (in b	its):	32							Default \	/alue:	0x00000000							DWord	Bit	Descrip	tion						0	31:10	Reserved									Format:									Ignored								9:8	Color Code									Format:		U2	
							Description									Context ID is a unique field assigned by GFX driver when a new context is created by which it is identified across all hierarchies of SW and HW.									Context ID is used for semaphore signaling by hardware and software.									Context ID matching is used by hardware to detect Lite Restore.									Context ID is used by hardware for page fault reporting and response with IOMMU.									Context switch reason and the associated Context ID are reported to Context Switch Status Buffer by hardware on a context switch.									Context ID[15:0] (bits[47:32] of the context descriptor) are used for comparing during lite restore, semaphore signaling and context specific OA enabling.									Context ID which is a 32 bit field is further divided in to following segments described below:									Bits[63:61] (Bits 31:29 of Context ID) represents Engine class.								Bits[60:55] (Bits 28:23 of Context ID) represents SW Counter										Bit[54] (Bit 22 of Context ID) – MBZ for SW programming; this bit is used by hardware to distinguish between F&H vs F&S page requests and response messages to and from IOMMU. This bit is used by hardware on receiving page response to properly manage the page fault counters									Bits[53:48] (Bits 21:16 of Context ID) represents Engine Instance (within a Engine class).									Bits[47:37] (Bits 15:5 of Context ID) represents SW Context ID which is a software assigned unique context ID. (supports 2048 contexts per virtual function)									Bits[36:32] (Bits 4:0 of Context ID) represents Virtual Function Number (when virtualization is enabled). Set to zero when virtualization is not enabled. This field contains the bits [4:0] of the Virtual Function Number.									Programming Note: "Vitrual Function Number" must be always programmed to value 0x0.									Hardware compares the following fields of the ongoing context to that of the incoming context todetect alite restore. Lite restore is detected when the following fields are equal and the incoming context does not have the "Force Restore" bit set. On a lite restore hadware will only sample the tail pointer from memory (LRCA) and keep executing the ongoing context with out initiating any context switch flows (Flush, Context Save, Context Restore). Lite restore is HW detected context switchoptimizaion transparent to SW, Context Switch Status report and						## **CONTEXT_DESCRIPTOR - Context Descriptor Format** Context Switch Interrupt generation happens on a lite restore, Hardware Front End may temporarly get stalled from parsing new commands. - DW1.SW Context ID - DW1.Virtual Function Number - DW0.Logical Ring Context Address (LRCA) - DW0. Reserved Bits[11:9] Context ID is reported by hardware to OABUFFER along with the performance statistics counters, Context ID is used for filtering the statistics on per context basis.	31:12 I	Logical	Ring	Context Ad	dress	(LRCA)		------------------	---------	------	------------	-------	--------		------------------	---------	------	------------	-------	--------	Format: GraphicsAddress[31:12] This field contains the 4 KB-aligned address of the Logical Ring Context associated with this execlist element. LRCA must be always programmed in GGTT memory. 11 Reserved Format: MBZ 10:9 **Reserved** Format: MBZ 7:6 Fault Handling Source: CommandStreamer	Value	Name	Description		--------	-------------------	--		0h	Fault and Hang	Fault model is not supported and fault occurrence is treated as catastrophic. GAM indicates Fault Error to Command streamer. Fault Error interrupt is reported to scheduler. Command Streamer will not initiate context switch on occurrence of Fault Error.		Others	Reserved	Reserved	#### **Programming Notes** When execlist mode is set to "Legacy Context mode" Fault Handling mode must be set to "Fault and Hang." For proper programming for Page Fault modes, refer to memory interface section of the Bspec for the corresponding generation. 5 Reserved	Format:	MBZ		---------	-----	4:3 Addressing Mode & Legacy Context #### **CONTEXT_DESCRIPTOR - Context Descriptor Format** Format: U2 Legacy context set indicates GPU is operating in legacy context mode of operation and doesn't support any SVM features. Legacy context reset indicates GPU is operating in advanced context mode of operation and support SVM features. Based on the Context mode set Addressing mode is interpreted appropriately. The table below summarizes the combinations supported. GFX engine always uses 32b virtual addressing mode when translated using GGTT irrespective of below options.	Value	Name	Description				--------	--	---	--	--		01b	Legacy Context with no 64 bit VA support	GPU is enabled for legacy context mode of operation and DOESN'T support any SVM features. GPU supports 32b PPGTT graphics virtual addressing. PDP*_DESCRIPTOR contains the base address to 4GB of memory space supported.				11b	Legacy Context with 64 bit VA support	GPU is enabled for legacy context mode of operation and DOESN'T support any SVM features. GPU supports 64b (48bit canonical) PPGTT graphics virtual addressing and PDP0_DESCRIPTOR contains the base address to PML4 and other PDP Descriptors are ignored.				Others	Reserved	Other values are not supported.			#### 2 Force Restore Setting this bit will force a context restore operation when switching to this context even if the LRCA in the CCID register (normally the LRCA of the last context from the prior execlist) matches this one. Note that it is legal (and likely desirable) for the **Render Context Restore Inhibit** bit (part of the CTXT_SR_CTL register) in the context image being restored to also be set. The "ring" context is being forced to be restored from a newly initialized context despite a possible LRCA match. However, the render context for such a newly initialized context will likely be uninitialized and so should not be restored. #### 1 Reserved #### 0 Valid Set if this register holds a valid context descriptor. SW should set this bit in the Element registers that it has set up to contain valid context descriptors. Any execlist elements that are not used in a submitted execlist must have this bit clear. ### **Context Status**				CONTEXT_S1	TATUS - Co	ontext	Status		------------	--	--	---	--------------------	-------------------------	--		Source:		BSp	pec					Size (in b	Size (in bits): 64							Default \	Fault Value: 0x00000000, 0x00000000							DWord	Bit			Descri	ption			0	63:32	Context	ID							Format:				U32														Descri							nat of Context ID (sub-f			•				"Engine instance	Instance" fields of the " values. Bits[63:61] of co [53:48] of context status	Context ID" with i	its corresp 31:29 of	copulates the "Engine Class" and conding engine class and engine Context ID) represents Engine class represents Engine Instance (within an			31:30	Reserved	I							Format:				MBZ			29	Preempt	To Idle															"Preemp	t to Idle" request from	SQ load has resul	Ited in cor	ntext switch.			28	POSH Co	ntext Complete								by render pipe. When set indicates submitted workload. This bit will be						27:25	Reserved								Format:				MBZ			24:20	Display F	Plane Unified														This indicates the display plane for which Wait on Scanline/V-Blank/Sync Flip has been endeading to context switch. This field is only valid when one of the "Wait on Scanline" or "V Vblank" or "Wait on sync Flip" is set.					•				Value	Name			Exists If				0h Display Plane-1 [Wait on V-blank]==0 AND [Wait on				D [Wait on Scanline]==0				0h	Display Pipe-A	[Wait on V-blank	c]==1 OR	[Wait on Scanline]==1				1h	Display Plane-2	[Wait on V-blank	(]==0 AN	D [Wait on Scanline]==0				CONTEXT_S	TATUS - Context Status		-------	---------	-------------------------	--			1h	Display Pipe-B	[Wait on V-blank]==1 OR [Wait on Scanline]==1			2h	Display Plane-3	[Wait on V-blank]==0 AND [Wait on Scanline]==0			2h	Display Pipe-C	[Wait on V-blank]==1 OR [Wait on Scanline]==1			3h	Display Plane-4	[Wait on V-blank]==0 AND [Wait on Scanline]==0			3h	Display Pipe-D	[Wait on V-blank]==1 OR [Wait on Scanline]==1			4h	Display Plane-5				5h	Display Plane-6				6h	Display Plane-7				7h	Display Plane-8				8h	Display Plane-9				9h	Display Plane-10				Ah	Display Plane-11				Bh	Display Plane-12																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					
		Ch	Display Plane-13				Dh	Display Plane-14				Eh	Display Plane-15				Fh	Display Plane-16				10h	Display Plane-17				11h	Display Plane-18				12h	Display Plane-19				13h	Display Plane-20				14h	Display Plane-21				15h	Display Plane-22				16h	Display Plane-23				17h	Display Plane-24				18h	Display Plane-25				19h	Display Plane-26				1Ah	Display Plane-27				1Bh	Display Plane-28				1Ch	Display Plane-29				1Dh	Display Plane-30				1Eh	Display Plane-31				1Fh	Display Plane-32			19:16	Display	Plane											e for which Wait on Scanline/V-Blank/Sync Flip has been executed			leading	to context switch. This	field is only valid when one of the "Wait on Scanline" or "Wait on			C	ONTEXT_ST	ATUS - Co	ontext Status					-----	-------------------	--	---	--	--	--	--			Vblnak" or "W	Vait on sync Flip" is s	set.							Value	Value Name								0h	Reserved (L	ook at field 14:	12)						1h	Reserved								2h	Reserved								3h	Display Pla	ne-7							4h	Display Pla	ne-8							5h	Display Pla	ne-9							6h	Display Pla	ne-10							7h	Display Pla	ne-11							8h	Display Pla	ne-12							[9h, Fh]	Reserved							1:	5 Lite Restore									Format:			Enable									set. When set, this bit indicates that a given						context got p	reempted with the s	ame context res	sulting in Lite Restore in HW.					1.4	12 D: 1 DI	A 1 1949 1							14:	12 Display Plane	e Additional								This indicator	s the display plane for	nlay plane for which Wait on Scapling W-Rlank/Sync Flin has been evecuted								This indicates the display plane for which Wait on Scanline/V-Blank/Sync Flip has been executed leading to context switch. This field is only valid when one of the "Wait on Scanline" or "Wait on									Vait on sync Flip" is s	=							Value	Nan	ne	Exists If						0h	Display Plane-1		[Wait on V-blank]==0						0h	Display Pipe-A		[Wait on V-blank]==1						1h	Display Plane-2		[Wait on V-blank]==0						1h	Display Pipe-B		[Wait on V-blank]==1						2h	Display Plane-3		[Wait on V-blank]==0						2h	Display Pipe-C		[Wait on V-blank]==1						3h	Display Plane-4								4h	Display Plane-5								5h	Display Plane-6							1	1 Semaphore V	Wait Mode								_	Value		Name						0h		Signal Mode							1h	1h		Poll Mode								FOII WIOGE							CONTEXT_STATUS - Context Status						---	---	--	--	--	--			Format: MBZ						8	Wait on Scanline						7	Wait on Semaphore						6	Wait on V-blank						5	Wait on Sync Flip						4	Context Complete Element is completely processed (Head eqv to Tail) and resulted in a context switch.						3	ACTIVE to IDLE Following this context switch there is no active element available in HW to execute						2	Element Switch Context Switch happened from first element in the current execlist to the second element of the same execlist						1	Preempted Submission of a new execlist has resulted in context switch. The switch is from element in current execlist to element in pending execlist						0	IDLE to ACTIVE							Description							Execlist submitted when HW is IDLE. When this bit is set rest of the fields in CSQ are not valid with exception to Context ID. On "IDLE to ACTIVE" context switch status report, engine populates the "Engine Class" and "Engine Instance" fields of the "Context ID" with its corresponding engine class and engine instance values. Bits[63:61] of context status (Bits 31:29 of Context ID) represents Engine class and bits[53:48] of context status (Bits 21:16 of Context ID) represents Engine Instance (within an Engine class).					#### **CSC COEFFICIENT FORMAT** ### **CSC COEFFICIENT FORMAT** Source: BSpec Size (in bits): 16 Default Value: 0x00000000 Coefficients for the CSC are stored in sign-exponent-mantissa format. Two CSC coefficients are stored in each dword, the table below show the data packing in each dword.	DWord	Bit				Description			-------	-------	------------	--------------	----------	-------------------------------	--		0	15	Sign	Sign								Value		Name					0b			Positive					1b			Negative				14:12	Exponent_l	bits							Represente	ed as 2^(-n)							Value	Name		Description					110b	4	4 or ma	antissa is bb.bbbbbbb					111b	2	2 or ma	antissa is b.bbbbbbbb					000b	1	1 or ma	antissa is 0.bbbbbbbbbb					001b	0.5	0.5 or r	nantissa is 0.0bbbbbbbbb					010b	0.25	0.25 or	mantissa is 0.00bbbbbbbbbbb					011b	0.125	0.125 o	r mantissa is 0.000bbbbbbbbbb					Others	Reserved	Reserve	ed				11:3	Mantissa							2:0	Reserved					### **Data Port 0 Message Types** ### MT_DP0 - Data Port 0 Message Types Source: EuSubFunctionDataPort0 Size (in bits): 5 Default Value: 0x00000000 Lists all the Message Types in a Data Port 0 Message Descriptor [18:14]. The Legacy messages are encoded in Data Port 0 with Bit 18 set to zero. The Message Header is optional for many (but not all) of these operations. The Scratch Block messages are encoded in Data Port 0 with Bit 18 set to one. A Message Header is required.	DWord	Bit				С	Description				-------	---------------	-----------------------	---------------	---------------	--------------------	---	--	--		0	4	Legacy DAP-DC Message											egacy Message									Value	N	Name		Description						0h	No		Legacy DAP-DC Me	ssage							[Def	ault]								1h	Rese	erved	Scratch Block Mess	age, descriptor uses different Message Type									encoding						3:0 Message T		је Ту	pe								Specifi	es typ	pe of message								Valu	ıe		Name	Description						00h		MT0R_B	[Default]	Block Read message						01h		MT0R_A	3	Aligned Block Read message						03h		MT0R_D	WS	Dword Scattered Read message						04h		MT0R_BS	5	Byte Scattered Read message						07h		MT0_ME	MFENCE	Memory Fence message						08h		MT0W_B		Block Write message						0Bh		MT0W_D)WS	Dword Scattered Write message						0Ch		MT0W_B	S	Byte Scattered Write message						Others		Reserved	1	Ignored			### **Data Port 1 Message Types** ### MT_DP1 - Data Port 1 Message Types Source: EuSubFunctionDataPort1 Size (in bits): 5 Default Value: 0x00000000 Lists all the Message Types in a Data Port 1 Message Descriptor [18:14]. Most surface and atomic operations, both typed and untyped, are encoded on Data Port 1. The Message Header is optional for many (but not all) of these operations. Most A64 Stateless operations are also encoded on Data Port 1. The Message Header is forbidden for all A64 messages on Data Port 1.	Word	Bit			Description		------	-----	---------	-----------------	--		0	4:0	Message						i i	type of message	T				Value	Name	Description				00h	MT1R_T	Transpose Read message				01h	MT1R_US	Untyped Surface Read message				02h	MT1A_UI	Untyped Atomic Integer Operation message				04h	MT1R_MB	Media Block Read message				05h	MT1R_TS	Typed Surface Read message				06h	MT1A_TA	Typed Atomic Integer Operation message				08h	Reserved	Ignored				09h	MT1W_US	Untyped Surface Write mesage				0Ah	MT1W_MB	Media Block Write message				0Bh	MT1A_TC	Typed Atomic Counter Operation message				0Dh	MT1W_TS	Typed Surface Write message				0Eh	Reserved	Ignored				10h	MT1R_A64_SB	A64 Scattered Read message				11h	MT1R_A64_US	A64 Untyped Surface Read message				12h	MT1A_A64_UI	A64 Untyped Atomic Integer Operation message				14h	MT1R_A64_B	A64 Block Read message				15h	MT1W_A64_B	A64 Block Write message				18h	Reserved	Ignored				19h	MT1W_A64_US	A64 Untyped Surface Write message				1Ah	MT1W_A64_SB	A64 Scattered Write message				1Bh	MT1A_UF	Untyped Atomic Float Operation message				1Dh	MT1A_A64_UF	A64 Untyped Atomic Float Operation message				Others	Reserved	Ignored	## **Data Port 2 Extended Message Descriptor**		DP2	EXTDESC	- Data Port 2 Extended M	lessage Descriptor				------------	--------	---																																																																																																																																																																																																																																																																																																																																																																						
--	--------------------	--	--		Source:		BSpec						Size (in b	oits):	32						Default \	/alue:	0x00000	000					DWord	Bit		Description					0	31:16	Sideband Offset								Format:	Format: U16							Specifies the 16-bit offset from the Sideband added to all the offsets in the Address Payload DP2 messages.							15:11	Reserved								Format:		MBZ						Ignored							10:0	Execution Uni	t Extended Message Descriptor Definition							Format:	Execution_Unit_Extended_Message_Descri	ptor						EU uses this in	formation as part of the SEND instruction.				### **Data Port 2 Message Types** **MT_DP2 - Data Port 2 Message Types** Source: EuSubFunctionDataPort2 Size (in bits): 5 Default Value: 0x00000002 Lists all the Message Types in a Data Port 2 Message Descriptor [18:14]. Scaled operations are on Data Port 2. They provide a pitch-scaled data address calculation for SLM Stateless address models. The Message Header is forbidden for SLM operations.	DWord	Bit		Description					-------	-----	---------------------------	------------------------------	-------------------------------	---------------------	--		0	4:1	Message T Specifies ty	ype ype of message							Value	Name		Description					01h	MT2R_US [Default]	Untyped St	urface Read message					04h	MT2R_BS	Byte Scatte	ered Read message					09h	MT2W_US	Untyped Surface Write message						0Ch	MT2W_BS	Byte Scatte	ered Write message					Others	Reserved	Ignored					0	Reserved								Format:			MBZ					Ignored					## **Data Port Bindless Surface Extended Message Descriptor**	D	P_E	XTDESC_B	TI252 - Data Port Bindless Surface Extended						------------	--------	---	---	--	--	--	--					Message Descriptor						Source:		BSpec							Size (in l	oits):	32							Default \	Value:	0x000000	00						DWord	Bit		Description						0	31:12	Bindless Surface Offset									Format:	BindlessSurfaceOffset[25:6]								Specifies the bindless surface offset if the Binding Table Index is set to 252. Ignored otherwise. The bindless surface offset is added to the Bindless Surface Base Address as bits 25:6 of the byte-based address. The resulting address is the location of SURFACE_STATE for this message.								11	Reserved								10:0	Execution Unit Extended Message Descriptor Definition									Format:	Execution_Unit_Extended_Message_Descriptor								EU uses this inf	ormation as part of the SEND instruction.					## **Data Size Message Descriptor Control Field**	MI	DC_D	S - Data Size	Message Descr	riptor Control Field		-----------------	------	---------------------	-----------------------------	----------------------		Source:	ı	BSpec				Size (in bits):	í	2				Default Value:	(0x00000000				DWord	Bit		Descrip	tion		0	1:0	Data Size												Specifies the numbe	r of Bytes to be read or wr	itten				Value	Name	Description				00h	В	1 Byte				01h	W	2 Bytes				02h	DW	4 Bytes				03h	Reserved	Reserved	## **Depth Clear Value Format**		Depth Clear Value Format				--------------------	---	------	--------------------------		Source:	BSpec				Size (in bits):	32				Default Value:	0x00000000					DWord	Bit	Description			0	31:0	Depth Clear Value		This field define	es the clear value that will be applied to the depth buffer if the		Format: IEEE_FLOAT		Depth Buffer Clear	field is enabled. It is valid only if Depth Buffer Clear Value Valid is					set.				Programming N	lotes: The clear value must be between the min and max depth				values (inclusiv	re) defined in the CC_VIEWPORT. If the depth buffer format is				D32_FLOAT, then	values must be limited to the range of +0.0f and 1.0f inclusive;					values outside this range are reserved			## **Deptrh Clear Value Format**		STF	RUCTURE_TEM	PLATE - Deptrh Clear Value Format				--------------	------	-------------	---	--	--		Source:		BSpec					Size (in bit	s):	32					Default Va	lue:	0x00000000					DWord	Bit	Description					0	31:0	Address1							Format:	IEEE_FLOAT32						Format:	UNORM24						Format:	UNORM16							s 24-bit UNORM, the upper 8-bits are reserved (0's) s 16-bit UNORM the upper 16-bits are reserved (0's)			#### **Display Engine Render Response Message Definition** ### **Display Engine Render Response Message Definition** Source: BSpec Size (in bits): 96 Default Value: 0x00000000, 0x00000000, 0x00000000 The Display Engine Render Response Registers use bit definitions from this table. #### **Programming Notes** Some events can be sent to CS (Render Command Streamer) or BCS (Blitter Command Streamer). For render response messages sending flip done or scanline events, the destination, CS or BCS, is selected depending on the initiator of the flip or the load scanline command. For render response messages sending vertical blank events, the destinations, CS or BCS, or both CS and BCS, is selected depending on the DE_RR_DEST setting. Command Streamer Plane number to the Display Plane name mapping is available in the **Display Plane Capability and Interoperability** section. The STEREO3D_EVENT_MASK selects between left eye and right eye reporting of vertical blank and scanline events in stereo 3D modes.	events in s	sterec	o su modes.									-------------	--------	--	--	--	--	--	--	--	--		DWord	Bit	Description									0	31	Spare 31																					30	Reserved										29	Reserved										28	Spare 28																					27	Spare 27										26	Spare 26																					25	Spare 25																					24	Spare 24																					23	Spare 23																					22	Reserved										21	Pipe_C_Start_of_Vertical_Blank_Event This event is reported on the start of the vertical blank of the transcoder attached to Pipe C.										20	Plane_6_Flip_Done_Event This event is reported on the completion of a flip for Plane 6.										19	Plane_12_Flip_Done_Event										This event is reported on the completion of a flip for Plane 12.		----	---			· · · · · · · · · · · · · · · · · · ·		18	Plane_11_Flip_Done_Event This event is reported on the completion of a flip for Plane 11.		17	Plane_10_Flip_Done_Event		17	This event is reported on the completion of a flip for Plane 10.		16	Plane_9_Flip_Done_Event			This event is reported on the completion of a flip for Plane 9.		15	Plane_3_Flip_Done_Event This event is reported on the completion of a flip for Plane 3.		14	Pipe_C_Scanline_Event This event is reported on the start of the selected scan line for the transcoder attached to C.		13	Reserved		12	Spare 12 Unused		11	Pipe_B_Start_of_Vertical_Blank_Event This event is reported on the start of the vertical blank of the transcoder attached to Pipe		10	Plane_5_Flip_Done_Event This event is reported on the completion of a flip for Plane 5.		9	Plane_2_Flip_Done_Event This event is reported on the completion of a flip for Plane 2.		8	Pipe_B_Scanline_Event This event is reported on the start of the selected scan line for the transcoder attached to B.		7	Plane_8_Flip_Done_Event This event is reported on the completion of a flip for Plane 8.		6	Plane_7_Flip_Done_Event This event is reported on the completion of a flip for Plane 7.		5	Reserved		4	Spare 4 Unused		3	Pipe_A_Start_of_Vertical_Blank_Event This event is reported on the start of the vertical blank of the transcoder attached to Pipe		2	Plane_4_Flip_Done_Event This event is reported on the completion of a flip for Plane 4.		1	Plane_1_Flip_Done_Event This event is reported on the completion of a flip for Plane 1.		0	Pipe_A_Scanline_Event This event is reported on the start of the selected scan line for the transcoder attached to A.				# intel	Di	splay Engine Render Response Message Definition		----	---			Unused.		30	Spare 30 Unused.		29	Spare 29 Unused.		28	Spare 28 Unused		27	Spare 27 Unused		26	Spare 26 Unused		25	Spare 25 Unused		24	Spare 24 Unused		23	Spare 23 Unused		22	Spare 22 Unused		21	Spare 21 Unused		20	Spare 20 Unused		19	Spare 19 Unused		18	Spare 18 Unused		17	Spare 17 Unused		16	Spare 16 Unused		15	Spare 15 Unused		14	Spare 14 Unused		13	Spare 13 Unused		12	Spare																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																												
12 Unused		11	Spare 11 Unused			Dis	splay Engine Render Response Message Definition		---	-----	---			10	Spare 10 Unused			9	Spare 9				Unused			8	Spare 8 Unused			7	Spare 7 Unused			6	Spare 6 Unused			5	Spare 5 Unused			4	Spare 4 Unused			3	Spare 3 Unused			2	Reserved			1	Pipe_D_Scanline_Event This event is reported on the start of the selected scan line for the transcoder attached to Pipe D. Some SKUs may not have Pipe D.			0	Pipe_D_Start_of_Vertical_Blank_Event This event is reported on the start of the vertical blank of the transcoder attached to Pipe D. Some SKUs may not have Pipe D.		2	31	Spare 31 Unused.			30	Spare 30 Unused.			29	Spare 29 Unused.			28	Spare 28 Unused			27	Spare 27 Unused			26	Spare 26 Unused			25	Spare 25 Unused			24	Spare 24 Unused			23	Spare 23 Unused			splay Engine Render Response Message Definition							----	---	--	--	--	--	--		22	Spare 22 Unused							21	Spare 21 Unused							20	Spare 20 Unused							19	Plane_32_Flip_Done_Event This event is reported on the completion of a flip for Plane 32.							18	Plane_31_Flip_Done_Event This event is reported on the completion of a flip for Plane 31.							17	Plane_30_Flip_Done_Event This event is reported on the completion of a flip for Plane 30.							16	Plane_29_Flip_Done_Event This event is reported on the completion of a flip for Plane 29.							15	Plane_28_Flip_Done_Event This event is reported on the completion of a flip for Plane 28.							14	Plane_27_Flip_Done_Event This event is reported on the completion of a flip for Plane 27.							13	Plane_26_Flip_Done_Event This event is reported on the completion of a flip for Plane 26.							12	Plane_25_Flip_Done_Event This event is reported on the completion of a flip for Plane 25.							11	Plane_24_Flip_Done_Event This event is reported on the completion of a flip for Plane 24.							10	Plane_23_Flip_Done_Event This event is reported on the completion of a flip for Plane 23.							9	Plane_22_Flip_Done_Event This event is reported on the completion of a flip for Plane 22.							8	Plane_21_Flip_Done_Event This event is reported on the completion of a flip for Plane 21.							7	Plane_20_Flip_Done_Event This event is reported on the completion of a flip for Plane 20.							6	Plane_19_Flip_Done_Event This event is reported on the completion of a flip for Plane 19.							5	Plane_18_Flip_Done_Event This event is reported on the completion of a flip for Plane 18.							4	Plane_17_Flip_Done_Event This event is reported on the completion of a flip for Plane 17.							3	Plane_16_Flip_Done_Event This event is reported on the completion of a flip for Plane 16.							2	Plane_15_Flip_Done_Event								Display Engine Render Response Message Definition							--	---	---	--	--	--	--			This event is reported on the completion of a flip for Plane 15.								Plane_14_Flip_Done_Event This event is reported on the completion of a flip for Plane 14.								0	Plane_13_Flip_Done_Event This event is reported on the completion of a flip for Plane 13.					#### **DstRegNum** #### **DstRegNum** Source: Eulsa Size (in bits): 8 Default Value: 0x00000000 #### **Description** Register Number The register number for the operand. For a GRF register, is the part of a register address that aligns to a 256-bit (32-byte) boundary. For an ARF register, this field is encoded such that MSBs identify the architecture register type and LSBs provide the register number. An ARF register can only be dst or src0. Any src1 or src2 operands cannot be ARF registers. RegNum and SubRegNum together provide the byte-aligned address for the origin of a register region. RegNum provides bits 12:5 of that address. For one-source and two-source instructions, SubregNum provides bits 4:0. For three-source instructions, the address must be DWord-aligned; SubRegNum provides bits 4:2 of the address and bits 1:0 are zero. This field is present for the direct addressing mode and not present for indirect addressing. This field applies to both source and destination operands.	DWord	Bit	Description						-------	-----	-------------	-----------------------------------	--	--	--		0	7:0	Destina	Destination Register Number							Value	Name	Description						0-127	If								{Dst/Src0/Src1/Src2}.RegFile==GRF							0-	If	This field is used to encode the architecture register						0ffh	{Dst/Src0/Src1/Src2}.RegFile==ARF	as well as providing the register number. See								Execution Environment chapter for details.			#### **DstSubRegNum** ### **DstSubRegNum** Source: Eulsa Size (in bits): 5 Default Value: 0x00000000 #### **Description** Subregister Number The subregister number for the operand. For a GRF register, is the byte address within a 256-bit (32-byte) register. For an ARF register, determines the sub-register number according to the specified encoding for the given architecture register. RegNum and SubRegNum together provide the byte-aligned address for the origin of a GRF register region. RegNum provides bits 12:5 of that address. For one-source and two-source instructions, SubregNum provides bits 4:0. For three-source instructions, the address must be QWord-aligned; SubRegNum provides bits 4:3 of the address and bits 2:0 are zero. #### **Programming Notes** Note: The recommended instruction syntax uses subregister numbers within the GRF in units of actual data element size, corresponding to the data type used. For example for the F (Float) type, the assembler syntax uses subregister numbers 0 to 7, corresponding to subregister byte addresses of 0 to 28 in steps of 4, the element size.	DWord	Bit	Description							-------	-----	--	-----------------------------------	--	--	--	--		0	4:0	Destina	Destination Sub Register Number								Value	Name	Description							0-31	If									{Dst/Src0/Src1/Src2}.RegFile==GRF								0- If This field is used to encode the architect		This field is used to encode the architecture register							Offh	{Dst/Src0/Src1/Src2}.RegFile==ARF	as well as providing the register number. See Execution Environment chapter for details.				### **DUALSUBSLICE_HASH_TABLE_8x8** ### **DUALSUBSLICE_HASH_TABLE_8x8** Source: BSpec Size (in bits): 64 Default Value: 0x00000000, 0x00000000 8x8 [Y][X] dualsubslice hashing table. Each entry is a single bit that indicates which dualSubSlice(DSS) the indicated xy location maps to. A value of 0 indicates the larger DSS, or DSS=0 if both DSS have are balanced(have same number of enabled lsubslices)	DWord	Bit	Description							-------	-------	---	--------------	--	--	--	--		0	31:24										Format:	U8								Indicates the dualsubslice_id for the pixel block that has y=3 and x=70								23:16										Format:	U8								Indicates the dualsubslice_id for the pixel block that has	y=2 and x=70							15:8	SubSlice Hashing Table Entries[1]x[7:0]									Format:	U8								Indicates the dualsubslice_id for the pixel block that has	y=1 and x=70							7:0	SubSlice Hashing Table Entries[0]x[7:0]									Format:	U8								Indicates the dualsubslice_id for the pixel block that has $y=0$ and $x=70$							1	31:24	SubSlice Hashing Table Entries[7]x[7:0]									Format:	U8								Indicates the dualsubslice_id for the pixel block that has y=7 and x=70								23:16	I.									Format:	U8								Indicates the dualsubslice_id for the pixel block that has y=6 and x=70								15:8	SubSlice Hashing Table Entries[5]x[7:0]									Format:	U8								Indicates the dualsubslice_id for the pixel block that has	y=5 and x=70							7:0	SubSlice Hashing Table Entries[4]x[7:0]									Format:	U8								Indicates the dualsubslice_id for the pixel block that has	y=4 and x=70					### **DUALSUBSLICE_HASH_TABLE_16x8** ### **DUALSUBSLICE_HASH_TABLE_16x8** Source: BSpec Size (in bits): 128 16x8 [Y][X] dualsubslice hashing table. Each entry is a single bit that indicates which dualSubSlice(DSS) the indicated xy location maps to. A value of 0 indicates the larger DSS, or DSS=0 if both DSS have are balanced(have same number of enabled lsubslices)	Word	Bit	Description				------	-------	--	--	--		0	31:16	SubSlice Hashing Table Entries y[1]x[15:0]						Format:	U16					Indicates the dualsubslice_id for the	pixel block that has y=1 and x=150				15:0	SubSlice Hashing Table Entries y[6)]x[15:0]					Format:	U16					Indicates the dualsubslice_id for the	pixel block that has y=0 and x=150																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
	1	31:16	SubSlice Hashing Table Entries y[3	3]x[15:0]					Format:	U16					Indicates the dualsubslice_id for the	pixel block that has y=3 and x=150				15:0	SubSlice Hashing Table Entries y[2]x[15:0]						Format:	U16					Indicates the dualsubslice_id for the	e pixel block that has $y=2$ and $x=150$			2	31:16	SubSlice Hashing Table Entries y[5]x[15:0]					Format:	U16					Indicates the dualsubslice_id for the pixel block that has $y=5$ and $x=150$					15:0	SubSlice Hashing Table Entries y[4	l]x[15:0]					Format:	U16					Indicates the dualsubslice_id for the	e pixel block that has y=4 and x=150			3	31:16	SubSlice Hashing Table Entries y[7	7]x[15:0]					Format:	U16					Indicates the dualsubslice_id for the pixel block that has $y=7$ and $x=150$					15:0	SubSlice Hashing Table Entries y[6	5]x[15:0]					Format:	U16					Indicates the dualsubslice_id for the	e pixel block that has $y=6$ and $x=150$		## **Dword Data Payload Register**		MC	OCR_DW - Dword Data Payload	Register				----------------------------	--------------	--	----------------------	--	--		Source: Size (in bits):	BSpec 256						Default Value:		0000000, 0x00000000, 0x00000000, 0x00000000	0000000, 0x00000000,				DWord	Bit	Description					0.0	31:0	Dword0														Format:	U32						Specifies the slot 0 data in this payload register					0.1	31:0	Dword1														Format:	U32						Specifies the slot 1 data in this payload register					0.2	31:0	Dword2														Format:	U32						Specifies the slot 2 data in this payload register					0.3	31:0	Dword3							Format:	U32						Specifies the slot 3 data in this payload register					0.4	31:0	Dword4														Format:	U32						Specifies the slot 4 data in this payload register					0.5	31:0	Dword5														Format:	U32						Specifies the slot 5 data in this payload register					0.6	31:0	Dword6						MDCR_DW - Dword Data Payload Register							-----	---------------------------------------	--	-----	--	--	--				Format:	U32							Specifies the slot 6 data in this payload register						0.7	31:0	Dword7																Format:	U32							Specifies the slot 7 data in this payload register					## **Dword SIMD8 Atomic Operation CMPWR Message Data Payload**	MDP_AOP8_DW2 - Dword SIMD8 Atomic Operation CMPWR							---	-------------	---	-------------------	---------	--				Message	Data Pay	load			Source:	BSpec						Size (in bits):	512						Default Value:	0x00000000,	0, 0x00000000, 0x00000000, 0x00000000, 0x00000000					DWord	Bit	Description					0.0-0.7	255:0	Src0							Format:		MDCR_DW					Specifies the Slo	ot [7:0] Source 0	data			1.0-1.7	255:0	Src1														Format:		MDCR_DW					Specifies the Slo	ot [7:0] Source 1	data		## **Dword SIMD8 Data Payload**	MDP_DW_SIMD8 - Dword SIMD8 Data Payload						---	--------------------------------------	-------------------------	--------------------------------------	--		Source:	BSpec					Size (in bits):	256						0x00000000, 0x00 0x00000000, 0x00	•	0x00000000, 0x00000000, 0x000000000,			DWord	Bit	Description				0.0-0.7	255:0	Data[7:0]												Format: MDCR_DW						Specifies the Slot [7:0)] data		## **Dword SIMD16 Atomic Operation CMPWR Message Data Payload**	MDP_AOI	P16_DW	2 - Dword SIM Message Da		tomic Operation CMPWR				---	--	---	--------------	-----------------------	--	--		Source: Size (in bits):	BSpec 1024							Default Value:	0x0000000 0x0000000 0x0000000 0x0000000 0x000000	0, 0x00000000, 0x00000000, 0x00000000, 0x00000000						DWord	Bit			Description				0.0-0.7 255:0 Src0[7:0]		Src0[7:0]								Format:		MDCR_DW						Specifies the Source (0 data for S	Slot [7:0]				1.0-1.7	255:0	Src0[15:8]								Format:		MDCR_DW						Specifies the Source (0 data for S	Slot [15:8]				2.0-2.7	255:0	Src1[7:0]								Format:		MDCR_DW				Specifies the Source 1 data for Slot [7:0]		Slot [7:0]						3.0-3.7	3.0-3.7 255:0 Src1[15:8]									Format:		MDCR_DW				Specifies the Source 1 data for Slot [15:8]			Slot [15:8]				## **Dword SIMD16 Data Payload**	MDP_DW_SIMD16 - Dword SIMD16 Data Payload								---	--	--------------------	------------	--	--	--		Source:	BSpec							Size (in bits):	512							Default Value:	0x00000000, 0x00000000, 0x00000000, 0x00000000							DWord	Bit	Description						0.0-0.7	255:0	Data[7:0]								Format:	MDCR_DW							Specifies the Slot	[7:0] data					1.0-1.7	1.0-1.7 255:0 Data[15:8]									Format:	MDCR DW				Specifies the Slot [15:8] data ### **Encoder Base Address Parameters1**	Encoder Base Address Parameters1									--	----------------------	--	------------------------	------	--	--	--		Source:		BSpec							Size (in b	ze (in bits): 320								Default Value: 0x00000000, 0x000000000, 0x000000000, 0x00000000									Please note that DW0-9, correspond to DW10-19 of WiGig Parameters.									DWord	Bit	Description							0 31:0	31:0	Reserved																		Format:		MBZ					1 31:0	31:0	Reserved									Format:		MBZ					2 31:0	31:0	Reserved									Format:		MBZ					3	31:12	Display Buffer Surface Base Address[31:12] Specifies the 4K byte aligned video shared buffer address for display engine to deliver display frame data.							1	11:0	Reserved									Format:		MBZ					4 31:16	31:16	Reserved									Format:		MBZ						15:0	Display Buffer Surface Base Address [47:32] This field is for the upper range of Display Buffer Surface Base Address.								31:15	Reserved									Format:		MBZ						14:9	Reserved									Format:		MBZ					8:7	8:7	Arbitration Priority Control for Display Buffer Surface Base Address This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.									Value		Name						00b Highest priority										01b Second highest priority									10b	Third highest priority								11b	Lowest priority								Programming Notes									Programming Notes						consistent with rest of media.; # 6:5 Memory Type: LLC/eLLC Cache ability Control (LeLLCCC) for Display Buffer Surface Base Address This is the field used in GT interface block to determine what type of access need to be generated to uncore. For the cases where the LeLLCCC is set, cacheable transaction are generated to enable LLC usage for particular stream.	Value	Name	Description		-------	---	---------------------------------		00b	Use Cacheability Controls from page table / UC with Fence (if coherent cycle)			01b	UC	Uncacheable - non- cacheable		10b	WT	Writethrough		11b	WB	Writeback	#### **Programming Notes** This field should be consistant with display capture surface Cachebility. ### 4:3 Target Cache (TC) for Display Buffer Surface Base Address This field allows the choice of LLC vs eLLC for caching	Value	Name								-------	-------------------------------	--	--	--	--	--	--		00b	eLLC Only - not snooped in GT								01b	LLC Only								10b	LLC/eLLC Allowed								11b	L3, LLC, eLLC Allowed							### **Programming Notes** This field should be consistant with display capture surface Cachebility. #### 2 Reserved ### 1:0 Age for QUADLRU (AGE) for Display Buffer Surface Base Address This field allows the selection of AGE parameter for a given surface in LLC or eLLC. . If a particular allocation is done at youngest age ("3") it tends to stay longer in the cache as compared to older age allocations ("2", "1", or "0"). This option is given to driver to be able to decide which surfaces are more likely to generate HITs, hence need to be replaced least often in caches.	Value	Name								-------	-------------------------------------	--	--	--	--	--	--		11b	Good chance of generating hits.								10b	Next good chance of generating hits								01b	Decent chance of generating hits								00b	Poor chance of generating hits							#### **Programming Notes**				Encod	er Base Address Param	eters1					---	-------																																																																																																																																																																																																																																																																						
---	--	---	--------------	---------------------------------	--	--				This field can be set to 00.								6	31:12	A.k.A G	FX_WNIC_SH	rface Base Address ARED_DATABUFFER_BASE_ADDRESS, th r WDBOX to transfer AV mux TS data to	-						11:0	Reserve	ed									Format: MBZ								7	31:16	Reserve	ed									Format	t:	N	ИBZ						15:0			face Base Address [47:32] pper range of Destination TFD Surface E	Base Addre	ess.				8	31:15	Reserved Reserved										Format	t:	N	ИBZ						14:9	Reserve	ed									Format	t:	N	ИBZ						8:7	Arbitration Priority Control for Destination TFD Surface Base Address This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.											Value	Nar	me							00b		Highest priority								01b	b Second highest priority									10b	Third highest priority									11b		Lowest priority										Programming Notes								consistent with rest of media.;									6:5	Addres This is generat	s the field used ted to uncore.	in GT interface block to determine wha For the cases where the LeLLCCC is set, LLC usage for particular stream.	it type of a	ccess need to be						Value		Name		Description						00b	Use Cacheab coherent cyc	ility Controls from page table / UC with le)	Fence (if							01b	UC			Uncacheable - non- cacheable						10b	WT			Writethrough						11b	WB			Writeback								Programming Notes																		En	coder Base Address Parar	meters1						--------------------------------------	---	----------	--	---------	--	--	--	--			4:3	_	Target Cache (TC) for Destination TFD Surface Base Address This field allows the choice of LLC vs eLLC for caching									Value	Nai	me								00b	eLLC Only - not snooped in GT									01b	LLC Only									10b	LLC/eLLC Allowed									11b	L3, LLC, eLLC Allowed								2	Reserved									1:0 Age for QUADLRU (AGE) for Destination TFD Surface Base Address This field allows the selection of AGE parameter for a given surface in LLC or eLLC. allocation is done at youngest age ("3") it tends to stay longer in the cache as compage allocations ("2", "1", or "0"). This option is given to driver to be able to decide ware more likely to generate HITs, hence need to be replaced least often in caches.											Value	Nam	ne								11b	Good chance of generating hits.									10b	Next good chance of generating hits							01b Decent chance of generating hits												00b	Poor chance of generating hits							9	31:0	Reserved										Format:		MBZ								Enc	oder Base Address Paramet	ters2					---	---------	--	--	-------	--	--	--		Source:		BSpec							Size (in l	oits):	320							Default Value: 0x00000000, 0x000000000, 0x000000000, 0x00000000									Please r	note th	at DW0-9, corresp	ond to DW20-29 of WiGig Parameters .						DWord	Bit		Description						0	31:0	Reserved									Format:	MBZ	7					1	31:0	Reserved									Format:	MBZ	7_					2	31:0	Reserved									Format:	MBZ	7_					3	31:0	Reserved									Format:	MBZ	7					4	31:0	Reserved									Format:	MBZ	7_					5	31:12	Specifies the 4K I	Even Reconstructed pixel Reference Surface Base Address Specifies the 4K byte aligned frame buffer address for outputting the reconstructed YUV picture. This field is ignored if I-frame only mode is set to 0 (disable).							11:0	Reserved									Format:	MBZ	7					6	31:16	Reserved									Format:	MBZ	7_						15:0	Even Reconstructed pixel Reference Surface Base Address [47:32] This field is for the upper range of Even Reconstructed pixel Reference Surface Base Address.							7	31:11	Reserved									Format:	MBZ	7						10	Memory Compre This distinguishe	ession Mode s vertical from horizontal compression.								Value	Name								0h	Horizontal Compression Mode								1h	Vertical Compression Mode							9	Memory Compre	ession Enable								Format:	Enable								If enabled, memory compression will be attempted on this surface.									Encoder Base Address Parar	meters2						---	--	---	-----------------------------	--	--	--	--			8:7	Reserved									Format:	MBZ							6:1	Even Reconstructed Pixel Reference Surface - Index to (MOCS) Tables	Memory Object Control State								Format:	U6							The index to define the L3 and system cache memory properties. The details of the further defined in L3 and Page walker (memory interface) control registers. The first populate 64 different surface controls to be used concurrently. Related control resupdated during runtime.									0	Reserved							8	31:12	ODD Reconstructed pixel Reference Surface address Specifies the 4K byte aligned frame buffer address for outputting the reconstructed YUV picture.									Programming Notes									This field is ignored if I-frame only mode is set to 0 (disable).								11:0	Reserved									Format:	MBZ						9	31:16	Reserved									Format:	MBZ							15:0 ODD Reconstructed pixel Reference Surface Base Address [47:32] This field is for the upper range of ODD Reconstructed pixel Reference Surface Base Address [47:32]										Enco	oder Base Address P	aramete	ers3			--------------------------------------	----------	--------------------------------------	---	-----------------	-------------------------------------	--		Source:		BSpec						Size (in b	oits):	320						Default \	•	0x00000000), 0x00000000, 0x00000000, 0x000	000000, 0x000	000000, 0x00000000,			0x00000000, 0x000000000, 0x000000000								Please r	note tha	at DW0-9, correspo	ond to DW30-39 of WiGig Param	eters.				DWord	Bit		Descript	tion				0	31:11	Reserved								Format:		MBZ					10	Memory Compre	ession Mode								s vertical from horizontal compres	ssion.						Value		Name						0h	Horizontal Compression Mode							1h	Vertical Compression Mode						9	Memory Compre	ession Enable	1						Format:		Enable						If enabled, memo	ory compression will be attempted	d on this surfa	ice.				0.7	.							8:7	Reserved Format:		MBZ					6:1		and Direct Defense on Confession Law		one Object Control Ctate				6:1	(MOCS) Tables	ed Pixel Reference Surface - Inc	dex to Memo	ory Object Control State					Format:			U6					The index to defin	ne the L3 and system cache memo	ory properties	s. The details of the controls are						L3 and Page walker (memory inte		_					populate 64 differ updated during ru	rent surface controls to be used counting	oncurrently. R	lelated control registers can be					apaatea aaning ra	antime.						0	Reserved						1	31:2	Reserved								Format:		MBZ															is1- EVEN/ODD reconstructed pix		-					of the Y (luma) pl	ace in units of pixels. For PLANAR	surface forma	ats, this field indicates the width					[3:2] Reserved							1:0		I Offset V Direction- EVEN/ODD) Peconstruct	ted Divel Reference Surfaces				1.0	CI (V)/CD(U) FIXE	Oliset v Direction- Every/ODL	Reconstruct	ted Fixel Reference Surfaces					E	ncod	er E	Base Address																																																																																																																																																																																																																																																																																						
Parar	ne	eters3				---	-------	--------------------------	-----------------	---	---	-------------------------------------	--------------	-----------------------------------	----------------------	--				Format:					U	0.2						Specifies the direction.	distance	to th	ne U/V values with resp	ect to th	ie e	ven numbered Y	channels in the V								Programmi	ng Note	es							This field is i	gnored f	or all	formats except PLANA	R_420_8						2	31:21	Reserved												Format:					М	BZ					20:3	Surface Pitch	n Minus1	l - EV	/EN/ODD Reconstruct	ed Pixel	Re	eference Surface	es					Format:			18-1 Pitch in (Bytes - 1									This field spe	cifies the	e surf	ace pitch in (#Bytes - 1).								Value	Name		Description			Ex	ists If					[0,2047]		For F	Pitch of [1B, 2048B]			//[Surfaces Type SURFTYPE_BUFF						[0, 262143]		For F	Pitch of [1B, 256KB]			//[Surfaces Type	e] = Linear Surface					[511, 262143]		For Pitch of [512B, 256KB]=[1tile, 512 //[Surfaces Type] = X-tiled tiles]			e] = X-tiled							[127, 262143]			Pitch of [128B, 256KB]= 5 tiles]	[1tile, //[Surfaces Type] = Y-tiles											Programmi	ng Note	25								-	•	ssion is enabled, the fo	_								Tiling Mode	Pixel Format		Max Frame Width (bytes)	Max (pixe		me Width	Max Pitch (bytes)					Legacy 4K	8bpp		16k	16k			16k 127						16bpp		16k	8k			16k 127						32bpp		16k	4k			16k 127						64bpp		16k	2k			16k 127						128bpp)	16k	1k			16k 127				2:0	Reserved												Format:					M	BZ				3	31:14	Reserved												Format:	Format: MBZ										13:0	Y Offset for	U(Cb) - I	EVEN	/ODD Reconstructed	Pixel Re	fer	ence Surfaces						Format:			U14 Pixel Row Offset										olane or	the ir	ical offset in rows from iterleaved UV plane if I									Ei	ncod	er E	Base Address P	aran	neters3					--	-------	--	--------------	--------	--	-----------	-------------------	--	--	--							Programmin	g Note	S							For PLANAR_420 and PLANAR_422 surface formats, this field must be multiple of 16 pixels - i.e. multiple MBs.										4	31:14	Reserved												Format:					MBZ						13:0	Y Offset for \	/(Cr) - E	VEN/	ODD reconstructed pix	el refe	rence surfaces							Format:			U14 Pixel Row Offset									•			ical offset in rows from tl I is only used for PLANAI												Programming	g Note	S							For PLANAR_ pixels.	_420 and	l PLAN	NAR_422 surface formats	, this fi	eld must indicate	an even number of				5	31:0	Reserved												Format:					MBZ					6	31:21	Reserved												Format:					MBZ						20:3	Surface Pitch	Minus	1 - EV	EN/ODD Reconstructed	d Pixel	Reference Surfa	aces						Format:		U	18-1 Pitch in (Bytes - 1)									This field spe	cifies th	e surf	ace pitch in (#Bytes - 1).									Value	Name		Description			Exists If						[0,2047]		For P	ritch of [1B, 2048B]			//[Surfaces Type] = SURFTYPE_BUFFER						[0, 262143]		For P	itch of [1B, 256KB]		//[Surfaces Ty	//[Surfaces Type] = Linear Surface						[511, 262143]		For P	ritch of [512B, 256KB]=[1	tile, 51	2 //[Surfaces Ty	/pe] = X-tiled						[127, 262143]			itch of [128B, 256KB]=[1 tiles]	tile,	//[Surfaces Ty	/pe] = Y-tiles																		16.14			Programmin							If Media Memory Compression is enabled, the following honored. For larger resolution, Media Memory compression							-							Tiling	Pixel	CSOIG	Max Frame Width	·1	Frame Width	Max Pitch						Mode	Format		(bytes)	(pixe		(bytes)						Legacy 4K	8bpp		16k	16k		16k 127							16bpp		16k	8k		16k 127							32bpp		16k	4k		16k 127							64bpp		16k	2k		16k 127							128bpp)	16k	1k		16k 127							1 . = 3 × PI										Encoder Base Address Parameters3									---	----------------------------------	----------	-----	--	--	--	--	--			2:0	Reserved										Format:	MBZ							7	31:0	Reserved										Format:	MBZ							8	31:0	Reserved										Format:	MBZ							9	31:0	Reserved										Format:	MBZ										Encode	r Base Address Parar	meters4					---	---------	---	--------------	--------------------------------------	-----------------------	--	--	--		Source:		BSpe	С							Size (in b	oits):	256								Default Value: 0x00000000, 0x000000000, 0x000000000, 0x00000000										Please r	ote tha	at DW0-9, co	orrespond to	DW40-49 of WiGig Parameters .						DWord	Bit			Description						0	31:0	Reserved										Format:			MBZ					1	31:0	Reserved										Format:			MBZ					2	31:0	Reserved										Format: MBZ								3	31:0	:0 Reserved										Format: MBZ								4	31:0	Reserved										Format:			MBZ					5	31:0	Reserved										Format:			MBZ					6	31:16	Reserved										Format:			MBZ						15:0	Max Threshold on the Number of Intra 4x4 Coded MBs Per Frame										Format:			U16																	Value	Name		scription							0	Disable	No Limit	D. II							1-65535	Enable	Maximum number of intra 4x4 M	Bs allowed per frame.							Programming Notes										Restriction: When this threshold is on, one or both of the intra16x16 and intra8x8 modes have to be enabled. For I-frame once the intra4x4 threshold is met, the subsequence MBs will be coded as intra16x16 or intra8x8 based on the enable settings. For P-frame, in additional to intra16x16 or intra8x8, the subsequence MBs could be coded with inter type.								79	31:0	Reserved										Format:			MBZ				### **Encoder Control State Parameters0**			E	ncoder Cont	trol State P	arameters	0				---	---------------------	--	------------------------	-------------------	------------------	----------------------	--	--		Source:		BSpec								Size (in b	Size (in bits): 320									Default Value: 0x00000000, 0x000000000, 0x000000000, 0x00000000						00, 0x00000000,						0x0000	00000, 0x00000000, (0x00000000, 0x000	00000					DWord	Bit			Descript	ion					0	31:30	Reserved										Format:			MBZ						29	WDE Packet	ization enable									Format:			Enable							Value		Name		Description						0	WDE packetization			Test Mode.						1	WDE packetization			Default mode.					28:27	AVC Encodo	'			Derdait mode.					20.21	AVC Encoder Chroma Sub-sample type AVC YUV chroma compression mode.											Value	Name								00b		YUV 4:2:0								01b		RGBA 4:4:4:4								10b		YUV 4:4:4								11b		Reserved							26:5	Reserved										Format:		MBZ							4	Reserved									3	Reserved										Format:			MBZ						2	Conditional	Replenishment Ena	ble			
--	---	--	--	--	--			0	Reserved								1	31:17	Reserved	served									Format:		MBZ							16			defined NAL data packet - enable NAL packet is inserted during the first frame of a GOP if this field is								Value	Name	Description								0	Disable	Disable insertion of indirect NAL data packet								1	Enable	Enable insertion of indirect NAL data packet										Programming Notes								the first NA	AL for a frame.). Header contains several NAL units. AVC spec needs AUD NAL to be If GOP header and Frame headers are enabled and both have AUD prrect bit stream.								list data strelement contain the Byte 0: lend Byte 1: lend Byte 2: <{7 link list. Byte 3: Res Datum star Byte 4: NA Byte 5: Byte N: NA Case 1: last Case 2: last Byte. Case 3: last – (N mod 6 Note: emp See the fig	cucture is alloconsists of link of link descriptory of the link descriptory of the link of lin	1:0] LSB length of data element/NAL packet. 15:8] MSB element of the last ele							15:0	15:0 GOP-level indirect user-defined NAL data packet - Offset Specifies the Cache line aligned address of the user-defined NAL data packet(s) relatives to t WiDi state base address.								2	31:17	Reserved	220 2341033.							_	31.17	Format:		MBZ							16 Frame-level indirect user-defined NAL data packet - enable Frame-level user defined NAL packet is inserted during the first frame of a frame if this field enabled.			er-defined NAL data packet - enable									En	oder	Control State	Parar	meters0				---	---	---------------------------	----------	------------------	--	------------	---	--	--				Value	ı	Name		De	scription						0	Dis	able	Disable insertion of in	direct NAL	. data packet						1	Ena	ble	Enable insertion of inc	direct NAL	data packet																					ming Note										e is T. As mentioned in oblem. Enabling only fr		er enable, enabling GOP header and er is safe and sufficient.					Multiple NAL data packets can be programmed within the frame-level indirect surface. A linked list data structure is allocated multiple elements (NAL packets) in contiguous memory. Each element consists of link descriptor fields and datum. The first four bytes of each element contain the link descriptor fields: Byte 0: length_in_bytes[7:0] LSB length of data element/NAL packet. Byte 1: length_in_bytes[15:8] MSB length of data element/NAL packet. Byte 2: <{7'b000_0000, last_NAL} Bit 0 indicates the current element is the last element of the link list. Byte 3: Reserved Reserved- MBZ Datum starts at Byte 4 of each element: Byte 4: NAL_START Byte 5: Byte N: NAL_END Note: empty/zero datum is not allowed						ckets) in contiguous memory. Each first four bytes of each element [7:0] LSB length of data element/NAL are element/NAL packet. Byte 2: ement is the last element of the link of the 4 of each element: Byte 4:					15:0		the Ca	ache line	ct user-defined NAL data packet - Offset e line aligned address of the user-defined NAL data packet(s) relatives to the dress.						3	31:0	Reserved											Format:					MBZ				4	31:0	Reserved	<u> </u>										Format:					MBZ				5	31:16	GOP size Number	•		1) per GOP structure.								Value	Name			Descrip	otion						0		Infinite r	number of P-frames fol	lowed by a	n initial I-frame(IDR)						1		GOP strudisabled		IDR frame.	HME and IME inter predictions are						2		One IDR	+ one P-frame per GC)P							3- FFFFh			arameter indicates the number of frames within the GOP structure. Each vill have one IDR frame follows by the value of the parameter minus one							15:4	Reserved	l										Format: MBZ										3:0	This field	speci	ies the va			m that is used in Frame_Num count for ame_num_minus field in SPS NAL								Valu	ıe		Name						0-12												Encoder Contro	ol State Parameters0								---	-------	---	---	---	--	--	--	--	--	--				Programming Notes The same value should be set																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																											
for log2_max_pic_order_cnt_lsb_minus4 field in SPS NAL packet.														gz_max_pic_order_cnt_isb_minus4 field in SPS NAL packet.								6	31:0	Reserved		1.45-										Format:		MBZ								7	31		m 8x8 Flag indicates that 8x8 transforr	m can be used within the frame.										Value	Name	Description										0	4x4 Integer Transform	The MB must be set to 4x4 transform.										1	8x8 Integer Transform	The MB <u>could</u> be coded with 8x8 transform.												Programming Notes										bit stream in the ou	m, is the same as this field; H tput bit stream depends on	form_size_8x8_flag syntax element, if present in the output However, whether transform_szie_8x8_flag is present or not a several other conditions. If flag to 1 for two conditions:										• It	might be 1 if IntraMbFlag =	INTRA and IntraMbMode = INTRA_8x8										 It must be 1 if IntraMbFlag = INTER and there is no sub partition size less the 													se, this field must be set to (MB if transform8x8 = 0, ha). rdware will always honor it, thus intra8x8 will be the winner.										If transform8x8 = 0, Intra16x16 prediction Enable or Intra4x4 prediction Enable MUST be true.											30:29	Reserved	·	·									33.23	Format:		MBZ									28:24	Second C	Chroma QP Offset, Chroma	a an offset [9:5]									20.24	Format:	anoma Qi Onset, emonie	S4										Range: -	12 to +12 According to AV	C Spec.										It specifies the offset for determining QP Cr from QP Y. It is set to the upper 5 bits of the value of the syntax element (Chroma_qp_offset[9:0]) read from the current active PPS. • Chroma_qp_offset [9:5] - second_chroma_qp_offset_bits												Programming Notes												To ensure that the MB size doesn't exceed 3200 bits, Cr/Cb QP cannot go below 10. The Value of MinQp for Luma and Chroma Offset is programmed in such a way to ensure this. E.g. If chroma offset = -5, MinQp should be >= 15. This would ensure that the Final Chroma QP >= (-5+15 = 10).											23:21	Reserved												Format:		MBZ										Encoder Control State Parameters0							---	-------	---	--	--	--	--	--			20:16	Chroma QP Offset, Chroma_qp_offset[4:0]									Format: S4									Parameter 12 According to AVC Const									Range: -12 to +12 According to AVC Spec.									It specifies the offset for determining QP Cb from QP Y.It is set to the lower 5 bits of the value of the syntax element (Chroma_qp_offset[9:0]) read from the current active PPS.									Chroma_qp_offset [4:0] - chroma_qp_offset_bits (from the current active PPS)																		Programming Notes									To ensure that the MB size doesn't exceed 3200 bits, Cr/Cb QP cannot go below 10. The Value of MinQp for Luma and Chroma Offset is programmed in such a way to ensure this. E.g. If chroma offset = -5, MinQp should be >= 15. This would ensure that the Final Chroma QP >= (-5+15 = 10).								15:8	Reserved									Format: MBZ								7	Round Inter Enable									Format: Enable									Dura managari da Marta									Programming Notes Description and defining setting is 0. When your displacture is displaced a value of 2.0 is used for									Recommended driver setting is 0. When rounding Inter is disabled, a value of 2/8 is used for rounding inter coefficients.								6:4	Rounding Inter (N)									Format: RoundingPrecisionTable_3_Bits									Programming Notes									Hardware default this field to 2 if "Round Inter Enable" is disable.								3	Round Intra Enable									Format: Enable									Due sure sure in a Market									Programming Notes Decommended driver setting is 0. When reunding latter is disabled a value of 4/9 is used for									Recommended driver setting is 0. When rounding Intra is disabled, a value of 4/8 is used for rounding intra coefficients.								2:0	Rounding Intra (N)									Format: RoundingPrecisionTable_3_Bits									Due sure version Medica									Programming Notes							0	24.0	Hardware default this field to 4 if "Round Intra Enable" is disable.							8	31:0	Reserved Format: MBZ									romat. WIDZ							9	31:19	Reserved									---	-------	---	--	-----------------	----------------------	--------------------------	--	--	--				Format:				MBZ						18:16	In cases where row of indicated number of For purposes of this being transmitted, a	Slice Pattern Per MB Row The field should be set according to the following table and the MB row size. In cases where row cannot be divided evenly, round up to the nearest MB to achieve the indicated number of slices per row. For purposes of this clause, the rate of macroblocks/second is the rate that applies to the video being transmitted, according to the definition in the AVC standard, That is: the macroblock rate = ceiling(frame width, 16)/16 * ceiling(frame height, 16)/16 *										(frames/second). Slice size Must be la	_		tn, 16)/16 * Celling	g(frame neight, 16)/16 "							Macroblocks/seco	nd Rate	Slice Pattern									rate < 250,000		1 row = 1 slice									250,000 <= rate < !	1 row =	2 equal slices									500,000 <= rate < 1	1 row =	4 equal slices									1,000,000 <= rate <	1 row =	8 equal slices									2,100,000 <= rate	1 row =	16 equal slices									Value	Nam	ne		Description							0			1 slice per MB ro	ow							1			2 slice per MB ro	ow							2			4 slice per MB ro	3 row							3		8 slice per MB		ow							4			16 slice per MB r	row						15:0	Reserved											Format:				MBZ				### **Encoder Statistics Format** ### **Encoder Statistics Format** Source: VideoEnhancementCS Size (in bits): 128 #### **Description** The per block data is intended for use by the video encoder and consists of 16 bytes of Denoise block data and FMD variances. Much of the data is encoded as an 8-bit mantissa with the leading 1 removed and a 4-bit shift. To recover the original 17-bit integer this code can be used: If (exp != 0) Number = ((0x100	Mantissa) « exp) » 7; else Number = mantissa; The values for STAD, SHCM and SVCM for each 4x4 are shited down by 2 bits to make 14-bit values before being summed for the 16x4 block to make a 16-bit value. The result is then converted into the mantissa/exp format.	format.										---------	-------	---	--------------------------	-------------------	---------------------------	--	--	--		DWord	Bit		Descr	iption						0	31:24	Tearing_Count 1 (FMI	Variance[8])									Format:			U8							Number of pixels that have (diff_cTcB > diff_cTcT + diff_cBcB)										Value	Name		Description							0		DI is Disabled							23:16	Tearing_Count 2										Format:			U8																	If the frame is Deinterlaced with Top First in the DN/DI state then this is (FMD Variance) = Number of pixels that have (diff_cTpB > diff_cTcT + diff_pBpB)										If the frame is bottom (diff_cBpT > diff_pTpT	·	ariance[10]) = No	umber of pixels that have							Value	Name		Description							0		DI is Disabled	·						15:8	Motion_Count (FMD \	/ariance[7])									Format:	/		U8							Number of pixels that	are moving (different ab	ove a threshold)								Value	Name		Description							0 DI is Disabled									7:0	Reserved										Format:		MBZ						1	31:28	sSTAD										Format:			U4						Encoder Statistics Format									---------------------------	---	--	-----------------------	--------------------------	----------	---------------------------	--	--				Shift for the	Sum in ti	me of absolute differe	nces fo	or 16x4.						Value	Name			Description						0		Temporal Denoise	Filteri	ing is Disabled.					27:24	sSHCM										Format:				U4						Shift for the	Sum hori	zontaly of absolute di	fferenc	ces.																																																																																																																																																																																																																																																																																																																																													
Valu	ie	Name		Description						0			DN i	is Disabled					23:20	sSVCM										Format:				U4						Shift for the	Sum verti	ically of absolute diffe	rences	5.															19:16	sDiff_cTpT				T						Format:	C 1			U4									of cur	rrent and previous frame.						Valu	ue	Name		Description						0 DI is Disabled									15:12	SDiff_cBpB Format: U4										Format: U4 Shift for the sum of differences in bottom field of current and previous frame.										Value		Name	eid oi	Description							ue	Name	DI	·					11.0	DI is Disabled									11:8	SDiff_cTcB Format: U4										Format: U4 Shift for the sum of differences between top and bottom field in current frame.										Value		Name		Description Description						0		Tune	DI	is Disabled					7:4	sDiff_cTpB									7.4	Format:				U4							sum of di	ifferences between cu	rrent to	op and previous bottom.						Valu		Name		Description						0			DI	is Disabled				3:0 sDiff_cBpT Format: U4														U4							Shift for the sum of differences between current bottom and previous top.				<u>_</u>							Valu		Name		Description						0			DI	is Disabled				2	31:24	mDiff_cBpB	(FMD Va	riance[1])						_	J !	u_u_	, . 7 u										Enco	der Statist	ics	Format			---	-------	---	------------	--------------------------	---------	---------------------	------------------				Format:					U8				Mantissa of sum of differences in bottom field of current and previous frame.									Val		Name	Tileia	- Creament and p	Description				0				DI is Disabled				23:16	mDiff_cTcB	(FMD Vari	iance[2])		1					Format:	`	,			U8				Mantissa of	sum of dif	ferences between	top a	nd bottom field i	n current frame.				Val	ue	Name			Description				0				DI is Disabled				15:8	mDiff_cTpB	(FMD Var	iance[3])							Format:					U8				Mantissa of	sum of dif	ferences between	curre	nt top and previo	ous bottom.				Val	ue	Name			Description				0				DI is Disabled				7:0	mDiff_cBpT (FMD Variance[4])									Format:					U8				Mantissa of sum of differences between current bottom and pr									Val	ue	Name			Description				0				DI is Disabled			3	31:24	mSTAD									Format:					U8						ne of absolute diffe	erence						Value	Name			Descripti					0		Temporal Deno	oise Fi	iltering is disable	d.			23:16	mSHCM									Format:	<u> </u>		11.00		U8				Mantissa of Valu		ontaly of absolute Name	differ	rences.	Description					ie	Name		DN is Disabled	Description			45.0	0				DIN IS DISABIled				15:8	mSVCM					110				Format:	Sum vortic	ally of absolute di	fforon	200	U8				Valu		Name	Herei	ices.	Description				0		- Traine	Г	DN is Disabled	Description			7:0	mDiff_cTpT	(EMD Var	iance[0])						7.0	Format:	(LIMID AQL	iance[0] <i>)</i>			U8					sum of dif	ferences in top fie	lds of	current and prev						- J OT OII		01	zz z ana prev			Encoder Statistics Format											----------------------------------	-------	------	----------------	--	--	--	--	--	--			Value	Name	Description									0		DI is Disabled							U6 ### **Engine ID Definition** ### **Engine ID Definition** Source: BSpec Size (in bits): 9 Default Value: 0x00000000 Defines the values used for Engine IDs for interrupt processing and Context IDs. DWord Bit Description 0 8:3 Instance ID	Format:				---------	--	--	Value **Exists If** Name **Description** [Class ID] == 'Render' 0h RCS 0h VCS0 [Class ID] == 'Video Decode' VCS1 [Class ID] == 'Video Decode' VCS2 [Class ID] == 'Video Decode' 2h VCS3 3h [Class ID] == 'Video Decode' 4h VCS4 [Class ID] == 'Video Decode' 5h VCS5 [Class ID] == 'Video Decode' 6h VCS6 [Class ID] == 'Video Decode' VCS7 [Class ID] == 'Video Decode' 0h VECS0 [Class ID] == 'Video Enhancement' VECS1 [Class ID] == 'Video Enhancement' 1h VECS2 [Class ID] == 'Video Enhancement' VECS3 3h [Class ID] == 'Video Enhancement' 0hBCS [Class ID] == 'Copy Engine' 0h Reserved [Class ID] == 'Other' 1h **GTPM** Power Management for GT [Class ID] == 'Other' [Class ID] == 'Other' 2h WD OA Perf Wireless Display/Observability 3h Reserved [Class ID] == 'Other' Reserved [Class ID] == 'Other' 5h **GUNIT** [Class ID] == 'Other' **CSME** Manageability Engine [Class ID] == 'Other' CCS0 0h [Class ID] == 'Compute' 1h CCS1 [Class ID] == 'Compute' CCS2 2h [Class ID] == 'Compute' 3h CCS3 [Class ID] == 'Compute'		Engine ID Definition												-----	----------------------	-------------------	--------------	------	----	--	--	--	--	--	--			5h-3fh	Reserved											2:0	Class ID													Format:				U3										Value		Name										0h		Render											1h		Video Decode											2h	Video Enhancement												3h		Copy Engine											4h		Other											5h		Compute											6h-7h		Reserved									## **EU_INSTRUCTION_ALIGN1_THREE_SRC**			EU_INSTRUCTION_ALIGN1_THREE_SRC									--	---------	---	--	--	--	--	--	--	--		Source:		Eulsa									Size (in b	oits):	128									Default Value: 0x00000000, 0x00000000, 0x000000000											DWord	Bit	Description									03	127:126	eserved											Format: MBZ										125	Reserved											Exists If: (Structure[EU_INSTRUCTION_ALIGN1_THREE_SRC][Source 2 Register File] == 'IMM')											Format: MBZ										125:118	Source 2 Register number											Exists If: (Structure[EU_INSTRUCTION_ALIGN1_THREE_SRC][Source 2 Register File] == 'GRF')											Format: SrcRegNum										124:109	Source 2 Immediate Value											Exists If: (Structure[EU_INSTRUCTION_ALIGN1_THREE_SRC][Source 2 Register File] = = 'IMM')										117:113	Source 2 Subregister number											Exists If: (Structure[EU_INSTRUCTION_ALIGN1_THREE_SRC][Source 2 Register File] == 'GRF')											Format: SrcSubRegNum										112:111	Source 2 Horizontal Stride											Exists If: (Structure[EU_INSTRUCTION_ALIGN1_THREE_SRC][Source 2 Register File] = = 'GRF')											Format: TernaryAlign1HorzStride										110:109	Reserved											Exists If: (Structure[EU_INSTRUCTION_ALIGN1_THREE_SRC][Source 2 Register File] == 'GRF')											Format: MBZ										108:106	Source 2 Datatype											Format: TernaryAlign1DataType											Selects source 2 datatype.										105	Reserved									Format: MBZ												104:97	Source 1 Register number											Format: SrcRegNum										96:92	Source 1 Subregister number											Format: SrcSubRegNum										91:90	Source 1 Horizontal Stride										Format: TernaryAlign1HorzStride									-------	--	--	--	--	--	--	--	--		89:88	Source 1 Vertical Stride										Format: TernaryAlign1VertStride									87:85	Source 1 Datatype										Format: TernaryAlign1DataType										Selects source 1 datatype.									84	Reserved										Format: MBZ									83	Reserved										Exists If: (Structure[EU_INSTRUCTION_ALIGN1_THREE_SRC][Source 0 Register File] = = 'IM										Format: MBZ									83:76	Source 0 Register number										Exists If: (Structure[EU_INSTRUCTION_ALIGN1_THREE_SRC][Source 0 Register File] = = 'GF										Format: SrcRegNum									82:67	Source 0 Immediate Value										Exists If: (Structure[EU_INSTRUCTION_ALIGN1_THREE_SRC][Source 0 Register File] == 'IMM'									75:71	Source 0 Subregister number					
					49	Destination	n Horizont	al Stride						-------------------------	--	--	---	---	--	--	--			Selects destination horizontal stride. Destination horizontal stride is required for striding base									on execution		cking the destin	ation datatype.							Value		Name						0		1	element						1		2	2 element					48:46	Destination	n Datatype	уре							Format:		TernaryAlign:	1DataType						Selects des	stination da	tatype.						45	Source 2 R	egister File	<u> </u>							Selects sou	ırce 2 regist	er file.							Value	Name		Description						0	GRF	Selects Genera	al Register File as source 2.						1	IMM	Selects Immed	liate Register File as source 2.					44	Source 1 R	egister File	!								ırce 1 regist	er file.							Value Na	me		Description						0 GR	F Selects	s General Registe	er File as source 1.						1 AR	F Selects	s Architectural Ro	egister File as source 1. Only Accumulator is allowed					42	C 0 D	egister File	1						43		_							43	Selects sou	ırce 0 regist	er file.						43		rce 0 regist		Description					43	Selects sou	ırce 0 regist		Description al Register File as source 0.					43	Value	rce 0 regist	Selects Genera						42:41	Value	Name GRF	Selects Genera	al Register File as source 0.						Value 0 1	Name GRF IMM	Selects General	al Register File as source 0.						Value 0 1 Source 2 M	Name GRF IMM Iodifier (Pressure of the second content secon	Selects General	al Register File as source 0. liate Register File as source 0.						Value 0 1 Source 2 M Exists If:	Name GRF IMM Iodifier (Pressure of the second content secon	Selects General Selects Immed	al Register File as source 0. liate Register File as source 0.					42:41	Value 0 1 Source 2 N Exists If: Format:	Name GRF IMM Iodifier (Pro	Selects General Selects Immedia operty[Source M	al Register File as source 0. liate Register File as source 0.					42:41	Value 0 1 Source 2 M Exists If: Format: Reserved	Name GRF IMM Iodifier (Pro	Selects General Selects Immed Operty[Source M	al Register File as source 0. liate Register File as source 0. lodifier]=='true')					42:41	Selects sou Value 0 1 Source 2 M Exists If: Format: Reserved Exists If:	Name GRF IMM Iodifier (Pro	Selects General Selects Immed Operty[Source M	al Register File as source 0. liate Register File as source 0. lodifier]=='true')					42:41	Selects sou Value 0 1 Source 2 N Exists If: Format: Reserved Exists If: Format:	Name GRF IMM Modifier (Pro MB	Selects General Selects Immed operty[Source M operty[Source M Z	al Register File as source 0. liate Register File as source 0. lodifier]=='true')					42:41 42:37	Selects sou Value 0 1 Source 2 M Exists If: Format: Reserved Exists If: Format: Source 1 M	Name GRF IMM Iodifier (Pro MB Iodifier (Pro MB Iodifier (Pro MB Iodifier	Selects General Selects Immed operty[Source M operty[Source M Z	al Register File as source 0. liate Register File as source 0. lodifier] == 'true') odifier] == 'false')					42:41	Selects sou Value 0 1 Source 2 M Exists If: Format: Reserved Exists If: Format: Source 1 M Exists If:	Name GRF IMM Iodifier (Pro MB Iodifier (Pro MB Iodifier (Pro MB Iodifier (Pro MB Iodifier	Selects General Selects Immed Operty[Source M Operty[Source M Operty[Source M Operty[Source M Operty[Source M	al Register File as source 0. liate Register File as source 0. lodifier] == 'true') odifier] == 'false')					42:41 42:37 40:39	Selects sou Value 0 1 Source 2 M Exists If: Format: Reserved Exists If: Format: Source 1 M Exists If: Format:	Name GRF IMM Modifier (Pro MB Modifier (Pro MB Modifier (Pro MB Modifier	Selects General Selects Immed operty[Source M operty[Source M Z operty[Source M operty[Source M	al Register File as source 0. liate Register File as source 0. lodifier] == 'true') odifier] == 'false')					42:41 42:37 40:39	Selects sou Value 0 1 Source 2 M Exists If: Format: Reserved Exists If: Format: Source 1 M Exists If: Format: Source 0 M	Name GRF IMM Iodifier (Pro MB (Selects General Selects Immed operty[Source M operty[Source M Z operty[Source M operty[Source M	al Register File as source 0. liate Register File as source 0. lodifier]=='true') odifier]=='false')						E	U_IN	STRUCTION	_ALIGN1_THREE_SRC					-----	-----------------	--	--	---	--	--	--			Selects	destinat	tion register file.							Value	Name		Description						0	GRF	Selects General Regi	ster File as Destination.						1	ARF	Selects Architectural	Register File as Destination. Only Accumulator is allowed.					35		ion Data eld define	• •	e for all sources and destination operands.						V	alue	Name	Description						0		Integer	Integer datatypes.						1		Float	Floating point datatype.					34	.		es the normal write e	nables; it should normally be 0.						Value	Name		Description						0	Normal	Use the normal wri	ite enables in Dst.ChanEn (normal setting).						1	NoMask	Write all channels of besides the write e	except those disabled by predication or by other masks mables.									Programming Notes								Mask also skips the c e Evaluate Write Enal	heck for PcIP[n] == ExIP before enabling a channel, as ole section.					33	This fie	Flag Register Number This field contains the flag register number for instructions with a non-zero Conditional Modifier.							32	This fie	Flag Subregister Number This field contains the flag subregister number for instructions with a non-zero Conditional Modifier.							31:	:0 Heade	r								Forma	t:	EU_INSTRUCT	TION_HEADER				# **EU_INSTRUCTION_BASIC_ONE_SRC**		EU_INSTRUCTION_BASIC_ONE_SRC									-----------------	------------------------------	---	---------	--------------------------------------	--	--	--	--		Source:	Euls	a								Size (in bits):	128									Default Value:	0x00	000000, 0x0000	0000, 0	0x0000000, 0x00000000						DWord	Bit			Description						03	127:64	RegSource										Exists If:	([Oper	rand Controls][Src0.RegFile]!='IMM')								Format:	EU_INS	STRUCTION_SOURCES_REG							127:64	ImmSource										Exists If:	([Opera	and Controls][Src0.RegFile]=='IMM')								Format:	EU_INS	STRUCTION_SOURCES_IMM32							63:32	Operand Cont	rols									Format: EU_INSTRUCTION_OPERAND_CONTROLS									31:0	Header										Format:	E	U_INSTRUCTION_HEADER					## **EU_INSTRUCTION_BASIC_THREE_SRC**			EU_INST	RUCTION_	BASIC_THREE_S	SRC					-----------------------	---------	--																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
--	--	---	--	--	--		Source: Size (in b	oite):	Eulsa 128								Default \			0000000, 0x00000	000 0×00000000						DWord	Bit	executive for exe		Description						03	127	Reserved										Format:		MBZ							126:106	Source 2		,									CERTICAL OPER	AND CDC DEC TUDES C	n.c.								STRUCTION_OPER	AND_SRC_REG_THREE_SI	RC						105:85	Source 1										Format: EU_IN	STRUCTION_OPER	AND_SRC_REG_THREE_SI	RC						84:64	Source 0																				Format: EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC									63:56	Destination Register Number										Format: DstRegNum									55:53	Destination Subreg									52:49	Destination Channel Enable										Format:		ChanEn[4]								destination region. T ExecSize channels. The bit is cleared, the write enabled. Mnemonics	hese channel mash nere is 1-bit Chann te for the correspo for the bit being s	nding channel is disabled et for the group of 4 are '	dulo-four manner to all el within the group of 4. If the l. If the bit is set, the write is						48:46	Destination Data Ty	/pe									Value	Name	Des	scription							000b	:f	single precision Float (32	2-bit)							001b	:d	signed Doubleword inte	<u> </u>							010b	:ud	Unsigned Doubleword in	ŭ							011b	:df	Double precision Float (6	64-bit)							100b	:hf	Half Float (16-bit)						this bit is ignored. Value Name Description Ob :f single precision Float (32-bit) 1b :hf Half Float (16-bit) Source 2 Type Format: U1	Value		101b-111b	Reserve	ed						--	--	-------	---	------------	-------------------------------------	----------------------------	-----------	--	--		Value	Value	45:43	Source Data Type								001b :d signed Doubleword integer 010b :ud Unsigned Doubleword integer 011b :df Double precision Float (64-bit) 100b :hf Half Float (16-bit) 101b-111b Reserved	O01b :d signed Doubleword integer O10b :ud Unsigned Doubleword integer O11b :df Double precision Float (64-bit) 100b :hf Half Float (16-bit) Half Float (16-bit) O10b-111b Reserved Half Float (16-bit) O10b-111b Reserved Format: SrcMod Source 2 Modifier Exists If: (Property[Source Modifier] == 'true') Format: MBZ M				ame	Des	scription				010b :ud Unsigned Doubleword integer 011b :df Double precision Float (64-bit) 100b :hf Half Float (16-bit) 101b-111b Reserved	O10b :ud Unsigned Doubleword integer O11b :df Double precision Float (64-bit) 100b :hf Half Float (16-bit) 101b-111b Reserved Exists If: (Property[Source Modifier]=='true') Format: MBZ		000b	:f		single precision Float (32	2-bit)				O11b :df Double precision Float (64-bit) 100b :hf Half Float (16-bit) 101b-111b Reserved	O11b :df Double precision Float (64-bit) 100b :hf Half Float (16-bit) 101b-111b Reserved 2:411 Source 2 Modifier Exists If:		001b	:d		signed Doubleword inte	ger				100b :hf	100b :hf		010b	:ud		Unsigned Doubleword in	nteger				101b-111b Reserved	101b-111b Reserved		011b	:df		Double precision Float (64-bit)				42:41 Source 2 Modifier Exists If: (Property[Source Modifier] == 'true') Format: SrcMod 42:37 Reserved Exists If: (Property[Source Modifier] == 'false') Format: MBZ 40:39 Source 1 Modifier Exists If: (Property[Source Modifier] == 'true') Format: SrcMod 38:37 Source 0 Modifier Exists If: (Property[Source Modifier] == 'true') Format: SrcMod 36 Source 1 Type	42:41 Source 2 Modifier Exists If:		100b	:hf		Half Float (16-bit)					Exists If:	Exists If:		101b-111b	Reserve	ed						Format: SrcMod	Format: SrcMod	42:41	Source 2 Mod	lifier							Reserved Exists If: (Property[Source Modifier] == 'false')	Reserved Exists If: (Property[Source Modifier] == 'false')		Exists If:	(Property	Source N	Modifier]=='true')					Exists If: (Property[Source Modifier] == 'false') Format: MBZ 40:39 Source 1 Modifier Exists If: (Property[Source Modifier] == 'true') Format: SrcMod 38:37 Source 0 Modifier Exists If: (Property[Source Modifier] == 'true') Format: SrcMod 36 Source 1 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 1 Data Type matches Source 0 this bit is ignored. Value Name Description 0b :f single precision Float (32-bit) 1b :hf Half Float (16-bit) 35 Source 2 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description Description Value Name Description	Exists If: (Property[Source Modifier]=='false') Format: MBZ 40:39 Source 1 Modifier Exists If: (Property[Source Modifier]=='true') Format: SrcMod 38:37 Source 0 Modifier Exists If: (Property[Source Modifier]=='true') Format: SrcMod 36 Source 1 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 1 Data Type matches Source 0 this bit is ignored. Value Name Description 0b :f single precision Float (32-bit) 1b :hf Half Float (16-bit) 35 Source 2 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description Ob :f single precision Float (32-bit)		Format:	SrcMod							Format: MBZ Source 1 Modifier Exists If: (Property[Source Modifier]=='true') Format: SrcMod 38:37 Source 0 Modifier Exists If: (Property[Source Modifier]=='true') Format: SrcMod 36 Source 1 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 1 Data Type matches Source 0 this bit is ignored. Value Name Description 0b :f single precision Float (32-bit) 1b :hf Half Float (16-bit) 35 Source 2 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description	Format: MBZ 40:39 Source 1 Modifier Exists If: (Property[Source Modifier]=='true') Format: SrcMod 38:37 Source 0 Modifier Exists If: (Property[Source Modifier]=='true') Format: SrcMod 36 Source 1 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 1 Data Type matches Source 0 this bit is ignored. Value Name Description 0b :f single precision Float (32-bit) 1b :hf Half Float (16-bit) 35 Source 2 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description Ob :f single precision Float (32-bit)	42:37	Reserved								40:39 Source 1 Modifier Exists If:																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																						
(Property[Source Modifier] == 'true') Format: SrcMod 38:37 Source 0 Modifier Exists If: (Property[Source Modifier] == 'true') Format: SrcMod 36 Source 1 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 1 Data Type matches Source 0 this bit is ignored. Value Name Description 0b :f single precision Float (32-bit) 1b :hf Half Float (16-bit) 35 Source 2 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description	40:39 Source 1 Modifier Exists If: (Property[Source Modifier]=='true') Format: SrcMod 38:37 Source 0 Modifier Exists If: (Property[Source Modifier]=='true') Format: SrcMod 36 Source 1 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 1 Data Type matches Source 0 this bit is ignored. Value Name Description 0b :f single precision Float (32-bit) 1b :hf Half Float (16-bit) Source 2 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description Ob :f single precision Float (32-bit)	40:39	Exists If:	(Property[Source N	Modifier]=='false')					Exists If: (Property[Source Modifier]=='true')	Exists If: [Property[Source Modifier]=='true'] Source 0 Modifier Exists If: [Property[Source Modifier]=='true'] Format: SrcMod Source 1 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 1 Data Type matches Source 0 this bit is ignored. Value Name Description Ob :f single precision Float (32-bit) 1b :hf Half Float (16-bit) Source 2 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description Source 2 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description Ob :f single precision Float (32-bit)		Format:	MBZ							Format: SrcMod	Format: SrcMod		Source 1 Modifier								38:37 Source 0 Modifier Exists If: (Property[Source Modifier]=='true') Format: SrcMod Source 1 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 1 Data Type matches Source 0 this bit is ignored. Value Name Description Ob :f single precision Float (32-bit) 1b :hf Half Float (16-bit) Source 2 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description	38:37 Source 0 Modifier Exists If: (Property[Source Modifier] == 'true') Format: SrcMod Source 1 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 1 Data Type matches Source 0 this bit is ignored. Value Name Description Ob :f single precision Float (32-bit) 1b :hf Half Float (16-bit) Source 2 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description Ob this bit is ignored. Value Name Description Ob single precision Float (32-bit)		Exists If: (Prope		operty[Source Modifier]=='true')						Exists If: (Property[Source Modifier] = = 'true') Format: SrcMod Source 1 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 1 Data Type matches Source 0 this bit is ignored. Value Name Description Ob :f single precision Float (32-bit) 1b :hf Half Float (16-bit) Source 2 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description	Exists If: (Property[Source Modifier] == 'true') Format: SrcMod Source 1 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 1 Data Type matches Source 0 this bit is ignored. Value Name Description Ob :f single precision Float (32-bit) 1b :hf Half Float (16-bit) Source 2 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description Ob :f single precision Float (32-bit)		Format:	SrcMod							Format: SrcMod Source 1 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 1 Data Type matches Source 0 this bit is ignored. Value Name Description 0b :f single precision Float (32-bit) 1b :hf Half Float (16-bit) Source 2 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description	Format: SrcMod Source 1 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 1 Data Type matches Source 0 this bit is ignored. Value Name Description Ob :f single precision Float (32-bit) 1b :hf Half Float (16-bit) Source 2 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description Ob if single precision Float (32-bit)	38:37	Source 0 Modifier								Source 1 Type Format: Only used if Source Data Type is :f or :hf, else Source 1 Data Type matches Source 0 this bit is ignored. Value Name Description 0b :f single precision Float (32-bit) 1b :hf Half Float (16-bit) Source 2 Type Format: Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description	Source 1 Type Format: Only used if Source Data Type is :f or :hf, else Source 1 Data Type matches Source 0 this bit is ignored. Value Name Description Ob :f single precision Float (32-bit) 1b :hf Half Float (16-bit) Source 2 Type Format: Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description Ob :f single precision Float (32-bit)		Exists If:	(Property	(Property[Source Modifier]=='true')						Format: Only used if Source Data Type is :f or :hf, else Source 1 Data Type matches Source 0 this bit is ignored. Value Name Description Ob :f single precision Float (32-bit) 1b :hf Half Float (16-bit) Source 2 Type Format: Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description	Format: Only used if Source Data Type is :f or :hf, else Source 1 Data Type matches Source 0 this bit is ignored. Value Name Description Ob :f single precision Float (32-bit) 1b :hf Half Float (16-bit) Source 2 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description Ob :f single precision Float (32-bit)		Format:	SrcMod							Only used if Source Data Type is :f or :hf, else Source 1 Data Type matches Source 0 this bit is ignored. Value Name Description 0b :f single precision Float (32-bit) 1b :hf Half Float (16-bit) Source 2 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description	Only used if Source Data Type is :f or :hf, else Source 1 Data Type matches Source 0 this bit is ignored. Value Name Description Ob :f single precision Float (32-bit) 1b :hf Half Float (16-bit) Source 2 Type Format: Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description Ob :f single precision Float (32-bit)	36	Source 1 Type								Only used if Source Data Type is :f or :hf, else Source 1 Data Type matches Source 0 this bit is ignored. Value Name Description 0b :f single precision Float (32-bit) 1b :hf Half Float (16-bit) Source 2 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description	Only used if Source Data Type is :f or :hf, else Source 1 Data Type matches Source 0 this bit is ignored. Value Name Description Ob :f single precision Float (32-bit) 1b :hf Half Float (16-bit) Source 2 Type Format: Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description Ob :f single precision Float (32-bit)										this bit is ignored. Value Name Description 0b if single precision Float (32-bit) 1b This Half Float (16-bit) Source 2 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description	this bit is ignored. Value Name Description Ob :f single precision Float (32-bit) 1b :hf Half Float (16-bit) Source 2 Type Format: Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description Ob :f single precision Float (32-bit)		Format:				U1				Value Name Description 0b :f single precision Float (32-bit) 1b :hf Half Float (16-bit) Source 2 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description	ValueNameDescription0b:fsingle precision Float (32-bit)1b:hfHalf Float (16-bit)Source 2 TypeFormat:U1Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored.ValueNameDescription0b:fsingle precision Float (32-bit)		Only used if Source Data Type is :f or :hf, else Source 1 Data Type matches Source 0 type a								0b :f single precision Float (32-bit) 1b :hf Half Float (16-bit) Source 2 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description	0b :f single precision Float (32-bit) 1b :hf Half Float (16-bit) Source 2 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description 0b :f single precision Float (32-bit)					Descrir	ntion				35 Source 2 Type Format: Only used if Source Data Type is :f or :hf, else																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																												
Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description	1b :hf Half Float (16-bit) Source 2 Type Format: U1 Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description Ob :f single precision Float (32-bit)				single	-					Source 2 Type Format: Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description	Source 2 Type Format: Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description Ob :f single precision Float (32-bit)										Format: Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description	Format: Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description Ob :f single precision Float (32-bit)	35									Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description	Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description 0b :f single precision Float (32-bit)	33	Source 2 Type								Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description	Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 this bit is ignored. Value Name Description Ob :f single precision Float (32-bit)		Format:				U1				this bit is ignored. Value Name Description	this bit is ignored. Value Name Description 0b :f single precision Float (32-bit)		Only used if Source Data Type is :f or :hf, else Source 2 Data Type matches Source 0 type a									0b :f single precision Float (32-bit)		this bit is igno	red.			-				0b :f single precision Float (32-bit)							otion					1b :hf Half Float (16-bit)		0b	:f	single	precision Float (32-bit)							EU_IN	STRUCTION_BASIC_THREE_SRC							------	--	---	--	--	--	--	--	--		34	MaskCt	trl																			(former	•	l/Write Enable Control). This flag disables the normal write enables; it should								Value	Name	Description								0	Normal	Use the normal write enables in Dst.ChanEn (normal setting).								1	NoMask	Write all channels except those disabled by predication or by other masks besides the write enables.										Programming Notes										lask also skips the check for PclP[n] == ExlP before enabling a channel, as Evaluate Write Enable section.							33	This fie	Flag Register Number This field contains the flag register number for instructions with a non-zero Conditional Modifier.								32	Flag Subregister Number This field contains the flag subregister number for instructions with a non-zero Conditional Modifier.									31:0	Header	•									Format	Format: EU_INSTRUCTION_HEADER							## **EU_INSTRUCTION_BASIC_TWO_SRC**		EU_INSTRUCTION_BASIC_TWO_SRC										-----------------	------------------------------	---	---	--------------------------------	--	--	--	--	--		Source:	Eulsa	a									Size (in bits):	128										Default Value:	0x00	0000000, 0x00000000, 0x00000000, 0x00000000									DWord	Bit			Description							03	127:64	RegSource											Exists If:	([Re	gSource][Src1.RegFile]!='IMM')									Format:	EU_	INSTRUCTION_SOURCES_REG_REG								127:64	ImmSource											Exists If:	([lm	mSource][Src1.RegFile]=='IMM')									Format:	EU_I	INSTRUCTION_SOURCES_REG_IMM								63:32	Operand Cont	rols										Format:	Format: EU_INSTRUCTION_OPERAND_CONTROLS									31:0	Header											Format:		EU_INSTRUCTION_HEADER						## **EU_INSTRUCTION_BRANCH_CONDITIONAL**			EU_INST	RUCTION_BRANCH_CONDITIONAL								--------------------	-----------------	---	---	--	--	--	--	--	--		Source:		Eulsa									Size (in b	oits):	128									Default \	/alue:	0x00000000,	0x0000000, 0x00000000, 0x00000000								DWord	Bit		Description								03	127:64	Sources	·										Exists If:	kists If: ([Src1.RegFile]!='IMM')										Format: EU_INSTRUCTION_SOURCES_REG_REG										127:64	Sources											Exists If:	([Src1.RegFile]=='IMM')										Format:	EU_INSTRUCTION_SOURCES_REG_IMM									63:48	JIP											Format:	S15										Jump Target Offs instruction.	set. The jump distance in number of eight-byte units if a jump is taken for the									47	Reserved	Reserved										Format:	MBZ									46:44	Src1.SrcType											Format:	DataType										operand are inter implied by the op different encoding Register Type Enc	This field specifies the numeric data type of the source operand src1. The bits of a source operand are interpreted as the identified numeric data type, rather than coerced into a type implied by the operator. Depending on RegFile field of the source operand, there are two different encoding for this field. If a source is a register operand, this field follows the Source Register Type Encoding. If a source is an immediate operand, this field follows the Source Immediate Type Encoding.											Programming Notes										Both source operands, src0 and src1, support immediate types, but only one immediate is allowed for a given instruction and it must be the last operand.											Halfbyte integer vector (v) type can only be used in instructions in packed-word execution mode. Therefore, in a two-source instruction where src1 is of type :v, src0 must be of type :b, :ub, :w, or :uw.									43:42 Src1.RegFile												Format: RegFile											41:39	Src0.SrcType											Format:	DataType									38:37	Src0.RegFile										EU_INSTRUCTION_BRANCH_CONDITIONAL									---	-----------------------------------	--	-------------------	----------	--	--	--	--				Format:		RegFile						3	36:34	Destination Data Typ	e									Format:	С	DataType								This field specifies the numeric data type of the destination operand dst. The bits of the destination operand are interpreted as the identified numeric data type, rather than coerced into a type implied by the operator. For a send instruction, this field applies to the CurrDst? the current destination operand.								3	33:32	Destination Register File										Format:		RegFile						3	31:0	Header										Format:	EU_INSTRUCTION_HE	EADER					## **EU_INSTRUCTION_BRANCH_ONE_SRC**			EU_	INS	TRUCTIO	N_BRA	NCH_ON	E_SRC					---------------------	--------	--	--------------	----------------------	---------------	------------------------------------	-----------------------------------	--	--	--		Source:		Eulsa										Size (in bits): 128												Default V	alue:	0x00000	000, C	0x00000000, 0x00	0000000, 0x	00000000						DWord	Bit		Description									03	127:96	JIP																								Format:					S31							Jump Targe	et Off	set. The relative of	offset in byt	es if a jump is t	aken for the instruction.						95	Source 0 A	ddres	s Immediate [9]] Sign Bit																				94:91	Src1.SrcTy	Src1.SrcType																							Format:				SrcType							90:89	Src1.RegFile																								Format:				RegFile							88:64	Source 0																ONTROLS_A][AccessMode]=='Align16')								Format: EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16											88:64	Source 0																																																																																																																																																																																																																																																																																																																																																																																						
DNTROLS_A][AccessMode]=='Align1')							Format: EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1											63:32	Operand Co												Format:		EU_INSTRUCTIO	ON_OPERAN	D_CONTROLS							31:0	Header				4000								Format:		EU_INSTRU	UCTION_HE	ADER					## **EU_INSTRUCTION_BRANCH_TWO_SRC**	EU_INSTRUCTION_BRANCH_TWO_SRC									--	--------	--	--	----------------	--	--	--		Source:		Eulsa							Size (in bits):		128							Default Value:		0x00000000, 0x00000000, 0x00000000, 0x00000000							DWord	Bit	Description							03	127:96	JIP																		Format:		S31							The byte-aligned jump distance if a jump is taken for the channel.							95:64 UIP				1																Format:		S31							The byte aligned	jump distance if a jump is taken for the	e instruction.						63:32	Operand Contro							Format: EU_INSTRUCTION_OPERAND_CONTROLS 31:0 Header				LS.																Format:	EU_INSTRUCTION_HEADER					## **EU_INSTRUCTION_COMPACT_THREE_SRC**			EU_INSTRUCTION	ON_COMPA	CT_THREE_SRC					---------------------------------------	-------	---	----------------	--------------	--	--	--		Source: Eulsa									Size (in bits): 64									Default Value: 0x00000000, 0x00000000									DWord	Bit	Description							01	63:57	Src2.RegNum[6:0]									Format:	SrcRegNum[6:0]								Src2.RegNum[6:0]. The SourceIndex field in the compact instruction determines Src2.RegNum[7].									Maps to 124:118								56:50	Src1.RegNum[6:0]									Format:	SrcRegNum[6:0]								Sect Deadly market The Source Index field in the compact instruction determines									Src1.RegNum[6:0]. The SourceIndex field in the compact instruction determines Src1.RegNum[7].									Maps to 103:97								49:43	Src0.RegNum[6:0]									Format:	SrcRegNum[6:0]								Src0.RegNum[6:0]. The SourceIndex field in the compact instruction determines Src0.RegNum[7].									Maps to 82:76								42:40	Src2.SubRegNum									Format: SrcSubRegNum[4:2] Mans to 117:115									Maps to 117:115								39:37	Src1.SubRegNum										SubRegNum[4:2]								Maps to 96:94								36:34	4 Src0.SubRegNum									Format: SrcSubRegNum[4:2]									Maps to 75:73								33	Src2.RepCtrl									Format: RepCtrl									Maps to 106									EU	J_INSTR	UCTIO	ON_COM	IPACT_1	HREE_SRC					---	--	---	--------------	-----------	----------------	---------------	----------------------	-------------	--	--		-	20												32	Src1.RepCtrl												Format:				RepCtrl								Maps to 85										-	31 Reserved													Exists If:		(Property	y[Saturation]=	='false')								Format:		MBZ									31	Saturate												Exists If:		(Property	y[Saturation]=	='true')								Maps to	31		-							-	30	Reserved	 :									-	29	Compact	tion Control											Format:				CmptCtrl						-	28	Src0.Rep	Ctrl			1								Format:				RepCtrl								Maps to	64									-													27:19	7:19 Reserved										_		Format: MBZ											18:12	Dst.Regi	Num[6:0]					1						Format:			DstRegNum	[6:0]								Dst.RegNum[7:0] with MSB of zero and [6:0] from the compact instruction													63:56 (Dst.R									=	11:10	SourceIn	ıdex																						Lookup one of four 46-bit values. That value is used (from MSB to LSB) for the S Src1.RegNum[7], Src0.RegNum[7], Src2.ChanSel, Src1.ChanSel, Src0.ChanSel, Ds												Dst.ChanEnable, Dst.DstType, SrcType, Src2.Modifier, Src1.Modifier, and Src0.Modifier Maps to 125, 104, 83, 114:107, 93:86, 72:65, 55:49, 48:43, 42:37						lodifier bit fields.																			Value			Naı	ne		Description						0	-					No Negation						1	0001110010	001110010	001110010000	0011111000000	0000010	Negate Src0						2	0001110010	001110010	001110010000	001111000000	0001000	Negate Src1						3	0001110010	001110010	001110010000	001111000000	0100000	Negate Src2					EU	INSTRUCTION_COMPA	CT_THREE_SRC						-----	--	------------------------	-----------------------	--	--	--	--		9:8	Controllndex																		Lookup one of four 24-bit values. That value is used (from MSB to LSB) for the MaskCtrl, FlagRegNum/FlagSubRegNum, AccWrCtrl, CondModifier, ExecSize, PredInv, PredCtrl, ThreadCtrl, QtrCtrl, NibCtrl, DepCtrl, and AccessMode bit fields.									Maps to 34, 33:32, 28:8									Value	Name	Description							0	1000000011000000000001	(8) Q1 NoMask Align16							1	0000000011000000000001	(8) Q1 Align16							2	0000000100000000000001	(16) H1 Align16							3	0000000100000000100001	(16) H2 Align16						7	Reserved									Format:		MBZ						6:0	Opcode							## **EU_INSTRUCTION_COMPACT_TWO_SRC** ## **EU_INSTRUCTION_COMPACT_TWO_SRC** Source: Eulsa Size (in bits): 64 Default Value: 0x00000000, 0x00000000 The following table describes the EU compact instruction format. The compact instruction format for 1 or 2-source instructions is essentially identical to the compact instruction format for earlier generations, but the compact fields expand to somewhat different fields in the native instruction format, as the native instruction format changed.	DWord	Bit	Description								-------	-------	---	--	---	--	--	--	--		01	63:56	Src1.RegNum										Exists If:	([DataTypeInde	ex][Src1.RegFile]!='IMM')								Format:	SrcRegNum									Maps to 108:1	01 (Src1.RegNum)								63:56	Src1.RegNum										Exists If:		ex][Src1.RegFile]=='IMM')								Maps to 103:9	96 (Imm32[7:0])								55:48	Src0.RegNum										Format:		SrcRegNum								Maps to 76:69	(Src0.RegNum)								47:40	Dst.RegNum										Format:		DstRegNum								Maps to 60:53 (Dst.RegNum)									39:35	Src1Index Src1Index										Exists If:		ex][Src1.RegFile]!='IMM')								Format:	SrcIndex	SrcIndex								value is used	(from MSB to LSB) f (Src1.ChanSel[7:4], S	okup one of 32 12-bit values that maps to bits 120:109. That for the Src1.VertStride, various Src1 bit fields based on Src1.Width, Src1.HorzStride), Src1.AddrMode, and Src1.SrcMod							20.05	<u> </u>	103								39:35	Src1Index	/(DataT: va alsada	evilCue1 Descrite1 - UNANAIN								Exists If:	([DataTypeInde	ex][Src1.RegFile]=='IMM')								If an immediate operand, there is no lookup. Determines bits 127:104 (Imm32[31:8]) as follows: map bits 39:35 directly to bits 108:104. Sign extend to fill bits 127:109. Compact format bit 39 is thus copied to all of bits 127:108 for an immediate operand.										Maps to 127:1	104							34:30	Src0Index								-------	-------------------------------	---	--	--	--	--	--			Format: SrcIndex									various Src0 k Src0.AddrMo	oit fields based on AccessMode (used (from MSB to LSB) for the Src0.VertStric Src0.ChanSel[7:4], Src0.Width, Src0.HorzStrid ote that this field spans a DWord boundary v							Maps to 88:7	7							29	Compaction (Control								Format:		EmptCtrl						28	Reserved									Format:		MBZ						27:24	Reserved									Exists If:	(Property[Conditional Modif	ier]=='false')							Format:	MBZ	MBZ						27:24	Conditional Modifier									Exists If:	(Property[Conditional Modi	litional Modifier]=='true')							Format: CondModifier								23	Accumulator Write Control																							
Format: AccWrCtrl								22.10	Src0, and Dst depending or	of 32 15-bit values. That value is	used (from MSB to LSB) for various fields for RegNum, and AddrImm[4] or AddrImm[4:0],							Value	Nama	Description							Value 0	Name 000000000000000	Description							1	000000000000000000000000000000000000000	0 0 0 0.x 0.xx 0.xx							2	000000000000000000000000000000000000000	8 0 0								000000000001111	0.xyzw 0.xx 0.xx							13									3		16 0 0							4	00000000010000	16 0 0									16 0 0 0 4 0 0 8 0							4 5	00000000010000 00000010000000	0 4 0							4 5 6	00000000010000 00000010000000 0000001000000	0 4 0 0 8 0							4 5 6 7	00000000010000 00000010000000 0000001000000	0 4 0 0 8 0 0 12 0						EU INSTRUCTION	COMPACT TWO	SRC		-----------------------	--------------------	-----		-----------------------	--------------------	-----		11	00100000000000	0 0 4		----	-----------------	----------------------		12	00100000000001	0.x 0.xx 0.xy		13	001000010000001	0.x 0.xy 0.xy		14	001000010000010	0.y 0.xy 0.xy		15	001000010000011	0.xy 0.xy 0.xy		16	001000010000100	0.z 0.xy 0.xy		17	001000010000111	0.xyz 0.xy 0.xy		18	001000010001000	0.w 0.xy 0.xy		19	001000010001110	0.yzw 0.xy 0.xy		20	001000010001111	0.xyzw 0.xy 0.xy		21	001000110000000	0 12 4		22	001000111101000	0.w 0.ww 0.xy		23	01000000000000	0 0 8		24	010000110000000	0 12 8		25	01100000000000	0 0 12		26	011110010000111	0.xyz 0.xy 0.ww		27	10000000000000	0 0 16		28	10100000000000	0 0 20		29	11000000000000	0 0 24		30	11100000000000	0 0 28		31	111000000011100	28 0 28	### 17:13 **DataTypeIndex** Lookup one of 32 21-bit values. That value is used (from MSB to LSB) for the Dst.AddrMode, Dst.HorzStride, Src1.SrcType, Src1.RegFile, Src0.SrcType, Src0.RegFile, Dst.DstType, and Dst.RegFile bit fields. Maps to 63:61, 94:89, 46:35	Value	Name	Description				-------	-----------------------	--------------------------------	--	--		0	00100000000000000001	r:ud a:ud a:ud <1> dir				1	00100000000001000000	a:ud r:ud a:ud <1> dir				2	00100000000001000001	r:ud r:ud a:ud <1> dir				3	00100000000011000001	r:ud i:ud a:ud <1> dir				4	00100000000101011101	r:f r:d a:ud <1> dir				5	00100000010111011101	r:f i:vf a:ud <1> dir				6	00100000011101000001	r:ud r:f a:ud <1> dir				7	00100000011101000101	r:d r:f a:ud <1> dir				8	001000000011101011101	r:f r:f a:ud <1> dir			## **EU_INSTRUCTION_COMPACT_TWO_SRC**	9	001000001000001000001	r:ud r:ud r:ud <1> dir		----	-----------------------	--------------------------------		10	001000011000001000000	a:ud r:ud i:ud <1> dir		11	001000011000001000001	r:ud r:ud i:ud <1> dir		12	001000101000101000101	r:d r:d r:d <1> dir		13	001000111000101000100	a:d r:d i:d <1> dir		14	001000111000101000101	r:d r:d i:d <1> dir		15	001011100011101011101	r:f r:f a:f <1> dir		16	001011101011100011101	r:f a:f r:f <1> dir		17	001011101011101011100	a:f r:f r:f <1> dir		18	001011101011101011101	r:f r:f r:f <1> dir		19	001011111011101011100	a:f r:f i:f <1> dir		20	00000000010000001100	a:w a:ub a:ud <0> dir		21	00100000000001011101	r:f r:ud a:ud <1> dir		22	00100000000101000101	r:d r:d a:ud <1> dir		23	001000001000001000000	a:ud r:ud r:ud <1> dir		24	001000101000101000100	a:d r:d r:d <1> dir		25	001000111000100000100	a:d a:d i:d <1> dir		26	001001001001000001001	r:uw a:uw r:uw <1> dir		27	001010111011101011101	r:f r:f i:vf <1> dir		28	001011111011101011101	r:f r:f i:f <1> dir		29	001001111001101001100	a:w r:w i:w <1> dir		30	001001001001001000	a:uw r:uw r:uw <1> dir		31	001001011001001001000	a:uw r:uw i:uw <1> dir	### 12:8 **ControlIndex** Lookup one of 32 19-bit values. That value is used (from MSB to LSB) for the FlagRegNum, FlagSubRegNum, Saturate, ExecSize, PredInv, PredCtrl, ThreadCtrl, QtrCtrl, DepCtrl, MaskCtrl, and AccessMode bit fields. Maps to 33:32, 31, 23:12, 10:9, 34, 8	Value	Name	Description		-------	---------------------	--------------------------------		0	0000000000000000010	Align1 We (1) f0.0		1	0000100000000000000	Align1 (4) f0.0		2	0000100000000000001	Align16 (4) f0.0		3	0000100000000000010	Align1 We (4) f0.0		4	0000100000000000011	Align16 We (4) f0.0		5	0000100000000000100	Align1 NoDDClr (4) f0.0		6	0000100000000000101	Align16 NoDDClr (4) f0.0				EU_INSTRUCTION_	COMPACT_TWO_SRC		-----	--------	------------------------	--			7	0000100000000000111	Align16 We NoDDCIr (4) f0.0			8	0000100000000001000	Align1 NoDDChk (4) f0.0			9	0000100000000001001	Align16 NoDDChk (4) f0.0			10	0000100000000001101	Align16 NoDDClr, NoDDChk (4) f0.0			11	0000110000000000000	Align1 Q1 (8) f0.0			12	0000110000000000001	Align16 Q1 (8) f0.0			13	0000110000000000010	Align1 We Q1 (8) f0.0			14	0000110000000000011	Align16 We Q1 (8) f0.0			15	0000110000000000100	Align1 NoDDClr Q1 (8) f0.0			16	0000110000000000101	Align16 NoDDClr Q1 (8) f0.0			17	0000110000000000111	Align16 We NoDDClr Q1 (8) f0.0			18	0000110000000001001	Align16 NoDDChk Q1 (8) f0.0			19	0000110000000001101	Align16 NoDDClr, NoDDChk Q1 (8) f0.0			20	0000110000000010000	Align1 Q2 (8) f0.0			21	0000110000100000000	Align1 Q1 +f.xyzw (8) f0.0			22	0001000000000000000	Align1 H1 (16) f0.0			23	0001000000000000010	Align1 We H1 (16) f0.0			24	0001000000000000100	Align1 NoDDClr H1 (16) f0.0			25	0001000000100000000	Align1 H1 +f.xyzw (16) f0.0			26	0010110000000000000	Align1 Q1 (8) .sat f0.0			27	0010110000000010000	Align1 Q2 (8) .sat f0.0			28	0011000000000000000	Align1 H1 (16) .sat f0.0			29	0011000000100000000	Align1 H1 +f.xyzw (16) .sat f0.0			30	0101000000000000000	Align1 H1 (16) f0.1			31	0101000000100000000	Align1 H1 +f.xyzw (16) f0.1		7	Reserv	red			6:0	Opcod	e		## **EU_INSTRUCTION_CONTROLS_A**				EU_II	NSTRUCTIO	N_	CONTROLS_A			-------------------------	--------	--	--------------------	---	---------------------------------	---	--		Source:		Е	ulsa						Size (in b	oits):	1	6						Default \	/alue:	0	x00000000						DWord	Bit	Description							0 15:13 ExecSize											Format	t:			ExecSize									s operating in parallel for this instruction. The size inels allowed for the given data type.				12	Reserve	ed								Exists I	f:	(Property[Predicat	ion]=	=='false')				12	PredInv	v								Exists I		(Property[Predicat	tion]:	=='true')					This field, together with PredCtrl, enables and controls the generation of the predication mask for the instruction. When it is set, the predication uses the inverse of the predication bits generated according to setting of Predicate Control. In other words, effect of PredInv happens after PredCtrl. This field is ignored by hardware if Predicate Control is set to 0000 - there is no predication. PMask is the final predication mask produced by the effects of both fields.									Value	Name			Description					0	Positive [Default]	Positive polarity of predication. Use the predication mask produced PredCtrl							1	Negative	Negative pola predication m	-	f predication. If PredCtrl is nonzero, invert the				11:8	Reserved									Exists I	f:	(Property[Predicat	ion]=	=='false')					Forma	t:	PredCtrl	redCtrl					11:8	PredCt	rl								Exists I	f:	(Property[Predicat	(Property[Predication]=='true')						Forma	t:	PredCtrl							This field, together with PredInv, enables and controls the generation of the predication mask for the instruction. It allows per-channel conditional execution of the instruction based on the content of the selected flag register. Encoding depends on the access mode. In Align16 access mode, there are eight encodings (including no predication). All encodings are based on group-of-4 predicate bits, including channel sequential, replication swizzles and horizontal any all operations. The same configuration is repeated for each group-of-4 execution channels.								7:6	Thread	Control							3	Format			Thre	eadCtrl					1				J		### **EU INSTRUCTION CONTROLS A** Thread Control. This field provides explicit control for thread switching. If this field is set to 00b, it is up to the execution units to manage thread switching. This is the normal (and unnamed) mode. In this mode, for example, if the current instruction cannot proceed due																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
to operand dependencies, the EU switches to the next available thread to fill the compute pipe. In another example, if the current instruction is ready to go, however, there is another thread with higher priority that also has an instruction ready, the EU switches to that thread. If this field is set to Switch, a forced thread switch occurs after the current instruction is executed and before the next instruction. In addition, a long delay (longer than the execution pipe latency) is introduced for the current thread. Particularly, the instruction queue of the current thread is flushed after the current instruction is dispatched for execution. Switch is designed primarily as a safety feature in case there are race conditions for certain instructions. ### 5:4 **QtrCtrl** Format: QtrCtrl #### **Quarter Control.** This field provides explicit control for ARF selection. This field combined with NibCtrl and ExecSize determines which channels are used for the ARF registers. ### 3 NibCtrl Nibble Control. This field is used in some instructions along with QtrCtrl. See the description of QtrCtrl below. NibCtrl is only used for SIMD4 instructions with a DF (Double Float) source or destination.	Value	Name	Description		-------	------	--		0	Odd	Use an odd 1/8th for DMask/VMask and ARF (first, third, fifth, or seventh depending on QtrCtrl).		1	Even	Use an even 1/8th for DMask/VMask and ARF (second, fourth, sixth, or eighth depending on QtrCtrl).	#### **Programming Notes** Note that if eighths are given zero-based indices from 0 to 7, then NibCtrl = 0 indicates even indices and NibCtrl = 1 indicates odd indices. #### 2:1 **DepCtrl** Format: DepCtrl Destination Dependency Control. This field selectively disables destination dependency check and clear for this instruction. When it is set to 00, normal destination dependency control is performed for the instruction - hardware checks for destination hazards to ensure data integrity. Specifically, destination register dependency check is conducted before the instruction is made ready for execution. After the instruction is executed, the destination register scoreboard will be cleared when the destination operands retire. When bit 10 is set (NoDDCIr), the destination register scoreboard will NOT be cleared when the destination operands retire. When bit 11 is set (NoDDChk), hardware does not check for destination register dependency before the instruction is made ready for execution. NoDDCIr and NoDDChk are not mutual exclusive. When this field is not all-zero, hardware does not protect against destination hazards for the instruction. This is typically used to assemble data in a fine grained fashion (e.g. matrix-vector compute with dot-	EU_INSTRUCTION_CONTROLS_A								---------------------------	--	---------	--	--	--	--			product instructions), where the data integrity is guaranteed by software based on the intended usage of instruction sequences.							0	AccessMode Access Mode. This field determines the operand access for the instruction. It applies to all source and destination operands. When it is cleared (Align1), the instruction uses byte-aligned addressing for source and destination operands. Source swizzle control and destination mask control are not supported. When it is set (Align16), the instruction uses 16-byte-aligned addressing for all source and destination operands. Source swizzle control and destination mask control are supported in this mode.								Value Name							0 Align1 [Default]									1	Align16					# **EU_INSTRUCTION_CONTROLS_B**					EU_IN	NSTRUCTION_CONTROLS_	В			---	---------------------------	--	-------	-------	--	---------------------	--		Source:			Eulsa						Size (in bi	ts):		4						Default V	Default Value: 0x00000000								DWord I	Bit				Description				0	3	Reserve	ed								Exists If	f:	(F	Property[Saturation] = = 'false')						Format	:	N	1BZ					3	Saturat	e								Exists If	f:	(Property[Saturation]=='true')				are saturated. The saturation operation depends on the destination data type. Saturation operation that converts any value outside the saturation target range for the data type closest value in the target range. For a floating-point destination type, the saturation to [0.0, 1.0]. For a floating-point NaN, there is no closest value; any NaN saturates to 0.0. enabling Saturate overrides all of the NaN propagation behaviors described for various instructions. Any floating-point number greater than 1.0, including +INF, saturates to negative floating-point number, including -INF, saturates to 0.0. Any floating-point number ange 0.0 to 1.0 is not changed by saturation. For an integer destination type, the max for that type is the saturation target range. For example, the saturation range for B (Signiteger) is [-128, 127]. When Saturate is clear, destination values are not saturated. For wrapped result (modulo) is output to the destination for an overflowed integer value. Numeric Data Typessection for information about data types and their ranges. Value					e, the saturation target range is saturates to 0.0. Note that scribed for various numeric INF, saturates to 1.0. Any floating-point number in the ion type, the maximum range on range for B (Signed Byte not saturated. For example, a ed integer value. See the ir ranges. Description						1	sat			Saturate the output				1	CmptCtrl Compaction Control instruction format. V decodes the compactor by software tools. O			ndicates whether the instruction is compacted to the 64-bit compact en this bit is set, the 64-bit compact instruction format is used. The EU ormat using lookup tables internal to the hardware, but documented for use some instruction variations can be compacted, the variations supported by d the compact format. See EU Compact Instruction Format for more Description				EU_INSTRUCTION_CONTROLS_B										---------------------------	---	---------	--	------------------------	--	--	--	--			0 AccWrCtrl											AccWrCt	rl. This field allows per instruction accu	mulator write control.							Value Name Description										0 Don't write to ACC [Default]										1 Update ACC Write result to the ACC, and destination								## **EU_INSTRUCTION_CONTROLS**		EU_INSTRUCTION_CONTROLS								---------------	-------------------------	---	---	--	--	--	--		Source:		Eulsa							Size (in bits):	24							Default Valu	ue:	0x00000000							DWord	Bit		Description						0	23:20	Controls B									Format:	EU_INSTRUCTION_CONTROLS_B							19:16	Reserved									Exists If:	(Property[Conditional Modifier]=='false')								Format:	MBZ							19:16	CondModifier									Exists If: (Property[Conditional Modifier] == 'true')									Format:	CondModifier						Does not e			r send/sendc/math/branch/break-continue opcodes							15:0										Format:	EU_INSTRUCTION_CONTROLS_A					## **EU_INSTRUCTION_HEADER**	EU_INSTRUCTION_HEADER							-----------------------	-------	-------------	-------------	---------------	--		Source:	Eulsa						Size (in bits):	32						Default Value:	0x000	00000					DWord	Bit			Description			0	31:8	Control							Format:	EU_INSTRUCT	TION_CONTROLS				7	Reserved																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																											
Format: MBZ						6:0	Opcode							Format:		EU_OPCODE		## **EU_INSTRUCTION_ILLEGAL**	EU_INSTRUCTION_ILLEGAL							------------------------	--------------------	-------------------------------	-------------	-----	--		Source:	Eulsa						Size (in bits):	128						Default Value:	0x00000000, 0x0000	00000, 0x00000000, 0x00000000)				DWord	Bit		Description				03	127:7	Reserved							Format:		MBZ				6:0	Opcode							Format:	EU_OPCODE			## **EU_INSTRUCTION_MATH**		EU_INSTRUCTION_MATH								-------------------	---------------------	----------------------	------------------	----------------	-------	----	--		Source:	Euls	Eulsa							Size (in bits):	128								Default Value:	0x00	000000, 0x0000	0000, 0x00000000	, 0x0000000					DWord	Bit			Description					03	127:64	RegSource									Format:	EU_INSTRUCTIO	N_SOURCES_REG_	REG					63:32	Operand Cont	rol								Format:	EU_INSTRUCTION	N_OPERAND_CON	TROLS					31:28	Controls B									Format:	EU_INSTRUCT	ION_CONTROLS_F	3					27:24	Function Cont	rol (FC)								Format:				FC				23:8	Controls A									Format:	EU_INSTRUCT	ION_CONTROLS_A	A				7 Reserved											Format: MBZ							6:0 Opcode											Format:		EU_OPCODE				# **EU_INSTRUCTION_NOP**	EU_INSTRUCTION_NOP								--------------------	--	-------------	-----------	-----	--	--		Source: Eu	ılsa							Size (in bits):	28							Default Value: 0x	Default Value: 0x00000000, 0x00000000, 0x000000000, 0x00000000							DWord	Bit	Description						03	127:31	Reserved								Format:		MBZ					30	Reserved							29:7	Reserved								Format:		MBZ					6:0	Opcode								Format:	EU_OPCODE				## **EU_INSTRUCTION_OPERAND_CONTROLS**			EU	_INSTRU	CTION_OPERA	AND_CONTROLS				------------	---------------------------	---	---	--------------------------	---	--	--		Source:		Euls	a						Size (in b	oits):	32							Default \	Default Value: 0x00000000								DWord	Bit		Description						0	31:16	Destination	Destination Register Region								Exists If:	(Structure[EU_	INSTRUCTION_CONTR	ROLS_A][AccessMode]=='Align16')						Format:	EU_INSTRUCT	TION_OPERAND_DST_A	ALIGN16					31:16	Destination	on Register Reg	jion							Exists If:	(Structure[EU_	INSTRUCTION_CONTR	ROLS_A][AccessMode]=='Align1')						Format:	EU_INSTRUCT	TION_OPERAND_DST_A	ALIGN1					15	Reserved									Exists If:	([Destination F	Register Region][Destir	nation Addressing Mode]=='Direct')						Format:	MBZ							15	Destination Address Immediate[9:9]									Exists If:	sts If: ([Destination Register Region][Destination Addressing Mode]=='Ind		nation Addressing Mode]=='Indirect')						Format: U1								14:11	Src0.SrcTy	ype								Exists If:		([Src0.RegFile]!='IMN	M')						Format:		SrcType						14:11	Src0.SrcType									Exists If:		([Src0.RegFile]=='IMN	M')						Format:		SrcImmType						10:9	Src0.RegFile									Format:			RegFile					8:5	Destination	on Data Type								Format:		D	stType						This field specifies the numeric data type of the destination operand dst. The bits of the destination operand are interpreted as the identified numeric data type, rather than coerced into a type implied by the operator. For a send instruction, this field applies to the CurrDst - the current destination operand.								4:3	Destination	on Register File								Format:			RegFile					2	MaskCtrl Mask Con	itrol (formerly W	/rite Enable Control). T	his field determines if the the per channel write				EU_INSTRUCTION_OPERAND_CONTROLS									---------------------------------	---	--	--------------------	---	--	--	--			enables are used to generate the final write enable. This field should be normally "0".										Value	Name	Description							0	Normal [Default]								1	Write all channels	Except channels killed with predication control									Programming Notes							MaskCtrl = NoMask skips the check for $PcIP[n] = ExIP$ before enabling a channel, as described in the Evaluate Write Enable section.								1:0 Flag Register Number/Subregister Number							## **EU_INSTRUCTION_OPERAND_DST_ALIGN1**			EU_IN	ISTRUCTION_OPERAND_DST_ALIGN1					------------	--------	--	--	--	--	--		Source:		Eulsa						Size (in b	oits):	16						Default \	/alue:	0000						DWord	Bit	Description						0	15	Destination	Addressing Mode							Format:	AddrMode							mode for Cur	struction, this field applies to PostDst - the post destination operand. Addressing rDst (current destination operand) is fixed as Direct. (See Instruction Reference urrDst and PostDst.)					•	14:13	Destination I	Horizontal Stride							Format:	HorzStride							For a send in	struction, this field applies to CurrDst. PostDst only uses the register number.						12:9	Destination Address Subregister Number																Exists If:	([Destination Addressing Mode]=='Indirect')							Format: AddrSubRegNum								For a send in	struction, this field applies to PostDst						12:5	Destination I	Register Number							Exists If:	([Destination Addressing Mode] = = 'Direct')							Format:	DstRegNum							For a send instruction, this field applies to PostDst.							8:0	Destination A	Address Immediate							Exists If:	([Destination Addressing Mode]=='Indirect')							Format:	S8							For a send instruction, this field applies to PostDst.							4:0	Destination S	Subregister Number							Exists If:	([Destination Addressing Mode] = = 'Direct')							Format:	DstSubRegNum							For a send in	struction, this field applies to CurrDst.				## **EU_INSTRUCTION_OPERAND_DST_ALIGN16**			EU_IN:	STRUCTION_OP	ERAND_DS	ST_ALIGN16				------------	-------------------	--	---	----------------------	---	--	--		Source:		Eulsa							Size (in b	oits):	16							Default \	Value: 0x00000000								DWord	Bit			Description					0	15	Destination A	Addressing Mode								Format:		AddrMode							mode for Curr		•	ost destination operand. Addressing Direct. (See Instruction Reference					14:13	Reserved																		Format:			MBZ					12:9	Destination A	Address Subregister Num	ber							Exists If:	([Destination Addressing Mode]=='Indirect')								Format: AddrSubRegNum									For a send instruction, this field applies to PostDst								12:5	Destination Register Number									Exists If: ([Destination Addressing Mode]=='Direct')									Format:	DstRegNum	DstRegNum							For a send instruction, this field applies to PostDst.								8:4	Destination A	Address Immediate[8:4]								Exists If:	([Destination Addressin	og Modol – - 'Indira	(A)								ig Modej – mane	ect)						Format: S8[8:4] For a send instruction, this field applies to PostDst								4	Destination Subregister Number								4	Exists If:	([Destination Addressin	na Model=='Direc	+ ')						Format:	DstSubRegNum[4:4]	ig mode, Direc								struction, this field applies	to CurrDst.						3:0	Destination C	Channel Enable						EU_INSTRUCTION_OPERAND_DST_ALIGN16									------------------------------------	--	---	-----------	--	--	--	--				Format:	ChanEn[4]								For a send instruction, this field applies to the CurrDst						## **EU_INSTRUCTION_OPERAND_SEND_MSG**			EU_INST	RUCTION_OPERAND_SEND_MSG								------------	-----------------																																																																																																																																																																								
---	--	--	--	--	--	--	--		Source:		Eulsa									Size (in b	e (in bits): 32										Default \	/alue:	0x0000000									DWord	Bit		Description								0	31	ЕОТ												Description										terminate the thread	This field controls the termination of the thread. For a send instruction, if this field is set, EU will terminate the thread and also set the EOT bit in the message sideband. This field only applies to the send instruction. It is not present for other instructions.										Value	Value Name										0	Thread is not terminated										1	EOT									30:0	Message Descriptor											Exists If:	[SelReg32Desc]=='IMM'										Format: MsgDescpt31										30:0	Reg32											Exists If:	[SelReg32Desc]!='IMM'										In a send or sendc instruction refers to the option of providing the message descriptor field DWord, of which bits 30:0 are used, in the first two words of the Address Register rather than as an immediate operand.								## **EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1**	E	U_INSTI	RUCTION	N_OPER	AND_	SRC_I	REG_ALIGN1	1		-----------------	----------	--------------------	---	--	----------	---------------	---		Source:	Eulsa								Size (in bits):	25								Default Value:	0x000000	000							DWord	Bit				Descript	tion			0	24:21	Source Ver	tical Stride								Format:			VertStr	ide				20:18	Source Wic	lth								Format:				Width				17:16	Source Ho	izontal Strid	le							Format:			HorzStri	ide				15	Source Add	lressing Mod	de							Format:			AddrMo	ode				14:13	Reserved									Exists If:	(Property[Source Modifier]=='false')								Format: MBZ								14:13	Source Modifier									Exists If:	Exists If: (Property[Source Modifier] = = 'true')								Format:	: SrcMod							12:9	Source Add	lress Subreg	ister Nui	mber						Exists If:	([Source	([Source Addressing Mode]=='Indirect')							Format:	3 1							12:5	Source Reg	ister Numbe	er							Exists If:	([Source	Addressi	ng Mode	e]=='Direct')					Format:	SrcRegN	um						8:0	Source Add	lress Immed	iate [8:0]]						Cylinta If	([C	۸ ما ما برد مید ^ا د:		1!b dire -+!\					Exists If: Format:								4.0		S9[8:0]							4:0		register Nur		na Mada	al'Direct'					Exists If:		([Source Addressing Mode]=='Direct') SrcSubRegNum							Format:	SICSUDK	egnuili				## **EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16**	E	U_INSTF	RUCTION	I_OPERAI	ND_SRC_REG_ALIGN16					-----------------	----------	---	-----------------------	---	--	--	--		Source:	Eulsa								Size (in bits):	25								Default Value:	0x000000	000							DWord	Bit			Description					0	24:21	Source Vert	tical Stride								Format:		VertStride						20	Reserved									Format:		MBZ						19:16	Source Cha	nnel Select[7:4	[]							Format:		ChanSel[4][7:4]						15	Source Add	lressing Mode								Format:		AddrMode						14:13	Reserved									Exists If:	(Property[S	(Property[Source Modifier] = = 'false')							Format:	Format: MBZ							14:13	Source Modifier									Exists If: (Property[Source Modifier] = = 'true')									Format: SrcMod								12:9	Source Address Subregister Number																		Exists If:	([Source Ad	dressing Mode]=='Indirect')							Format:	Format: AddrSubRegNum							12:5	Source Reg	ister Number								Exists If:		ldressing Mode]=='Direct')							Format:	SrcRegNun	1						8:4	Source Add	lress Immediat	e[8:4]							Exists If:	([Source Ad	dressing Mode]=='Indirect')							Format:	Format: \$9[8:4]							4	Source Sub	register Numb	er[4:4]							Exists If:		Idressing Mode]=='Direct')							Format:	SrcSubReg	Num[4:4]						3:0	Source Cha	nnel Select[3:0)]							Format:		ChanSel[4][3:0]				## **EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC**	EU_I	INSTRUC	TION_OPERAI	ND_SR	C_R	EG_THREE_SRC		-----------------	------------	--------------------------	-----------	--------	--------------		Source:	Eulsa						Size (in bits):	21						Default Value:	0x00000000						DWord	Bit			Descri	ption		0	20	Source Subregister N	Number [1]												Format:	SrcSubRe	gNum	[1:1]			19:12	Source Register Nun	nber						Format:	S	rcReg	Num			11:9	Source Subregister N	Number [4	:2]					Format:	SrcSubRe	gNum	[4:2]			8:1	Source Swizzle							Format:		Chan	Sel[4]			0	Source Replicate Control							Format:			RepCtrl	## **EU_INSTRUCTION_SEND**			EU_INS	STR	UCTION_SEND						--	---------------------	-----------------------------	-------	---------------------	--------	--	--	--		Source: Size (in bits): Default Value:	Euls 128 0x00									DWord	Bit			Description						03	127:96	Message								_		Format: EU_I	INSTI	RUCTION_OPERAND_SEN	D_MSG						95	Reserved			T					<u>.</u>		Format:			MBZ						94:91	ExDesc[31:28]										Farmant		EvtMagDogant[21,20]								Format:		ExtMsgDescpt[31:28]							90:89	Reserved										Format:			MBZ						88:85	ExDesc[27:24]									00.03	EXECUTE:										Format: ExtMsgDescpt[27:24]								Ļ	84	Reserved										Format:			MBZ					<u>-</u>	83:80	ExDesc[23:20]																				Format:]	ExtMsgDescpt[23:20]						 	79:68	Reserved																		-		Format:			MBZ						67:64	ExDesc[19:16]										Format: ExMsgDescpt[19:16]		ExMsgDescpt[19:16]						_	63:32	Operand Control											INSTI	RUCTION_OPERAND_CON	ITROLS						31:28	Controls B										Format: E	U_IN:	STRUCTION_CONTROLS_	В					EU_INSTRUCTION_SEND									---------------------	------------------------	---------------------------	---------------	---	--	--	--		27:24	Shared Function	Shared Function ID (SFID)								Format:		SFID						23:8	Controls A									Format:	EU_INSTRUCTI	ON_CONTROLS_A	A					7	Reserved									Format:		MBZ						6:0	Opcode									Format:		EU_OPCODE					## **EU_INSTRUCTION_SENDS**				EU_IN	NSTRUCT	ΓΙΟΙ	N_SENDS				--	--------	---	--------------	--	--------	--	-------------	--		Source:		Eulsa								Size (in bits): 128										Default Value: 0x00000000, 0x00000000, 0x000000000										DWord	Bit				Des	cription				03	127:96	Message										Format:	EU_INSTI	RUCTION_OPE	ERANI	D_SEND_MSG					95:80	ExDesc[31:16	[6]									Format:		ExtMsgDescp	ot[31:	:16]					79	Source 0 Add	lressing Mod	de								Format:			Addr	rMode					78	Reserved										Exists If:	([Source	0 Addressing	Mode	e]=='Direct')						Format:	MBZ		
---	------------	--------------	--------------------------------		62	Destination	Address Immediate Si	gn [9]					Exists If: ([Destination Addressing Mode] = = 'Indirect')							Format:	S9[9:9]					62	Reserved	,						Exists If:	([Destination Addre	essing Mo	de]=='Dire	ct')			Format:	MBZ					61		source of Extended Me e from address registers		criptor. Imn	nediate value from instruction				Value			Name			0			IMM				1			REG32			60:57	Destination	Address Subregister N	lumber					Exists If:	([Destination Addre	essing Mod	de]=='Indire	ect')		60:53	Destination	Register Number						Exists If:	([Destination Addre	essing Mo	de]=='Dire	ct')		56:52	Destination	Address Immediate [8	:4]					Exists If: ([Destination Addressing Mode] == 'Indirect')							Format:	S9[8:4]					52	Destination	Subregister Number [4]					Exists If: ([Destination Addressing Mode]=='Direct')						51:44	Source 1 Re	gister Number					43:41	Reserved							Format:				MBZ		40:37	Destination	Туре					36	Source 1 Re	gister File						Format:		RegFile	[0:0]			35	Destination Register File							Format: RegFile[0:0]						34	MaskCtrl						33:32	Flag Register Number/Subregister Number						31:28	Controls B							Format:	EU_INSTRUCTI	ON_CONT	ROLS_B			27:24	Shared Fund	ction ID (SFID)						Format:	· ,			SFID			EU_INSTRUCTION_SENDS									---	----------------------	----------------	---------------------------	--	-----	--	--	--			23:8	3:8 Controls A										Format:	EU_INSTRUCTION_CONTROLS_A							-	7	Reserved										Format:			MBZ					-	6:0	Opcode										Format:	EU_OPCODE						## **EU_INSTRUCTION_SOURCES_IMM32**		EU_INSTRUCTION_SOURCES_IMM32									--	------------------------------	---------------	--	-----	--	--	--	--		Source:	ource: Eulsa									Size (in b	oits):	64								Default \	/alue:	0x0	0000000, 0x00000000							Single s	ource,	immediate	2							DWord	Bit		Description							01	63:32	Source 0	Immediate								31:25	Reserved										Format:		MBZ							24:0	Source 0										Exists If:	(Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode] = = 'Align16') AND (Structure[EU_INSTRUCTION_OPERAND_CONTROLS][Src0.RegFile]! = 'IMM')									Format:	Format: EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16								24:0	Source 0								Exists (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=='Align1') AND If: (Structure[EU_INSTRUCTION_OPERAND_CONTROLS][Src0.RegFile]!='IMM')												Format:	EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1						## **EU_INSTRUCTION_SOURCES_REG**				EU_INSTRUCTION_SOURCE	S_REG						------------	---------------	--	---	-------	--	--	--	--		Source:	Source: Eulsa									Size (in l	oits):	64								Default \	Value:	0x0	0000000, 0x00000000							Single s	ource,	register								DWord	Bit		Description							01	63:25	Reserved	l									Format:		MBZ							24:0	Source 0										Exists If:	(Structure[EU_INSTRUCTION_CONTROLS_A][Accordance (Structure[EU_INSTRUCTION_OPERAND_CONTROLS)									Format:	${\bf EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1}$	6							24:0	Source 0	rce 0									Exists (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode] == 'Align1') AND If: (Structure[EU_INSTRUCTION_OPERAND_CONTROLS][Src0.RegFile]! = 'IMM')										Format:	EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1						## **EU_INSTRUCTION_SOURCES_REG_IMM**			E	U_INSTRUCTION_SOURCES_REG_IMM							-----------------	----------	---	---	--	--	--	--	--		Source:		Eul	sa							Size (in bits):		64								Default Value:		0x0000000, 0x00000000								Dual sou	urce, re	gister and	l immediate							DWord	Bit	Description								01	63:32	Source 1 Immediate									31	Reserved										Exists If:	([Source 0][Source Addressing Mode]=='Direct')									Format:	MBZ								31	Source 0 Address Immediate [9] (Sign Bit)										Exists If:	([Source 0][Source Addressing Mode]=='Indirect')									Format:	S9[9:9]								30:27	Src1.SrcType										Format:	SrcImmType								26:25	Src1.RegFile										Format:	RegFile								24:0	Source 0										Exists If:	ists (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode] = = 'Align16') AND (Structure[EU_INSTRUCTION_OPERAND_CONTROLS][Src0.RegFile]! = 'IMM')									Format:	rmat: EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16								24:0	Source 0										Exists If:	ists (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode] == 'Align1') AND (Structure[EU_INSTRUCTION_OPERAND_CONTROLS][Src0.RegFile]! = 'IMM')									Format:	EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1						## **EU_INSTRUCTION_SOURCES_REG_REG**			E	U_	INSTRUCTION_	SOL	JRCES_	REG_REG					-----------------------------	--------	---	----------	---	----------	------------	-----------------------	--	--	--		Source:		Euls	Eulsa									Size (in b	oits):	64										Default \	/alue:	0x0000000, 0x00000000										Dual source, both registers												DWord	Bit				Des	cription						01	63:58	Reserved												Format: MBZ											57	Reserved												Exists If:		([Source 1][Source Addressing Mode]=='Direct')										Format:		MBZ									57	Source 1 Address Immediate [9] (Sign Bit)												Exists If:		([Source 1][Source Addre	essing	Mode]=='Ir	ndirect')							Format:		S9[9:9]									56:32	Source 1	Source 1											Exists If:	(Stı	ucture[EU_INSTRUCTION_CONTROLS_A][AccessMode]=='Align16')										Format: EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16											56:32	Source 1												Exists If: (Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode] = = 'Align1'					ccessMode]=='Align1')							Format: EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1											31	Reserved												Exists If:		([Source 0][Source Addressing Mode]=='Direct')										Format:		MBZ									31	Source 0 Address Immediate [9] (Sign Bit)												Exists If:		([Source 0][Source Addre	essing	Mode]=='Ir	ndirect')							Format:		S9[9:9]									30:27	Src1.SrcType												Format:				SrcType								This field specifies the numeric data type of the source operand src1. The bits of a source operand are interpreted as the identified numeric data type, rather than coerced into a type implied by the operator. Depending on RegFile field of the source operand, there are two different encoding for this field. If a source is a register operand, this field follows the Source Register Type Encoding. If a source is an immediate operand, this field follows the Source Immediate Type Encoding.														Value	Name									11b			Reserved																			EU_INSTRUCTION_SOURCES_REG_REG										--------------------------------	--	---	--	--	--	--	--	--				Programming Notes									Both source operands, src0 and src1, support immediate types, but only one immediate is allowed for a given instruction and it must be the last operand.										mode. T	Halfbyte integer vector (v) type can only be used in instructions in packed-word execution mode. Therefore, in a two-source instruction where src1 is of type :v, src0 must be of type :b, :ub, :w, or :uw.																																																																																																																																																			
		26:25	Src1.RegFile										Format:	RegFile								24:0	Source 0										Exists If:	(Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=='Align16') AND (Structure[EU_INSTRUCTION_OPERAND_CONTROLS][Src0.RegFile]!='IMM')									Format:	EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16								24:0	Source 0										Exists If:	(Structure[EU_INSTRUCTION_CONTROLS_A][AccessMode]=='Align1') AND (Structure[EU_INSTRUCTION_OPERAND_CONTROLS][Src0.RegFile]!='IMM')									Format:	EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1							### **Event Data Payload**		N	IDP_EVENT - Event Data Payl	oad				-----------------	---------	--	-----	--	--		Source:	EuSubFu	ınctionGateway					Size (in bits):	256						Default Value:		0x00000000, 0x00000000, 0x00000000, 0x00000000					DWord	Bit	Description					0	31:24	Reserved							Format:	MBZ					23:0	Event ID							Format:	U24						Indicates the ID of the event to be signalled.					17	223:0	Reserved							Format:	MBZ			#### ${\bf Execution_Unit_Extended_Message_Descriptor}$			Exe	ecution_Unit_	Extended	Message_Descriptor				------------	--------	---------------	--	-----------------	--	----	--		Source:			BSpec						Size (in b	oits):		11						Default \	Value	e: (0x00000000						DWord	Bit			Desc	cription				0	10	Reserved	1								Format:			MBZ					9:6	Extended	d Message Length								Exists If:		_	R][Opcode]=='Sends' OR Opcode]=='Sendsc')						Format:			,						This field	This field specifies the number of 256-bit GRF registers starting from <src1> to be sent out on the equest message payload. Valid value ranges from 0 to 15. Must be 0 when <src1> is null register.</src1></src1>									Value		Name						[0,15]								9:6	Reserved	<u> </u>								Exists If:	//(Structure[EU_INST Structure[EU_INSTRU		R][Opcode]=='Send' OR Opcode]=='Sendc')						Format:	MBZ							5	be reclair	, if set, indicates that		essage of the thread and the thread's resources can	an						Value		Name						0		No Termination							1		EOT						4	Reserved	d								Format:			MBZ					3:0	This field	unction ID I indicates the function I for the mapping o		ne message is intended. Refer to "GPU Overviev on IDs	w"		### **Extended Message Descriptor - Execution Unit**			Exten	ded Message Descriptor - Execution Unit					------------	------------------	-------------	--	--	--	--		Source:		BSpe	oc .					Size (in b	ze (in bits): 32							Default \	/alue:	0x00	000000					DWord	Bit		Description					0	31:16	Extended	Function Control															Exists If:	(Structure[EU_INSTRUCTION_SENDS][SelReg32ExDesc]=='IMM')							Format:	U16						31:12	Extended	Function Control															Exists If:	(Structure[EU_INSTRUCTION_SENDS][SelReg32ExDesc]!='IMM')							Format:	U20								intended to control the target function unit. Refer to the section on the specific							target func	tion unit for details on the contents of this field.						15:12	Reserved																Exists If:	(Structure[EU_INSTRUCTION_SENDS][SelReg32ExDesc]=='IMM')							Format:	MBZ						11	Reserved								Format:	MBZ						10:0	Execution	Unit Extended Message Descriptor Definition							Format:	Execution_Unit_Extended_Message_Descriptor				# **Extended Message Descriptor Render Target**			Extended Message Descriptor R	ender Target					------------	--------	---	---------------------------------------	--	--	--		Source:		BSpec	_					Size (in b	oits):	32						Default \	/alue:	0x00000000						DWord	Bit	Description						0	31:25	Reserved								Format:	MBZ						24:21	Reserved																Format:	MBZ						20	Null Render Target								Description								When this bit is set, RT write or read message is considered to be a dummy message and as if it is directed to the NULL render target. Setting this bit in the descriptor, allows SW to not use any entry from the Binding Table to convey NULL RT.								Duramana t N. c								Programming Notes								SW must set this bit for Render Target Write just to clear allocating an entry in the Binding Table.	the Pixel Scoreboard without						19:16	Pixel shading phase for CPS+PS inner loop	_															Format:	U4							The loop counter value of a PS phase within CPS+PS(+S) monolithic shader; this value is same as value delivered to Pixel Interpolator when requesting input data for a new PS loop phase. Data Port uses this index to match pixel XY positions delivered by bypass path from PI hardware when a new phase started.								Programming Not	tes							The SIMD width of a render target read/write message with PS phase counter must match SIMD width of the Pixel Interpolator Pull message which returns PS phase counter.							15	Src0 Alpha Present								Description								Setting this bit indicates that Src0 Alpha is present in the Render Target Write Message.								Programming Not	res							SW must not send a header to send Src0 Alpha present, avoid sending the header for RT write messages.	but instead, it must set this bit and						14:12	Render Target Array Index							Extended Message Descriptor Re	ender Target						-------	---	--------------	--	--	--	--											Format:	U3							Description								This bit-field is used to set the Render Target Index for M	RT messages.							Programming Not	es							SW must not send a header to send Render Target Array field approproately and avoid sending the header for RT							11:10	Reserved								Format:	MBZ						9:6	Extended Message Length								Format:	U4							This field specifies the number of 256-bit GRF registers starting from <src1> to be sent out of the request message payload. Valid value ranges from 0 to 15. Must be 0 when <src1> is nurregister. End of Thread This field, if set, indicates that this is the final message of the thread and the thread's resource can be reclaimed.</src1></src1>							5								4	Reserved								Format:	MBZ						3:0	Target Function ID This field indicates the function unit for which the messag Refer to "GPU Overview" document for the mapping of Sha						### **Extended Message Descriptor - Sampling Engine**			Extended Mes	ssage Descriptor	- Sampling Engine				------------	--------	---	-----------------------------	-------------------	--	--		Source:		BSpec						Size (in b	oits):	32						Default \	/alue:	0x00000000						DWord	Bit		Descript	ion				0	31:12	Bindless Surface Offs	et															Format:	BindlessSurfaceOffset[25:6]							Specifies the bindless surface offset if the Binding Table Index is set to 252. Ignored otherwise. The bindless surface offset is added to the Bindless Surface Base Address as bits 25:6 of the byte-based address. The resulting address is the location of SURFACE_STATE for this message.							11	CPS Message LOD Co	mpensation Enable															Format:		Enable						Specifies whether LOD Compenstation is enabled for this message. See CPS LOD								Compensation Enable	in SAMPLER_STATE for more								Programmin							This field must be disabled if the response length of the message is zero.								This field must be disabled if the messages is from a 32-pixel dispatch thread.								This field must be disabled unless SIMD Mode is SIMD8* or SIMD16*.							10:0	Execution Unit Extend	ded Message Descriptor De	finition						Format: Execut	ion_Unit_Extended_Message	e_Descriptor			### **ExtMsgDescpt**																																																																																																																																																																																																																																																																																																																																															
ExtMsg	Descpt					--	--------	--	--	------------------------------------	---	--		Source: E	ulsa							Size (in bits):	2							Default Value: 0	x00000	000						DWord	Bit		Descr	ription				0 Extended Massage	31:12	Extended Function Con	trol					Extended Message Descriptor Definition								for SendS (Immediate)		Format:			20					This field is intended to the specific target function			nit. Refer to the section on tents of this field.				11	Reserved																Format:		MB	Z				10:6	Extended Message Len	gth															Format:			U5			This field specifies the number of 256-bit GRF registers				ers starting from <src1> to</src1>						Value	on the request message payload. Value Name							[0,15]			Name					[0,13]								Programming Notes								Must be 0 when <src1> is null register.</src1>							5	EOT								Format:			U1					This field, if set, indicates that this is the final message of the thread and the thread's resources can be reclaimed.								Value		Na	me					0	No Termination	1						1	EOT						4	Reserved								Format:		MB	Z				3:0	Target Function ID								Format:			U4					If set, indicates that the message includes a header. Depending on the target shared function, this field may be restricted to either enabled or disabled. Refer					0000b 0001b #### **ExtMsgDescpt** to the specific shared function section for details. **Value Name** Null Reserved SamplingEngine ### ${\bf ExtMsgDescptImmediate}$			ExtMsgDesc	ptlmmed	iate				---	---------	--	-----------------	-------------	--------	--------------------------------		Source: Eu	ulsa							Size (in bits): 32	2							Default Value: 0x	k000000	000						DWord	Bit		Desc	ription				0	31:16	Extended Function Con	trol					Extended Message		Format:			U16			Descriptor Definition for SendS (Immediate)		This field is intended to control the target function unit. Refer to the section on the specific target function unit for details on the contents of this field.							15:12	Reserved								Format:		N	ИBZ				11	Reserved																Format: MBZ			ИBZ				10	Reserved								Format: MBZ							9:6	Extended Message Len	gth							Format:				U4				This field specifies the n	umber of 256-b	it GRF regi	isters	starting from <src1> to</src1>				be sent out on the reque	est message pay	/load.						Value				Name				[0,15]								Programming Notes								Must be 0 when <src1> is null register.</src1>							5	EOT								Format:				U1				This field, if set, indicates that this is the final message of the thread and the thread's resources can be reclaimed.								Value Name								0 No Termination								1	EOT						4	Reserved								Format:		N	ИBZ		#### ${\bf ExtMsgDescptImmediate}$ 3:0 **Target Function ID** Format: U4 If set, indicates that the message includes a header. Depending on the target shared function, this field may be restricted to either enabled or disabled. Refer to the specific shared function section for details.	Value	Name		---------------	---------------------------		0000b	Null		0001b	Reserved		0010b	SamplingEngine		0011b	MessageGateway		0100b	DataCacheDataPort2		0101b	DataPortRenderCache		0110b	URB		0111b	ThreadSpawner		1000b	VideoMotionEstimation		1001b	DataCacheReadOnlyDataPort		1010b	DataCacheDataPort		1011b	PixelInterpolator		1100b	DataCacheDataPort 1		1101b	CheckandRefinementEngine		[1110b,1111b]	Reserved	# **FFTID Message Header Control**			MHC_FFTID - FF	TID Message Hea	ader C	Control		------------	-------	--------------------------------	-------------------------------	----------	----------------------		Source:		BSpec					Size (in b	its):	32					Default V	alue:	0x00000000					DWord	Bit		Description				0	31:8	Reserved							Format:		MBZ					Ignored						7:0	FFTID							Format:		ļ	U8				Fixed function thread ID, used	d to free up resources by the	thread o	n thread completion.	#### Filter_Coefficient		Filter_Coefficient						-----------------	--------------------	------------------	------------------------------	--	--		Source:	BSpec						Size (in bits):	8						Default Value:	0x000000	000					DWord	Bit		Description				0	7:0	Filter Coefficie	nt						Format:	S1.6 2's Complement						Range : [-1 63/	Range : [-1 63/64, +1 63/64]										### Filter_Coefficients			Filter_Co	efficients				-----------------	---------------	-----------------------------	-----------------------------	--	--		Source:	BSpec						Size (in bits):	64						Default Value:	0x00000000, 0	x00000000					DWord	Bit		Description				0	63:56	Filter Coefficie	nt Offset 7						Format:	Filter_Coefficient					55:48	Filter Coefficie	Filter Coefficient Offset 6						Format:	Filter_Coefficient					47:40	Filter Coefficient Offset 5							Format:	Filter_Coefficient					39:32	Filter Coefficie	nt Offset 4						Format:	Filter_Coefficient					31:24	Filter Coefficie	nt Offset 3						Format:	Filter_Coefficient					23:16	Filter Coefficie	nt Offset 2						Format:	Filter_Coefficient					15:8	Filter Coefficie	nt Offset 1						Format:	Filter_Coefficient					7:0	Filter Coefficie	nt Offset 0						Format:	Filter_Coefficient			# **FrameDeltaQp**			Fra	meDeltaQp				-----------------	----------	----------------	-----------------	---------	--		Source:	BSpec		-				Size (in bits):	64						Default Value:	0x000000	00, 0x00000000					DWord		Bit	Desc	ription			01		63:56	FrameDeltaQp[7]	_						Format:	S7					55:48	FrameDeltaQp[6]							Format:	S7					47:40	FrameDeltaQp[5]							Format:	S7					39:32	FrameDeltaQp[4]							Format:	S7					31:24	FrameDeltaQp[3]							Format:	S7					23:16	FrameDeltaQp[2]							Format:	S7					15:8	FrameDeltaQp[1]							Format:	S7					7:0	FrameDeltaQp[0]							Format:	S7		### **FrameDeltaQpRange**			Frame Delta QpRange				-----------------	------------------	----------------------	---------	--		Source:	BSpec					Size (in bits):	64					Default Value:	0x00000000, 0x00	0000000				DWord	Bit	Desci	ription			01	63:56	FrameDeltaQpRange[7]						Format:	U8				55:48	FrameDeltaQpRange[6]						Format:	U8				47:40	FrameDeltaQpRange[5]						Format:	U8				39:32	FrameDeltaQpRange[4]						Format:	U8				31:24	FrameDeltaQpRange[3]						Format:	U8				23:16	FrameDeltaQpRange[2]						Format:	U8				15:8	FrameDeltaQpRange[1]						Format:	U8				7:0	FrameDeltaQpRange[0]						Format:	U8		#### **FunctionControl**				FunctionControl		-----------------	------	---------------------	--------------------------------		Source:	Euls	sa			Size (in bits):	6				Default Value:	0x0	0000000			DWord	Bit		Description		0	5:4	Reserved				3:0	Target Funct	ion ID				Value	Name				0000b	Reserved				0001b	INV (Reciprocal)				0010b	LOG				0011b	EXP				0100b	SQRT				0101b	RSQ				0110b	SIN				0111b	cos				1000b	Reserved				1001b	FDIV				1010b	POW				1011b	INT DIV Quotient and remainder				1100b	INT DIV Quotient only				1101b	INT DIV Remainder only				1110b	INVM				1111b	RSQRTM	#### **Gamut_Expansion_Gamma_Correction** #### **Gamut_Expansion_Gamma_Correction** Source: VideoEnhancementCS Size (in bits): 32768 Default Value: 0x00000000, 0x000000000, 0x000000000, 0x01000100, 0x01000100, 0x01000100, 0x01000100, 0x02000200, 0x02000200, 0x02000200, 0x02000200, 0x03000300, 0x03000300, 0x03000300, 0x03000300, 0x04000400, 0x04000400, 0x04000400, 0x04000400, 0x05000500, 0x05000500, 0x05000500, 0x05000500, 0x06000600, 0x06000600, 0x06000600, 0x06000600, 0x07000700, 0x07000700, 0x07000700, 0x07000700, 0x08000800, 0x08000800, 0x08000800, 0x08000800, 0x09000900, 0x09000900, 0x09000900, 0x09000900, 0x0A000A00, 0x0A000A00, 0x0A000A00, 0x0A000A00, 0x0B000B00, 0x0B000B00, 0x0B000B00, 0x0B000B00, 0x0C000C00, 0x0C000C00, 0x0C000C00, 0x0C000C00, 0x0D000D00, 0x0D000D00, 0x0D000D00, 0x0D000D00, 0x0E000E00, 0x0E000E00, 0x0E000E00, 0x0E000E00, 0x0F000F00, 0x0F000F00, 0x0F000F00, 0x0F000F00, 0x10001000, 0x10001000, 0x10001000, 0x10001000, 0x11001100, 0x11001100, 0x11001100, 0x11001100, 0x12001200, 0x12001200, 0x12001200,																																																																																																																																																																				
0x12001200, 0x13001300, 0x13001300, 0x13001300, 0x13001300, 0x14001400, 0x14001400, 0x14001400, 0x14001400, 0x15001500, 0x15001500, 0x15001500, 0x15001500, 0x16001600, 0x16001600, 0x16001600, 0x16001600, 0x17001700, 0x17001700, 0x17001700, 0x17001700, 0x18001800, 0x18001800, 0x18001800, 0x18001800, 0x19001900, 0x19001900, 0x19001900, 0x19001900, 0x1A001A00, 0x1A001A00, 0x1A001A00, 0x1A001A00, 0x1B001B00, 0x1B001B00, 0x1B001B00, 0x1B001B00, 0x1C001C00, 0x1C001C00, 0x1C001C00, 0x1C001C00, 0x1D001D00, 0x1D001D00, 0x1D001D00, 0x1D001D00, 0x1E001E00, 0x1E001E00, 0x1E001E00, 0x1E001E00, 0x1F001F00, 0x1F001F00, 0x1F001F00, 0x1F001F00, 0x20002000, 0x20002000, 0x20002000, 0x20002000, 0x21002100, 0x21002100, 0x21002100, 0x21002100, 0x22002200, 0x22002200, 0x22002200, 0x22002200, 0x23002300, 0x23002300, 0x23002300, 0x23002300, 0x24002400, 0x24002400, 0x24002400, 0x24002400, 0x25002500, 0x25002500, 0x25002500, 0x25002500, 0x26002600, 0x26002600, 0x26002600, 0x26002600, 0x27002700, 0x27002700, 0x27002700, 0x27002700, 0x28002800, 0x28002800, 0x28002800, 0x28002800, 0x29002900, 0x29002900, 0x29002900, 0x29002900, 0x2A002A00, 0x2A002A00, 0x2A002A00, 0x2A002A00, 0x2B002B00, 0x2B002B00, 0x2B002B00, 0x2B002B00, 0x2C002C00, 0x2C002C00, 0x2C002C00, 0x2C002C00, 0x2D002D00, 0x2D002D00, 0x2D002D00, 0x2D002D00, 0x2E002E00, 0x2E002E00, 0x2E002E00, 0x2E002E00, 0x2F002F00, 0x2F002F00, 0x2F002F00, 0x2F002F00, 0x30003000, 0x30003000, 0x30003000, 0x30003000, 0x31003100, 0x31003100, 0x31003100, 0x31003100, 0x32003200, 0x32003200, 0x32003200, 0x32003200, 0x33003300, 0x33003300, 0x33003300, 0x33003300, 0x34003400, 0x34003400, 0x34003400, 0x34003400, 0x35003500, 0x35003500, 0x35003500, 0x35003500, 0x36003600, 0x36003600. 0x36003600. 0x36003600. 0x37003700. 0x37003700. 0x37003700. 0x37003700, 0x38003800, 0x38003800, 0x38003800, 0x38003800, 0x39003900, 0x39003900, 0x39003900, 0x39003900, 0x3A003A00, 0x3A003A00, 0x3A003A00, 0x3A003A00, 0x3B003B00, 0x3B003B00, 0x3B003B00, 0x3B003B00, 0x3C003C00, 0x3C003C00, 0x3C003C00, 0x3C003C00, 0x3D003D00, 0x3D003D00, 0x3D003D00, #### **Gamut_Expansion_Gamma_Correction** 0x3D003D00, 0x3E003E00, 0x3E003E00, 0x3E003E00, 0x3E003E00, 0x3F003F00, 0x3F003F00, 0x3F003F00, 0x3F003F00, 0x40004000, 0x40004000, 0x40004000, 0x40004000, 0x41004100, 0x41004100, 0x41004100, 0x41004100, 0x42004200, 0x42004200, 0x42004200, 0x42004200, 0x43004300, 0x43004300, 0x43004300, 0x43004300, 0x44004400, 0x44004400, 0x44004400, 0x44004400, 0x45004500, 0x45004500, 0x45004500, 0x45004500, 0x46004600, 0x46004600, 0x46004600, 0x46004600, 0x47004700, 0x47004700, 0x47004700, 0x47004700, 0x48004800, 0x48004800, 0x48004800, 0x48004800, 0x49004900, 0x49004900, 0x49004900, 0x49004900, 0x4A004A00, 0x4A004A00, 0x4A004A00, 0x4A004A00, 0x4B004B00, 0x4B004B00, 0x4B004B00, 0x4B004B00, 0x4C004C00, 0x4C004C00, 0x4C004C00, 0x4C004C00, 0x4D004D00, 0x4D004D00, 0x4D004D00, 0x4D004D00, 0x4E004E00, 0x4E004E00, 0x4E004E00, 0x4E004E00, 0x4F004F00, 0x4F004F00, 0x4F004F00, 0x4F004F00, 0x50005000, 0x50005000, 0x50005000, 0x50005000, 0x51005100, 0x51005100, 0x51005100, 0x51005100, 0x52005200, 0x52005200, 0x52005200, 0x52005200, 0x53005300, 0x53005300, 0x53005300, 0x53005300, 0x54005400, 0x54005400, 0x54005400, 0x54005400, 0x55005500, 0x55005500, 0x55005500, 0x55005500, 0x56005600, 0x56005600, 0x56005600, 0x56005600, 0x57005700, 0x57005700, 0x57005700, 0x57005700, 0x58005800, 0x58005800, 0x58005800, 0x58005800, 0x59005900, 0x59005900, 0x59005900, 0x59005900, 0x5A005A00, 0x5A005A00, 0x5A005A00, 0x5A005A00, 0x5B005B00, 0x5B005B00, 0x5B005B00, 0x5B005B00, 0x5C005C00, 0x5C005C00, 0x5C005C00, 0x5C005C00, 0x5D005D00, 0x5D005D00, 0x5D005D00, 0x5D005D00, 0x5E005E00, 0x5E005E00, 0x5E005E00, 0x5E005E00, 0x5F005F00, 0x5F005F00, 0x5F005F00, 0x5F005F00, 0x60006000, 0x60006000, 0x60006000, 0x60006000, 0x61006100, 0x61006100, 0x61006100, 0x61006100, 0x62006200, 0x62006200, 0x62006200, 0x62006200, 0x63006300, 0x63006300, 0x63006300, 0x63006300, 0x64006400, 0x64006400, 0x64006400, 0x64006400, 0x65006500, 0x65006500, 0x65006500, 0x65006500, 0x66006600, 0x66006600, 0x66006600, 0x66006600, 0x67006700, 0x67006700, 0x67006700, 0x67006700, 0x68006800, 0x68006800, 0x68006800, 0x68006800, 0x69006900, 0x69006900, 0x69006900, 0x69006900, 0x6A006A00, 0x6A006A00, 0x6A006A00, 0x6A006A00, 0x6B006B00, 0x6B006B00, 0x6B006B00, 0x6B006B00, 0x6C006C00, 0x6C006C00, 0x6C006C00, 0x6C006C00, 0x6D006D00, 0x6D006D00, 0x6D006D00, 0x6D006D00, 0x6E006E00, 0x6E006E00, 0x6E006E00, 0x6E006E00, 0x6F006F00, 0x6F006F00, 0x6F006F00, 0x6F006F00, 0x70007000, 0x70007000, 0x70007000, 0x70007000, 0x71007100, 0x71007100, 0x71007100, 0x71007100, 0x72007200, 0x72007200, 0x72007200, 0x72007200, 0x73007300, 0x73007300, 0x73007300, 0x73007300, 0x74007400, 0x74007400, 0x74007400, 0x74007400, 0x75007500, 0x75007500, 0x75007500, 0x75007500, 0x76007600, 0x76007600, 0x76007600, 0x76007600, 0x77007700, 0x77007700, 0x77007700, 0x77007700, 0x78007800, 0x78007800, 0x78007800, 0x78007800, 0x79007900, 0x79007900, 0x79007900, 0x79007900, 0x7A007A00, 0x7A007A00, 0x7A007A00, 0x7A007A00, 0x7B007B00, 0x7B007B00, 0x7B007B00, 0x7B007B00, 0x7C007C00, 0x7C007C00, 0x7C007C00, 0x7C007C00, 0x7D007D00, 0x7D007D00, 0x7D007D00, 0x7D007D00, 0x7E007E00, 0x7E007E00, 0x7E007E00, 0x7E007E00, 0x7F007F00, 0x7F007F00, 0x7F007F00, 0x7F007F00, 0x80008000, 0x80008000, 0x80008000, 0x80008000, 0x81008100, 0x81008100, 0x81008100, 0x81008100. 0x82008200. 0x82008200. 0x82008200. 0x82008200. 0x83008300. #### **Gamut Expansion Gamma Correction** 0x83008300, 0x83008300, 0x83008300, 0x84008400, 0x84008400, 0x84008400, 0x84008400, 0x85008500, 0x85008500, 0x85008500, 0x85008500, 0x86008600, 0x86008600, 0x86008600, 0x86008600, 0x87008700, 0x87008700, 0x87008700, 0x87008700, 0x88008800, 0x88008800, 0x88008800, 0x88008800, 0x89008900, 0x89008900, 0x89008900, 0x89008900, 0x8A008A00, 0x8A008A00, 0x8A008A00, 0x8A008A00, 0x8B008B00, 0x8B008B00, 0x8B008B00, 0x8B008B00, 0x8C008C00, 0x8C008C00, 0x8C008C00, 0x8C008C00, 0x8D008D00, 0x8D008D00, 0x8D008D00, 0x8D008D00, 0x8E008E00, 0x8E008E00, 0x8E008E00, 0x8E008E00, 0x8F008F00, 0x8F008F00, 0x8F008F00, 0x8F008F00, 0x90009000, 0x90009000, 0x90009000, 0x90009000, 0x91009100, 0x91009100, 0x91009100, 0x91009100, 0x92009200, 0x92009200, 0x92009200, 0x92009200, 0x93009300, 0x93009300, 0x93009300, 0x93009300, 0x94009400, 0x94009400, 0x94009400, 0x94009400, 0x95009500, 0x95009500, 0x95009500, 0x95009500, 0x96009600, 0x96009600, 0x96009600, 0x96009600, 0x97009700, 0x97009700, 0x97009700, 0x97009700, 0x98009800, 0x98009800, 0x98009800, 0x98009800, 0x99009900, 0x99009900, 0x99009900, 0x99009900, 0x9A009A00, 0x9A009A00, 0x9A009A00, 0x9A009A00, 0x9B009B00, 0x9B009B00, 0x9B009B00, 0x9B009B00, 0x9C009C00, 0x9C009C00, 0x9C009C00, 0x9C009C00, 0x9D009D00, 0x9D009D00, 0x9D009D00, 0x9D009D00, 0x9E009E00, 0x9E009E00, 0x9E009E00, 0x9E009E00, 0x9F009F00, 0x9F009F00, 0x9F009F00, 0x9F009F00, 0xA000A000, 0xA000A000, 0xA000A000, 0xA000A000, 0xA100A100, 0xA100A100, 0xA100A100, 0xA100A100, 0xA200A200, 0xA200A200, 0xA200A200, 0xA200A200, 0xA300A300, 0xA300A300, 0xA300A300, 0xA300A300, 0xA400A400, 0xA400A400, 0xA400A400, 0xA400A400, 0xA500A500, 0xA500A500, 0xA500A500, 0xA500A500, 0xA600A600, 0xA600A600, 0xA600A600, 0xA600A600, 0xA700A700, 0xA700A700, 0xA700A700, 0xA700A700, 0xA800A800, 0xA800A800, 0xA800A800, 0xA800A800, 0xA800A800, 0xA900A900, 0xA900A900, 0xA900A900, 0xA900A900, 0xAA00AA00, 0xAA00AA00, 0xAA00AA00, 0xAA00AA00, 0xAB00AB00, 0xAB00AB00, 0xAB00AB00, 0xAB00AB00, 0xAC00AC00, 0xAC00AC00, 0xAC00AC00, 0xAC00AC00, 0xAD00AD00, 0xAD00AD00, 0xAD00AD00, 0xAD00AD00, 0xAE00AE00, 0xAE00AE00, 0xAE00AE00, 0xAE00AE00, 0xAF00AF00, 0xAF00AF00, 0xAF00AF00, 0xAF00AF00, 0xB000B000, 0xB000B000, 0xB000B000, 0xB000B000, 0xB100B100, 0xB100B100, 0xB100B100, 0xB100B100, 0xB200B200, 0xB200B200, 0xB200B200, 0xB200B200, 0xB300B300, 0xB300B300, 0xB300B300, 0xB300B300, 0xB400B400, 0xB400B400, 0xB400B400, 0xB400B400, 0xB500B500, 0xB500B500, 0xB500B500, 0xB500B500, 0xB600B600, 0xB600B600, 0xB600B600, 0xB600B600, 0xB700B700, 0xB700B700, 0xB700B700, 0xB700B700, 0xB800B800, 0xB800B800, 0xB800B800, 0xB800B800, 0xB900B900, 0xB900B900, 0xB900B900, 0xB900B900, 0xBA00BA00, 0xBA00BA00, 0xBA00BA00, 0xBA00BA00, 0xBB00BB00, 0xBB00BB00, 0xBB00BB00, 0xBB00BB00, 0xBC00BC00, 0xBC00BC00, 0xBC00BC00, 0xBC00BC00, 0xBD00BD00, 0xBD00BD00, 0xBD00BD00, 0xBD00BD00, OxBEOOBEOO, OxBEOOBEOO, OxBEOOBEOO, OxBEOOBEOO, OxBFOOBFOO, OxBFOOBFOO, 0xBF00BF00, 0xBF00BF00, 0xC000C000, 0xC000C000, 0xC000C000, 0xC000C000, 0xC100C100, 0xC100C100, 0xC100C100, 0xC100C100, 0xC200C200, 0xC200C200, 0xC200C200, 0xC200C200, 0xC300C300, 0xC300C300, 0xC300C300, 0xC300C300, 0xC400C400, 0xC400C400, 0xC400C400, 0xC400C400, 0xC500C500, 0xC500C500, 0xC500C500, 0xC500C500, 0xC600C600, 0xC600C600, 0xC600C600, 0xC600C600, 0xC700C700. 0xC700C700. 0xC700C700. 0xC700C700. 0xC800C800. 0xC800C800. #### **Gamut_Expansion_Gamma_Correction** 0xC800C800, 0xC800C800, 0xC900C900, 0xC900C900, 0xC900C900, 0xC900C900, 0xCA00CA00, 0xCA00CA00, 0xCA00CA00, 0xCA00CA00, 0xCB00CB00, 0xCB00CB00, 0xCB00CB00, 0xCB00CB00, 0xCC00CC00, 0xCC00CC00, 0xCC00CC00, 0xCC00CC00, 0xCD00CD00, 0xCD00CD00, 0xCD00CD00, 0xCD00CD00, 0xCE00CE00, 0xCE00CE00, 0xCE00CE00, 0xCE00CE00, 0xCF00CF00, 0xCF00CF00, 0xCF00CF00, 0xCF00CF00, 0xD000D000, 0xD000D000, 0xD000D000, 0xD000D000, 0xD100D100, 0xD100D100, 0xD100D100, 0xD100D100, 0xD200D200, 0xD200D200, 0xD200D200, 0xD200D200, 0xD300D300, 0xD300D300, 0xD300D300, 0xD300D300, 0xD400D400, 0xD400D400, 0xD400D400, 0xD400D400, 0xD500D500, 0xD500D500, 0xD500D500, 0xD500D500, 0xD600D600, 0xD600D600, 0xD600D600, 0xD600D600, 0xD700D700, 0xD700D700, 0xD700D700, 0xD700D700, 0xD800D800, 0xD800D800, 0xD800D800, 0xD800D800, 0xD900D900, 0xD900D900, 0xD900D900, 0xD900D900, 0xDA00DA00, 0xDA00DA00, 0xDA00DA00, 0xDA00DA00, 0xDB00DB00, 0xDB00DB00, 0xDB00DB00, 0xDB00DB00, 0xDC00DC00, 0xDC00DC00, 0xDC00DC00, 0xDC00DC00, 0xDD00DD00, 0xDD00DD00, 0xDD00DD00, 0xDD00DD00, 0xDE00DE00, 0xDE00DE00, 0xDE00DE00, 0xDE00DE00, 0xDF00DF00, 0xDF00DF00, 0xDF00DF00, 0xDF00DF00,																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																											
0xE000E000, 0xE000E000, 0xE000E000, 0xE000E000, 0xE100E100, 0xE100E100, 0xE100E100, 0xE100E100, 0xE200E200, 0xE200E200, 0xE200E200, 0xE200E200, 0xE300E300, 0xE300E300, 0xE300E300, 0xE300E300, 0xE400E400, 0xE400E400, 0xE400E400, 0xE400E400, 0xE500E500, 0xE500E500, 0xE500E500, 0xE500E500, 0xE600E600, 0xE600E600, 0xE600E600, 0xE600E600, 0xE700E700, 0xE700E700, 0xE700E700, 0xE700E700, 0xE800E800, 0xE800E800, 0xE800E800, 0xE800E800, 0xE900E900, 0xE900E900, 0xE900E900, 0xE900E900, 0xEA00EA00, 0xEA00EA00, 0xEA00EA00, 0xEA00EA00, 0xEB00EB00, 0xEB00EB00, 0xEB00EB00, 0xEB00EB00, 0xEC00EC00, 0xEC00EC00, 0xEC00EC00, 0xEC00EC00, 0xED00ED00, 0xED00ED00, 0xED00ED00, 0xED00ED00, 0xEE00EE00, 0xEE00EE00, 0xEE00EE00, 0xEE00EE00, 0xEF00EF00, 0xEF00EF00, 0xEF00EF00, 0xEF00EF00, 0xF000F000, 0xF000F000, 0xF000F000, 0xF000F000, 0xF100F100, 0xF100F100, 0xF100F100, 0xF100F100, 0xF200F200, 0xF200F200, 0xF200F200, 0xF200F200, 0xF300F300, 0xF300F300, 0xF300F300, 0xF300F300, 0xF400F400, 0xF400F400, 0xF400F400, 0xF400F400, 0xF500F500, 0xF500F500, 0xF500F500, 0xF500F500, 0xF600F600, 0xF600F600, 0xF600F600, 0xF600F600, 0xF700F700, 0xF700F700, 0xF700F700, 0xF700F700, 0xF800F800, 0xF800F800, 0xF800F800, 0xF800F800, 0xF900F900, 0xF900F900, 0xF900F900, 0xF900F900, 0xFA00FA00, 0xFA00FA00, 0xFA00FA00, 0xFA00FA00, 0xFB00FB00, 0xFB00FB00, 0xFB00FB00, 0xFB00FB00, 0xFC00FC00, 0xFC00FC00, 0xFC00FC00, 0xFC00FC00, 0xFD00FD00, 0xFD00FD00, 0xFD00FD00, 0xFD00FD00, 0xFE00FE00, 0xFE00FE00, OxFEOOFEOO, OxFEOOFEOO, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF, OxFFFFFFFF		Programming Notes									---	--------------------------	--	-------------	-------------	---------------	--	--	--		Ţ	The default values follo	w the pattern	suggested b	y incomplet	e table belov						DWords	DWords DWord 0 DWord 1 DWord 2 DWord 3									03 : Point[0]	00000000h	00000000h	00000000h	00000000h						47 : Point[1]	01000100h	01000100h	01000100h	01000100h						811 : Point[2]	02000200h	02000200h	02000200h	02000200h						1215 : Point[3]	03000300h	03000300h	03000300h	03000300h								••								Gam	ut_Expansion_Gamma_Co	orrection					------------------	----------------	--------------------------------------	-----------	--	--	--		10161019 : Point	[254] fe00fe	00h fe00fe00h fe00fe00h fe00fe00h						10201023 : Point	[255] ffffffff	n fffffffh fffffffh fffffffh						DWord	Bit	Descri	ption					01	63:48	Inverse R-ch Gamma Corrected Value 0								Default Value:	0000h							Format:	U16						47:32	Inverse Pixel Value 0								Default Value:	0000h							Format:	U16						31:16	Inverse B-ch Gamma Corrected Value (0							Default Value:	0000h							Format:	U16						15:0	Inverse G-ch Gamma Corrected Value	0							Default Value:	0000h							Format:	U16					23	63:48	Forward R-ch Gamma Corrected Value 0								Default Value:	0000h							Format:	U16						47:32	Forward Pixel Value 0								Default Value:	0000h							Format:	U16						31:16	Forward B-ch Gamma Corrected Value 0								Default Value:	0000h							Format:	U16						15:0	Forward G-ch Gamma Corrected Value 0								Default Value:	0000h							Format:	U16					45	63:48	Inverse R-ch Gamma Corrected Value 1								Default Value:	0100h							Format:	U16						47:32	Inverse Pixel Value 1								Default Value:	0100h							Format:	U16						31:16	Inverse B-ch Gamma Corrected Value	<u></u> 1							Default Value:	0100h							Format:	U16			------	-------	--------------------------------------	-------	--			15:0	Inverse G-ch Gamma Corrected Value 1						Default Value:	0100h					Format:	U16			67	63:48	Forward R-ch Gamma Corrected Value 1						Default Value:	0100h					Format:	U16				47:32	Forward Pixel Value 1	•					Default Value:	0100h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value	1					Default Value:	0100h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 1						Default Value:	0100h					Format:	U16			89	63:48	Inverse R-ch Gamma Corrected Value 2						Default Value:	0200h					Format:	U16				47:32	Inverse Pixel Value 2						Default Value:	0200h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 2						Default Value:	0200h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 2						Default Value:	0200h					Format:	U16			1011	63:48	Forward R-ch Gamma Corrected Value	2					Default Value:	0200h					Format:	U16				47:32	Forward Pixel Value 2						Default Value:	0200h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value	2					Format:	U16		------	--------	--------------------------------------	----------			15:0	Forward G-ch Gamma Corrected Value 2				13.0	Default Value:	0200h				Format:	U16		1213	63:48	Inverse R-ch Gamma Corrected Value 3				331.13	Default Value:	0300h				Format:	U16			47:32	Inverse Pixel Value 3	<u> </u>				Default Value:	0300h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 3					Default Value:	0300h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 3					Default Value:	0300h				Format:	U16		1415	63:48	Forward R-ch Gamma Corrected Value 3					Default Value:	0300h				Format:	U16			47:32	Forward Pixel Value 3					Default Value:	0300h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 3					Default Value:	0300h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 3					Default Value:	0300h				Format:	U16		1617	63:48	Inverse R-ch Gamma Corrected Value 4					Default Value:	0400h				Format:	U16			47:32	Inverse Pixel Value 4					Default Value:	0400h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 4					Default Value:	0400h	# intel			Format:	U16		------	-------	--------------------------------------	----------			15:0	Inverse G-ch Gamma Corrected Value	4				Default Value:	0400h				Format:	U16		1819	63:48	Forward R-ch Gamma Corrected Value 4					Default Value:	0400h				Format:	U16			47:32	Forward Pixel Value 4					Default Value:	0400h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	e 4				Default Value:	0400h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 4					Default Value:	0400h				Format:	U16		2021	63:48	Inverse R-ch Gamma Corrected Value 5					Default Value:	0500h				Format:	U16			47:32	Inverse Pixel Value 5					Default Value:	0500h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 5					Default Value:	0500h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value	5				Default Value:	0500h				Format:	U16		2223	63:48	Forward R-ch Gamma Corrected Value	e 5				Default Value:	0500h				Format:	U16			47:32	Forward Pixel Value 5					Default Value:	0500h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	<u> </u>			31:16	Format:	U16			Gam	nut_Expansion_Gamma_Co	rrection			------	-------	--------------------------------------	----------	--				Format:	U16				15:0	Forward G-ch Gamma Corrected Value 5						Default Value:	0500h					Format:	U16			2425	63:48	Inverse R-ch Gamma Corrected Value 6						Default Value:	0600h					Format:	U16				47:32	Inverse Pixel Value 6						Default Value:	0600h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 6						Default Value:	0600h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 6						Default Value:	0600h					Format:	U16			2627	63:48	Forward R-ch Gamma Corrected Value 6						Default Value:	0600h					Format:	U16				47:32	Forward Pixel Value 6						Default Value:	0600h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 6						Default Value:	0600h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 6						Default Value:	0600h					Format:	U16			2829	63:48	Inverse R-ch Gamma Corrected Value 7						Default Value:	0700h					Format:	U16				47:32	Inverse Pixel Value 7						Default Value:	0700h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 7						Default Value:	0700h				Gan	nut_Expansion_Gamma_Co	rrection			------	-------	--------------------------------------	----------	--				Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 7						Default Value:	0700h					Format:	U16			3031	63:48	Forward R-ch Gamma Corrected Value 7						Default Value:	0700h					Format:	U16				47:32	Forward Pixel Value 7						Default Value:	0700h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 7	,					Default Value:	0700h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 7						Default Value:	0700h					Format:	U16			3233	63:48	Inverse R-ch Gamma																																																																																																																																												
Corrected Value 8						Default Value:	0800h					Format:	U16				47:32	Inverse Pixel Value 8						Default Value:	0800h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 8						Default Value:	0800h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 8						Default Value:	0800h					Format:	U16			3435	63:48	Forward R-ch Gamma Corrected Value 8						Default Value:	0800h					Format:	U16				47:32	Forward Pixel Value 8						Default Value:	0800h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 8	·					Default Value:	0800h					Format:	U16		------	-------	---------------------------------------	-------			15.0	Forward G-ch Gamma Corrected Value 8				15:0	Default Value:	0800h				Format:	U16		3637	63:48	Inverse R-ch Gamma Corrected Value 9	0.10		3037	05.40	Default Value:	0900h				Format:	U16			47:32	Inverse Pixel Value 9	0.10			47.52	Default Value:	0900h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 9	1010			31.10	Default Value:	0900h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 9				15.0	Default Value:	0900h				Format:	U16		3839	63:48	Forward R-ch Gamma Corrected Value 9					Default Value:	0900h				Format:	U16			47:32	Forward Pixel Value 9					Default Value:	0900h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 9					Default Value:	0900h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 9)				Default Value:	0900h				Format:	U16		4041	63:48	Inverse R-ch Gamma Corrected Value 10)				Default Value:	0a00h				Format:	U16			47:32	Inverse Pixel Value 10					Default Value:	0a00h				Format:	U16				Inverse B-ch Gamma Corrected Value 10				Gan	nut_Expansion_Gamma_Cori	rection		------	-------	---------------------------------------	----------				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 10					Default Value:	0a00h				Format:	U16		4243	63:48	Forward R-ch Gamma Corrected Value 10					Default Value:	0a00h				Format:	U16			47:32	Forward Pixel Value 10	<u> </u>				Default Value:	0a00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 10					Default Value:	0a00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 10					Default Value:	0a00h				Format:	U16		4445	63:48	Inverse R-ch Gamma Corrected Value 11					Default Value:	0b00h				Format:	U16			47:32	Inverse Pixel Value 11					Default Value:	0b00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 11					Default Value:	0b00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 11					Default Value:	0b00h				Format:	U16		4647	63:48	Forward R-ch Gamma Corrected Value 11					Default Value:	0b00h				Format:	U16			47:32	Forward Pixel Value 11					Default Value:	0b00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 11					Default Value:	0b00h			Gan	nut_Expansion_Gamma_Cor	rection		------	-------------	---------------------------------------	---------			Format: U16					15:0	Forward G-ch Gamma Corrected Value 11					Default Value:	0b00h				Format:	U16		4849	63:48	Inverse R-ch Gamma Corrected Value 12					Default Value:	0c00h				Format:	U16			47:32	Inverse Pixel Value 12					Default Value:	0c00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 12					Default Value:	0c00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 12					Default Value:	0c00h				Format:	U16		5051	63:48	Forward R-ch Gamma Corrected Value 12					Default Value:	0c00h				Format:	U16			47:32	Forward Pixel Value 12					Default Value:	0c00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 12					Default Value:	0c00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 12					Default Value:	0c00h				Format:	U16		5253	63:48	Inverse R-ch Gamma Corrected Value 13					Default Value:	0d00h				Format:	U16			47:32	Inverse Pixel Value 13					Default Value:	0d00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 13					Default Value:	0d00h			Gan	nut_Expansion_Gamma_Cor	rection		------	-------	---------------------------------------	---------				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 13					Default Value:	0d00h				Format:	U16		5455	63:48	Forward R-ch Gamma Corrected Value 13	}				Default Value:	0d00h				Format:	U16			47:32	Forward Pixel Value 13					Default Value:	0d00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 13	}				Default Value:	0d00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 13	3				Default Value:	0d00h				Format:	U16		5657	63:48	Inverse R-ch Gamma Corrected Value 14					Default Value:	0e00h				Format:	U16			47:32	Inverse Pixel Value 14					Default Value:	0e00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 14					Default Value:	0e00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 14					Default Value:	0e00h				Format:	U16		5859	63:48	Forward R-ch Gamma Corrected Value 14					Default Value:	0e00h				Format:	U16			47:32	Forward Pixel Value 14					Default Value:	0e00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 14					Default Value:	0e00h				-	114.6		-------	-------	---------------------------------------	-------				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 14					Default Value:	0e00h				Format:	U16		6061	63:48	Inverse R-ch Gamma Corrected Value	15				Default Value:	0f00h				Format:	U16			47:32	Inverse Pixel Value 15					Default Value:	0f00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 15					Default Value:	0f00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 15					Default Value:	0f00h				Format:	U16		6263	63:48	Forward R-ch Gamma Corrected Value 15					Default Value:	0f00h				Format:	U16			47:32	Forward Pixel Value 15					Default Value:	0f00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 15					Default Value:	0f00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 15					Default Value:	0f00h				Format:	U16		6465	63:48	Inverse R-ch Gamma Corrected Value 16			0 103		Default Value:	1000h				Format:	U16			47:32	Inverse Pixel Value 16	•				Default Value:	1000h				Format:	U16				out_Expansion_Gamma_Co			------	---------------	---------------------------------------	-------			31:16 15:0	Inverse B-ch Gamma Corrected Value 16					Default Value:	1000h				Format:	U16				Inverse G-ch Gamma Corrected Value 16					Default Value:	1000h				Format:	U16		6667	63:48	Forward R-ch Gamma Corrected Value 16					Default Value:	1000h				Format:	U16			47:32	Forward Pixel Value 16					Default Value:	1000h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	16				Default Value:	1000h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 16					Default Value:	1000h				Format:	U16		6869	63:48	Inverse R-ch Gamma Corrected Value 17					Default Value:	1100h				Format:	U16			47:32	Inverse Pixel Value 17					Default Value:	1100h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 17					Default Value:	1100h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 17					Default Value:	1100h				Format:	U16		7071	63:48	Forward R-ch Gamma Corrected Value 17					Default Value:	1100h				Format:	U16			47:32	Forward Pixel Value 17					Default Value:	1100h				Format:	U16			Gam	nut_Expansion_Gamma_Corre	ection		------	-------	---------------------------------------	--------			31:16	Forward B-ch Gamma Corrected Value 17					Default Value:	1100h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 17					Default Value:	1100h				Format:	U16		7273	63:48	Inverse R-ch Gamma Corrected Value 18					Default Value:	1200h				Format:	U16			47:32	Inverse Pixel Value 18					Default Value:	1200h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 18					Default Value:	1200h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 18					Default Value:	1200h				Format:	U16		7475	63:48	Forward R-ch Gamma Corrected Value 18					Default Value:	1200h				Format:	U16			47:32	Forward Pixel Value 18					Default Value:	1200h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 18					Default Value:	1200h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 18					Default Value:	1200h				Format:	U16		7677	63:48	Inverse R-ch Gamma Corrected Value 19					Default Value:																																														
1300h				Format:	U16			47:32	Inverse Pixel Value 19					Default Value:	1300h				Format:	U16				nut_Expansion_Gamma_Co			------	-------	---------------------------------------	-------			31:16	Inverse B-ch Gamma Corrected Value 19					Default Value:	1300h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 19					Default Value:	1300h				Format:	U16		7879	63:48	Forward R-ch Gamma Corrected Value 19					Default Value:	1300h				Format:	U16			47:32	Forward Pixel Value 19					Default Value:	1300h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 19					Default Value:	1300h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 19					Default Value:	1300h				Format:	U16		8081	63:48	Inverse R-ch Gamma Corrected Value 20					Default Value:	1400h				Format:	U16			47:32	Inverse Pixel Value 20					Default Value:	1400h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 20					Default Value:	1400h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 20					Default Value:	1400h				Format:	U16		8283	63:48	Forward R-ch Gamma Corrected Value 20				33.13	Default Value:	1400h				Format:	U16			47:32	Forward Pixel Value 20	l				Default Value:	1400h				Format:	U16			Gan	nut_Expansion_Gamma_Corre	ction		------	-------	---------------------------------------	-------			31:16	Forward B-ch Gamma Corrected Value 20					Default Value:	1400h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 20	•				Default Value:	1400h				Format:	U16		8485	63:48	Inverse R-ch Gamma Corrected Value 21					Default Value:	1500h				Format:	U16			47:32	Inverse Pixel Value 21					Default Value:	1500h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 21					Default Value:	1500h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 21					Default Value:	1500h				Format:	U16		8687	63:48	Forward R-ch Gamma Corrected Value 21					Default Value:	1500h				Format:	U16			47:32	Forward Pixel Value 21					Default Value:	1500h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 21					Default Value:	1500h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 21					Default Value:	1500h				Format:	U16		8889	63:48	Inverse R-ch Gamma Corrected Value 22					Default Value:	1600h				Format:	U16			47:32	Inverse Pixel Value 22					Default Value:	1600h				Format:	U16				nut_Expansion_Gamma_Co			------	-------	---------------------------------------	----------			31:16	Inverse B-ch Gamma Corrected Value 22					Default Value:	1600h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 2	į.				Default Value:	1600h				Format:	U16		9091	63:48	Forward R-ch Gamma Corrected Value 22					Default Value:	1600h				Format:	U16			47:32	Forward Pixel Value 22					Default Value:	1600h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 22					Default Value:	1600h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 22					Default Value:	1600h				Format:	U16		9293	63:48	Inverse R-ch Gamma Corrected Value 23					Default Value:	1700h				Format:	U16			47:32	Inverse Pixel Value 23					Default Value:	1700h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 23					Default Value:	1700h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 23					Default Value:	1700h				Format:	U16		9495	63:48	Forward R-ch Gamma Corrected Value 23			333		Default Value:	1700h				Format:	U16			47:32	Forward Pixel Value 23	<u>'</u>				Default Value:	1700h				Format:	U16			Gan	nut_Expansion_Gamma_Corre	ection			--------	-------	---	----------	--			31:16	Forward B-ch Gamma Corrected Value 23						Default Value:	1700h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 23						Default Value:	1700h					Format:	U16			9697	63:48	Inverse R-ch Gamma Corrected Value 24						Default Value:	1800h					Format:	U16				47:32	Inverse Pixel Value 24	•					Default Value:	1800h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 24	·					Default Value:	1800h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 24						Default Value:	1800h					Format:	U16			9899	63:48	:48 Forward R-ch Gamma Corrected Value 24						Default Value:	1800h					Format:	U16				47:32	Forward Pixel Value 24						Default Value:	1800h					Format:	U16				31:16	16 Forward B-ch Gamma Corrected Value 24						Default Value:	1800h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 24	•					Default Value:	1800h					Format:	U16			100101	63:48	Inverse R-ch Gamma Corrected Value 25	<u>.</u>					Default Value:	1900h					Format:	U16				47:32	Inverse Pixel Value 25	1					Default Value:	1900h					Format:	U16				31:16 Inverse B-ch Gamma Corrected Value 25				--------	---	---	-------				Default Value:	1900h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value	25				Default Value:	1900h				Format:	U16		102103	63:48	Forward R-ch Gamma Corrected Value	25				Default Value:	1900h				Format:	U16			47:32	Forward Pixel Value 25					Default Value:	1900h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	25				Default Value:	1900h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 25					Default Value:	1900h				Format:	U16		104105	63:48	63:48 Inverse R-ch Gamma Corrected Value 26					Default Value:	1a00h				Format:	U16			47:32	Inverse Pixel Value 26					Default Value:	1a00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value	26				Default Value:	1a00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value	26				Default Value:	1a00h				Format:	U16		106107	63:48	Forward R-ch Gamma Corrected Value	26				Default Value:	1a00h				Format:	U16			47:32	Forward Pixel Value 26					Default Value:	1a00h				Format:	U16			Gam	nut_Expansion_Gamma_Corre	ection			--------	-------	---	--------	--			31:16	Forward B-ch Gamma Corrected Value 26						Default Value:	1a00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 26						Default Value:	1a00h					Format:	U16			108109	63:48	Inverse R-ch Gamma Corrected Value 27						Default Value:	1b00h					Format:	U16				47:32	Inverse Pixel Value 27						Default Value:	1b00h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 27	·					Default Value:	1b00h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 27						Default Value:	1b00h					Format:	U16			110111	63:48	63:48 Forward R-ch Gamma Corrected Value 27						Default Value:	1b00h					Format:	U16				47:32	Forward Pixel Value 27						Default Value:	1b00h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 27						Default Value:	1b00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 27						Default Value:	1b00h					Format:	U16			112113	63:48	Inverse R-ch Gamma Corrected Value 28						Default Value:	1c00h					Format:	U16				47:32	Inverse Pixel Value 28	,					Default Value:	1c00h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 28			--------	-------	---------------------------------------	-------				Default Value:	1c00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value	e 28				Default Value:	1c00h				Format:	U16		114115	63:48	Forward R-ch Gamma Corrected Valu	ıe 28				Default Value:	1c00h				Format:	U16			47:32	Forward Pixel Value 28					Default Value:	1c00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Valu	ıe 28				Default Value:	1c00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 28					Default Value:	1c00h				Format:	U16		116117	63:48	Inverse R-ch Gamma Corrected Value 29					Default Value:	1d00h				Format:	U16			47:32	Inverse Pixel Value 29					Default Value:	1d00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value	29				Default Value:	1d00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value	e 29				Default Value:	1d00h				Format:	U16		118119	63:48	Forward R-ch Gamma Corrected Valu					Default Value:	1d00h				Format:	U16			47:32	Forward Pixel Value 29					Default Value:	1d00h			Gam	nut_Expansion_Gamma_Corre	ection			--------	-------	---	----------	--			31:16	Forward B-ch Gamma																								
Corrected Value 29						Default Value:	1d00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 29						Default Value:	1d00h					Format:	U16			120121	63:48	Inverse R-ch Gamma Corrected Value 30						Default Value:	1e00h					Format:	U16				47:32	Inverse Pixel Value 30	<u> </u>					Default Value:	1e00h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 30	·					Default Value:	1e00h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 30						Default Value:	1e00h					Format:	U16			122123	63:48	63:48 Forward R-ch Gamma Corrected Value 30						Default Value:	1e00h					Format:	U16				47:32	Forward Pixel Value 30						Default Value:	1e00h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 30	·					Default Value:	1e00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 30	·					Default Value:	1e00h					Format:	U16			124125	63:48	Inverse R-ch Gamma Corrected Value 31						Default Value:	1f00h					Format:	U16				47:32	Inverse Pixel Value 31	·					Default Value:	1f00h					Format:	U16				31:16	nut_Expansion_Gamma_Co Inverse B-ch Gamma Corrected Value 3			--------	-------	---	--------------			31.10	Default Value:	1f00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 3	<u> </u>			15.0	Default Value:	1f00h				Format:	U16		126127	63:48	Forward R-ch Gamma Corrected Value	<u>l</u>		120121	03.40	Default Value:	1f00h				Format:	U16			47:32	Forward Pixel Value 31	1 2 2 2			77.52	Default Value:	1f00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	L			31.10	Default Value:	1f00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 31					Default Value:	1f00h				Format:	U16		128129	63:48	Inverse R-ch Gamma Corrected Value 32					Default Value:	2000h				Format:	U16			47:32	Inverse Pixel Value 32	<u> </u>				Default Value:	2000h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 3	2				Default Value:	2000h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 3	2				Default Value:	2000h				Format:	U16		130131	63:48	Forward R-ch Gamma Corrected Value	32				Default Value:	2000h				Format:	U16			47:32	Forward Pixel Value 32					Default Value:	2000h			41.32		2000h U16			Gam	nut_Expansion_Gamma_Corre	ection			--------	-------	--	--------	--			31:16	Forward B-ch Gamma Corrected Value 32						Default Value:	2000h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 32						Default Value:	2000h					Format:	U16			132133	63:48	Inverse R-ch Gamma Corrected Value 33	•					Default Value:	2100h					Format:	U16				47:32	Inverse Pixel Value 33	·					Default Value:	2100h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 33						Default Value:	2100h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 33						Default Value:	2100h					Format:	U16			134135	63:48	3:48 Forward R-ch Gamma Corrected Value 33						Default Value:	2100h					Format:	U16				47:32	Forward Pixel Value 33						Default Value:	2100h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 33						Default Value:	2100h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 33						Default Value:	2100h					Format:	U16			136137	63:48	Inverse R-ch Gamma Corrected Value 34					333	Default Value:	2200h					Format:	U16				47:32	Inverse Pixel Value 34					17.52	Default Value:	2200h					Format:	U16				Gan	nut_Expansion_Gamma_Cor	rection		--------	-------	---------------------------------------	---------			31:16	Inverse B-ch Gamma Corrected Value 34					Default Value:	2200h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 34					Default Value:	2200h				Format:	U16		138139	63:48	Forward R-ch Gamma Corrected Value 34					Default Value:	2200h				Format:	U16			47:32	Forward Pixel Value 34					Default Value:	2200h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 34					Default Value:	2200h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 34					Default Value:	2200h				Format:	U16		140141	63:48	Inverse R-ch Gamma Corrected Value 35					Default Value:	2300h				Format:	U16			47:32	Inverse Pixel Value 35					Default Value:	2300h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 35					Default Value:	2300h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 35					Default Value:	2300h				Format:	U16		142143	63:48	Forward R-ch Gamma Corrected Value 35					Default Value:	2300h				Format:	U16			47:32	Forward Pixel Value 35	1				Default Value:	2300h				Format:	U16			Gan	nut_Expansion_Gamma_Corre	ection			--------	-------	--	----------	--			31:16	Forward B-ch Gamma Corrected Value 35						Default Value:	2300h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 35						Default Value:	2300h					Format:	U16			144145	63:48	Inverse R-ch Gamma Corrected Value 36						Default Value:	2400h					Format:	U16				47:32	Inverse Pixel Value 36	<u> </u>					Default Value:	2400h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 36	·					Default Value:	2400h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 36						Default Value:	2400h					Format:	U16			146147	63:48	3:48 Forward R-ch Gamma Corrected Value 36						Default Value:	2400h					Format:	U16				47:32	Forward Pixel Value 36						Default Value:	2400h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 36	·					Default Value:	2400h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 36						Default Value:	2400h					Format:	U16			148149	63:48	Inverse R-ch Gamma Corrected Value 37	•					Default Value:	2500h					Format:	U16				47:32	Inverse Pixel Value 37	<u> </u>					Default Value:	2500h					Format:	U16				Gan	nut_Expansion_Gamma_Co	rrection		--------	-------	---	----------			31:16	Inverse B-ch Gamma Corrected Value 37					Default Value:	2500h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 37					Default Value:	2500h				Format:	U16		150151	63:48	Forward R-ch Gamma Corrected Value 3	7				Default Value:	2500h				Format:	U16			47:32	Forward Pixel Value 37					Default Value:	2500h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 3	7				Default Value:	2500h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 37					Default Value:	2500h				Format:	U16		152153	63:48	63:48 Inverse R-ch Gamma Corrected Value 38					Default Value:	2600h				Format:	U16			47:32	Inverse Pixel Value 38					Default Value:	2600h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 38					Default Value:	2600h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 38	}				Default Value:	2600h				Format:	U16		154155	63:48	Forward R-ch Gamma Corrected Value 3	8				Default Value:	2600h				Format:	U16			47:32	Forward Pixel Value 38					Default Value:	2600h				Format:	U16			Gam	nut_Expansion_Gamma_Corre	ection			--------	-------	---	----------	--			31:16	Forward B-ch Gamma Corrected Value 38						Default Value:	2600h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 38						Default Value:	2600h					Format:	U16			156157	63:48	Inverse R-ch Gamma Corrected Value 39						Default Value:	2700h					Format:	U16				47:32	Inverse Pixel Value 39						Default Value:	2700h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 39						Default Value:	2700h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 39						Default Value:	2700h					Format:	U16			158159	63:48	63:48 Forward R-ch Gamma Corrected Value 39						Default Value:	2700h					Format:	U16				47:32	Forward Pixel Value 39						Default Value:	2700h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 39	·					Default Value:	2700h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 39	<u>'</u>					Default Value:	2700h					Format:	U16			160161	63:48	Inverse R-ch Gamma Corrected Value 40	<u>'</u>					Default Value:	2800h					Format:	U16				47:32	Inverse Pixel Value 40				
nut_Expansion_Gamma_Cor	rection		--------	-------	---	---------			31:16	Inverse B-ch Gamma Corrected Value 40					Default Value:	2800h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 40					Default Value:	2800h				Format:	U16		162163	63:48	Forward R-ch Gamma Corrected Value 40)				Default Value:	2800h				Format:	U16			47:32	Forward Pixel Value 40					Default Value:	2800h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 40)				Default Value:	2800h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 40					Default Value:	2800h				Format:	U16		164165	63:48	8 Inverse R-ch Gamma Corrected Value 41					Default Value:	2900h				Format:	U16			47:32	Inverse Pixel Value 41					Default Value:	2900h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 41					Default Value:	2900h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 41					Default Value:	2900h				Format:	U16		166167	63:48	Forward R-ch Gamma Corrected Value 41					Default Value:	2900h				Format:	U16			47:32	Forward Pixel Value 41					Default Value:	2900h				Format:	U16			Gan	nut_Expansion_Gamma_Corre	ection			--------	-------	---	----------	--			31:16	Forward B-ch Gamma Corrected Value 41						Default Value:	2900h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 41						Default Value:	2900h					Format:	U16			168169	63:48	Inverse R-ch Gamma Corrected Value 42						Default Value:	2a00h					Format:	U16				47:32	Inverse Pixel Value 42						Default Value:	2a00h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 42	<u> </u>					Default Value:	2a00h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 42						Default Value:	2a00h					Format:	U16			170171	63:48	63:48 Forward R-ch Gamma Corrected Value 42						Default Value:	2a00h					Format:	U16				47:32	Forward Pixel Value 42						Default Value:	2a00h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 42	<u>.</u>					Default Value:	2a00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 42						Default Value:	2a00h					Format:	U16			172173	63:48	Inverse R-ch Gamma Corrected Value 43	<u>'</u>				05.40	Default Value:	2b00h					Format:	U16				47:32	Inverse Pixel Value 43	<u> </u>				52	Default Value:	2b00h					Format:	U16					nut_Expansion_Gamma_Co			--------	-------	---------------------------------------	----------			31:16	Inverse B-ch Gamma Corrected Value					Default Value:	2b00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 43					Default Value:	2b00h				Format:	U16		174175	63:48	Forward R-ch Gamma Corrected Value	43				Default Value:	2b00h				Format:	U16			47:32	Forward Pixel Value 43					Default Value:	2b00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	43				Default Value:	2b00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 43					Default Value:	2b00h				Format:	U16		176177	63:48	Inverse R-ch Gamma Corrected Value 44					Default Value:	2c00h				Format:	U16			47:32	Inverse Pixel Value 44					Default Value:	2c00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value	44				Default Value:	2c00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value	44				Default Value:	2c00h				Format:	U16		178179	63:48	Forward R-ch Gamma Corrected Value	44				Default Value:	2c00h				Format:	U16			47:32	Forward Pixel Value 44	<u>'</u>				Default Value:	2c00h				Format:	U16			Gam	nut_Expansion_Gamma_Corre	ection		--------	-------	--	--------			31:16	Forward B-ch Gamma Corrected Value 44					Default Value:	2c00h			15:0	Format:	U16				Forward G-ch Gamma Corrected Value 44					Default Value:	2c00h				Format:	U16		180181	63:48	Inverse R-ch Gamma Corrected Value 45					Default Value:	2d00h				Format:	U16			47:32	Inverse Pixel Value 45					Default Value:	2d00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 45					Default Value:	2d00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 45					Default Value:	2d00h				Format:	U16		182183	63:48	48 Forward R-ch Gamma Corrected Value 45					Default Value:	2d00h				Format:	U16			47:32	Forward Pixel Value 45					Default Value:	2d00h				Format:	U16			31:16						Default Value:	2d00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 45					Default Value:	2d00h				Format:	U16		184185	63:48	Inverse R-ch Gamma Corrected Value 46					Default Value:	2e00h				Format:	U16			47:32	Inverse Pixel Value 46	·			,,,	Default Value:	2e00h				Format:	U16				nut_Expansion_Gamma_Co			--------	-------	---------------------------------------	-------			31:16	Inverse B-ch Gamma Corrected Value 46					Default Value:	2e00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 46					Default Value:	2e00h				Format:	U16		186187	63:48	Forward R-ch Gamma Corrected Value 4	6				Default Value:	2e00h				Format:	U16			47:32	Forward Pixel Value 46					Default Value:	2e00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 4	6				Default Value:	2e00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 46					Default Value:	2e00h				Format:	U16		188189	63:48	Inverse R-ch Gamma Corrected Value 47					Default Value:	2f00h				Format:	U16			47:32	Inverse Pixel Value 47					Default Value:	2f00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 47					Default Value:	2f00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 47	1				Default Value:	2f00h				Format:	U16		190191	63:48	Forward R-ch Gamma Corrected Value 4	7				Default Value:	2f00h				Format:	U16			47:32	Forward Pixel Value 47					Default Value:	2f00h				Format:	U16			Gan	nut_Expansion_Gamma_Corre	ection				--------	-------	---	---------------------------------------	--	--			31:16	Forward B-ch Gamma Corrected Value 47	Forward B-ch Gamma Corrected Value 47						Default Value:	2f00h						Format:	U16					15:0	Forward G-ch Gamma Corrected Value 47							Default Value:	2f00h						Format:	U16				192193	63:48	Inverse R-ch Gamma Corrected Value 48							Default Value:	3000h						Format:	U16					47:32	Inverse Pixel Value 48	•						Default Value:	3000h						Format:	U16					31:16	Inverse B-ch Gamma Corrected Value 48	·						Default Value:	3000h						Format:	U16					15:0	Inverse G-ch Gamma Corrected Value 48							Default Value:	3000h						Format:	U16				194195	63:48	63:48 Forward R-ch Gamma Corrected Value 48							Default Value:	3000h						Format:	U16					47:32	Forward Pixel Value 48							Default Value:	3000h						Format:	U16					31:16								Default Value:	3000h						Format:	U16					15:0	Forward G-ch Gamma Corrected Value 48	<u>'</u>						Default Value:	3000h						Format:	U16				196197	63:48	Inverse R-ch Gamma Corrected Value 49	<u>'</u>					05.40	Default Value:	3100h						Format:	U16					47:32	Inverse Pixel Value 49	<u> </u>						Default Value:	3100h						Format:	U16					31:16	nut_Expansion_Gamma_C Inverse B-ch Gamma Corrected Value			--------	-------	--	----------			31.10	Default Value:	3100h				Format:	U16			15.0	Inverse G-ch Gamma Corrected Value				15:0	Default Value:	3100h				Format:	U16		198199	63:48	Forward R-ch Gamma Corrected Value	<u> </u>		130133	03.40	Default Value:	3100h				Format:	U16			47:32	Forward Pixel Value 49				77.52	Default Value:	3100h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	± 49				Default Value:	3100h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 49					Default Value:	3100h				Format:	U16		200201	63:48	Inverse R-ch Gamma Corrected Value 50					Default Value:	3200h				Format:	U16			47:32	Inverse Pixel Value 50					Default Value:	3200h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value	50				Default Value:	3200h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value	50				Default Value:	3200h				Format:	U16		202203	63:48	Forward R-ch Gamma Corrected Value	e 50				Default Value:	3200h				Format:	U16			47:32	Forward Pixel Value 50					Default Value:	3200h			Gan	nut_Expansion_Gamma_Corre	ction		--------														
-------	--	-------			31:16	Forward B-ch Gamma Corrected Value 50					Default Value:	3200h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 50					Default Value:	3200h				Format:	U16		204205	63:48	Inverse R-ch Gamma Corrected Value 51					Default Value:	3300h				Format:	U16			47:32	Inverse Pixel Value 51					Default Value:	3300h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 51					Default Value:	3300h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 51					Default Value:	3300h				Format:	U16		206207	63:48	Forward R-ch Gamma Corrected Value 51					Default Value:	3300h				Format:	U16			47:32	Forward Pixel Value 51					Default Value:	3300h				Format:	U16			31:16	16 Forward B-ch Gamma Corrected Value 51					Default Value:	3300h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 51					Default Value:	3300h				Format:	U16		208209	63:48	Inverse R-ch Gamma Corrected Value 52					Default Value:	3400h				Format:	U16			47:32	Inverse Pixel Value 52					Default Value:	3400h				Format:	U16				nut_Expansion_Gamma_Co			--------	-------	---------------------------------------	-------			31:16	Inverse B-ch Gamma Corrected Value 5					Default Value:	3400h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 5	52				Default Value:	3400h				Format:	U16		210211	63:48	Forward R-ch Gamma Corrected Value	52				Default Value:	3400h				Format:	U16			47:32	Forward Pixel Value 52					Default Value:	3400h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	52				Default Value:	3400h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 52					Default Value:	3400h				Format:	U16		212213	63:48	Inverse R-ch Gamma Corrected Value 53					Default Value:	3500h				Format:	U16			47:32	Inverse Pixel Value 53					Default Value:	3500h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 5	3				Default Value:	3500h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 5	53				Default Value:	3500h				Format:	U16		214215	63:48	Forward R-ch Gamma Corrected Value	53			333	Default Value:	3500h				Format:	U16			47:32	Forward Pixel Value 53				77.52	Default Value:	3500h				Format:	U16			Gam	nut_Expansion_Gamma_Corre	ction			--------	-------	---	----------	--			31:16	Forward B-ch Gamma Corrected Value 53						Default Value:	3500h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 53						Default Value:	3500h					Format:	U16			216217	63:48	Inverse R-ch Gamma Corrected Value 54						Default Value:	3600h					Format:	U16				47:32	Inverse Pixel Value 54						Default Value:	3600h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 54						Default Value:	3600h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 54						Default Value:	3600h					Format:	U16			218219	63:48	63:48 Forward R-ch Gamma Corrected Value 54						Default Value:	3600h					Format:	U16				47:32	Forward Pixel Value 54						Default Value:	3600h					Format:	U16				31:16							Default Value:	3600h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 54						Default Value:	3600h					Format:	U16			220221	63:48	Inverse R-ch Gamma Corrected Value 55	•				55.10	Default Value:	3700h					Format:	U16				47:32	Inverse Pixel Value 55	<u>'</u>					Default Value:	3700h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value	55		--------	-------	---------------------------------------	-------				Default Value:	3700h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value	55				Default Value:	3700h				Format:	U16		222223	63:48	Forward R-ch Gamma Corrected Value	e 55				Default Value:	3700h				Format:	U16			47:32	Forward Pixel Value 55					Default Value:	3700h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	e 55				Default Value:	3700h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 55					Default Value:	3700h				Format:	U16		224225	63:48	Inverse R-ch Gamma Corrected Value 56					Default Value:	3800h				Format:	U16			47:32	Inverse Pixel Value 56					Default Value:	3800h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value	56				Default Value:	3800h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value	56				Default Value:	3800h				Format:	U16		226227	63:48	Forward R-ch Gamma Corrected Value	e 56				Default Value:	3800h				Format:	U16			47:32	Forward Pixel Value 56					Default Value:	3800h				Format:	U16			Gan	nut_Expansion_Gamma_Correc	ction		--------	-------	---	----------			31:16	Forward B-ch Gamma Corrected Value 56					Default Value:	3800h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 56	<u>'</u>				Default Value:	3800h				Format:	U16		228229	63:48	Inverse R-ch Gamma Corrected Value 57					Default Value:	3900h				Format:	U16			47:32	Inverse Pixel Value 57					Default Value:	3900h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 57					Default Value:	3900h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 57					Default Value:	3900h				Format:	U16		230231	63:48	8 Forward R-ch Gamma Corrected Value 57					Default Value:	3900h				Format:	U16			47:32	Forward Pixel Value 57					Default Value:	3900h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 57					Default Value:	3900h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 57	•				Default Value:	3900h				Format:	U16		232233	63:48	Inverse R-ch Gamma Corrected Value 58	·				Default Value:	3a00h				Format:	U16			47:32	Inverse Pixel Value 58	·				Default Value:	3a00h				Format:	U16			Gan	nut_Expansion_Gamma_Cori	ection		--------	-------	---------------------------------------	--------			31:16	Inverse B-ch Gamma Corrected Value 58					Default Value:	3a00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 58					Default Value:	3a00h				Format:	U16		234235	63:48	Forward R-ch Gamma Corrected Value 58					Default Value:	3a00h				Format:	U16			47:32	Forward Pixel Value 58					Default Value:	3a00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 58					Default Value:	3a00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 58					Default Value:	3a00h				Format:	U16		236237	63:48	Inverse R-ch Gamma Corrected Value 59					Default Value:	3b00h				Format:	U16			47:32	Inverse Pixel Value 59					Default Value:	3b00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 59					Default Value:	3b00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 59					Default Value:	3b00h				Format:	U16		238239	63:48	Forward R-ch Gamma Corrected Value 59					Default Value:	3b00h				Format:	U16			47:32	Forward Pixel Value 59					Default Value:	3b00h				Format:	U16			Gan	nut_Expansion_Gamma_Corre	ection		--------	-------	--	----------			31:16	Forward B-ch Gamma Corrected Value 59					Default Value:	3b00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 59					Default Value:	3b00h				Format:	U16		240241	63:48	Inverse R-ch Gamma Corrected Value 60					Default Value:	3c00h				Format:	U16			47:32	Inverse Pixel Value 60	<u>'</u>				Default Value:	3c00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 60					Default Value:	3c00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 60					Default Value:	3c00h				Format:	U16		242243	63:48	48 Forward R-ch Gamma Corrected Value 60					Default Value:	3c00h				Format:	U16			47:32	Forward Pixel Value 60					Default Value:	3c00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 60					Default Value:	3c00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 60					Default Value:	3c00h				Format:	U16		244245	63:48	Inverse R-ch Gamma Corrected Value 61	·				Default Value:	3d00h				Format:	U16			47:32	Inverse Pixel Value 61					Default Value:	3d00h				Format:	U16			Gan	nut_Expansion_Gamma_Coi	rrection		--------	-------	---	----------			31:16	Inverse B-ch Gamma Corrected Value 61					Default Value:	3d00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 61					Default Value:	3d00h				Format:	U16		246247	63:48	Forward R-ch Gamma																																																				
Corrected Value 6	1				Default Value:	3d00h				Format:	U16			47:32	Forward Pixel Value 61					Default Value:	3d00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 6	1				Default Value:	3d00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 61					Default Value:	3d00h				Format:	U16		248249	63:48	63:48 Inverse R-ch Gamma Corrected Value 62					Default Value:	3e00h				Format:	U16			47:32	Inverse Pixel Value 62					Default Value:	3e00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 62	·				Default Value:	3e00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 62					Default Value:	3e00h				Format:	U16		250251	63:48	Forward R-ch Gamma Corrected Value 6.	2			05.40	Default Value:	3e00h				Format:	U16			47:32	Forward Pixel Value 62	l				Default Value:	3e00h				Format:	U16			Gam	nut_Expansion_Gamma_Corre	ection			--------	-------	---	----------	--			31:16	Forward B-ch Gamma Corrected Value 62						Default Value:	3e00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 62						Default Value:	3e00h					Format:	U16			252253	63:48	Inverse R-ch Gamma Corrected Value 63						Default Value:	3f00h					Format:	U16				47:32	Inverse Pixel Value 63	·					Default Value:	3f00h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 63						Default Value:	3f00h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 63						Default Value:	3f00h					Format:	U16			254255	63:48	63:48 Forward R-ch Gamma Corrected Value 63						Default Value:	3f00h					Format:	U16				47:32	Forward Pixel Value 63						Default Value:	3f00h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 63						Default Value:	3f00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 63						Default Value:	3f00h					Format:	U16			256257	63:48	Inverse R-ch Gamma Corrected Value 64	<u>'</u>				05.40	Default Value:	4000h					Format:	U16				47:32	Inverse Pixel Value 64						Default Value:	4000h					Format:	U16				Gan	nut_Expansion_Gamma_Cor	rection		--------	-------	--	---------			31:16	Inverse B-ch Gamma Corrected Value 64					Default Value:	4000h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 64					Default Value:	4000h				Format:	U16		258259	63:48	Forward R-ch Gamma Corrected Value 64	·				Default Value:	4000h				Format:	U16			47:32	Forward Pixel Value 64					Default Value:	4000h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 64	·				Default Value:	4000h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 64					Default Value:	4000h				Format:	U16		260261	63:48	48 Inverse R-ch Gamma Corrected Value 65					Default Value:	4100h				Format:	U16			47:32	Inverse Pixel Value 65					Default Value:	4100h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 65					Default Value:	4100h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 65					Default Value:	4100h				Format:	U16		262263	63:48	Forward R-ch Gamma Corrected Value 65					Default Value:	4100h				Format:	U16			47:32	Forward Pixel Value 65					Default Value:	4100h				Format:	U16			Gan	nut_Expansion_Gamma_Corre	ection		--------	-------	--	----------			31:16	Forward B-ch Gamma Corrected Value 65					Default Value:	4100h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 65					Default Value:	4100h				Format:	U16		264265	63:48	Inverse R-ch Gamma Corrected Value 66					Default Value:	4200h				Format:	U16			47:32	Inverse Pixel Value 66	<u>'</u>				Default Value:	4200h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 66					Default Value:	4200h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 66					Default Value:	4200h				Format:	U16		266267	63:48	48 Forward R-ch Gamma Corrected Value 66					Default Value:	4200h				Format:	U16			47:32	Forward Pixel Value 66					Default Value:	4200h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 66					Default Value:	4200h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 66	'				Default Value:	4200h				Format:	U16		268269	63:48	Inverse R-ch Gamma Corrected Value 67				03.40	Default Value:	4300h				Format:	U16			47:32	Inverse Pixel Value 67					Default Value:	4300h				Format:	U16			Gan	nut_Expansion_Gamma_Cor	rection		--------	-------	---------------------------------------	---------			31:16	Inverse B-ch Gamma Corrected Value 67					Default Value:	4300h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 67					Default Value:	4300h				Format:	U16		270271	63:48	Forward R-ch Gamma Corrected Value 67					Default Value:	4300h				Format:	U16			47:32	Forward Pixel Value 67					Default Value:	4300h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 67					Default Value:	4300h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 67					Default Value:	4300h				Format:	U16		272273	63:48	Inverse R-ch Gamma Corrected Value 68					Default Value:	4400h				Format:	U16			47:32	Inverse Pixel Value 68					Default Value:	4400h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 68					Default Value:	4400h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 68					Default Value:	4400h				Format:	U16		274275	63:48	Forward R-ch Gamma Corrected Value 68					Default Value:	4400h				Format:	U16			47:32	Forward Pixel Value 68					Default Value:	4400h				Format:	U16			Gan	nut_Expansion_Gamma_Corre	ction		--------	-------	---------------------------------------	-------			31:16	Forward B-ch Gamma Corrected Value 68					Default Value:	4400h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 68					Default Value:	4400h				Format:	U16		276277	63:48	Inverse R-ch Gamma Corrected Value 69					Default Value:	4500h				Format:	U16			47:32	Inverse Pixel Value 69					Default Value:	4500h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 69					Default Value:	4500h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 69					Default Value:	4500h				Format:	U16		278279	63:48	Forward R-ch Gamma Corrected Value 69					Default Value:	4500h				Format:	U16			47:32	Forward Pixel Value 69					Default Value:	4500h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 69					Default Value:	4500h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 69					Default Value:	4500h				Format:	U16		280281	63:48	Inverse R-ch Gamma Corrected Value 70					Default Value:	4600h				Format:	U16			47:32	Inverse Pixel Value 70					Default Value:	4600h				Format:	U16			Gan	nut_Expansion_Gamma_Cor	rection		--------	-------	---	---------			31:16	Inverse B-ch Gamma Corrected Value 70					Default Value:	4600h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 70					Default Value:	4600h				Format:	U16		282283	63:48	Forward R-ch Gamma Corrected Value 70					Default Value:	4600h				Format:	U16			47:32	Forward Pixel Value 70					Default Value:	4600h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 70					Default Value:	4600h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 70					Default Value:	4600h				Format:	U16		284285	63:48	8 Inverse R-ch Gamma Corrected Value 71					Default Value:	4700h				Format:	U16			47:32	Inverse Pixel Value 71					Default Value:	4700h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 71					Default Value:	4700h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 71					Default Value:	4700h				Format:	U16		286287	63:48	Forward R-ch Gamma Corrected Value 71					Default Value:	4700h				Format:	U16			47:32	Forward Pixel Value 71					Default Value:	4700h				Format:	U16			Gan	nut_Expansion_Gamma_Cor	rection		--------	-------	---	----------			31:16	Forward B-ch Gamma Corrected Value 71					Default Value:	4700h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 7	1				Default Value:	4700h				Format:	U16		288289	63:48	Inverse R-ch Gamma Corrected Value 72					Default Value:	4800h				Format:	U16			47:32	Inverse Pixel Value 72					Default Value:	4800h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value																																																					
72	<u> </u>				Default Value:	4800h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 72					Default Value:	4800h				Format:	U16		290291	63:48	63:48 Forward R-ch Gamma Corrected Value 72					Default Value:	4800h				Format:	U16			47:32	Forward Pixel Value 72					Default Value:	4800h				Format:	U16			31:16						Default Value:	4800h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 72	2				Default Value:	4800h				Format:	U16		292293	63:48	Inverse R-ch Gamma Corrected Value 73	•				Default Value:	4900h				Format:	U16			47:32	Inverse Pixel Value 73	<u>'</u>				Default Value:	4900h				Format:	U16			Gan	ut_Expansion_Gamma_Co	rrection		--------	-------	---------------------------------------	----------			31:16	Inverse B-ch Gamma Corrected Value 73					Default Value:	4900h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 73					Default Value:	4900h				Format:	U16		294295	63:48	Forward R-ch Gamma Corrected Value 7	3				Default Value:	4900h				Format:	U16			47:32	Forward Pixel Value 73					Default Value:	4900h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 7	3				Default Value:	4900h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 73					Default Value:	4900h				Format:	U16		296297	63:48	Inverse R-ch Gamma Corrected Value 74					Default Value:	4a00h				Format:	U16			47:32	Inverse Pixel Value 74					Default Value:	4a00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 74					Default Value:	4a00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 74					Default Value:	4a00h				Format:	U16		298299	63:48	Forward R-ch Gamma Corrected Value 7	4				Default Value:	4a00h				Format:	U16			47:32	Forward Pixel Value 74	<u> </u>				Default Value:	4a00h				Format:	U16			Gam	nut_Expansion_Gamma_Corr	ection		--------	-------	--	----------			31:16	Forward B-ch Gamma Corrected Value 74					Default Value:	4a00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 74					Default Value:	4a00h				Format:	U16		300301	63:48	Inverse R-ch Gamma Corrected Value 75					Default Value:	4b00h				Format:	U16			47:32	Inverse Pixel Value 75					Default Value:	4b00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 75	·				Default Value:	4b00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 75					Default Value:	4b00h				Format:	U16		302303	63:48	48 Forward R-ch Gamma Corrected Value 75					Default Value:	4b00h				Format:	U16			47:32	Forward Pixel Value 75					Default Value:	4b00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 75	<u>.</u>				Default Value:	4b00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 75					Default Value:	4b00h				Format:	U16		304305	63:48	Inverse R-ch Gamma Corrected Value 76	<u>'</u>			05.40	Default Value:	4c00h				Format:	U16			47:32	Inverse Pixel Value 76				52	Default Value:	4c00h				Format:	U16			31:16	nut_Expansion_Gamma_Co Inverse B-ch Gamma Corrected Value 7			--------	-------	---	----------			31.10	Default Value:	4c00h				Format:	U16			45.0		L			15:0	Inverse G-ch Gamma Corrected Value 7					Default Value:	4c00h				Format:	U16		306307	63:48	Forward R-ch Gamma Corrected Value					Default Value:	4c00h				Format:	U16			47:32	Forward Pixel Value 76					Default Value:	4c00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	76				Default Value:	4c00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 76					Default Value:	4c00h				Format:	U16		308309	63:48	Inverse R-ch Gamma Corrected Value 77					Default Value:	4d00h				Format:	U16			47:32	Inverse Pixel Value 77					Default Value:	4d00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 7	7				Default Value:	4d00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 7	7				Default Value:	4d00h				Format:	U16		310311	63:48	Forward R-ch Gamma Corrected Value	77				Default Value:	4d00h				Format:	U16			47:32	Forward Pixel Value 77	<u>'</u>				Default Value:	4d00h				Format:	U16			Gam	nut_Expansion_Gamma_Corre	ection			--------	---	---	----------	--			31:16	Forward B-ch Gamma Corrected Value 77						Default Value:	4d00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 77						Default Value:	4d00h					Format:	U16			312313	63:48	Inverse R-ch Gamma Corrected Value 78						Default Value:	4e00h					Format:	U16				47:32	Inverse Pixel Value 78						Default Value:	4e00h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 78	·					Default Value:	4e00h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 78						Default Value:	4e00h					Format:	U16			314315	63:48	63:48 Forward R-ch Gamma Corrected Value 78						Default Value:	4e00h					Format:	U16				47:32	Forward Pixel Value 78						Default Value:	4e00h					Format:	U16				31:16 Forward B-ch Gamma Corrected Value 78		·					Default Value:	4e00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 78						Default Value:	4e00h					Format:	U16			316317	63:48	Inverse R-ch Gamma Corrected Value 79					55.10	Default Value:	4f00h					Format:	U16				47:32	Inverse Pixel Value 79	,					Default Value:	4f00h					Format:	U16				Gan	nut_Expansion_Gamma_Corr	ection		--------	-------	---	----------			31:16	Inverse B-ch Gamma Corrected Value 79					Default Value:	4f00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 79					Default Value:	4f00h				Format:	U16		318319	63:48	Forward R-ch Gamma Corrected Value 79	<u> </u>				Default Value:	4f00h				Format:	U16			47:32	Forward Pixel Value 79					Default Value:	4f00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 79					Default Value:	4f00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 79					Default Value:	4f00h				Format:	U16		320321	63:48	63:48 Inverse R-ch Gamma Corrected Value 80					Default Value:	5000h				Format:	U16			47:32	Inverse Pixel Value 80					Default Value:	5000h				Format:	U16			31:16	31:16 Inverse B-ch Gamma Corrected Value 80					Default Value:	5000h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 80					Default Value:	5000h				Format:	U16		322323	63:48	Forward R-ch Gamma Corrected Value 80					Default Value:	5000h				Format:	U16			47:32	Forward Pixel Value 80					Default Value:	5000h				Format:	U16			Gam	nut_Expansion_Gamma_Corre	ction			--------	-------	---	----------	--			31:16	Forward B-ch Gamma Corrected Value 80						Default Value:	5000h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 80						Default Value:	5000h					Format:	U16			324325	63:48	Inverse R-ch Gamma Corrected Value 81						Default Value:	5100h					Format:	U16				47:32	Inverse Pixel Value 81	<u> </u>					Default Value:	5100h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 81	·					Default Value:	5100h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 81						Default Value:	5100h					Format:	U16			326327	63:48	63:48 Forward R-ch Gamma Corrected Value 81						Default Value:	5100h					Format:	U16				47:32	Forward Pixel Value 81						Default Value:	5100h					Format:	U16				31:16							Default Value:	5100h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 81						Default Value:	5100h					Format:	U16			328329	63:48	Inverse R-ch Gamma Corrected Value 82	•				03.40	Default Value:	5200h					Format:	U16				47:32	Inverse Pixel Value 82	1					Default Value:	5200h					Format:	U16					nut_Expansion_Gamma_Co			--------	-------	--	-------			31:16	Inverse B-ch Gamma Corrected Value 8					Default Value:	5200h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 8	32				Default Value:	5200h				Format:	U16		330331	63:48	Forward R-ch Gamma Corrected Value	82				Default Value:	5200h				Format:	U16			47:32	Forward Pixel Value 82					Default Value:	5200h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	82				Default Value:	5200h				Format:	U16			15:0	Forward G-ch Gamma																														
Corrected Value 82					Default Value:	5200h				Format:	U16		332333	63:48	48 Inverse R-ch Gamma Corrected Value 83					Default Value:	5300h				Format:	U16			47:32	Inverse Pixel Value 83					Default Value:	5300h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 8	33				Default Value:	5300h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 8	33				Default Value:	5300h				Format:	U16		334335	63:48	Forward R-ch Gamma Corrected Value	83				Default Value:	5300h				Format:	U16			47:32	Forward Pixel Value 83	•				Default Value:	5300h				Format:	U16			Gan	nut_Expansion_Gamma_Corre	ection			--------	-------	--	--------	--			31:16	Forward B-ch Gamma Corrected Value 83						Default Value:	5300h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 83						Default Value:	5300h					Format:	U16			336337	63:48	Inverse R-ch Gamma Corrected Value 84	•					Default Value:	5400h					Format:	U16				47:32	Inverse Pixel Value 84	·					Default Value:	5400h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 84						Default Value:	5400h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 84						Default Value:	5400h					Format:	U16			338339	63:48	3:48 Forward R-ch Gamma Corrected Value 84						Default Value:	5400h					Format:	U16				47:32	Forward Pixel Value 84						Default Value:	5400h					Format:	U16				31:16							Default Value:	5400h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 84	·					Default Value:	5400h					Format:	U16			340341	63:48	Inverse R-ch Gamma Corrected Value 85	·				03.40	Default Value:	5500h					Format:	U16				47:32	Inverse Pixel Value 85	1					Default Value:	5500h					Format:	U16				31:16	nut_Expansion_Gamma_Co			--------	-------	---------------------------------------	-------			31.10	Default Value:	5500h				Format:	U16			45.0					15:0	Inverse G-ch Gamma Corrected Value 8					Default Value:	5500h				Format:	U16		342343	63:48	Forward R-ch Gamma Corrected Value					Default Value:	5500h				Format:	U16			47:32	Forward Pixel Value 85	1				Default Value:	5500h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 85					Default Value:	5500h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 85					Default Value:	5500h				Format:	U16		344345	63:48	Inverse R-ch Gamma Corrected Value 86					Default Value:	5600h				Format:	U16			47:32	Inverse Pixel Value 86					Default Value:	5600h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 8	86				Default Value:	5600h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 8	36				Default Value:	5600h				Format:	U16		346347	63:48	Forward R-ch Gamma Corrected Value	86				Default Value:	5600h				Format:	U16			47:32	Forward Pixel Value 86					Default Value:	5600h				Format:	U16			Gan	nut_Expansion_Gamma_Corre	ction			--------	---	---	----------	--			31:16	Forward B-ch Gamma Corrected Value 86						Default Value:	5600h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 86						Default Value:	5600h					Format:	U16			348349	63:48	Inverse R-ch Gamma Corrected Value 87						Default Value:	5700h					Format:	U16				47:32	Inverse Pixel Value 87						Default Value:	5700h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 87						Default Value:	5700h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 87						Default Value:	5700h					Format:	U16			350351	63:48	63:48 Forward R-ch Gamma Corrected Value 87						Default Value:	5700h					Format:	U16				47:32	Forward Pixel Value 87						Default Value:	5700h					Format:	U16				31:16 Forward B-ch Gamma Corrected Value 87		-				31.10	Default Value:	5700h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 87	I				13.0	Default Value:	5700h					Format:	U16			352353	63:48	Inverse R-ch Gamma Corrected Value 88				552555	05.40	Default Value:	5800h					Format:	U16				47:32	Inverse Pixel Value 88					77.52	Default Value:	5800h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 8			--------	-------	---------------------------------------	----------			31.10	Default Value:	5800h				Format:	U16			45.0		<u> </u>			15:0	Inverse G-ch Gamma Corrected Value	1				Default Value:	5800h				Format:	U16		354355	63:48	Forward R-ch Gamma Corrected Value	•				Default Value:	5800h				Format:	U16			47:32	Forward Pixel Value 88					Default Value:	5800h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 88					Default Value:	5800h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 88					Default Value:	5800h				Format:	U16		356357	63:48	Inverse R-ch Gamma Corrected Value 89					Default Value:	5900h				Format:	U16			47:32	Inverse Pixel Value 89					Default Value:	5900h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 8	39				Default Value:	5900h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value	B9				Default Value:	5900h				Format:	U16		358359	63:48	Forward R-ch Gamma Corrected Value	89				Default Value:	5900h				Format:	U16			47:32	Forward Pixel Value 89				52	Default Value:	5900h				Format:	U16			Gam	nut_Expansion_Gamma_Corre	ection			--------	-------	---	----------	--			31:16	Forward B-ch Gamma Corrected Value 89						Default Value:	5900h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 89						Default Value:	5900h					Format:	U16			360361	63:48	Inverse R-ch Gamma Corrected Value 90						Default Value:	5a00h					Format:	U16				47:32	Inverse Pixel Value 90	•					Default Value:	5a00h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 90	·					Default Value:	5a00h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 90						Default Value:	5a00h					Format:	U16			362363	63:48	63:48 Forward R-ch Gamma Corrected Value 90						Default Value:	5a00h					Format:	U16				47:32	Forward Pixel Value 90						Default Value:	5a00h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 90						Default Value:	5a00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 90						Default Value:	5a00h					Format:	U16			364365	63:48	Inverse R-ch Gamma Corrected Value 91	<u>'</u>				05.40	Default Value:	5b00h					Format:	U16				47:32	Inverse Pixel Value 91	<u> </u>					Default Value:	5b00h					Format:	U16					nut_Expansion_Gamma_Co			--------	-------	--	-------			31:16	Inverse B-ch Gamma Corrected Value 9					Default Value:	5b00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 9	1				Default Value:	5b00h				Format:	U16		366367	63:48	Forward R-ch Gamma Corrected Value 9	91				Default Value:	5b00h				Format:	U16			47:32	Forward Pixel Value 91					Default Value:	5b00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 91					Default Value:	5b00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 91					Default Value:	5b00h				Format:	U16		368369	63:48	48 Inverse R-ch Gamma Corrected Value 92					Default Value:	5c00h				Format:	U16			47:32	Inverse Pixel Value 92					Default Value:	5c00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 93	2				Default Value:	5c00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 9	2				Default Value:	5c00h				Format:	U16		370371	63:48	Forward R-ch Gamma Corrected Value 9	92				Default Value:	5c00h				Format:	U16			47:32	Forward Pixel Value 92					Default Value:	5c00h				Format:	U16			Gam	nut_Expansion_Gamma_Corre	ection			--------	-------	---	--------	--			31:16	Forward B-ch Gamma Corrected Value 92						Default Value:	5c00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 92						Default Value:	5c00h					Format:	U16			372373	63:48	Inverse R-ch Gamma Corrected Value 93						Default Value:	5d00h					Format:	U16				47:32	Inverse Pixel Value 93						Default Value:	5d00h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 93						Default Value:	5d00h	
5d00h					Format:	U16			374375	63:48	63:48 Forward R-ch Gamma Corrected Value 93						Default Value:	5d00h					Format:	U16				47:32	Forward Pixel Value 93						Default Value:	5d00h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 93						Default Value:	5d00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 93						Default Value:	5d00h					Format:	U16			376377	63:48	Inverse R-ch Gamma Corrected Value 94					05.40	Default Value:	5e00h					Format:	U16				47:32	Inverse Pixel Value 94					17.52	Default Value:	5e00h					Format:	U16				Gan	nut_Expansion_Gamma_Cor	rection			--------	---	---	---------	--			31:16	Inverse B-ch Gamma Corrected Value 94						Default Value:	5e00h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 94						Default Value:	5e00h					Format:	U16			378379	63:48	Forward R-ch Gamma Corrected Value 94						Default Value:	5e00h					Format:	U16				47:32	Forward Pixel Value 94						Default Value:	5e00h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 94						Default Value:	5e00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 94						Default Value:	5e00h					Format:	U16			380381	63:48	63:48 Inverse R-ch Gamma Corrected Value 95						Default Value:	5f00h					Format:	U16				47:32	Inverse Pixel Value 95						Default Value:	5f00h					Format:	U16				31:16 Inverse B-ch Gamma Corrected Value 95							Default Value:	5f00h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 95						Default Value:	5f00h					Format:	U16			382383	63:48	Forward R-ch Gamma Corrected Value 95						Default Value:	5f00h					Format:	U16				47:32	Forward Pixel Value 95						Default Value:	5f00h					Format:	U16				Gam	nut_Expansion_Gamma_Corre	ection		--------	-------	---	----------			31:16	Forward B-ch Gamma Corrected Value 95					Default Value:	5f00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 95					Default Value:	5f00h				Format:	U16		384385	63:48	Inverse R-ch Gamma Corrected Value 96					Default Value:	6000h				Format:	U16			47:32	Inverse Pixel Value 96					Default Value:	6000h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 96					Default Value:	6000h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 96					Default Value:	6000h				Format:	U16		386387	63:48	63:48 Forward R-ch Gamma Corrected Value 96					Default Value:	6000h				Format:	U16			47:32	Forward Pixel Value 96					Default Value:	6000h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 96	<u>.</u>				Default Value:	6000h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 96					Default Value:	6000h				Format:	U16		388389	63:48	Inverse R-ch Gamma Corrected Value 97	•			03.10	Default Value:	6100h				Format:	U16			47:32	Inverse Pixel Value 97	,				Default Value:	6100h				Format:	U16				nut_Expansion_Gamma_Co			---------	-------	---------------------------------------	-------			31:16	Inverse B-ch Gamma Corrected Value 9					Default Value:	6100h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value					Default Value:	6100h				Format:	U16		390391	63:48	Forward R-ch Gamma Corrected Value	97				Default Value:	6100h				Format:	U16			47:32	Forward Pixel Value 97					Default Value:	6100h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	97				Default Value:	6100h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 97					Default Value:	6100h				Format:	U16		392393	63:48	Inverse R-ch Gamma Corrected Value 98					Default Value:	6200h				Format:	U16			47:32	Inverse Pixel Value 98					Default Value:	6200h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 9)8				Default Value:	6200h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value	98				Default Value:	6200h				Format:	U16		394395	63:48	Forward R-ch Gamma Corrected Value	98		23 1333	55.10	Default Value:	6200h				Format:	U16			47:32	Forward Pixel Value 98	15.5			77.52	Default Value:	6200h				Format:	U16			Gam	nut_Expansion_Gamma_Corre	ection			--------	-------	--	----------	--			31:16	Forward B-ch Gamma Corrected Value 98						Default Value:	6200h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 98						Default Value:	6200h					Format:	U16			396397	63:48	Inverse R-ch Gamma Corrected Value 99						Default Value:	6300h					Format:	U16				47:32	Inverse Pixel Value 99						Default Value:	6300h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 99						Default Value:	6300h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 99						Default Value:	6300h					Format:	U16			398399	63:48	Forward R-ch Gamma Corrected Value 99						Default Value:	6300h					Format:	U16				47:32	Forward Pixel Value 99						Default Value:	6300h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 99						Default Value:	6300h					Format:	U16				15:0							Default Value:	6300h					Format:	U16			400401	63:48	Inverse R-ch Gamma Corrected Value 100	-				03.40	Default Value:	6400h					Format:	U16				47:32	Inverse Pixel Value 100						Default Value:	6400h					Format:	U16				31:16	ut_Expansion_Gamma_C			--------	-------	--	----------			15:0	Default Value:	6400h				Format:	U16				Inverse G-ch Gamma Corrected Value	<u> </u>			13.0	Default Value:	6400h				Format:	U16		402403	63:48	Forward R-ch Gamma Corrected Valu	e 100				Default Value:	6400h				Format:	U16			47:32	Forward Pixel Value 100	<u>'</u>				Default Value:	6400h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	e 100				Default Value:	6400h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 100					Default Value:	6400h				Format:	U16		404405	63:48	Inverse R-ch Gamma Corrected Value 101					Default Value:	6500h				Format:	U16			47:32	Inverse Pixel Value 101					Default Value:	6500h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value	101				Default Value:	6500h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value	101				Default Value:	6500h				Format:	U16		406407	63:48	Forward R-ch Gamma Corrected Value	e 101				Default Value:	6500h				Format:	U16			47:32	Forward Pixel Value 101					Default Value:	6500h			Gan	nut_Expansion_Gamma_Corre	ection		--------	-------	--	--------			31:16	Forward B-ch Gamma Corrected Value 101					Default Value:	6500h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 101					Default Value:	6500h				Format:	U16		408409	63:48	Inverse R-ch Gamma Corrected Value 102					Default Value:	6600h				Format:	U16			47:32	Inverse Pixel Value 102	•				Default Value:	6600h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 102					Default Value:	6600h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 102					Default Value:	6600h				Format:	U16		410411	63:48	63:48 Forward R-ch Gamma Corrected Value 102					Default Value:	6600h				Format:	U16			47:32	Forward Pixel Value 102					Default Value:	6600h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 102	·				Default Value:	6600h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 102					Default Value:	6600h				Format:	U16		412413	63:48	Inverse R-ch Gamma Corrected Value 103				33.10	Default Value:	6700h				Format:	U16			47:32	Inverse Pixel Value 103	1				Default Value:	6700h				Format:	U16			Gan	nut_Expansion_Gamma_Cor	rection		--------	-------	--	---------			31:16	Inverse B-ch Gamma Corrected Value 10					Default Value:	6700h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 103					Default Value:	6700h				Format:	U16		414415	63:48	Forward R-ch Gamma Corrected Value 1	03				Default Value:	6700h				Format:	U16			47:32	Forward Pixel Value 103					Default Value:	6700h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 10	03				Default Value:	6700h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 103					Default Value:	6700h				Format:	U16		416417	63:48	Inverse R-ch Gamma Corrected Value 104																										
Default Value:	6800h				Format:	U16			47:32	Inverse Pixel Value 104					Default Value:	6800h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 104					Default Value:	6800h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 10	4				Default Value:	6800h				Format:	U16		418419			04				Default Value:	6800h				Format:	U16			47:32	Forward Pixel Value 104					Default Value:	6800h				Format:	U16			Gam	nut_Expansion_Gamma_Corr	ection			--------	-------	--	----------	--			31:16	Forward B-ch Gamma Corrected Value 104						Default Value:	6800h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 104	•					Default Value:	6800h					Format:	U16			420421	63:48	Inverse R-ch Gamma Corrected Value 105						Default Value:	6900h					Format:	U16				47:32	Inverse Pixel Value 105						Default Value:	6900h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 105						Default Value:	6900h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 105						Default Value:	6900h					Format:	U16			422423	63:48	Forward R-ch Gamma Corrected Value 105						Default Value:	6900h					Format:	U16				47:32	Forward Pixel Value 105						Default Value:	6900h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 105						Default Value:	6900h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 105	<u> </u>					Default Value:	6900h					Format:	U16			424425	63:48	Inverse R-ch Gamma Corrected Value 106					227.3	Default Value:	6a00h					Format:	U16				47:32	Inverse Pixel Value 106	·					Default Value:	6a00h					Format:	U16					nut_Expansion_Gamma_Co			--------	-------	--	-------			31:16	Inverse B-ch Gamma Corrected Value 1	i e				Default Value:	6a00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 106					Default Value:	6a00h				Format:	U16		426427	63:48	Forward R-ch Gamma Corrected Value	106				Default Value:	6a00h				Format:	U16			47:32	Forward Pixel Value 106					Default Value:	6a00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	106				Default Value:	6a00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 106					Default Value:	6a00h				Format:	U16		428429	63:48	Inverse R-ch Gamma Corrected Value 107					Default Value:	6b00h				Format:	U16			47:32	Inverse Pixel Value 107					Default Value:	6b00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 1	07				Default Value:	6b00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 1	07				Default Value:	6b00h				Format:	U16		430431	63:48	Forward R-ch Gamma Corrected Value	107				Default Value:	6b00h				Format:	U16			47:32	Forward Pixel Value 107					Default Value:	6b00h				Format:	U16			Gan	nut_Expansion_Gamma_Corr	ection			--------	-------	--	----------	--			31:16	Forward B-ch Gamma Corrected Value 107						Default Value:	6b00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 107	7					Default Value:	6b00h					Format:	U16			432433	63:48	Inverse R-ch Gamma Corrected Value 108						Default Value:	6c00h					Format:	U16				47:32	Inverse Pixel Value 108	<u> </u>					Default Value:	6c00h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 108	·					Default Value:	6c00h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 108						Default Value:	6c00h					Format:	U16			434435	63:48	8 Forward R-ch Gamma Corrected Value 108						Default Value:	6c00h					Format:	U16				47:32	Forward Pixel Value 108						Default Value:	6c00h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 108	}					Default Value:	6c00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 108	3				13.0	Default Value:	6c00h					Format:	U16			436437	63:48	Inverse R-ch Gamma Corrected Value 109					05.40	Default Value:	6d00h					Format:	U16				47:32	Inverse Pixel Value 109					17.52	Default Value:	6d00h					Format:	U16				Gan	nut_Expansion_Gamma_Co	orrection		--------	-------	--	-----------			31:16	Inverse B-ch Gamma Corrected Value 109					Default Value:	6d00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value	109				Default Value:	6d00h				Format:	U16		438439	63:48	Forward R-ch Gamma Corrected Value	109				Default Value:	6d00h				Format:	U16			47:32	Forward Pixel Value 109					Default Value:	6d00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	109				Default Value:	6d00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 109					Default Value:	6d00h				Format:	U16		440441	63:48	Inverse R-ch Gamma Corrected Value 110					Default Value:	6e00h				Format:	U16			47:32	Inverse Pixel Value 110					Default Value:	6e00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 1	110				Default Value:	6e00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value	110				Default Value:	6e00h				Format:	U16		442443	63:48	Forward R-ch Gamma Corrected Value	110				Default Value:	6e00h				Format:	U16			47:32	Forward Pixel Value 110	,				Default Value:	6e00h				Format:	U16			Gan	nut_Expansion_Gamma_Corre	ection			--------	-------	--	----------	--			31:16	Forward B-ch Gamma Corrected Value 110						Default Value:	6e00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 110						Default Value:	6e00h					Format:	U16			444445	63:48	Inverse R-ch Gamma Corrected Value 111						Default Value:	6f00h					Format:	U16				47:32	Inverse Pixel Value 111						Default Value:	6f00h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 111	<u> </u>					Default Value:	6f00h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 111						Default Value:	6f00h					Format:	U16			446447	63:48	63:48 Forward R-ch Gamma Corrected Value 111						Default Value:	6f00h					Format:	U16				47:32	Forward Pixel Value 111						Default Value:	6f00h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 111	<u>.</u>					Default Value:	6f00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 111						Default Value:	6f00h					Format:	U16			448449	63:48	Inverse R-ch Gamma Corrected Value 112	·				03.10	Default Value:	7000h					Format:	U16				47:32	Inverse Pixel Value 112	1					Default Value:	7000h					Format:	U16				31:16	nut_Expansion_Gamma_Control Value			---------	-------	--	----------				Default Value:	7000h				Format:	U16								15:0	Inverse G-ch Gamma Corrected Value Default Value:	7000h				Format:	U16		4FO 4F1	62:40	Forward R-ch Gamma Corrected Value	<u> </u>		450451	63:48	Default Value:	7000h				Format:	U16			47:32	Forward Pixel Value 112	0.10			47.32	Default Value:	7000h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value				31.10	Default Value:	7000h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 112					Default Value:	7000h				Format:	U16		452453	63:48	Inverse R-ch Gamma Corrected Value 113			432433	63.46	Default Value:	7100h				Format:	U16			47:32	Inverse Pixel Value 113	0.0			47.52	Default Value:	7100h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value				31.10	Default Value:	7100h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value				15.0	Default Value:	7100h				Format:	U16		454455	63:48	Forward R-ch Gamma Corrected Value				55.10	Default Value:	7100h				Format:	U16			47:32	Forward Pixel Value 113					Default Value:	7100h				Format:	U16			Gam	nut_Expansion_Gamma_Corre	ection		--------	-------	--	----------			31:16	Forward B-ch Gamma Corrected Value 113					Default Value:	7100h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 113					Default Value:	7100h				Format:	U16		456457	63:48	Inverse R-ch Gamma Corrected Value 114					Default Value:	7200h				Format:	U16			47:32	Inverse Pixel Value 114					Default Value:	7200h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 114	<u> </u>				Default Value:	7200h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 114					Default Value:	7200h				Format:	U16		458459	63:48	63:48 Forward R-ch Gamma																	
Corrected Value 114					Default Value:	7200h				Format:	U16			47:32	Forward Pixel Value 114					Default Value:	7200h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 114	<u> </u>				Default Value:	7200h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 114	<u>'</u>				Default Value:	7200h				Format:	U16		460461	63:48	Inverse R-ch Gamma Corrected Value 115	<u>'</u>			05.40	Default Value:	7300h				Format:	U16			47:32	Inverse Pixel Value 115					Default Value:	7300h				Format:	U16			Gan	nut_Expansion_Gamma_Co	rrection		--------	-------	---	----------			31:16	Inverse B-ch Gamma Corrected Value 11	5				Default Value:	7300h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 11	5				Default Value:	7300h				Format:	U16		462463	63:48	Forward R-ch Gamma Corrected Value 1	15				Default Value:	7300h				Format:	U16			47:32	Forward Pixel Value 115					Default Value:	7300h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 1	15				Default Value:	7300h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 115					Default Value:	7300h				Format:	U16		464465	63:48	Inverse R-ch Gamma Corrected Value 116					Default Value:	7400h				Format:	U16			47:32	Inverse Pixel Value 116					Default Value:	7400h				Format:	U16			31:16	1:16 Inverse B-ch Gamma Corrected Value 116					Default Value:	7400h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 11	6				Default Value:	7400h				Format:	U16		466467	63:48	Forward R-ch Gamma Corrected Value 1	16				Default Value:	7400h				Format:	U16			47:32	Forward Pixel Value 116					Default Value:	7400h				Format:	U16			Gan	nut_Expansion_Gamma_Corre	ection		--------	-------	--	----------			31:16	Forward B-ch Gamma Corrected Value 116					Default Value:	7400h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 116					Default Value:	7400h				Format:	U16		468469	63:48	Inverse R-ch Gamma Corrected Value 117					Default Value:	7500h				Format:	U16			47:32	Inverse Pixel Value 117	•				Default Value:	7500h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 117	·				Default Value:	7500h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 117					Default Value:	7500h				Format:	U16		470471	63:48	63:48 Forward R-ch Gamma Corrected Value 117					Default Value:	7500h				Format:	U16			47:32	Forward Pixel Value 117					Default Value:	7500h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 117					Default Value:	7500h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 117					Default Value:	7500h				Format:	U16		472473	63:48	Inverse R-ch Gamma Corrected Value 118	<u>'</u>			05.40	Default Value:	7600h				Format:	U16			47:32	Inverse Pixel Value 118	<u> </u>				Default Value:	7600h				Format:	U16			31:16	nut_Expansion_Gamma_Contracted Value			--------	-------	--	----------			31:16	Default Value:	7600h					U16			1= -	Format:	<u> </u>			15:0	Inverse G-ch Gamma Corrected Value					Default Value:	7600h				Format:	U16		474475	63:48	Forward R-ch Gamma Corrected Value					Default Value:	7600h				Format:	U16			47:32	Forward Pixel Value 118					Default Value:	7600h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	118				Default Value:	7600h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 118					Default Value:	7600h				Format:	U16		476477	63:48	Inverse R-ch Gamma Corrected Value 119					Default Value:	7700h				Format:	U16			47:32	Inverse Pixel Value 119					Default Value:	7700h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value	119				Default Value:	7700h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value	119				Default Value:	7700h				Format:	U16		478479	63:48	Forward R-ch Gamma Corrected Value	119				Default Value:	7700h				Format:	U16			47:32	Forward Pixel Value 119	1				Default Value:	7700h				Format:	U16			Gan	nut_Expansion_Gamma_Corre	ection		--------	--	--	----------			31:16	Forward B-ch Gamma Corrected Value 119					Default Value:	7700h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 119					Default Value:	7700h				Format:	U16		480481	63:48	Inverse R-ch Gamma Corrected Value 120					Default Value:	7800h				Format:	U16			47:32	Inverse Pixel Value 120					Default Value:	7800h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 120	<u> </u>				Default Value:	7800h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 120					Default Value:	7800h				Format:	U16		482483	63:48	63:48 Forward R-ch Gamma Corrected Value 120					Default Value:	7800h				Format:	U16			47:32	Forward Pixel Value 120					Default Value:	7800h				Format:	U16			31:16 Forward B-ch Gamma Corrected Value 120		·				Default Value:	7800h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 120					Default Value:	7800h				Format:	U16		484485	63:48	Inverse R-ch Gamma Corrected Value 121					Default Value:	7900h				Format:	U16			47:32	Inverse Pixel Value 121	,				Default Value:	7900h				Format:	U16			Gan	nut_Expansion_Gamma_Co	rrection		--------	-------	--	----------			31:16	Inverse B-ch Gamma Corrected Value 121					Default Value:	7900h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 12	21				Default Value:	7900h				Format:	U16		486487	63:48	Forward R-ch Gamma Corrected Value 1	121				Default Value:	7900h				Format:	U16			47:32	Forward Pixel Value 121					Default Value:	7900h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 1	121				Default Value:	7900h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 121					Default Value:	7900h				Format:	U16		488489	63:48	63:48 Inverse R-ch Gamma Corrected Value 122					Default Value:	7a00h				Format:	U16			47:32	Inverse Pixel Value 122					Default Value:	7a00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 12	22				Default Value:	7a00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 12	22				Default Value:	7a00h				Format:	U16		490491	63:48	Forward R-ch Gamma Corrected Value 1	122				Default Value:	7a00h				Format:	U16			47:32	Forward Pixel Value 122	<u>'</u>				Default Value:	7a00h				Format:	U16			Gam	nut_Expansion_Gamma_Cor	rection		--------	-------	--	----------			31:16	Forward B-ch Gamma Corrected Value 122					Default Value:	7a00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 12	2				Default Value:	7a00h				Format:	U16		492493	63:48	Inverse R-ch Gamma Corrected Value 123					Default Value:	7b00h				Format:	U16			47:32	Inverse Pixel Value 123					Default Value:	7b00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 123	·				Default Value:	7b00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 123					Default Value:	7b00h				Format:	U16		494495	63:48	63:48 Forward R-ch Gamma Corrected Value 123					Default Value:	7b00h				Format:	U16			47:32	Forward Pixel Value 123					Default Value:	7b00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 12	3				Default Value:	7b00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 12	3				Default Value:	7b00h				Format:	U16		496497	63:48	Inverse R-ch Gamma Corrected Value 124					Default Value:	7c00h				Format:	U16			47:32	Inverse Pixel Value 124	<u>'</u>				Default Value:	7c00h				Format:	U16				nut_Expansion_Gamma_Co			--------	-------	--	-------			31:16	Inverse B-ch Gamma Corrected Value 1					Default Value:	7c00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 124					Default Value:	7c00h				Format:	U16		498499	63:48	Forward R-ch Gamma Corrected Value	124				Default Value:	7c00h				Format:	U16			47:32	Forward Pixel Value 124					Default Value:	7c00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	124				Default Value:	7c00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 124					Default Value:	7c00h				Format:	U16		500501	63:48	Inverse R-ch Gamma Corrected Value 125					Default Value:	7d00h				Format:	U16			47:32	Inverse Pixel Value 125																																																																																																										
	Default Value:	7d00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 1	25				Default Value:	7d00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 1	25				Default Value:	7d00h				Format:	U16		502503	63:48	Forward R-ch Gamma Corrected Value	125				Default Value:	7d00h				Format:	U16			47:32	Forward Pixel Value 125					Default Value:	7d00h				Format:	U16			Gan	nut_Expansion_Gamma_Corr	ection		--------	-------	--	----------			31:16	Forward B-ch Gamma Corrected Value 125					Default Value:	7d00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 125					Default Value:	7d00h				Format:	U16		504505	63:48	Inverse R-ch Gamma Corrected Value 126					Default Value:	7e00h				Format:	U16			47:32	Inverse Pixel Value 126					Default Value:	7e00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 126	·				Default Value:	7e00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 126					Default Value:	7e00h				Format:	U16		506507	63:48	63:48 Forward R-ch Gamma Corrected Value 126					Default Value:	7e00h				Format:	U16			47:32	Forward Pixel Value 126					Default Value:	7e00h				Format:	U16			31:16						Default Value:	7e00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 126					Default Value:	7e00h				Format:	U16		508509	63:48	Inverse R-ch Gamma Corrected Value 127	•			05.40	Default Value:	7f00h				Format:	U16			47:32	Inverse Pixel Value 127	<u> </u>				Default Value:	7f00h				Format:	U16			31:16	nut_Expansion_Gamma_C Inverse B-ch Gamma Corrected Value			--------	-------	--	----------			31.10	Default Value:	7f00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value				15.0	Default Value:	7f00h				Format:	U16		510511	63:48	Forward R-ch Gamma Corrected Valu	<u> </u>		310311	05.40	Default Value:	7f00h				Format:	U16			47:32	Forward Pixel Value 127	1 2 2 2			77.52	Default Value:	7f00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	e 127				Default Value:	7f00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 127					Default Value:	7f00h				Format:	U16		512513	63:48	Inverse R-ch Gamma Corrected Value 128					Default Value:	8000h				Format:	U16			47:32	Inverse Pixel Value 128					Default Value:	8000h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value	128				Default Value:	8000h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value	128				Default Value:	8000h				Format:	U16		514515	63:48	Forward R-ch Gamma Corrected Valu	e 128				Default Value:	8000h				Format:	U16			47:32	Forward Pixel Value 128					Default Value:	8000h			Gan	nut_Expansion_Gamma_Corre	ection		--------	--	--	----------			31:16	Forward B-ch Gamma Corrected Value 128					Default Value:	8000h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 128					Default Value:	8000h				Format:	U16		516517	63:48	Inverse R-ch Gamma Corrected Value 129					Default Value:	8100h				Format:	U16			47:32	Inverse Pixel Value 129					Default Value:	8100h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 129	<u> </u>				Default Value:	8100h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 129					Default Value:	8100h				Format:	U16		518519	63:48	53:48 Forward R-ch Gamma Corrected Value 129					Default Value:	8100h				Format:	U16			47:32	Forward Pixel Value 129					Default Value:	8100h				Format:	U16			31:16 Forward B-ch Gamma Corrected Value 129		·				Default Value:	8100h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 129	•			. 3.0	Default Value:	8100h				Format:	U16		520521	63:48	Inverse R-ch Gamma Corrected Value 130	1			05.40	Default Value:	8200h				Format:	U16			47:32	Inverse Pixel Value 130					Default Value:	8200h				Format:	U16			Gan	nut_Expansion_Gamma_Co	rrection		--------	--	--	----------			31:16	Inverse B-ch Gamma Corrected Value 13					Default Value:	8200h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 13	0				Default Value:	8200h				Format:	U16		522523	63:48	Forward R-ch Gamma Corrected Value 1	30				Default Value:	8200h				Format:	U16			47:32	Forward Pixel Value 130					Default Value:	8200h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 1	30				Default Value:	8200h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 130					Default Value:	8200h				Format:	U16		524525	63:48	63:48 Inverse R-ch Gamma Corrected Value 131					Default Value:	8300h				Format:	U16			47:32	Inverse Pixel Value 131					Default Value:	8300h				Format:	U16			31:16 Inverse B-ch Gamma Corrected Value 131		1				Default Value:	8300h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 13	1				Default Value:	8300h				Format:	U16		526527	63:48	Forward R-ch Gamma Corrected Value 1	31				Default Value:	8300h				Format:	U16			47:32	Forward Pixel Value 131					Default Value:	8300h				Format:	U16			Gan	nut_Expansion_Gamma_Corre	ection			--------	-------	--	--------	--			31:16	Forward B-ch Gamma Corrected Value 131						Default Value:	8300h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 131						Default Value:	8300h					Format:	U16			528529	63:48	Inverse R-ch Gamma Corrected Value 132						Default Value:	8400h					Format:	U16				47:32	Inverse Pixel Value 132	·					Default Value:	8400h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 132	·					Default Value:	8400h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 132						Default Value:	8400h					Format:	U16			530531	63:48	Forward R-ch Gamma Corrected Value 132						Default Value:	8400h					Format:	U16				47:32	Forward Pixel Value 132						Default Value:	8400h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 132						Default Value:	8400h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 132						Default Value:	8400h					Format:	U16			532533	63:48						05.40	Default Value:	8500h					Format:	U16				47:32	Inverse Pixel Value 133						Default Value:	8500h					Format:	U16					nut_Expansion_Gamma_C			--------	-------	--	-------			31:16	Inverse B-ch Gamma Corrected Value					Default Value:	8500h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 133					Default Value:	8500h				Format:	U16		534535	63:48	Forward R-ch Gamma Corrected Value	e 133				Default Value:	8500h				Format:	U16			47:32	Forward Pixel Value 133					Default Value:	8500h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	e 133				Default Value:	8500h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 133					Default Value:	8500h				Format:	U16		536537	63:48	Inverse R-ch Gamma Corrected Value 134					Default Value:	8600h				Format:	U16			47:32	Inverse Pixel Value 134					Default Value:	8600h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value	134				Default Value:	8600h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value	134				Default Value:	8600h				Format:	U16		538539	63:48	Forward R-ch Gamma Corrected Value	134				Default Value:	8600h				Format:	U16			47:32	Forward Pixel Value 134					Default Value:	8600h				Format:	U16			Gam	nut_Expansion_Gamma_Corr	ection			--------	-------	--	----------	--			31:16	Forward B-ch Gamma Corrected Value 134						Default Value:	8600h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 134						Default Value:	8600h					Format:	U16			540541	63:48	Inverse R-ch Gamma Corrected Value 135						Default Value:	8700h					Format:	U16				47:32	Inverse Pixel Value 135						Default Value:	8700h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 135						Default Value:	8700h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 135						Default Value:	8700h					Format:	U16			542543	63:48	Forward R-ch Gamma Corrected Value 135						Default Value:	8700h					Format:	U16				47:32	Forward Pixel Value 135						Default Value:	8700h					Format:	U16				31:16																																																									
Forward B-ch Gamma Corrected Value 135	;					Default Value:	8700h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 135	<u> </u>					Default Value:	8700h					Format:	U16			544545	63:48	Inverse R-ch Gamma Corrected Value 136					333	Default Value:	8800h					Format:	U16				47:32	Inverse Pixel Value 136	1					Default Value:	8800h					Format:	U16				Gam	ut_Expansion_Gamma_Co	rrection		--------	-------	--	----------			31:16	Inverse B-ch Gamma Corrected Value 136					Default Value:	8800h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 1	36				Default Value:	8800h				Format:	U16		546547	63:48	Forward R-ch Gamma Corrected Value 1	136				Default Value:	8800h				Format:	U16			47:32	Forward Pixel Value 136					Default Value:	8800h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 1	136				Default Value:	8800h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 136					Default Value:	8800h				Format:	U16		548549	63:48	Inverse R-ch Gamma Corrected Value 137					Default Value:	8900h				Format:	U16			47:32	Inverse Pixel Value 137					Default Value:	8900h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 13	37				Default Value:	8900h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 1	37				Default Value:	8900h				Format:	U16		550551	63:48	Forward R-ch Gamma Corrected Value 1	137				Default Value:	8900h				Format:	U16			47:32	Forward Pixel Value 137	l				Default Value:	8900h				Format:	U16			Gam	nut_Expansion_Gamma_Corr	ection			--------	-------	--	----------	--			31:16	Forward B-ch Gamma Corrected Value 137						Default Value:	8900h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 137						Default Value:	8900h					Format:	U16			552553	63:48	Inverse R-ch Gamma Corrected Value 138						Default Value:	8a00h					Format:	U16				47:32	Inverse Pixel Value 138						Default Value:	8a00h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 138	·					Default Value:	8a00h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 138						Default Value:	8a00h					Format:	U16			554555	63:48	8 Forward R-ch Gamma Corrected Value 138						Default Value:	8a00h					Format:	U16				47:32	Forward Pixel Value 138						Default Value:	8a00h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 138	}					Default Value:	8a00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 138	3					Default Value:	8a00h					Format:	U16			556557	63:48	Inverse R-ch Gamma Corrected Value 139					05.40	Default Value:	8b00h					Format:	U16				47:32	Inverse Pixel Value 139	<u> </u>					Default Value:	8b00h					Format:	U16				Gan	ut_Expansion_Gamma_Co	rrection		--------	-------	--	----------			31:16	Inverse B-ch Gamma Corrected Value 1					Default Value:	8b00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 1	39				Default Value:	8b00h				Format:	U16		558559	63:48	Forward R-ch Gamma Corrected Value	139				Default Value:	8b00h				Format:	U16			47:32	Forward Pixel Value 139					Default Value:	8b00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	139				Default Value:	8b00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 139					Default Value:	8b00h				Format:	U16		560561	63:48	Inverse R-ch Gamma Corrected Value 140					Default Value:	8c00h				Format:	U16			47:32	Inverse Pixel Value 140					Default Value:	8c00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 14	40				Default Value:	8c00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 1	40				Default Value:	8c00h				Format:	U16		562563	63:48	Forward R-ch Gamma Corrected Value	140				Default Value:	8c00h				Format:	U16			47:32	Forward Pixel Value 140					Default Value:	8c00h				Format:	U16			Gam	nut_Expansion_Gamma_Corr	ection		--------	-------	--	----------			31:16	Forward B-ch Gamma Corrected Value 140					Default Value:	8c00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 140					Default Value:	8c00h				Format:	U16		564565	63:48	Inverse R-ch Gamma Corrected Value 141					Default Value:	8d00h				Format:	U16			47:32	Inverse Pixel Value 141	·				Default Value:	8d00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 141	<u>.</u>				Default Value:	8d00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 141					Default Value:	8d00h				Format:	U16		566567	63:48	Forward R-ch Gamma Corrected Value 141					Default Value:	8d00h				Format:	U16			47:32	Forward Pixel Value 141					Default Value:	8d00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 141	<u> </u>				Default Value:	8d00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 141	,				Default Value:	8d00h				Format:	U16		568569	63:48	Inverse R-ch Gamma Corrected Value 142				03.40	Default Value:	8e00h				Format:	U16			47:32	Inverse Pixel Value 142				17.52	Default Value:	8e00h				Format:	U16			Gan	nut_Expansion_Gamma_Cor	rection		--------	-------	--	---------			31:16	Inverse B-ch Gamma Corrected Value 14	2				Default Value:	8e00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 14	2				Default Value:	8e00h				Format:	U16		570571	63:48	Forward R-ch Gamma Corrected Value 1	42				Default Value:	8e00h				Format:	U16			47:32	Forward Pixel Value 142					Default Value:	8e00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 1	42				Default Value:	8e00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 142					Default Value:	8e00h				Format:	U16		572573	63:48	Inverse R-ch Gamma Corrected Value 143					Default Value:	8f00h				Format:	U16			47:32	Inverse Pixel Value 143					Default Value:	8f00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 14	3				Default Value:	8f00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 14	3				Default Value:	8f00h				Format:	U16		574575	63:48	Forward R-ch Gamma Corrected Value 1	43				Default Value:	8f00h				Format:	U16			47:32	Forward Pixel Value 143					Default Value:	8f00h				Format:	U16			Gan	nut_Expansion_Gamma_Corre	ection		--------	-------	--	--------			31:16	Forward B-ch Gamma Corrected Value 143					Default Value:	8f00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 143					Default Value:	8f00h				Format:	U16		576577	63:48	Inverse R-ch Gamma Corrected Value 144					Default Value:	9000h				Format:	U16			47:32	Inverse Pixel Value 144					Default Value:	9000h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 144					Default Value:	9000h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 144					Default Value:	9000h				Format:	U16		578579	63:48	Forward R-ch Gamma Corrected Value 144					Default Value:	9000h				Format:	U16			47:32	Forward Pixel Value 144					Default Value:	9000h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 144					Default Value:	9000h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 144					Default Value:	9000h				Format:	U16		580581	63:48	Inverse R-ch Gamma Corrected Value 145					Default Value:	9100h				Format:	U16			47:32	Inverse Pixel Value 145	,				Default Value:	9100h				Format:	U16			Gan	nut_Expansion_Gamma_Cor	rection		--------	-------	--	---------			31:16	Inverse B-ch Gamma Corrected Value 14	5				Default Value:	9100h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 14	5				Default Value:	9100h				Format:	U16		582583	63:48	Forward R-ch Gamma Corrected Value 14	45				Default Value:	9100h				Format:	U16			47:32	Forward Pixel Value 145					Default Value:	9100h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 14	45				Default Value:	9100h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 145					Default Value:	9100h				Format:	U16		584585	63:48	Inverse R-ch Gamma Corrected Value 146					Default Value:	9200h				Format:	U16			47:32	Inverse Pixel Value 146					Default Value:	9200h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 14	6				Default Value:	9200h				Format:																																																													
U16			15:0	Inverse G-ch Gamma Corrected Value 14	6				Default Value:	9200h				Format:	U16		586587	63:48	Forward R-ch Gamma Corrected Value 14	46				Default Value:	9200h				Format:	U16			47:32	Forward Pixel Value 146					Default Value:	9200h				Format:	U16			Gam	nut_Expansion_Gamma_Corre	ection			--------	-------	--	--------	--			31:16	Forward B-ch Gamma Corrected Value 146						Default Value:	9200h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 146						Default Value:	9200h					Format:	U16			588589	63:48	Inverse R-ch Gamma Corrected Value 147						Default Value:	9300h					Format:	U16				47:32	Inverse Pixel Value 147						Default Value:	9300h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 147	·					Default Value:	9300h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 147						Default Value:	9300h					Format:	U16			590591	63:48	Forward R-ch Gamma Corrected Value 147						Default Value:	9300h					Format:	U16				47:32	Forward Pixel Value 147						Default Value:	9300h					Format:	U16				31:16							Default Value:	9300h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 147						Default Value:	9300h					Format:	U16			592593	63:48	Inverse R-ch Gamma Corrected Value 148					55.10	Default Value:	9400h					Format:	U16				47:32	Inverse Pixel Value 148	·					Default Value:	9400h					Format:	U16				Gan	nut_Expansion_Gamma_Cor	rection		--------	-------	--	---------			31:16	Inverse B-ch Gamma Corrected Value 14					Default Value:	9400h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 14	8				Default Value:	9400h				Format:	U16		594595	63:48	Forward R-ch Gamma Corrected Value 14	48				Default Value:	9400h				Format:	U16			47:32	Forward Pixel Value 148					Default Value:	9400h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 14	48				Default Value:	9400h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 148					Default Value:	9400h				Format:	U16		596597	63:48	Inverse R-ch Gamma Corrected Value 149					Default Value:	9500h				Format:	U16			47:32	Inverse Pixel Value 149					Default Value:	9500h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 14	9				Default Value:	9500h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 14	9				Default Value:	9500h				Format:	U16		598599	63:48	Forward R-ch Gamma Corrected Value 14	49				Default Value:	9500h				Format:	U16			47:32	Forward Pixel Value 149					Default Value:	9500h				Format:	U16			Gam	nut_Expansion_Gamma_Corre	ection			---------	-------	--	--------	--			31:16	Forward B-ch Gamma Corrected Value 149						Default Value:	9500h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 149						Default Value:	9500h					Format:	U16			600601	63:48	Inverse R-ch Gamma Corrected Value 150						Default Value:	9600h					Format:	U16				47:32	Inverse Pixel Value 150						Default Value:	9600h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 150						Default Value:	9600h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 150						Default Value:	9600h					Format:	U16			602603	63:48	:48 Forward R-ch Gamma Corrected Value 150						Default Value:	9600h					Format:	U16				47:32	Forward Pixel Value 150						Default Value:	9600h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 150						Default Value:	9600h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 150						Default Value:	9600h					Format:	U16			604605	63:48	Inverse R-ch Gamma Corrected Value 151				00 1003		Default Value:	9700h					Format:	U16				47:32	Inverse Pixel Value 151						Default Value:	9700h					Format:	U16				Gan	nut_Expansion_Gamma_Corr	ection		--------	-------	--	--------			31:16	Inverse B-ch Gamma Corrected Value 151					Default Value:	9700h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 151					Default Value:	9700h				Format:	U16		606607	63:48	Forward R-ch Gamma Corrected Value 15	I				Default Value:	9700h				Format:	U16			47:32	Forward Pixel Value 151					Default Value:	9700h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 151					Default Value:	9700h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 151					Default Value:	9700h				Format:	U16		608609	63:48	Inverse R-ch Gamma Corrected Value 152					Default Value:	9800h				Format:	U16			47:32	Inverse Pixel Value 152					Default Value:	9800h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 152					Default Value:	9800h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 152					Default Value:	9800h				Format:	U16		610611	63:48	Forward R-ch Gamma Corrected Value 152	2				Default Value:	9800h				Format:	U16			47:32	Forward Pixel Value 152					Default Value:	9800h				Format:	U16			Gam	nut_Expansion_Gamma_Corr	rection			--------	-------	--	----------	--			31:16	Forward B-ch Gamma Corrected Value 152						Default Value:	9800h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 152						Default Value:	9800h					Format:	U16			612613	63:48	Inverse R-ch Gamma Corrected Value 153						Default Value:	9900h					Format:	U16				47:32	Inverse Pixel Value 153						Default Value:	9900h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 153	·					Default Value:	9900h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 153						Default Value:	9900h					Format:	U16			614615	63:48	Forward R-ch Gamma Corrected Value 153						Default Value:	9900h					Format:	U16				47:32	Forward Pixel Value 153						Default Value:	9900h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 153						Default Value:	9900h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 153	3					Default Value:	9900h					Format:	U16			616617	63:48	Inverse R-ch Gamma Corrected Value 154	<u> </u>				05.40	Default Value:	9a00h					Format:	U16				47:32	Inverse Pixel Value 154	ı					Default Value:	9a00h					Format:	U16				Gan	nut_Expansion_Gamma_Co	rrection		--------	-------	--	----------			31:16	Inverse B-ch Gamma Corrected Value 154					Default Value:	9a00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 1	54				Default Value:	9a00h				Format:	U16		618619	63:48	Forward R-ch Gamma Corrected Value 1	154				Default Value:	9a00h				Format:	U16			47:32	Forward Pixel Value 154					Default Value:	9a00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 1	154				Default Value:	9a00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 154					Default Value:	9a00h				Format:	U16		620621	63:48	Inverse R-ch Gamma Corrected Value 155					Default Value:	9b00h				Format:	U16			47:32	Inverse Pixel Value 155					Default Value:	9b00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 155					Default Value:	9b00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 1	55				Default Value:	9b00h				Format:	U16		622623	63:48	Forward R-ch Gamma Corrected Value 1	155				Default Value:	9b00h				Format:	U16			47:32	Forward Pixel Value 155					Default Value:	9b00h				Format:	U16			Gam	nut_Expansion_Gamma_Corr	rection			--------	-------	--	----------	--			31:16	Forward B-ch Gamma Corrected Value 155						Default Value:	9b00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 15	5					Default Value:	9b00h					Format:	U16			624625	63:48	Inverse R-ch Gamma Corrected Value 156						Default Value:	9c00h					Format:	U16				47:32	Inverse Pixel Value 156						Default Value:	9c00h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 156	<u> </u>					Default Value:	9c00h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 156						Default Value:	9c00h					Format:	U16			626627	63:48	Forward R-ch Gamma Corrected Value 156						Default Value:	9c00h					Format:	U16				47:32	Forward Pixel Value 156						Default Value:	9c00h			
15:0	Forward G-ch Gamma Corrected Value 156						Default Value:	9c00h					Format:	U16			628629	63:48	Inverse R-ch Gamma Corrected Value 157	•				55.10	Default Value:	9d00h					Format:	U16				47:32	Inverse Pixel Value 157	·					Default Value:	9d00h					Format:	U16				Gam	nut_Expansion_Gamma_Cor	rection			--------	-------	---	---------	--			31:16	Inverse B-ch Gamma Corrected Value 157						Default Value:	9d00h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 157	7					Default Value:	9d00h					Format:	U16			630631	63:48	Forward R-ch Gamma Corrected Value 15	57					Default Value:	9d00h					Format:	U16				47:32	Forward Pixel Value 157						Default Value:	9d00h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 15						Default Value:	9d00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 157						Default Value:	9d00h					Format:	U16			632633	63:48	48 Inverse R-ch Gamma Corrected Value 158						Default Value:	9e00h					Format:	U16				47:32	Inverse Pixel Value 158						Default Value:	9e00h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 158	}					Default Value:	9e00h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 158	3					Default Value:	9e00h					Format:	U16			634635	63:48	Forward R-ch Gamma Corrected Value 15	8				233	Default Value:	9e00h					Format:	U16				47:32	Forward Pixel Value 158					17.32	Default Value:	9e00h					Format:	U16				Gam	nut_Expansion_Gamma_Corr	rection			--------	-------	---	----------	--			31:16	Forward B-ch Gamma Corrected Value 158						Default Value:	9e00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 158	8					Default Value:	9e00h					Format:	U16			636637	63:48	Inverse R-ch Gamma Corrected Value 159						Default Value:	9f00h					Format:	U16				47:32	Inverse Pixel Value 159	<u> </u>					Default Value:	9f00h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 159	·					Default Value:	9f00h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 159						Default Value:	9f00h					Format:	U16			638639	63:48	3:48 Forward R-ch Gamma Corrected Value 159						Default Value:	9f00h					Format:	U16				47:32	Forward Pixel Value 159						Default Value:	9f00h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 159					36	Default Value:	9f00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 159	9				13.0	Default Value:	9f00h					Format:	U16			640641	63:48	Inverse R-ch Gamma Corrected Value 160				040041	03.40	Default Value:	a000h					Format:	U16				47:32	Inverse Pixel Value 160						Default Value:	a000h					Format:	U16				Gan	nut_Expansion_Gamma_Co	rrection		--------	-------	--	----------			31:16	Inverse B-ch Gamma Corrected Value 160					Default Value:	a000h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 160					Default Value:	a000h				Format:	U16		642643	63:48	Forward R-ch Gamma Corrected Value 1	60				Default Value:	a000h				Format:	U16			47:32	Forward Pixel Value 160					Default Value:	a000h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 1	60				Default Value:	a000h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 160					Default Value:	a000h				Format:	U16		644645	63:48	Inverse R-ch Gamma Corrected Value 161					Default Value:	a100h				Format:	U16			47:32	Inverse Pixel Value 161					Default Value:	a100h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 161					Default Value:	a100h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 16	51				Default Value:	a100h				Format:	U16		646647	63:48	Forward R-ch Gamma Corrected Value 1	161				Default Value:	a100h				Format:	U16			47:32	Forward Pixel Value 161	<u>'</u>				Default Value:	a100h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 161			--------	-------	--	---------			15:0	Default Value:	a100h				Format:	U16				Forward G-ch Gamma Corrected Val	lue 161				Default Value:	a100h				Format:	U16		648649	63:48	Inverse R-ch Gamma Corrected Valu	ıe 162				Default Value:	a200h				Format:	U16			47:32	Inverse Pixel Value 162					Default Value:	a200h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Valu	ie 162				Default Value:	a200h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 162					Default Value:	a200h				Format:	U16		650651	63:48	Forward R-ch Gamma Corrected Value 162					Default Value:	a200h				Format:	U16			47:32	Forward Pixel Value 162					Default Value:	a200h				Format:	U16			31:16	Forward B-ch Gamma Corrected Val	ue 162				Default Value:	a200h				Format:	U16			15:0	Forward G-ch Gamma Corrected Va	lue 162				Default Value:	a200h				Format:	U16		652653	63:48	Inverse R-ch Gamma Corrected Valu	ie 163				Default Value:	a300h				Format:	U16			47:32	Inverse Pixel Value 163					Default Value:	a300h				nut_Expansion_Gamma_Co			--------	-------	--	-------			31:16	Inverse B-ch Gamma Corrected Value 16					Default Value:	a300h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 163					Default Value:	a300h				Format:	U16		654655	63:48	Forward R-ch Gamma Corrected Value 1	63				Default Value:	a300h				Format:	U16			47:32	Forward Pixel Value 163					Default Value:	a300h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 1	63				Default Value:	a300h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 163					Default Value:	a300h				Format:	U16		656657	63:48	Inverse R-ch Gamma Corrected Value 164					Default Value:	a400h				Format:	U16			47:32	Inverse Pixel Value 164					Default Value:	a400h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 16	4				Default Value:	a400h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 16	64				Default Value:	a400h				Format:	U16		658659	63:48	Forward R-ch Gamma Corrected Value 1	64				Default Value:	a400h				Format:	U16			47:32	Forward Pixel Value 164					Default Value:	a400h				Format:	U16			Gam	nut_Expansion_Gamma_Corr	ection			--------	-------	---	--------	--			31:16	Forward B-ch Gamma Corrected Value 164						Default Value:	a400h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 164						Default Value:	a400h					Format:	U16			660661	63:48	Inverse R-ch Gamma Corrected Value 165						Default Value:	a500h					Format:	U16				47:32	Inverse Pixel Value 165						Default Value:	a500h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 165	·					Default Value:	a500h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 165						Default Value:	a500h					Format:	U16			662663	63:48	3:48 Forward R-ch Gamma Corrected Value 165						Default Value:	a500h					Format:	U16				47:32	Forward Pixel Value 165						Default Value:	a500h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 165						Default Value:	a500h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 165						Default Value:	a500h					Format:	U16			664665	63:48	Inverse R-ch Gamma Corrected Value 166					05.40	Default Value:	a600h					Format:	U16				47:32	Inverse Pixel Value 166						Default Value:	a600h					Format:	U16				Gan	ut_Expansion_Gamma_Co	rrection		--------	-------	--	----------			31:16	Inverse B-ch Gamma Corrected Value 16	6				Default Value:	a600h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 16	6				Default Value:	a600h				Format:	U16		666667	63:48	Forward R-ch Gamma Corrected Value 1	66				Default Value:	a600h				Format:	U16			47:32	Forward Pixel Value 166					Default Value:	a600h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 1	66				Default Value:	a600h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 166					Default Value:	a600h				Format:	U16		668669	63:48	Inverse R-ch Gamma Corrected Value 167					Default Value:	a700h				Format:	U16			47:32	Inverse Pixel Value 167					Default Value:	a700h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 167					Default Value:	a700h				Format:	U16											
15:0	Inverse G-ch Gamma Corrected Value 16	7				Default Value:	a700h				Format:	U16		670671	63:48	Forward R-ch Gamma Corrected Value 1	67				Default Value:	a700h				Format:	U16			47:32	Forward Pixel Value 167	•				Default Value:	a700h				Format:	U16			Gan	nut_Expansion_Gamma_Corr	ection			--------	-------	--	----------	--			31:16	Forward B-ch Gamma Corrected Value 167						Default Value:	a700h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 167	1					Default Value:	a700h					Format:	U16			672673	63:48	Inverse R-ch Gamma Corrected Value 168						Default Value:	a800h					Format:	U16				47:32	Inverse Pixel Value 168						Default Value:	a800h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 168	·					Default Value:	a800h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 168						Default Value:	a800h					Format:	U16			674675	63:48	Forward R-ch Gamma Corrected Value 168						Default Value:	a800h					Format:	U16				47:32	Forward Pixel Value 168						Default Value:	a800h					Format:	U16				31:16							Default Value:	a800h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 168						Default Value:	a800h					Format:	U16			676677	63:48	Inverse R-ch Gamma Corrected Value 169	<u>'</u>					Default Value:	a900h					Format:	U16				47:32	Inverse Pixel Value 169						Default Value:	a900h					Format:	U16				Gan	nut_Expansion_Gamma_Cor	rection		--------	-------	--	---------------------------------------			31:16	Inverse B-ch Gamma Corrected Value 169					Default Value:	a900h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 169)				Default Value:	a900h				Format:	U16		678679	63:48	Forward R-ch Gamma Corrected Value 16	59				Default Value:	a900h				Format:	U16			47:32	Forward Pixel Value 169	, , , , , , , , , , , , , , , , , , ,				Default Value:	a900h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 16	9				Default Value:	a900h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 169					Default Value:	a900h				Format:	U16		680681	63:48	Inverse R-ch Gamma Corrected Value 170					Default Value:	aa00h				Format:	U16			47:32	Inverse Pixel Value 170					Default Value:	aa00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 170					Default Value:	aa00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 170)				Default Value:	aa00h				Format:	U16		682683	63:48	Forward R-ch Gamma Corrected Value 17	'O				Default Value:	aa00h				Format:	U16			47:32	Forward Pixel Value 170	•				Default Value:	aa00h				Format:	U16			Gam	nut_Expansion_Gamma_Corre	ection		--------	-------	--	----------			31:16	Forward B-ch Gamma Corrected Value 170					Default Value:	aa00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 170					Default Value:	aa00h				Format:	U16		684685	63:48	Inverse R-ch Gamma Corrected Value 171					Default Value:	ab00h				Format:	U16			47:32	Inverse Pixel Value 171					Default Value:	ab00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 171					Default Value:	ab00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 171					Default Value:	ab00h				Format:	U16		686687	63:48	Forward R-ch Gamma Corrected Value 171					Default Value:	ab00h				Format:	U16			47:32	Forward Pixel Value 171					Default Value:	ab00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 171					Default Value:	ab00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 171					Default Value:	ab00h				Format:	U16		688689	63:48	Inverse R-ch Gamma Corrected Value 172	<u> </u>			03.40	Default Value:	ac00h				Format:	U16			47:32	Inverse Pixel Value 172				17.52	Default Value:	ac00h				Format:	U16			Gam	nut_Expansion_Gamma_Cor	rection			--------	-------	--	----------	--			31:16	Inverse B-ch Gamma Corrected Value 172						Default Value:	ac00h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 172						Default Value:	ac00h					Format:	U16			690691	63:48	Forward R-ch Gamma Corrected Value 17	2					Default Value:	ac00h					Format:	U16				47:32	Forward Pixel Value 172						Default Value:	ac00h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 17	2					Default Value:	ac00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 172						Default Value:	ac00h					Format:	U16			692693	63:48	Inverse R-ch Gamma Corrected Value 173						Default Value:	ad00h					Format:	U16				47:32	Inverse Pixel Value 173						Default Value:	ad00h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 173						Default Value:	ad00h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 173						Default Value:	ad00h					Format:	U16			694695	63:48	Forward R-ch Gamma Corrected Value 17	3				05.40	Default Value:	ad00h					Format:	U16				47:32	Forward Pixel Value 173	<u> </u>				72 -	Default Value:	ad00h					Format:	U16				Gam	nut_Expansion_Gamma_Cori	rection			--------	-------	--	----------	--			31:16	Forward B-ch Gamma Corrected Value 173						Default Value:	ad00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 17	3					Default Value:	ad00h					Format:	U16			696697	63:48	Inverse R-ch Gamma Corrected Value 174						Default Value:	ae00h					Format:	U16				47:32	Inverse Pixel Value 174	·					Default Value:	ae00h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 174	<u>.</u>					Default Value:	ae00h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 174						Default Value:	ae00h					Format:	U16			698699	63:48	Forward R-ch Gamma Corrected Value 174						Default Value:	ae00h					Format:	U16				47:32	Forward Pixel Value 174						Default Value:	ae00h					Format:	U16				31:16							Default Value:	ae00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 17	4					Default Value:	ae00h					Format:	U16			700701	63:48	Inverse R-ch Gamma Corrected Value 175	·				55.10	Default Value:	af00h					Format:	U16				47:32	Inverse Pixel Value 175	<u>'</u>					Default Value:	af00h					Format:	U16					nut_Expansion_Gamma_C			--------	-------	--	----------			31:16	Inverse B-ch Gamma Corrected Value					Default Value:	af00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value					Default Value:	af00h				Format:	U16		702703	63:48	Forward R-ch Gamma Corrected Valu	e 175				Default Value:	af00h				Format:	U16			47:32	Forward Pixel Value 175					Default Value:	af00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Valu	e 175				Default Value:	af00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 175					Default Value:	af00h				Format:	U16		704705	63:48	Inverse R-ch Gamma Corrected Value 176					Default Value:	b000h				Format:	U16			47:32	Inverse Pixel Value 176					Default Value:	b000h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value	176				Default Value:	b000h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value	176				Default Value:	b000h				Format:	U16		706707	63:48	Forward R-ch Gamma Corrected Valu	e 176				Default Value:	b000h				Format:	U16			47:32	Forward Pixel Value 176	<u> </u>			,,,	Default Value:	b000h				Format:	U16			Gan	nut_Expansion_Gamma_Cor	rection		--------	-------	--	----------			31:16	Forward B-ch Gamma Corrected Value 17	6				Default Value:	b000h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 17	6				Default Value:	b000h				Format:	U16		708709	63:48	Inverse R-ch Gamma Corrected Value 177					Default Value:	b100h				Format:	U16			47:32	Inverse Pixel Value 177					Default Value:	b100h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 177	<u> </u>				Default Value:	b100h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 177					Default Value:	b100h				Format:	U16		710711	63:48	Forward R-ch Gamma Corrected Value 177					Default Value:	b100h				Format:	U16			47:32	Forward Pixel Value 177					Default Value:	b100h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 17	7				Default Value:																
b100h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 17	7				Default Value:	b100h				Format:	U16		712713	63:48	Inverse R-ch Gamma Corrected Value 178	<u>'</u>			05.40	Default Value:	b200h				Format:	U16			47:32	Inverse Pixel Value 178					Default Value:	b200h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 178			--------	-------	--	-------				Default Value:	b200h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value	178				Default Value:	b200h				Format:	U16		714715	63:48	Forward R-ch Gamma Corrected Value	e 178				Default Value:	b200h				Format:	U16			47:32	Forward Pixel Value 178					Default Value:	b200h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	e 178				Default Value:	b200h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 178					Default Value:	b200h				Format:	U16		716717	63:48	Inverse R-ch Gamma Corrected Value 179					Default Value:	b300h				Format:	U16			47:32	Inverse Pixel Value 179					Default Value:	b300h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value	179				Default Value:	b300h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value	179				Default Value:	b300h				Format:	U16		718719	63:48	Forward R-ch Gamma Corrected Value	179				Default Value:	b300h				Format:	U16			47:32	Forward Pixel Value 179					Default Value:	b300h				Format:	U16			Gan	nut_Expansion_Gamma_Corr	rection			--------	-------	--	----------	--			31:16	Forward B-ch Gamma Corrected Value 179						Default Value:	b300h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 179	9					Default Value:	b300h					Format:	U16			720721	63:48	Inverse R-ch Gamma Corrected Value 180						Default Value:	b400h					Format:	U16				47:32	Inverse Pixel Value 180						Default Value:	b400h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 180	·					Default Value:	b400h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 180						Default Value:	b400h					Format:	U16			722723	63:48	8 Forward R-ch Gamma Corrected Value 180						Default Value:	b400h					Format:	U16				47:32	Forward Pixel Value 180						Default Value:	b400h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 180)					Default Value:	b400h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 180	0					Default Value:	b400h					Format:	U16			724725	63:48	Inverse R-ch Gamma Corrected Value 181	<u> </u>				05.40	Default Value:	b500h					Format:	U16				47:32	Inverse Pixel Value 181					17.52	Default Value:	b500h					Format:	U16				Gan	nut_Expansion_Gamma_Co	orrection		--------	-------	--	-----------			31:16	Inverse B-ch Gamma Corrected Value	181				Default Value:	b500h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 181					Default Value:	b500h				Format:	U16		726727	63:48	Forward R-ch Gamma Corrected Value	181				Default Value:	b500h				Format:	U16			47:32	Forward Pixel Value 181					Default Value:	b500h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	181				Default Value:	b500h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 181					Default Value:	b500h				Format:	U16		728729	63:48	Inverse R-ch Gamma Corrected Value 182					Default Value:	b600h				Format:	U16			47:32	Inverse Pixel Value 182					Default Value:	b600h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value	182				Default Value:	b600h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value	182				Default Value:	b600h				Format:	U16		730731	63:48	Forward R-ch Gamma Corrected Value	182				Default Value:	b600h				Format:	U16			47:32	Forward Pixel Value 182					Default Value:	b600h				Format:	U16			Gam	nut_Expansion_Gamma_Cori	rection			--------	-------	---	----------	--			31:16	Forward B-ch Gamma Corrected Value 182						Default Value:	b600h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 18	2					Default Value:	b600h					Format:	U16			732733	63:48	Inverse R-ch Gamma Corrected Value 183						Default Value:	b700h					Format:	U16				47:32	Inverse Pixel Value 183						Default Value:	b700h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 183						Default Value:	b700h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 183						Default Value:	b700h					Format:	U16			734735	63:48	48 Forward R-ch Gamma Corrected Value 183						Default Value:	b700h					Format:	U16				47:32	Forward Pixel Value 183						Default Value:	b700h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 183	3					Default Value:	b700h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 183						Default Value:	b700h					Format:	U16			736737	63:48	Inverse R-ch Gamma Corrected Value 184					333	Default Value:	b800h					Format:	U16				47:32	Inverse Pixel Value 184	<u> </u>					Default Value:	b800h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value			--------	-------	--	----------			15:0	Default Value:	b800h				Format:	U16				Inverse G-ch Gamma Corrected Valu				15.0	Default Value:	b800h				Format:	U16		738739	63:48	Forward R-ch Gamma Corrected Value	<u> </u>		730733	03.10	Default Value:	b800h				Format:	U16			47:32	Forward Pixel Value 184	<u>'</u>				Default Value:	b800h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	ue 184				Default Value:	b800h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 184					Default Value:	b800h				Format:	U16		740741	63:48	Inverse R-ch Gamma Corrected Value 185					Default Value:	b900h				Format:	U16			47:32	Inverse Pixel Value 185					Default Value:	b900h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value	e 185				Default Value:	b900h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Valu	e 185				Default Value:	b900h				Format:	U16		742743	63:48	Forward R-ch Gamma Corrected Value	ue 185				Default Value:	b900h				Format:	U16			47:32	Forward Pixel Value 185					Default Value:	b900h			Gan	nut_Expansion_Gamma_Corr	ection			--------	-------	--	--------	--			31:16	Forward B-ch Gamma Corrected Value 185	5					Default Value:	b900h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 185						Default Value:	b900h					Format:	U16			744745	63:48	Inverse R-ch Gamma Corrected Value 186						Default Value:	ba00h					Format:	U16				47:32	Inverse Pixel Value 186						Default Value:	ba00h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 186						Default Value:	ba00h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 186						Default Value:	ba00h					Format:	U16			746747	63:48	Forward R-ch Gamma Corrected Value 186						Default Value:	ba00h					Format:	U16				47:32	Forward Pixel Value 186						Default Value:	ba00h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 186						Default Value:	ba00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 186						Default Value:	ba00h					Format:	U16			748749	63:48	Inverse R-ch Gamma Corrected Value 187					55.10	Default Value:	bb00h					Format:	U16				47:32	Inverse Pixel Value 187	•					Default Value:	bb00h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 187			--------	-------	--	-------				Default Value:	bb00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value	187				Default Value:	bb00h				Format:	U16		750751	63:48	Forward R-ch Gamma Corrected Value	187				Default Value:	bb00h				Format:	U16			47:32	Forward Pixel Value 187					Default Value:	bb00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	187				Default Value:	bb00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 187					Default Value:	bb00h				Format:	U16		752753	63:48	Inverse R-ch Gamma Corrected Value 188					Default Value:	bc00h				Format:	U16			47:32	Inverse Pixel Value 188					Default Value:	bc00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value	188				Default Value:	bc00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value	188				Default Value:	bc00h												
		Format:	U16		754755	63:48	Forward R-ch Gamma Corrected Value	188				Default Value:	bc00h				Format:	U16			47:32	Forward Pixel Value 188					Default Value:	bc00h				Format:	U16			Gam	nut_Expansion_Gamma_Co	rrection			--------	-------	--	----------	--			31:16	Forward B-ch Gamma Corrected Value 1	88					Default Value:	bc00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 188						Default Value:	bc00h					Format:	U16			756757	63:48	Inverse R-ch Gamma Corrected Value 18	39					Default Value:	bd00h					Format:	U16				47:32	Inverse Pixel Value 189	·					Default Value:	bd00h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 18	9					Default Value:	bd00h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 189						Default Value:	bd00h					Format:	U16			758759	63:48	Forward R-ch Gamma Corrected Value 189						Default Value:	bd00h					Format:	U16				47:32	Forward Pixel Value 189						Default Value:	bd00h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 189						Default Value:	bd00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 1	89					Default Value:	bd00h					Format:	U16			760761	63:48	Inverse R-ch Gamma Corrected Value 19	00				55.10	Default Value:	be00h					Format:	U16				47:32	Inverse Pixel Value 190	<u>'</u>					Default Value:	be00h					Format:	U16				Gan	nut_Expansion_Gamma_Co	orrection		--------	-------	--	-----------			31:16	Inverse B-ch Gamma Corrected Value 1	90				Default Value:	be00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 1	90				Default Value:	be00h				Format:	U16		762763	63:48	Forward R-ch Gamma Corrected Value	190				Default Value:	be00h				Format:	U16			47:32	Forward Pixel Value 190					Default Value:	be00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	190				Default Value:	be00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 190					Default Value:	be00h				Format:	U16		764765	63:48	Inverse R-ch Gamma Corrected Value 191					Default Value:	bf00h				Format:	U16			47:32	Inverse Pixel Value 191					Default Value:	bf00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 191					Default Value:	bf00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 1	91				Default Value:	bf00h				Format:	U16		766767	63:48	Forward R-ch Gamma Corrected Value	191				Default Value:	bf00h				Format:	U16			47:32	Forward Pixel Value 191					Default Value:	bf00h				Format:	U16			Gan	nut_Expansion_Gamma_Cor	rection		--------	-------	--	---------			31:16	Forward B-ch Gamma Corrected Value 19	91				Default Value:	bf00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 191					Default Value:	bf00h				Format:	U16		768769	63:48	Inverse R-ch Gamma Corrected Value 19	2				Default Value:	c000h				Format:	U16			47:32	Inverse Pixel Value 192					Default Value:	c000h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 19	2				Default Value:	c000h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 192					Default Value:	c000h				Format:	U16		770771	63:48	Forward R-ch Gamma Corrected Value 192					Default Value:	c000h				Format:	U16			47:32	Forward Pixel Value 192					Default Value:	c000h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 192					Default Value:	c000h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 19	92				Default Value:	c000h				Format:	U16		772773	63:48	Inverse R-ch Gamma Corrected Value 19	3				Default Value:	c100h				Format:	U16			47:32	Inverse Pixel Value 193	•				Default Value:	c100h				Format:	U16				nut_Expansion_Gamma_Co			--------	-------	--	----------			31:16	Inverse B-ch Gamma Corrected Value 19	1			15:0	Default Value:	c100h				Format:	U16				Inverse G-ch Gamma Corrected Value 19					Default Value:	c100h				Format:	U16		774775	63:48	Forward R-ch Gamma Corrected Value 1	93				Default Value:	c100h				Format:	U16			47:32	Forward Pixel Value 193					Default Value:	c100h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 1	93				Default Value:	c100h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 193					Default Value:	c100h				Format:	U16		776777	63:48	Inverse R-ch Gamma Corrected Value 194					Default Value:	c200h				Format:	U16			47:32	Inverse Pixel Value 194					Default Value:	c200h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 19)4				Default Value:	c200h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 19	94				Default Value:	c200h				Format:	U16		778779	63:48	Forward R-ch Gamma Corrected Value 1	94				Default Value:	c200h				Format:	U16			47:32	Forward Pixel Value 194	<u>'</u>				Default Value:	c200h				Format:	U16			Gam	nut_Expansion_Gamma_Corr	ection		--------	-------	--	--------			31:16	Forward B-ch Gamma Corrected Value 194	•				Default Value:	c200h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 194					Default Value:	c200h				Format:	U16		780781	63:48	Inverse R-ch Gamma Corrected Value 195					Default Value:	c300h				Format:	U16			47:32	Inverse Pixel Value 195	•				Default Value:	c300h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 195					Default Value:	c300h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 195					Default Value:	c300h				Format:	U16		782783	63:48	Forward R-ch Gamma Corrected Value 195					Default Value:	c300h				Format:	U16			47:32	Forward Pixel Value 195					Default Value:	c300h				Format:	U16			31:16	6 Forward B-ch Gamma Corrected Value 195					Default Value:	c300h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 195					Default Value:	c300h				Format:	U16		784785	63:48	Inverse R-ch Gamma Corrected Value 196					Default Value:	c400h				Format:	U16			47:32	Inverse Pixel Value 196	ı				Default Value:	c400h				Format:	U16			Gan	nut_Expansion_Gamma_Col	rrection		--------	-------	--	----------			31:16	Inverse B-ch Gamma Corrected Value 19	6				Default Value:	c400h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 19	6				Default Value:	c400h				Format:	U16		786787	63:48	Forward R-ch Gamma Corrected Value 1	96				Default Value:	c400h				Format:	U16			47:32	Forward Pixel Value 196					Default Value:	c400h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 1	96				Default Value:	c400h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 196					Default Value:	c400h				Format:	U16		788789	63:48	Inverse R-ch Gamma Corrected Value 197					Default Value:	c500h				Format:	U16			47:32	Inverse Pixel Value 197					Default Value:	c500h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 197					Default Value:	c500h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 19	7				Default Value:	c500h				Format:	U16		790791	63:48	Forward R-ch Gamma Corrected Value 1	97				Default Value:	c500h				Format:	U16			47:32	Forward Pixel Value 197					Default Value:	c500h				Format:	U16			Gan	nut_Expansion_Gamma_Coi	rection		--------	-------	--	--			31:16	Forward B-ch Gamma Corrected Value 1	97				Default Value:	c500h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 1	97				Default Value:	c500h				Format:	U16		792793	63:48	Inverse R-ch Gamma Corrected Value 19	8				Default Value:	c600h				Format:	U16			47:32	Inverse Pixel Value 198					Default Value:	c600h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 19	8				Default Value:	c600h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 198					Default Value:	c600h				Format:	U16		794795	63:48	Forward R-ch Gamma Corrected Value 198					Default Value:	c600h				Format:	U16			47:32	Forward Pixel Value 198					Default Value:	c600h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 1	98				Default Value:	c600h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 198					Default Value:	c600h				Format:	U16		796797	63:48	Inverse R-ch Gamma Corrected Value 19	9				Default Value:	c700h																																																																						
Format:	U16			47:32	Inverse Pixel Value 199	<u>, </u>				Default Value:	c700h				Format:	U16				nut_Expansion_Gamma_Co			--------	-------	--	-------			31:16	Inverse B-ch Gamma Corrected Value 19 Default Value:	c700h			15:0		U16				Format:					Inverse G-ch Gamma Corrected Value 19					Default Value:	c700h				Format:	U16		798799	63:48	Forward R-ch Gamma Corrected Value 1					Default Value:	c700h				Format:	U16			47:32	Forward Pixel Value 199					Default Value:	c700h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 199					Default Value:	c700h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 199					Default Value:	c700h				Format:	U16		800801	63:48	Inverse R-ch Gamma Corrected Value 200					Default Value:	c800h				Format:	U16			47:32	Inverse Pixel Value 200					Default Value:	c800h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 20	00				Default Value:	c800h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 20	00				Default Value:	c800h				Format:	U16		802803	63:48	Forward R-ch Gamma Corrected Value 2	200				Default Value:	c800h				Format:	U16			47:32	Forward Pixel Value 200					Default Value:	c800h				Format:	U16			Gan	nut_Expansion_Gamma_Corr	ection			--------	-------	--	--------	--			31:16	Forward B-ch Gamma Corrected Value 200						Default Value:	c800h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 200						Default Value:	c800h					Format:	U16			804805	63:48	Inverse R-ch Gamma Corrected Value 201						Default Value:	c900h					Format:	U16				47:32	Inverse Pixel Value 201						Default Value:	c900h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 201	·					Default Value:	c900h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 201						Default Value:	c900h					Format:	U16			806807	63:48	Forward R-ch Gamma Corrected Value 201						Default Value:	c900h					Format:	U16				47:32	Forward Pixel Value 201						Default Value:	c900h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 201						Default Value:	c900h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 201						Default Value:	c900h					Format:	U16			808809	63:48	Inverse R-ch Gamma Corrected Value 202	•				05.40	Default Value:	ca00h					Format:	U16				47:32	Inverse Pixel Value 202						Default Value:	ca00h					Format:	U16				31:16	nut_Expansion_Gamma_C Inverse B-ch Gamma Corrected Value			--------	-------	--	----------			15:0	Default Value:	ca00h				Format:	U16				Inverse G-ch Gamma Corrected Value	<u> </u>			15.0	Default Value:	ca00h				Format:	U16		810811	63:48	Forward R-ch Gamma Corrected Value			010011	05.40	Default Value:	ca00h				Format:	U16			47:32	Forward Pixel Value 202				47.52	Default Value:	ca00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	<u> </u>			31.10	Default Value:	ca00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 202					Default Value:	ca00h				Format:	U16		812813	63:48	Inverse R-ch Gamma Corrected Value 203					Default Value:	cb00h				Format:	U16			47:32	Inverse Pixel Value 203					Default Value:	cb00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value	203				Default Value:	cb00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value	203				Default Value:	cb00h				Format:	U16		814815	63:48	Forward R-ch Gamma Corrected Value	e 203				Default Value:	cb00h				Format:	U16			47:32	Forward Pixel Value 203					Default Value:	cb00h				nut_Expansion_Gamma_Co			--------	-------	--	----------			31:16	Forward B-ch Gamma Corrected Value 2					Default Value:	cb00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 2	03				Default Value:	cb00h				Format:	U16		816817	63:48	Inverse R-ch Gamma Corrected Value 20	4				Default Value:	cc00h				Format:	U16			47:32	Inverse Pixel Value 204					Default Value:	cc00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 20	4				Default Value:	cc00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 204					Default Value:	cc00h				Format:	U16		818819	63:48	Forward R-ch Gamma Corrected Value 204					Default Value:	cc00h				Format:	U16			47:32	Forward Pixel Value 204					Default Value:	cc00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 2	04				Default Value:	cc00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 2	04				Default Value:	cc00h				Format:	U16		820821	63:48	Inverse R-ch Gamma Corrected Value 20	5				Default Value:	cd00h				Format:	U16			47:32	Inverse Pixel Value 205	<u>'</u>				Default Value:	cd00h				Format:	U16			Gan	nut_Expansion_Gamma_Co	rrection		--------	-------	--	----------			31:16	Inverse B-ch Gamma Corrected Value 20	5				Default Value:	cd00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 20	95				Default Value:	cd00h				Format:	U16		822823	63:48	Forward R-ch Gamma Corrected Value 2	05				Default Value:	cd00h				Format:	U16			47:32	Forward Pixel Value 205	,				Default Value:	cd00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 2	05				Default Value:	cd00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 205					Default Value:	cd00h				Format:	U16		824825	63:48	Inverse R-ch Gamma Corrected Value 206					Default Value:	ce00h				Format:	U16			47:32	Inverse Pixel Value 206					Default Value:	ce00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 206					Default Value:	ce00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 20	06				Default Value:	ce00h				Format:	U16		826827			06				Default Value:	ce00h				Format:	U16			47:32	Forward Pixel Value 206	•				Default Value:	ce00h				Format:	U16			Gan	nut_Expansion_Gamma_Cor	rection			--------	-------	--	---------	--			31:16	Forward B-ch Gamma Corrected Value 206						Default Value:	ce00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 20	06					Default Value:	ce00h					Format:	U16			828829	63:48	Inverse R-ch Gamma Corrected Value 207	7					Default Value:	cf00h					Format:	U16				47:32	Inverse Pixel Value 207						Default Value:	cf00h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 207	7					Default Value:	cf00h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 207						Default Value:	cf00h					Format:	U16			830831	63:48	Forward R-ch Gamma Corrected Value 207						Default Value:	cf00h					Format:	U16				47:32	Forward Pixel Value 207						Default Value:	cf00h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 20)7					Default Value:	cf00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 20	07					Default Value:	cf00h					Format:	U16			832833	63:48	Inverse R-ch Gamma Corrected Value 208	8				55.10	Default Value:	d000h					Format:	U16				47:32	Inverse Pixel Value 208	1					Default Value:	d000h					Format:	U16				Gan	nut_Expansion_Gamma_Co	rrection		--------	-------	--	----------			31:16	Inverse B-ch Gamma Corrected Value 2					Default Value:	d000h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 2	08				Default Value:	d000h				Format:	U16		834835	63:48	Forward R-ch Gamma Corrected Value	208				Default Value:	d000h				Format:	U16			47:32	Forward Pixel Value 208					Default Value:	d000h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	208				Default Value:	d000h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 208					Default Value:	d000h				Format:	U16		836837	63:48	Inverse R-ch Gamma Corrected Value 209					Default Value:	d100h				Format:	U16			47:32	Inverse Pixel Value 209					Default Value:	d100h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 209					Default Value:	d100h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 2	09				Default Value:	d100h				Format:	U16		838839	63:48	Forward R-ch Gamma Corrected Value	209				Default Value:	d100h				Format:	U16			47:32	Forward Pixel Value 209					Default Value:	d100h				Format:	U16			Gam																																				
nut_Expansion_Gamma_Corr	rection			--------	-------	--	----------	--			31:16	Forward B-ch Gamma Corrected Value 209)					Default Value:	d100h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 209						Default Value:	d100h					Format:	U16			840841	63:48	Inverse R-ch Gamma Corrected Value 210						Default Value:	d200h					Format:	U16				47:32	Inverse Pixel Value 210	•					Default Value:	d200h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 210						Default Value:	d200h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 210						Default Value:	d200h					Format:	U16			842843	63:48	Forward R-ch Gamma Corrected Value 210						Default Value:	d200h					Format:	U16				47:32	Forward Pixel Value 210						Default Value:	d200h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 210)					Default Value:	d200h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 210)					Default Value:	d200h					Format:	U16			844845	63:48	Inverse R-ch Gamma Corrected Value 211	<u>'</u>				05.40	Default Value:	d300h					Format:	U16				47:32	Inverse Pixel Value 211	I					Default Value:	d300h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 211			--------	-------	--	--------				Default Value:	d300h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 2	 11				Default Value:	d300h				Format:	U16		846847	63:48	Forward R-ch Gamma Corrected Value 2	211				Default Value:	d300h				Format:	U16			47:32	Forward Pixel Value 211					Default Value:	d300h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 2	211				Default Value:	d300h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 211					Default Value:	d300h				Format:	U16		848849	63:48	Inverse R-ch Gamma Corrected Value 212					Default Value:	d400h				Format:	U16			47:32	Inverse Pixel Value 212					Default Value:	d400h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 21	12				Default Value:	d400h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 2	12				Default Value:	d400h				Format:	U16		850851	63:48	Forward R-ch Gamma Corrected Value 2	212				Default Value:	d400h				Format:	U16			47:32	Forward Pixel Value 212					Default Value:	d400h				Format:	U16			Gam	nut_Expansion_Gamma_Cor	rection			--------	-------	--	----------	--			31:16	Forward B-ch Gamma Corrected Value 2	12					Default Value:	d400h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 212						Default Value:	d400h					Format:	U16			852853	63:48	Inverse R-ch Gamma Corrected Value 21	3					Default Value:	d500h					Format:	U16				47:32	Inverse Pixel Value 213	<u> </u>					Default Value:	d500h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 21	3					Default Value:	d500h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 213						Default Value:	d500h					Format:	U16			854855	63:48	Forward R-ch Gamma Corrected Value 213						Default Value:	d500h					Format:	U16				47:32	Forward Pixel Value 213						Default Value:	d500h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 2	13					Default Value:	d500h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 2	13					Default Value:	d500h					Format:	U16			856857	63:48	Inverse R-ch Gamma Corrected Value 21	4					Default Value:	d600h					Format:	U16				47:32	Inverse Pixel Value 214	<u> </u>				52	Default Value:	d600h					Format:	U16				Gan	ut_Expansion_Gamma_Co	rrection		--------	-------	--	----------			31:16	Inverse B-ch Gamma Corrected Value 2	14				Default Value:	d600h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 2	14				Default Value:	d600h				Format:	U16		858859	63:48	Forward R-ch Gamma Corrected Value	214				Default Value:	d600h				Format:	U16			47:32	Forward Pixel Value 214					Default Value:	d600h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	214				Default Value:	d600h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 214					Default Value:	d600h				Format:	U16		860861	63:48	Inverse R-ch Gamma Corrected Value 215					Default Value:	d700h				Format:	U16			47:32	Inverse Pixel Value 215					Default Value:	d700h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 2	15				Default Value:	d700h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 2	15				Default Value:	d700h				Format:	U16		862863	63:48	Forward R-ch Gamma Corrected Value	215				Default Value:	d700h				Format:	U16			47:32	Forward Pixel Value 215					Default Value:	d700h				Format:	U16			Gan	nut_Expansion_Gamma_Cor	rection		--------	-------	--	---------			31:16	Forward B-ch Gamma Corrected Value 21	5				Default Value:	d700h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 21	15				Default Value:	d700h				Format:	U16		864865	63:48	Inverse R-ch Gamma Corrected Value 216	j				Default Value:	d800h				Format:	U16			47:32	Inverse Pixel Value 216					Default Value:	d800h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 216	j				Default Value:	d800h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 216					Default Value:	d800h				Format:	U16		866867	63:48	Forward R-ch Gamma Corrected Value 216					Default Value:	d800h				Format:	U16			47:32	Forward Pixel Value 216					Default Value:	d800h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 21	6				Default Value:	d800h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 21	16				Default Value:	d800h				Format:	U16		868869	63:48	Inverse R-ch Gamma Corrected Value 217	1			55.10	Default Value:	d900h				Format:	U16			47:32	Inverse Pixel Value 217	•				Default Value:	d900h				Format:	U16			Gam	ut_Expansion_Gamma_Co	rrection		--------	-------	--	----------			31:16	Inverse B-ch Gamma Corrected Value 21	7				Default Value:	d900h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 21	7				Default Value:	d900h				Format:	U16		870871	63:48	Forward R-ch Gamma Corrected Value 2	17				Default Value:	d900h				Format:	U16			47:32	Forward Pixel Value 217	•				Default Value:	d900h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 2	17				Default Value:	d900h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 217					Default Value:	d900h				Format:	U16		872873	63:48	Inverse R-ch Gamma Corrected Value 218					Default Value:	da00h				Format:	U16			47:32	Inverse Pixel Value 218					Default Value:	da00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 21	8				Default Value:	da00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 21	18				Default Value:	da00h				Format:	U16		874875	63:48	Forward R-ch Gamma Corrected Value 2	18			55.10	Default Value:	da00h				Format:	U16			47:32	Forward Pixel Value 218	1				Default Value:	da00h				Format:	U16			Gam	nut_Expansion_Gamma_Co	rrection		--------	-------	--	----------			31:16	Forward B-ch Gamma Corrected Value 2	18				Default Value:	da00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 2	:18				Default Value:	da00h				Format:	U16		876877	63:48	Inverse R-ch Gamma Corrected Value 21	9				Default Value:	db00h				Format:	U16			47:32	Inverse Pixel Value 219	•				Default Value:	db00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 21	9				Default Value:	db00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 219					Default Value:	db00h				Format:	U16		878879	63:48	Forward R-ch Gamma Corrected Value 219					Default Value:	db00h				Format:	U16			47:32	Forward Pixel Value 219					Default Value:	db00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 2	19				Default Value:	db00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 2	19				Default Value:	db00h				Format:	U16		880881	63:48	Inverse R-ch Gamma Corrected Value 22	20		000001	05.40	Default Value:	dc00h				Format:	U16			47:32	Inverse Pixel Value 220					Default Value:	dc00h				Format:	U16				ut_Expansion_Gamma_C			--------	-------																																														
--	-------			31:16	Inverse B-ch Gamma Corrected Value	220				Default Value:	dc00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value	220				Default Value:	dc00h				Format:	U16		882883	63:48	Forward R-ch Gamma Corrected Value	e 220				Default Value:	dc00h				Format:	U16			47:32	Forward Pixel Value 220					Default Value:	dc00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	e 220				Default Value:	dc00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 220					Default Value:	dc00h				Format:	U16		884885	63:48	Inverse R-ch Gamma Corrected Value 221					Default Value:	dd00h				Format:	U16			47:32	Inverse Pixel Value 221					Default Value:	dd00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value	221				Default Value:	dd00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value	221				Default Value:	dd00h				Format:	U16		886887	63:48	Forward R-ch Gamma Corrected Value	e 221				Default Value:	dd00h				Format:	U16			47:32	Forward Pixel Value 221	1				Default Value:	dd00h				Format:	U16			Gan	nut_Expansion_Gamma_C	orrection		--------	-------	--	-----------			31:16	Forward B-ch Gamma Corrected Value	e 221				Default Value:	dd00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 221					Default Value:	dd00h				Format:	U16		888889	63:48	Inverse R-ch Gamma Corrected Value	222				Default Value:	de00h				Format:	U16			47:32	Inverse Pixel Value 222					Default Value:	de00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value	222				Default Value:	de00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 222					Default Value:	de00h				Format:	U16		890891	63:48	Forward R-ch Gamma Corrected Value 222					Default Value:	de00h				Format:	U16			47:32	Forward Pixel Value 222					Default Value:	de00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	e 222				Default Value:	de00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value	e 222				Default Value:	de00h				Format:	U16		892893	63:48	Inverse R-ch Gamma Corrected Value	223				Default Value:	df00h				Format:	U16			47:32	Inverse Pixel Value 223					Default Value:	df00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 223			--------	-------	--	-------				Default Value:	df00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 2	23				Default Value:	df00h				Format:	U16		894895	63:48	Forward R-ch Gamma Corrected Value 2	223				Default Value:	df00h				Format:	U16			47:32	Forward Pixel Value 223					Default Value:	df00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 2	223				Default Value:	df00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 223					Default Value:	df00h				Format:	U16		896897	63:48	Inverse R-ch Gamma Corrected Value 224					Default Value:	e000h				Format:	U16			47:32	Inverse Pixel Value 224					Default Value:	e000h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 2	24				Default Value:	e000h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 2	24				Default Value:	e000h				Format:	U16		898899	63:48	Forward R-ch Gamma Corrected Value 2	224				Default Value:	e000h				Format:	U16			47:32	Forward Pixel Value 224					Default Value:	e000h				Format:	U16			Gan	nut_Expansion_Gamma_Corre	ection		---------	-------	--	--------			31:16	Forward B-ch Gamma Corrected Value 224					Default Value:	e000h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 224					Default Value:	e000h				Format:	U16		900901	63:48	Inverse R-ch Gamma Corrected Value 225					Default Value:	e100h				Format:	U16			47:32	Inverse Pixel Value 225	·				Default Value:	e100h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 225	·				Default Value:	e100h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 225					Default Value:	e100h				Format:	U16		902903	63:48	Forward R-ch Gamma Corrected Value 225					Default Value:	e100h				Format:	U16			47:32	Forward Pixel Value 225					Default Value:	e100h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 225					Default Value:	e100h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 225					Default Value:	e100h				Format:	U16		904905	63:48	Inverse R-ch Gamma Corrected Value 226	•		JU-TJUJ	55.15	Default Value:	e200h				Format:	U16			47:32	Inverse Pixel Value 226	•				Default Value:	e200h				Format:	U16				nut_Expansion_Gamma_Co			--------	-------	--	----------			31:16	Inverse B-ch Gamma Corrected Value 2					Default Value:	e200h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 226					Default Value:	e200h				Format:	U16		906907	63:48	Forward R-ch Gamma Corrected Value	226				Default Value:	e200h				Format:	U16			47:32	Forward Pixel Value 226					Default Value:	e200h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	226				Default Value:	e200h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 226					Default Value:	e200h				Format:	U16		908909	63:48	Inverse R-ch Gamma Corrected Value 227					Default Value:	e300h				Format:	U16			47:32	Inverse Pixel Value 227					Default Value:	e300h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 2	27				Default Value:	e300h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 2	27				Default Value:	e300h				Format:	U16		910911	63:48	Forward R-ch Gamma Corrected Value	227				Default Value:	e300h				Format:	U16			47:32	Forward Pixel Value 227	<u> </u>				Default Value:	e300h				Format:	U16			Gan	nut_Expansion_Gamma_Corre	ection		--------	-------	--	--------			31:16	Forward B-ch Gamma Corrected Value 227					Default Value:	e300h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 227					Default Value:	e300h				Format:	U16		912913	63:48	Inverse R-ch Gamma Corrected Value 228					Default Value:	e400h				Format:	U16			47:32	Inverse Pixel Value 228					Default Value:	e400h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 228	·				Default Value:	e400h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 228					Default Value:	e400h				Format:	U16		914915	63:48	Forward R-ch Gamma Corrected Value 228					Default Value:	e400h				Format:	U16			47:32	Forward Pixel Value 228					Default Value:	e400h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 228					Default Value:	e400h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 228					Default Value:	e400h				Format:	U16		916917	63:48	Inverse R-ch Gamma Corrected Value 229				05.40	Default Value:	e500h				Format:	U16			47:32	Inverse Pixel Value 229					Default Value:	e500h				Format:	U16			Gan	nut_Expansion_Gamma_Co	rrection		--------	-------	--	----------			31:16	Inverse B-ch Gamma Corrected Value 22					Default Value:	e500h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 22	29				Default Value:	e500h				Format:	U16		918919	63:48	Forward R-ch Gamma Corrected Value 2	229				Default Value:	e500h				Format:	U16			47:32	Forward Pixel Value 229					Default Value:	e500h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 2	229				Default Value:	e500h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 229					Default Value:	e500h				Format:	U16		920921	63:48	Inverse R-ch Gamma Corrected Value 230					Default Value:	e600h				Format:	U16			47:32	Inverse Pixel Value 230					Default Value:	e600h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 230					Default Value:	e600h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 23	30				Default Value:	e600h				Format:	U16		922923	63:48	63:48 Forward R-ch Gamma Corrected Value 230					Default Value:	e600h				Format:	U16			47:32	Forward Pixel Value 230					Default Value:	e600h				Format:	U16			Gan	nut_Expansion_Gamma_Corre	ection			--------	-------	--	----------	--			31:16	Forward B-ch Gamma Corrected Value 230						Default Value:	e600h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 230						Default Value:	e600h					Format:	U16																																																																																								
		924925	63:48	Inverse R-ch Gamma Corrected Value 231						Default Value:	e700h					Format:	U16				47:32	Inverse Pixel Value 231						Default Value:	e700h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 231	<u> </u>					Default Value:	e700h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 231						Default Value:	e700h					Format:	U16			926927	63:48	Forward R-ch Gamma Corrected Value 231						Default Value:	e700h					Format:	U16				47:32	Forward Pixel Value 231						Default Value:	e700h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 231						Default Value:	e700h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 231						Default Value:	e700h					Format:	U16			928929	63:48	Inverse R-ch Gamma Corrected Value 232					55.10	Default Value:	e800h					Format:	U16				47:32	Inverse Pixel Value 232	,					Default Value:	e800h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 2			---------	-------	---	----------			51.10	Default Value:	e800h				Format:	U16			45.0		<u> </u>			15:0	Inverse G-ch Gamma Corrected Value 2 Default Value:	e800h				Format:	U16		020 024	62.40		<u> </u>		930931	63:48	Forward R-ch Gamma Corrected Value Default Value:	e800h									Format:	U16			47:32	Forward Pixel Value 232	2001				Default Value:	e800h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 232					Default Value:	e800h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value					Default Value:	e800h				Format:	U16		932933	63:48	Inverse R-ch Gamma Corrected Value 233					Default Value:	e900h				Format:	U16			47:32	Inverse Pixel Value 233					Default Value:	e900h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 2	233				Default Value:	e900h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value	233				Default Value:	e900h				Format:	U16		934935	63:48	Forward R-ch Gamma Corrected Value	233				Default Value:	e900h				Format:	U16			47:32	Forward Pixel Value 233	<u>'</u>				Default Value:	e900h				Format:	U16			Gam	nut_Expansion_Gamma_Corre	ection			--------	-------	--	--------	--			31:16	Forward B-ch Gamma Corrected Value 233						Default Value:	e900h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 233						Default Value:	e900h					Format:	U16			936937	63:48	Inverse R-ch Gamma Corrected Value 234						Default Value:	ea00h					Format:	U16				47:32	Inverse Pixel Value 234						Default Value:	ea00h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 234	·					Default Value:	ea00h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 234						Default Value:	ea00h					Format:	U16			938939	63:48	Forward R-ch Gamma Corrected Value 234						Default Value:	ea00h					Format:	U16				47:32	Forward Pixel Value 234						Default Value:	ea00h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 234						Default Value:	ea00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 234					15.0	Default Value:	ea00h					Format:	U16			940941	63:48	Inverse R-ch Gamma Corrected Value 235					05.40	Default Value:	eb00h					Format:	U16				47:32	Inverse Pixel Value 235					17.32	Default Value:	eb00h					Format:	U16				Gan	nut_Expansion_Gamma_Co	orrection		--------	-------	--	-----------			31:16	Inverse B-ch Gamma Corrected Value 2	235				Default Value:	eb00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 2	235				Default Value:	eb00h				Format:	U16		942943	63:48	Forward R-ch Gamma Corrected Value	235				Default Value:	eb00h				Format:	U16			47:32	Forward Pixel Value 235					Default Value:	eb00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value	235				Default Value:	eb00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 235					Default Value:	eb00h				Format:	U16		944945	63:48	Inverse R-ch Gamma Corrected Value 236					Default Value:	ec00h				Format:	U16			47:32	Inverse Pixel Value 236					Default Value:	ec00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 236					Default Value:	ec00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 2	236				Default Value:	ec00h				Format:	U16		946947	63:48	Forward R-ch Gamma Corrected Value	236				Default Value:	ec00h				Format:	U16			47:32	Forward Pixel Value 236	•				Default Value:	ec00h				Format:	U16			Gam	nut_Expansion_Gamma_Co	rrection			--------	-------	--	----------	--			31:16	Forward B-ch Gamma Corrected Value 236						Default Value:	ec00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 236						Default Value:	ec00h					Format:	U16			948949	63:48	Inverse R-ch Gamma Corrected Value 23	7					Default Value:	ed00h					Format:	U16				47:32	Inverse Pixel Value 237						Default Value:	ed00h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 23	7					Default Value:	ed00h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 237						Default Value:	ed00h					Format:	U16			950951	63:48	Forward R-ch Gamma Corrected Value 237						Default Value:	ed00h					Format:	U16				47:32	Forward Pixel Value 237						Default Value:	ed00h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 237						Default Value:	ed00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 2	37					Default Value:	ed00h					Format:	U16			952953	63:48	Inverse R-ch Gamma Corrected Value 23	8					Default Value:	ee00h					Format:	U16				47:32	Inverse Pixel Value 238						Default Value:	ee00h					Format:	U16				Gan	nut_Expansion_Gamma_Co	rrection		--------	-------	--	----------			31:16	Inverse B-ch Gamma Corrected Value 238					Default Value:	ee00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 23	38				Default Value:	ee00h				Format:	U16		954955	63:48	Forward R-ch Gamma Corrected Value 2	238				Default Value:	ee00h				Format:	U16			47:32	Forward Pixel Value 238					Default Value:	ee00h				Format:	U16			31:16	Forward B-ch Gamma Corrected Value 2	238				Default Value:	ee00h				Format:	U16			15:0	Forward G-ch Gamma Corrected Value 238					Default Value:	ee00h				Format:	U16		956957	63:48	Inverse R-ch Gamma Corrected Value 239					Default Value:	ef00h				Format:	U16			47:32	Inverse Pixel Value 239					Default Value:	ef00h				Format:	U16			31:16	Inverse B-ch Gamma Corrected Value 23	39				Default Value:	ef00h				Format:	U16			15:0	Inverse G-ch Gamma Corrected Value 23	39				Default Value:	ef00h				Format:	U16		958959	63:48	Forward R-ch Gamma Corrected Value 2					Default Value:	ef00h				Format:	U16			47:32	Forward Pixel Value 239	<u>'</u>				Default Value:	ef00h				Format:	U16			Gan	nut_Expansion_Gamma_Corre	ction				--------	--	--	----------	----------	--			31:16 Forward B-ch Gamma Corrected Value 239								Default Value:	ef00h						Format:	U16					15:0	Forward G-ch Gamma Corrected Value 239							Default Value:	ef00h						Format:	U16				960961	63:48	Inverse R-ch Gamma Corrected Value 240							Default Value:	f000h						Format:	U16					47:32	Inverse Pixel Value 240							Default Value:	f000h						Format:	U16					31:16	Inverse B-ch Gamma Corrected Value 240	·						Default Value:	f000h						Format:	U16					15:0	Inverse G-ch Gamma Corrected Value 240							Default Value:	f000h						Format:	U16				962963	63:48	63:48 Forward R-ch Gamma Corrected Value 240		<u> </u>					Default Value:	f000h						Format:	U16					47:32	Forward Pixel Value 240							Default Value:	f000h						Format:	U16					31:16 Forward B-ch Gamma Corrected Value 240		·						Default Value:	f000h						Format:	U16					15:0	Forward G-ch Gamma Corrected Value 240	<u>.</u>						Default Value:	f000h						Format:	U16				964965	63:48	Inverse R-ch Gamma Corrected Value 241	•						Default Value:	f100h						Format:	U16		
--	---	----------	--	--			31:16	31:16 Inverse B-ch Gamma Corrected Value 241							Default Value:	f100h						Format:	U16					15:0	Inverse G-ch Gamma Corrected Value 241							Default Value:	f100h						Format:	U16				966967	63:48	Forward R-ch Gamma Corrected Value 241							Default Value:	f100h						Format:	U16					47:32	Forward Pixel Value 241							Default Value:	f100h						Format:	U16					31:16	Forward B-ch Gamma Corrected Value 241	•						Default Value:	f100h						Format:	U16					15:0	Forward G-ch Gamma Corrected Value 241							Default Value:	f100h						Format:	U16				968969	63:48	69 63:48 Inverse R-ch Gamma Corrected Value 242		<u>, </u>					Default Value:	f200h						Format:	U16					47:32	Inverse Pixel Value 242							Default Value:	f200h						Format:	U16					31:16 Inverse B-ch Gamma Corrected Value 242		·						Default Value:	f200h						Format:	U16					15:0	Inverse G-ch Gamma Corrected Value 242							Default Value:	f200h						Format:	U16				970971	63:48	Forward R-ch Gamma Corrected Value 242	<u>'</u>						Default Value:	f200h						Format:	U16					47:32	Forward Pixel Value 242						52	Default Value:	f200h						Format:	U16					Gam	nut_Expansion_Gamma_Correc	ction				--------	--	--	-------	--	--			31:16 Forward B-ch Gamma Corrected Value 242								Default Value:	f200h						Format:	U16					15:0	Forward G-ch Gamma Corrected Value 242							Default Value:	f200h						Format:	U16				972973	63:48	Inverse R-ch Gamma Corrected Value 243							Default Value:	f300h						Format:	U16					47:32	Inverse Pixel Value 243							Default Value:	f300h						Format:	U16					31:16	Inverse B-ch Gamma Corrected Value 243							Default Value:	f300h						Format:	U16					15:0	Inverse G-ch Gamma Corrected Value 243							Default Value:	f300h						Format:	U16				974975	63:48	63:48 Forward R-ch Gamma Corrected Value 243							Default Value:	f300h						Format:	U16					47:32	Forward Pixel Value 243							Default Value:	f300h						Format:	U16					31:16 Forward B-ch Gamma Corrected Value 243								Default Value:	f300h						Format:	U16					15:0	Forward G-ch Gamma Corrected Value 243							Default Value:	f300h						Format:	U16				976977	63:48	Inverse R-ch Gamma Corrected Value 244							Default Value:	f400h						Format:	U16					47:32	Inverse Pixel Value 244	•						Default Value:	f400h						Format:	U16					Gan	nut_Expansion_Gamma_Corre	ection			--------	-------	--	----------	----------			31:16	Inverse B-ch Gamma Corrected Value 244						Default Value:	f400h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 244	<u> </u>					Default Value:	f400h					Format:	U16			978979	63:48	Forward R-ch Gamma Corrected Value 244	<u> </u>					Default Value:	f400h					Format:	U16				47:32	Forward Pixel Value 244						Default Value:	f400h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 244	<u>.</u>					Default Value:	f400h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 244						Default Value:	f400h					Format:	U16			980981	63:48	63:48 Inverse R-ch Gamma Corrected Value 245		<u> </u>				Default Value:	f500h					Format:	U16				47:32	Inverse Pixel Value 245						Default Value:	f500h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 245	<u>.</u>					Default Value:	f500h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 245						Default Value:	f500h					Format:	U16			982983	63:48	Forward R-ch Gamma Corrected Value 245						Default Value:	f500h					Format:	U16				47:32	Forward Pixel Value 245						Default Value:	f500h					Format:	U16				Gam	nut_Expansion_Gamma_Corre	ction			--------	--	--	----------	----------			31:16 Forward B-ch Gamma Corrected Value 245							Default Value:	f500h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 245						Default Value:	f500h					Format:	U16			984985	63:48	Inverse R-ch Gamma Corrected Value 246						Default Value:	f600h					Format:	U16				47:32	Inverse Pixel Value 246						Default Value:	f600h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 246						Default Value:	f600h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 246						Default Value:	f600h					Format:	U16			986987	63:48	63:48 Forward R-ch Gamma Corrected Value 246		<u>'</u>				Default Value:	f600h					Format:	U16				47:32	Forward Pixel Value 246						Default Value:	f600h					Format:	U16				31:16 Forward B-ch Gamma Corrected Value 246		<u>.</u>					Default Value:	f600h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 246	•					Default Value:	f600h					Format:	U16			988989	63:48	Inverse R-ch Gamma Corrected Value 247						Default Value:	f700h					Format:	U16				47:32	Inverse Pixel Value 247	l				52	Default Value:	f700h					Format:	U16				Gan	nut_Expansion_Gamma_Corre	ection				--------	--	--	--------	----------	--			31:16	Inverse B-ch Gamma Corrected Value 247							Default Value:	f700h						Format:	U16					15:0	Inverse G-ch Gamma Corrected Value 247							Default Value:	f700h						Format:	U16				990991	63:48	Forward R-ch Gamma Corrected Value 247							Default Value:	f700h						Format:	U16					47:32	Forward Pixel Value 247							Default Value:	f700h						Format:	U16					31:16	Forward B-ch Gamma Corrected Value 247	·						Default Value:	f700h						Format:	U16					15:0	Forward G-ch Gamma Corrected Value 247							Default Value:	f700h						Format:	U16				992993	63:48	63:48 Inverse R-ch Gamma Corrected Value 248		<u>-</u>					Default Value:	f800h						Format:	U16					47:32	Inverse Pixel Value 248							Default Value:	f800h						Format:	U16					31:16 Inverse B-ch Gamma Corrected Value 248								Default Value:	f800h						Format:	U16					15:0	Inverse G-ch Gamma Corrected Value 248							Default Value:	f800h						Format:	U16				994995	63:48	Forward R-ch Gamma Corrected Value 248							Default Value:	f800h						Format:	U16					47:32	Forward Pixel Value 248	·						Default Value:	f800h						Format:	U16					Gan	nut_Expansion_Gamma_Correc	ction			----------	--	--	----------	--			31:16 Forward B-ch Gamma Corrected Value 248							Default Value:	f800h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 248						Default Value:	f800h					Format:	U16			996997	63:48	Inverse R-ch Gamma Corrected Value 249						Default Value:	f900h					Format:	U16				47:32	Inverse Pixel Value 249						Default Value:	f900h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 249						Default Value:	f900h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 249						Default Value:	f900h					Format:	U16			998999	63:48	63:48 Forward R-ch Gamma Corrected Value 249						Default Value:	f900h					Format:	U16				47:32	Forward Pixel Value 249						Default Value:	f900h					Format:	U16				31:16 Forward B-ch Gamma Corrected Value 249							Default Value:	f900h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 249	<u> </u>					Default Value:	f900h					Format:	U16			10001001	63:48	Inverse R-ch Gamma Corrected Value 250	•					Default Value:	fa00h				
	Format:	U16				31:16	Forward B-ch Gamma Corrected Value 250	·					Default Value:	fa00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 250						Default Value:	fa00h					Format:	U16			10041005	63:48	05 63:48 Inverse R-ch Gamma Corrected Value 251		<u>'</u>				Default Value:	fb00h					Format:	U16				47:32	Inverse Pixel Value 251						Default Value:	fb00h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 251	<u>.</u>					Default Value:	fb00h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 251						Default Value:	fb00h					Format:	U16			10061007	63:48	Forward R-ch Gamma Corrected Value 251	<u> </u>					Default Value:	fb00h					Format:	U16				47:32	Forward Pixel Value 251	<u>'</u>					Default Value:	fb00h					Format:	U16				Gan	nut_Expansion_Gamma_Corre	ection			----------	-------	--	----------	--			31:16	Forward B-ch Gamma Corrected Value 251						Default Value:	fb00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 251						Default Value:	fb00h					Format:	U16			10081009	63:48	Inverse R-ch Gamma Corrected Value 252						Default Value:	fc00h					Format:	U16				47:32	Inverse Pixel Value 252						Default Value:	fc00h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 252						Default Value:	fc00h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 252						Default Value:	fc00h					Format:	U16			10101011	63:48	Forward R-ch Gamma Corrected Value 252						Default Value:	fc00h					Format:	U16				47:32	Forward Pixel Value 252						Default Value:	fc00h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 252	<u> </u>				36	Default Value:	fc00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 252	<u> </u>					Default Value:	fc00h					Format:	U16			10121013	63:48	Inverse R-ch Gamma Corrected Value 253						Default Value:	fd00h					Format:	U16				47:32	Inverse Pixel Value 253					17.32	Default Value:	fd00h					Format:	U16				31:16	nut_Expansion_Gamma_Cor Inverse B-ch Gamma Corrected Value 253				----------	-------	--	-----------	--			31.10	Default Value:	fd00h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 253	<u> </u>				15.0	Default Value:	fd00h					Format:	U16			0141015	63:48	Forward R-ch Gamma Corrected Value 25	I			10141015	03.40	Default Value:	fd00h					Format:	U16				47:32	Forward Pixel Value 253	1 - 1 - 1				47.52	Default Value:	fd00h					Format:	U16				31:16	Forward B-ch Gamma Corrected Value 25	3					Default Value:	fd00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value 253						Default Value:	fd00h					Format:	U16			0161017	63:48	63:48 Inverse R-ch Gamma Corrected Value 254						Default Value:	fe00h					Format:	U16				47:32	Inverse Pixel Value 254						Default Value:	fe00h					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 254						Default Value:	fe00h					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 254	ļ					Default Value:	fe00h					Format:	U16			0181019	63:48	Forward R-ch Gamma Corrected Value 25	4					Default Value:	fe00h					Format:	U16				47:32	Forward Pixel Value 254						Default Value:	fe00h				Gan	ut_Expansion_Gamma_Co	orrection			----------	-------	--	-----------	--			31:16							Default Value:	fe00h					Format:	U16				15:0	Forward G-ch Gamma Corrected Value	254					Default Value:	fe00h					Format:	U16			10201021	63:48	Inverse R-ch Gamma Corrected Value 2	255					Default Value:	ffffh					Format:	U16				47:32	Inverse Pixel Value 255						Default Value:	ffffh					Format:	U16				31:16	Inverse B-ch Gamma Corrected Value 255						Default Value:	ffffh					Format:	U16				15:0	Inverse G-ch Gamma Corrected Value 255						Default Value:	ffffh					Format:	U16			10221023	63:48	Forward R-ch Gamma Corrected Value	255					Default Value:	ffffh					Format:	U16				47:32	Forward Pixel Value 255						Default Value:	ffffh					Format:	U16				31:16	Forward B-ch Gamma Corrected Value	255					Default Value:	ffffh					Format:	U16				15:0	Forward G-ch Gamma Corrected Value	255					Default Value:	ffffh					Format:	U16		#### **GraphicsAddress63-1** GA63-1 - GraphicsAddress63-1 Source: BSpec Size (in bits): 63 Default Value: 0x00000000, 0x00000000 This structure is intended to define the upper bits of the GraphicsAddress, when bit 0 is already defined in the referring register. So bit 0 of this structure should correspond to bit 1 of the full GraphicsAddress.	Telefining register. So sit of a time structure should correspond to sit if of the fair eraphics reduces.										---	-------	---	---------------	----------	--	--	--	--		DWord	Bit	Description								01	62:47	7 Reserved										Format:		MBZ						GraphicsAddress is a 64-bit value [63:0], but only a	16.0	0 GraphicsAddress47-1								portion of it is used by hardware. The upper reserved	46:0									bits are ignored and must be zero.		Format:	GraphicsAddre	ss[47:1]						Some GraphicsAddress fields only specify the upper		Bits 47:1 of a 48-bit GraphicsAddress. Look								address bits. For example GraphicsAddress[47:12] would		bit 0 definition in the referring register.								be a 4KB page address.									#### **GraphicsAddress63-12** **GA63-12 - GraphicsAddress63-12** Source: BSpec Size (in bits): 52 Default Value: 0x00000000, 0x00000000 This structure is intended to define the upper bits of the GraphicsAddress, when bits 11:0 are already defined in the referring register. So bit 0 of this structure should correspond to bit 12 of the full GraphicsAddress.	the referring register. So bit of this structure should correspond to bit 12 of the full draphies turness.						--	-------	----------------	--------------------	-----------------------		DWord			Descriptio	n		01	51:36	Reserved						Format:		MBZ		GraphicsAddress is a 64-bit value [63:0], but only a portion of it is used by hardware. The upper reserved		GraphicsAdo	lress47-12			bits are ignored and must be zero.		Format:	GraphicsAddres	s[47:12]		Some GraphicsAddress fields only specify the upper address bits. For example GraphicsAddress[47:12]		Bits 47:12 of	a 48-bit Graphics	Address. Look for				the definition	of bits 11:0 in th	e referring register.		would be a 4KB page address.					# **GTC Interrupt Bit Definition**			GTC Interrupt Bit Definition	tion				------------	--------	--	---------------------------------------	--	--		Source:		BSpec					Size (in b	oits):	32					Default \	/alue:	ue: 0x00000000					The GTC	Interr	upt Registers all share the same bit definitions from this tal	ole.				DWord	Bit	Description					0	31	GTC Lock Loss GTC has lost lock with a remote GTC sink. The difference between the local and remote GTC has exceeded programmed threshold.						30:22	Reserved							Format:	MBZ					21	GTC Aux Rx Error USBC6 An aux channel error occurred during GTC transfer with re	emote GTC sink attached to this port.					20	GTC Update Complete USBC6 A hardware initiated GTC update has completed with a sir	nk attached to this port.					19	GTC Aux Rx Error USBC5 An aux channel error occurred during GTC transfer with remote GTC sink attached to this port.						18	GTC Update Complete USBC5 A hardware initiated GTC update has completed with a sink attached to this port.						17	GTC Aux Rx Error USBC4 An aux channel error occurred during GTC transfer with remote GTC sink attached to this port.						16	GTC Update Complete USBC4 A hardware initiated GTC update has completed with a sink attached to this port.						15	GTC Aux Rx Error USBC3 An aux channel error occurred during GTC transfer with remote GTC sink attached to this port.						14	GTC Update Complete USBC3 A hardware initiated GTC update has completed with a sink attached to this port.						13	GTC Aux Rx Error USBC2 An aux channel error occurred during GTC transfer with remote GTC sink attached to this port.						12	GTC Update Complete USBC2 A hardware initiated GTC update has completed with a sink attached to this port.						11	GTC Aux Rx Error USBC1 An aux channel error occurred during GTC transfer with remote GTC sink attached to this port.						10	GTC Update Complete USBC1 A hardware initiated GTC update has																																																																																																																																																																																																																																																																																																																																																											
completed with a sink attached to this port.						9:6	·							Format:	MBZ					GTC Interrupt Bit Definition		---	--		5	GTC Aux Rx Error DDIC An aux channel error occurred during GTC transfer with remote GTC sink attached to this port.		4	GTC Update Complete DDIC			A hardware initiated GTC update has completed with a sink attached to this port.		3	GTC Aux Rx Error DDIB			An aux channel error occurred during GTC transfer with remote GTC sink attached to this port.		2	GTC Update Complete DDIB			A hardware initiated GTC update has completed with a sink attached to this port.		1	GTC Aux Rx Error DDIA			An aux channel error occurred during GTC transfer with remote GTC sink attached to this port.		0	GTC Update Complete DDIA			A hardware initiated GTC update has completed with a sink attached to this port.	# **GTPM Interrupt Vector**			GTPM_INTR_VEC - GTPM Interrupt Vector				---------------------------	-------	--	--	--		Source: BSpec		BSpec				Size (in bits	s):	16				Default Value: 0x00000000		0x0000000				DWord	Bit	Description				0	15:14	Reserved					13	Unslice Frequency Control Up Interrupt					12	Unslice Frequency Control Down Interrupt					11	NFADFL Frequency Up Interrupt					10	NFADFL Frequency Down Interrupt					9	Reserved					8	GTPM Engines Idle Interrupt					7	GTPM Uncore to Core Trap Interrupt					6	GTPM Render Frequency Downwards Timeout During RC6 Interrupt					5	GTPM Render P-State Up Threshold Interrupt					4	GTPM Render P-State Down Threshold Interrupt					3	Spare 3					2	GTPM Render Geyserville Up Evaluation Interval Interrupt					1	GTPM Render Geyserville Down Evaluation Interval Interrupt					0	Reserved			# Half Precision Dual Source SIMD8 Message Data Payload Register	MDPR_0	DSH_S		ual Source SIMD8 Message			-----------------	-------------	---	---------------------------------	--				Data Payload Reg	gister			Source:	urce: BSpec					Size (in bits):	256					Default Value:		0000000, 0x00000000, 0x00000000, 0x000 0000000, 0x00000000	000000, 0x00000000, 0x00000000,			DWord	Bit	De	escription			0	31:16	Src0 Data1												Format:	F16					Specifies the source 0 slot 1 data in thi	s payload register				15:0	Src0 Data0												Format:	F16					Specifies the source 0 slot 0 data in thi	s payload register			1	31:16	Src0 Data3												Format:	F16					Specifies the source 0 slot 3 data in thi	s payload register				15:0	Src0 Data2												Format:	F16					Specifies the source 0 slot 2 data in thi	s payload register			2	31:16	Src0 Data5												Format:	F16					Specifies the source 0 slot 5 data in thi	s payload register				15:0	Src0 Data4												Format:	F16					Specifies the source 0 slot 4 data in thi	s payload register			3	31:16	Src0 Data7			#### MDPR_DSH_SIMD8 - Half Precision Dual Source SIMD8 Message **Data Payload Register** Format: F16 Specifies the source 0 slot 7 data in this payload register 15:0 Src0 Data6 Format: F16 Specifies the source 0 slot 6 data in this payload register 4 31:16 Src1 Data1 Format: F16 Specifies the source 1 slot 1 data in this payload register 15:0 Src1 Data0 Format: F16 Specifies the source 1 slot 0 data in this payload register 5 31:16 Src1 Data3 Format: F16 Specifies the source 1 slot 3 data in this payload register 15:0 Src1 Data2 F16 Specifies the source 1 slot 2 data in this payload register 6 31:16 Src1 Data5 Format: F16 Specifies the source 1 slot 5 data in this payload register Src1 Data4 15:0 F16 Format: Specifies the source 1 slot 4 data in this payload register 7 31:16 Src1 Data7	MDPR_I	MDPR_DSH_SIMD8 - Half Precision Dual Source SIMD8 Message Data Payload Register					--------	---	--	-------	--				Format:	F16				Specifies the source 1 slot 7 data in this payload register						15:0	Src1 Data6						Format:	F16					Specifies the source 1 slot 6 data in this payload reg	ister		# **Half Precision OM Replicated SIMD16 Render Target Data Payload**	MDP_RT	_		cision OM Replicated SIMD16 Data Payload		-----------------	-----------------	-------------------	--		Source:	BSpec				Size (in bits):	512				Default Value:	0x00000000, 0x0		00, 0x00000000, 0x00000000, 0x00000000, 00, 0x00000000, 0x00000000, 0x00000000, 00, 0x00000000		DWord	Bit	Description			0.0-0.7	255:0	oMask					Format:	MDPR_OMASK				Slots [15:0] oMa	sk		1.0-1.7 255:0		RGBA					Format:	MDPR_H_RGBA				RGBA for all slot	s [15:0]	# **Half Precision OM S0A SIMD8 Render Target Data Payload**	MDP_RTV	VH_MA8	- Half Precision	OM S0A SIMD8 Render Target		--	---	---	--				Data Pa	yload		Source: Size (in bits): Default Value:	BSpec 1536 0x00000000, 0x00000000, 0x00000000, 0x00000000					0x0000000 0x0000000	00, 0x000000000, 0x00000000 00, 0x00000000, 0x00000000	00, 0x00000000, 0x00000000, 0x00000000, 0x00000000		DWord	Bit		Description		0.0-0.7	255:0	Source 0 Alpha					Format:	MDPR_H_SIMD8				Slots [7:0] Source 0 Alp	ha		1.0-1.7	255:0	oMask					Format:	MDPR_OMASK				Slots [7:0] oMask. Uppe	er half ignored.		2.0-2.7	255:0	Red						MDDD W GWDG				Format:	MDPR_H_SIMD8				Slots [7:0] Red			3.0-3.7	255:0	Green					F .	MDPR_H_SIMD8				Format: Slots [7:0] Green	MDFR_II_SIMDO				Siots [7.0] Green			4.0-4.7	255:0	Blue										Format:	MDPR_H_SIMD8				Slots [7:0] Blue			5.0-5.7	255:0	Alpha			MDP_RTWH_MA8 - Half Precision OM S0A SIMD8 Render Target					--	----------------------	--	--		Data Payload											Format: MDPR_H_SIMD8					Slots [7:0] Alpha								# **Half Precision OM S0A SIMD16 Render Target Data Payload**	MDP_RT	WH_MA16	5 - Half Precisi	on OM S0A SIMD16 Render			----------------------------	---	--	--	--				Target Data	Payload			Source: Size (in bits):	BSpec 1536	·				Default Value:	0x00000000, 0x 0x00000000, 0x 0x00000000, 0x 0x00000000, 0x 0x00000000, 0x 0x000000000, 0x	 <00000000, 0x00000000, <00000000, 0x00000000, <00000000, 0x00000000, <00000000, 0x00000000, <00000000, 0x00000000, <00000000, 0x00000000, <00000000, 0x000000000, <000000000, 0x000000000, <000000000, 0x000000000, 	0x00000000, 0x00000000, 0x00000000, 0x00000000			DWord	Bit		Description			0.0-0.7	255:0	Source 0 Alpha[15:0	MDPR_H_SIMD16					Slots [15:0] Source 0	Alpha			1.0-1.7	255:0	oMask						Format:	MDPR_OMASK					Slots [15:0] oMask				2.0-2.7	255:0	Red[15:0]						Format:	MDPR_H_SIMD16					Slots [15:0] Red	1,22,22,22,22			3.0-3.7	255:0	Green[15:0]						Farmati	MDPR_H_SIMD16					Format: Slots [15:0] Green	MDI K_II_SIMD IO			4.0-4.7	255:0	Blue[15:0]												Format:	MDPR_H_SIMD16					Slots [15:0] Blue				5.0-5.7	255:0	Alpha[15:0]				MDP_RTWH_MA16 - Half Precision OM S0A SIMD16 Render				---	-------------------	---------------		Target Data Payload					Format:	MDPR_H_SIMD16			Slots [15:0] Alph		# **Half Precision OM SIMD8 Dual Source Render Target Data Payload**	MDP_RT	WH_M	18DS - Half I	Precision OM SIMD8 Dual Source Render		--	--	--	---				Tar	get Data Payload		Source: Size (in bits): Default Value:	12: 0x(0x(0x(0x(0x(00000000, 0x000000 00000000, 0x000000 00000000, 0x000000 00000000, 0x000000 00000000, 0x000000	000, 0x00000000, 0x00000000, 0x00000000, 0x00000000		DWord	Bit		Description		0.0-0.7	255:0	oMask Format: MDPR_OMASK oMask for slots [7:0] and [15:8]. Operation selects upper or lower half.			1.0-1.7	255:0	Red Format: MDPR_DSH_SIMD8 Slots[7:0] or [15:8] of Src0 and Src1 Red			2.0-2.7	255:0	Green																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
Format: Slots[7:0] or [15:8	MDPR_DSH_SIMD8] of Src0 and Src1 Green		3.0-3.7	255:0	Blue Format: MDPR_DSH_SIMD8 Slots[7:0] or [15:8] of Src0 and Src1 Blue			4.0-4.7	255:0	Alpha Format: Slots[7:0] or [15:8	MDPR_DSH_SIMD8] of Src0 and Src1 Alpha	# **Half Precision OM SIMD8 Render Target Data Payload**	MDP_RT\	NH_M8 -	Half Precision	on OM SIMD8 Render Target Data		--	---	--	--------------------------------				Pa	ayload		Source: Size (in bits): Default Value:	BSpec 1280 0x00000000, 0x00000000, 0x00000000, 0x00000000				DWord	Bit		Description		0.0-0.7	255:0	oMask Format: Slots [7:0] oMask.	MDPR_OMASK Upper half ignored.		1.0-1.7	255:0	Red Format: MDPR_H_SIMD8 Slots [7:0] Red			2.0-2.7	255:0	Green Format: Slots [7:0] Green	MDPR_H_SIMD8		3.0-3.7	255:0	Format: MDPR_H_SIMD8 Slots [7:0] Blue			4.0-4.7	255:0	Alpha Format: MDPR_H_SIMD8 Slots [7:0] Alpha		# **Half Precision OM SIMD16 Render Target Data Payload**	MDP_RTW	H_M16 - Ha	alf Precision	OM SIMD16 Render Target Data			--	---	---	------------------------------	--				Paylo	oad			Source: Size (in bits): Default Value:	BSpec 1280 0x00000000, 0x00000000, 0x00000000, 0x00000000					DWord	Bit		Description			0.0-0.7	255:0	oMask Format: Slots [15:0] oMas	MDPR_OMASK			1.0-1.7	255:0	Red[15:0] Format: Slots [15:0] Red	MDPR_H_SIMD16			2.0-2.7	255:0	Green[15:0]						Format: Slots [15:0] Green	MDPR_H_SIMD16			3.0-3.7	255:0	Blue[15:0] Format: Slots [15:0] Blue	MDPR_H_SIMD16			4.0-4.7	255:0	Alpha[15:0] Format: Slots [15:0] Alpha	MDPR_H_SIMD16		# **Half Precision OS OM S0A SIMD8 Render Target Data Payload**	MDP_RTWH_SMA8 - Half Precision OS OM S0A SIMD8 Render						---	---	---	--	--				Target Data Payload				Source: Size (in bits): Default Value:	BSpec 1792 0x00000000, 0x00000000, 0x00000000, 0x00000000					DWord	Bit	Description				0.0-0.7	255:0	Format: MDPR_H_SIMD8 Slots [7:0] Source 0 Alpha				1.0-1.7	255:0	oMask Format: MDPR_OMASK Slots [7:0] oMask. Upper half ignored.				2.0-2.7	255:0	Red Format: MDPR_H_SIMD8 Slots [7:0] Red				3.0-3.7	255:0	Green Format: MDPR_H_SIMD8 Slots [7:0] Green				4.0-4.7	255:0	Blue Format: MDPR_H_SIMD8 Slots [7:0] Blue				MDP_RTV	MDP_RTWH_SMA8 - Half Precision OS OM S0A SIMD8 Render						---------	---	----------------------	--------------	--	--				Target D	ata Payload				5.0-5.7	255:0	Alpha														Format: MDPR_H_SIMD8							Slots [7:0] Alpha					6.0-6.7	255:0	Stencil														Format:	MDPR_STENCIL						Slots [7:0] Stencil				# **Half Precision OS OM SIMD8 Dual Source Render Target Data Payload**	MDP_RTWH_SM8DS - Half Precision OS OM SIMD8 Dual Source								---	---------------------------------	---	-----	---------------------------	--	--				Render Tar	get	Data Payload				Source: Size (in bits):	BS	pec 36						Default Value:	0x0 0x0 0x0 0x0 0x0	0000000, 0x00000000, 0x00000000, 0x00000000						DWord	Bit			Description				0.0-0.7	255:0	oMask Format: MDPR_OMASK oMask for slots [7:0] and [15:8]. Operation selects upper or lower half.						1.0-1.7	255:0	Red Format: MDPR_DSH_SIMD8 Slots[7:0] or [15:8] of Src0 and Src1 Red						2.0-2.7	255:0	Green Format: Slots[7:0] or [15:8] of Src		PR_DSH_SIMD8 Src1 Green				3.0-3.7	255:0	Blue Format: Slots[7:0] or [15:8] of Src		PR_DSH_SIMD8 Src1 Blue				4.0-4.7	255:0	Alpha Format: MDPR_DSH_SIMD8 Slots[7:0] or [15:8] of Src0 and Src1 Alpha						5.0-5.7	255:0	Stencil						MDP_R	MDP_RTWH_SM8DS - Half Precision OS OM SIMD8 Dual Source						-------	---	----------------------------------	--------------	--	--			Render Target Data Payload															Format:	MDPR_STENCIL						Slots [7:0] or [15:8] of Stencil				# **Half Precision OS OM SIMD8 Render Target Data Payload**	MDP_RT\	WH_SM8	- Half Precision	on OS OM SIMD8 Render Targ	jet		--	---	--	---	-----				Data P	ayload			Source: Size (in bits): Default Value:	BSpec 1536 0x00000000, 0x00000000, 0x00000000, 0x00000000						0x0000000	0, 0x00000000, 0x00000	000, 0x00000000, 0x00000000, 0x00000000			DWord	Bit		Description			0.0-0.7	255:0	oMask Format: Slots [7:0] oMask. Up	MDPR_OMASK per half ignored.			1.0-1.7	255:0	Red Format: Slots [7:0] Red	MDPR_H_SIMD8			2.0-2.7	255:0	Green Format: Slots [7:0] Green	MDPR_H_SIMD8			3.0-3.7	255:0	Blue Format: Slots [7:0] Blue	MDPR_H_SIMD8			4.0-4.7	255:0	Alpha Format: MDPR_H_SIMD8 Slots [7:0] Alpha				5.0-5.7	255:0	Stencil Format: Slots [7:0] Stencil	MDPR_STENCIL		# **Half Precision OS S0A SIMD8 Render Target Data Payload**	MDP_RTWI	H_SA8 - H	alf Precision	OS SOA SIMD8 Render Target		----------	---	--	---				Data Pa	yload			BSpec 1536					0x00000000, 0x0 0x00000000, 0x0 0x00000000, 0x0 0x00000000, 0x0 0x00000000, 0x0	00000000, 0x000000 00000000, 0x000000 00000000, 0x000000 00000000, 0x000000 00000000, 0x000000	00, 0x0000000, 0x00000000, 0x00000000, 0x00000000		DWord	Bit		Description		0.0-0.7	255:0	Format: Slots [7:0] Source	MDPR_H_SIMD8 e 0 Alpha		1.0-1.7	255:0	Red					Format: Slots [7:0] Red	MDPR_H_SIMD8		2.0-2.7	255:0	Green					Format: Slots [7:0] Green	MDPR_H_SIMD8		3.0-3.7	255:0	Format: Slots [7:0] Blue	MDPR_H_SIMD8		4.0-4.7	255:0	Alpha					Format: Slots [7:0] Alpha	MDPR_H_SIMD8		5.0-5.7	255:0	Stencil			MDP_RTWH_SA8 - Half Precision OS S0A SIMD8 Render Target						--	--	---------------------	--------------	--		Data Payload														Format:	MDPR_STENCIL					Slots [7:0] Stencil									# **Half Precision OS SIMD8 Dual Source Render Target Data Payload**	MDP_RTV	VH_S8D	S - Half Pi	recision OS SIMD8 Dual Source Render			--	--	--	--	--				Targ	et Data Payload			Source: Size (in bits): Default Value:	0x000000 0x000000 0x000000 0x000000	0000, 0x00000000, 0x00000000, 0x00000000				DWord	Bit		Description			0.0-0.7	255:0	Format: Slots[7:0] or [MDPR_DSH_SIMD8 15:8] of Src0 and Src1 Red			1.0-1.7	255:0	Green Format: Slots[7:0] or [MDPR_DSH_SIMD8 [15:8] of Src0 and Src1 Green			2.0-2.7	255:0	Format: Slots[7:0] or [MDPR_DSH_SIMD8 [15:8] of Src0 and Src1 Blue			3.0-3.7	255:0	Alpha Format: Slots[7:0] or [MDPR_DSH_SIMD8 15:8] of Src0 and Src1 Alpha			4.0-4.7	255:0	Format: Slots [7:0] or	MDPR_STENCIL [15:8] of Stencil		# **Half Precision OS SIMD8 Render Target Data Payload**	MDP_RT	WH_S8 - Ha	If Precision Payl	OS SIMD8 Render Target Data oad		--	---	------------------------------------	---------------------------------		Source: Size (in bits): Default Value:	BSpec 1280 0x00000000, 0x00000000, 0x00000000, 0x00000000				DWord	Bit		Description		0.0-0.7	255:0	Red Format:	MDPR_H_SIMD8		1.0-1.7 255:0		Slots [7:0] Red Green	MDPR_H_SIMD8				Format: Slots [7:0] Greer			2.0-2.7	255:0	Format: Slots [7:0] Blue	MDPR_H_SIMD8		3.0-3.7	255:0	Alpha Format: Slots [7:0] Alpha	MDPR_H_SIMD8		4.0-4.7	255:0	Stencil Format: Slots [7:0] Stence	MDPR_STENCIL il	#### **Half Precision OS SZ OM S0A SIMD8 Render Target Data Payload**	MDP_RTW	H_SZMA8	8 - Half Precision OS SZ OM S0A SIMD8 Render						-----------------	--	---	--	--	--	--				Target Data Payload						Source:	BSpec							Size (in bits):	2048							Default Value:	0x000000000000000000000000000000000000	0, 0x00000000, 0x00000000, 0x00000000, 0x00000000						DWord	Bit	Description						0.0-0.7	255:0	Source 0 Alpha																Format: MDPR_H_SIMD8								Slots [7:0] Source 0 Alpha						1.0-1.7	255:0	oMask								Format: MDPR_OMASK								Slots [7:0] oMask. Upper half ignored.								Siots [7.6] Gividski Opper																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																										
Hall Ighored.						2.0-2.7	255:0	Red																Format: MDPR_H_SIMD8								Slots [7:0] Red						3.0-3.7	255:0	Green																Format: MDPR_H_SIMD8								Slots [7:0] Green						4.0-4.7	255:0	Blue																Format: MDPR_H_SIMD8								Slots [7:0] Blue						5.0-5.7	255:0	Alpha						MDP_RTWI	MDP_RTWH_SZMA8 - Half Precision OS SZ OM S0A SIMD8 Render						----------	---	--------------------------	--------------	--	--				Target D	Data Payload													Format:	MDPR_H_SIMD8						Slots [7:0] Alpha					6.0-6.7	255:0	Source Depth														Format:	MDP_DW_SIMD8						Slots [7:0] Source Depth					7.0-7.7	255:0	Stencil														Format:	MDPR_STENCIL						Slots [7:0] Stencil				## **Half Precision OS SZ OM SIMD8 Dual Source Render Target Data Payload**	MDP_	RTWH	I_SZM8DS	- Half Pr	recision OS SZ OM SIMD8 Dual			-----------------	--	---	-----------------	--	--				Source Re	nder Ta	rget Data Payload			Source:	BS	SSpec					Size (in bits):	179	92					Default Value:	0x0	00000000, 0x00000	0000, 0x00000	0000, 0x00000000, 0x00000000, 0x00000000							0000, 0x00000000, 0x00000000, 0x00000000							0000, 0x00000000, 0x00000000, 0x00000000					•	•	0000, 0x00000000, 0x00000000, 0x00000000							0000, 0x00000000, 0x00000000, 0x00000000							0000, 0x00000000, 0x00000000, 0x00000000				0x0	00000000, 0x00000	0000, 0x00000	0000, 0x00000000, 0x00000000, 0x00000000					00000000, 0x00000 00000000, 0x00000		0000, 0x00000000, 0x00000000, 0x00000000			DWord	Bit			Description			0.0-0.7	255:0	oMask														Format:		MDPR_OMASK					oMask for slots	[7:0] and [15:8	8]. Operation selects upper or lower half.			1.0-1.7	255:0	Red														Format:	MD	DPR_DSH_SIMD8					Slots[7:0] or [15:8] of Src0 and Src1 Red					2.0-2.7	255:0	Green														Format:	MD	DPR_DSH_SIMD8					Slots[7:0] or [15:8] of Src0 and Src1 Green					3.0-3.7	255:0	Blue														Format:	MD	DPR_DSH_SIMD8				Slots[7:0] or [15:8] of Src0 and Src1 Blue			d Src1 Blue			4.0-4.7	255:0	Alpha							Format:	MD	DPR_DSH_SIMD8					Slots[7:0] or [15									•			MDP	MDP_RTWH_SZM8DS - Half Precision OS SZ OM SIMD8 Dual						---------	--	---------------------------------------	--------------------	--	--				Source Render T	arget Data Payload				5.0-5.7	255:0	Source Depth	,													Format:	MDP_DW_SIMD8						Slots [7:0] or [15:8] of Source Depth					6.0-6.7	255:0	Stencil							Format: MDPR_STENCIL							Slots [7:0] or [15:8] of Stencil				#### **Half Precision OS SZ OM SIMD8 Render Target Data Payload**	MDP_RT	WH_SZN	18 - Half Precisio	n OS SZ OM SIMD8 Render			--	--	--	---	--				Target Data P	Payload			Source: Size (in bits): Default Value:	0x00000000 0x00000000 0x00000000 0x000000	0, 0x00000000, 0x00000000, 0 0, 0x00000000, 0x00000000, 0	0x0000000, 0x00000000, 0x00000000, 0x00000000			DWord	Bit		Description			0.0-0.7	255:0	oMask Format: Slots [7:0] oMask. Upper ha	MDPR_OMASK alf ignored.			1.0-1.7	255:0	Red Format: Slots [7:0] Red	MDPR_H_SIMD8			2.0-2.7	255:0	Green Format: MDPR_H_SIMD8 Slots [7:0] Green				3.0-3.7	255:0	Format: Slots [7:0] Blue	MDPR_H_SIMD8			4.0-4.7	255:0	Slots [7:0] Alpha	MDPR_H_SIMD8			5.0-5.7	255:0	Source Depth				MDP_RT	WH_SZN	18 - Half Precisi Target Data	on OS SZ OM SIMD8 Render Payload		---------	--------	-------------------------------------	-------------------------------------				Format: Slots [7:0] Source Depth	MDP_DW_SIMD8		6.0-6.7	255:0	Stencil Format: Slots [7:0] Stencil	MDPR_STENCIL	### **Half Precision OS SZ S0A SIMD8 Render Target Data Payload**	MDP_R1	TWH_SZA8 -	- Half Precis	sion OS SZ S0A SIMD8 Render			-----------------	--	--	---	--				Target Dat	a Payload			Source:	BSpec					Size (in bits):	1792					Default Value:	0x00000000, 0x0 0x00000000, 0x0 0x00000000, 0x0 0x00000000, 0x0 0x00000000, 0x0 0x00000000, 0x0	00000000, 0x000000 00000000, 0x000000 00000000, 0x000000 00000000, 0x000000 00000000, 0x000000 00000000, 0x000000	000, 0x00000000, 0x00000000, 0x00000000, 0x00000000			DWord	Bit		Description			0.0-0.7	255:0	Source 0 Alpha Format:	MDPR_H_SIMD8					Slots [7:0] Source 0 Alpha				1.0-1.7	255:0	Red						Format:	MDPR_H_SIMD8					Slots [7:0] Red				2.0-2.7	255:0	Format: Slots [7:0] Green	MDPR_H_SIMD8			3.0-3.7	3.0-3.7 255:0		MDPR_H_SIMD8					Format: Slots [7:0] Blue	MDF K_II_SIMDO			4.0-4.7	255:0	Alpha						Format: Slots [7:0] Alpha	MDPR_H_SIMD8			5.0-5.7	255:0	Source Depth				-7.0		Format: Slots [7:0] Source	MDP_DW_SIMD8			6.0-6.7	255:0	Stencil				0.0 0.7	255.0	Stelltil				MDP_RTWH_SZA8 - Half Precision OS SZ S0A SIMD8 Render						---	---	---------------------	--------------	--			'	Target Data Pag	yload											Format:	MDPR_STENCIL					Slots [7:0] Stencil			# **Half Precision OS SZ SIMD8 Dual Source Render Target Data Payload**	MDP_RT	WH_SZ8	BDS - Half Precision OS SZ SIMD8 Dual Source					--	--	--	--	--	--				Render Target Data Payload					Source: Size (in bits): Default Value:	0x000000 0x000000 0x000000 0x000000 0x000000	00, 0x00000000, 0x00000000, 0x00000000, 0x00000000					DWord	Bit	Description					0.0-0.7	255:0	Red Format: MDPR_DSH_SIMD8 Slots[7:0] or [15:8] of Src0 and Src1 Red					1.0-1.7	255:0	Green Format: MDPR_DSH_SIMD8 Slots[7:0] or [15:8] of Src0 and Src1 Green					2.0-2.7	255:0	Format: MDPR_DSH_SIMD8 Slots[7:0] or [15:8] of Src0 and Src1 Blue					3.0-3.7	255:0	Alpha Format: MDPR_DSH_SIMD8 Slots[7:0] or [15:8] of Src0 and Src1 Alpha					4.0-4.7	255:0	Source Depth Format: MDP_DW_SIMD8 Slots [7:0] or [15:8] of Source Depth					5.0-5.7	255:0	Stencil Format: MDPR_STENCIL Slots [7:0] or [15:8] of Stencil				568 #### **Half Precision OS SZ SIMD8 Render Target Data Payload**	MDP_RTWH	SZ8 - Hal	f Precision O	S SZ SIMD8 Render Target Data		--	---	---	--				Paylo	_		Source: Size (in bits): Default Value:	0x00000000, 0x0 0x00000000, 0x0 0x00000000, 0x0 0x00000000, 0x0 0x00000000, 0x0	00000000, 0x0000000 00000000, 0x0000000 00000000, 0x0000000 00000000, 0x0000000 00000000, 0x0000000	00, 0x00000000, 0x00000000, 0x00000000, 0x00000000		DWord	Bit		Description		0.0-0.7	255:0	Format: Slots [7:0] Red	MDPR_H_SIMD8		1.0-1.7	255:0	Format: Slots [7:0] Green	MDPR_H_SIMD8		2.0-2.7	255:0	Format: Slots [7:0] Blue	MDPR_H_SIMD8		3.0-3.7	255:0	Format: Slots [7:0] Alpha	MDPR_H_SIMD8		4.0-4.7	255:0	Format: Slots [7:0] Source	MDP_DW_SIMD8 Depth		5.0-5.7	255:0	Stencil			MDP_RTWH_S	SZ8 - Half	Precision OS S	Z SIMD8 Render Target Data				------------	------------	--------------------------------	----------------------------	--	--		Payload									Format: Slots [7:0] Stencil	MDPR_STENCIL			# **Half Precision Replicated Pixel Render Target Data Payload Register**			Data Paylo	oad Register					----------------------------	--------------	---	-------------------------	---------------------	--	--		Source: Size (in bits):	BSpec 256							Default Value:	0x0000	00000, 0x00000000, 0x0000 00000, 0x00000000	0000, 0x00000000, 0x000	000000, 0x00000000,				DWord	Bit		Description					0	31:16	Green								Format:		U16						Specifies the value of all	slots' green channel.						15:0	Red								Format:		U16						Specifies the value of all	slots' red channel.					1	31:16	Alpha								Format:		U16						Specifies the value of all	slots' alpha channel.																																																																																																																																																																																																																																																																																																																																																																																																																																				
		15:0	Blue								Format:		U16						Specifies the value of all slots' blue channel.						27	191:0	Reserved								Format:	lgno	re						Ignored	3				#### **Half Precision Replicated SIMD16 Render Target Data Payload**	MDP_RTWH_16REP - Half Precision Replicated SIMD16 Render							--	---	---------------------------	-------------	--	--			Target Data Payload						Source: BSpec							Size (in bits):	256							Default Value: 0x00000000, 0x000000000, 0x000000000, 0x00000000						DWord	Bit		Description				0.0-0.7	255:0	RGBA														Format:	MDPR_H_RGBA						RGBA for all slots [15:0]				#### **Half Precision S0A SIMD8 Render Target Data Payload**	MDP_RTV	VH_A8 - Hal	f Precision S	50A SIMD8 Render Target Data oad			-----------------------------------	---	-------------------------------	---	--		Source:	BSpec					Size (in bits): Default Value:	1280 0x0000000, 0x0000000, 0x00000000, 0x00000000					DWord	Bit		Description			0.0-0.7	255:0	Source 0 Alpha						Format: Slots [7:0] Source	MDPR_H_SIMD8			1.0-1.7	1.0-1.7 255:0	Red Format:	MDPR_H_SIMD8					Slots [7:0] Red				2.0-2.7	255:0	Green							Format: MDPR_H_SIMD8 Slots [7:0] Green			3.0-3.7	3.0-3.7 255:0							Format: Slots [7:0] Blue	MDPR_H_SIMD8			4.0-4.7	255:0	Alpha						Format:	MDPR_H_SIMD8					Slots [7:0] Alpha			#### **Half Precision S0A SIMD16 Render Target Data Payload**	WIDP_KIW	п_А 10 - На		50A SIMD16 Render Target Data			----------------------------	--	--	--	--				Paylo	oad			Source: Size (in bits):	BSpec 1280					Default Value:	0x00000000, 02 0x00000000, 02 0x00000000, 02 0x00000000, 02 0x00000000, 02	x00000000, 0x0000000 x00000000, 0x0000000 x00000000, 0x0000000 x00000000, 0x0000000	00, 0x00000000, 0x00000000, 0x00000000, 0x00000000			DWord	Bit		Description			0.0-0.7	255:0	Source 0 Alpha[15	5:0]					Format:	MDPR_H_SIMD16					Slots [15:0] Source 0 Alpha				1.0-1.7	255:0	Red[15:0] Format: Slots [15:0] Red	MDPR_H_SIMD16			2.0-2.7	255:0	Green[15:0]							Format: MDPR_H_SIMD16 Slots [15:0] Green			3.0-3.7	255:0	Blue[15:0]						Format: Slots [15:0] Blue	MDPR_H_SIMD16			4.0-4.7	255:0	Alpha[15:0]						Format: Slots [15:0] Alpha	MDPR_H_SIMD16		#### **Half Precision SIMD8 Dual Source Render Target Data Payload**	MDP_R	TWH_8I		recision SIMD8 Dual Source Render et Data Payload				-----------------	--	--	---	--	--		Source:	BSpec						Size (in bits):	1024						Default Value:	0x00000 0x00000 0x00000 0x00000	0x00000000, 0x00000000, 0x00000000, 0x00000000					DWord	Bit		Description				0.0-0.7	255:0	Format: Slots[7:0] or [1	MDPR_DSH_SIMD8 5:8] of Src0 and Src1 Red				1.0-1.7	255:0	Green							Format:	MDPR_DSH_SIMD8 5:8] of Src0 and Src1 Green						310(5[7.0] 01 [1	5.0] OF SICO and SICT Green				2.0-2.7	255:0	Blue							Format:	MDPR_DSH_SIMD8						Slots[7:0] or [15:8] of Src0 and Src1 Blue					3.0-3.7	255:0	Alpha	1						Format:	MDPR_DSH_SIMD8						L	5:8] of Src0 and Src1 Alpha			#### **Half Precision SIMD8 Message Data Payload Register**	MDPR_I	H_SIM	D8 - Half Precision SIMD8	Message Data Payload				--	--	---	----------------------	--	--				Register					Source: Size (in bits): Default Value:	BSpec 256 0x00000000, 0x00000000, 0x00000000, 0x00000000						DWord	Bit	Descrip	ption				0	31:16	Data1 Format: Specifies the slot 1 data in this payload reg	F16 gister					15:0	Data0 Format: Specifies the slot 0 data in this payload reg	F16 gister				1	31:16	Data3 Format: Specifies the slot 3 data in this payload reg	F16 gister					15:0	Data2 Format: Specifies the slot 2 data in this payload reg	F16 gister				2	31:16	Pormat: Specifies the slot 5 data in this payload reg	F16 gister					15:0	Data4 Format: Specifies the slot 4 data in this payload reg	F16 gister				3	31:16	Data7					MDPR_	MDPR_H_SIMD8 - Half Precision SIMD8 Message Data Payload							-------	--	--	--------	--	--	--			_	Register																Format:	F16							Specifies the slot 7 data in this payload register							15:0	Data6								Format:	F16							Specifies the slot 6 data in this payload register						47	127:0	Reserved																Format:	Ignore							Ignored					#### **Half Precision SIMD8 Render Target Data Payload**	MDP_RTWH_	8 - Half Pr	ecision SIM	D8 Render Target Data Payload			-----------------	-------------------	---------------------	--	--		Source:	BSpec					Size (in bits):	1024					Default Value:	0x00000000, 0x00	0000000, 0x00000000), 0x00000000, 0x00000000, 0x00000000,), 0x00000000, 0x00000000, 0x00000000,						0, 0x00000000, 0x00000000, 0x00000000,				•	•	0, 0x00000000, 0x00000000, 0x000000000, 0, 0x00000000, 0x00000000, 0x000000000,				0x000000000, 0x00		, 000000000, 000000000, 000000000,			DWord	Bit		Description			0.0-0.7	255:0	Red												Format:	MDPR_H_SIMD8					Slots [7:0] Red				1.0-1.7	255:0	Green						Format:	MDPR_H_SIMD8					Slots [7:0] Green				2.0-2.7	255:0	Blue						Format:	MDPR_H_SIMD8					Slots [7:0] Blue				3.0-3.7	255:0	Alpha												Format:	MDPR_H_SIMD8					Slots [7:0] Alpha			#### **Half Precision SIMD16 Message Data Payload Register**	MDPR_H	I_SIMD	16 - Half Precision S	IMD16 Message Data Payload						-----------------	--------	--	---	--	--	--	--				Registe	er						Source:	BSpec								Size (in bits):	256	256							Default Value:		000000, 0x00000000, 0x00000000, 000000, 0x00000000	0x00000000, 0x00000000, 0x00000000,						DWord	Bit		Description						0	31:16	Data1									Format:	F16								Specifies the slot 1 data in this p	payload register							15:0	Data0									Format:	F16								Specifies the slot 0 data in this payload register							1 31:16		Data3	, , , , , , , , , , , , , , , , , , , ,								Format:	F16								Specifies the slot 3 data in this payload register							15:0		Data2										F16								Format: F16 Specifies the slot 2 data in this payload register							2	31:16	Data5																		Format:	F16								Specifies the slot 5 data in this payload register								15:0	Data4									Format:	F16								Specifies the slot 4 data in this p							3	31:16	Data7						#### MDPR_H_SIMD16 - Half Precision SIMD16 Message Data Payload Register Format: F16 Specifies the slot 7 data in this payload register 15:0 Data6 Format: F16 Specifies the slot 6 data in this payload register 4 31:16 Data9 Format: F16 Specifies the slot 9 data in this payload register 15:0 Data8 F16 Format: Specifies the slot 8 data in this payload register 5 31:16 Data11 Format: F16 Specifies the slot 11 data in this payload register 15:0 Data10 Format: F16 Specifies the slot 10 data in this payload register 6 31:16 Data13 F16 Format: Specifies the slot 13 data in this payload register 15:0 Data12 F16 Format: Specifies the slot 12 data in this payload register 31:16 Data15	MDPR_H	I_SIMD	16 - Half Precision S Registe	IMD16 Message Data Payload er			--------	--------------------	--	----------------------------------	--				Format: Specifies the slot 15 data in this	F16 payload register				15:0 Data14							Format: Specifies the slot 14 data in this	F16 payload register		#### **Half Precision SIMD16 Render Target Data Payload**	MDP_RT	WH_16 - H	lalf Precision	SIMD16 Render Target Data				-----------------	--	-------------------------------	---------------------------	--	--				Paylo	oad				Source:	BSpec						Size (in bits):	1024						Default Value:	0x00000000, 0x00000000, 0x00000000, 0x00000000						DWord	Bit		Description				0.0-0.7	255:0	Format: Slots [15:0] Red	MDPR_H_SIMD16				1.0-1.7	255:0	Green[15:0]							Format: Slots [15:0] Green	MDPR_H_SIMD16																																																																																																																																																																																																																																																																																																																																																														
2.0-2.7	255:0	Blue[15:0]							Format: Slots [15:0] Blue	MDPR_H_SIMD16				3.0-3.7	255:0	Alpha[15:0]							Format: Slots [15:0] Alpha	MDPR_H_SIMD16			#### **Half Precision SZ OM S0A SIMD8 Render Target Data Payload**	MDP_RT	WH_ZMA	A8 - Half Pr	ecisio	n SZ OM SOA SIMD8 Render			--	--	--	---------------	--------------------------	--				Target	Data P	Payload			Source: Size (in bits): Default Value:	0x0000000 0x0000000 0x0000000 0x0000000 0x000000	10, 0x00000000, 0x00000000, 0x00000000, 0x00000000					DWord	Bit			Description			0.0-0.7	255:0	Source 0 Alpha Format:]	MDPR_H_SIMD8			1.0-1.7	255:0	Slots [7:0] Source 0 Alpha oMask							Format: Slots [7:0] oMas	sk. Upper h	MDPR_OMASK alf ignored.			2.0-2.7	255:0	Red Format: MDPR_H_SIMD8 Slots [7:0] Red					3.0-3.7	255:0	Green Format: Slots [7:0] Green		MDPR_H_SIMD8			4.0-4.7	255:0	Blue Format: Slots [7:0] Blue]	MDPR_H_SIMD8			5.0-5.7	255:0	Alpha					MDP_RT\	MDP_RTWH_ZMA8 - Half Precision SZ OM S0A SIMD8 Render Target Data Payload						---------	---	---------------------------------	-------------------	--	--			1	Target Da	ata Fayload						Format: Slots [7:0] Alpha	MDPR_H_SIMD8				6.0-6.7	255:0	Source Depth							Format: Slots [7:0] Source D	MDP_DW_SIMD8 epth			#### **Half Precision SZ OM S0A SIMD16 Render Target Data Payload**	MDP_RTWF	I_ZMA16	- Half Precisio	n SZ OM SOA SIMD16 Rende		-----------------	--	-----------------------	--				Target Data I	Payload		Source:	BSpec				Size (in bits):	2048				Default Value:	0x00000000, 0x00000000, 0x00000000, 0x00000000					0x00000000, 0x00000000, 0x00000000, 0x00000000							0x00000000, 0x00000000, 0x00000000,			•		0x00000000, 0x00000000, 0x00000000,					0x00000000, 0x00000000, 0x00000000, 0x00000000					0x00000000, 0x00000000, 0x00000000,					0x00000000, 0x00000000, 0x00000000,					0x00000000, 0x00000000, 0x000000000,			0x00000000, 0x0	00000000, 0x00000000,	0x0000000, 0x00000000, 0x00000000,			0x00000000, 0x0	00000000, 0x00000000,	0x0000000		DWord	Bit		Description		0.0-0.7	255:0	Source 0 Alpha										Format:	MDPR_H_SIMD16				Slots [15:0] Source 0	Alpha		1.0-1.7	255:0	oMask										Format:	MDPR_OMASK				Slots [15:0] oMask			2.0-2.7	255:0	Red										Format:	MDPR_H_SIMD16				Slots [15:0] Red			3.0-3.7	255:0	Green										Format:	MDPR_H_SIMD16				Slots [15:0] Green			4.0-4.7	255:0	Blue										Format:	MDPR_H_SIMD16				Slots [15:0] Blue			5.0-5.7	255:0	Alpha			MDP_RTWH_ZMA16 - Half Precision SZ OM S0A SIMD16 Render						---	-------	---	----------------------	--				Target Da	ta Payload					Format: MDPR_H_SIMD16 Slots [15:0] Alpha				6.0-6.7	255:0	Source Depth[7:0]						Format: Slots [7:0] Source	MDP_DW_SIMD8 e Depth			7.0-7.7	255:0	Source Depth[15:8]						Format:	MDP_DW_SIMD8					Slots [15:8] Sour	ce Depth		### **Half Precision SZ OM SIMD8 Dual Source Render Target Data Payload**	MDP_R	TWH_	ZM8DS - H	alf Prec	cision SZ OM SIMD8 Dual Source			-----------------	-------	---------------------	----------------	--	--				Rende	r Target	t Data Payload			Source:	BSp	BSpec					Size (in bits):	153	36					Default Value:	0x0	0000000, 0x00000	000, 0x00000	0000, 0x00000000, 0x00000000, 0x00000000							0000, 0x00000000, 0x00000000, 0x00000000					·		0000, 0x00000000, 0x00000000, 0x00000000					•	•	0000, 0x00000000, 0x00000000, 0x00000000					•	•	0000, 0x00000000, 0x00000000, 0x00000000							0000, 0x00000000, 0x00000000, 0x00000000							0000, 0x00000000, 0x00000000, 0x00000000			DWord	Bit			Description			0.0-0.7	255:0	oMask														Format:		MDPR_OMASK					oMask for slots [7:0] and [15:	8]. Operation selects upper or lower half.			1.0-1.7	255:0	Red														Format:	М	1DPR_DSHSIMD8					Slots[7:0] or [15:8	B] of Src0 and	d Src1 Red			2.0-2.7	255:0	Green														Format:	М	1DPR_DSHSIMD8					Slots[7:0] or [15:8	B] of Src0 and	d Src1 Green			3.0-3.7	255:0	Blue							Format:	М	IDPR_DSHSIMD8					Slots[7:0] or [15:8	B] of Src0 and	d Src1 Blue			4.0-4.7	255:0	Alpha							Format:	M	IDPR_DSHSIMD8					Slots[7:0] or [15:8	8] of Src0 and	d Src1 Alpha			5.0-5.7	255:0	Source Depth							Format:	I	MDP_DW_SIMD8					Slots [7:0] or [15:	:8] of Source	Depth		#### **Half Precision SZ OM SIMD8 Render Target Data Payload**	MDP_RT	WH_ZM8	- Half Preci	sion SZ OM SIMD8 Render Target		--	--	--	---				Data	Payload		Source: Size (in bits): Default Value:	0x0000000 0x0000000 0x0000000 0x0000000 0x000000	00, 0x00000000, 0x00 00, 0x000000000, 0x00 00, 0x000000000, 0x00 00, 0x00000000, 0x00 00, 0x00000000, 0x00	0000000, 0x00000000, 0x00000000, 0x00000000		DWord	Bit		Description		0.0-0.7	255:0	oMask Format: Slots [7:0] oMask	MDPR_OMASK Upper half ignored.		1.0-1.7	255:0	Red Format: Slots [7:0] Red	MDPR_H_SIMD8		2.0-2.7	255:0	Green Format: Slots [7:0] Green	MDPR_H_SIMD8		3.0-3.7	255:0	Format: Slots [7:0] Blue	MDPR_H_SIMD8		4.0-4.7	255:0	Alpha Format: Slots [7:0] Alpha	MDPR_H_SIMD8		5.0-5.7	255:0	Source Depth			MDP_RTWH_ZM8 - Half Precision SZ OM SIMD8 Render Target					---	--	--------------------------	--------------		Data Payload												Format:	MDP_DW_SIMD8				Slots [7:0] Source Depth							#### **Half Precision SZ OM SIMD16 Render Target Data Payload**	MDP_RTW	/H_ZM16 - I	Half Precision	n SZ OM SIMD16 Render Target			-----------------	--	--------------------	------------------------------	--				Data Pa	ayload			Source:	BSpec					Size (in bits):	1792	1792				Default Value:	1792 0x00000000, 0x00000000, 0x00000000, 0x00000000						0x00000000, 0x	(00000000				DWord	Bit		Description			0.0-0.7	255:0	oMask						Format:	MDPR_OMASK					Slots [15:0] oMask	k			1.0-1.7	255:0	Red[15:0]						Format:	MDPR_H_SIMD16					Slots [15:0] Red				2.0-2.7	255:0	Green[15:0]						Format:	MDPR_H_SIMD16					Slots [15:0] Green	 			3.0-3.7	255:0	Blue[15:0]						Format:	MDPR_H_SIMD16					Slots [15:0] Blue	1.21.0			4.0-4.7	255:0	Alpha[15:0]						Format:	MDPR_H_SIMD16					Slots [15:0] Alpha				5.0-5.7	255:0	Source Depth[7:0	0]					Format:	MDP_DW_SIMD8					Slots [7:0] Source	Depth			6.0-6.7	255:0	Source Depth[15:	:8]			MDP_RTWH_ZM16 - Half Precision SZ OM SIMD16 Render Target					---	--	-------------------------	--------------		Data Payload												Format:	MDP_DW_SIMD8				Slots [15:8] Source Dep	th	#### **Half Precision SZ S0A SIMD8 Render Target Data Payload**	MDP_RTW	/H_ZA8 - F	Half Precision	SZ S0A SIMD8 Render Target			----------------------------	--	---------------------------------	----------------------------	--				Data Pay	load			Source: Size (in bits):	BSpec 1536					Default Value:	1536 0x00000000, 0x00000000, 0x00000000, 0x00000000					DWord	Bit		Description			0.0-0.7	255:0	Format: Slots [7:0] Source 0	MDPR_H_SIMD8 Alpha			1.0-1.7	255:0	Red Format: Slots [7:0] Red	MDPR_H_SIMD8			2.0-2.7	255:0	Green Format: Slots [7:0] Green	MDPR_H_SIMD8			3.0-3.7	255:0	Format: Slots [7:0] Blue	MDPR_H_SIMD8			4.0-4.7	255:0	Alpha Format: Slots [7:0] Alpha	MDPR_H_SIMD8			5.0-5.7	255:0	Source Depth				MDP_RTWH_ZA8 - Half Precision SZ S0A SIMD8 Render Target					--	--	------------------------	--------------		Data Payload												Format:	MDP_DW_SIMD8				Slots [7:0] Source Dep	th						#### **Half Precision SZ S0A SIMD16 Render Target Data Payload**	MDP_RTW	/H_ZA16 - F	lalf Precision	n SZ S0A SIMD16 Render Target				----------------------------	--	--	-------------------------------	--	--				Data Pa	yload				Source: Size (in bits):	BSpec 1792						Default Value:	0x00000000, 0x	1792 0x00000000, 0x00000000,																																																																																																																																																																																																																																																																																																																																																																																																																	
0x00000000, 0x00000000					DWord	Bit		Description				0.0-0.7	255:0	Format: Slots [15:0] Source	MDPR_H_SIMD16				1.0-1.7	255:0	Red[15:0] Format: Slots [15:0] Red	MDPR_H_SIMD16				2.0-2.7	255:0	Green[15:0] Format: Slots [15:0] Green	MDPR_H_SIMD16				3.0-3.7	255:0	Blue[15:0] Format: Slots [15:0] Blue	MDPR_H_SIMD16				4.0-4.7	255:0	Alpha[15:0] Format: Slots [15:0] Alpha	MDPR_H_SIMD16				5.0-5.7	255:0	Source Depth[7:0]				MDP_RTWH_ZA16 - Half Precision SZ S0A SIMD16 Render Target Data Payload					---	-------	--------------------------------	------------------		Format: MDP_DW_SIMD8 Slots [7:0] Source Depth					6.0-6.7	255:0	Format: Slots [15:8] Source De	MDP_DW_SIMD8 oth	# **Half Precision SZ SIMD8 Dual Source Render Target Data Payload**	MDP_RTV	VH_Z8D		ecision SZ SIMD8 Dual Source Render et Data Payload				--	----------------------------------	--------------------------------	---	--	--		Source: Size (in bits): Default Value:	0x000000 0x000000 0x000000	BSpec						1	000, 0x00000000,	0x00000000, 0x00000000				0.0-0.7	255:0	Red Format: Slots[7:0] or [1	MDPR_DSH_SIMD8 5:8] of Src0 and Src1 Red				1.0-1.7	255:0	Green Format: Slots[7:0] or [1	MDPR_DSH_SIMD8 5:8] of Src0 and Src1 Green				2.0-2.7	255:0	Blue Format: Slots[7:0] or [1	MDPR_DSH_SIMD8 5:8] of Src0 and Src1 Blue				3.0-3.7	255:0	Alpha Format: Slots[7:0] or [1	MDPR_DSH_SIMD8 5:8] of Src0 and Src1 Alpha				4.0-4.7	255:0	Format: Slots [7:0] or [MDP_DW_SIMD8 15:8] of Source Depth			# **Half Precision SZ SIMD8 Render Target Data Payload**	MDP_RT	WH_Z8 - Ha	alf Precision	SZ SIMD8 Render Target Data				--	--	--	-----------------------------	--	--				Payl	oad				Source: Size (in bits): Default Value:	0x00000000, 0x 0x00000000, 0x 0x00000000, 0x 0x00000000, 0x 0x00000000, 0x	00000000, 0x00000000, 0x00000000, 0x00000000					DWord	Bit		Description				0.0-0.7	255:0	Format: Slots [7:0] Red	MDPR_H_SIMD8				1.0-1.7	255:0	Green Format: MDPR_H_SIMD8 Slots [7:0] Green					2.0-2.7	255:0	Format: Slots [7:0] Blue	MDPR_H_SIMD8				3.0-3.7	255:0	Alpha Format: Slots [7:0] Alpha	MDPR_H_SIMD8				4.0-4.7	255:0	Format: Slots [7:0] Source	MDP_DW_SIMD8 e Depth			# **Half Precision SZ SIMD16 Render Target Data Payload**	MDP_RTWH_Z16 - Half Precision SZ SIMD16 Render Target Data							--	---	--	--	--	--				Payloa	d				Source:	BSpec						Size (in bits):	1536						Default Value:		0x00000000, 0x00000000, 0x00000000, 0x00000000						0x0000000, 0x00000000, 0x00000000, 0x00000000									0x00000000, 0x00000000, 0x00000000,							0x00000000, 0x00000000, 0x00000000,							0x00000000, 0x00000000, 0x00000000, 0x00000000							0x00000000, 0x00000000, 0x00000000				DWord	Bit		Description				0.0-0.7	255:0	Red[15:0]							Farmat.	MDPR_H_SIMD16						Format: Slots [15:0] Red	MDF R_II_SIMD10						310t3 [13.0] Ned					1.0-1.7	255:0	Green[15:0]							Format:	MDPR_H_SIMD16						Slots [15:0] Green					2.0-2.7	255:0	Blue[15:0]														Format:	MDPR_H_SIMD16						Slots [15:0] Blue					3.0-3.7	255:0	Alpha[15:0]														Format:	MDPR_H_SIMD16						Slots [15:0] Alpha					4.0-4.7	255:0	Source Depth[7:0]														Format:	MDP_DW_SIMD8						Slots [7:0] Source De	pth				5.0-5.7	255:0	Source Depth[15:8]					MDP_RTWH	MDP_RTWH_Z16 - Half Precision SZ SIMD16 Render Target Data						----------	--	-------------------------	--------------	--	--			Payload															Format:	MDP_DW_SIMD8						Slots [15:8] Source Dep	th										#### **Hardware-Detected Error Bit Definitions**			Hardy	vare-Detec	ted Erro	or Bit Definitions			------------	--------	---	-------------------	----------------	---	-----		Source:		RenderCS						Size (in k	oits):): 32						Default \	√alue:	0x000000	00					DWord	Bit			Descr	cription			0	31:8	Reserved								Format:			MBZ				7	Reserved															6:3	Reserved							2	Command Privile	ege Violation Err	or																	ged is parsed in a non-privileged batch buffer.	The				command will be	converted to a No	OOP and parsi	rsing will continue.				1	Reserved							·	Format:			MBZ				0	Instruction Error							O	This bit is set when the Renderer Instruction Parser detects an error while parsing an instruction.								Instruction errors include:								 Client ID value (Bits 31:29 of the Header) is not supported (only MI, 2D and 3D are 								supported)								Defeatured MI Instruction Opcodes:								Value	Name		Description					1		Instruction Er	Error detected																ming Notes					This error indications cannot be cleared except by reset (i.e., it is a fatal error).					#### **Hardware Status Page Layout** #### **Hardware Status Page Layout** Source: RenderCS Size (in bits): 640 > 0x00000000, #### **Hardware Status Page Layout** 0x00000000, #### **Hardware Status Page Layout** 0x00000000,			Hardware Status Page Layout		-------	------	---				0x0000000, 0x00000000, 0x00000000, 0x00000000				0x00000000, 0x000000000, 0x00000000		DWord	Bit	Description		0	31:0	Interrupt Status Register Storage				The content of the ISR register is written to this location whenever an "unmasked" bit of the				ISR (as determined by the HWSTAM register) changes state.		13	31:0	Reserved								Must not be used.							Hardware Status Page Layout							--------	-----------------------------	---	--	--	--	--										4	31:0	Ring Head Pointer Storage																Description								The contents of the Ring Buffer Head Pointer register (register DWord 1) are written to this								location either as result of an MI_REPORT_HEAD instruction or as the result of an "automatic report" (see RINGBUF registers).						515	31:0	Reserved								Must not be used.						1627	383:0	Context Status DWords								Format: CONTEXT_STATUS[12]						2839	31:0	Reserved						4046	31:0	Reserved						47	31:0	Last Written Status Offset						481023	31:0	General Purpose								These locations can be used for general purpose via the MI_STORE_DATA_INDEX or MI_STORE_DATA_IMM instructions.					#### HCP_PAK_INSERT_OBJECT_INDIRECT_PAYLOAD			HCP_PAK_INS	SERT_OBJECT_INDIREC	T_PAYLOAD				-------------	-----------------	--	---------------------------------	-----------	--	--		Source:	Source: VideoCS							Size (in bi	ts):	128						Default V	alue:	0x0000000, 0x0	0000000, 0x00000000, 0x00000000					DWord	Bit		Description					0	31:0	Indirect Payload Data	Size in bits							Format:		U32						Number of bits to be inserted. Not including those skipped bytes in the beginning. For VP9: the Data is always valid from start of cache-line, no offset is allowed.						12	63:0	Indirect Payload Base	Address							Format: Sp	litBaseAddress64ByteAligned							48-bit address of the indirect payload data in memory buffer.									Programming Notes							Payload must begin in a byte position, but the payload can be ended in a bit position.						3	31:0	Indirect Payload Base Address								Format:	MemoryAddressAttributes				#### **HCP_REF_LIST_ENTRY**			НСР	_REF_LIST_ENTRY					---------------------------	--------	---	--	--	--	--		Source:		BSpec						Size (in b	oits):	32						Default Value: 0x00000000								DWord	Bit		Description					0	31:16	Reserved								Format:	MBZ						15	bottom_field_flag								Format:	U1							Where X is the RefPicListNum i=0, DW17 corresponds to i=1	and i is the list entry number 0 through 15. DW2 corresponds to 5.							Value	Name							0	Bottom Field																																																																																																																																																																																																																																																																																																																																																
			1	Top Field															Programming Notes								Not supported in encoder mode.							14	field_pic_flag								Format:	U1							Where X is the RefPicListNum and i is the list entry number 0 through 15. DW2 corresponds to $i=0$, DW17 corresponds to $i=15$.								Value	Name							0	Video Frame							1	Video Field							<u> </u>	Video Heid							Programming Notes								Not supported in encoder mo	ode.						13	LongTermReference								Format:	U1							Where X is the RefPicListNum	and i is the list entry number 0 through 15. DW2 corresponds to							i=0, DW17 corresponds to i=1								Value	Name								term reference							1 Long	term reference						12	luma_weight_IX_flag	T							Format:	U1							Where X is the RefPicListNum	and i is the list entry number 0 through 15. DW2 corresponds to							HCP_REF_LIST_ENTRY				------	---	--	--	--			i=0, DW17 cor	rresponds to i=15.					Value Name						0 Default weighted prediction for luma						1	Explicit weighted prediction for Luma				11	chroma_weig	ht_IX_flag					Format:	U1						e RefPicListNum and i is the list entry number 0 through 15. DW2 corresponds to responds to i=15.					Value	Name					0	Default weighted prediction for Chroma					1	Explicit weighted prediction for Chroma				10:8	list_entry_IX: Reference Picture Frame ID (RefAddr[0-7])						Format:	U3						e RefPicListNum and i is the list entry number 0 through 15. DW2 corresponds to rresponds to i=15.						picture frame ID identifies the reference picture associated with the base address ference Picture Address (RefAddr[0-7]) in the HCP_PIPE_BUF_ADDR_STATE				7:0	Reference Pic	ture tb Value					Format:	U8					Where X is the RefPicListNum and i is the list entry number 0 through 15. DW2 corresponds to $i=0$, DW17 corresponds to $i=15$.						bit signed.	CurrentPOC - RefPOC), where RefPOC is the POC value of the reference picture. 8-					See the "Deriv	ration process for temporal luma motion vector prediction" in the HEVC standard.			#### **HCP_TILE_POSITION_IN_CTB**	HCP_TILE_POSITION_IN_CTB						--------------------------	------------	-------	-----------	------------		Source:	BSpec					Size (in bits):	32					Default Value:	0x00000000					DWo	rd	Bit	De	escription		0		31:24	CtbPos3+i						Format:	U8				23:16	CtbPos2+i						Format:	U8					CtbPos1+i						Format:	U8				7:0	CtbPos0+i						Format:	U8	## **HCP_TILE_POSITION_IN_CTB_MSB**			HCP_TILE_POSITION_IN_CTB_MSB				---------------	-----------	--	--	--		Source:		BSpec				Size (in bits):	64				Default Valu	ue:	0x0000000, 0x00000000				Added to s	support 1	6k picture size.				DWord	Bit	Description				01	63:44	Reserved					43:42	Ctb position of tile 21 [9:8] MSB 2 bits of CTB row position of tile row 21.						Programming Notes						Please note that this field is MBZ for columns					41:40	Ctb row position of tile column 20 [9:8] MSB 2 bits of CTB row position of tile row 20.						Programming Notes						Please note that this field is MBZ for columns					39:38	Ctb row position of tile column 19 [9:8] MSB 2 bits of CTB row or column position of tile row or column 19.					37:36	Ctb row position of tile column 18 [9:8] MSB 2 bits of CTB row or column position of tile row or column 18.					35:34	Ctb row position of tile column 17 [9:8] MSB 2 bits of CTB row or column position of tile row or column 17.					33:32	Ctb row position of tile column 16 [9:8] MSB 2 bits of CTB row or column position of tile row or column 16.					31:30	Ctb row position of tile column 15 [9:8] MSB 2 bits of CTB row or column position of tile row or column 15.					29:28	Ctb row position of tile column 14 [9:8] MSB 2 bits of CTB row or column position of tile row or column 14.					27:26	Ctb row position of tile column 13 [9:8] MSB 2 bits of CTB row or column position of tile row or column 13.					25:24	Ctb row position of tile column 12 [9:8] MSB 2 bits of CTB row or column position of tile row or column 12.					23:22	Ctb row position of tile column 11 [9:8] MSB 2 bits of CTB row or column position of tile row or column 11.					21:20	Ctb row position of tile column 10 [9:8] MSB 2 bits of CTB row or column position of tile row or column 10.					19:18	Ctb row position of tile column 9 [9:8] MSB 2 bits of CTB row or column position of tile row or column 9.					17:16	Ctb row position of tile column 8 [9:8]					HCP_TILE_POSITION_IN_CTB_MSB		-------	---			MSB 2 bits of CTB row or column position of tile row or column 8.		15:14	Ctb row position of tile column 7 [9:8] MSB 2 bits of CTB row or column position of tile row or column 7.		13:12	Ctb row position of tile column 6 [9:8] MSB 2 bits of CTB row or column position of tile row or column 6.		11:10	Ctb row position of tile column 5 [9:8] MSB 2 bits of CTB row or column position of tile row or column 5.		9:8	Ctb row position of tile column 4 [9:8] MSB 2 bits of CTB row or column position of tile row or column 4.		7:6	Ctb row position of tile column 3 [9:8] MSB 2 bits of CTB row or column position of tile row or column 3.		5:4	Ctb row position of tile column 2 [9:8] MSB 2 bits of CTB row or column position of tile row or column 2.		3:2	Ctb row position of tile column 1 [9:8] MSB 2 bits of CTB row or column position of tile row or column 1.		1:0	Ctb row position of tile column 0 [9:8] MSB 2 bits of CTB row or column position of tile row or column 0.	#### **HCP_WEIGHTOFFSET_CHROMA_ENTRY**			HCP_WEIGHTOFFSET_CHROMA_ENTRY						------------	--------	--	--	--	--	--		Source:		VideoCS						Size (in b	oits):	32						Default \	/alue:	0x00000000						DWord	Bit	Description						0	31:24	ChromaOffsetLX [i][1]								Where X is the RefPicListNum and i is the list entry number 0 through 15. DW 18corresponds to $i=0$, DW 33 corresponds to $i=15$.								Valid only if explicit weighted prediction for chroma is enabled, otherwise must be zero.								Programming Notes								This (combined with its MSbyte below) shall be in the range of -WpOffsetHalfRangeC to (WpOffsetHalfRangeC - 1), inclusive WpOffsetHalfRangeC = 1 « (high_precision_offsets_enabled_flag ? (BitDepthC - 1) : 7)							22.46								23:16	delta_chroma_weight_IX[i][1] Format: S7								roillidt.								Where X is the RefPicListNum and i is the list entry number 0 through 15. DW 18 corresponds to i=0, DW 33 corresponds to i=15.								Valid only if explicit weighted prediction for chroma is enabled, otherwise must be zero.								Programming Notes								This shall be in the range of -128 to 127, inclusive							15:8	ChromaOffsetLX[i][0]								Where X is the RefPicListNum and i is the list entry number 0 through 15. DW 18 corresponds to i=0, DW 33 corresponds to i=15.								Valid only if explicit weighted prediction for chroma is enabled, otherwise must be zero.								Programming Notes								Programming Notes This (combined with its MSbyte below) shall be in the range of -WpOffsetHalfRangeC to								(WpOffsetHalfRangeC - 1), inclusive WpOffsetHalfRangeC = 1 « (high_precision_offsets_enabled_flag ? (BitDepthC - 1) : 7)							7:0	delta_chroma_weight_IX[i][0]								Format: S7								Where X is the RefPicListNum and i is the list entry number 0 through 15. DW 18 corresponds to i=0, DW 33 corresponds to i=15.								Valid only if explicit weighted prediction for chroma is enabled, otherwise must be zero.													# HCP_WEIGHTOFFSET_CHROMA_ENTRY Programming Notes This shall be in the range of -128 to 127, inclusive #### **HCP_WEIGHTOFFSET_CHROMA_EXT_ENTRY**	ts):	VideoCS						-------	---	--	--	--	--		ts):								32						alue:	0x0000000						Bit	Description						31:24	ChromaOffsetLX[i+1][1] MSByte							Description							To support 4:4:4, the chroma offset is extended into 16-bit.							In order to keep SW back compatible, the most significant byte is programmed here.							Programming Notes							This is only MSByte portion of ChromaOffsetLX. Please refer to LSB section for available range.						23:16	ChromaOffsetLX[i][1] MSByte							Description							To support 4:4:4, the chroma offset is extended into 16-bit.							In order to keep SW back compatible, the most significant byte is programmed here.																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
Programming Notes							This is only MSByte portion of ChromaOffsetLX. Please refer to LSB section for available range.						15:8	ChromaOffsetLX[i+1][0] MSByte							To support 4:4:4, the chroma offset is extended into 16-bit.							In order to keep SW back compatible, the most significant byte is programmed here. Programming Notes							This is only MSByte portion of ChromaOffsetLX. Please refer to LSB section for available range.						7:0	ChromaOffsetLX[i][0] MSByte							Description							To support 4:4:4, the chroma offset is extended into 16-bit.							In order to keep SW back compatible, the most significant byte is programmed here.							Programming Notes							This is only MSByte portion of ChromaOffsetLX. Please refer to LSB section for available range.						3	1:24 3:16					## **HCP_WEIGHTOFFSET_LUMA_ENTRY**			HCP_WEIGHTOFFSET_LUMA	ENTRY					------------	-------------------	---	---	--	--	--		Source:		VideoCS						Size (in b	ize (in bits): 32							Default \	Value:	0x00000000						DWord	Bit	Description						0	31:24	Iuma_offset_IX[i] MSByte To support 4:4:4, the luma offset is extended into 16-bit. In order to keep SW back compatible, the most significant byte is programmed here. Programming Notes This is only MSByte portion of luma_offset_IX. Please refer to LSB section for available range.							23:16	Reserved	-							Format:	MBZ						15:8	luma_offset_IX[i]								Where X is the RefPicListNum and i is the list entry number 0 through 15. DW2 corresponds to $i=0$, DW17 corresponds to $i=15$.								Valid only if explicit weighted prediction for luma is enabled, otherwise must be a								Programming Note	es							This (combined with it MSbyte above) shall be in the range WpOffsetHalfRange _Y – 1, where WpOffsetHalfRange _Y = 1 « (high_precision_offsets_enable)	,						7:0	delta_luma_weight_IX[i]								Format:	S7							Where X is the RefPicListNum and i is the list entry number $i=0$, DW17 corresponds to $i=15$.	er 0 through 15. DW2 corresponds to							Valid only if explicit weighted prediction for luma is enable	led, otherwise must be zero.							Programming Note	es							When luma_weight_I0_flag[i] is equal to 1, the value of drange of -128 to 127, inclusive.	lelta_luma_weight_l0[i] shall be in the				# **Header Forbidden Message Descriptor Control Field**	MDC_MHF - Header Forbidden Message Descriptor Control Field						---	-----	--	----------	-------------------------------		Source:		BSpec				Size (in bits):		1				Default Value: 0x00000000						DWord	Bit	Description				0	0	Message Header Present Indicates the message forbids a message header.						Value Name		Description				0h No [Default]		Message header is not present				1h	Reserved	Not used	# **Header Present Message Descriptor Control Field**	MDC_	MDC_MHP - Header Present Message Descriptor Control Field							-----------------	---	------------	---	-------------------------------	--	--		Source:		BSpec						Size (in bits):		1						Default Value	:	0x00000000						DWord	Bit		Description					0	0	_	Message Header Present Specifies if the message uses the optional message header.							Value	Name	Description						0h	No	Message header is not present						1h	Yes	Message header is present			# **Header Required Message Descriptor Control Field**	MDC_MHR - Header Required Message Descriptor Control Field							--	-----	---------------	--------------------------	---------------------------	--		Source:	E	3Spec	Spec				Size (in bits):	1	1					Default Value:	(0x00000001					DWord	Bit		Description				0	0	Message He	ader Present						Indicates the	message requires a messa	age header.					Value	Name	Description					0h	Reserved	Not used					1h	Yes [Default]	Message header is present		## **HEVC_ARBITRATION_PRIORITY**	HEVC_ARBITRATION_PRIORITY								---------------------------	-----------	----------------	------------------	--------------------------	-------------	--		Source:	BSpe	BSpec						Size (in bits):	2							Default Value:	0x000	000000						This field controls	the prior	ity of arbitra	tion used in the	GAC/GAM pipeline for thi	is surface.			DWord		Bit		Description				0		1:0	Priority								Format:		U2						Value		Name						00b	Highest priority							01b	Second highest priorit	у						10b	Third highest priority							11b	Lowest priority			## HEVC_VP9_RDOQ_LAMBDA_FIELDS			HEVC_VP9_RDOQ_LAMBDA_FIELDS					------------	---------------	---	--	--	--		Source:	urce: VideoCS						Size (in b	oits):	32					Default \	/alue:	0x0000000					DWord	Bit	Description					0	31:16	LambdaValue1 Lambda value for Intra Luma component of QP=1, 3, 9, 11, , 61, 63, 73, 75 (odd number) For 12-bit video, the QP range has extended to include 65 to 75. for HEVC					·		Lambda value for Intra Luma component of QP=0, 2,8, 10, , 60, 62, 72, 74 (even number) For 12-bit video, the QP range has extended to include 64to 74.				#### **HW Generated BINDING_TABLE_STATE** #### **HW Generated BINDING TABLE STATE** Source: BSpec Size (in bits): 16 Default Value: 0x00000000 #### **Description** The binding table binds surfaces to logical resource indices used by shaders and other compute engine kernels. The HW generated Binding_Table_State have different format than the SW generated Binding_Table_State. The HW generated Binding_Table_State is stored as an array of 256 elements, each of which contains one word as defined here. The start of each element is spaced one word apart. The first element of the binding table is aligned to a 64-byte boundary. Binding table indexes beyond 256 will automatically be mapped to entry 0 by the HW, w/ the exception of any messages which support the special indexes 240 through 255, inclusive.	DWord	Bit	Description				-------	------	-------------------------------------	--	--		0	15:0	Surface State Pointer						Format: SurfaceStateOffset[21:6] []			# **Hword 1 Block Data Payload**	MDP_HW1 - Hword 1 Block Data Payload							--------------------------------------	--	--------------------------	------	--	--		Source: B	Spec						Size (in bits):	56							0x00000000, 0x00000000, 0x00000000, 0x00000000						DWord	Bit	Description	n				0.0-0.7	255:0	Hword							Format:	U256						Specifies the Hword data				# **Hword 2 Block Data Payload**	MDP_HW2 - Hword 2 Block Data Payload								--------------------------------------	--	-------------	------	--	--	--		Source:	BSpec							Size (in bits):	512							Default Value:	0x00000000, 0x00000000, 0x00000000, 0x00000000							DWord	Bit	Description						0.0-0.7	255:0	Hword0								Format:	U256						Specifies the Hword data for element 0							1.0-1.7	255:0	Hword1								Format:	U256						Specifies the Hword data for element 1						# **Hword 4 Block Data Payload**		MDP_H	W4 - Hword 4 Block Da	ta Payload					-----------------	--	--	------------	--	--	--		Source:	BSpec							Size (in bits):	1024							Default Value:	0x00000000, 0x00000000, 0x00000000, 0x00000000							DWord	Bit	Desc	cription					0.0-0.7	255:0	Hword0																Format:	U256							Specifies the Hword data for element 0						1.0-1.7	255:0	Hword1								Format:	U256							Specifies the Hword data for elemen	nt 1					2.0-2.7	255:0	Hword2								Format:	U256							Specifies the Hword data for element 2						3.0-3.7	255:0	Hword3								-	Lugge							Format:	U256							Specifies the Hword data for elemen	nt 3				# **Hword 8 Block Data Payload**	Source: BSpec Size (in bits): 2048 Default Value: 0x00000000, 0x00000000, 0x00000000, 0x00000000	00000, 00000,																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
--	--	--	--	--	--		Size (in bits): 2048 Default Value: 0x00000000, 0x000000000, 0x000000000, 0x00000000	00000, 00000,						0x00000000, 0x00000000, 0x00000000, 0x00000000	00000, 00000,						0x00000000, 0x00000000, 0x00000000, 0x00000000	00000,						0x00000000, 0x00000000, 0x00000000, 0x00000000	·						0x00000000, 0x00000000, 0x00000000, 0x00000000	00000							· ·						0x00000000, 0x00000000, 0x00000000, 0x00000000	· ·						0,0000	·						0x00000000, 0x00000000, 0x00000000, 0x00000000	·						0x00000000, 0x00000000, 0x000000000, 0x00000000	, , , , , , , , , , , , , , , , , , ,						0x00000000, 0x00000000, 0x000000000, 0x00000000	· ·						0x00000000, 0x00000000, 0x00000000, 0x00000000							DWord Bit Description							0.0-0.7 255:0 Hword0							Format: U256							Specifies the Hword data for element 0	Specifies the Hword data for element 0						1.0-1.7 255:0 Hword1							Lugge Lugge							Format: U256							+ ·	Specifies the Hword data for element 1						2.0-2.7 255:0 Hword2														Format: U256							Specifies the Hword data for element 2	Specifies the Hword data for element 2						3.0-3.7 255:0 Hword3														Format: U256							Specifies the Hword data for element 3	Specifies the Hword data for element 3						4.0-4.7 255:0 Hword4														Format: U256							Specifies the Hword data for element 4	Specifies the Hword data for element 4						5.0-5.7 255:0 Hword5	•						Format: U256							Specifies the Hword data for element 5							6.0-6.7 255:0 Hword6							MDP_HW8 - Hword 8 Block Data Payload							--------------------------------------	-------	--	------	--	--											Format:	U256						Specifies the Hword data for element 6					7.0-7.7	255:0	Hword7														Format:	U256						Specifies the Hword data for element 7				# **Hword Channel Mode Message Header Control**	MHC_A64_CMODE - Hword Channel Mode Message Header											---	------------	---	-------------	-----	--	--	--	--	--					Control								Source:	rce: BSpec										Size (in l	oits):	32									Default \	√alue:	0x00000000									DWord	Bit		Description								0	31	Reserved																						Format: MDC_CMODE											Specifies whether the read or write operation occurs on all 4 Dwords if any of those channel enables are set, or else only on the dwords whose corresponding channel enable is set.										30:0	Reserved											Format:		MBZ									Ignored								# **Hword Register Blocks Message Descriptor Control Field**	MDC_DE	3_H\	W - Hword F	Register Bloc	ks N	lessage Descriptor Control				-----------------	------	--------------------	--	------	----------------------------	--	--					Field						Source:		BSpec							Size (in bits):		2							Default Value:		0x0000000							DWord	Bit	Description							0	1:0	Register Blocks																		Specifies the numb	e number of Hword blocks to be read or written								Value	Name		Description						00h	HW1 1 Hword register		ord register						01h	HW2 2 Hword registers		ord registers						02h	HW4	4 Hw	ord registers						03h	HW8	8 Hw	ord registers			## **Ignored Message Header** **MH_IGNORE** - Ignored Message Header Source: EuSubFunctionDataPort0 Size (in bits): 256 0x00000000, 0x00000000 Some messages require a message header or have an optional message header, but do not use any information in the header.	DWord	Bit	Description				-------	-------	-------------	-----	--		07	255:0	Reserved						Format:	MBZ					Ignored			# Inline Data Description for MFD_AVC_BSD_Object			Inline	Dat	a [Description	for MFD_AVC_BSD_Object				------------	--	---	--------------------------------	--------------------------	---																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																											
--	--	--		Source:			ideoCS		•					Size (in b	oits):	96								Default \	/alue:	0x0000000, 0x00000000, 0x00000000								This stru						arameters and error handling settings for				DWord	Bit					Description				0	31	collocat	ld speci ed mac l_Pic_Id	fies t roblo field	the method used for ock location is perf ock is not set, a co	or concealment when error is detected. If set, a copy from ormed from the concealment reference indicated by the opy from the current picture is performed using Intra						V	alue		Name	Description						0				Intra 16x16 Prediction						1				Inter P Copy					 30 Init Current MB Number When set, the current Slice_Start_MB_Num, Slice_MB_Start_Hor_Pos and Slice_MB_Start fields will be used to initialize the Current_MB_Number register. This effectively disable concealment capability. 29 Intra PredMode (4x4/8x8 Luma) Error Control Bit This field controls if AVC decoder will fix Intra Prediction Mode if the decoded value is 											accordi				The according to ac						Value	Name			Description						0		AVC	decoder will dete	ct and fix IntraPredMode (4x4/8x8 Luma) Errors.						1			decoder will NOT detect IntraPredMode (4x4/8x8 Luma) Errors. The wrong aPredMode value will be retaind.						28:27	MB Error Concealment B Temporal Prediction mode These two bits control how the reference L0/L1 are overridden in B temporal slice.										Value	Value Name			Description						00b	[Defa	ult]	Both Reference In	dexes L0/L1 are forced to 0 during Concealment						01b			Only Reference In	ndex L1 is forced to 0; Reference Index L0 is forced to -1						10b	C		Only Reference Index L0 is forced to 0; Reference Index L1 is forced to -1							11b	Reserv	ed	Invalid					•	26	Reserve	ed									Format	MBZ								25	MB Error Concealment B Temporal Motion Vectors Override Enable Flag During MB Error Concealment on B slice with Temporal Direct Prediction, motion vectors are forced to 0 to improve image quality. This bit can be set to preserve the original weight prediction.									nline	Dat	a Description fo	or MFD_A\	/C_BSD_Object					-------	--	---	---	--	--	--	--	--			Value	Na	me	Description							0	[Defa	[Default] Predicted Motion Vectors are used during MB Concealm								1 Motion Vectors are Overridden to 0 during MB Co				0 during MB Concealment					24	During	MB Erro		with Temporal D	Disable Flag irect Prediction, weight prediction is reserve the original weight prediction.						Value	Naı	1	ription							0	[Default] Weight Prediction is Disabled during MB Concealment									1		Weight Prediction v	vill not be overri	dden during MB Concealment					23:22	Reserve	d									Format	•			MBZ					21:16	Conceal	ment F	Picture ID										ifies the picture in the refe Iment Method is Inter P C		used for concealment. This field is only						Bit File	ed Val	ue Defenition								21	0	Frame Picture								21	1	Field picture								20:16	All	Frame Store Index[4:0]							15	Reserve	d									Format:				MBZ					14	BSD Premature Complete Error Handling BSD Premature Complete Error occurs in situation where the Slice decode is completed but there are still data in the bitstream.										Value	Name		Descrip	tion						1		Set the interrupt to the dr	ne interrupt to the driver (provide MMIO registers for MB address R/W)							0		Ignore the error and continue (masked the interrupt), assume the hardware automatically performs the error handling							13	Reserved										Format: MBZ									12	MPR Error (MV out of range) Handling Software must follow the action for each Value as follow:										Value	Name		tion										ne interrupt to the driver (provide MMIO registers for MB address R/W)							1		Set the interrupt to the dr	iver (provide MN	AIO registers for MB address R/W)						1 0		·	inue (masked the	AIO registers for MB address R/W) e interrupt), assume the hardware					11	1	ed .	Ignore the error and conti	inue (masked the	-					10		Entropy Error Handling Software must follow the action for each Value as follow:									-----	---	--	--	--	--	--	--	--	--			Value		TOIIOV									value			Description										Set the interrupt to the driver (provide MMIO registers for MB address R									0		_	re the error and continue (masked the interrupt), assume the hardware matically perform the error handling.							9	Reserve	ed	I.									Format	:	MBZ								8	MB Hea			——————————————————————————————————————										follov	v the action for each Value as follow:								Value	Name		Description								1			ne interrupt to the driver (provide MMIO registers for MB address R/W).								0		_	re the error and continue (masked the interrupt), assume the hardware matically perform the error concealment.							7:6	MB Erro	or Conc	ealm	ent B Spatial Prediction mode								These two bits control how the reference L0/L1 are overridden in B spatial slice.											Value	Name		Description								00b	[Default]		Both Reference Indexes L0/L1 are forced to 0 during Concealment								01b		(Only Reference Index L1 is forced to 0; Reference Index L0 is forced to -1								10b		(Only Reference Index L0 is forced to 0; Reference Index L1 is forced to -1								11b	Reserv	ed	Invalid							5	Reserve	ed										Format	:		MBZ							4	MB Erro	or Cond	ealm	ent B Spatial Motion Vectors Override Disable Flag								_			ncealment on B slice with Spatial Direct Prediction, motion vectors are for									-	_	e quality. This bit can be set to use the predicted motion vectors instead.								Value		ame	Description								0		ault]	Motion Vectors are Overridden to 0 during MB Concealment								1	[DCI	aurej	Predicted Motion Vectors are used during MB Concealment							2	MD F	au Carr									3				ent B Spatial Weight Prediction Disable Flag ncealment on B slice with Spatial Direct Prediction, weight prediction is								_			image quality. This bit can be set to preserve the original weight prediction											ct normal decoded MB.								Value	Na	me	Description																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
	0	[Defa	ult]	Weight Prediction is Disabled during MB Concealment.																			1			Weight Prediction will not be overridden during MB Concealment.									nline	Dat	a De	escription for MFD_A\	/C_BSD_Object						---	-------	--	---------	----------	---	---	--	--	--	--				Format	:			MBZ							1	MB Error Concealment P Slice Motion Vectors Override Disable Flag During MB Error Concealment on P slice, motion vectors are forced to 0 to improve image quality. This bit can be set to use the predicted motion vectors instead. This bit does not affect normal decoded MB.												Value	Na	ime	Des	cription								0	[Defa	ault]	Motion Vectors are Overridden to	0 during MB Concealment								1			Predicted Motion Vectors are used	l during MB Concealment							0	During	MB Erro	or Con	nt P Slice Weight Prediction Disab cealment on P slice, weight prediction preserve the original weight prediction	n is disabled to improve image quality.								Value	Naı			ription								0	[Defa		Weight Prediction is Disabled during									1			Weight Prediction will not be overrice	dden during MB Concealment.						1	31:16	First MB Byte Offset of Slice Data or Slice Header												Programming Notes												MFX supports only DXVA2 Long and Short Format.											15:8	Reserve	ed											Format	:			MBZ							7		an alte	ernative	e method for decoding mb_skipped, t MB with no coefficient.	to cope with an encoder that codes a							6:5	Reserved												Format	:			MBZ								Programming Notes												Please note that the field MUST be set to '0' at this time.											4	Emulati	on Pre	ventio	n Byte Present									Value	Na	me	Desci	ription								0		H	I/W needs to perform Emulation Byt	e Removal								1		H	I/W does not need to perform Emul	ation Byte Removal							3	also nee	eded fo		error concealment at the end of a pictore correct	cture (so, no more phantom slice. It is tly.								Value	Name		Descrip	tion								1			current Slice to be decoded is the ve									0			current Slice to be decoded is any sli t picture	ice other than the very last slice of the								Inline C	Data	Desc	ription for MFD	D_AVC_I	BSD_Object							---	-------	---	--	-----------	----------------------------	---------------	-------------------------------	----	--	--	--	--			2:0	First Macr	oblock	(MB)Bit	Offset											Exists If:			//AVC Long Format Only											Format: U3														This field provides the bit offset of the first macroblock of the Slice in the first byte of the input compressed bitstream.												2	31	I Slice Concealment Mode																												This field o	controls	how AV	C decoder handle MB cond	ncealment in	I Slice									•	Value			Nam	e									1			Intra Concealment											0			Inter Concealment														Programming	n Notes										If this field	l is set t	ი "0" (In	ter Concealment), driver m		e a valid reference picture											•	•	•	concealment reference picture	e.								In this mo	In this mode, weight prediction is disabled, and motion vectors are forced to 0 as well.												30	Reserved														Format: MBZ													29:24	Concealment Reference Picture + Field Bit														Format: U6														This field provides the concealment reference picture for hardware to conceal in case driver wants to specify one concealment picture. This field matches with the DPB order sent to hardware. This field applies to all I/P/B slices														Bit Filed	Value		Def	efenition										29	MBZ	Reserve												28:25	All	Referen	ce Plcture Number											24	All			field picture	e [Frame picture must be 0]								23	P Slice Co	ncealm	ent Mod	le											This field o	controls	how AV	C decoder handle MB cond	ncealment in	P Slice									•	Value			Nam	e									1			Intra Concealment											0			Inter Concealment										22:19	Reserved														Format:				MBZ									18:16	P Slice Inte	er Conc	ealmen	t Mode												controls	how AV	C decoder select reference											Value	Name	9		Descriptio	n									Date	ı	ription for MFD_AVC_BSD_Object								-------	---	---------	------------------------	---	--	--	--	--	--	--			000b			of Reference List L0 (Use top entry of Reference List L0)									001b Driver Specified Concealment Reference												010b			licted Reference (Use reference picture predicted using P-Skip prithm)									011b			poral Closest (Using POC to select the closest forward picture) [For lest POC smaller than current POC]									100b			Long Term Picture in Reference List L0 (If no long term picture able, use Temporal Closest Picture)									101b- 111b	Reser		, , , , , , , , , , , , , , , , , , ,								15	B Slice Concealment Mode This field controls how AVC decoder handle MB concealment in B Slice													Value		Name									1			Intra Concealment									0			Inter Concealment								14	Reserved											• •	Format: MBZ											13:12													override	the mod	•	atial or Temporal Direct for B Skip/Direct. This field determine can a AVC decoder handles MB concealment in B slice.									Value	Name		Description									00b			ault Direct Type (slice programmed direct type)									01b			o Spatial Direct Only									10b			o Temporal Direct Only									11b		Spatial D	virect without Temporal Componenet (MovingBlock information)								11	Reserved												Format:			MBZ								10:8		•		cealment Mode /C decoder select reference picture for Spatial Inter Concealment in									Value	Nam	е	Description												of Reference List LO/L1 (Use top entry of Reference List LO/L1).									000b		Top o										000b 001b			r Specified Concealment Reference											Drive Temp Close										101b- 111b	Reserv	ed								-----	--	------------------------------	--	--	--	--	--	--	--		7	Reserved											Format	:	MBZ								6:4	B Slice Temporal Inter Concealment Mode This field controls how AVC decoder select reference picture for Temporal Inter Concealment i B Slice											Value	Nam	e Description									000b		Top of Reference List LO/L1 (Use top entry of Reference List LO/L1)									001b		Driver Specified Concealment Reference									010b		Predicted Reference (Use reference picture predicted using B-Skip Algorithm)									011b		" Temporal Closest (Using POC to select the closest forward picture) [For Closest POC smaller than current POC] [For L1: Closest POC larger than current POC]									100b		First Long Term Picture in Reference List LO/L1 (If no long term picture available, use Temporal Closest Picture)									101b- 111b	Reserv	ed								3:2	Reserve	d										Format: MBZ										1	This fiel on Intra- bitstrear	ld contro 8x8/4x4 I m.	rediction Error Concealment Control Bit Is if AVC goes into MB concealment mode (next MB) when an error is detect Prediction Mode (these 2 modes have fixed coding so it may not affect the									Value	Maria	Description									value											0	A	NVC decoder will NOT go into MB concealment when Intra8x8/4x4 Prediction node is																																										
incorrect.										r P	node is incorrect.								0	0 1 Intra Pr Chroma This fiel	rediction a)	node is incorrect. WC decoder will go into MB concealment when Intra8x8/4x4 Prediction mode accorrect. Error Control Bit (applied to Intra16x16/Intra8x8/Intra4x4 Luma and								0	0 1 Intra Pr Chroma This fiel	rediction a)	node is incorrect. AVC decoder will go into MB concealment when Intra8x8/4x4 Prediction mode accorrect. Error Control Bit (applied to Intra16x16/Intra8x8/Intra4x4 Luma and its if AVC decoder will fix Intra Prediction Mode if the decoded value is incorrect.								0	0 1 Intra Pr Chroma This fiel accordin	ediction d contro	NVC decoder will go into MB concealment when Intra8x8/4x4 Prediction modes accorrect. Error Control Bit (applied to Intra16x16/Intra8x8/Intra4x4 Luma and less if AVC decoder will fix Intra Prediction Mode if the decoded value is incorrection.							## **Inline Data Description in MPEG2-IT Mode**		Inline Data Description in MPEG2-IT Mode											---	--	---	-----------------------------	--------------	--	---	---------	--------------------------------	--	--		Source:		,	VideoCS									Size (in b	oits):	192										Default V	Value: 0x00000000, 0x000000000, 0x000000000, 0x00000000											The cont	The content in this command is similar to that in the MEDIA_OBJECT command in IS mode described in the											Media Cl	•												Each MFD_IT_OBJECT command corresponds to the processing of one macroblock. Macroblock parameters are passed in as inline data and the non-zero DCT coefficient data for the macroblock is passed in as indirect data.											Inline data starts at dword 7 of MFD_IT_OBJECT command. There are 7 dwords total.												DWord	Bit					Description						0	31:28	Motio	n Vertical	Field Select		-									•		a loi	ng [2][2] array as defined i	n #167;	6.3.17.2 of the ISO/IEC 13818-							also #167;7			a de la												NotionVerticalFieldSelect	Index							28 0		0	0									29 0		1	1									30 1		0	2									31 1		1	3									Valu	e Na	me	Description									0	Top Fiel	d Th	The prediction is taken from the top reference field.									1	Bottom	Field Th	The prediction is taken from the bottom reference field.								27	Reserv	ved									-			econd Field										26	Reserv HWM	ved C mode									-	25:24		n Type													with the des	stina	ation picture type (field or	frame)	this Motion Type field												ISO/IEC 13818-2 #167;6.3.17.1,							6-17, 6-18. and field pi	=	r, th	ne device supports dual-pr	ime mo	tion prediction (11) in both						Value Destination = Frame Destination = Field											Picture_Structure = 11 Picture_Structure != 11												'00' Reserved Reserved													'01'	Field			Field								'10'	Frame			16x8								'11'	Dual-Prim	ne		Dual-Prime							23:22	Reserv	v ed										Inlin	e Data	Description	on in MPEG2-IT Mode							-------	--	--	-------------------------------	---	--	--	--	--	--			Scan metho	d	_								21	DCT Type This field specifies the DCT type of the current macroblock. The kernel should ignore this field when processing Cb/Cr data. See ISO/IEC 13818-2 #167;6.3.17.1. This field is zero if Coded Block Pattern is also zero (no coded blocks present).											Value		Name	Description								0	MC_FRAM	E_DCT	Macroblock is frame DCT coded								1	MC_FIELD	_DCT	Macroblock is field DCT coded							20	Reserved Was Overla	p Transforr	n - H261 Loop Fil	ter							19	Reserved										18	Macroblock This field sp through B-4	ecifies if th		on vector is active. See ISO/IEC 13818-2 Tables B-2								Value			Name								0	No l	oackward motion	vector								1	Use	Use backward motion vector(s)								17	Macroblock This field sp through B-4	n vector is active. See ISO/IEC 13818-2 Tables B-2										Value			Name								0	No	No forward motion vector									1	Use	forward motion	vector(s)							16	Macroblock Intra Type This field specifies if the current macroblock is intra-coded. When set, Coded Block Pattern is ignored and no prediction is performed (i.e., no motion vectors are used). See ISO/IEC 13818-2 Tables B-2 through B-4.											Val	ue	Name									0		Non-intra macroblock									1		Intra macroblock								15:12	Reserved											Format:			MBZ							11:6	:6 Coded Block Pattern Bit 11: Y0 Bit 10: Y1 Bit 9: Y2 Bit 8: Y3 Bit 7: Cb4										5:4	Bit 6: Cr5 Reserved																							Inline Data Description in MPEG2-IT Mode											---	-------	--	-------	--	--	--	--	--	--	--	--				Quantization Scale Code												3	LastMBInRow This field indicates the last MB in each row												2:0	Reserved													Format: MBZ											1	31:16	Reserved													Format: MBZ												15:8	VertOrigin Vertical Origin In unit of macroblocks relative to the current picture (frame or field).												7:0	HorzOrigin Horizontal Origin in unit of macroblocks.											2	31:16	Motion Vectors - Field 0, Forward, Vertical Component Each vector component is a 16-bit two's-complement value. The vector is relative to the macroblock location. According to ISO/IEC 13818-2 Table 7-8, the valid range of each vector component is [-2048, +2047.5], implying a format of s11.1. However, it should be noted motion vector values are sign extended to 16 bits.	ector											15:0	Motion Vectors - Field 0, Forward, Horizontal Component	9										3	31:16	Motion Vectors - Field 0, Backward, Vertical Component												15:0	Motion Vectors - Field 0, Backward, Horizontal Component											4	31:16	Motion Vectors - Field 1, Forward, Vertical Component												15:0	Motion Vectors - Field 1, Forward, Horizontal Component											5	31:16	Motion Vectors - Field 1, Backward, Vertical Component												15:0	Motion Vectors - Field 1, Backward, Horizontal Component										# **Inline Data Description - VP8 PAK OBJECT**			In	line	Dat	ta Description - VP8 P	AK OBJECT					---	----------	---	------------------	---------	--	---	--	--	--		Source:		Vi	deoCS								Size (in b	oits):	38	34								Default Value: 0x00000000, 0x000000000, 0x000000000, 0x00000000											This stru	ıcture (correspo	nds to [Dw36	of MFX_VP8_PAK_OBJECT Comman	d.					DWord	Bit				Description						0	31:23	Reserve	ed										Format	:			MBZ						22:20	MV For	mat(M	otion	Vector Size)								Exists If			//IntraMbFlag = 0								This fie	ld speci	fies th	ne size and format of the output mot	ion vectors.							Value			Name	Description							000b	Intra N	1B		No Motion vectors							100b	Inter P Mode)		MB (Unpacked Motion Vector	Sixteen Motion Vectors Per MacroBlock							Others	Reserv	ed									_											Programming Notes											This field MBZ, when the IntraMbFlag = 1.										19:18	SegmentID											Format: U2											Segment number 0-3										17	Enable Coeff Clamp											Value	Name			escription							1		_	gnitude of coefficients of the current MB is clamped based on the clamping trix after quantization								0		No C	lamping							16:14	Reserve	ed										Format	:			MBZ						13		ld speci		hether																																																																																																																																																		
the current macroblock is an 2, bit[5] of MFX_VP8_PIC_STATE), this	Intra (I) Macroblock. For Key pictures sfield must be set to 1.							1	Value		N	lame							0h			INTER (Inter MacroBlock)								1h			INTRA (Intra MacroBlock)																					Dua manunia a Nata							-------	---	--	--	--	--	--	--	--	--					4D El	Programming Notes								For I-picture MB (Intra MB Flag =1), this field must be set to 1.										12:11	This fie	ence pic (among Last Frame, Golden Frame and Alt Frame) is block when Intra MB Flag = 0 .											Value		Name								00b			Last Frame								01b			Golden Frame								10b			Alt Frame							10:8	MB Typ 4x4 wh MB Flag	en Intra MB Flag = g = 1	cifies I	InterMB MV mode configurations: 16x16 or 2 16x8 or 4 8x8 or d bit [8] = IntraMB mode configurations: 4x4 or 16x16 when In								Value			Description								000b	16x16	Inter MB Only DW 6 bits 3:0 are used to indicate MVMode, MVMode can't be split									001b	b 2 16x8 (mv_Top Bottom)		Inter MB [10:8] Split MV is inferred. DW5 bits[3:0] are used for MVMode for first 16x8 partition, DW6 bits[3:0] are used for MVMode for second 16x8 partition.								010b	0b 2 8 x16 (mv_left_right)		Inter MB [10:8] Split MV is inferred. DW5 bits[3:0] are used for MVMode for first 8x16 partition, DW5 bits[11:8] are used for MVMode for second 8x16 partition.								011b	4 8x8 (mv_quarters)	MVV for se 8x8 p	Inter MB [10:8] Split MV is inferred. DW5 bits[3:0] are used for MVMode for first 8x8 partition. DW5 bits[11:8] are used for MvMode for second 8x8 partition. DW6 bits[3:0] are used for MVMode for third 8x8 partition. DW6 bits[11:8] are used for MVMode for fourth 8x8 partition.								100b	16 4x4 (mv_16)		Inter MB [10:8] Split MV is inferred. There are 16 partitions. Each Sub-block uses 4 bits in DW6 and DW7.								0b	16x16		A MB [8] Only DW5, bits[3:0] are used for Y mode. For B_PRED, 4x4" should be used which implies B_PRED mode.								1b	16 4x4		a MB [8] All bits in DW5 and DW6 are used to represent B_PREI les (Bmodes) in each sub-blocks.							7:6	Reserv	ed										Forma	t:		MBZ							5:4	MB UV	Mode Mode											Value		Name								0			DC_PRED									·		V_PRED								1			V_PRED									Inline Data D	Description - VP8 P	AK OBJECT									---	-------	--	--	------------------------------------	--	--	--	--	--	--	--				3	TM_PRED											3	Reserved													Format:		MBZ										2	Skip MB Flag This field is equivalent to mb_skip_flag in VP8 spec.													Programming Notes														t forces an Inter MacroBlock to	be encoded as a skipped MacroBlock										1:0	Reserved		1											Format:		MBZ									1	31:24	Reserved													Format:		MBZ										23:16	MbYCnt (Vertical Origin)													Format:	U8 Unit of MacroBlock												This field specifies the vertical origin of current macroblock in the destination picture in units of macroblocks.												15:8	Reserved													Format: MBZ												7:0	MbXCnt (Horizontal Orig	gin)												Format:	U8 Unit of MacroBlock												This field specifies the holo of macroblocks.	plock in the destination picture in units										2	31:28	B Mode for SubBlock7 (Y mode for the macroblock in non-B mode) For Y-Mode and B-Mode Assignments refer to the assignment lists below this table.												27:24	B Mode for SubBlock6 (Y mode for the macroblock in non-B mode) For Y-Mode and B-Mode Assignments refer to the assignment lists below this table.												23:20		f mode for the macroblock in Assignments refer to the assign											19:16	-	/ mode for the macroblock in Assignments refer to the assign	-										15:12		/ mode for the macroblock in Assignments refer to the assign											11:8	B Mode for SubBlock2 (\	mode for the macroblock in	non-B mode)										7:4	For Y-Mode and B-Mode Assignments refer to the assignment lists below this table. B Mode for SubBlock1 (Y mode for the macroblock in non-B mode) For Y-Mode and B-Mode Assignments refer to the assignment lists below this table.												3:0		/ mode for the macroblock in											3.0	-	Assignments refer to the assign	-									3	31:28		(Y mode for the macroblock ir Assignments refer to the assign												Inline Data Descript	ion - VP8 PAK OBJECT										---	-------	---	---	--	--	--	--	--	--	--	--			27:24	B Mode for SubBlock14(Y mode for the For Y-Mode and R-Mode Assignments												22.20	For Y-Mode and B-Mode Assignments refer to the assignment lists below this table. B Mode for SubBlock13(Y mode for the macroblock in non-B mode)												23.20	-	refer to the assignment lists below this table.											19:16														B Mode for SubBlock12(Y mode for the macroblock in non-B mode) For Y-Mode and B-Mode Assignments refer to the assignment lists below this table.												15:12	B Mode for SubBlock11(Y mode for the macroblock in non-B mode)													For Y-Mode and B-Mode Assignments refer to the assignment lists below this table.												11:8	,													For Y-Mode and B-Mode Assignments refer to the assignment lists below this ta												7:4	B Mode for SubBlock9 (Y mode for the macroblock in non-B mode)												3:0	For Y-Mode and B-Mode Assignments refer to the assignment lists below this table.												3.0	B Mode for SubBlock8 (Y mode for the macroblock in non-B mode) For Y-Mode and B-Mode Assignments refer to the assignment lists below this table.											4	31:30	Reserved													Format:	MBZ											29:16	MV Y FWD 0	-												Format: S13													The value of the y component of this motion vector for FWD block 0.													Max value +/-1024 full pel (+/- 8192 1/8th pel) precision												15:14	Reserved													Format:	MBZ											13:0	MV X FWD 0													Format:	S13												The value of the x component of this motion vector for FWD block 0. Max value +/-1024 full pel (+/- 8192 1/8th pel) precision											5	21.20		oth per) precision										Э		Reserved MV Y FWD 1												29.16	Format:	S13												The value of the y component of this n												15.14	Reserved	Total Tector for FMD Stock I.											13:0	MV X FWD 1												13.0	Format:	S13												The value of the x component of this n											6	31:30	Reserved												29:16	MV Y FWD 2																										Format:	S13												The value of the y component of this n													Inline Data Description - V	P8 PAK OBJECT							---	-------	---	---------------------	--	--	--	--	--													15:14	4 Reserved									13:0	MV X FWD 2																				Format:	S13									The value of the x component of this motion vector	or for FWD block 2.							7	31:30	Reserved																			29:16	MV Y FWD 3																				Format:	S13									The value of the y component of this motion vector	or for FWD block 3.																		15:14	Reserved																			13:0	MV X FWD 3																				Format:	S13									The value of the x component of this motion vector	or for FWD block 3.																	8	31:30	Reserved																			29:16	MV Y BWD 0
													13:0	MV X BWD 0	-																			Format:	S13									The value of the x component of this motion vector	or for BWD block 0.							9	31:30	Reserved																			29:16	MV Y BWD 1																				Format:	cription - VP8 PAK OBJECT							---------------	-------	---	--	--	--	--	--	--				The value of the y component of this motion vector for BWD block 1.									45.1										15:14	Reserved									13:0	MV X BWD 1																				Format:	sf this mation vector for RWD block 1									The value of the x component	of this motion vector for BWD block 1.							10	31:30	Reserved									20.16	140 / V DVAD 2								4	29:16	MV Y BWD 2										Format:	S13									The value of the y component of this motion vector for BWD block 2.									15:14	4 Reserved																			13:0	MV X BWD 2										Format:	S13										of this motion vector for BWD block 2.							11 3	31·3N	Reserved								'' <u>`</u>	31.30	Reserved									29:16	MV Y BWD 3										-	242									Format: The value of the v component	of this motion vector for BWD block 3.									The value of the y component	C. C. S. HOUGH VECTOR FOR DAY DIOCK 5.								15:14	Reserved									13:0	MV X BWD 3									13.0	WAY Y DAAD 2										Format:	S13									The value of the x component	of this motion vector for BWD block 3.						### INTERFACE_DESCRIPTOR_DATA				INTI	ERFA	CE_DESCRIP	TOR_	DATA		---	-------	--	--	-------------	---------------------------	---------------------------	---		Source:		R	enderCS						Size (in bits): 256									Default Value: 0x00000000, 0x000000000, 0x000000000, 0x00000000						, 0x00000000, 0x00000000,					0:	x00000000, 0:	×0000000	00				DWord	Bit		Description						0	31:6	6 Kernel Start Pointer									Format	:	Instruction	onBaseOffset[31:6]K	ernel					•	es the 64-byte to the Instru	_		ne first ins	struction in the kernel. This pointer is			5:0	Reserve	ed								Format	:				MBZ		1	31:16	Reserve	ed								Format: MBZ								15:0	Kernel Start Pointer High									Format	: I	nstructio	nBaseOffset[47:32]k	Cernel					This field specifies the high 16 bits of starting address of the Kernel Pointer.							2	31:21	Reserve							2	31.21	Nesei ve	.u								Format	<u> </u>				MBZ			20		Preemption	dicable]			20	IIIIeau	Freeinption	uisabie							This fie	ld specifies w	hether, v	l vhen dispatched, the	e thread i	is allowed to stop in middle on					•		otion request.						Value	Nam	е			Description				0h	Disable [De	fault]	Thread is pre-empt	ed on re	ceiving pre-emption indication.				1h	Enable		Thread is preempte	ed only ir	n case of page-fault.			19	Denorn	n Mode								This fie	ld specifies h	ow Float	denormalized numb	oers are h	nandles in the dispatched thread.				Value	Name			Desc	ription				0h	Ftz	will neve		uctions. D	o when appearing as inputs; denorms Double precision float and half med to zero				1h	SetBvKernel	•	s will be handled in					10				2 20 manarea m	2) Kerrie			18 Single Program Flow											INTERFA	CE_DES	CRIPTOR_	DATA			---	-------	---	-----------------	---------------------	--	--				Specifies whether the kernel multiple program flows (SIMI			m flow (SIMDnxm with m = 1) or					Value			Name					0h		Multiple						1h		Single					17	Thread Priority Specifies the priority of the t	hread for dis	patch.						Value			Name					0h	Normal Priority							1h	High Priori	ty					16	Floating Point Mode Specifies the floating point r	node used by	v the dispatched	thread.					Value		,	Name							EEE-754								Alternate					15:14	Reserved								Format:			MBZ				13	Illegal Opcode Exception Enable								Format: Enable			е					This bit gets loaded into EU Execution Environment.	CR0.1[12] (no	ote the bit # diffe	erence). See Exceptions and ISA				12	Reserved								Format:			MBZ				11	Mask Stack Exception Enab	le							Format:		Enabl	e					This bit gets loaded into EU CR0.1[11]. See Exceptions and ISA Execution Environment.							10:8	Reserved								Format:			MBZ				7	Software Exception Enable								Format:		Enabl	e					This bit gets loaded into EU Execution Environment.	CR0.1[13] (no	ote the bit # diffe	erence). See <i>Exceptions and ISA</i>				6:0	Reserved								Format:			MBZ			3	31:5	Sampler State Pointer						3	31.3	Jampier State i Officer									INTERFACE_DESC	JRIPTOR_DATA					---	-------	--	---	---	--	--	--				Format:	DynamicStateOffset[31:5								Specifies the 32-byte aligned address offset of the sampler state table. This pointer is relative to the Dynamic State Base Address. This field is ignored for child threads.								4:2	Sampler Count									Format:		U3							associated sar	mpler state entries. This field	s of 4) the kernel uses. Used only for prefetching the is ignored for child threads. If this field is not zero, ance of a root thread upon the startup of the media							Value	Name								[0,4]									0h	No samplers used	samplers used							1h	Between 1 and 4 sample	rs used							2h	Between 5 and 8 sample	een 5 and 8 samplers used							3h	Between 9 and 12 sampl	ers used							4h	Between 13 and 16 samp	olers used						1:0	Reserved									Format:		MBZ					4	31:16	Reserved									Format: MBZ								15:5	Binding Table	e Pointer								Format: SurfaceStateOffset[15:5]BINDING_TABLE_STATE*256 When HW Binding Table Alignment is alignment is clear.									Format: SurfaceStateOffset[18:8]BINDING_TABLE_STATE*256 [] When HW Binding Table Alignment is alignment set to 512KB size									Description									Specifies a po	ointer offset into the binding	table. This field is ignored for child threads.							When Binding Table Pool is Disabled, this pointer is relative to the Surface State Base Address .									When Binding Table Pool is Enabled, this pointer is relative to the Binding Table PoolBase Address.								4:0	Binding Table	e Entry Count								Format:		U5							binding table	the kernel uses. Used only for prefetching of the ce state. This field is ignored for child threads.If this fiel are prefetched for the first instance of a root thread									IN	TERFACE_DESCR	PTOR_D	ATA					---	-------	---	---	---	--	---	---	--	--						Value		Name							[0,31]																								-	nming Notes										umber of prefetched binding binding table entries, it may			9								many entries and thrashing the			o to avoid				5	31:16	Constant	/Indire	t URB Entry Read Length									Format:		•		U16																		Indirect URB Entr GPGPU n dispatche constant	JRB enting will be mode the estination of the data is	ount of URB data read and pary, in 8-DW register increment loaded. The Constant URB Eas describes how much data in pread group will deliver cons (Constant URB Read Length).	ts. A value 0 m ntry Read Offs s delivered in a tant data offse	neans that no																																																																																																														
Co et field will then a single dispatch t by this value.	onstant or Indirect n be ignored. In n. Multiple The total amount of									for Indirect ic	areater than 0	than this field must								Constant Data Read Length han 0. The allowed combinat		greater than 0,	then this held must								ct URB Entry Read Length		Constant Data	Notes						Entry R	ead Len	gth	Read Length								=0			=0		No Payload						>0			=0		Per-thread payload only						>0			>0		Both kinds of payload						=0			>0		Only for CURBE payloads									1										Value		Name							[0,63]										15:0		URB Er	ntry Read Offset									Format:	.1			U16	16 1100						Specifies the offset (in 8-DW units) at which Constant URB data is to be read from the URB before being included in the thread payload.											Value	Name	acca in the tinead payload.	Descripti	on							[0,1983]		Indicating [0,1983] 256-bit re entries. However, lowest 64 descriptor data. Hence, (URE exceed 1984.	egister increme entries are rese	ents. ROB has 64 erved for VFE/TS	S to store interface				6	31:24	Reserved										Format:			MBZ					-------------	---	---	--------------	---	--------	--	--		22.22	L			IVIDZ					23:22	Rounding Mo	de		U2						ronnat.		02							Value	Name		Description						00b	RTNE [Default]	Roun	d to Nearest Even						01b	RU	Roun	d toward +Infinity						10b	RD	Roun	d toward -Infinity						11b	RTZ	Roun	d toward Zero					21	Barrier Enable									Format:		Er	able	_					•		up requires	a barrier. If not, it can be dis	spatch					without allocat	ing one.							20:16	Shared Local N	Memory Size							_0,,,										Format:			U5																		[03								-	he thread group requires. Th						specified in 4k		-	l .						specified in 4k slice.	blocks, but only powers of	2 are allowe	he thread group requires. Thed: 0, 4k, 8k, 16k, 32k and 64						specified in 4k slice.		2 are allowe	he thread group requires. Thed: 0, 4k, 8k, 16k, 32k and 64						specified in 4k slice.	blocks, but only powers of	2 are allowe	he thread group requires. Thed: 0, 4k, 8k, 16k, 32k and 64	k per					specified in 4k slice. Uses a differer	t blocks, but only powers of	2 are allowe	he thread group requires. Thed: 0, 4k, 8k, 16k, 32k and 64	k per					specified in 4k slice. Uses a differer	nt encoding to allow encoding	2 are allowe	he thread group requires. Thed: 0, 4k, 8k, 16k, 32k and 64 new 1k and 2k SLM sizes.	k per					specified in 4k slice. Uses a differer Value 0	t blocks, but only powers of the encoding to allow encoding Name Encodes 0K	2 are allowe	he thread group requires. Thed: 0, 4k, 8k, 16k, 32k and 64 new 1k and 2k SLM sizes.	k per					specified in 4k slice. Uses a differer Value 0 1	Name Encodes 0K Encodes 1K	2 are allowe	he thread group requires. Thed: 0, 4k, 8k, 16k, 32k and 64 new 1k and 2k SLM sizes.	k per					specified in 4k slice. Uses a differer Value 0 1 2	Name Encodes 0K Encodes 1K Encodes 2K	2 are allowe	he thread group requires. Thed: 0, 4k, 8k, 16k, 32k and 64 new 1k and 2k SLM sizes.	k per					specified in 4k slice. Uses a differer Value 0 1 2 3	Name Encodes 0K Encodes 1K Encodes 2K Encodes 4K	2 are allowe	he thread group requires. Thed: 0, 4k, 8k, 16k, 32k and 64 new 1k and 2k SLM sizes.	k per					specified in 4k slice. Uses a differer Value 0 1 2 3 4	Name Encodes 0K Encodes 1K Encodes 2K Encodes 4K Encodes 8K	2 are allowe	he thread group requires. Thed: 0, 4k, 8k, 16k, 32k and 64 new 1k and 2k SLM sizes.	k per					specified in 4k slice. Uses a differer Value 0 1 2 3 4 5	Name Encodes 0K Encodes 1K Encodes 2K Encodes 4K Encodes 8K Encodes 16K	2 are allowe	he thread group requires. Thed: 0, 4k, 8k, 16k, 32k and 64 new 1k and 2k SLM sizes.	k per				15	specified in 4k slice. Uses a differer Value 0 1 2 3 4 5	Name Encodes 0K Encodes 1K Encodes 2K Encodes 4K Encodes 8K Encodes 16K Encodes 32K	2 are allowe	he thread group requires. Thed: 0, 4k, 8k, 16k, 32k and 64 new 1k and 2k SLM sizes.	k per				15	specified in 4k slice. Uses a differer Value 0 1 2 3 4 5 6 7	Name Encodes 0K Encodes 1K Encodes 2K Encodes 4K Encodes 8K Encodes 16K Encodes 32K	2 are allowe	he thread group requires. Thed: 0, 4k, 8k, 16k, 32k and 64 new 1k and 2k SLM sizes.	k per					specified in 4k slice. Uses a differer Value 0 1 2 3 4 5 6 7 Reserved Format:	Name Encodes 0K Encodes 1K Encodes 2K Encodes 4K Encodes 8K Encodes 16K Encodes 32K	2 are allowe	he thread group requires. Thed: 0, 4k, 8k, 16k, 32k and 64 new 1k and 2k SLM sizes. Descriptio No SLM used	k per				15 14:13	specified in 4k slice. Uses a differer Value 0 1 2 3 4 5 6 7 Reserved Format:	Name Encodes 0K Encodes 1K Encodes 2K Encodes 4K Encodes 8K Encodes 16K Encodes 32K	2 are allowe	he thread group requires. Thed: 0, 4k, 8k, 16k, 32k and 64 new 1k and 2k SLM sizes. Descriptio No SLM used	k per							II	NTERFACE_DESCRIPT	TOR_I	DAT	4			---	---	----------	--	-------------------------------------	----------	------	------	--				Format:				MBZ					9:0	Numbe	r of Thr	eads in GPGPU Thread Group								Format:				U10						Specifie	s the nu	mber of threads that are in this th	read gro	up.						Value	Name		Descrip	tion					[1,112] The minimum value is 1, while the maximum value is the number two subslices for local barriers. See vol1b Configurations for the threads per subslice for different products.									7	31:8	Reserve	d									Format:				MBZ					7:0	Cross-T	hread C	Constant Data Read Length								Format:	•				U8					to every	Specifies the amount of constant data in CURBE in 8-DW register increments which will be sent to every thread in the thread group in addition to the per thread ids specified by Constant URB									Entry Re	ead Len											Value			Name					[0,127]							#### **INTERRUPT**				INTERRUPT							--------------------	--	---	--	--	--	--	--	--		Source:		BSpec								Access:		RO, R/W, R/WC, R/W								Size (in b	n bits): 128									Default \	Default Value: 0x00000000, 0xFFFFFFF, 0x00000000, 0x00000000									See the this regis		·	find the source event for each interrupt bit. There are multiple instances of							DWord	Bit		Description							0	31:0	ISR										Access:	RO										Status Register Bits. This field contains the non-persistent values of the e IMR selects which of these interrupt conditions are reported in the									Value	Name									0b	Condition Doesn't exist									1b	Condition Exists																				Restriction									•	gister are short pulses. Do not use this register to sample these conditions.							1	31:0		R/W									Access:	: Mask Register Bits. This field contains a bit mask which selects which										ISR are reported in the IIR.									Value	Name									FFFFFFFh	All interrupts masked [Default]									0b	Not Masked									1b	Masked																				Restriction										NOT use this register to mask interrupt events. Instead program this IMR to									all 0s and use the individual GT command streamer MASK bits in the GT register space. This prevents unneeded messaging to DE.								2	31:0									_	51.0	Access:	R/WC									These are the Interrupt	Identity Register Bits. This field holds the persistent values of the interrupt									bits from the ISR which	are unmasked by the IMR. The IER enables an interrupt to be generated										g bit in the IIR becomes set. A disabled interrupt will still appear in the IIR.									bits set in this register v	will remain set (persist) until the interrupt condition is cleared by writing a										INTE	RRUPT					------------	------------																																																																																																																																																																																																																																																																																																																																																																																																																																									
--	---	----------------------	---	--	--				'1' to the appropr	'1' to the appropriate bits.						Value Name					ame						0b Condition Not Detected									1b	Condition Detecte	ed																	Pro	ogramming Note	es .						For each bit, the IIR can store a second pending interrupt if two or more of the same into conditions occur before the first condition is cleared. Upon clearing the first interrupt, the will momentarily go low, then return high to indicate there is second interrupt pending.							3	31:0	IER									Access:			R/W									les an interrupt to be generated when terrupt will still appear in the IIR.							Value		Name						0b		Disabled						1b Enabled																				Pro	ogramming Note	es							rupt enable must be set nterrupt processing.	to 1b for any of the	hese enabled interrupts to propagate			# **Invalidate After Read Message Descriptor Control Field**	MDC	_IA	R - Invalidate After Read Message	Descriptor Control Field							------------	-------------------	---	--	--	--	--	--	--		Source:	Source: BSpec									Size (in b	Size (in bits): 1									Default \	/alu	e: 0x00000000								DWord	Bit	Description								0	0	Reserved										Format: Previously, this Enable field was intended to optimize scrate the memory was only used by a single thread and did not n completed. If enabled, it caused all lines in the L3 cache accorditer the read occurred, regardless of whether the line conta a performance hint indicating that the data would no longe memory.	eed to be maintained after the thread essed by the message to be invalidated ained modified data. It was intended as						### **JPEG**			JPEG							-----------------	--------	---	-----------------------------------	--	--	--	--		Source:		VideoCS							Size (in bits):		16							Default \	/alue:	0x00000000							DWord	Bit	Description							0	15:5	Reserved									Format:	MBZ							4	Inconsistent VLD SE Error This flag indicates an inconsistent SE coded in the bit-streatentries in the hauffman table.	nm. Bit-stream does not match any							3	Extra Block Error This flag indicates extra block coded within an ECS data bo	oundary.							2	Missing block Error This flag indicates one or more blocks are missing within an ECS data boundary.								1	Extra ECS Error This flag indicates extra ECS' coded in the bit-stream SCAN payload data.								0	Missing ECS Error This flag indicates one or more ECS' are missing from the bit-stream SCAN payload data.						# **LOD Message Address Payload Control**	MAC	MACD_LOD - LOD Message Address Payload Control							-----------------	--	-------------------	------------------	-----------------	-------------	--		Source:	BSpec							Size (in bits):	32							Default Value:	0x0000000	00						DWord	Bit		C	escription				0	31:4	Reserved																Format:		МВ	Z					Ignored		·					3:0	LOD																Format:			U4					Specifies the LOI	o for this slot.							Value	Name		Description					[0,14]		representing LC	DD		# **Lower Oword Block Data Payload**	ľ	MDP_OW1L - Lower Oword Block Data Payload							-----------------	--	---------------------	--------------------	------	--	--		Source:	BSpec	BSpec						Size (in bits):	256							Default Value:	t Value: 0x00000000, 0x00000000, 0x000000000, 0x00000000							DWord	Bit	Bit Description						0.0-0.3	127:0	Oword																Format:		U128						Specifies the upper	Oword data element					0.4-0.7	127:0	Reserved																Format:		MBZ						Ignored					### **LRI Data Entry** LRI_DATA - LRI Data Entry Source: RenderCS Size (in bits): 64 Default Value: 0x00000000, 0x00000000 Each LRI command header is followed by LRI_DATA entries. Each of these entries is a pair of Dwords: the MMIO register address and the data to be written.	DWord	Bit	Description			-------	-------	----------------	-------		01	63:55	Reserved					Format:	MBZ			54:32	ммю					Format:	U23				Programming N	lotes				Bits [1:0] MBZ				31:0	Data					Format:	U32	# **Manageability Engine Interrupt Vector**	C	SMI	E_INTR_VEC - Manageability Engine Int	errupt Vector		--	------	---	----------------		Source: BSpec		BSpec			Size (in bit	s):	16			Default Value: 0x00000000					DWord	Bit	Description			0	15:2	Reserved				1	CSME Response					Format:	U1				CSME sets this bit in the interrupt when responding to initiated tr	ansaction for:				Response to wake up request					 Payload message sent toto ME_MESG, ME_DATA for a requ 	uest								0	CSME Request					Format:	U1		CSME sets this bit in the interrupt when CSME initiates the transaction for:			ction for:		CSME to wake up request					Payload message sent toto ME_MESG, ME_DATA for CMSE initiated request		initiated request												#### **MBHRD State Parameters1**			MBHRD Sta	te Paramete	ers1				------------	----------	---	-------------------------	-----------------------------------	--	--		Source:		BSpec						Size (in b	oits):	320						Default \	Value:	0x00000802, 0x08041400, 0x030 0x0D131100, 0x0006E4B5, 0x000						Please r	note tha	at DW0-9, correspond to DW100 - 109	of WiGig Paramete	ers.				DWord	Bit		Description					0	31:14	Reserved								Format:		MBZ					13:8	Max Value of Slice QP Increase For I This is the max value of QP increase for		next.						Value		Name						0-40								8	[Default]						7:6	Reserved								Format:	MBZ						5:0	Max Value of Slice QP Decrease For MB HRD This is the max value of QP decrease from one slice to the next.								Value		Name						0-10								2	[Default]					1	31:29	Reserved								Format:		MBZ					28:24	MinDelay 1								Minimum delay 1 relative to initial de Mode.	lay. This field is used	I for MB-HRD computation in WiGig						This field sets the minimum allowed of	delay as (initial delay	* MinDelay1) » 4.														Value		Name						0-31	[Defected							8	[Default]						23:21	Reserved		MPZ						Format:		MBZ					20:16		1 114/10/1-1							Exists If: //[Mode] == 'WiGig'							MBHRD Sta	te Parameters1				---	-------	---	------------------------------	----------------------------	--				Minimum delay 2 relative to initial de Mode.	ay. This field is used for M	B-HRD computation in WiGig					This field sets the minimum allowed delay as (initial delay * MinDelay2) » 4. MinDelay1 >= Mindealy2							Value	Name						0-31		Trum'e					4	[Default]				-	15:13	Reserved							Format:	MBZ					12:8	MaxDelay							Maximum delay relative to initial delay. This field is used for MB-HRD computation in WiGig Mode.							This field sets the maximum allowed delay as (initial delay * MaxDelay) » 4.							Value		Name					0-31							20 [Default]					-	7:0	Reserved							Format:	MBZ				2	31:30	Reserved					-		Format:	MBZ					29:24	Delta Slice QP Increase 1 Delta slice QP increase when delay gets below MinDelay1. This field is used for MB-HRD computation in WiGig Mode.							Value		Name					0-40							3	[Default]					23:22	Reserved					=		Format:	MBZ					21:16	Delta Slice QP Increase 2 Delta slice QP increase when delay gets below MinDelay2. This field is used for MB-HRD computation in WiGig Mode. Delta Slice QP Increase 2 is >= Delta Slice QP Increase 1.																																																																																																																																																																																																																																																																																								
			Value		Name					0-40							6	[Default]				-	15:14	Reserved						13:8	Delta Slice QP Decrease							MBHRD Sta	te Parameters1			-----	-------	---	---	--				Delta slice QP decrease when delay g computation in WiGig Mode.	ets above MaxDelay. This field is used for MB-HRD					Value	Name					0-40						3	[Default]				7:0	Reserved						Format:	MBZ			3	31:21	Reserved	,					Format: MBZ					20:16	Max Initial Delay						This field is used for MB-HRD compu	5					Max allowed initial delay relative to B/2R where B is the cpb size capacity used by the encoder and R is the peak transmission rate. This sets the maximum allowed initial delay as ((Max Initial Delay +1)*(B/2R)) »4.						Value	Name					0-31						15	[Default]				15:0	Reserved						Format:	MBZ									4	31:0	Reserved	IVIDE			4	31:0		MBZ			4 5	31:0	Reserved						Reserved Format:						Reserved Format: Reserved Format: Guard Band Clocks for MB HRD Pan Number of MB time delay as a guard slice).	MBZ MBZ ic band before triggering panic mode (max 256 MBs per				31:8	Reserved Format: Reserved Format: Guard Band Clocks for MB HRD Pan Number of MB time delay as a guard slice). Value	MBZ MBZ				31:8	Reserved Format: Reserved Format: Guard Band Clocks for MB HRD Pan Number of MB time delay as a guard slice). Value 2-255	MBZ MBZ ic band before triggering panic mode (max 256 MBs per Name				31:8	Reserved Format: Reserved Format: Guard Band Clocks for MB HRD Pan Number of MB time delay as a guard slice). Value	MBZ MBZ ic band before triggering panic mode (max 256 MBs per				31:8	Reserved Format: Reserved Format: Guard Band Clocks for MB HRD Pan Number of MB time delay as a guard slice). Value 2-255 2	ic band before triggering panic mode (max 256 MBs per Name [Default]				31:8	Reserved Format: Reserved Format: Guard Band Clocks for MB HRD Pan Number of MB time delay as a guard slice). Value 2-255 2 This can be computed as follows: Ave_Bits_per_MB = FrameTSizeByte*8 IPCM_bits = chroma_format_idc==3.33	ic band before triggering panic mode (max 256 MBs per Name [Default] Programming Notes				7:0	Reserved Format: Reserved Format: Guard Band Clocks for MB HRD Pan Number of MB time delay as a guard slice). Value 2-255 2 This can be computed as follows: Ave_Bits_per_MB = FrameTSizeByte*8 IPCM_bits = chroma_format_idc==3.33	ic band before triggering panic mode (max 256 MBs per Name [Default] Programming Notes 7 (FrameMBWidth*FrameMBHeight) P 6400: 3200 (6400 for 444; 3200 for 420)						MB	HRD Sta	te Parai	meters1		---	-------	--	--------------------------------------	----------------------------------	----------------	---			28:24		onal precision	n of fRemovalU for 4096x2304)		imum value is the length of max number of					Value			Name				0-16								13			[Default]				23:21	Reserved								Format:				MBZ			20:16	T Unit Over R_Precision Fractional precision of FrameTime Over R, the maximum value is the length of the max slice size (256*16*16*3*8), which is 21.								Value				Name				0-21								19			[Default]				15:13	Reserved								Format:				MBZ			12:8	The fraction	•	n of 1/(fRemov) = the length of uiDeltaBetweenTxRv. The argest arrival/removal delay.					Value			Name				0-25								17			[Default]				7:0	Reserved								Format:				MBZ		7	31:25	Reserved				1				Format:				MBZ			24:0		l Unit Time val interval o	f each MB, the	fractional pre	ecision depends on the number of MBs of each				Value	Name			Description				0-27MB		1~27million c	locks, each ti	ck represents a period of 27Mhz clock.				451765	[Default]					8	31:25	Reserved								Format:				MBZ			24:0	Delta QP I The remove frame.		f each MB, the	fractional pre	ecision depends on the number of MBs of each					\	/alue		Name		MBHRD State Parameters1								-------------------------	------	-----------	-------	------	--	--				0-1FFFFFh								119	[Defa	ult]				9	31:0	Reserved								Format:		MBZ			### **MBHRD State Parameters2**			MBHRD State F	Paramete	ers2				-----------------------	--	--	---------------	----------------------------	--	--		Source: Exists If:		BSpec //WGBOX Mode						-	ize (in bits): 320 Default Value: 0x00000000, 0x00000000, 0x000172CA, 0x000019D9, 0x000019DA, 0x000107AC, 0x00001262, 0x00001262, 0x0006DDD0, 0x0000330A									at DW0-9, correspond to DW110 - 119 of W WGBOX Mode Only.	iGig Paramete	ers and is used for MB-HRD				DWord	Bit	Description						0	31:0	Reserved								Format:		MBZ				1	31:0	Reserved								Format:		MBZ				2	31:25	Reserved								Format:		MBZ					24:0	Delay Between Transmitter and Receiver (Non Scaling) The delay between transmitter and receiver (B/R_NoScale).								Value		Name						0-27MB								94922 [Default]								Programming Notes								Please note that this field is not used in WiDi mode and MBZ.						3	31:25	Reserved								Format:		MBZ					24:0	Delay Between Transmitter and Receiver IPCM The delay between transmitter and receiver (B/R_IPCM).								Value		Name						0-27MB								6617	[Default]							Programming Notes								Please note that this field is not used in WiDi mode and MBZ.						4	31:25	Reserved								Format:		MBZ					24:0	Delay Between Transmitter and Receiver	СРВ Сар							MBHRD State I	Parameters2				---	-------	---	---	--	--				The delay between transmitter and receive	r (B/R_CPB).						Value	Name						0-27MB							6618	[Default]						Progr	ramming Notes						Please note that this field is not used in Wi					5	31:26	26 Reserved							Format:	MBZ					25:0	27MHz/R_NoScale-Fractional Precision 27MHz/R_NoScale, fractional precision def	ined by TUnitOverR_precision.						Value	Name						0-54MB							67500	[Default]						Duosi	yamming Notes						Programming Notes Please note that this field is not used in WiDi mode and MBZ.					6	21.26	Reserved						31.20	Format:	MBZ					25:0	27MHz/R_IPCM, Fractional Precision						23.0	27MHz/R_CPB_Cap, fractional precision de	fined by TUnitOverR_precision.						Value	Name						0-54MB							4706	[Default]						Progr	ramming Notes						Please note that this field is not used in Wi	_				7	31:26	Reserved							Format:	MBZ					25:0	27MHz/R_CPB_Cap, Fractional Precision							27MHz/R_IPCM, fractional precision define	d by TUnitOverR_precision. Integer part is at most 27						assuming minimum rate of 1Mbps. Value	Name						0-54MB	Ivaille						4706	[Default]							. ~						Progr	ramming Notes						Please note that this field is not used in Wi	Di mode and MBZ.						MBHRD State	Parameters2				---	-------	--	--	--	--		8	31:25	Reserved							Format:	MBZ					24:0	One Frame Time in 27MHz Clocks The number of clocks for one frame, which is 27MHz/framerate.							Value	Name						0-27MB							450000	[Default]						Prog	gramming Notes						Please note that this field is not used in W	/iDi mode and MBZ.				9	31:14	Reserved	1						Format:	MBZ					13:8	MaxQP for MB HRD							Default Value:	51						This is the absolute maximum value/upper bound of QP allowed by MB-HRD RC.								gramming Notes						It is recommended that MaxQP be set to MB-HRD algorithm to avoid the underflow	a larger value (40 or above) to give flexibility to the w condition.					7:6	Reserved							Format:	MBZ					5:0	MinQP for MB HRD This is the absolute minimum value/lower	bound of QP allowed by MB-HRD RC.						Value	Name						10-26							10 [D 6	efault]						Programming Notes							of																																																																																																																																																																																																																																																																																																												
MinQp for Luma and Chroma Offset is	d 3200 bits, Cr/Cb QP cannot go below 10. The Value programmed in such a way to ensure this. De >= 15. This would ensure that the Final Chroma QP			### **MBHRD State Parameters3** **MBHRD State Parameters3** Source: **BSpec** Exists If: //WGBOX Mode Size (in bits): Default Value: 0x00000000, 0x00000000 Please note that DW0-7, correspond to DW120 - 127 of WiDi Parameters and is used for MB-HRD computation in WGBOX Mode Only. ### **Programming Notes**	This field i	s MBZ fo	or WiDi Mode.						--------------	----------	------------------------------------	-----------------------	---------	----------------------	--		DWord	Bit	Description						0	31:11	Reserved								Format: MBZ							10:8	DeltaQPWhenFracDecr								Format:			U3					QP increase when the fractional va	ue of the target fram	ne byte	es increases by 1/8.					Value Name								3	[Default]							0-7							7:6	Reserved								Format:		MBZ					5:0	DeltaQPWhenUnderFlow								Format:			U6					QP increase when AvoidUnderflow	condition is true.							Value		N	lame					30	[Default]							5-40						17	31:0	Reserved								Format:		MBZ			### **MEDIA SURFACE STATE**		MEI	AIC	SU	RFA	CE	STA [*]	ΤΕ		--	-----	-----	----	------------	----	------------------	----		--	-----	-----	----	------------	----	------------------	----	Source: BSpec Exists If: //([MessageType] == 'Deinterlace') OR ([MessageType] == 'Sample_8x8') Size (in bits): 256 0x00000000, 0x00000000 This is the SURFACE_STATE used by only deinterlace, sample_8x8, and VME messages. 0 31: 31:30 Rotation	Value	Name		-------	-------------------------		00b	No Rotation or 0 Degree		01b	90 Degree Rotation		10b	180 Degree Rotation		11b	270 Degree Rotation	#### **Programming Notes** Rotation is only supported only with AVS function messages and not with HDC direct write and 16x8 AVS messages. #### 29:27 Reserved	Format:	MBZ		---------	-----	### 26:20 X Offset	A OTISEL							------------	---	--	--	--	--									Exists If:	//[Surface Format] is one of Planar Formats						Format:	PixelOffset[8:2]					This field specifies the horizontal offset in pixels from the **Surface Base Address** to the start (origin) of the surface. This field effectively loosens the alignment restrictions on the origin of tiled surfaces. Previously, tiled surface origin was (by definition) located at the base address, and thus needed to satisfy the 4KB base address alignment restriction. Now the origin can be specified at a finer (4-wide x 4-high pixel) resolution.	Value	Name	Description		---------	------	--		[0,127]		In multiples of 4 (low 2 bits missing)	### **Programming Notes** For linear surfaces and Packed Formats, this field must be zero.				<u>IV</u>	<u> 1EDIA_SURFA</u>	CE_STA	<u>re</u>			---	-------	--	--	---	-----------------	---------------------------------------	--				For Surface I	Surface Format with 8 bits per element, this field must be a multiple of 16.								For Surface Format with 16 bits per element, this field must be a multiple of 8.								26:16	Reserved	Reserved																	Exists If:	//[Sur	//[Surface Format] is not one of Planar Formats							Format:	MBZ							19:16	Y Offset	<u> </u>								Exists If:	ists If: //[Surface Format] is one of Planar Form		f Planar Forma	ats					Format: RowOffset[5:2]									•		vertical offset in rows		face Base Address to the start of the					Value	Name			escription					[0,15]		In multiples of 4	(low two bits i	missing)					Programming Notes									For linear surfaces and Packed Formats, this field must be zero.								15:12	Reserved									Format:				MBZ				11:0	Reserved				1.112				11.0	Reserveu									Format:				MBZ			1	31:18	Height									Format:			U14-	-1					•		height of the surface tht of the Y (luma) plar	•	els. For PLANAR surface formats, this					Value	Name	Description	on	Exists If					[0,16383]		representing heights [1,16384]	[Surface Type] != FM_STRBUF_*					[0, 16383]				[SurfaceType] == FM_STRBUF_*					Programming Notes									Height (field value + 1) must be a multiple of 2 for PLANAR_420 surfaces. If Vertical Line Stride is 1, this field indicates the height of the field, not the height of the frame.									When the format is structure buffer, this field is valid for reading the Data base Structure buffer (or) Test Vector Structure Buffer (or) Index Table. The Number of entries * Pitch should be less than 2^40.								17:4	Width						### **MEDIA SURFACE STATE**	Format: U1	14-1		------------	------		------------	------	This field specifies the width of the surface in units of pixels. For PLANAR surface formats, this field indicates the width of the Y (luma) plane.	Value	Name	Description	Exists If		-----------	------	---	----------------------------------		[0,16383]		representing widths [1,16384]	[Surface Type] != FM_STRBUF_*		[0,16383]		Contains bits [13:0] of the number of entries in the buffer - 1	[SurfaceType] == FM_STRBUF_*	#### **Programming Notes** - The Width specified by this field multiplied by the pixel size in bytes must be less than or equal to the surface pitch (specified in bytes via the Surface Pitch field). - Width (field value + 1) must be a multiple of 2 for PLANAR_420, PLANAR_422, and all YCRCB_* and Y16_UNORM surfaces, and must be a multiple of 4 for PLANAR_411 and Y8_UNORM_VA surfaces. - For deinterlace messages, the Width (field value + 1) must be a multiple of 8. - For Y8_UNORM_VA format width should be in multiple of 4, for Y16_UNORM_VA format width should be in multiple of 2, for Y1_UNORM format width should be in multiple of 32 - When Address Control = Mirror, the total width should be in multiple of 4bytes. Width (field value + 1) must be a multiple of 2 for PLANAR_420_16 For Y16_UNORM format width should be in multiple of 2 When the format is structure buffer, this field is valid for reading the Data base Structure buffer (or) Test Vector Structure Buffer (or) Index Table. The Number of entries * Pitch should be less than 2^40. #### 3:2 **Picture Structure** Specifies the encoding of the current picture.	Value	Name		-------	----------------------		00b	Frame Picture		01b	Top Field Picture		10b	Bottom Field Picture		11b	Invalid, not allowed	#### 1:0 Cr(V)/Cb(U) Pixel Offset V Direction	Default Value:	0		----------------	------		Format:	U0.2	#### **Description** Specifies the distance to the U/V values with respect to the even numbered Y channels in the V ### **MEDIA_SURFACE_STATE** direction ### **Programming Notes** This field is ignored for all formats except for PLANAR_420_8 and PLANAR_420_16 This offset has been increased from 2 bits to 3 bits to support U1.2 format, and the MSB bit is added as Pixel Offset V Direction MSB in DWord 2. Valid values for the combined field range from 0 to 4. #### 2 31:27 **Surface Format** ### **Description** Specifies the format of the surface. All of the Y and G channels will use table 0 and all of the Cr/Cb/R/B channels will use table 1. Note: Y8_UNORM_VA, Y16_UNORM and Y16_SNORM are used for all functions of sample_8x8 except AVS where rest of the formats are not used. These two formats are packed as 32bits in L1 though the individual pixels are either 8bpp or 16bpp respectively.	Value	Name	Description		-------	-------------------	--		0	YCRCB_NORMAL			1	YCRCB_SWAPUVY			2	YCRCB_SWAPUV			3	YCRCB_SWAPY			4	PLANAR_420_8			5	Y8_UNORM_VA	Sample_8x8 only except AVS		6	Y16_SNORM	Sample_8x8 only except AVS		7	Y16_UNORM_VA	Sample_8x8 only except AVS		8	R10G10B10A2_UNORM	Sample_8x8 only		9	R8G8B8A8_UNORM	Sample_8x8 AVS only		10	R8B8_UNORM (CrCb)	Sample_8x8 AVS only		11	R8_UNORM (Cr/Cb)	Sample_8x8 AVS only		12	Y8_UNORM	Sample_8x8 AVS only		13	A8Y8U8V8_UNORM	Sample_8x8 AVS only		14	B8G8R8A8_UNORM	Sample_8x8 AVS only		15	R16G16B16A16	Sample_8x8 AVS only		16	Y1_UNORM	Sample_8x8 only for boolean surfaces (1bit/pixel)		17	Y32_UNORM	For Integral Image (32bpp)		18	PLANAR_422_8	Sample_8x8 AVS only		19	FM_STRBUF_Y1	Structure Buffer 1bit/element Sample_8x8 only feature matching				MEDIA	_SURFACE_S	STATE					---	---	--------------------------------	-----------------------------	---------------------	--------	----------------------	--			20	FM_STRBUF_Y8	Structure Buffer 8 matching	bit/element Sampl	e_8x8	only feature				21	FM_STRBUF_Y16	Structure Buffer 1 matching	6bit/element Samp	ole_8x	8 only feature				22																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
FM_STRBUF_Y32	Used for Index Ta	ble only. 32bit per	entry.					23	PLANAR_420_16	Sample_8x8 AVS	only						24	R16B16_UNORM (CrCb)	Sample_8x8 AVS only							25	R16_UNORM (Cr/Cb)	Sample_8x8 AVS	Sample_8x8 AVS only						26	Y16_UNORM	Sample_8x8 AVS	only						Others	Reserved										Programming	n Notes						For FM	STRBUF_Y1 format, data			nment				26	Interlea	ve Chroma								Format: Enable This field indicates that the chroma fields are interleaved in a single plane rather than store two separate planes. This field is only used for PLANAR surface formats.																							ather than stored as			25		b(U) Pixel Offset U Dire	ection		1_					Default	Value:			0					Format:				U0.1									I							Descript							Specifie directio	es the distance to the U/ n	V values with respec	ct to the even num	bered	Y channels in the U				Programming Notes									This field is must be zero for all formats except PLANAR_420_16, PLANAR_420_8, PLANAR_422_8, YCRCB_NORMAL, YCRCB_SWAPUVY, YCRCB_SWAPUV, YCRCB_SWAPY.								24 Cr(V)/Cb(U) Pixel Offset V Direction MSB										Default Value:					0				Format:					U1				Description									Specifie directio	es the distance to the U/			bered	Y channels in the V		### MEDIA_SURFACE_STATE #### **Programming Notes** This field is must be zero for all formats except?PLANAR_420_16 and PLANAR_420_8 This offset has been increased from 2 bits to 3 bits as U1.2 format and this bit is used in conjunction with the bits in the Cr(V)/Cb(U) Pixel Offset V Direction field in DWord 1, which contain the rest of the bits for offset V-direction. Valid values for the combined field range from 0 to 4. ### 23 Memory Compression Mode Distinguishes Vertical from Horizontal compression.	Value	Name	Description		-------	---------------------------------------	-------------		0	Horizontal Compression Mode [Default]			1	Vertical Compression Mode		### 22 Memory Compression Enable Format: Enable This surface may contain compressed or compressible pixels. Memory compression will be attempted for writes to this surface. Reads from this surface will check for compressed data. #### **Programming Notes** The compression control must have 0 value for non-tileY modes. Please refer to vol1a Memory Data Formats chapter -- section Media Memory Compression for more details, including format restrictions. ### 21 Address Control	Value	Name	Description				-------	--------	-------------	--	--		0	CLAMP	Clamp				1	MIRROR	Mirror			#### 20:3 Surface Pitch Format: U18-1 pitch in Bytes This field specifies the surface pitch in (#Bytes - 1).	Value	Name	Description					---------------	------	---	--	--	--		[0,262143]		For other linear surfaces: representing [1B, 256KB]					[511, 262143]		For X-tiled surface: representing [512B, 256KB] = [1 tile, 512 tiles]					[127, 262143]		For Y-tiled surfaces: representing [128B, 256KB] = [1 tile, 2048 tiles]				#### **Programming Notes** For tiled surfaces, the pitch must be a multiple of the tile width! Half Pitch for Chroma is set, this field must be a multiple of two tile widths for tiled surfaces, or a multiple of 2 bytes for linear surfaces. The Surface Pitches of current picture and reference picture should be declared as the identical type in VDI mode with identical Height, Width and Format. If Media Memory Compression is enabled, the following max pitch size restriction must be ### **MEDIA SURFACE STATE** honored. For larger resolution, Media Memory compression Must be disabled. Tiling Mode Pixel Format Max Frame Width (bytes) Max Frame Width (pixels) Max Pitch (bytes) Legacy 4K 8bpp 16k 16k 16k + 127 16bpp 16k 8k 16k + 127 32bpp 16k 4k 16k + 127 64bpp 16k 2k 16k + 127 128bpp 16k 1k 16k + 127 TileYF 8bpp 8k 8k 8k + 63 16bpp 16k 8k 16k + 127 32bpp 16k 4k 16k + 127 64bpp 16k 2k 16k + 255 128bpp 16k 1k 16k + 255 TileYS 8bpp 16k 16k 16k + 255 16bpp 16k 8k 16k + 511 32bpp 16k 4k 16k + 511 64bpp 16k 2k 16k + 1023 128bpp 16k 1k 16k + 1023 For FM STRBUF Y* surface Formats, Max Pitch programmable is 2048 bytes Must be a power of 2. For FM_STRBUF_Y* surface Formats, Pitch must be a multiple of 64 bytes. 2 **Half Pitch for Chroma** Format: Enable This field indicates that the chroma plane(s) will use a pitch equal to half the value specified in the Surface Pitch field. This field is only used for PLANAR surface formats. **Programming Notes** Must be Zero as this field is not used. 1:0 Tile Mode Format: U2 Enumerated Type This field specifies the type of memory tiling (Linear, WMajor, XMajor, or YMajor) employed to tile this surface. See Memory Interface Functions for details on memory tiling and restrictions. **Value Description** Name 0h TILEMODE_LINEAR Linear mode (no tiling) 1h Reserved Reserved 2h TILEMODE_XMAJOR X major tiling 3h TILEMODE YMAJOR Y major tiling **Programming Notes** Refer to Memory Data Formats for restrictions on TileMode direction for the various buffer types. (Of particular interest is the fact that YMAJOR tiling is not supported for display/overlay buffers). The corresponding cache(s) must be invalidated before a previously accessed surface is accessed again with an altered state of this field. Linear surfaces can be mapped to Main Memory (uncached) or System Memory (cacheable, snooped). Tiled (X/Y/W) surfaces can only be mapped to Main Memory. 3 31:30 Reserved Format: MBZ 29:16 X Offset for U(Cb) **U14 Pixel Offset** Format: ### **MEDIA SURFACE STATE Description** For non planar surfaces this field specifies the horizontal offset in pixels from the Surface Base Address to the start (origin) of the surface. For Planar surfaces this field specifies the horizontal offset in pixels from the Y-plane origin to the start (origin) of the U(Cb) plane or the interleaved UV plane if Interleave Chroma is enabled. Resultant X-offset = 'X-offset of the surface (Y-plane)' + 'X offset for U(Cb)' For TileYS and TileYF this offset should be integral multiple of Tile width of Luma plane. **Programming Notes** For PLANAR_420 and PLANAR_422 surface formats, this field must indicate an even number of pixels. 15:14 **Reserved** Format: MB7 13:0 Y Offset for U(Cb) Format: U14 Row Offset **Description** For non planar surfaces this field specifies the vertical offset in pixels from the Surface Base Address to the start (origin) of the surface. For Planar surfaces this field specifies the vertical offset in rows from the Y-plane origin to the start (origin) of the U(Cb) plane or the interleaved UV plane if Interleave Chroma is enabled. Resultant X-offset = 'Y-offset of the surface (Y-plane)' + 'Y offset for U(Cb)' For TileYS and TileYF this offset should be integral multiple of Tile width of Luma plane. **Programming Notes** This field must be aligned by 4 bit[1:0] = 00 This field must be aligned by 4 bit[1:0] = 00 for all format besides PLANAR_420_* 4 31:30 **Reserved** Format: MBZ 29:16 X Offset for V(Cr) Exists If: //([Surface Format] is one of planar) AND ([Interleave Chroma] == '0') Format: U14 Pixel Offset **Description** For Planar surfaces this field specifies the horizontal offset in pixels from the Y-plane origin to the start (origin) of the V(Cb) plane. Resultant X-offset = 'X-offset of the surface (Y-plane)' + 'X offset for V(Cb)' For TileYS and TileYF this offset should be integral multiple of Tile width of Luma plane.					MEDIA_SURFACE_STA	ΓΕ					---	-------	---	----------	---	------------	---------------------------------	--	--				Programming Notes										For PLA pixels.	NAR_4	20 and PLANAR_422 surface formats, this fi	eld must	indicate an even number of					15	Reserve	d									Format:			MBZ						14:0	Y Offset	for V(Cr)								Exists If:])/([Surface Format] is one of planar) AND ([Int	erleave C	hroma] == '0')						Format:	U1!	5 Row Offset																				Description									igin) o	aces this field specifies the vertical offset in f the V(Cb) plane. Resultant Y-offset = 'Y-of)'								For Tile	YS and	TileYF this offset should be integral multiple	e of Tile	width of Luma plane.																		Programming Note	es									indicate a multiple of 4 (bit 0 & 1 = 00).						5	31	Vertical Line Stride										Format: U1 in lines to skip between logically adjacent lines										For Surfaces accessed via the sample_8x8 message:Specifies number of lines (0 of between logically adjacent lines - provides support of interleaved (field) surfaces. Other Surfaces:Vertical Line Stride must be zero.									30	Vertical	Line S	tride Offset								Format:	U	1 in lines of initial offset (when Vertical Line	Stride =	= 1)								cessed via the sample_8x8 message: Specific buffer, For Other Surfaces: Vertical Line S								beginnii	ig or tr	e buffer. For Other Surfaces: Vertical Line S Programming Note		set must be zero.						This fiel	d must	be set to 0 if Vertical Line Stride is 0.							29:24	Reserve									23.24	Format:			MBZ						23:20	Depth									25.20	Format: U4										This field specifies																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
the upper nibbles of the number of entries in the structure buffer.										Value	Name	Description		Exists If						[0-15]		Contains bits [31:28] of the number of entithe buffer - 1	ries in	[SurfaceType] == FM_STRBUF_*								Programming Note	es							This fiel	d is val	id for reading the Data base Structure buff	er (or) Te	st Vector Structure Buffer (or)			### **MEDIA SURFACE STATE** Index Table. The Number of entries * Pitch should be less than 2^40. 19:18 Tiled Resource Mode U2 Format: For Sampling Engine, Render Target, and Typed/Untyped Surfaces: This field specifies the tiled resource mode. For other surfaces: This field is ignored. **Value** Name **Description** 0h TRMODE NONE No tiled resource 1h TRMODE_TILEYF 4KB tiled resources 2h TRMODE_TILEYS 64KB tiled resources 3h Reserved **Programming Notes** If **Tile Mode** is not set to TILEMODE_YMAJOR, this field must be set to TRMODE_NONE. If this field is not set to TRMODE_NONE, the Surface Format must be one with 8, 16, 32, 64, or 128 bits per element, or one of the compressed texture modes (BC*, ETC*, EAC*, ASTC*). Additionally, YCRCB* formats are supported and treated as 16 bits per element, and the PLANAR_420_8 and PLANAR_422_8 formats are supported and treated as 8 bits per element on the Y plane and 16 bits per element on the UV plane (if Interleave Chroma is enabled) or 8 bits per element on the U and V planes (if Interleave Chroma is disabled. 17:7 Reserved MBZ Format: 6:0 **Surface Memory Object Control State** Default Value: 0h DefaultVaueDesc MEMORY_OBJECT_CONTROL_STATE Format: This 7-bit field is used in various state commands and indirect state objects to define cacheability and other attributes related to memory objects. 6 **Surface Base Address** 31:0 Format: GraphicsAddress[31:0] Specifies the low 32 bits of the byte-aligned base address of the surface. **Programming Notes** For SURFTYPE_BUFFER render targets, this field specifies the base address of first element of the surface. The surface is interpreted as a simple array of that single element type. The address must be naturally-aligned to the element size (e.g., a buffer containing R32G32B32A32_FLOAT elements must be 16-byte aligned).For SURFTYPE_BUFFER non-rendertarget surfaces, this field specifies the base address of the first element of the surface, computed in software by adding the surface base address to the byte offset of the element in the buffer. Mipmapped, cube and 3D sampling engine surfaces are stored in a 'monolithic' (fixed) format, and only require a single address for the base texture. Linear render target surface base addresses must be element-size aligned, for non-YUV surface formats, or a multiple of 2 element-sizes for YUV surface formats. Other linear surfaces have no alignment requirements (byte alignment is			M	DIA_SURFACE_STA	TE				---	-------	--	-----------------	-----	--	--				sufficient.)Linear depth buffer surface base addresses must be 64-byte aligned. Note that while render targets (color) can be SURFTYPE_BUFFER, depth buffers cannot.Tiled surface base addresses must be 4KB-aligned. Note that only the offsets from Surface Base Address are tiled, Surface Base Address itself is not transformed using the tiling algorithm.For tiled surfaces, the actual start of the surface can be offset from the Surface Base Address by the X Offset and Y Offset fields.Certain message types used to access surfaces have more stringent alignment requirements. Please refer to the specific message documentation for additional restrictions. In Feature matching, for indirect database fetch (index surface) the surface base address should be cacheline aligned						7	31:16	Reserved								Format:		MBZ					15:0	Surface Base Address High								Format: GraphicsAddress[47:32]								Specifies the high 16 bits of the byte-aligned base address of the surface. Refer to Surface Base Address [31:0] for programming notes applying to this field.					# ${\bf Memory Address Attributes}$				Mem	noryAddressAtt	ributes				--	---	---	---------------------	------------------------------------	--	--	--		Source:		BSpec							Size (in b	oits):	32							Default \	Value:	0x00000	0000							This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface. It defines the attributes for VDBOX addresses.								DWord	Bit		Description						0	31:15	Reserved									Format:			MBZ					14:13	Base Address	- Tiled Res	ource Mode							Format:			U2						For Media Su	rfaces: This	field specifies the tiled res	ource mode.						Value		Name	Description						00b	TRMODE_	NONE	TileY resources						01b	TRMODE_	TILEYF	4KB tiled resources						10b	TRMODE_	TRMODE_TILEYS 64KB tiled resources							11b	Reserved							12	Base Address - Row Store Scratch Buffer Cache Select									Format:			U1						Description									This field controls if the Row Store is going to store inside Media Cache (rowstore cache) or to LLC.									be programn	ned with the	-2 -2	ache), the corresponding base address will edia cache. The programming table is in						Value	Name		Description						0		Buffer going to LLC.	·						1		Buffer going to Internal N	Лedia Storage.					11	Reserved									Format: MBZ							10 Base Address - Memory Compression Mode Format: U1																				Value	don media i	vicinory compression for t	Name							MemoryAd	dressAtt	tributes				---	-----	--	------------------------	--------------	----------	----	--				0b Horizontal Compression Mode											Programmin	g Notes						Must be zero;	vertical compression i						-	9	Base Address -	- Memory Compress	ion Enable							Format:			Enable						Memory compression will be attempted for this surface.								8:7	Base Address -									Format:	HEVC_ARBITRA	ATION_PRIORI	TY					6:1	Base Address - Index to Memory Object Control State (MOCS) Tables									Format:				U6					The index to define the L3 and system cache memory properties. The details of the controls are further defined in L3 and Page walker (memory interface) control registers.									The field is defined to populate 64 different surface controls to be used concurrently. Related control registers can be updated during runtime.								0	Reserved						# **Merged Media Block Message Header**			MH_MBM - Merg	ed Me	dia Block M	lessage Header				------------	---	---	---------------	----------------------	-----------------------------------	--------	--		Source:		EuSubFunctionDataPo	ort1						Size (in b	oits):	256							Default \	Default Value: 0x00000000, 0x000000000, 0x000000000, 0x00000000								DWord	Bit			Description		Ī			0	31:0	X Offset				1					Format:			S31	1				X offset (in bytes) of the upper left corner of the block into the surface.								1	31:0	Y Offset				- 1					Farmati			521	-					Format: Y offset (in rows) of the uppe	or loft corne	or of the block into	S31	J					Tonset (in rows) or the uppe	er left come	er of the block into	the Surface.				2	31:0	Merged Media Block Message Control																			IHC_MBM_								Specifies the Merged messag	je subtype	and additional inpu	ut parameters.				3	31:0	Mask				1									1					Format:			U32						The Mask is ignored by the N reads, and always enabled to			all Dwords are always returned on				4	31:0	FFTID				_														Format:		MHC_FFTID							Fixed Function Thread ID							57	95:0	Reserved				1														Format:			MBZ						Ignored						# **Merged Media Block Message Header Control**	MF	HC_N	/IBM_	CONT	ROL - Merged Medi Control	ia Block	Message Header		-----------------------	-------																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
---	-------------------------	--	-------------	--		Source: Size (in b		32	Spec 2 <000000000					DWord								0		Message Mode																Specifie	s the Med	ia Block Read message is Normal	subtype.					Value	Name		Description					00h	Normal	The Block Height and Block Widt Mask is ignofed by a media bloc						Others	Reserved	Reserved.					29	Reserve	ed															Format			MBZ					Ignored							28:24	Sub-Re	gister Offs	et														Format	:			U5				field is ig	gnored (re	register offset in unit of bytes of a served) for a media block write m g 0, is valid.	_	——————————————————————————————————————						Programming	g Notes					Sub-Register Offset and Register Pitch Control allow software to assembly multiple media block reads directly into a shared GRF register set. For example, if both are set to zero, the read data are written to GRF registers, aligning to the least significant bits of the first register, and the register pitch is equal to the next power-of-2 that is greater than or equal to the Block Width. If Register Pitch Control is non-zero, multiple media block read messages sharing the same Register Pitch Control but with different Sub-Register Offset can fill in the same set of GRF registers with media block data line interleaved.										Restricti	ion					For the	Sampler C	ache Data, this field must be zero	D.					Minimu	ım BasePit	ed as the next the power-of-2 tha ch is 1 DWord. et must be aligned to BasePitch (t	3		### MHC_MBM_CONTROL - Merged Media Block Message Header Control well). When Register Pitch Control = 0, Sub-Register Offset must align to BasePitch*Block Height, ensuring the output fits in a single GRF register. In general (and specifically when Sub-Register Offset is greater than 0), when the resulting data will cross a GRF register boundary, the data must be placed symmetrically between GRF registers. 23:22 Reserved Format: MBZ Ignored 21:16 Block Height Format: U6 Height in rows of block being accessed. Range = [0,63] representing 1 to 64 rows Restriction If Block Width (bytes), then Maximum Block Height (rows) is constrained by (# Dwords width) * (# rows) <= 64 Dwords. 15:10 Reserved Format: MBZ Ignored 9:8 **Register Pitch Control** U2 Format: Controls the register pitch for a Merged Media Block Read message. This field is ignored (reserved) for a media block write message. Register Pitch Control is only allowed to be nonzero when Block Width is a multiple of DWords. Restriction: For the Sampler Cache Data, this field must be zero. **Value Name Description** 0h RPC 1 [Default] 1 Block 1h RPC 2 2 Blocks RPC_4 4 Blocks 3h Restriction BasePitch is defined as the next the power-of-2 that is greater than or equal to the Block Width. The effective register pitch (RPC*BasePitch)+SRO must be less than or equal to 32 bytes (to fit in a single GRF register). 7:6 Reserved Format: MBZ Ignored 5:0 **Block Width**	MH	MHC_MBM_CONTROL - Merged Media Block Message Header Control						----	--	---------	----	--	--				Format:	U6					Width in bytes of the block being accessed. Range = [0,31] representing 1 to 32 Bytes.					### **Message Descriptor - Render Target Write**			Message	e Descriptor - Render Ta	arget	Write			---	--------	---	---	--	-------------	--		Source:		BSpec	-					Size (in b	oits):	32						Default \	/alue:	0x00000000						DWord	Bit		Description					0	31	Reserved		T						Format:		MBZ					30	Data Format								Format:			U1					Value	Name		Description					0	Single Precision	321	•					1	Half Precision	161	b							•							Programming Note							This field is applicable for Render Target Write Messages ONLY.							29:14	Reserved								Format:		MBZ					13	Per-Sample PS outputs enable This bit must not be set when Render Target is not bound to pixel-shader OR when Render Target is not multisampled. This bit must be set when PS runs at sample-frequency i.e. pixel shader dispatch mode is PER_SAMPLE. By setting this bit, PS sends Render Target Write Message that outputs color depth(optional) and stencil(optional) phases on per sample basis for each slot. When Render Target is multisampled and this bit is reset, Render Target outputs color, depth(optional) at stencil(optional) at pixel frequency. It should be noted that the latter case is applicable for per-pixel PS invocation.						12 Last Render Target Select This bit must be set on the last render target write message ser single render target pixel shaders, this bit is set on all render tar render target pixel shaders, this bit is set only on messages sent must be zero for SIMD8 Image Write message. Programming Notes In general, when threads are not launched by 3D FF, this bit must be set on the last render target pixel shaders, this bit is set only on messages sent must be zero for SIMD8 Image Write message.			er targe s sent to	et write messages. For multiple to the last render target. This bit					11		whether slots 15:0 or slots 31:16 are used ludes the antialias alpha, multisample co				### **Message Descriptor - Render Target Write** present also includes the X/Y addresses and pixel enables. For 8- and 16-pixel dispatches, SLOTGRP_LO must be selected on every message. For 32-pixel dispatches, this field must be set correctly for each message based on which slots are currently being processed.	Value	Name	Description		-------	------------	--------------------------------------		0	SLOTGRP_LO	choose bypassed data for slots 15:0		1	SLOTGRP_HI	choose bypassed data for slots 31:16	### **Programming Notes** For SIMD8 Image Write message thsi field MBZ. #### 10:8	Message Type This field specifies the type of render target message. For the SIMD8_DUALSRC_xx messages, the low bit indicates which slots to use for the pixel enables, X/Y addresses, and oMask.	Value	Name	Description		-------	------------------	---		000b	SIMD16	SIMD16 single source message		001b	SIMD16_REPDATA	SIMD16 single source message with replicated data		010b	SIMD8_DUALSRC_LO	SIMD8 dual source message, use slots 7:0		011b	SIMD8_DUALSRC_HI	SIMD8 dual source message, use slots 15:8		100b	SIMD8_LO	SIMD8 single source message, use slots 7:0		111b		It's only supported when accessing <i>Tiled Memory</i> . Using this Message Type to access linear <i>(Untiled)</i> memory is UNDEFINED.	#### **Programming Notes** the above slots indicated are within the 16 slots selected by **Slot Group Select**. If SLOTGRP_HI is selected, the SIMD8 message types above reference slots 23:16 or 31:24 instead of 7:0 or 15:8, respectively. SIMD16_REPDATA message must not be used in SIMD8 pixel-shaders. ### 7:0 **Reserved** Format: MBZ # **Message Descriptor - Sampling Engine**			Messag	e Descriptor	- Sa	ampling En	gine		------------	--------	--	--	--------	-----------------------	--------------------------------		Source:		BSpec						Size (in b	its):	32						Default V	/alue:	0x00000000						DWord	Bit	Description						0	31	ЕОТ							30	Return Format								Format:				U1												Value	Name		De																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
escription				0	32-bit	Retu	rn data is 32b					1	16-bit	Retu	rn data is 16b								• •					T1: C: 11	-		ming Notes	SILADA O SILADOO (CA					et to 32-bit for messa et to 32 for resinfo, LC	_		SIMD4x2 or SIMD32/64. ages.			29	SIMD Mode[2]								Format:				U1				This field is the upper bit of the 3-bit SIMD Mode field.							28:25	Message Length								Format:				U4				This field specifies to request message pay		GRF r	egisters starting fro	om (src) to be sent out on the					Value			Name				[1,15]																		gramı	ming Notes			_		A value of 0 is considered erroneous.							24:20	Response Length								Format: U5								This field indicates the number of 256-bit registers expected in the message response.								10.4.53	Value			Name				[0,16]									Pro	gramı	ming Notes					A value () indicates				response. The largest					l is 16 GRF registers.	age at	oes not expect any	response. The largest				L ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '						19	Message Descriptor - S Header Present	<u> </u>		---------------	---	--		13	Format:	Enable			Des	cription				der phase. If the header is not present (this field			zero), all of the fields normally contained in th	·			If the header is not present, in some cases the the Response Length. For more details, please section, under <i>Shared Functions</i>	e Write Channel Mask fields are set according to e refer to the Payload Parameter Definition		18:17	SIMD Mode[1:0]				Format:	U2			Des	cription			Specifies the SIMD mode of the message beir	`			A third bit SIMD Mode[2] is added to this field range from 0-7. SIMD Mode[2:0] SIMD 000 Reserved 001 SIMD8 010 SIMD16 011 SIMD32/64 100 Reserved 101 SIMD8H 110 SIMD16H 111 Reserved	d (bit 29 of message descriptor). Encodings now			TTTTRESCIVE			16:12				16:12	Message Type Format:	U5		16:12	Message Type Format:	U5 more details, please refer to Message Format		16:12 11:8	Message Type Format: Specifies the type of message being sent. For				Message Type Format: Specifies the type of message being sent. For section for the definition of these 5 bits Sampler Index Format:	more details, please refer to Message Format U4			Message Type Format: Specifies the type of message being sent. For section for the definition of these 5 bits Sampler Index Format: Specifies the index into the sampler state table.	more details, please refer to Message Format U4			Message Type Format: Specifies the type of message being sent. For section for the definition of these 5 bits Sampler Index Format: Specifies the index into the sampler state table cache_flush type messages.	U4 e. Ignored for Id, resinfo, sampleinfo, and			Message Type Format: Specifies the type of message being sent. For section for the definition of these 5 bits Sampler Index Format: Specifies the index into the sampler state table cache_flush type messages. Value	more details, please refer to Message Format U4			Message Type Format: Specifies the type of message being sent. For section for the definition of these 5 bits Sampler Index Format: Specifies the index into the sampler state table cache_flush type messages.	U4 e. Ignored for Id, resinfo, sampleinfo, and			Message Type Format: Specifies the type of message being sent. For section for the definition of these 5 bits Sampler Index Format: Specifies the index into the sampler state table cache_flush type messages. Value [0,15]	U4 e. Ignored for Id, resinfo, sampleinfo, and			Message Type Format: Specifies the type of message being sent. For section for the definition of these 5 bits Sampler Index Format: Specifies the index into the sampler state table cache_flush type messages. Value [0,15]	U4 e. Ignored for Id, resinfo, sampleinfo, and Name			Message Type Format: Specifies the type of message being sent. For section for the definition of these 5 bits Sampler Index Format: Specifies the index into the sampler state table cache_flush type messages. Value [0,15] Program	U4 e. Ignored for Id, resinfo, sampleinfo, and Name nming Notes must be a multiple of 2 (even).			Message Type Format: Specifies the type of message being sent. For section for the definition of these 5 bits Sampler Index Format: Specifies the index into the sampler state table cache_flush type messages. Value [0,15] Program • For the deinterlace message, this field in the sample of the sampler state table cache_flush type messages.	U4 e. Ignored for Id, resinfo, sampleinfo, and Name nming Notes must be a multiple of 2 (even).	# Message Descriptor - Sampling Engine Specifies the index into the binding table. Ignored for cache_flush type messages. Values of 255 and 253 indicate stateless. 254 indicates SLM. 252 indicates bindless. Value Name [0,255] # MFD_MPEG2_BSD_OBJECT Inline Data Description		N	MFD_	MPE	G2_BSD_	OBJECT Inline Data Description		---	---------	----------	------------	--	--		Source:		V	ideoCS				Size (in b	oits):	6	4				Default \	/alue:	0	x000000	000, 0x0000000	0		DW01	corresp	onds to	DW34	of the MFD_M	PEG2_BSD_OBJECT.		DWord	Bit				Description		0	31:24	Slice H	orizont	al Position					Format	t:		U8 in Macroblocks				This fie	eld indica	ates the horizor	ntal position of the first macroblock in the slice.			23:16	Slice Ve	ertical P	osition					Format			U8 in Macroblocks				This fie	eld indica	ates the vertical	position of the first macroblock in the slice.			15:8	Macrob	olock Co	ount					Format			U8 in Macroblocks							r of macroblocks in the slice, including skipped macroblocks.		7 Slice Concealment Override Bit This bit forces hardware to handle the current slice in Conceal or Deo to one, VIN will force the current slice to do concealment or to decode if the slice boundary has errors or not.				ndle the current slice in Conceal or Deocde Mode. If this bit is set nt slice to do concealment or to decode from bitstream regardless					Value	Name		Description				1h		VIN will use dri boundary	iver-provided "Slice Concealment Type" regardless of valid slice				0h		-	ogram "Slice Concealment Type" to '0'. VIN will set "Slice Type" depending if the slice boundary has error or not			6	This bit	t can be	nent Type Bit forced by drive ary errors.	er ("Slice Concealment Override Bit") or set by VINunit depending				Value	Name		Description				1h		force the value If the next slice	eal all MBs of the slice regardless of bitstream. (If driver does not of this bit, VIN will set this bit depending on slice boundary error. e position of the current slice is out-of-bound or the same or e current slice start position, VIN will set this bit for the next slice)				0h			de MBs from the bitstream until the bitstream is run-out. Then eal the remaining MBs.							Programming Notes						nis bit from 0 to oundary errors.	1 internally if "Slice Concealment Disable Bit" is "0" and VIN				MFD_N	IPEG2	BSD_OBJECT Inline Data Description				---	-------	------------------------------	--------------	--	--	--			5	Last Pic S										support error concealment at the end of a picture.						Value	Name	Description						1h		The current Slice is the last Slice of the entire picture						0h		The current Slice is not the last Slice of current picture					4	Reserved							3	Is Last ME	3							Value	Name	Description						1h		The current MB is the last MB in the current Slice						0h		The current MB is not the last MB in the current Slice					2:0	First Macı	oblock Bi	t Offset						Format:		U3						This field	provides th	ne bit offset of the first macroblock in the first byte of the input bitstream.				1	31:29	Reserved								Format:		MBZ					28:24	Quantizer	Scale Cod							Format:		U5								antizer scale code of the inverse quantizer. It remains in effect until changed						by a decode		zer scale code in a macroblock. This field is decoded from the slice header					23:17	1								Format:		MBZ					16:8	Next Slice Vertical Position								Format:		U9 in macroblocks						This																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																									
field	indicates t	ne vertical position (in macroblock units) of the first macroblock in the next						slice.										Programming Notes								used for error concealment. In the case that current slice is the last slice,								to the height of the picture (field picture will be in height of field) (since y- led numbering).					7.0								7:0		Horizont	U8 in macroblocks						Format:	indicates t	ne horizontal position (in macroblock units) of the first macroblock in the						next slice.	indicates ti	ie nonzontal position (in macrobiock units) of the first macrobiock in the								Programming Notes						This field	is primarily	used for error concealment. In the case that current slice is the last slice,							should set				### MFX_REFERENCE_PICTURE_BASE_ADDR			MFX_REFER	RENCE_PICTURE_BA	SE_ADDR				------------	--------	--	---	--	--	--		Source:		VideoCS						Size (in b	oits):	64						Default \	√alue:	0x00000000, 0x0000	00000					DWord	Bit		Description					01	63:48	Reserved																Format:		MBZ					47:32	Reference Picture Addre	ss [n] High															Format:	GraphicsAddress[47:32]							This field is for the upper	range of Reference Picture Addr	esses					31:6	Reference Picture Addres	ss [n]							Format:	GraphicsAddress[31:6]							and backward references,	i.e. L0+L1 total = 16 max. Any er EG2, worst case, can use up to 2	frame-based surfaces for both forward htry can be assigned to L0 or L1 or YUV frame-based surfaces for both						 P-MB : RefAddr[0] - current frame) 	temporal closest previous field	of a reference frame (can be the						 RefAddr[1]- next te from the current fra 		a reference frame (must be different						DXVA Spec. RefAddr[0-15]	is indexed by frame_storeID »1. the list. All invalid addresses mu	of the RefFrameList[16] defined in AVC It is not a packed list, i.e. invalid st be set to a valid address RefAddr[0]						Programming Notes								max num of active referen		are not needed as indicated by the venting data corruption (error, fault legal location.					5:0	Reserved																Format:		MBZ			# **Motion Decision Setting Parameters0**				Motion Dec	cision Setting Para	meters0					------------	---------	----------------------------	--------------------------	--------------------------------	--	--	--	--		Source:		В	Spec							Size (in b	its):		92							Default V	'alue:	0	x00000000, 0x000000	000, 0x00000000, 0x00000000,	0x00000000, 0x00000000					Please n	ote tha	at DW0-	1, correspond to DW	64-69 of WiGig Parameters.						DWord	Bit		·	Description						0	31:30	Reserve	 ed									Format	::		MBZ					-	29	Intra16	x16 prediction Enab	ole									Value		Name							1	Int	ra16x16 enabled								0	Int	ra16x16 disabled									'											Programming Note	s							Restric	ction: This Field is alw	vays enabled.							28	Intra8x8 prediction Enable											Value		Name							1		Intra8x8 enabled								0 Intra8x8 disabled									27	Intra4x4 prediction Enable											Value	Name								1		Intra4x4 enabled								0		Intra4x4 disabled						-	26:21	Reserved										Format	:		MBZ					=	20	Constra	ained Intra Predictio	on Flag								Exists I	f: //V	ViDi and WiGig Modes								It is set	to the value of the s	yntax element in the current a	ctive PPS.							Value	Name	D	escription							0	Intra and Inter		eighboring MB to be used in the								Neighboring MB	intra-prediction encoding of								1	Intra Neighboring MB	,	ng Intra MBs in the intra-prediction If the neighbor is an inter MB, it is					-	19:0	Reserve	ed									Format			MBZ							Motion Decision Setting Para	ameters0		---	-------	--	----------		1	31:24	I-Intra 16x16 Intra 16x16 prediction mode bias for I-frame				23:16	I-Intra 8x8 Intra 8x8 prediction mode bias for I-frame				15:8	I-Intra 4x4 Intra 4x4 prediction mode bias for I-frame				7:0	Reserved					Format:	MBZ		2	31:24	P-Intra 16x16 Intra 16x16 prediction mode bias for P-frame				23:16	P-Intra 8x8 Intra 8x8 prediction mode bias for P-frame				15:8	P-Intra 4x4 Intra 4x4 prediction mode bias for P-frame				7:0	Reserved					Format:	MBZ		3	31:0	Reserved					Format:	MBZ		4	31:0	Reserved					Format:	MBZ		5	31:24	Block BasedSkip Threshold -QP50-51				23:16	Block BasedSkip Threshold -QP48-49				15:8	Block BasedSkip Threshold -QP46-47				7:0	Block BasedSkip Threshold -QP44-45		# **Motion Decision Setting Parameters 1**			Motion Decision Settin	ng Parameters1					------------	---------	--	----------------	--	--	--		Source:		BSpec						Size (in l	oits):	320						Default \	Value:	0x00000000, 0x00000000, 0x00000000, 0 0x00000000, 0x00000000, 0x00000000, 0						Please r	note th	at DW0-9, correspond to DW70-79 of WiGig Pa	rameters.					DWord	Bit	Des	cription					0	31:24	Block BasedSkip Threshold -QP42-43							23:16	Block BasedSkip Threshold -QP40-41							15:8	Block BasedSkip Threshold -QP38-39							7:0	Block BasedSkip Threshold -QP36-37						1	31:24	Block BasedSkip Threshold -QP34-35							23:16	Block BasedSkip Threshold -QP32-33							15:8	Block BasedSkip Threshold -QP30-31							7:0	Block BasedSkip Threshold -QP28-29						2	31:24	Block BasedSkip Threshold -QP26-27							23:16	Block BasedSkip Threshold -QP24-25							15:8	Block BasedSkip Threshold -QP22-23							7:0	Block BasedSkip Threshold -QP20-21						3	31:24	Block BasedSkip Threshold -QP18-19							23:16	Block BasedSkip Threshold -QP16-17							15:8	Block BasedSkip Threshold -QP14-15							7:0	Block BasedSkip Threshold -QP12-13						4	31:24	Block BasedSkip Threshold -QP10-11								Format:	U4.4							This field is used as Block BaseSkip threshold - for conditional replenishment, after checking the ZMV location, a MB will be coded as skip if all subblocks (4x4) distortions are less than or equal to this threshold.							23:0	Reserved								Format:	MBZ					5	31:0	Reserved						6	15:12	Reserved						79	95:0	Reserved								Format:	MBZ				### **MPEG2**			MPEG2							--------------	--------	---	--	--	--	--	--		Source:		VideoCS							Size (in b	oits):	16							Default \	/alue:	0x0000000							DWord	Bit	Description							0	15:6	Reserved									Format: MBZ								5	Missing EOB Error This flag indicates missing EOB SEs coded in the bit-stream. Missing EOBs are concealed to match CBP of the error MB.								4	Inconsistent starting position Error - overlapping MBs This flag indicates two slices overlapping one another by one or more MBs. Duplicate MBs decoded off the second slice shall be discarded.								3	Slice out-of-bound Error This flag indicates a slice is running beyond the width of the picture. Out-of-bound MBs shall be discarded.								2	Premature frame end Error This flag indicates missing slices/MBs coded in the bit-stream of a frame. One or more MBs are concealed to reach end of picture.								1	Inconsistent starting position Error - Missing MBs This flag indicates one or more MBs are being concealed due to inconsistent MB starting and ending positions between slices.								0	MB Concealment Flag . Each pulse from this flag indicates one MB is concealed by hardware.						# **MSAA Sample Number Message Address Control**	MACD_MSAA_SN - MSAA Sample Number Message Address								---	---																																																																																																																																																																																																																																																																																																																																				
--	---	--	--	--				ontroi						oits):	32								0x0000000							Bit	Description							31:4	Reserved																Format:	MBZ							Ignored							3:0	Sample Number																Format:	L	J4						Specifies the sample number for the slot. If the sample number is larger than the Number of Multisamples in the Surface State, then the access is out of bounds.								oits): /alue: Bit 31:4	BSpec oits): 32 Value: 0x00000000 Bit 31:4 Reserved Format: Ignored 3:0 Sample Number Format: Specifies the sample number for the sample sampl	BSpec oits): 32 Value: 0x00000000 Bit Description 31:4 Format: MBZ Ignored 3:0 Sample Number Format: L Specifies the sample number for the slot. If the sample number is large				# MsgDescpt31					MsgDescpt31			------------	--------------------	--	----	-----------------------	--		Source:	Source: Eulsa						Size (in b	Size (in bits): 29						Default \	/alue:	0x00000000					DWord	Bit			Description			0	28:25	Message Length This field specifies the number of 256-bit MRF registers starting from <curr_dest> to be sent out on the request message payload. Valid value ranges from 1 to 15. A value of 0 is considered erroneous.</curr_dest>							Value		Name					1-15	Nu	mber of MRF Registers				24:20	Response Length This field indicates the number of 256-bit registers expected in the message response. The valid value ranges from 0 to 16. A value 0 indicates that the request message does not expect any response. The largest response supported is 16 GRF registers.							Value		Name					0-16		Number of Registers				19	Header Present							Format:		Enable			,		If set, indicates that the message includes a header. Depending on the target shared function, this field may be restricted to either enabled or disabled. Refer to the specific shared function section for details.						18:0	Function Control This field is intended to control the target function unit. Refer to the section on the specific target function unit for details on the contents of this field.				### **No Event Data Payload** MDP_NO_EVENT - No Event Data Payload Source: EuSubFunctionGateway Size (in bits): 256 0x00000000, 0x00000000 DWord Bit Description 0..7 255:0 Reserved Format: MBZ # **Normal Media Block Message Header**			MH_MB - Normal Med	ia Block Mess	sage Header						------------	---	--	---------------	-------------	--	--	--	--		Source:		EuSubFunctionDataPort1								Size (in b	oits):	pits): 256								Default \	Default Value: 0x00000000, 0x00000000, 0x00000000, 0x00000000									DWord	Bit		Description							0	31:0	X Offset																				Format:		S31								X offset (in bytes) of the upper left corner of the block into the surface.										Programming Notes										Must be DWord aligned (Bits 1:0 MBZ) for the write form of the message.								1	31:0	Y Offset																				Format:	S31									Y offset (in rows) of the upper left corner of the block into the surface.								2	31:0	Normal Media Block Message Control																				Format: MHC_MB_CONTROL										Specifies the Normal message subtype and additional input parameters.								3	31:0	Mask										Format:		U32								The Mask is ignored by the Normal Media Block message: all Dwords are always returned on										reads, and always enabled to be written on writes.								4	31:0	FFTID																				Format:	MHC_FFTID									Fixed Function Thread ID								57	95:0	Reserved										Format:	М	BZ								Ignored							# **Normal Media Block Message Header Control**	MHC_MB_CONTROL - Normal Media Block Message Header									--	--------	--	----------	---	-----------	---------------------	--						Control					Source:		BSpec							Size (in b	oits):	32							Default \	/alue:	0x	00000000						DWord	Bit			Description					0	31:30	Messag	e Mode								•		pretation of M0.3 (Pixel or Byte Mask). For the Sa having as if always set to NORMAL.	ampler Ca	che Data Port, this					Value	Name	Description							00h	Normal	The Block Height and Block Width fields are specified in this Dword. The Mask is ignored by a media block read message and behaves as if it is set to all ones for a media block write message.							Others	Reserved	Reserved.																Programming Notes									The Media Block Read message is Normal subtype when both Sub-Register Offset and Register Pitch Control are zero. The Media Block Read message is Merged subtype when either Sub-Register Offset or Register Pitch Control are non-zero.								29	Reserved																		Format:			MBZ						Ignored	I							28:24	Sub-Register Offset									Default	Value:			0														Format	•			U5					The sub-register offset must be 0 for Normal Media Block Read message subtype. This field is ignored (reserved) for a media block write message.								23:22	Reserve	d																	Format		MBZ							Ignored	l							21:16	Block H	eight					### MHC_MB_CONTROL - Normal Media Block Message Header **Control** Format: U6 Height in rows of block being accessed. Range = [0,63] representing 1 to 64 rows Restriction If Block Width (bytes), then Maximum Block Height (rows) is constrained by (# Dwords width) * (# rows) <= 64 Dwords. 15:10 Reserved MBZ Format: Ignored **Register Pitch Control** Default Value: Format: U2 The register pitch must be 0 for a Normal Media Block Read message. This field is ignored (reserved) for a media block write message. 7:6 Reserved MBZ Format: Ignored 5:0 **Block Width** Format: U6 Width in bytes of the block being accessed. For normal Media Block Writes, Range = [0,63] representing 1 to 64 Bytes. For normal Media Block Reads and for masked and merged Media Block messages, Range = [0,31] representing 1 to 32 Bytes. **Programming Notes** Must be DWord aligned for the write form of the message. # oMask Message Data Payload Register	N	1DPR	OMASK - oMask Message Data Pa	ayload Register					---------------	-------	--	----------------------	--	--																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					
--		Source:		BSpec						Size (in bits):	256						Default Valu	ue:	0x00000000, 0x00000000, 0x00000000, 0x00000000	0000000, 0x00000000,					DWord	Bit	Description						0	31:16	oMask1								Format:	U16							oMask for Pixels [15:0] of Slot 1. Not used for Slot Group	HI.						15:0	oMask0																Format:	U16							oMask for Pixels [15:0] of Slot 0. Not used for Slot Group HI.						1	31:16	oMask3								Format:	U16							oMask for Pixels [15:0] of Slot 3. Not used for Slot Group) HI.						15:0	oMask2								Format:	U16							oMask for Pixels [15:0] of Slot 2. Not used for Slot Group	HI.					2	31:16	oMask5								Format:	U16							oMask for Pixels [15:0] of Slot 5. Not used for Slot Group) HI.						15:0	oMask4								Format:	U16							oMask for Pixels [15:0] of Slot 4. Not used for Slot Group	HI.					3	31:16	oMask7								Format:	U16							oMask for Pixels [15:0] of Slot 7. Not used for Slot Group	HI.						15:0	oMask6						N	MDPR.	OMASK - oMask Message	Data Payload Register		---	-------	--	----------------------------------									Format:	U16				oMask for Pixels [15:0] of Slot 6. Not used f	or Slot Group HI.		4	31:16	oMask9					Farmati	1110				Format: oMask for Pixels [15:0] of Slot 9. Used only	if Slot Group HL or SIMD16				Gividask for Fixels [13.0] of Slot 3. Oscu offing	in Siot Group (in or Silvie) to.			15:0	oMask8					Format:	U16				oMask for Pixels [15:0] of Slot 8. Used only								5	31:16	oMask11					_					Format:	U16				oMask for Pixels [15:0] of Slot 11. Used only	y it Stot Group Hi of Stivid to.			15:0	oMask10										Format:	U16				oMask for Pixels [15:0] of Slot 10. Used only	y if Slot Group HI or SIMD16.		6	31:16	oMask13										Format:	U16				oMask for Pixels [15:0] of Slot 13. Used only	y if Slot Group HI or SIMD16.			15:0	oMask12										Format:	U16				oMask for Pixels [15:0] of Slot 12. Used only	y if Slot Group HI or SIMD16.		7	31:16	oMask15	1									Format:	U16				oMask for Pixels [15:0] of Slot 15. Used only	y if Slot Group HI or SIMD16.			15:0	oMask14			M	MDPR_OMASK - oMask Message Data Payload Register							---	---	---------	-----	--	--	--												Format:	U16						oMask for Pixels [15:0] of Slot 14. Used only if Slot Group HI or SIMD16.						# **OM Replicated SIMD16 Render Target Data Payload**	MDP_RTW_M16REP - OM Replicated SIMD16 Render Target Data							--	---	------------------	-----------	-------------	--				Paylo	ad				Source:	BSpec						Size (in bits):	512						Default Value:	Default Value: 0x00000000, 0x000000000, 0x000000000, 0x00000000						DWord	Bit			Description			0.0-0.7	255:0	oMask							Format:	ľ	MDPR_OMASK					Slots [15:0] oMa	ask				1.0-1.7 255:0		RGBA							Format:		MDPR_RGBA					RGBA for all slo	ts [15:0]			### **OM S0A SIMD8 Render Target Data Payload**	MDP_RTV	V_MA8 -	OM SOA SIMD	8 Render Target Data Payload		-----------------	------------	----------------------------	---		Source:	BSpec				Size (in bits):	1536				Default Value:	0x00000000), 0x00000000, 0x00000000	0, 0x00000000, 0x00000000, 0x00000000,			0x00000000), 0x00000000, 0x00000000	0, 0x00000000, 0x00000000, 0x00000000,			0x00000000), 0x00000000, 0x00000000	O, 0x00000000, 0x00000000, 0x00000000,					O, 0x00000000, 0x00000000, 0x00000000,				· ·	0, 0x00000000, 0x00000000, 0x00000000,				•	0, 0x00000000, 0x00000000, 0x00000000,					0, 0x00000000, 0x00000000, 0x000000000,			0x00000000), 0x000000000, 0x00000000	0, 0x00000000, 0x00000000, 0x00000000		DWord	Bit		Description		0.0-0.7	255:0	Source 0 Alpha					Format:	MDP_DW_SIMD8				Slots [7:0] Source 0 Alph	na		1.0-1.7	255:0	oMask					Format:	MDPR_OMASK				Slots [7:0] oMask. Upper	r half ignored.		2.0-2.7	255:0	Red					Format:	MDP_DW_SIMD8				Slots [7:0] Red			3.0-3.7	255:0	Green					Format:	MDP_DW_SIMD8				Slots [7:0] Green			4.0-4.7	255:0	Blue					Format:	MDP_DW_SIMD8				Slots [7:0] Blue			5.0-5.7	255:0	Alpha					Format:	MDP_DW_SIMD8				Slots [7:0] Alpha		# **OM S0A SIMD16 Render Target Data Payload**	MDP_RTW_M	1A16 - OM	SOA SIMD16	Render Target Data Payload				-------------------	--	---------------------------------------	--	--	--		Source: B	Spec						Size (in bits): 2	816							0x00000000, 0x00000000, 0x00000000, 0x00000000							0x00000000, 0x00000000, 0x00000000, 0x00000000									00000000, 0x00000000, 0x00000000,							00000000, 0x00000000, 0x00000000, 00000000, 0x00000000, 0x00000000,							00000000, 0x00000000, 0x00000000,							00000000, 0x00000000, 0x00000000,							00000000, 0x00000000, 0x00000000,							00000000, 0x00000000, 0x00000000,							00000000, 0x00000000, 0x00000000, 00000000, 0x00000000, 0x00000000,							00000000, 0x00000000, 0x00000000, 00000000, 0x00000000, 0x00000000,						· · · · · · · · · · · · · · · · · · ·	00000000, 0x00000000, 0x00000000,							00000000, 0x00000000, 0x00000000,				C	x00000000, 0x000	000000, 0x00000000, 0x0	0000000				DWord	Bit		Description				0.0-0.7	255:0	Source 0 Alpha[7:0]														Format:	MDP_DW_SIMD8						Slots [7:0] Source 0 Al	pha				1.0-1.7	255:0	Source 0 Alpha[15:8]														Format:	MDP_DW_SIMD8						Slots [15:8] Source 0 A	Alpha				2.0-2.7	255:0	oMask														Format:	MDPR_OMASK						Slots [15:0] oMask					3.0-3.7	255:0	Red[7:0]							Formest	MDP_DW_SIMD8						Format:	ישואן ביי איים וישוא ביי איים וישוא						Slots [7:0] Red					4.0-4.7	255:0	Red[15:8]					MDP_RTW_M	A16 - ON	I SOA SIMD	16 Render Target Data Payload		-----------	----------	--------------------	-------------------------------									Format:	MDP_DW_SIMD8				Slots [15:8] Red			5.0-5.7	255:0	Green[7:0]					Format:	MDP_DW_SIMD8				Slots [7:0] Green			6.0-6.7	255:0	Green[15:8]					Format:	MDP_DW_SIMD8				Slots [15:8] Green			7.0-7.7	255:0	Blue[7:0]										Format:	MDP_DW_SIMD8				Slots [7:0] Blue			8.0-8.7	255:0	Blue[15:8]					Format:	MDP_DW_SIMD8				Slots [15:8] Blue	11212011201120		9.0-9.7	255:0	Alpha[7:0]										Format:	MDP_DW_SIMD8				Slots [7:0] Alpha			10.0-10.7	255:0	Alpha[15:8]										Format:	MDP_DW_SIMD8				Slots [15:8] Alpha		### **OM SIMD8 Dual Source Render Target Data Payload**	MDP_RTW_M8DS - OM SIMD8 Dual Source Render Target Data								--	--	--	---	--	--	--			Payload							Source: Size (in bits): Default Value:	230 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0	Dec 04 00000000, 0x00000000, 0x000 0x000000000, 0x000 00000000, 0x000000000, 0x000 00000000, 0x000000000, 0x000 00000000, 0x000000000, 0x000	00000, 0x00000000, 0x00000000, 0x00000000					DWord	Bit		Description					0.0-0.7	255:0	oMask Format: oMask for slots [7:0] and [1	MDPR_OMASK 5:8]. Operation selects upper or lower half.					1.0-1.7	255:0	Src0 Red Format:	MDP_DW_SIMD8					2.0-2.7	255:0	Slots[7:0] or [15:8] of Src0 Red Src0 Green Format: MDP_DW_SIMD8						3.0-3.7	255:0	Slots[7:0] or [15:8] of Src0 Green Src0 Blue Format: MDP_DW_SIMD8 Slots[7:0] or [15:8] of Src0 Blue						4.0-4.7	255:0	Format: Slots[7:0] or [15:8] of Src0 A	MDP_DW_SIMD8 Alpha					5.0-5.7	255:0	Src1 Red						MDP_F	RTW_N	18DS - OM S	SIMD8 Dual Source Render Target Data Payload			---------	-------	--	---	--				Format: Slots[7:0] or [15:8	MDP_DW_SIMD8 I) of Src1 Red			6.0-6.7	255:0	Src1 Green Format: Slots[7:0] or [15:8	MDP_DW_SIMD8			7.0-7.7	255:0	Src1 Blue Format: MDP_DW_SIMD8 Slots[7:0] or [15:8] of Src1 Blue				8.0-8.7	255:0	Src1 Alpha Format: MDP_DW_SIMD8 Slots[7:0] or [15:8] of Src1 Alpha			# **OM SIMD8 Render Target Data Payload**	MDP_	RTW_M8	B - OM SIMD8	Render Target Data Payload				-----------------	--																																																																																																																																																																																																																																																																														
--	--	--	--		Source:	BSpec						Size (in bits):	1280						Default Value:	0x0000000	00, 0x00000000, 0x00000000, 0x00000000, 0x00000000						0x00000000, 0x00000000, 0x00000000, 0x00000000									000, 0x00000000, 0x00000000, 0x00000000,						· ·	000, 0x00000000, 0x00000000, 0x00000000, 0x00000000						·	000, 0x00000000, 0x00000000, 0x00000000,						0, 0x00000000, 0x00000					DWord	Bit		Description				0.0-0.7	255:0	oMask														Format:	MDPR_OMASK						Slots [7:0] oMask. Upp	Slots [7:0] oMask. Upper half ignored.				1.0-1.7	255:0	Red														Format:	MDP_DW_SIMD8						Slots [7:0] Red					2.0-2.7	255:0	Green														Format:	MDP_DW_SIMD8						Slots [7:0] Green					3.0-3.7	255:0	Blue							Format:	MDP_DW_SIMD8						Slots [7:0] Blue	MET D WESTING						510t3 [7.0] Blue					4.0-4.7	255:0	Alpha							Formati	MDP_DW_SIMD8						Format:	יישיינער איים זייניים						Slots [7:0] Alpha				### **OM SIMD16 Render Target Data Payload**	MDP_R	TW_M16 - 0	OM SIMD16 F	Render Target Data Payload					-----------------	----------------	--	---	--	--	--		Source:	BSpec							Size (in bits):	2304							Default Value:	0x00000000, 0x	0x00000000, 0x00000000, 0x00000000, 0x00000000							0x00000000, 0x	0x00000000, 0x00000000, 0x00000000, 0x00000000							0x00000000, 0x	00000000, 0x00000000, 0x00000000, 0x00000000), 0x00000000, 0x00000000, 0x000000000,), 0x00000000, 0x00000000, 0x00000000,						·	· · · · · · · · · · · · · · · · · · ·), 0x00000000, 0x00000000, 0x00000000,), 0x00000000, 0x00000000, 0x00000000,), 0x00000000, 0x00000000, 0x00000000,), 0x00000000, 0x00000000, 0x00000000,						·	·	, 0x00000000, 0x00000000, 0x00000000,								, 0x00000000, 0x00000000, 0x00000000,						0x00000000, 0x	(000000000, 0x000000000), 0x00000000, 0x00000000, 0x00000000					DWord	Bit		Description					0.0-0.7	255:0	oMask																Format:	MDPR_OMASK							Slots [15:0] oMask						1.0-1.7	255:0	Red[7:0]						1.0-1.7	233.0	Red[7.0]								Format:	MDP_DW_SIMD8							Slots [7:0] Red						2.0-2.7	255:0	Red[15:8]																Format:	MDP_DW_SIMD8							Slots [15:8] Red						3.0-3.7	255:0	Green[7:0]																Format:	MDP_DW_SIMD8							Slots [7:0] Green						4.0-4.7	255:0	Green[15:8]																Format:	MDP_DW_SIMD8					MDP_RT\	MDP_RTW_M16 - OM SIMD16 Render Target Data Payload							---------	--	-------------------------------	--------------	--	--	--				Slots [15:8] Green	n					5.0-5.7	255:0	Blue[7:0]	Blue[7:0]							Format: Slots [7:0] Blue	MDP_DW_SIMD8					6.0-6.7	255:0	Blue[15:8]								Format: Slots [15:8] Blue	MDP_DW_SIMD8					7.0-7.7	255:0	Alpha[7:0]								Format: Slots [7:0] Alpha	MDP_DW_SIMD8					8.0-8.7	255:0	Alpha[15:8]								Format: Slots [15:8] Alpha	MDP_DW_SIMD8				# **OS OM SOA SIMD8 Render Target Data Payload**	MDP_R	TW_SMA	18 - OS OM SOA	SIMD8 Render Target Data		--	--	--	--				Payloa	ad		Source: Size (in bits): Default Value:	0x00000000 0x00000000 0x00000000 0x000000	0, 0x00000000, 0x00000000 0, 0x00000000, 0x00000000 0, 0x00000000, 0x00000000 0, 0x00000000, 0x00000000 0, 0x00000000, 0x00000000 0, 0x00000000, 0x00000000 0, 0x00000000, 0x000000000	0, 0x0000000, 0x00000000, 0x00000000, 0x00000000			1), 0x00000000			DWord	Bit		Description		0.0-0.7	255:0	Format: Slots [7:0] Source 0 Alph	MDP_DW_SIMD8		1.0-1.7	255:0	oMask					Format: Slots [7:0] oMask. Upper	MDPR_OMASK half ignored.		2.0-2.7	255:0	Red Format: Slots [7:0] Red	MDP_DW_SIMD8		3.0-3.7	255:0	Green Format: Slots [7:0] Green	MDP_DW_SIMD8		4.0-4.7	255:0	Blue Format:	MDP_DW_SIMD8		MDP_R	MDP_RTW_SMA8 - OS OM S0A SIMD8 Render Target Data							---------	---	---------------------	--------------	--	--	--				Paylo	pad						Slots [7:0] Blue							5.0-5.7	255:0	Alpha																Format:	MDP_DW_SIMD8							Slots [7:0] Alpha						6.0-6.7	255:0	Stencil																Format:	MDPR_STENCIL							Slots [7:0] Stencil					### **OS OM SIMD8 Dual Source Render Target Data Payload**	MDP_RTW_SM8DS - OS OM SIMD8 Dual Source Render Target								---	---	--	-----------------------------------	--	--	--				Data I	Payload					Source: Size (in bits): Default Value:	0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0							DWord	0x0	0000000, 0x000000000	Description					0.0-0.7	255:0	oMask	Description							Format: MDPR_OMASK oMask for slots [7:0] and [15:8]. Operation selects upper or lower half.						1.0-1.7	255:0	Src0 Red								Format: Slots[7:0] or [15:8] of Src0 Re	MDP_DW_SIMD8 ed					2.0-2.7	255:0	Src0 Green								Format: MDP_DW_SIMD8								Slots[7:0] or [15:8] of Src0 Green						3.0-3.7	255:0	Src0 Blue								Format:	MDP_DW_SIMD8							Slots[7:0] or [15:8] of Src0 B	Slots[7:0] or [15:8] of Src0 Blue								Data Payload			---------	-------	----------------------------------	------------------	--		4.0-4.7	255:0	Src0 Alpha												Format:	MDP_DW_SIMD8					Slots[7:0] or [15:8	s] of Src0 Alpha			5.0-5.7	255:0	Src1 Red												Format:	MDP_DW_SIMD8					Slots[7:0] or [15:8	of Src1 Red			6.0-6.7	255:0	Src1 Green												Format:	MDP_DW_SIMD8					Slots[7:0] or [15:8	of Src1 Green			7.0-7.7	255:0	Src1 Blue						Format:	MDP_DW_SIMD8					Slots[7:0] or [15:8				8.0-8.7	255:0	Src1 Alpha				0.0-0.7	233.0	Sici Aiplia						Format:	MDP_DW_SIMD8					Slots[7:0] or [15:8				9.0-9.7	255:0	Stencil												Format:	MDPR_STENCIL					Slots [7:0] or [15:8] of Stencil			# **OS OM SIMD8 Render Target Data Payload**	MDP_RT	W_SM8 -	OS OM SIMD	98 R	ender	Target Data Payload			-----------------	----------------	--------------------------------	--	-------------	---------------------------	--		Source:	BSpec							Size (in bits):	1536							Default Value:	0x00000000), 0x00000000, 0x00000	0x00000000, 0x00000000, 0x00000000, 0x00000000						0x00000000), 0x00000000, 0x00000	000, 0x	k00000000	, 0x00000000, 0x00000000,				0x00000000), 0x00000000, 0x00000	000, 0x	k00000000	, 0x00000000, 0x00000000,				0x00000000), 0x00000000, 0x00000	000, 0x	(00000000	, 0x00000000, 0x00000000,								, 0x00000000, 0x00000000,								, 0x00000000, 0x00000000,								, 0x00000000, 0x00000000,				0x00000000	<u>), 0x000000000, 0x00000</u>	000, 0x	<00000000	, 0x00000000, 0x00000000			DWord	Bit			Descr	iption			0.0-0.7	255:0	oMask																Format:		MDPR_OM	IASK					Slots [7:0] oMask. Up	per hal	lf ignored.				1.0-1.7	255:0	Red																Format:	M	DP_DW_SI	MD8					Slots [7:0] Red						2.0-2.7	255:0	Green								_	200	DD DIW G	MADO.					Format:	IVI I	DP_DW_SI	MD8					Slots [7:0] Green						3.0-3.7	255:0	Blue											-					Format:	M	DP_DW_SI	MD8					Slots [7:0] Blue						4.0-4.7	255:0	Alpha																Format:	M	DP_DW_SI	MD8					Slots [7:0] Alpha						5.0-5.7	255:0	Stencil						MDP_RTW_SM8 - OS OM SIMD8 Render Target Data Payload							--	--	---------------------	--------------	--	--											Format:	MDPR_STENCIL						Slots [7:0] Stencil											# **OS SOA SIMD8 Render Target Data Payload**	MDP_R1	ΓW_SA8 - O	S SOA SIMI	D8 Render Target Data Payload				-----------------	--	---	--	--	--		Source:	BSpec						Size (in bits):	1536						Default Value:	0x00000000, 0x	x00000000, 0x00000000, 0x00000000, 0x00000000						0x00000000, 0x00000000, 0x00000000, 0x00000000																																																																																											
				0000, 0x00000000, 0x00000000, 0x00000000					•		0000, 0x00000000, 0x00000000, 0x00000000					•	•	0000, 0x00000000, 0x00000000, 0x00000000					•	•	0000, 0x00000000, 0x00000000, 0x00000000							0000, 0x00000000, 0x00000000, 0x00000000				DWord	Bit		Description				0.0-0.7	255:0	Source 0 Alpha	a													Format:	MDP_DW_SIMD8						Slots [7:0] Sour	rce 0 Alpha				1.0-1.7	255:0	Red														Format:	MDP_DW_SIMD8						Slots [7:0] Red					2.0-2.7	255:0	Green							Format:	MDP_DW_SIMD8						Slots [7:0] Gree					3.0-3.7	255:0	Blue	511				3.0-3.7	233.0	Dide							Format:	MDP_DW_SIMD8						Slots [7:0] Blue	,				4.0-4.7	255:0	Alpha														Format:	MDP_DW_SIMD8						Slots [7:0] Alph	na				5.0-5.7	255:0	Stencil														Format:	MDPR_STENCIL						Slots [7:0] Sten	cil			# **OS SIMD8 Dual Source Render Target Data Payload**		<u>-</u>		B Dual Source Render Target Data ayload					-----------------	---	--	--	--	--	--		Source:	BSpec							Size (in bits):	2304							Default Value:	0x00000000, 0x00000000, 0x00000000, 0x00000000	0x00000000, 0x00000000, 0x00000000, 0x00000000						DWord	Bit		Description					0.0-0.7	255:0	Src0 Red																Format:	MDP_DW_SIMD8							Slots[7:0] or [15:8] of Src0 Red						1.0-1.7	255:0	Src0 Green								Format:	MDP_DW_SIMD8								5:8] of Src0 Green					2.0-2.7	255:0	Src0 Blue								Format:	MDP_DW_SIMD8							Slots[7:0] or [15:8] of Src0 Blue						3.0-3.7	255:0	Src0 Alpha								-	MDD DW CIMDO							Format: Slots[7:0] or [1	MDP_DW_SIMD8 5:8] of Src0 Alpha													4.0-4.7	255:0	Src1 Red														MDP_RTV	MDP_RTW_S8DS - OS SIMD8 Dual Source Render Target Data							---------	--	--------------------	-------------------	--	--	--				Pa	yload							Format:	MDP_DW_SIMD8							Slots[7:0] or [15	:8] of Src1 Red					5.0-5.7	255:0	Src1 Green																Format:	MDP_DW_SIMD8							Slots[7:0] or [15	:8] of Src1 Green					6.0-6.7	255:0	Src1 Blue																Format:	MDP_DW_SIMD8							Slots[7:0] or [15	:8] of Src1 Blue					7.0-7.7	255:0	Src1 Alpha																Format:	MDP_DW_SIMD8							Slots[7:0] or [15	:8] of Src1 Alpha					8.0-8.7	255:0	Stencil																Format:	MDPR_STENCIL							Slots [7:0] or [1!	5:8] of Stencil				# **OS SIMD8 Render Target Data Payload**	MDP	RTW_S8 -	OS SIMD8 R	Render Target Data Payload					-----------------	--	---	--	--	--	--		Source:	BSpec							Size (in bits):	1280							Default Value:	0x00000000, 0x 0x00000000, 0x 0x00000000, 0x 0x00000000, 0x	<000000000, 0x00000 <000000000, 0x00000 <000000000, 0x00000 <000000000, 0x00000	000, 0x00000000, 0x00000000, 0x00000000, 000, 0x00000000					DWord	Bit		Description					0.0-0.7	255:0	Red	2001,511011															Format:	MDP_DW_SIMD8							Slots [7:0] Red						1.0-1.7	255:0	Green								Format:	MDP_DW_SIMD8							Slots [7:0] Green	1					2.0-2.7	255:0	Blue								-	MDB DW CIMBO							Format: Slots [7:0] Blue	MDP_DW_SIMD8					3.0-3.7	255:0	Alpha								Format:	MDP_DW_SIMD8							Slots [7:0] Alpha						4.0-4.7	255:0	Stencil								Format:	MDPR_STENCIL							Slots [7:0] Stenc					# **OS SZ OM S0A SIMD8 Render Target Data Payload**	MDP_RTV	V_SZMA8	- OS SZ OM SO	A SIMD8 Render Target Data			--	---	---------------------------------------	----------------------------	--				Payloa	d			Source: Size (in bits): Default Value:	BSpec 2048 0x00000000, 0x00000000, 0x00000000, 0x00000000					DWord	Bit		Description			0.0-0.7	255:0	Format: Slots [7:0] Source 0 Alpha	MDP_DW_SIMD8			1.0-1.7	255:0	oMask	MDDD OMASK					Format: Slots [7:0] oMask. Upper h	MDPR_OMASK nalf ignored.			2.0-2.7	255:0	Red Format: Slots [7:0] Red	MDP_DW_SIMD8			3.0-3.7	255:0	Green Format: Slots [7:0] Green	MDP_DW_SIMD8			4.0-4.7	255:0	Blue				MDP_RTW_SZMA8 - OS SZ OM S0A SIMD8 Render Target Data							---	-------	--------------------	--------------	--	--				P	ayload						Format:	MDP_DW_SIMD8						Slots [7:0] Blue					5.0-5.7	255:0	Alpha							Format:	MDP_DW_SIMD8						Slots [7:0] Alpha					6.0-6.7	255:0	Source Depth							Format:	MDP_DW_SIMD8						Slots [7:0] Source	e Depth				7.0-7.7	255:0	Stencil														Format:	MDPR_STENCIL						Slots [7:0] Stenci				### **OS SZ OM SIMD8 Dual Source Render Target Data Payload**	MDP_RTV	V_SZM	18DS - OS SZ OI	VI SI	IMD8 Dual Source Render Target				--	---	---	-------	--------------------------------	--	--				Data	a Pa	yload				Source: Size (in bits): Default Value:	0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x0							DWord	Bit	0000000, 0x000000000, 0x0	00000	Description				0.0-0.7	255:0	oMask Format: MDPR_OMASK oMask for slots [7:0] and [15:8]. Operation selects upper or lower half.						1.0-1.7	255:0	Format: Slots[7:0] or [15:8] of Sr		IDP_DW_SIMD8				2.0-2.7	255:0	Src0 Green Format: Slots[7:0] or [15:8] of Sr		IDP_DW_SIMD8 een				3.0-3.7	255:0	Src0 Blue Format: MDP_DW_SIMD8 Slots[7:0] or [15:8] of Src0 Blue									Pata Payload					----------	-------	------------------------------------	---------------	--	--	--										4.0-4.7	255:0	Src0 Alpha								Format:	MDP_DW_SIMD8							Slots[7:0] or [15:8]	of Src0 Alpha					5.0-5.7	255:0	Src1 Red																Format:	MDP_DW_SIMD8							Slots[7:0] or [15:8]	of Sici Red					6.0-6.7	255:0	Src1 Green								Format:	MDP_DW_SIMD8							Slots[7:0] or [15:8] of Src1 Green						7.0-7.7	255:0	Src1 Blue	I							Format:	MDP_DW_SIMD8							Slots[7:0] or [15:8] of Src1 Blue						8.0-8.7	255:0	Src1 Alpha																Format:	MDP_DW_SIMD8							Slots[7:0] or [15:8] of Src1 Alpha						9.0-9.7	255:0	Source Depth								Format:	MDP_DW_SIMD8							Slots [7:0] or [15:8]						0.0-10.7	255:0	Stencil																Format:	MDPR_STENCIL				### **OS SZ OM SIMD8 Render Target Data Payload**	MDP_RTW	SZM8 -	OS SZ OM SIMD8 Render Target Data Payload						-----------------	--	---	--	--	--	--		Source:	BSpec							Size (in bits):	1792							Default Value:	0x00000000, 0x00000000, 0x00000000, 0x00000000								0x0000000	0, 0x00000000, 0x00000000, 0x00000000, 0x00000000							0x0000000	0, 0x00000000, 0x00000000, 0x00000000, 0x00000000								0, 0x00000000, 0x00000000, 0x00000000, 0x00000000								0, 0x00000000, 0x00000000, 0x00000000, 0x00000000								0, 0x00000000, 0x00000000, 0x00000000, 0x00000000								0, 0x00000000, 0x00000000, 0x00000000, 0x00000000								0, 0x00000000, 0x00000000, 0x00000000, 0x00000000								0, 0x00000000						DWord	Bit	Description						0.0-0.7	255:0	oMask																Format: MDPR_OMASK								Slots [7:0] oMask. Upper half ignored.						1.0-1.7	255:0	Red																Format: MDP_DW_SIMD8								Slots [7:0] Red						2.0-2.7	255:0	Green																Format: MDP_DW_SIMD8								Slots [7:0] Green						3.0-3.7	255:0	Blue																Format: MDP_DW_SIMD8								Slots [7:0] Blue						4.0-4.7	255:0	Alpha																Format: MDP_DW_SIMD8								Slots [7:0] Alpha					# intel	MDP_RTW	MDP_RTW_SZM8 - OS SZ OM SIMD8 Render Target Data Payload			
--	----------------------------	--	--	--	--		Source:	BSpec							Size (in bits):	1792							Default Value:	0x00000000, 0x00000000, 0x00000000, 0x00000000								0x00000000, 0x0	00000000, 0x00000000), 0x00000000, 0x00000000, 0x00000000,), 0x00000000, 0x00000000, 0x00000000,						•	·), 0x00000000, 0x00000000, 0x00000000,						•	•	0, 0x00000000, 0x00000000, 0x00000000, 0, 0x00000000, 0x00000000, 0x00000000,), 0x00000000, 0x00000000, 0x00000000, 0, 0x00000000, 0x00000000, 0x00000000,								0, 0x00000000, 0x00000000, 0x00000000,						0x00000000, 0x0	00000000, 0x00000000), 0x00000000, 0x00000000, 0x00000000,						0x00000000, 0x0	0000000						DWord	Bit		Description					0.0-0.7	255:0	Source 0 Alpha	1															Format:	MDP_DW_SIMD8							Slots [7:0] Source 0 Alpha						1.0-1.7	255:0	Red																Format:	MDP_DW_SIMD8							Slots [7:0] Red	,					2.0-2.7	255:0	Green																Format:	MDP_DW_SIMD8							Slots [7:0] Green						3.0-3.7	255:0	Blue																Format:	MDP_DW_SIMD8							Slots [7:0] Blue						4.0-4.7	255:0	Alpha																Format:	MDP_DW_SIMD8							Slots [7:0] Alpha						MDP_RTW_S	ZA8 - OS	SZ SOA SIMD8	Render Target Data Payload			-----------	----------	-------------------------	----------------------------	--		5.0-5.7	255:0	Source Depth												Format:	MDP_DW_SIMD8					Slots [7:0] Source Dept	h									6.0-6.7	255:0	Stencil												Format:	MDPR_STENCIL					Slots [7:0] Stencil									### **OS SZ SIMD8 Dual Source Render Target Data Payload**	MDP_RTW_	SZ8DS -	OS SZ SIMD8 Dual Source Render Target Data					--	--	--	--	--	--				Payload					Source: Size (in bits): Default Value:	0x00000000 0x00000000 0x00000000 0x000000	0, 0x00000000, 0x00000000, 0x00000000, 0x00000000					DWord	Bit	Description					0.0-0.7	255:0	Format: MDP_DW_SIMD8 Slots[7:0] or [15:8] of Src0 Red					1.0-1.7	255:0	Src0 Green Format: MDP_DW_SIMD8 Slots[7:0] or [15:8] of Src0 Green					2.0-2.7	255:0	Src0 Blue Format: MDP_DW_SIMD8 Slots[7:0] or [15:8] of Src0 Blue					3.0-3.7	255:0	Src0 Alpha Format: MDP_DW_SIMD8 Slots[7:0] or [15:8] of Src0 Alpha					MDP_RTW_	_SZ8DS -		D8 Dual Source Render Target Data ayload			----------	----------	---------------------------------------	--	--		4.0-4.7	255:0	Src1 Red	ayload											Format:	MDP_DW_SIMD8					Slots[7:0] or [15	:8] of Src1 Red			5.0-5.7	255:0	Src1 Green							ANDE DAY GRADO					Format:	MDP_DW_SIMD8					Slots[7:0] or [15	:8] of Src1 Green			6.0-6.7	255:0	Src1 Blue												Format:	MDP_DW_SIMD8					Slots[7:0] or [15:8] of Src1 Blue				7.0-7.7	255:0	Src1 Alpha						Format:	MDP_DW_SIMD8					Slots[7:0] or [15:8] of Src1 Alpha				8.0-8.7	255:0	Source Depth				0.0 0.7	255.0	Source Deptil						Format:	MDP_DW_SIMD8					Slots [7:0] or [15:8] of Source Depth				9.0-9.7	255:0	Stencil												Format:	MDPR_STENCIL					Slots [7:0] or [15:8] of Stencil			# **OS SZ SIMD8 Render Target Data Payload**	MDP_RT	W_SZ8 - O	S SZ SIMD8 R	Render Target Data Payload					--	---	--	----------------------------	--	--	--		Source: Size (in bits): Default Value:	0x00000000, 0x0 0x00000000, 0x0 0x00000000, 0x0 0x00000000, 0x0 0x00000000, 0x0	0x00000000, 0x00000000, 0x00000000, 0x00000000						DWord	Bit		Description					0.0-0.7	255:0	Format: MDP_DW_SIMD8 Slots [7:0] Red						1.0-1.7	255:0	Green								Format: Slots [7:0] Green	MDP_DW_SIMD8					2.0-2.7	255:0	Blue								Format: Slots [7:0] Blue	MDP_DW_SIMD8					3.0-3.7	3.0-3.7 255:0									Format: Slots [7:0] Alpha	MDP_DW_SIMD8					4.0-4.7	255:0	Source Depth	MDD DW CIMDO							Format: Slots [7:0] Source D	MDP_DW_SIMD8 epth					5.0-5.7	255:0	Stencil						MDP_RTW_SZ8 - OS SZ SIMD8 Render Target Data Payload							--	---------------------	--------------	--	--	--										Format:	MDPR_STENCIL						Slots [7:0] Stencil												# **Oword 2 Block Data Payload**		MDP_OW2 - Oword 2 Block Data Payload							-----------------	--------------------------------------	--	---------------------------	-----------------------	--	--		Source:	BSpec	BSpec						Size (in bits):	256							Default Value:		00000, 0x00000000, 0x00 00000, 0x00000000	0000000, 0x000000000, 0x0	00000000, 0x00000000,				DWord	Bit		Description					0.0-0.3	127:0	Oword0 Format:		U128						Specifies the Oword d	ata for block element 0					0.4-0.7	127:0	Oword1								Format: Specifies the Oword d	ata for block element 1	U128			# **Oword 4 Block Data Payload**		MDP	_OW4 - Ow	ord 4 Bloc	k Data Payload				-----------------	---------	---	------------	----------------	--	--		Source:	BSpec	BSpec						Size (in bits):	512							Default Value:	0x00000	0000, 0x00000000, 0x00000000, 0x00000000						DWord	Bit			Description				0.0-0.7	255:0	Data[1:0]																Format: MDCR_OW								Specifies the Oword data for block elements [1:0]						1.0-1.7	255:0	Data[3:2]								Format:		MDCR_OW						Specifies the Oword data for block elements [3:2]					# **Oword 8 Block Data Payload**		MDP	OW8 - Owo	rd 8 Block Data Payload						-----------------	-------------------------------	---	---	--	--	--	--		Source:	BSpec		-						Size (in bits):	1024								Default Value:	0x00000 0x00000 0x00000	0000, 0x00000000, 0x0 0000, 0x00000000, 0x0 0000, 0x00000000, 0x0	000, 0x00000000, 0x00000000, 0x00000000, 0x00000000						DWord	Bit		Description						0.0-0.7	255:0	Data[1:0]									Format:	MDCR_OW								Specifies the Owor	d data for block elements [1:0]						1.0-1.7	255:0	Data[3:2]									Format:	MDCR_OW								Specifies the Oword data for block elements [3:2]							2.0-2.7	255:0	Data[5:4]									Format:	MDCR_OW								Specifies the Owor	d data for block elements [5:4]						3.0-3.7	255:0	Data[7:6]									Format:	MDCR_OW								Specifies the Oword data for block elements [7:6]						# Oword A64 SIMD8 Atomic Operation CMPWR16B Message Data Payload	MDP_A6				IMD8 Atomic Operation				-----------------	-----------------------------	--	------------	--	--	--				WR16B Messa	ge Da	ta Payload				Source:	BSpec							Size (in bits):	2048							Default Value:		0x0000000, 0x00000000, 0x00000000, 0x00000000										00000, 0x00000000, 0x00000000, 00000, 0x00000000, 0x00000000,								00000, 0x000000000, 0x000000000,								00000, 0x00000000, 0x00000000,								00000, 0x00000000, 0x00000000,					0x00000000,	0x00000000, 0x0000000	00, 0x0000	00000, 0x00000000, 0x000000000,								00000, 0x00000000, 0x000000000,								00000, 0x00000000, 0x00000000,						. 0x00000000, 0x0000000 . 0x00000000, 0x0000000	•	00000, 0x00000000, 0x00000000,				DWI	1		00, 0x0000					DWord	Bit	SI 414 01 S 0		Description				0.0-0.7	255:0	Slot[1:0] Src0																Format:		MDCR_OW						Specifies the Slot [1:0] Source 0) data				1.0-1.7	255:0	Slot[3:2] Src0																Format:		MDCR_OW						Specifies the Slot [3:2] Source 0) data				2.0-2.7	255:0	Slot[5:4] Src0								_		MD CD CW						Format:		MDCR_OW						Specifies the Slot [5:4	J Source 0) data				3.0-3.7	255:0 Slot[7:6] Src0									Format:		MDCR_OW) data						4.0-4.7	255:0	Slot[1:0] Src1					#### MDP_A64_AOP8_OW2 - Oword A64 SIMD8 Atomic Operation **CMPWR16B Message Data Payload** MDCR_OW Format: Specifies the Slot [1:0] Source 1 data 5.0-5.7 255:0 Slot[3:2] Src1 MDCR_OW Format: Specifies the Slot [3:2] Source 1 data 6.0-6.7 255:0 Slot[5:4] Src1 MDCR_OW Format: Specifies the Slot [5:4] Source 1 data 7.0-7.7 255:0 Slot[7:6] Src1 MDCR_OW Format: Specifies the Slot [7:6] Source 1 data # **Oword Data Blocks Message Descriptor Control Field**	MDC_DB_OW - Oword Data Blocks Message Descriptor																																																																																																																																																			
Control Field							--	-------	----------	-----------	--	--		Source:			BSpec				Size (in b	its):		3				Default \	/alue	:	0x0000000	00			DWord	Bit			Description			0	2:0	Data Blo	ocks													Specifie	s the num	per of Oword blocks to be read or written					Value	Name	Description					00h	OW1L	1 Oword, read into or written from the low 128 bits of the destination register					01h	OW1U	1 Oword, read into or written from the high 128 bits of the destination register					02h	OW2	2 Owords					03h	OW4	4 Owords					04h	OW8	8 Owords					Others	Reserved	Ignored		# **Oword Data Payload Register**		MD	CR_OW - Owo	rd Data Payload Register						-----------------	--	--	------------------------------	--	--	--	--		Source:	BSpe	С							Size (in bits):	256								Default Value:	0x00000000, 0x00000000, 0x00000000, 0x00000000								DWord	Bit		Description						0.0-0.3	127:0 Oword0										Format:	U128								Specifies the slot 0 data in this payload register							0.4-0.7	127:0	Oword1									Format:	U128								Specifies the slot 1 d	ata in this payload register					# **Oword Dual Data Blocks Message Descriptor Control Field**	MDC_DB_OWD - Oword Dual Data Blocks Message Descriptor								--	-----	--------------------------------------	--------------------	--------------	-----------------	--					Contro	ol Field				Source:		BSpec						Size (in bits):		2						Default Value:		0x00000000						DWord	Bit			Descr	iption			0	1:0	OW Dual Data	Blocks															Specifies the n	umber of Oword Blo	ocks to be i	read or written					Value	Name		Description					00h OWD1 1 Hword register, 2 Owords								02h OWD4 4 Hword registers, 8 Owords								Others	Reserved	Ignored			## PALETTE_ENTRY			PALETTE_ENTRY				----------------	-------	--	----	--		Source:		RenderCS				Size (in bits)	:	32				Default Valu	e:	0x00000000				DWord	Bit	Description				0	31:24	Alpha						Format:	U8					Alpha channel value for this entry in the texture color palette.					23:16	Red						Format:	U8					Red channel value for this entry in the texture color palette.					15:8	Green						Format:	U8					Green channel value for this entry in the texture color palett	e.				7:0	Blue						Format:	U8					Blue channel value for this entry in the texture color palette.			#### **Performance Counter Report Format 101b**	Performance Co	ounter Repo	ort Format 101b			-----------------------	-------------	-----------------	--		-----------------------	-------------	-----------------	--	Source: BSpec Size (in bits): 2048	0x00000000, 0x00000000, 0x000000000								-------------------------------------	------	-----------------------	--	--	--	--		DWord	Bit	Description						0	31:0	RPT_ID						1	31:0	TIME_STAMP						2	31:0	CTX_ID						3	31:0	GPU_TICKS						4	31:0	A-Cntr 0 (low dword)						5	31:0	A-Cntr 1 (low dword)						6	31:0	A-Cntr 2 (low dword)						7	31:0	A-Cntr 3 (low dword)						8	31:0	A-Cntr 4 (low dword)						9	31:0	A-Cntr 5 (low dword)						10	31:0	A-Cntr 6 (low dword)						11	31:0	A-Cntr 7 (low dword)						12	31:0	A-Cntr 8 (low dword)						13	31:0	A-Cntr 9 (low dword)						14	31:0	A-Cntr 10 (low dword)						15	31:0	A-Cntr 11 (low dword)						16	31:0	A-Cntr 12 (low dword)						17	31:0	A-Cntr 13 (low dword)						18	31:0	A-Cntr 14 (low dword)						19	31:0	A-Cntr 15 (low dword)						20	31:0	A-Cntr 16 (low dword)						21	31:0	A-Cntr 17 (low dword)						Per	formance	Counter Report Format 101b		-----	----------	----------------------------		22	31:0	A-Cntr 18 (low dword)		23	31:0	A-Cntr 19 (low dword)		24	31:0	A-Cntr 20 (low dword)		25	31:0	A-Cntr 21 (low dword)		26	31:0	A-Cntr 22 (low dword)		27	31:0	A-Cntr 23 (low dword)		28	31:0	A-Cntr 24 (low dword)		29	31:0	A-Cntr 25 (low dword)		30	31:0	A-Cntr 26 (low dword)		31	31:0	A-Cntr 27 (low dword)		32	31:0	A-Cntr 28 (low dword)		33	31:0	A-Cntr 29 (low dword)		34	31:0	A-Cntr 30 (low dword)		35	31:0	A-Cntr 31 (low dword)		36	31:0	A-Cntr 32 (low dword)		37	31:0	A-Cntr 33 (low dword)		38	31:0	A-Cntr 34 (low dword)		39	31:0	A-Cntr 35 (low dword)		40	31:24	High byte of A3			23:16	High byte of A2			15:8	High byte of A1			7:0	High byte of A0		41	31:24	High byte of A7			23:16	High byte of A6			15:8	High byte of A5			7:0	High byte of A4		42	31:24	High byte of A11			23:16	High byte of A10			15:8	High byte of A9			7:0	High byte of A8		43	31:24	High byte of A15			23:16	High byte of A14			15:8	High byte of A13			7:0	High byte of A12		44	31:24	High byte of A19			23:16	High byte of A18		Pe	rformance	Counter Report Format 101b		----	-----------	-----------------------------------			15:8	High byte of A17			7:0	High byte of A16		45	31:24	High byte of A23			23:16	High byte of A22			15:8	High byte of A21			7:0	High byte of A20		46	31:24	High byte of A27			23:16	High byte of A26			15:8	High byte of A25			7:0	High byte of A24		47	31:24	High byte of A31			23:16	High byte of A30			15:8	High byte of A29			7:0	High byte of A28		48	31:0	B-Cntr 0		49	31:0	B-Cntr 1		50	31:0	B-Cntr 2		51	31:0	B-Cntr 3		52	31:0	B-Cntr 4		53	31:0	B-Cntr 5		54	31:0	B-Cntr 6		55	31:0	B-Cntr 7		56	31:0	C-Cntr 0		57	31:0	C-Cntr 1		58	31:0	C-Cntr 2		59	31:0	C-Cntr 3		60	31:0	C-Cntr 4		61	31:0	C-Cntr 5		62	31:0	C-Cntr 6		63	31:0	C-Cntr 7	# **Per Thread Scratch Space Message Header Control**	МН	C_F	PTSS - Per Thread Scratch Space Me	ssag	e Header Control					------------	--------	--	-----------	-----------------------------	--	--	--		Source:		BSpec							Size (in b	oits):	32							Default \	/alue:	0x00000000							DWord	Bit	Description							0	31:4	Reserved																		Format:	MBZ								Ignored																	3:0	Per Thread Scratch Space																		Format:		U4							Specifies the amount of scratch space allowed to be used b	y this th	nread for messages in which							the Binding Table Index is Stateless model, otherwise this fie	_	·							this to bounds check scratch space messages. Value range = [0,11] represents [1KB, 2MB] in									powers of two.									Programming Notes									Writes out of bounds will be ignored. Reads out of bounds	will retu	urn 0.				## PIXEL_HASH_TABLE_1BIT_32ENTRY ## PIXEL_HASH_TABLE_1BIT_32ENTRY Source: BSpec Size (in bits): 32 Default Value: 0x00000000 #### **Description** 2-way pixel hashing table. Table is 32-entries:8X,4Y in [Y][X] format. Each entry is a single bit that indicates which sub-slice hardware block the indicated xy pixel block is mapped. pixelhash_id maps to dual-subslice. A value of 0 indicates the larger DSS, or first enbled DSS if both enabled DSS are balanced (have same number of enabled subslices)	DWord	Bit	Description						-------	-------	---	---------	--	--	--		0	31:24	Pixel Hashing Table Entries y[3]x[7:0]								Format:	U8							Indicates the pixelhash_id for the pixel block that has y=3 and x=70							23:16	Pixel Hashing Table Entries y[2]x[7:0]								Format: U8								Indicates the pixelhash_id for the pixel block that has y=2 and x=70							15:8	Pixel Hashing Table Entries y[1]x[7:0]								Format: U8 Indicates the pixelhash_id for the pixel block that has y=1 and x=70															7:0	Pixel Hashing Table Entries y[0]x[7:0]								Format: U8								Indicates the pixelhash_id for the pixel block that has y=0 ar	nd x=70				#### PIXEL_HASH_TABLE_1BIT_64ENTRY ## PIXEL_HASH_TABLE_1BIT_64ENTRY Source: BSpec Size (in bits): 64 Default Value: 0x00000000, 0x00000000 #### Description 2-way pixel hashing table. Table is 64-entries:8X,8Y in [Y][X] format. Each entry is a single bit that indicates which sub-slice hardware block the indicated xy pixel block is mapped. pixelhash_id maps to dual-subslice. A value of 0 indicates the larger DSS, or first enbled DSS if both enabled DSS are balanced (have same number of enabled subslices)	DWord	Bit	Description					-------	-------	---	----------------------	--	--		0	31:24	:24 Pixel Hashing Table Entries																																																																																																																																																																																																																
y[3]x[7:0]							Format:	U8						Indicates the pixelhash_id for the pixel block that	has y=3 and x=70					23:16	Pixel Hashing Table Entries y[2]x[7:0]							Format:	U8						Indicates the pixelhash_id for the pixel block that	has y=2 and x=70					15:8	Pixel Hashing Table Entries y[1]x[7:0]							Format:	U8						Indicates the pixelhash_id for the pixel block that	has y=1 and x=70					7:0	Pixel Hashing Table Entries y[0]x[7:0]							Format:	U8						Indicates the pixelhash_id for the pixel block that	has $y=0$ and $x=70$				1	31:24	Pixel Hashing Table Entries y[7]x[7:0]							Format:	U8						Indicates the pixelhash_id for the pixel block that	has y=7 and x=70					23:16	Pixel Hashing Table Entries y[6]x[7:0]							Format:	U8						Indicates the pixelhash_id for the pixel block that	has y=6 and x=70					15:8	Pixel Hashing Table Entries y[5]x[7:0]							Format:	U8						Indicates the pixelhash_id for the pixel block that	has y=5 and x=70					7:0	Pixel Hashing Table Entries y[4]x[7:0]					PIXEL_HASH_TABLE_1BIT_64ENTRY						--	--	--	--------	--				Format:	U8			Indicates the pixelhash_id for the pixel block		Indicates the pixelhash_id for the pixel block that has y=4 an	d x=70		#### PIXEL_HASH_TABLE_1BIT_128ENTRY ## PIXEL_HASH_TABLE_1BIT_128ENTRY Source: BSpec Size (in bits): 128 #### **Description** 2-way pixel hashing table. Table is 128-entries:16X,8Y in [Y][X] format. Each entry is a single bit that indicates which sub-slice hardware block the indicated xy pixel block is mapped. pixelhash_id maps to dual-subslice. A value of 0 indicates the larger DSS, or first enbled DSS if both enabled DSS are balanced (have same number of enabled subslices)	Word	Bit	Description			------	-------	--	------------------------------		0	31:16	Pixel Hashing Table Entries y[1]x[15:0]]				Format:	U16				Indicates the pixelhash_id for the pixel b	lock that has y=1 and x=150			15:0	Pixel Hashing Table Entries y[0]x[15:0]	1				Format:	U16				Indicates the pixelhash_id for the pixel b	lock that has y=0 and x=150		1	31:16	Pixel Hashing Table Entries y[3]x[15:0]	1				Format:	U16				Indicates the pixelhash_id for the pixel b	lock that has y=3 and x=150			15:0	Pixel Hashing Table Entries y[2]x[15:0]	1				Format:	U16				Indicates the pixelhash_id for the pixel b	clock that has y=2 and x=150		2	31:16	Pixel Hashing Table Entries y[5]x[15:0]	1				Format:	U16				Indicates the pixelhash_id for the pixel b	lock that has y=5 and x=150			15:0	Pixel Hashing Table Entries y[4]x[15:0]	1				Format:	U16				Indicates the pixelhash_id for the pixel b	block that has y=4 and x=150		3	31:16	Pixel Hashing Table Entries y[7]x[15:0]	1				Format:	U16				Indicates the pixelhash_id for the pixel b	lock that has y=7 and x=150			15:0	Pixel Hashing Table Entries y[6]x[15:0]]		PIXEL_HASH_TABLE_1BIT_128ENTRY						--------------------------------	--	---	--------------	--				Format:	U16					Indicates the pixelhash_id for the pixel block that has y	=6 and x=150		#### PIXEL_HASH_TABLE_2BIT_64ENTRY ## PIXEL_HASH_TABLE_2BIT_64ENTRY Source: BSpec Size (in bits): 128 #### **Description** 3-wayor 4-way pixel hashing table. Table is 64-entries:8X,8Y in [Y][X] format. Each entry is two bits that indicates which sub-slice hardware block the indicated xy pixel block is mapped. pixelhash_id maps to subslice. A value of 0 indicates the first enabled subslice. A value of 1 indicates the second enabled subslice.	Word	/ord Bit Description		ption		------	----------------------	--	----------------------		0	31:30	Pixel Hashing Table Entry y[1]x[7]	<u>.</u>				Format:	U2				Indicates the pixelhash_id for the pixel block	that has x=7 and y=1			29:28	Pixel Hashing Table Entry y[1]x[6]					Format:	U2				Indicates the pixelhash_id for the pixel block	that has x=6 and y=1			27:26	Pixel Hashing Table Entry y[1]x[5]					Format:	U2				Indicates the pixelhash_id for the pixel block	that has x=5 and y=1			25:24	Pixel Hashing Table Entry y[1]x[4]					Format:	U2				Indicates the pixelhash_id for the pixel block	that has x=4 and y=1			23:22	Pixel Hashing Table Entry y[1]x[3]					Format:	U2				Indicates the pixelhash_id for the pixel block	that has x=3 and y=1			21:20	Pixel Hashing Table Entry y[1]x[2]					Format:	U2				Indicates the pixelhash_id for the pixel block	that has x=2 and y=1			19:18	Pixel Hashing Table Entry y[1]x[1]					Format:	U2				Indicates the pixelhash_id for the pixel block	that has x=1 and y=1			17:16	Pixel Hashing Table Entry y[1]x[0]				Format:	U2		-------	--	------------------------			Indicates the pixelhash_id for the pixel block	k that has x=0 and y=1		15:14	Pixel Hashing Table Entry y[0]x[7]				Format:	U2			Indicates the pixelhash_id for the pixel block	k that has x=7 and y=0		13:12	Pixel Hashing Table Entry y[0]x[6]				Format:	U2			Indicates the pixelhash_id for the pixel block	k that has x=6 and y=0		11:10	Pixel Hashing Table Entry y[0]x[5]				Format:	U2			Indicates the pixelhash_id for the pixel block	k that has x=5 and y=0		9:8	Pixel Hashing Table Entry y[0]x[4]				Format:	U2			Indicates the pixelhash_id for the pixel block	k that has x=4 and y=0		7:6	Pixel Hashing Table Entry y[0]x[3]				Format:	U2			Indicates the pixelhash_id for the pixel block	k that has x=3 and y=0		5:4	Pixel Hashing Table Entry y[0]x[2]				Format:	U2			Indicates the pixelhash_id for the pixel block	k that has x=2 and y=0		3:2	Pixel Hashing Table Entry y[0]x[1]				Format:	U2			Indicates the pixelhash_id for the pixel block	k that has x=1 and y=0		1:0	Pixel Hashing Table Entry y[0]x[0]				Format:	U2			Indicates the pixelhash_id for the pixel block	k that has x=0 and y=0		31:30	Pixel Hashing Table Entry y[3]x[7]				Format:	U2			Indicates the pixelhash_id for the pixel block	k that has x=7 and y=3							PIXEL_HASH_TABLE_2BIT_6	4ENTRY			-------	---	--------------------	--			Format:	U2				Indicates the pixelhash_id for the pixel block that	at has x=6 and y=3			27:26	Pixel Hashing Table Entry y[3]x[5]					Format:	U2				Indicates the pixelhash_id for the pixel block that	at has x=5 and y=3			25:24	25:24 Pixel Hashing Table Entry y[3]x[4]					Format:	U2				Indicates the pixelhash_id for the pixel block that	it has x=4 and y=3			23:22	Pixel Hashing Table Entry y[3]x[3]					Format:	U2				Indicates the pixelhash_id for the pixel block that	t has x=3 and y=3			21:20	Pixel Hashing Table Entry y[3]x[2]					Format:	U2				Indicates the pixelhash_id for the pixel block that	t has x=2 and y=3			19:18	Pixel Hashing Table Entry y[3]x[1]					Format:	U2				Indicates the pixelhash_id for the pixel block that has x=1 and y=3				17:16	Pixel Hashing Table Entry y[3]x[0]					Format:	U2				Indicates the pixelhash_id for the pixel block that	at has x=0 and y=3			15:14	Pixel Hashing Table Entry y[2]x[7]					Format:	U2				Indicates the pixelhash_id for the pixel block that	t has x=7 and y=2			13:12	Pixel Hashing Table Entry y[2]x[6]					Format:	U2				Indicates the pixelhash_id for the pixel block that	at has x=6 and y=2			11:10	Pixel Hashing Table Entry y[2]x[5]					Format:	U2				Indicates the pixelhash_id for the pixel block that	at has x=5 and y=2			9:8	Pixel Hashing Table Entry y[2]x[4]						PIXEL_HASH_TABLE_2BIT_64EN1	ΓRY				---	-------	---	-----------	--	--				Format:	U2						Indicates the pixelhash_id for the pixel block that has x=-	4 and y=2					7:6	Pixel Hashing Table Entry y[2]x[3]	1						Format:	U2						Indicates the pixelhash_id for the pixel block that has x=.	3 and y=2					5:4	Pixel Hashing Table Entry y[2]x[2]							Format:	U2						Indicates the pixelhash_id for the pixel block that has x=	2 and y=2					3:2	Pixel Hashing Table Entry y[2]x[1]							Format:	U2						Indicates the pixelhash_id for the pixel block that has x=	1 and y=2					1:0	Pixel Hashing Table Entry y[2]x[0]							Format:	U2						Indicates the pixelhash_id for the pixel block that has x=0 and y=2					2	31:30	Pixel Hashing Table Entry y[5]x[7]							Format:	U2						Indicates the pixelhash_id for the pixel block that has x=7 and y=5						29:28	Pixel Hashing Table Entry y[5]x[6]							Format:	U2						Indicates the pixelhash_id for the pixel block that has x=	6 and y=5					27:26	Pixel Hashing Table Entry y[5]x[5]							Format:	U2						Indicates the pixelhash_id for the pixel block that has x=	5 and y=5					25:24	Pixel Hashing Table Entry y[5]x[4]							Format:	U2						Indicates the pixelhash_id for the pixel block that has x=	4 and y=5																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
23:22	Pixel Hashing Table Entry y[5]x[3]							Format:	U2						Indicates the pixelhash_id for the pixel block that has x=.	3 and y=5					21:20	Pixel Hashing Table Entry y[5]x[2]						PIXEL_HASH_TABLE_2BIT_64E	NTRY		-------	---	---------------			Format:	U2			Indicates the pixelhash_id for the pixel block that has	x=2 and y=5		19:18	Pixel Hashing Table Entry y[5]x[1]				Format:	U2			Indicates the pixelhash_id for the pixel block that has	s x=1 and y=5		17:16	Pixel Hashing Table Entry y[5]x[0]				Format:	U2			Indicates the pixelhash_id for the pixel block that has	x=0 and y=5		15:14	Pixel Hashing Table Entry y[4]x[7]				Format:	U2			Indicates the pixelhash_id for the pixel block that has	s x=7 and y=4		13:12	Pixel Hashing Table Entry y[4]x[6]				Format:	U2			Indicates the pixelhash_id for the pixel block that has	x=6 and y=4		11:10	Pixel Hashing Table Entry y[4]x[5]				Format:	U2			Indicates the pixelhash_id for the pixel block that has	s x=5 and y=4		9:8	Pixel Hashing Table Entry y[4]x[4]				Format:	U2			Indicates the pixelhash_id for the pixel block that has	x=4 and y=4		7:6	Pixel Hashing Table Entry y[4]x[3]				Format:	U2			Indicates the pixelhash_id for the pixel block that has			5:4	Pixel Hashing Table Entry y[4]x[2]				Format:	U2			Indicates the pixelhash_id for the pixel block that has	s x=2 and y=4		3:2	Pixel Hashing Table Entry y[4]x[1]				Format:	U2			Indicates the pixelhash_id for the pixel block that has	s x=1 and y=4		1:0	Pixel Hashing Table Entry y[4]x[0]					PIXEL_HASH_TABLE_2BIT_64	ENTRY				---	-------	---	-----------------	---	--				Format:	U2						Indicates the pixelhash_id for the pixel block that	has x=0 and y=4				3	31:30	Pixel Hashing Table Entry y[7]x[7]							Format:	U2						Indicates the pixelhash_id for the pixel block that has x=7 and y=7						29:28	Pixel Hashing Table Entry y[7]x[6]							Format:	U2						Indicates the pixelhash_id for the pixel block that	has x=6 and y=7					27:26	Pixel Hashing Table Entry y[7]x[5]							Format:	U2						Indicates the pixelhash_id for the pixel block that	has x=5 and y=7					25:24	Pixel Hashing Table Entry y[7]x[4]	1						Format:	U2						Indicates the pixelhash_id for the pixel block that	has x=4 and y=7					23:22	Pixel Hashing Table Entry y[7]x[3]							Format:	U2						Indicates the pixelhash_id for the pixel block that has x=3 and y=7						21:20	Pixel Hashing Table Entry y[7]x[2]							Format:	U2						Indicates the pixelhash_id for the pixel block that	has x=2 and y=7					19:18	Pixel Hashing Table Entry y[7]x[1]							Format:	U2						Indicates the pixelhash_id for the pixel block that	has x=1 and y=7					17:16	Pixel Hashing Table Entry y[7]x[0]							Format:	U2						Indicates the pixelhash_id for the pixel block that	has x=0 and y=7	_				15:14	Pixel Hashing Table Entry y[6]x[7]							Format:	U2						Indicates the pixelhash_id for the pixel block that	has x=7 and y=6	_				13:12	Pixel Hashing Table Entry y[6]x[6]						Format:	U2		-------	---	----------------------------			Indicates the pixelhash_id for the pixel bloc	k that has x=6 and y=6		11:10	Pixel Hashing Table Entry y[6]x[5]				Format:	U2			Indicates the pixelhash_id for the pixel bloc	k that has x=5 and y=6		9:8	Pixel Hashing Table Entry y[6]x[4]				Format:	U2			Indicates the pixelhash_id for the pixel bloc	k that has x=4 and y=6		7:6	Pixel Hashing Table Entry y[6]x[3]				Format:	U2			Indicates the pixelhash_id for the pixel bloc	k that has $x=3$ and $y=6$		5:4	Pixel Hashing Table Entry y[6]x[2]				Format:	U2			Indicates the pixelhash_id for the pixel bloc	k that has x=2 and y=6		3:2	Pixel Hashing Table Entry y[6]x[1]				Format:	U2			Indicates the pixelhash_id for the pixel bloc	k that has x=1 and y=6		1:0	Pixel Hashing Table Entry y[6]x[0]				Format:	U2	#### PIXEL_HASH_TABLE_2BIT_128ENTRY ## PIXEL_HASH_TABLE_2BIT_128ENTRY Source: BSpec Size (in bits): 256 0x00000000, 0x00000000 #### **Description** 3-wayor 4-way pixel hashing table. Table is 128-entries:16X,8Y in [Y][X] format. Each entry is two bits that indicates which sub-slice hardware block the indicated xy pixel block is mapped. pixelhash_id maps to subslice. A value of 0 indicates the first enabled subslice. A value of 1 indicates the second enabled subslice.	enabled sub	oslice.				-------------	---------	--	-------------		DWord	Bit	Description			0	31:30	Pixel Hashing Table Entry y[0]x[15]					Format:	U2				Indicates the pixelhash_id for the pixel block that has x=15 and y=0				29:28	Pixel Hashing Table Entry y[0]x[14]					Format:	U2				Indicates the pixelhash_id for the pixel block that has x=	=14 and y=0			27:26	Pixel Hashing Table Entry y[0]x[13]					Format:	U2				Indicates the pixelhash_id for the pixel block that has x=	=13 and y=0			25:24	Pixel Hashing Table Entry y[0]x[12]					Format:	U2				Indicates the pixelhash_id for the pixel block that has x=	=12 and y=0			23:22	Pixel Hashing Table Entry y[0]x[11]					Format:	U2				Indicates the pixelhash_id for the pixel block that has x=	=11 and y=0			21:20	Pixel Hashing Table Entry y[0]x[10]					Format:	U2				Indicates the pixelhash_id for the pixel block that has x=	=10 and y=0			19:18	Pixel Hashing Table Entry y[0]x[9]					Format:	U2				Indicates the pixelhash_id for the pixel block that has x=	=9 and y=0			PIXEL_HASH_TABLE_2BIT_	-		-------	--	----------------------		17:16	Pixel Hashing Table Entry y[0]x[8]				Format:	U2			Indicates the pixelhash_id for the pixel block	that has x=8 and y=0		15:14	Pixel Hashing Table Entry y[0]x[7]				Format:	U2			Indicates the pixelhash_id for the pixel block	that has x=7 and y=0		13:12	Pixel Hashing Table Entry y[0]x[6]				Format:	U2			Indicates the pixelhash_id for the pixel block	that has x=6 and y=0		11:10	Pixel Hashing Table Entry y[0]x[5]				Format:	U2			Indicates the pixelhash_id for the pixel block	that has x=5 and y=0		9:8	Pixel Hashing Table Entry y[0]x[4]				Format:	U2			Indicates the pixelhash_id for the pixel block	that has x=4 and y=0		7:6	Pixel Hashing Table Entry y[0]x[3]	·			Format:	U2			Indicates the pixelhash_id for the pixel block	that has x=3 and y=0		5:4	Pixel Hashing Table Entry y[0]x[2]				Format:	U2			Indicates the pixelhash_id for the pixel block	that has x=2 and y=0		3:2	Pixel Hashing Table Entry y[0]x[1]				Format:	U2			Indicates the pixelhash_id for the pixel block	that has x=1 and y=0		1:0	Pixel Hashing Table Entry y[0]x[0]				Format:	U2			Indicates the pixelhash_id for the pixel block	that has x=0 and y=0		31:30	Pixel Hashing Table Entry y[1]x[15]				Format:	U2			PIXEL_HASH_TABLE_2BIT_1	28ENTRY		-------	---	---------------------		29:28	Pixel Hashing Table Entry y[1]x[14]			23.20	Format:	U2			Indicates the pixelhash_id for the pixel block th	L T		27:26	Pixel Hashing Table Entry y[1]x[13]				Format:	U2			Indicates the pixelhash_id for the pixel block th	at has x=13 and y=1		25:24	Pixel Hashing Table Entry y[1]x[12]				Format:	U2			Indicates the pixelhash_id for the pixel block th	at has x=12 and y=1		23:22	Pixel Hashing Table Entry y[1]x[11]				Format:	U2			Indicates the pixelhash_id for the pixel block th	at has x=11 and y=1		21:20	Pixel Hashing Table Entry y[1]x[10]				Format:	U2			Indicates the pixelhash_id for the pixel block th	at has x=10 and y=1		19:18	Pixel Hashing Table Entry y[1]x[9]				Format:	U2			Indicates the pixelhash_id for the pixel block th	at has x=9 and y=1		17:16	Pixel Hashing Table Entry y[1]x[8]				Format:	U2			Indicates the pixelhash_id for the pixel block th	at has x=8 and y=1		15:14	Pixel Hashing Table Entry y[1]x[7]				Format:	U2			Indicates the pixelhash_id for the pixel block th	at has x=7 and y=1		13:12	Pixel Hashing Table Entry y[1]x[6]	·			Format:	U2			Indicates the pixelhash_id for the pixel block th	at has x=6 and y=1		11:10	Pixel Hashing Table Entry y[1]x[5]				Format:	U2			Indicates the pixelhash_id for the pixel block th	at has x=5 and y=1				PIXEL_HASH_TABLE_2BIT_128ENTRY						---	---	--	--	--	--	--											9:8	Pixel Hashing Table Entry y[1]x[4]								Format: U2								Indicates the pixelhash_id for the pixel block that has x=4 and y=1							7:6	Pixel Hashing Table Entry y[1]x[3]								Format: U2								Indicates the pixelhash_id for the pixel block that has x=3 and y=1							5:4	Pixel Hashing Table Entry y[1]x[2]								Format: U2								Indicates the pixelhash_id for the pixel block that has x=2 and y=1							3:2																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																											
Pixel Hashing Table Entry y[1]x[1]								Format: U2								Indicates the pixelhash_id for the pixel block that has x=1 and y=1							1:0	Pixel Hashing Table Entry y[1]x[0]								Format: U2								Indicates the pixelhash_id for the pixel block that has x=0 and y=1						2	31:30									Format: U2								Indicates the pixelhash_id for the pixel block that has x=15 and y=2							29:28	Pixel Hashing Table Entry y[2]x[14]								Format: U2								Indicates the pixelhash_id for the pixel block that has $x=14$ and $y=2$							27:26	Pixel Hashing Table Entry y[2]x[13]								Format: U2								Indicates the pixelhash_id for the pixel block that has $x=13$ and $y=2$							25:24	Pixel Hashing Table Entry y[2]x[12]								Format: U2								Indicates the pixelhash_id for the pixel block that has x=12 and y=2							23:22 Pixel Hashing Table Entry y[2]x[11]									Format: U2								Indicates the pixelhash_id for the pixel block that has $x=11$ and $y=2$						Pixel Hashing Table Entry y[2]x[10] Format: U2 Indicates the pixelhash_id for the pixel block that has x=10 and y=2 19:18 Pixel Hashing Table Entry y[2]x[9] Format: U2 Indicates the pixelhash_id for the pixel block that has x=9 and y=2 17:16 Pixel Hashing Table Entry y[2]x[8] Format: U2 Indicates the pixelhash_id for the pixel block that has x=8 and y=2 15:14 Pixel Hashing Table Entry y[2]x[7] Format: U2 Indicates the pixelhash_id for the pixel block that has x=7 and y=2 13:12 Pixel Hashing Table Entry y[2]x[6] Format: U2 Indicates the pixelhash_id for the pixel block that has x=6 and y=2 11:10 Pixel Hashing Table Entry y[2]x[5] Format: U2 Indicates the pixelhash_id for the pixel block that has x=5 and y=2 9:8 Pixel Hashing Table Entry y[2]x[4] Format: U2 Indicates the pixelhash_id for the pixel block that has x=4 and y=2		PIXEL_HASH_TABLE_2BIT_128ENTRY		--	-----	--		Format: U2 Indicates the pixelhash_id for the pixel block that has x=10 and y=2				Indicates the pixelhash_id for the pixel block that has x=10 and y=2 19:18 Pixel Hashing Table Entry y[2]x[9] Format: U2 Indicates the pixelhash_id for the pixel block that has x=9 and y=2 17:16 Pixel Hashing Table Entry y[2]x[8] Format: U2 Indicates the pixelhash_id for the pixel block that has x=8 and y=2 15:14 Pixel Hashing Table Entry y[2]x[7] Format: U2 Indicates the pixelhash_id for the pixel block that has x=7 and y=2 13:12 Pixel Hashing Table Entry y[2]x[6] Format: U2 Indicates the pixelhash_id for the pixel block that has x=6 and y=2 11:10 Pixel Hashing Table Entry y[2]x[5] Format: U2 Indicates the pixelhash_id for the pixel block that has x=5 and y=2 9:8 Pixel Hashing Table Entry y[2]x[4] Format: U2	21:	Pixel Hashing Table Entry y[2]x[10]		19:18 Pixel Hashing Table Entry y[2]x[9] Format:		Format: U2		Format: U2 Indicates the pixelhash_id for the pixel block that has x=9 and y=2		Indicates the pixelhash_id for the pixel block that has x=10 and y=2		Indicates the pixelhash_id for the pixel block that has x=9 and y=2 17:16 Pixel Hashing Table Entry y[2]x[8] Format: Indicates the pixelhash_id for the pixel block that has x=8 and y=2 15:14 Pixel Hashing Table Entry y[2]x[7] Format: Indicates the pixelhash_id for the pixel block that has x=7 and y=2 13:12 Pixel Hashing Table Entry y[2]x[6] Format: Indicates the pixelhash_id for the pixel block that has x=6 and y=2 11:10 Pixel Hashing Table Entry y[2]x[5] Format: Indicates the pixelhash_id for the pixel block that has x=5 and y=2 9:8 Pixel Hashing Table Entry y[2]x[4] Format: U2 U2	19:	Pixel Hashing Table Entry y[2]x[9]		17:16 Pixel Hashing Table Entry y[2]x[8] Format: Indicates the pixelhash_id for the pixel block that has x=8 and y=2 15:14 Pixel Hashing Table Entry y[2]x[7] Format: Indicates the pixelhash_id for the pixel block that has x=7 and y=2 13:12 Pixel Hashing Table Entry y[2]x[6] Format: Indicates the pixelhash_id for the pixel block that has x=6 and y=2 11:10 Pixel Hashing Table Entry y[2]x[5] Format: Indicates the pixelhash_id for the pixel block that has x=5 and y=2 9:8 Pixel Hashing Table Entry y[2]x[4] Format: U2		Format: U2		Format: U2 Indicates the pixelhash_id for the pixel block that has x=8 and y=2		Indicates the pixelhash_id for the pixel block that has x=9 and y=2		Indicates the pixelhash_id for the pixel block that has x=8 and y=2 15:14 Pixel Hashing Table Entry y[2]x[7] Format: Indicates the pixelhash_id for the pixel block that has x=7 and y=2 13:12 Pixel Hashing Table Entry y[2]x[6] Format: Indicates the pixelhash_id for the pixel block that has x=6 and y=2 11:10 Pixel Hashing Table Entry y[2]x[5] Format: Indicates the pixelhash_id for the pixel block that has x=5 and y=2 9:8 Pixel Hashing Table Entry y[2]x[4] Format: U2 Indicates the pixelhash_id for the pixel block that has x=5 and y=2	17:	Pixel Hashing Table Entry y[2]x[8]		15:14 Pixel Hashing Table Entry y[2]x[7] Format: Indicates the pixelhash_id for the pixel block that has x=7 and y=2 13:12 Pixel Hashing Table Entry y[2]x[6] Format: Indicates the pixelhash_id for the pixel block that has x=6 and y=2 11:10 Pixel Hashing Table Entry y[2]x[5] Format: Indicates the pixelhash_id for the pixel block that has x=5 and y=2 9:8 Pixel Hashing Table Entry y[2]x[4] Format: U2 U2 U2 U2 U2 U2 U3 U3 U3 U3		Format: U2		Format: Indicates the pixelhash_id for the pixel block that has x=7 and y=2 Pixel Hashing Table Entry y[2]x[6] Format: Indicates the pixelhash_id for the pixel block that has x=6 and y=2 Pixel Hashing Table Entry y[2]x[5] Format: Indicates the pixelhash_id for the pixel block that has x=5 and y=2 Pixel Hashing Table Entry y[2]x[4] Format: U2 Pixel Hashing Table Entry y[2]x[4] Format: U2 U2		Indicates the pixelhash_id for the pixel block that has x=8 and y=2		Indicates the pixelhash_id for the pixel block that has x=7 and y=2 Pixel Hashing Table Entry y[2]x[6] Format: U2 Indicates the pixelhash_id for the pixel block that has x=6 and y=2 11:10 Pixel Hashing Table Entry y[2]x[5] Format: U2 Indicates the pixelhash_id for the pixel block that has x=5 and y=2 9:8 Pixel Hashing Table Entry y[2]x[4] Format: U2 U2	15:	Pixel Hashing Table Entry y[2]x[7]		13:12 Pixel Hashing Table Entry y[2]x[6] Format: U2 Indicates the pixelhash_id for the pixel block that has x=6 and y=2 11:10 Pixel Hashing Table Entry y[2]x[5] Format: U2 Indicates the pixelhash_id for the pixel block that has x=5 and y=2 9:8 Pixel Hashing Table Entry y[2]x[4] Format: U2		Format: U2		Format: Indicates the pixelhash_id for the pixel block that has x=6 and y=2 11:10 Pixel Hashing Table Entry y[2]x[5] Format: U2 Indicates the pixelhash_id for the pixel block that has x=5 and y=2 9:8 Pixel Hashing Table Entry y[2]x[4] Format: U2 U2 U2 U2 U2 U2 U2 U2		Indicates the pixelhash_id for the pixel block that has x=7 and y=2		Indicates the pixelhash_id for the pixel block that has x=6 and y=2 11:10 Pixel Hashing Table Entry y[2]x[5] Format: U2 Indicates the pixelhash_id for the pixel block that has x=5 and y=2 9:8 Pixel Hashing Table Entry y[2]x[4] Format: U2 U2	13:	Pixel Hashing Table Entry y[2]x[6]		11:10 Pixel Hashing Table Entry y[2]x[5] Format: U2 Indicates the pixelhash_id for the pixel block that has x=5 and y=2 9:8 Pixel Hashing Table Entry y[2]x[4] Format: U2 U2		Format: U2		Format: U2 Indicates the pixelhash_id for the pixel block that has x=5 and y=2 9:8 Pixel Hashing Table Entry y[2]x[4] Format: U2 U2 U2		Indicates the pixelhash_id for the pixel block that has x=6 and y=2		9:8 Pixel Hashing Table Entry y[2]x[4] Format: U2	11:	Pixel Hashing Table Entry y[2]x[5]		9:8 Pixel Hashing Table Entry y[2]x[4] Format: U2		Format: U2		Format: U2		Indicates the pixelhash_id for the pixel block that has x=5 and y=2		Format: U2	9:	Pixel Hashing Table Entry y[2]x[4]		Indicates the pixelhash_id for the pixel block that has x=4 and y=2		Format: U2				Indicates the pixelhash_id for the pixel block that has x=4 and y=2		7:6 Pixel Hashing Table Entry y[2]x[3]	7:	Pixel Hashing Table Entry y[2]x[3]		Format: U2		Format: U2		Indicates the pixelhash_id for the pixel block that has x=3 and y=2		Indicates the pixelhash_id for the pixel block that has x=3 and y=2		5:4 Pixel Hashing Table Entry y[2]x[2]	5:	Pixel Hashing Table Entry y[2]x[2]		Format: U2		Format: U2		Indicates the pixelhash_id for the pixel block that has x=2 and y=2		Indicates the pixelhash_id for the pixel block that has x=2 and y=2		3:2 Pixel Hashing Table Entry y[2]x[1]	3:	Pixel Hashing Table Entry y[2]x[1]		Format: U2		Format: U2		Indicates the pixelhash_id for the pixel block that has x=1 and y=2		Indicates the pixelhash_id for the pixel block that has x=1 and y=2				PIXEL_HASH_TABLE_2BIT_12	OLIVIKI				---	--																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																									
---	----------------------	--	--			1:0	Pixel Hashing Table Entry y[2]x[0]							Format:	U2						Indicates the pixelhash_id for the pixel block that	has x=0 and y=2				3	31:30	Pixel Hashing Table Entry y[3]x[15]							Format:	U2						Indicates the pixelhash_id for the pixel block that	has x=15 and y=3					29:28	Pixel Hashing Table Entry y[3]x[14]							Format:	U2						Indicates the pixelhash_id for the pixel block that	has x=14 and y=3					27:26	Pixel Hashing Table Entry y[3]x[13]							Format:	U2						Indicates the pixelhash_id for the pixel block that	has x=13 and y=3					25:24	Pixel Hashing Table Entry y[3]x[12]							Format:	U2						Indicates the pixelhash_id for the pixel block that	has $x=12$ and $y=3$					23:22	Pixel Hashing Table Entry y[3]x[11]							Format:	U2						Indicates the pixelhash_id for the pixel block that	has x=11 and y=3					21:20								Format:	U2						Indicates the pixelhash_id for the pixel block that	has x=10 and y=3					19:18	Pixel Hashing Table Entry y[3]x[9]							Format:	U2						Indicates the pixelhash_id for the pixel block that	has x=9 and y=3					17:16	Pixel Hashing Table Entry y[3]x[8]							Format:	U2						Indicates the pixelhash_id for the pixel block that	has x=8 and y=3					15:14 Pixel Hashing Table Entry y[3]x[7]															PIXEL_HASH_TABLE_2BIT_128ENTF	RY		---	-------	---	--------								13:12	Pixel Hashing Table Entry y[3]x[6]	T				Format:	U2				Indicates the pixelhash_id for the pixel block that has x=6 an	d y=3			11:10	Pixel Hashing Table Entry y[3]x[5]					Format:	U2				Indicates the pixelhash_id for the pixel block that has x=5 ar	nd y=3			9:8	Pixel Hashing Table Entry y[3]x[4]					Format:	U2				Indicates the pixelhash_id for the pixel block that has x=4 and	d y=3			7:6	Pixel Hashing Table Entry y[3]x[3]					Format:	U2				Indicates the pixelhash_id for the pixel block that has x=3 ar	nd y=3			5:4	Pixel Hashing Table Entry y[3]x[2]					Format:	U2				Indicates the pixelhash_id for the pixel block that has x=2 ar	nd y=3			3:2	Pixel Hashing Table Entry y[3]x[1]					Format:	U2				Indicates the pixelhash_id for the pixel block that has $x=1$ are	nd y=3			1:0	Pixel Hashing Table Entry y[3]x[0]					Format:	U2				Indicates the pixelhash_id for the pixel block that has $x=0$ and	nd y=3		4	31:30	Pixel Hashing Table Entry y[4]x[15]					Format:	U2				Indicates the pixelhash_id for the pixel block that has x=15 a	nd y=4			29:28	Pixel Hashing Table Entry y[4]x[14]	I				Format:	U2				Indicates the pixelhash_id for the pixel block that has $x=14$ a	nd y=4			27:26	Pixel Hashing Table Entry y[4]x[13]					Format:	U2				Indicates the pixelhash_id for the pixel block that has $x=13$ a	nd y=4			PIXEL_HASH_TABLE_2BIT_			-------	--	--------------------------		25:24	Pixel Hashing Table Entry y[4]x[12]				Format:	U2			Indicates the pixelhash_id for the pixel block	that has x=12 and y=4		23:22	Pixel Hashing Table Entry y[4]x[11]				Format:	U2			Indicates the pixelhash_id for the pixel block	that has x=11 and y=4		21:20	Pixel Hashing Table Entry y[4]x[10]				Format:	U2			Indicates the pixelhash_id for the pixel block	that has x=10 and y=4		19:18	Pixel Hashing Table Entry y[4]x[9]				Format:	U2			Indicates the pixelhash_id for the pixel block	that has x=9 and y=4		17:16	Pixel Hashing Table Entry y[4]x[8]				Format:	U2			Indicates the pixelhash_id for the pixel block	that has x=8 and y=4		15:14	Pixel Hashing Table Entry y[4]x[7]				Format:	U2			Indicates the pixelhash_id for the pixel block	that has x=7 and y=4		13:12	Pixel Hashing Table Entry y[4]x[6]				Format:	U2			Indicates the pixelhash_id for the pixel block	that has x=6 and y=4		11:10	Pixel Hashing Table Entry y[4]x[5]				Format:	U2			Indicates the pixelhash_id for the pixel block	that has x=5 and y=4		9:8	Pixel Hashing Table Entry y[4]x[4]	I			Format:	U2			Indicates the pixelhash_id for the pixel block	that has x=4 and y=4		7:6	Pixel Hashing Table Entry y[4]x[3]				Format:	U2			Indicates the pixelhash_id for the pixel block	that has $x=3$ and $y=4$				PIXEL_HASH_TABLE_2BIT_128ENTRY					---	---	--	---	--	--										5:4	Pixel Hashing Table Entry y[4]x[2]	1						Format: U2							Indicates the pixelhash_id for the pixel block that has x=2 and y=4						3:2	Pixel Hashing Table Entry y[4]x[1]							Format: U2							Indicates the pixelhash_id for the pixel block that has x=1 and y=4						1:0	Pixel Hashing Table Entry y[4]x[0]							Format: U2							Indicates the pixelhash_id for the pixel block that has x=0 and y=4					5	31:30 Pixel Hashing Table Entry y[5]x[15]								Format: U2							Indicates the pixelhash_id for the pixel block that has x=15 and y=5						29:28	Pixel Hashing Table Entry y[5]x[14]							Format: U2							Indicates the pixelhash_id for the pixel block that has x=14 and y=5						27:26	Pixel Hashing Table Entry y[5]x[13]							Format: U2							Indicates the pixelhash_id for the pixel block that has x=13 and y=5						25:24	Pixel Hashing Table Entry y[5]x[12]							Format: U2							Indicates the pixelhash_id for the pixel block that has x=12 and y=5						23:22	Pixel Hashing Table Entry y[5]x[11]							Format: U2							Indicates the pixelhash_id for the pixel block that has x=11 and y=5						21:20	Pixel Hashing Table Entry y[5]x[10]							Format: U2							Indicates the pixelhash_id for the pixel block that has x=10 and y=5						19:18 Pixel Hashing Table Entry y[5]x[9]								Format: U2							Indicates the pixelhash_id for the pixel block that has x=9 and y=5					17:16	Pixel Hashing Table Entry y[5]x[8]			-------	---	--------------------			Format:	U2			Indicates the pixelhash_id for the pixel block that	t has x=8 and y=5		15:14	Pixel Hashing Table Entry y[5]x[7]				Format:	U2			Indicates the pixelhash_id for the pixel block that	t has x=7 and y=5		13:12	Pixel Hashing Table Entry y[5]x[6]				Format:	U2			Indicates the pixelhash_id for the pixel block that	t has x=6 and y=5		11:10	Pixel Hashing Table Entry y[5]x[5]				Format:	U2			Indicates the pixelhash_id for the pixel block that	t has x=5 and y=5		9:8	Pixel Hashing Table Entry y[5]x[4]				Format:	U2			Indicates the pixelhash_id for the pixel block that	t has x=4 and y=5		7:6	Pixel Hashing Table Entry y[5]x[3]				Format:	U2			Indicates the pixelhash_id for the pixel block that	t has x=3 and y=5		5:4	Pixel Hashing Table Entry y[5]x[2]				Format:	U2			Indicates the pixelhash_id for the pixel block that	t has x=2 and y=5		3:2	Pixel Hashing Table Entry y[5]x[1]				Format:	U2			Indicates the pixelhash_id for the pixel block that	t has x=1 and y=5		1:0	Pixel Hashing Table Entry y[5]x[0]				Format:	U2			Indicates the pixelhash_id for the pixel block that	t has x=0 and y=5		31:30	Pixel Hashing Table Entry y[6]x[15]				Format:	U2			Indicates the pixelhash_id for the pixel block that	t has x=15 and y=6			PIXEL_HASH_TABLE_2BIT	_128ENTRY		-------	--	--------------------------		29:28	Pixel Hashing Table Entry y[6]x[14]				Format:	U2			Indicates the pixelhash_id for the pixel block	that has x=14 and y=6		27:26	Pixel Hashing Table Entry y[6]x[13]				Format:	U2			Indicates the pixelhash_id for the pixel block	that has x=13 and y=6		25:24	Pixel Hashing Table Entry y[6]x[12]				Format:	U2			Indicates the pixelhash_id for the pixel block	that has x=12 and y=6		23:22	Pixel Hashing Table Entry y[6]x[11]				Format:	U2			Indicates the pixelhash_id for the pixel block	that has x=11 and y=6		21:20	Pixel Hashing Table Entry y[6]x[10]				Format:	U2			Indicates the pixelhash_id for the pixel block	that has x=10 and y=6		19:18	Pixel Hashing Table Entry y[6]x[9]				Format:	U2			Indicates the pixelhash_id for the pixel block	that has x=9 and y=6		17:16	Pixel Hashing Table Entry y[6]x[8]				Format:	U2			Indicates the pixelhash_id for the pixel block	that has x=8 and y=6		15:14	Pixel Hashing Table Entry y[6]x[7]				Format:	U2			Indicates the pixelhash_id for the pixel block	that has x=7 and y=6		13:12	Pixel Hashing Table Entry y[6]x[6]				Format:	U2			Indicates the pixelhash_id for the pixel block	that has x=6 and y=6		11:10	Pixel Hashing Table Entry y[6]x[5]	r			Format:	U2			Indicates the pixelhash_id for the pixel block	that has $x=5$ and $y=6$				PIXEL_HASH_TABLE_2BIT_128ENTRY				---	-------	--	--	--									9:8	Pixel Hashing Table Entry y[6]x[4]						Format: U2																																																																																																																																																																																																																																																																																																																																																																																																																																																									
Indicates the pixelhash_id for the pixel block that has x=4 and y=6					7:6	Pixel Hashing Table Entry y[6]x[3]						Format: U2						Indicates the pixelhash_id for the pixel block that has x=3 and y=6					5:4	Pixel Hashing Table Entry y[6]x[2]						Format: U2						Indicates the pixelhash_id for the pixel block that has x=2 and y=6					3:2	Pixel Hashing Table Entry y[6]x[1]						Format: U2						Indicates the pixelhash_id for the pixel block that has x=1 and y=6					1:0	Pixel Hashing Table Entry y[6]x[0]						Format: U2						Indicates the pixelhash_id for the pixel block that has x=0 and y=6				7	31:30	Pixel Hashing Table Entry y[7]x[15]						Format: U2						Indicates the pixelhash_id for the pixel block that has x=15 and y=7					29:28	Pixel Hashing Table Entry y[7]x[14]						Format: U2						Indicates the pixelhash_id for the pixel block that has x=14 and y=7					27:26	Pixel Hashing Table Entry y[7]x[13]						Format: U2						Indicates the pixelhash_id for the pixel block that has x=13 and y=7					25:24	Pixel Hashing Table Entry y[7]x[12]						Format: U2						Indicates the pixelhash_id for the pixel block that has x=12 and y=7					23:22	Pixel Hashing Table Entry y[7]x[11]						Format: U2						Indicates the pixelhash_id for the pixel block that has x=11 and y=7					PIXEL_HASH_TABLE_2BIT_12	8ENTRY			-------	---	--------------------	--		24.20	D: 111 1: T11 F (177 140)				21:20	Pixel Hashing Table Entry y[7]x[10]	110				Format:	U2				Indicates the pixelhash_id for the pixel block that	nas x= 10 and y= /			19:18	Pixel Hashing Table Entry y[7]x[9]					Format:	U2				Indicates the pixelhash_id for the pixel block that	has x=9 and y=7			17:16	Pixel Hashing Table Entry y[7]x[8]					Format:	U2				Indicates the pixelhash_id for the pixel block that	has x=8 and y=7			15:14	Pixel Hashing Table Entry y[7]x[7]					Format:	U2				Indicates the pixelhash_id for the pixel block that	has x=7 and y=7			13:12	Pixel Hashing Table Entry y[7]x[6]					Format:	U2				Indicates the pixelhash_id for the pixel block that	has x=6 and y=7			11:10	Pixel Hashing Table Entry y[7]x[5]					Format:	U2				Indicates the pixelhash_id for the pixel block that	has x=5 and y=7			9:8	Pixel Hashing Table Entry y[7]x[4]					Format:	U2				Indicates the pixelhash_id for the pixel block that				7:6	Pixel Hashing Table Entry y[7]x[3]					Format:	U2				Indicates the pixelhash_id for the pixel block that	has x=3 and y=7			5:4	Pixel Hashing Table Entry y[7]x[2]					Format:	U2				Indicates the pixelhash_id for the pixel block that	has x=2 and y=7			3:2	Pixel Hashing Table Entry y[7]x[1]					Format:	U2				Indicates the pixelhash_id for the pixel block that	has x=1 and y=7			PIXEL_HASH_TABLE_2BIT_128ENTRY							--------------------------------	---	----	--	--	--									1:0	Pixel Hashing Table Entry y[7]x[0]							Format:	U2						Indicates the pixelhash_id for the pixel block that has x=0 and y=7					# **Pixel Sample Mask Render Target Message Header Control**	MHC	RT_	PSM - Pixel Sample Mask Render Ta	arget Message Header				------------	---	---	--	--	--				Control					Source:		BSpec					Size (in b	its):	32					Default \	/alue:	0x00000000					DWord	Bit	Description					0	31:16	Dispatched Pixel/Sample Enables														Format:	U16						One bit per pixel (or sample within pixel) indicating which pi when the thread was dispatched. The Dispatched Pixel/Samp the ones sent when the pixel shader thread was initiated. If the are modified, behavior is undefined.	ole Enables must be unmodified from						Programming Notes						d to samples, not pixels. Each on for the subspan. Note that in s. When operating in PER_PIXEL ask (obtained via bypass) are used							15:0	Pixel/Sample Enables														Format:	U16						Specifies which pixels/samples are still lit based on kill instruction. This mask is AND'd with the Dispatched Pixel/Sample Enable actual accesses to the color buffer. Pixels/samples will be drougher is not modified for masked reads.	s mask, and that is used to control						Programming Notes	Programming Notes						When operating in PER_SAMPLE mode these bits correspond run per-sample. Each subspan slot (4 bits) corresponds to a subspan. When operating in PER_PIXEL mode, these bits still run per-pixel. Each pixel's mask bit is replicated according to combined with other masks to control writes to the multisar	specific sample location for the I correspond to pixels, as the PS is Number of Multisamples and			## **Power Clock State Format** # **Power Clock State Format** Source: RenderCS Size (in bits): 32 Default Value: 0x00000088 #### Known Uses - R_PWR_CLK_STATE Render Power Clock State Register - PM_PWR_CLK_STATE PM Power Clock State Request (Intended, in GT/GTI space, not yet in use) - PM_PWR_CLK_STATE (Intended, in GT/GTI space, not yet in use)	DWord	Bit			Description					-------	-------	----------------------------	----------------	----------------------------------	---	--	--		0	31	Reserved																		Format:			MBZ					30:20	Reserved																		Access:			RO						Format:			MBZ					19	Reserved																		Access:			RO						Format:			MBZ					18	Enable Slice Count Request																		Access:			R/W							Count Request.								Value	Name		Description						0h	Disable	Use async PMunit slice count	•						1h	Enable	Use SliceCount from this regi	ster.					17:12	Slice Count I	Request		T															Access:			R/W						Note: In softv	vare programs		of 2 slices with 4 subslices in each slice.						Hardware ma		P 1 slice/8-subslice physical la	•							Name		Description						000001b		1 slice.						PU	wer (Clock State	e For	mat			------	---	--------------------------	--	-------------------------------	---	--			000010b	2	2 slices.						000011b	3	3 slices.						000100b	4	4 slices.						000101b	5	5 slices. Hardware	will rev	ert to 4 slices				000110b	6	6 slices.						000111b	7	7 slices.						001000b	8	8 slices.					11	SSCountEn																			• ••					Frankla Colkaliaa Canad	. D		iption					Enable Subslice Count 0 = Use Async subslice																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					
t.						1 = Use SScount in the		er					10:8	SScount																																		Descr	iption							. This value only a	pplies v	when slice 0 is the only one powere				(otherwise all available	e subslice	. This value only a es are used per sli	pplies v ice)						e subslice	. This value only a es are used per sli	pplies v ice)					(otherwise all available	e subslice	. This value only a es are used per sli	pplies v ice)					(otherwise all available The valid values are fu	e subslice	This value only a es are used per sli nited by the actua	pplies v ice) I subslic	e count of the part				(otherwise all available The valid values are fu	e subslice	This value only a es are used per sli nited by the actua	pplies wice)	e count of the part Description				(otherwise all available The valid values are full value 000001b	e subslice	This value only a es are used per sli nited by the actua	pplies v ice) I subslic	Description 1 sub slice.				(otherwise all available The valid values are full value 000001b 000010b	e subslice	This value only a es are used per sli nited by the actua	pplies v ice) I subslic	Description 1 sub slice. 2 sub slices.			7:4	(otherwise all available The valid values are full value are full value value value value 000001b 000010b 000011b	e subslice	This value only a es are used per sli nited by the actua	pplies v ice) I subslic	Description 1 sub slices. 2 sub slices. 3 sub slices.			7:4	(otherwise all available The valid values are full value are full value value value value 000001b 000010b 000011b 100b	e subslice	This value only a es are used per sli nited by the actua	pplies v ice) I subslic	Description 1 sub slices. 2 sub slices. 3 sub slices.			7:4	(otherwise all available The valid values are full value are full value value value value 000001b 000010b 000011b 100b	e subslice	This value only a es are used per sli nited by the actua	pplies v ice) I subslic	Description 1 sub slices. 2 sub slices. 3 sub slices.			7:4	(otherwise all available The valid values are full value are full value are full value on the valid value on the valid value are full value on the valid value on the valid value on the valid value of value on the valid value of value of value of value or value of	e subslice urther lim	This value only a es are used per slinited by the actual Name	pplies vice) I subslice	Description 1 sub slices. 2 sub slices. 3 sub slices. 4 sub slices			7:4	(otherwise all available The valid values are full Value 000001b 000011b 100b EUmax Access: Maximum number of exact number of subsli	e subslice urther lim	Name Ower (per subslice	pplies vice) I subslice	Description 1 sub slice. 2 sub slices. 3 sub slices. 4 sub slices R/W iple subslices enabled). To specify			7:4	Value 000001b 000011b 100b EUmax Access: Maximum number of exact number of subsli	e subslice urther lim	This value only a es are used per slinited by the actual Name	pplies vice) I subslice	Description 1 sub slices. 2 sub slices. 3 sub slices. 4 sub slices R/W iple subslices enabled). To specify Description			7:4	Value 000001b 000011b 100b EUmax Access: Maximum number of exact number of subslite value 0010b	e subslice urther lim	Name Ower (per subslice	pplies vice) I subslice	Description 1 sub slice. 2 sub slices. 3 sub slices. 4 sub slices R/W iple subslices enabled). To specify Description 2 EUs			7:4	(otherwise all available The valid values are full Value 000001b 000011b 100b EUmax Access: Maximum number of exact number of subslit Value 0010b 0100b	e subslice urther lim	Name Ower (per subslice	pplies vice) I subslice	Description 1 sub slice. 2 sub slices. 3 sub slices. 4 sub slices R/W iple subslices enabled). To specify Description 2 EUs 4 EUs			7:4	Value 000001b 000011b 100b EUmax Access: Maximum number of exact number of subslite value 0010b	e subslice urther lim	Name Ower (per subslices Name	pplies vice) I subslice	Description 1 sub slice. 2 sub slices. 3 sub slices. 4 sub slices R/W iple subslices enabled). To specify Description 2 EUs				Power Clock State Format							-----	---	---	------------	-------------------------------------	--	--				Programr	ming Note	25					EUmin and EUmax ne counts to an even va		ımbers are	illegal; hardware will clip odd EU				3:0	EUmin																Access:			R/W						EUs to power (per subslice lices, set EUmax equal to E	•	e subslices enabled). To specify an					Value	Name		Description					0010b		2	2 EUs					0100b		4	4 EUs					0110b		(5 EUs					1000b	[Default]	8	B EUs													Programming Notes								EUmin and EUmax need to be even and odd numbers are illegal; hardware will clip odd EU counts to an even value.						# intel ## PPHWSP_LAYOUT # PPHWSP LAYOUT - PPHWSP LAYOUT Source: BSpec Size (in bits): 32672 > 0x00000000, ### PPHWSP LAYOUT - PPHWSP LAYOUT 0x00000000, ## PPHWSP LAYOUT - PPHWSP LAYOUT 0x00000000,		PPHW	SP_LAYOUT - PPHWSP_LAYOUT		----------------------------	---	---		0. 0. 0.	x00000000, x000000000, x000000000, x00000000	0x00000000, 0x00000000, 0x00000000, 0x00000000		0. 0. 0. 0.	x00000000, x000000000, x000000000, x00000000	0x00000000, 0x00000000, 0x00000000, 0x00000000		0. 0. 0. 0.	x00000000, x000000000, x000000000, x00000000	0x00000000, 0x00000000, 0x00000000, 0x00000000		0. 0. 0. 0.	x00000000, x000000000, x000000000, x00000000	0x00000000, 0x00000000, 0x00000000, 0x00000000		0. 0. 0. 0.	x00000000, x000000000, x000000000, x00000000	0x00000000, 0x00000000, 0x00000000, 0x00000000		0. 0. 0. 0. 0.	x00000000, x000000000, x000000000, x00000000	0x00000000, 0x00000000, 0x00000000, 0x00000000		DWord	Bit	Description		03	127:0	Reserved		4	31:0	Ring Head Pointer Storage				Description The contents of the Ring Buffer Head Pointer register (register DWord 1) are written to this location either as result of an MI_REPORT_HEAD instruction or as the result of an "automatic report" (see RINGBUF registers).		F	PHW	SP L	AYO	UT - PPHWSP LAYOUT			---	---------	--	----------------------------------	--	--		515	351:0	Reserved					16	0	Cumulative Context Run Time							This has the cumulative run time of the context on HW. HW reports CTX_TIMESTAMP to this location on a context switch.							saved i the cur require	n the conulative defined for the	ritten after the context save is complete. The value that is ontext image does not include the time between the saving of value to context to the time we complete the save. If e value to always increment and not take the context save tion, driver must look at the value in the context image.			17	31:1	Reserve	ed					0	Elemen	t Switc	h												Value	Name	Description					0		Indicates the context is not submitted as the first element in the execlist.					1		Indicates the corresponding context has been submitted as first element of the execlist. Preempt Request Received Timestamp is the time when the pending execlist has been submitted to HW. Note that across multiple submissions a given context could be first or second element of an execlist. This bit will get set if the context has been submitted as the first element in the execlist.			1819	63:0	_	-	est Received Timestamp gister sampled on preemption request is reported.			2021	63:0			re Complete Timestamp gister sampled on context restore complete is reported.			2223	63:0			Finished Timestamp gister sampled on context save completion is reported.			2427	127:0	MI_SEMAPHORE_WAIT MI_SEMAPHORE_WAIT command on which the context got switched out due to semaphore wait. This field is only valid and must be looked at when the context switch reason in context status buffer is stated as "Wait on Semaphore".					2831	127:0	Reserve	ed				3233 This field describes the most recent context switch status of the corresponding context.	63:0	Contex	t Switc	h Status Qword			341020	31583:0	Reserve	ed			# **Predicate Barrier Message Data Payload** # MDP_PREDICATE_BARRIER - Predicate Barrier Message Data Payload Source: EuSubFunctionGateway Size (in bits): 256 0x00000000, 0x00000000																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																										
This response message is sent back only if the Gateway Barrier Message specifies that this is a predicated barrier. This response is written to the GRF writeback location, and the response length specified in the send message to the EU must be 1.	DWord	Bit	Description					-------	-------	---	---------------------------------------	--	--		0	31:16	Reserved							Format:	MBZ					15:0	Predicated Barrier Mask Sum							Format: U16							This field is a sum of the predicate mask bits sent by each containing it) is not written if the barrier is not marked as a compare this field to 0 for the predicated OR function and the predicated AND function.	predicated barrier. The kernel should				17	223:0	Reserved							Format:	MBZ			# **Qword Data Payload Register**	Size (in bits): 256	Source:	BSr	nec						--	----------------	-----------	-------------------------------------	--	--	--	--		Default Value:		BSpec 256							Dword Bit Description	,			0.000000000 0x00000000 0x00000000					0.0-0.1 63:0 Qword0 Format: U64 Specifies the slot 0 data in this payload register 0.2-0.3 63:0 Qword1 Format: U64 Specifies the slot 1 data in this payload register 0.4-0.5 63:0 Qword2 Format: U64 Specifies the slot 2 data in this payload register 0.6-0.7 63:0 Qword3	Default Value.			,, 0,00000000, 0,00000000, 0,00000000,					Format: U64 Specifies the slot 0 data in this payload register 0.2-0.3 63:0 Qword1 Format: U64 Specifies the slot 1 data in this payload register 0.4-0.5 63:0 Qword2 Format: U64 Specifies the slot 2 data in this payload register 0.6-0.7 63:0 Qword3	DWord	Bit		Description					Specifies the slot 0 data in this payload register 0.2-0.3 63:0 Qword1 Format: U64 Specifies the slot 1 data in this payload register 0.4-0.5 63:0 Qword2 Format: U64 Specifies the slot 2 data in this payload register 0.6-0.7 63:0 Qword3	0.0-0.1	63:0	Qword0						Specifies the slot 0 data in this payload register 0.2-0.3 63:0 Qword1 Format: Specifies the slot 1 data in this payload register 0.4-0.5 63:0 Qword2 Format: Format: Specifies the slot 2 data in this payload register 0.6-0.7 63:0 Qword3									0.2-0.3 63:0 Qword1 Format: Specifies the slot 1 data in this payload register 0.4-0.5 63:0 Qword2 Format: Specifies the slot 2 data in this payload register 0.6-0.7 63:0 Qword3			Format:	U64					Format: U64 Specifies the slot 1 data in this payload register 0.4-0.5 63:0 Qword2 Format: U64 Specifies the slot 2 data in this payload register 0.6-0.7 63:0 Qword3			Specifies the slot 0 data in this p	ayload register					Specifies the slot 1 data in this payload register 0.4-0.5 63:0 Qword2 Format: Specifies the slot 2 data in this payload register 0.6-0.7 63:0 Qword3	0.2-0.3	63:0	Qword1	I					Specifies the slot 1 data in this payload register 0.4-0.5 63:0 Qword2 Format: Specifies the slot 2 data in this payload register 0.6-0.7 63:0 Qword3									0.4-0.5 63:0 Qword2 Format: U64 Specifies the slot 2 data in this payload register 0.6-0.7 63:0 Qword3									Format: U64 Specifies the slot 2 data in this payload register 0.6-0.7 63:0 Qword3			Specifies the slot 1 data in this p	ayload register					Specifies the slot 2 data in this payload register 0.6-0.7 63:0 Qword3	0.4-0.5	63:0	Qword2						Specifies the slot 2 data in this payload register 0.6-0.7 63:0 Qword3									0.6-0.7 63:0 Qword3			Format:	U64								Specifies the slot 2 data in this p	ayload register					Format: U64	0.6-0.7	63:0	Qword3						Format: U64												Format:	U64				# **Qword SIMD8 Atomic Operation CMPWR8B Message Data Payload**	MDP_AC	P8_QV	V2 - Qword SI	MD8 Atomic Operation CMPWR8B					-----------------	----------------------------	--	-------------------------------------	--	--	--				Message	e Data Payload					Source:	BSpec							Size (in bits):	1024							Default Value:	0x0000 0x0000 0x0000	00000000, 0x00000000, 0x00000000, 0x00000000						DWord	Bit		Description					0.0-0.7	255:0	Slot[7:0] Src0[31:0]								Format:	MDCR_DW							Specifies the lower	32-bits of Slot [7:0] Source 0 data					1.0-1.7	255:0	Slot[7:0] Src0[63:32]								Format:	MDCR_DW							Specifies the upper	32-bits of Slot [7:0] Source 0 data					2.0-2.7	255:0	Slot[7:0] Src1[31:0]								Format:	MDCR_DW							Specifies the lower	32-bits of Slot [7:0] Source 1 data					3.0-3.7	255:0	Slot[7:0] Src1[63:32	2]							Format:	MDCR_DW							Specifies the upper	32-bits of Slot [7:0] Source 1 data				# **Qword SIMD8 Atomic Operation CMPWR Message Data Payload**	MDP_A64_	AOP8_QV		MD8 Atomic Operation CMPWR		-----------------	--	--	---				Message Da	ta Payload		Source:	BSpec				Size (in bits):	1024				Default Value:	0x00000000 0x00000000 0x00000000 0x000000	, 0x00000000, 0x000000 , 0x00000000, 0x000000 , 0x00000000, 0x000000	000, 0x00000000, 0x00000000, 0x00000000, 0x00000000		DWord	Bit		Description		0.0-0.7	255:0	Slot[3:0] Src0					Format:	MDCR_QW				Specifies the Slot [3:	0] Source 0 data		1.0-1.7	255:0	Slot[7:4] Src0					Format:	MDCR_QW				Specifies the Slot [7:	4] Source 0 data		2.0-2.7	255:0	Slot[3:0] Src1					Format:	MDCR_QW				Specifies the Slot [3:	0] Source 1 data		3.0-3.7	255:0	Slot[7:4] Src1					Format:	MDCR_QW				Specifies the Slot [7:	4] Source 1 data	# **Qword SIMD8 Atomic Operation Return Data Message Data Payload**	MDP_AO	P8_QW		MD8 Atomic Operation Return Data			-----------------	--------	------------------------	--	--				Message	e Data Payload			Source:	BSpec					Size (in bits):	512					Default Value:	0x0000	0000, 0x00000000, 0x	00000000, 0x00000000, 0x00000000, 0x00000000			DWord	Bit		Description			0.0-0.7	255:0	Slot[7:0] Qword[31	:0]											Format:	MDCR_DW					Specifies the lower 3	32-bits of Slot [7:0] Return data			1.0-1.7	255:0	Slot[7:0] Qword[63:32]												Format:	MDCR_DW					Specifies the upper	32-bits of Slot [7:0] Return data		# **Qword SIMD8 Data Payload**		MDP_QW_SIN	ID8 - Qword	SIMD8 Data Payload				-----------------	---	--------------------	--------------------	--	--		Source:	BSpec						Size (in bits):	512						Default Value:	ault Value: 0x0000000, 0x00000000, 0x00000000, 0x00000000						DWord	Bit	Description					0.0-0.7	255:0	Data[3:0]														Format:	MDCR_QW						Specifies the Slot	3:0] data				1.0-1.7	255:0	Data[7:4]				Specifies the Slot [7:4] data Format: MDCR_QW # **Qword SIMD16 Atomic Operation CMPWR8B Message Data Payload**	MDP_AO	P16_QV	/2 - Qword SIMD	16 Atomic Operation CMPWR8B					--	--	---	---	--	--	--				Message Da	ita Payload					Source: Size (in bits): Default Value:	0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000	48 00000000, 0x00000000, 0x00000000, 0x00000000							1	00000, 0x00000000, 0x00000000, 0x00000000						0.0-0.7	Bit 255:0	Description Slot[7:0] Src0[31:0]								Format: Specifies the lower 32-bits	MDCR_DW of Source 0 data for Slot [7:0]					1.0-1.7	255:0	Slot[15:8] Src0[31:0]								Format: Specifies the lower 32-bits	MDCR_DW Source 0 data for Slot [15:8]					2.0-2.7	255:0	Slot[7:0] Src0[63:32]								Format:	MDCR_DW							Specifies the upper 32-bits of Source 0 data for Slot [7:0]						3.0-3.7	255:0	Slot[15:8] Src0[63:32]								Format: Specifies the upper 32-bits	MDCR_DW Source 0 data for Slot [15:8]					4.0-4.7	255:0	Slot[7:0] Src1[31:0]						MDP_AO	P16_QV		SIMD16 Atomic Operation CMPWR8B pe Data Payload						---------	--------	---------------------	---	--	--	--	--													Format:	MDCR_DW								Specifies the lower	32-bits of Source 1 data for Slot [7:0]						5.0-5.7	255:0	Slot[15:8] Src1[31:	0]																	Format:	MDCR_DW								Specifies the lower	32-bits Source 1 data for Slot [15:8]						6.0-6.7	255:0	Slot[7:0] Src1[63:3	2]																	Format:	MDCR_DW								Specifies the																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																										
upper	32-bits of Source 1 data for Slot [7:0]						7.0-7.7	255:0	Slot[15:8] Src1[63	32]																	Format:	MDCR_DW								Specifies the upper	32-bits Source 1 data for Slot [15:8]					# **Qword SIMD16 Atomic Operation Return Data Message Data Payload**	MDP_A	OP16_0	QW1 - Qword	d SIMD16 Atomic Operation Return					--	----------------------------------	---	---	--	--	--				Data Mess	sage Data Payload					Source: Size (in bits): Default Value:	0x000 0x000 0x000 0x000	00000, 0x00000000, 0x00000000, 0x00000000						DWord	Bit		Description					0.0-0.7	255:0	Slot[7:0] Qword[3 Format:	1:0] MDCR_DW					1.0-1.7	255:0	Specifies the lower Slot[15:8] Qword[r 32-bits of Return data for Slot [7:0]							Format: Specifies the lower	MDCR_DW r 32-bits of Return data for Slot [15:8]					2.0-2.7	255:0	Slot[7:0] Qword[6 Format: Specifies the uppe	3:32] MDCR_DW r 32-bits of Return data for Slot [7:0]					3.0-3.7	255:0	Slot[15:8] Qword[Format: Specifies the uppe	MDCR_DW r 32-bits of Return data for Slot [15:8]				# **Qword SIMD16 Data Payload**	MDF	P_QW_SIM	ID16 - Qword SIM	ID16 Data Payload					-----------------	---	---------------------------------------	-------------------	--	--	--		Source:	BSpec							Size (in bits):	1024							Default Value:	0x00000000, 0x0 0x00000000, 0x0 0x00000000, 0x0							DWord	Bit		Description					0.0-0.7	255:0	Format: Specifies the Slot [3:0] data	MDCR_QW					1.0-1.7	255:0	Data[7:4]								Format:	MDCR_QW							Specifies the Slot [7:4] data	3					2.0-2.7	255:0	qw11_qw8								Format:	MDCR_QW							Specifies the Slot [11:8] da	ta					3.0-3.7	255:0	qw15_qw12								Format:	MDCR_QW							Specifies the Slot [15:12] d					# **Read-Only Data Port Message Types** MT_DP_RO - Read-Only Data Port Message Types Source: EuSubFunctionReadOnlyDataPort Size (in bits): 5 Default Value: 0x00000000 Lists all the Message Types in a Read-Only Data Port Message Descriptor [18:14]. Read operations from the Constant Cache and Sampler Cache are encoded in the Read-Only Data Port. Many of the operations are also implemented in Data Port 0, and those operations use the same Message Header.	DWord	Bit	Description								-------	-----	-------------	---	---	--	--	--	--		0	4:0	_	Message Type Specifies type of message									Value	Name	Description								00h	MT_CC_OWB [Default]	Oword Block Read Constant Cache message								01h	MT_CC_OWUB	Unaligned Oword Block Read Constant Cache message								03h	MT_CC_DWS	Dword Scattered Read Constant Cache message								04h	MT_SC_OWUB	Unaligned Oword Block Read Sampler Cache message								05h	MT_SC_MB	Media Block Read Sampler Cache message								06h	MT_RSI Read Surface Info message									Others	Reserved	Ignored					# **Read Surface Info 32-Bit Address Payload**	MAP3	B2B_RSI	- Read Surface	Info 32-Bit Ad	ddress Payload			--	---------	---	------------------------	---------------------	--		Source: Size (in bits): Default Value:		000, 0x00000000, 0x00000 000, 0x00000000	000, 0x00000000, 0x000	000000, 0x00000000,			DWord	Bit		Description				0.0	31:0	Format: Specifies the U channel	address offset.	U32			0.1	31:0	V	V						Format: Specifies the V channel address offset.		U32			0.2	31:0	R							Format: Specifies the R channel address offset.		U32			0.3	31:0	LOD							Format:	Format: MACD_LOD						Specifies the LOD.					0.4-0.7	127:0	Reserved							Format: MBZ		MBZ					Ignored				# **Read Surface Info Data Payload**			MDP_RSI - Re	ead Surface Info Da	nta Payload							------------	--------	--	------------------------------------	--	--	--	--	--	--		Source:		BSpec									Size (in b	oits):	512									Default \	/alue:		0000, 0x00000000, 0x00000000,											0000, 0x00000000, 0x00000000,	0x00000000, 0x00000000,									0x00000000, 0x0000	0000, 0x00000000, 0x00000000								DWord	Bit		Description								0.0-0.5	191:0	Reserved											F		NAD 7									Format:		MBZ									Ignored									0.6-0.7	63:0	Instruction Base Address																						Format:	GraphicsAddress[63:0]										Instruction Base Address f	rom STATE_BASE_ADDRESS, ext											Programming Notes										The 48-bit address is retur	rned in a 64-bit address in canor	nical form.							1.0	31:0	Width																						Format:		U32									1). The value is 0 for NULL	•	CE_STATE Width (stored as width minus Vidth+1) » LOD. Surface Width from							1.1	31:0	Height																						Format:		U32									Surface Height, generally computed from RENDER_SURFACE_STATE Height (stored as height minus 1). The value for a 1D array is RENDER_SUFACE_STATE's (Depth + 1). The value for 1D no											array, BUFFER, and NULL surface is 0. In all other case, the value is (Height + 1) » LOD.									1.2	31:0	Depth																						Format:		U32										be Array surface, value is the (De	CE_STATE Depth (which is stored depth epth+1). If 3D surface, value is									MD	P_RSI - Read Su	urface Info Da	ta Payload				---------	------	--	------------------------	--	--------------------------	--	--		1.3	31:0	MIP Coun	+						1.5	31.0	IVIII COUII									Format:		U32							MIP Coun	t from RENDER_SURFACE	_STATE, range [0, 14], ze	ero extended to 32 bits.				1.4	31:0	Surface Type																		Format:			U32							/pe from RENDER_SURFAC	CE_STATE, zero extende							Value	Name	4 11 1	Description						0h	SURFTYPE_1D	1-dimensional map	<u>_</u>						1h	SURFTYPE_2D	2-dimensional map	<u>.</u>						2h	SURFTYPE_3D	3-dimensional map (volumetric) of maps							3h	SURFTYPE_CUBE	Cube map or array	of cube maps						4h	SURFTYPE_BUFFER	Element in a buffer							5h	SURFTYPE_STRBUF	Structured buffer su	ırface						7h	SURTYPE_NULL	Null surface							Others	Reserved	Reserved					1.5	31:0	Surface Fo	ormat		T															Format:	. (DENIDED CUDE	TAGE CTATE (UD)	U32						Surface Format from RENDER_SURFACE_STATE (U9), zero extended to 32 bits.							1.6-1.7	63:0	Reserved		1							F .			1407						Format:			MBZ						Ignored						## RENDER_SURFACE_STATE ## RENDER_SURFACE_STATE Source: BSpec Exists If: //[MessageType] != 'Sample_8x8' Size (in bits): 512 This is the normal surface state used by all messages that use SURFACE_STATE except those that use MEDIA_SURFACE_STATE. # DWord Bit 0 31:29 Surface Type This field defines the type of the surface.	Value	Name	Description		-------	-----------------	--		0h	SURFTYPE_1D	Defines a 1-dimensional map or array of maps		1h	SURFTYPE_2D	Defines a 2-dimensional map or array of maps		2h	SURFTYPE_3D	Defines a 3-dimensional (volumetric) map		3h	SURFTYPE_CUBE	Defines a cube map or array of cube maps		4h	SURFTYPE_BUFFER	Defines an element in a buffer		5h	SURFTYPE_STRBUF	Defines a structured buffer surface		6h	Reserved			7h	SURFTYPE_NULL	Defines a null surface	**Description** #### **Programming Notes** A null surface is used in instances where an actual surface is not bound. When a write message is generated to a null surface, no actual surface is written to. When a read message (including any sampling engine message) is generated to a null surface, the result is all zeros. Note that a null surface type is allowed to be used with all messages, even if it is not specifically indicated as supported. All of the remaining fields in surface state are ignored for null surfaces, with the following exceptions: Width, Height, Depth, LOD, and Render Target View Extent fields must match the depth buffer's corresponding state for all render target surfaces, including null. All sampling engine and data port messages support null surfaces with the above behavior, even if not mentioned as specifically supported, except for the following: The Surface Type of a surface used as a render target (accessed via the Data Port's Render Target Write message) must be the same as the Surface Type of all other render targets and of the depth buffer (defined in 3DSTATE_DEPTH_BUFFER), unless either the depth buffer or render targets are																																																																																																																																																																																																																																																																																																																																																																										
SURFTYPE_NULL. 28 **Surface Array** Format: Enable This field, if enabled, indicates that the surface is an array. #### **Programming Notes** If this field is *enabled*, the **Surface Type** must be SURFTYPE_1D, SURFTYPE_2D, or SURFTYPE_CUBE. If this field is *disabled* and **Surface Type** is SURFTYPE_1D, SURFTYPE_2D, or SURFTYPE_CUBE, the **Depth** field must be set to zero. #### 27 **ASTC Enable** Format: Enable This field, if enabled, indicates that the surface is one of ASTC compression formats. #### **Programming Notes** If this field is *enabled*, the definition of **Surface Format** encoding will follow a new convention defined by ASTC. If this field is *disabled*, the definition of **Surface Format** will follow the legacy convention defined in non-ASTC style. #### 26:18 **Surface Format** Format: SURFACE_FORMAT #### **Description** This field specifies the format of the surface or element within this surface. This field is ignored for all data port messages other than the render target message and streamed vertex buffer write message. Some forms of the media block messages use the surface format. If **ASTC_Enable** is set to 0, the supported formats and their encoding is listed in the table (x) in Section (y); Otherwise the supported formats and their encoding is listed in the table (x+1) in Section (y). #### **Programming Notes** #### If **ASTC_Enable** is set to 0: YUV (YCRCB) surfaces used as render targets can only be rendered to using 3DPRIM_RECTLIST with even X coordinates on all of its vertices, and the pixel shader cannot kill pixels. If **Number of Multisamples** is set to a value other than MULTISAMPLECOUNT_1, this field cannot be set to the following formats: - Any compressed texture format (BC*, DXT*, FXT*, ETC*, EAC*) - Any YCRCB* format #### If **ASTC Enable** is set to 1: • ASTC_Profile: Bit [26] **value**: 0: LDR-Profile, only support 14 2D footprint in compression block, and 10 LDR color endpoint modes (CEM). **value**: 1: Full-Profile, support all ASTC footprint in 2D and 3D, and all 16 CEM including both HDR and LDR modes. • ASTC_BlockDimention: Bit [25] value: 0: 2D value: 1: 3D ASTC_DecodedFormat: Bit [24] value: 0: UNORM8_sRGB; value: 1: FLOAT16 • ASTC_2DBlockWidth [23:21]	Value	0h	1h	2h	3h	4h	5h	6h	7h		-------	----	----	----	-----	----	-----	----	----		Width	4	5	6	res	8	res	10	12	ASTC_2DBlockHeight [20:18]	Value	0h	1h	2h	3h	4h	5h	6h	7h		--------	----	----	----	-----	----	-----	----	----		Height	4	5	6	res	8	res	10	12	ASTC_3DBlockWidth [23:22]	Value	0h	1h	2h	3h		-------	----	----	----	----		Width	3	4	5	6	ASTC_3DBlockHeight [21:20]	Value	0h	1h	2h	3h		--------	----	----	----	----		Height	3	4	5	6	ASTC_3DBlockDepth [19:18]	Value	0h	1h	2h	3h		-------	----	----	----	----		Depth	3	4	5	6	**Programming Notes**: ASTC_2DBlockHeight and ASTC_2DBlockWidth fields are defined if ASTC_BlockDimention is 0 (2D); While ASTC_3DBlockDepth, ASTC_3DBlockHeight and ASTC_3DBlockWidth are defined if ASTC_BlockDimention is 1 (3D). This field cannot ASTC format if the **Surface Type** is SURFTYPE_BUFFER or SURFTYPE_STRBUF This field cannot be ASTC format if the **Surface Type** is SURFTYPE_1D. This field cannot be a YUV (YCRCB*) or compressed (BC*, DXT*, FXT*, ETC*, EAC*) format if the **Surface Type** is SURFTYPE_BUFFER or SURFTYPE_STRBUF This field cannot be a planar YUV (PLANAR_*) or compressed (BC*, DXT*, FXT*, ETC*, EAC*) format if the **Surface Type** is SURFTYPE 1D. #### 17:16 Surface Vertical Alignment #### **Description** **For Sampling Engine and Render Target Surfaces:** This field specifies the vertical alignment requirement in elements for the surface. Refer to the "Memory Data Formats" chapter for details on how this field changes the layout of the surface in memory. An *element* is defined as a pixel in uncompressed surface formats, and as a compression block in compressed surface formats. For MSFMT_DEPTH_STENCIL type multisampled surfaces, an element is a sample. This field is used for 2D, CUBE, and 3D surface alignment when Tiled Resource Mode is TRMODE_NONE (Tiled Resource Mode is disabled). This field is ignored for 1D surfaces and also when Tiled Resource Mode is not TRMODE_NONE (e.g. Tiled Resource Mode is enabled). See the appropriate Alignment table in the "Surface Layout and Tiling" section under Common Surface Formats for the table of alignment values for Tiled Resources. For other surfaces: This field is ignored.	Value	Name	Description		-------	-----------	----------------------------------		0h	Reserved	Reserved		1h	VALIGN 4	Vertical alignment factor j = 4		2h	VALIGN 8	Vertical alignment factor j = 8		3h	VALIGN 16	Vertical alignment factor j = 16	#### **Programming Notes** This field is intended to be set to VALIGN_4 if the surface was rendered as a depth buffer, for a multisampled (4x) render target, or for a multisampled (8x) render target, since these surfaces support only alignment of 4. Use of VALIGN_4 for other surfaces is supported, but increases memory usage. This field is intended to be set to VALIGN_8 only if the surface was rendered as a stencil buffer, since stencil buffer surfaces support only alignment of 8. If set to VALIGN_8, Surface Format must be R8 UINT. For uncompressed surfaces, the units of "j" are rows of pixels on the physical surface. For compressed texture formats, the units of "j" are in compression blocks, thus each increment in "j" is equal to h pixels, where h is the height of the compression block in pixels. #### 15:14 **Surface Horizontal Alignment** #### **Description** For Sampling Engine and Render Target Surfaces: This field specifies the horizontal alignment requirement for the surface. This field is used for alignment when LOD >= Mip Tail Start LOD This field is ignored when Tiled Resource Mode is not TRMODE_NONE (i.e. Tiled Resources are enabled). See the "Surface Layout and Tiling" section under Common Surface Formats for the table of alignment values for Tile Resources. **For other surfaces:** This field is ignored.	Value	Name	Description		-------	-----------	------------------------------------		0h	Reserved	Reserved		1h	HALIGN 4	Horizontal alignment factor j = 4		2h	HALIGN 8	Horizontal alignment factor j = 8		3h	HALIGN 16	Horizontal alignment factor j = 16	#### **Programming Notes** This field is intended to be set to HALIGN_8 only if the surface was rendered as a depth buffer with Z16 format or a stencil buffer. In this case it must be set to HALIGN_8 since these surfaces support only alignment of 8. For Z32 formats it must be set to HALIGN_4. Use of HALIGN_8 for other surfaces is supported, but increases memory usage. For uncompressed surfaces, the units of "i" are pixels on the physical surface. For compressed texture formats, the units of "i" are in compression blocks, thus each increment in "i" is equal to w pixels, where w is the width of the compression block in pixels. When Auxiliary Surface Mode is set to AUX_CCS_D or AUX_CCS_E, HALIGN 16 must be used. For surface format = 32 bpp, num_multisamples = 1, MIpcount > 0 and surface walk = TiledY, HALIGN must be programmed to 8 #### 13:12 Tile Mode This field specifies the type of memory tiling (Linear, WMajor, XMajor, or YMajor) employed to tile this surface. See *Memory Interface Functions* for details on memory tiling and restrictions.	Value	Name	Description		-------	--------	-------------------------		0h	LINEAR	Linear mode (no tiling)		1h	WMAJOR	W major tiling		2h	XMAJOR	X major tiling		3h	YMAJOR	Y major tiling	#### **Programming Notes** For linear mip-mapped surafces, all MIP levels must have the same pixel/texel format i.e. redescription of the sub-resource is not allowed. - Refer to Memory Data Formats for restrictions on TileMode direction for the various buffer types. (Of particular interest is the fact that YMAJOR tiling is not supported for display/overlay buffers). - The corresponding cache(s) must be invalidated before a previously accessed surface is accessed again with an altered state of this field. - Use of WMAJOR is valid only for sampling engine, Data Cache Data Port and render target surfaces and **Surface Format** must be R8_UINT. Vertical Line Stride must be zero. In addition to W tiling, this mode implies that the surface is stored as a stencil buffer. Refer to *Memory Data Formats* section for details on stencil buffer surface layout. - Linear surfaces can be mapped to Main Memory (uncached) or System Memory (cacheable, snooped). Tiled (X/Y/W) surfaces can only be mapped to Main Memory. - If **Surface Type** is SURFTYPE_BUFFER, this field must be TILEMODE_LINEAR - If **Number of Multisamples** is not MULTISAMPLECOUNT 1, this field must be YMAJOR. If **Surface Type** is SURFTYPE_STRBUF, this field must be TILEMODE_LINEAR. If **Surface Type** is SURFTYPE_1D this field must be TILEMODE_LINEAR, unless **Sampler Legacy 1D Map Layout Disable** is set to 0, in which case TILEMODE_YMAJOR and TILEMODE_WMAJOR are also allowed. **Tiled Resource Mode** must be set to TRMODE_NONE for these cases. TILEMODE XMAJOR is only allowed if Surface Type is SURFTYPE 2D. ### **RENDER SURFACE STATE** If Surface Format is ASTC*, this field must be TILEMODE_YMAJOR. 11 **Vertical Line Stride** Format: U1 In lines to skip between logically adjacent lines For 2D Non-Array Surfaces accessed via the Sampling Engine or Data Cache Data Port: Specifies number of lines (0 or 1) to skip between logically adjacent lines - provides support of interleaved (field) surfaces as textures. For Other Surfaces: Vertical Line Stride must be zero. **Programming Notes** This bit must not be set if the surface format is a compressed type (BCn*, FXT1, ETC*, EAC*). This bit must not be set if the surface format is compressed type ASTC*. This bit must not be																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
set if the **Auxiliary Surface Mode** is not AUX NONE. **Vertical Line Stride Offset** Format: U1 In lines of initial offset (when Vertical Line Stride == 1) For 2D Non-Array Surfaces accessed via the Sampling Engine or Data Cache Data Port: Specifies the offset of the initial line from the beginning of the buffer. Ignored when Vertical **Line Stride** is 0. For Other Surfaces: Vertical Line Stride Offset must be zero. Sampler L2 Out of Order Mode Disable Disable Format: If disabled this will forced formats which would have bypassed the L2 and been filled into the L1 out of order to be cached in the L2 and send in order to the L1. In general that is any format which is expanded 1:2 in L1 or not expanded at all. This would include all lossless compressed For all other formats this will have no affect. **Programming Notes** This bit must be set for the following surface types: BC2_UNORM BC3_UNORM BC5_UNORM **BC5 SNORM BC7 UNORM Render Cache Read Write Mode** For Surfaces accessed via the Data Port to Render Cache: This field specifies the way Render Cache treats a write request. If unset, Render Cache allocates a write-only cache line for a write miss. If set, Render Cache allocates a read-write cache line for a write miss. For Surfaces accessed via the Sampling Engine or Data Port to Texture Cache or Data Cache: This field is reserved: MBZ Value Name **Description** 0h Write-Only Cache Allocating write-only cache for a write miss Read-Write Cache Allocating read-write cache for a write miss 1h #### **Programming Notes** This field is provided for performance optimization for Render Cache read/write accesses (from EU's point of view). #### 7:6	Media Boundary Pixel Mode # For 2D Non-Array Surfaces accessed via the Data Port Media Block Read Message or Data Port Transpose Read message: This field enables control of which rows are returned on vertical out-of-bounds reads using the Data Port Media Block Read Message or Data Port Transpose Read message. In the description below, frame mode refers to **Vertical Line Stride** = 0, field mode is **Vertical Line Stride** = 1 in which only the even or odd rows are addressable. The frame refers to the entire surface, while the field refers only to the even or odd rows within the surface. #### **For Other Surfaces:** Reserved: MBZ	Value	Name	Description		-------	-------------------	--		0h	NORMAL_MODE	The row returned on an out-of-bound access is the closest row in the frame or field. Rows from the opposite field are never returned.		1h	Reserved			2h	PROGRESSIVE_FRAME	The row returned on an out-of-bound access is the closest row in the frame, even if in field mode.		3h	INTERLACED_FRAME	In field mode, the row returned on an out-of-bound access is the closest row in the field. In frame mode, even out-of-bound rows return the nearest even row while odd out-of-bound rows return the nearest odd row.	#### 5 Cube Face Enable - Negative X	Exists If:	[Surface Type] == 'SURFTYPE_CUBE'		------------	-----------------------------------		Format:	Enable	**For SURFTYPE_CUBE Surfaces accessed via the Sampling Engine:** This field enable the individual face of a cube map. Enabling a face indicates that the face is present in the cube map, while disabling it indicates that that face is represented by the texture map's border color. Refer to Memory Data Formats for the correlation between faces and the cube map memory layout. Note that storage for disabled faces must be provided. #### **Programming Notes** When TEXCOORDMODE_CLAMP is used when accessing a cube map, this field must be programmed to 1b (face enabled). #### 5:0 **Reserved**	Exists If:	[Surface Type] != 'SURFTYPE_CUBE'		------------	-----------------------------------		Format:	MBZ	#### 4 Cube Face Enable - Positive X	Exists If:	[Surface Type] == 'SURFTYPE_CUBE'		------------	-----------------------------------		Format:	Enable	**For SURFTYPE_CUBE Surfaces accessed via the Sampling Engine:** This field enable the individual face of a cube map. Enabling a face indicates that the face is present in the cube map, while disabling it indicates that that face is represented by the texture map's border color. Refer to Memory Data Formats for the correlation between faces and the cube map memory layout. Note that storage for disabled faces must be provided. #### **Programming Notes** When TEXCOORDMODE_CLAMP is used when accessing a cube map, this field must be programmed to 1b (face enabled). #### 3 Cube Face Enable - Negative Y	Exists If:	[Surface Type] == 'SURFTYPE_CUBE'		------------	-----------------------------------		Format:	Enable	**For SURFTYPE_CUBE Surfaces accessed via the Sampling Engine:** This field enable the individual face of a cube map. Enabling a face indicates that the face is present in the cube map, while disabling it indicates that that face is represented by the texture map's border color. Refer to Memory Data Formats for the correlation between faces and the cube map memory layout. Note that storage for disabled faces must be provided. #### **Programming Notes** When TEXCOORDMODE_CLAMP is used when accessing a cube map, this field must be programmed to 1b (face enabled). #### 2 **Cube Face Enable - Positive Y**	Exists If:	[Surface Type] == 'SURFTYPE_CUBE'		------------	-----------------------------------		Format:	Enable	**For SURFTYPE_CUBE Surfaces accessed via the Sampling Engine:** This field enable the individual face of a cube map. Enabling a face indicates that the face is present in the cube map, while disabling it indicates that that face is represented by the texture map's border color. Refer to Memory Data Formats for the correlation between faces and the cube map memory layout. Note that storage for disabled faces must be provided. #### **Programming Notes** When TEXCOORDMODE_CLAMP is used when accessing a cube map, this field must be programmed to 1b (face enabled). #### 1 Cube Face Enable - Negative Z	Exists If:	[Surface Type] == 'SURFTYPE_CUBE'			------------	-----------------------------------	--		Format:	Enable		**For SURFTYPE_CUBE Surfaces accessed via the Sampling Engine:** This field enable the individual face of a cube map. Enabling a face indicates that the face is present in the cube map, while disabling it indicates that that face is represented by the texture map's border color. Refer to Memory Data Formats for the correlation between faces and the cube map memory layout. Note that storage for disabled faces must be provided. #### **Programming Notes** When TEXCOORDMODE_CLAMP is used when accessing a cube map, this field must be programmed to 1b (face enabled).					RENDER_SUR	RFACE	STA	TE				---	-------	---	--	--------------------------	-----------------------------------	------------------------------------	---------------------------------------	--	--			0	Cube Face Enable - Positive Z											Exists If:	Exists If: [Surface Type] == 'SURFTYPE_CUBE'										Format:		Enable									For SURFTYPE_CUBE Surfaces accessed via the Sampling Engine: This field enable the individual face of a cube map. Enabling a face indicates that the face is present in the cube map, while disabling it indicates that that face is represented by the texture map's border color. Refer to Memory Data Formats for the correlation between faces and the cube map memory layout. Note that storage for disabled faces must be provided.											When TEXCOORDMODE_CLAMP is used when accessing a cube map, this field must be programmed to 1b (face enabled).									1	31	Enable Un	orm Pa	th in Color Pipe																				Format:				Enable							Enables Ur color Pipe.	norm Pa	ath (fixed Point Convers	sion of floa	ating po	oint for fill and blend in DAPRSS) in						Value		Name			Description						1	ENABI	E [Default]	Enables Unorm Path in Color Pipe.								0	DISAB	LE	Disables I	Disables Unorm path in Color Pipe.						30:24	Memory Object Control State																						Format: MEMORY_OBJECT_CONTROL_S											Specifies the memory object control state for this surface and the associated Auxiliary surface (if any).										23:19	Base Mip Level																						Format:					U4.1																	Range: [0.0, 14.0]											Specifies which mip level is considered the "base" level when determining mag-vs-min filter and selecting the "base" mip level.											Programming Notes											This field also exists in SAMPLER_STATE. If both fields are zero, the Base Mip Level is zero. If one is nonzero, Base Mip Level is the nonzero field. It is illegal to have both Base Mip Level fields nonzero.																					18	Corner Tex	cel Moc	de								18	Corner Tex Format:	cel Mod	de		Enable				#### **RENDER SURFACE STATE** Corner Texel Mode is ignored for Planar YUV/YCrCb surface formats. Corner Texel Mode is ignored for sample_8X8 and sample_unorm message types. Corner Texel Mode is not																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																										
supported with Non-Normalized coordinates. Does not support legacy sampler features set0 See legacy sampler page for more details Value Name **Description** Disable When programmed to 0h, Corner Texel Mode is disabled. This means 0h [Default] texel coordinate references use standard texel reference mode, with respect to the center of the texel. 1h Enable When programmed to 1h, Corner Texel Mode is enabled. Texel coordinate references are with respect to the upper left corner of a texel. **Programming Notes** Corner texel mode cannot be enabled for 1D surfaces unless 3DSTATE_DEPTH_BUFFER::Surface Type == SURFTYPE_NULL 17 Reserved Format: MBZ 16 Reserved Format: MBZ 15 Sample Tap Discard Disable This bit forces sample tap discard filter mode to be disabled for this surface state. This bit must be set for surfaces which are no Alpha Channel such as R8G8B8_UNORM. Value **Name Description** 0h **ENABLE** When programmed to 0h, Sample Tap Discard filter mode is allowed and [Default] is not disabled by this bit. This bit is ignored if Sample Tap Discard is not enabled in the Sampler State. 1h DISABLE When programmed to 1h, Sample Tap Discard filter mode will be disabled even if enabled through Sampler State 14:0 **Surface QPitch** Format: U15[16:2] **Description** The interpretation of this field is dependent on Surface Type as follows: SURFTYPE_1D: distance in *pixels* between array slices SURFTYPE_2D/CUBE: distance in rows between array slices. For Quilted Textures this field specifies the distance in rows between quilt slices. For compressed texture formats, one row contains a complete compression block vertically. SURFTYPE 3D: distance in rows between R-slices [Note: these rows are only in the vertical dimension without considering the depth dimension]. For compressed texture formats, one row contains a complete compression block vertically. Other surface types: field is ignored	Value	Name	Description			------------	------	--	--		[1h,7FFFh]		Range [4h,1FFFCh] in multiples of 4 (low 2 bits missing)		#### **Programming Notes** For Surface Type 1D: This field must be set to an integer multiple of the Surface Horizontal **Alignment** For Surface Type 2D, CUBE: This field must be set to an integer multiple of the Surface **Vertical Alignment** For Surface Type 3D: Tile Mode != Linear: This field must be set to an integer multiple of the tile height (2^Cv) Tile Mode == Linear: This field must be set to an integer multiple of the Surface Vertical Alignment Note: for compressed textures (BC*, FXT1, ETC*, EAC*), this field is in units of rows of compression blocks. Note: for the compressed texture ASTC Surface Format, this field is in units of rows of compression blocks. Software must ensure that this field is set to a value sufficiently large such that the array slices in the surface do not overlap. Refer to the Memory Data Formats section for information on how surfaces are stored in memory. #### 2 #### 31:30 **Reserved** Format: MBZ #### 29:16 **Height** U14-1 Format: This field specifies the height of the surface, minus 1. If the surface is MIP-mapped, this field contains the height of the base MIP level. For buffers, this field specifies a portion of the buffer size.	Value	Name	Description	Exists If		-----------	------	---	---		[0,0]		must be zero	[Surface Type] == 'SURFTYPE_1D'		[0,16383]		height of surface - 1 (y/v dimension)	[SurfaceType] == 'SURFTYPE_2D'		[0,2047]		height of surface -1 (y/v dimension)	[SrufaceType]== 'SURFTYPE_3D'		[0,16383]		height of surface - 1 (y/v dimension)	[SurfaceType] == 'SURFTYPE_CUBE'		[0,16383]		contains bits [20:7] of the number of entries in the buffer - 1	([SurfaceType] == 'SURFTYPE_BUFFER') ([SurfaceType] == 'SURFTYPE_STRBUF')	#### **Programming Notes** For typed buffer and structured buffer surfaces, the number of entries in the buffer ranges from 1 to 227. For raw buffer surfaces, the number of entries in the buffer is the number of bytes which can range from 1 to 230. After subtracting one from the number of entries, software must place the fields of the resulting 27-bit value into the **Height, Width**, and **Depth** fields as indicated, right-justified in each field. Unused upper bits must be set to zero. If **Vertical Line Stride** is 1, this field indicates the height of the field, not the height of the frame The **Height** of a render target must be the same as the **Height** of the other render targets and the depth buffer (defined in 3DSTATE_DEPTH_BUFFER), unless **Surface Type** is SURFTYPE_1D or SURFTYPE_2D with **Depth** = 0 (non-array) and **LOD** = 0 (non-mip mapped). If this surface in memory is accessed with Vertical Line Stride set to both 0 and 1, this field must be an even value when Vertical Line Stride is 0. If Media Pixel Boundary Mode is not set to NORMAL_MODE, this field must be an even value. If Surface Format is PLANAR*, see **Planar Memory Organization** section for restrictions on the value of this field. #### 15:14 Reserved Format: MBZ #### 13:0	Width Format: U14-1 #### **Description** This field specifies the width of the surface, minus 1. If the surface is MIP-mapped, this field specifies the width of the base MIP level. The width is specified in units of pixels or texels. For buffers, this field specifies a portion of the buffer size. For surfaces accessed with the Media Block Read/Write message, this field is in units of DWords. For surfaces accessed with the Transpose Read Message, this field is in units of DWords.	Value	Name	Description	Exists If		-----------	------	--	---		[0,16383]		width of surface - 1 (x/u dimension)	[SurfaceType] == 'SURFTYPE_1D'		[0,16383]		width of surface - 1 (x/u dimension)	[SurfaceType] == 'SURFTYPE_2D'		[0,2047]		width of surface -1 (x/u dimension)	[SrufaceType] == 'SURFTYPE_3D'		[0,16383]		width of surface - 1 (x/u dimension)	[SurfaceType] == 'SURFTYPE_CUBE'		[0,127]		contains bits [6:0] of the number of entries in the buffer - 1	([SurfaceType] == 'SURFTYPE_BUFFER') ([SurfaceType] == 'SURFTYPE_STRBUF')	#### **Programming Notes** • For surface types other than SURFTYPE_BUFFER or STRBUF The Width specified by this field must be less than or equal to the surface pitch (specified in bytes via the Surface Pitch field). - For cube maps, Width must be set equal to the Height. - The Width of a render target must be the same as the Width of the other render target(s) and the depth buffer (defined in 3DSTATE_DEPTH_BUFFER), unless Surface Type is SURFTYPE_1D or SURFTYPE_2D with Depth = 0 (non-array) and LOD = 0 (non-mip mapped). - The **Width** of a render target with YUV surface format must be a multiple of 2. - For SURFTYPE_BUFFER: The low two bits of this field must be 11 if the Surface Format is RAW (the size of the buffer must be a multiple of 4 bytes). If **Surface Format** is PLANAR*, this field must be a multiple of 2 If **Number of Multisamples** is MULTISAMPLECOUNT_16, then Width must be 8K texels or less, or the surface must not use the a multisample control surface (MCS). 3 31:21 #### 31:21 **Depth** Format: U11-1 This field specifies the total number of levels, minus 1, for a volume texture or the number of array elements, minus 1, allowed to be accessed starting at the **Minimum Array Element** for arrayed surfaces. If the volume texture is MIP-mapped, this field specifies the depth of the base MIP level. For buffers, this field specifies a portion of the buffer size.	Value	Name	Description	Exists If		----------	------	--	---		[0,2047]		number of array elements - 1	[SurfaceType] == 'SURFTYPE_1D'		[0,2047]		number of array elements - 1	[SurfaceType] == 'SURFTYPE_2D'		[0,2047]		depth of surface - 1 (z/r dimension)	[SurfaceType] == 'SURFTYPE_3D'		[0,340]		number of array elements - 1 [see programming notes for range]	[SurfaceType] == 'SURFTYPE_CUBE'		[0,2047]		contains bits [31:21] of the number of entries in the buffer -	([SurfaceType] == SURFTYPE_BUFFER) OR ([SurfaceType] == 'SURFTYPE_STRBUF')	#### **Programming Notes** The **Depth** of a render target must be the same as the **Depth** of the other render target(s) and of the depth buffer (defined in 3DSTATE_DEPTH_BUFFER). For SURFTYPE_CUBE: For Sampling Engine Surfaces and Typed Data Port Surfaces, the range of this field is [0,340], indicating the number of cube array elements (equal to the number of underlying 2D array elements divided by 6). For other surfaces, this field must be zero. For SURFTYPE_1D, 2D, and CUBE: The range of this field is reduced by one for each increase from zero of **Minimum Array Element**. For example, if **Minimum Array Element** is set to 1024 on a 2D surface, the range of this field is reduced to [0,1023].				RENDER_SURFACE_STATE				----	---	----------------------------------	---	--	--		20	Tile Ad	dress Ma	pping Mode																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
	Format: U1							This field is used to select between Tile Address Mapping mode and for TileYs and TileYf.								Name	Description					Oh	T s s b	ile Address Mapping Mode hou shalt NOT program the bit to 1h. Thou shalt program the bit to 0h. Thou shalt NOT program the bit to 1h. Thou halt not program the bit to 2h. 3h is <i>right out</i> . The number of the programm hall be 0h and 0h shall be the number of the programming. Fractional numbering evil in our site (and impossible) must also not be used. Great isappointment and functional woes shall be seen if this bit is not programmed on 0h.					1h	T s s b	Tile Address Mapping Mode (for Standard Tiling). Thou shalt not program the bit to 1h. Thou shalt program the bit to 0h. Thou shalt not program the bit to 2h. 3h is <i>right out</i> . The number of the programming shall be 0h and 0h shall be the number of the programming. Fractional numbers, being evil in our site (and impossible) must also not be used. Great disappointment and functional woes shall be seen if this bit is not programmed to 0h.							Programming Notes					Tile Address Mapping Mode must be set when surface type is SURFTYPE_3D.						19	Standard Tiling Mode Extensions							Description									MIP Tail Packing. When enabled (programmed to 1h), MIP Tail packing for 1D are changed as defined in the Surface Layout and Tiling section.					This bi	t controls	enabling of some Standard Tiling extensions:						T						Value	Nam	e Description					0h	Disable [Default	When programmed to 0h, the extensions to support Standard Tiling and disabled. Behavior reverts to Miptail packing.					1h	Enable	When programmed to 1h, the changes to support Standard Tiling Extensions are enabled. See the Surface Layout and Tiling section for							details.				18	Reserve	ed	_				18			_				18	Reserve	t:	details.					Reserve Forma	t: Pitch	details.					Reserve Forma Surface Forma	t: Pitch	details. MBZ U18-1 Pitch in #Bytes					Reserve Forma Surface Forma Surface	t: • Pitch t: Pitch Rar	details. MBZ U18-1 Pitch in #Bytes			## RENDER_SURFACE_STATE - For other linear surfaces: [0, 262143] -> [1B, 256KB] - For X-tiled surface: [511, 262143] -> [512B, 256KB] = [1 tile, 512 tiles] - For Y-tiled surfaces: [127, 262143]->[128B, 256KB] = [1 tile, 2048 tiles] - For W-tiled surfaces: [127, 262143]->[128B, 256KB] = [1 tile, 2048 tiles] - For TileYF and TileYS surfaces, the range is dependent on the Cu parameter (refer to *Memory Data Formats* section for the definition of the Cu parameter depending on the case). The range in bytes is [2^{cu}-1,262143] -> [(2^{cu})B,256KB] = [1 tile, 256KB/(2^{cu}) tiles] This field specifies the surface pitch in (#Bytes - 1). For surfaces of type SURFTYPE_BUFFER and SURFTYPE_STRBUF, this field indicates the size of the structure. #### **Programming Notes** - For linear *render target* surfaces and surfaces accessed with the typed data port messages, the pitch must be a multiple of the element size for non-YUV surface formats. Pitch must be a multiple of 2 * element size for YUV surface formats. - For untyped data port messages, which are only supported with **Surface Type** SURFTYPE_BUFFER, the pitch is ignored and assumed to be 1 byte. - For linear surfaces with **Surface Type** of SURFTYPE_STRBUF, the pitch must be a multiple of 4 bytes. - For linear surfaces with **Surface Type** of SURFTYPE_BUFFER and **Surface Format** RAW, the pitch must be 1 byte. - For other linear surfaces, the pitch can be any multiple of bytes. - For tiled surfaces, the pitch must be a multiple of the tile width. If the surface is a stencil buffer (and thus has **Tile Mode** set to TILEMODE_WMAJOR), the pitch must be set to 2x the value computed based on width, as the stencil buffer is stored with two rows interleaved. For details on the separate stencil buffer storage format in memory, see GPU Overview (vol1a), Memory Data Formats, Surface Layout, 2D Surfaces, Stencil Buffer Layout (section 8.20.4.8). - The width of a tile depends on the surface format if Tiled Resource Enable is enabled. Refer to the Tiled Resource Enable field to determine which sub-mode applies to the surface format in use, and determine the Cu parameter from the Surface Layout section. The tile width is equal to 2^Cu bytes. - For surfaces of type SURFTYPE_1D, this field is ignored. The following table indicates the maximum byte width, frame width, and pitch size allowed when memory compression is on.	Tiling Mode	Pixel Format	Max Frame Width (bytes)	Max Frame Width (pixels)	Max Pitch (bytes)		------------------------	-----------------	-------------------------	--------------------------	----------------------		Legacy 4K 8bpp 16k 16k		16k	16k + 127				16bpp	16k	8k	16k + 127			32bpp	16k	4k	16k + 127					RE	NDER_SURF	ACE_STATE						-------------------	-------	---	---------------	----------------------	--------------------------	-------------------------	--	--	--					64bpp	16k	2k	16k + 127								128bpp	16k	1k	16k + 127							TileYF	8bpp	8k	8k	8k + 63								16bpp	16k	8k	16k + 127								32bpp	16k	4k	16k + 127								64bpp	16k	2k	16k + 255								128bpp	16k	1k	16k + 255							TileYS	8bpp	16k	16k	16k + 255								16bpp	16k	8k	16k + 511								32bpp	16k	4k	16k + 511								64bpp	16k	2k	16k + 1023								128bpp	16k	1k	16k + 1023					4	31	Reserved	<u> </u>		<u> </u>								Exists If:	[Sur	face Type] != 'SURFT	YPE_STRBUF'								Format:	MB	7_								31:0	Reserved	Reserved										Exists If:	[Sur	face Type] == 'SURF	ΓΥΡΕ_STRBUF'								Format:	MBZ	-								30:29	Render Ta	arget And Sa	on									Exists If: [Surface Type] != 'SURFTYPE_STRBUF'																						Description											For Render Target Surfaces: This field specifies the rotation of this render target surface being written to memory.											For sample_unorm Messages: This field specifies the rotation of the data returned by samp											for sample_unorm message.											For Other Surfaces: This field is ignored.											Value	Name		Description								0h	0DEG	No rotation (0 degre									1h	90DEG	Rotate by 90 degree									2h	180DEG	, ,	ees [for sample_unorm m	essagel							3h	270DEG	Rotate by 270 degre	·	<u> </u>									, ,							Programming Notes					amming Notes								Program	ming Notes	for Render Target S	urfaces only								• Ro	tation is not	supported for render	targets of any type othe	r than simple, non-mip-				## RENDER_SURFACE_STATE mapped, non-array 2D surfaces. The surface must be using tiled with X major. - Width and Height fields apply to the dimensions of the surface before rotation. - For 90 and 270 degree rotated surfaces, the **Height** (rather than the **Width**) must be less than or equal to the **Surface Pitch** (specified in bytes). - For 90 and 270 degree rotated surfaces, the actual **Height** and **Width** of the surface in pixels (not the field value which is decremented) must both be even. Rotation is supported only for surfaces with the following surface formats: R8G8B8A8_UNORM_SRGB, B8G8R8[A	X]8_UNORM, B8G8R8[A	X]8_UNORM_SRGB, B10G10R10[A	X]2_UNORM, R10G10B10A2_UNORM, SRGB, R16G16B16A16_FLOAT, R16G16B16X16_FLOAT #### 28:18 Minimum Array Element	······································						--	-------------------------------------	--	--	--		Exists If:	[Surface Type] != 'SURFTYPE_STRBUF'					Format:	U11				#### 17:7	Render Target View Extent	Exists If:	[Surface Type] != 'SURFTYPE_STRBUF'		------------	-------------------------------------		Format:	U11-1	Range [0,2047] to indicate extent of [1,2048] #### For Render Target and Typed Dataport 3D Surfaces: This field indicates the extent of the accessible 'R' coordinates minus 1 on the LOD currently being rendered to. #### For Render Target and Typed Dataport 1D and 2D Surfaces: This field must be set to the same value as the Depth field. #### **For Other Surfaces:** This field is ignored. #### 6 Multisampled Surface Storage Format	Exists If:	[Surface Type] != 'SURFTYPE	STRBUF'		------------	-----------------------------	---------	This field indicates the storage format of the multisampled surface.	Value	Name	Description		-------	---------------	--		0h	MSS					Multisampled surface was/is rendered as a render target		1h	DEPTH_STENCIL					Multisampled surface was rendered as a depth or stencil buffer	#### **Programming Notes** - All multisampled render target surfaces must have this field set to MSFMT_MSS - IF this field is MSFMT_DEPTH_STENCIL, the only sampling engine messages allowed are "ld2dms", "resinfo", and "sampleinfo". - This field is ignored if Number of Multisamples is MULTISAMPLECOUNT_1 #### 5:3 **Number of Multisamples** # RENDER_SURFACE_STATE [Surface Type] != 'SURFTYPE_STRBUF' This field indicates the number of multisamples on the surface.	Value	Name		-------	---------------------		0h	MULTISAMPLECOUNT_1		1h	MULTISAMPLECOUNT_2		2h																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																											
MULTISAMPLECOUNT_4		3h	MULTISAMPLECOUNT_8		4h	MULTISAMPLECOUNT_16		5h-7h	Reserved	#### **Programming Notes** If this field is any value other than MULTISAMPLECOUNT_1, the **Surface Type** must be SURFTYPE_2D This field must be set to MULTISAMPLECOUNT_1 unless the surface is a Sampling Engine surface or Render Target surface. 2:0 Multisample Position Palette Index Exists If: [Surface Type] != 'SURFTYPE_STRBUF' This field indicates the index into the sample position palette that the multisampled surface is using. This field is only used as a return value for the sampleinfo message, and is otherwise not used by hardware.	Value	Name		-------	------		[0,7]		5 31:25 **X Offset** Format: U7[8:2] This field specifies the horizontal offset in pixels from the **Surface Base Address** to the start (origin) of the surface. This field effectively loosens the alignment restrictions on the origin of tiled surfaces. Previously, tiled surface origin was (by definition) located at the base address, and thus needed to satisfy the 4KB base address alignment restriction. Now the origin can be specified at a finer (4-wide x 4-high pixel) resolution. Format: PixelOffset[8:2]	Value	Name	Description		---------	------	--		[0,127]		Range [0,508] in multiples of 4 (low 2 bits missing)	#### **Programming Notes** - For linear surfaces, this field must be zero. - For surfaces accessed with the Data Port Media Block Read/Write message, the pixel size ## RENDER_SURFACE_STATE is assumed to be 32 bits in width. - For surfaces accessed with the Data Port Transpose Read message, the pixel size is assumed to be 32 bits in width. - For **Surface Format** with other than 8, 16, 32, 64, or 128 bits per pixel, this field must be zero. - If **Render Target Rotation** is set to other than RTROTATE_0DEG, this field must be zero. - If **Surface Type** not SURFTYPE_2D, this field must be zero. - If MIP Count is not zero, this field must be zero. - If **Number of Multisamples** is not MULTISAMPLECOUNT_1, this field must be zero. - If **Surface Array** is enabled, this field must be zero. - If **Auxiliary Surface Mode** is not AUX_NONE, this field must be zero. - If **Surface Vertical Alignment** is VALIGN 8, this field must be a multiple of 8. - For **Surface Format** with 8 bits per element, this field must be a multiple of 16. - For **Surface Format** with 16 bits per element, this field must be a multiple of 8. - If **Tiled Resource Mode** is not TRMODE NONE, this field must be zero.	24	Reserved						----	----------	-----	--	--	--			Format:	MB7				#### 23:21 **Y Offset**		V		---------	---------		Format:	U3[4:2]	This field specifies the vertical offset in rows from the **Surface Base Address** to the start of the surface. (See additional description in the **X Offset** field.) #### Format: RowOffset[4:2]	Value	Name	Description		---	------	---		[0,7] Range [0,28] in multiples of 4 (low two bits missing)		Range [0,28] in multiples of 4 (low two bits missing)	#### **Programming Notes** - For linear surfaces, this field must be zero. - For render targets in which the **Render Target Array Index** is not zero, this field must be zero. - For **Surface Format** with other than 8, 16, 32, 64, or 128 bits per pixel, this field must be zero. - If **Render Target Rotation** is set to other than RTROTATE_0DEG, this field must be zero. - If **Surface Type** not SURFTYPE_2D, this field must be zero. - If MIP Count is not zero, this field must be zero. - If **Number of Multisamples** is not MULTISAMPLECOUNT_1, this field must be zero. - If **Surface Array** is enabled, this field must be zero. - If **Auxiliary Surface Mode** is not AUX_NONE, this field must be zero. - If **Tiled Resource Mode** is not TRMODE_NONE, this field must be zero. This field must be zero if Surface Format is Planar and the U and V planes are half-pitch (e.g. YV12 format). #### 20 **EWA Disable For Cube** Format: Disable Specifies if EWA mode for LOD quality improvement needs to be disabled for cube maps.	Value	Name	Description		-------	------------------	-------------------------------		0h	Enable [Default]	EWA is enabled for cube maps		1h	Disable	EWA is disabled for cube maps	#### **Programming Notes** This field indicates if EWA mode for LOD quality improvement needs to be disabled for cube maps. By default EWA would be on for cube maps hence this field must be 0. If there is any spec violation seen with EWA on cube maps then this field must be set to 1 to disable EWA for cubes. #### 19:18 Tiled Resource Mode **For Sampling Engine, Render Target, and Typed/Untyped Surfaces:** This field specifies the tiled resource mode. **For other surfaces:** This field is ignored.	Value	Name	Description	Exists If		-------	----------	----------------------	--------------------------------		0h	NONE	No tiled resource			1h	4KB	4KB tiled resources	[SurfaceType] == 'SURFTYPE_1D'		2h	64KB	64KB tiled resources	[SurfaceType] == 'SURFTYPE_1D'		1h	TILEYF	4KB tiled resources	[SurfaceType] != 'SURFTYPE_1D'		2h	TILEYS	64KB tiled resources	[SurfaceType] != 'SURFTYPE_1D'		3h	Reserved			#### **Programming Notes** If **Tile Mode** is not set to TILEMODE_YMAJOR, this field must be set to TRMODE_NONE, unless the Surface Type is SURFTYPE_1D. If this field is not set to TRMODE_NONE, the **Surface Format** must be one with 8, 16, 32, 64, or 128 bits per element, or one of the compressed texture modes (BC*, ETC*, EAC*, ASTC*). Additionally, YCRCB* formats are supported and treated as 16 bits per element, and the PLANAR_420_8 format is support and treated as 8 bits per element on the Y plane and 16 bits per element on the UV plane (if **Separate UV Plane Enable** is disabled) or 8 bits per element on the U and V planes (if **Separate UV Plane Enable** is enabled). #### RENDER SURFACE STATE If this field is set to TRMODE_NONE, the surface cannot contain any null pages unless Surface Type is BUFFER or STRBUF. A BUFFER or STRBUF surface with null pages must have Surface Base Address and Surface Pitch set to an integer multiple of the element size, and Surface Format must be one with 8, 16, 32, 64, or 128 bits per element. If **Surface Format** is PLANAR, the surface cannot contain any null pages. 17:16 **Reserved** Format: MB7 15 Reserved Format: MBZ 14 Coherency Type Specifies the type of coherency maintained for this surface. **Value** Name **Description GPU** 0h Surface memory is kept coherent with GPU threads using GPU read/write coherent ordering rules. Surface memory is backed by system memory but is not kept coherent with CPU (LLC). IΑ 1h Surface memory is kept coherent with CPU (LLC). coherent **Programming Notes** This field may optionally be 1 (IA coherent) for messages sent to SFID_DP_DC0 or SFID_DP_DC1 or SFID_DP_DC2. This field is typically set to 0 (GPU coherent) if the context is operating in a non-SVM legacy mode (for example, Ring Buffer or a Execlist using 32-bit Virtual Address Legacy Context PPGTT32). 13:12 Reserved Format: MBZ 11:8 Mip Tail Start LOD U4 in LOD Units Format: For Sampling Engine, Render Target, and Typed Surfaces: This field indicates which LOD is the first one in the MIP tail if Tiled Resource Mode is not TRMODE_NONE. The MIP tail has a different layout than the rest of the surface. Refer to the Memory Data Formats section for more details. For other surfaces: This field is ignored. **Programming Notes** This field is ignored if **Tiled Resource Mode** is TRMODE NONE. If Tiled Resource Mode is not TRMODE_NONE, this field must be set to ensure that mips within the mip tail do not overlap given the storage algorithms given in the Memory Data Formats section. If **Tiled Resource Mode** is not TRMODE NONE, to disable the Mip Tail this field must be set to a mip that larger than those present in the surface (i.e. 15). This is recommended for non-mipmapped surfaces. The following table indicates the *maximum* size of the mip that is set to be the Mip Tail Start LOD for various cases:	Surface	Tiling	#MS	Bits Per Element						---------	--------	-----	------------------	----------	----------	----------	---------		Type	Mode		8	16	32	64	128		1D	64KB	1	16384	8192	4096	2048	1024			4KB	1	1024	512	256	128	64		2D/	TIIeYS	1	128x256	128x128	64x128	64x64	32x64		CUBE		2	128x128	128x64	64x64	64x32	32x32				4	64x128	64x64	32x64	32x32	16x32				8	64x64	64x32	32x32	32x16	16x16				16	32x64	32x32	16x32	16x16	8x16			TileYF	any	32x64	32x32	16x32	16x16	8x16		3D	TIIeYS	1	32x32x32	16x32x32	16x32x16	16x16x16	8x16x16			TIIeYF	1	16x8x16	8x8x16	8x8x8	8x4x8	4x4x8	#### 7:4 **Surface Min LOD** Format: U4 In LOD Units #### For Sampling Engine and Typed Surfaces: This field indicates the most detailed LOD that can be accessed as part of this surface. This field is added to the delivered LOD (*sample_l, ld*, or *resinfo* message types) before it is used to address the surface. #### **For Other Surfaces:** This field is ignored. #### 3:0 MIP Count / LOD	Format:	Sampling Engine and Typed Surfaces:					---------	--	--	--	--			U4 in (LOD units - 1)						Render Target Surfaces:						U4 in LOD units					Range	Sampling Engine and Typed Surfaces:						[0,14] representing [1,15] MIP levels						Render Target Surfaces: [0,14] representing LOD						Other Surfaces: [0]				#### For Sampling Engine and Typed Surfaces: This field indicates the number of MIP levels allowed to be accessed starting at **Surface Min																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
LOD**, which must be less than or equal to the number of MIP levels actually stored in memory for this surface. For sample* messages, the mip map access is clamped to be between the mipmap specified by the integer bits of the Min LOD and the ceiling of the value specified here. For Id* messages, out-of-bounds behavior results for LODs outside of the range specified in this field. #### **For Render Target Surfaces:** This field defines the MIP level that is currently being rendered into. This is the absolute MIP level on the surface and is not relative to the **Surface Min LOD** field, which is ignored for render					RE	NDER_SURFACE_STATE			---	-------	--	--	---------------------------------	---	--				target s For Oth This fie	ner Surf		ИВZ								Programming Notes					the de For rer	pth buff nder tar	fer (defin gets with	orget must be the same as the LOD of the other render target(s) and of ed in 3DSTATE_DEPTH_BUFFER). YUV surface formats, the LOD must be zero. Ourfaces with YCRCB* or PLANAR* surface format, MIP Count must be			6	31	Reserve	ed							Exists I	f:	([[Surface Format] != 'PLANAR')					Format:		N	ИВZ				31	Separa	te UV P	lane Ena	able					Exists I			Surface Format] == 'PLANAR')					Forma	t:	Er	nable						If enabled, this field indicates that the U and V are present as separate planes. If disabled, the UV data is interleaved on a single plane.										Programming Notes					See the section "Planar Memory Organization" for a description of how the size and location of the chroma planes (U and V) are calculated.							30	Half Pi	tch for	Chroma														Exists I	f:	([:	Surface Format] == 'PLANAR')					Non-Pla a the Y For exa	anar sur (Luma) mple, sł	faces. Fo plane. nould be	t for half-pitch chroma planes for Planar YUV surfaces. It is ignored for or planar surfaces it allows the chroma planes to be one-half the width of set to 0h for NV12 surfaces.					Value	Na	ime	Description					0h	Disable [Defau		Setting this bit to 0h (default) causes Chroma planes to be treated as full width (same as Y plane).					1h	Enable		Setting this bit to 1h causes Chroma planes (U and V) to be treated as half the width of the Luma (Y) plane.				30:16	Auxiliary Surface QPitch								Exists I	f:])	[Surface Format] != 'PLANAR')					Format:		U	J15[16:2]					This fie	ld spec	ifies the o	distance in rows between array slices on the auxiliary surface.					Va	lue	Name	Description					[1h,7FF	Fh1		Range [4h,1FFFCh] in multiples of 4 (low 2 bits missing)		#### **Programming Notes** This field must be set to an integer multiple of the Surface Vertical Alignment Software must ensure that this field is set to a value sufficiently large such that the array slices in the auxiliary surface do not overlap. Refer to the Memory Data Formats section for information on how surfaces are stored in memory. For non-multisampled render target's CCS auxiliary surface, QPitch must be computed with Horizontal Alignment = 128 and Surface Vertical Alignment = 256. These alignments are only for CCS buffer and not for associated render target. #### 29:16 X Offset for U or UV Plane	Exists If:	([Surface Format] == 'PLANAR')		------------	--------------------------------		Format:	U14	This field specifies the horizontal offset in pixels from the **Surface Base Address** to the start (origin) of the U plane or interleaved UV plane, depending on the setting of **Separate UV Plane Enable**. #### **Programming Notes** This field must be a multiple of 4 (bits 1:0 MBZ). If **Tiled Resource Mode** is enabled, this field must be a multiple of the tile width in pixels. **Auxiliary Surface Mode** is forced to AUX_NONE. #### 15 **YUV Interpolation Enable**	Format:	Enable		---------	--------				This bit controls whether a Non-Planar YUV4:2:2 and Planar YUV4:2:0 surface use interpolated or replicated U and V channels for input to the Sampler filter. Programming to 1h causes interpolation of U and V channels. In this case the chrominance for odd pixels is computed by an interpolation between adjacent even pixels. Programming to 0h causes the chrominance to be copied from the pixel to the left.	Value	Name	Description		-------	----------------------	---		0h	Disable [Default]	Programming to 0h causes the sampler to replicate U and V channels. This will lead to lower quality in certain cases where the YUV surface is being filtered (e.g. linear).		1h	Enable	Programming to 1h causes the sampler to interpolate the U and V channels between the horizontally neighboring pixels. This will improve image quality if the surface is being filtered.	#### 14 Reserved	Exists If:	([Surface Format] == 'PLANAR')		------------	--------------------------------		Format:	MBZ	#### 14:12 Reserved	Format: MBZ	Exists If:	([Surface Format] != 'PLANAR')		-------------	------------	--------------------------------			Format:	MBZ	#### 13:0 Y Offset for U or UV Plane	Exists If:	([Surface Format] == 'PLANAR')		------------	--------------------------------		Format:	U14	This field specifies the vertical offset in rows from the **Surface Base Address** to the start (origin) of the U plane or interleaved UV plane, depending on the setting of **Separate UV Plane Enable**. #### **Programming Notes** For surfaces where **Surface Format** = PLANAR* and **Separate UV Plane** is Enabled, the Y Offset must be programmed in multiples of **half-rows**. For example, for a surface where Y is physically followed by U and then V in memory, the Y Offset to U plane would be (2*Y-Height). For all other PLANAR YUV formats this is programmed in multiples of full rows. For all format besides PLANAR_420_* This field must be a multiple of 4 (bits 1:0 MBZ). For formats PLANAR_420_* with separate chroma planes (e.g. YV12) this field must be multiple of 4 if U plane is the first chroma plane after the Y (luma) plane. It can be a multiple of 2 if it is the second chroma plane in memory. For formats PLANAR_420_* with interleaved chroma planes (e.g. NV12) this field can be multiple of 2. If **Tiled Resource Mode** is enabled, this field must be a multiple of the tile height in rows. Auxiliary Surface Mode is forced to AUX NONE. #### 11:3 **Auxiliary Surface Pitch**	Exists If:	([Surface Format] != 'PLANAR')		------------	--------------------------------		Format:	U9-1	This field specifies the Auxiliary surface pitch in (#Tiles - 1).	Value	Name	Description		----------	------	------------------------		[0, 511]		-> [1 tile, 512 tiles]	#### 2:0 **Auxiliary Surface Mode**	Exists If:	([Surface Format] != 'PLANAR')		------------	--------------------------------		Format:	U3	Specifies what type of surface the Auxiliary surface is. The Auxiliary surface has its own base address and pitch, but otherwise shares or overrides other fields set for the primary surface, detailed in the programming notes below.	Value	Name	Description		-------	------------	---		0h	AUX_NONE	No Auxiliary surface is used		1h	AUX_CCS_D	The Auxiliary surface is a CCS (Color Control Surface) with compression disabled or an MCS with compression enabled, depending on Number of Multisamples . MCS (Multisample Control Surface) is a special type of CCS.		2h	AUX_APPEND	The Auxiliary surface is an append buffer		3h	AUX_HIZ	The Auxiliary surface is a hierarchical depth buffer [] AUX_HIZ is not a supported value for surfaces being sampled by the 3D sample. Programming to 3h will be ignored by the 3D sampler and interpreted as AUX_NONE.		4h	Reserved							RENDER_SURFACE_STATE			---	----	---	--																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
---	---				5h	AUX_CCS_E	The Auxiliary surface is a CCS with compres compression enabled, depending on Numl					6h-7h	Reserved								Programming Notes					Surface Min LO Auxilia regard purpose be one format	ce Array, Sur OD, and Min ry surface us less of the pose of accessing of the follow must match	chical depth Auxiliary surface shares Height, V face Min LOD, MIP Count / LOD, Surface Obimum Array Element with the primary surface es Surface Horizontal Alignment of 16, Surfacimary surface's values for these fields. X & Y Cong the Auxiliary surface. If this field is set to AU wing: R32_FLOAT, R24_UNORM_X8_TYPELESS, of the format used when the surface was used as ding to D channel).	pject Control State, Resource e. The hierarchical depth ace Vertical Alignment of 8, Offset are set to zero for the X_HIZ, Surface Format must or R16_UNORM, and the				TRMO		al depth Auxiliary surfaces are TileY with Tiled gardless of the tile mode of the primary surfacturfaces.					The CCS Auxiliary surface for non-multisampled render targets has Horizontal Alignment = 1 and Vertical alignment = 64.			s Horizontal Alignment = 128				The CCS Auxiliary surface for Number of Multisamples > 1 uses Surface Horizontal Alignment of 16 and Surface Vertical Alignment of 4 regardless of the primary surface's values for these fields. If this field is set to AUX_HIZ, Number of Multisamples must be MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D. If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_E setting is only allowed if Surface Format is supported for Render Target Compression. This setting enables render target compression.																					If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D setting is only allowed if Surface Format supported for Fast Clear. In addition, if the surface is bound to the sampling engine, Surface Format must be supported for Render Target Compression for surfaces bound to the sampling engine. For render target surfaces, this setting disables render target compression. For sampling engine surfaces, this mode behaves the same as AUX_CCS_E. If Number of Multisamples is <i>not</i> MULTISAMPLECOUNT_1, both AUX_CCS_E and AUX_CCS_D settings indicate that the auxiliary surface is a multisample control surface (MCS), and multisample compression is enabled. If Number of Multisamples is MULTISAMPLECOUNT_1, and if Tiled Resource Mode is NOT TRMODE_NONE, then, if CCS tile is NULL, Render Target Tiles represented by that CCS tile are assumed to be NULL by HW.																			7	31		ry Compress							alue	cal from Horizontal compression. Name	Description				0	Но	orizontal [Default]					RENDER_SURFA	CE_STATE		----	--	---	--			1	Vertical			30	Memory Comp	ression Enable									Format:		Enable			· ·	•	pressible pixels. Memory compression will be m this surface will check for compressed data.			attempted for w		mming Notes			Enable can be r the compressio	on control must have 0 value for	or non-tileY modes. The Memory Compression state that has media messages. That is for 3d case nal surface state but can be non-zero in normal				er messages supported with n and SIMD16 <i>sample</i> .	nemory compression enabled are sample_8x8,				ol1a Memory Data Formats c cluding format restrictions.	hapter > section Media Memory Compression for			Reserved					Format:		MBZ			Reserved				25	Shader Channe					Format:	Shader Channel Select Enur				Specifies which		tten in the Red shader channel.					nming Notes			channel. If the S surface. If the sl on. If more thar shader channel same surface ch surface is acces	Shader channel select is SCS_Z nader channel select is SCS_RE n one shader channel select is in RGBA order will be written. nannel (R = SCS_RED, G = SCS sed via the sampler's sample_	shader channels are written to which surface ZERO or SCS_ONE then it is not written to the ED it is written to the surface red channel and so set to the same surface channel only the first. Each shader channel select must be set to the LGREEN, B = SCS_BLUE, A = SCS_ALPHA) if the unorm* or sample_8x8 messages.			The Shader Channel Select fields do not affect the following sampling engine message types: resinfo, sampleinfo, LOD, and Id_mcs. These messages behave as if each Shader Channel Select is set to the same color surface channel.					For the sampling engine <i>gather4*</i> messages, the Gather4 Source Channel Select field in the message header defines which channel's Shader Channel Select is used to select the surface channel to be sampled. Other Shader Channel Select fields are ignored.					•		er4*_c messages, the compare operation always egardless of the setting of the Shader Channel			components ca	n be swapped i.e. only change	er Channel Selects MUST be such that only valid the order of components in the pixel. Any other are not valid for Render Targets. This also means				RENDER_SURFAC	E_STATE					----	-------	---	---	--	--	--				that there MUST not be multiple shader channe	Is mapped to the same RT channel.							When multiple Channel selects have the same value and shader channel is disabled, disabled channel writes 0s to memory. This behavior does not match with Data Port message via H								The output channel is undefined if the source is to a channel is not present for the current surface format. For example, If the surface format is R16_float and the shader channel select green specifies green as the source the output is undefined. It should instead select 0 which is the default for a missing color channel							24:22	Shader Channel Select Green								Format: Shader Channel Select Enumerated Type								See Shader Channel Select Red for details.							21:19	Shader Channel Select Blue								Format: Shader Channel Select Enume	rated Type							See Shader Channel Select Red for details.							18:16	Shader Channel Select Alpha								Format: Shader Channel Select Enume	rated Type							See Shader Channel Select Red for details.									ning Notes							For Render Target, this field MUST be programmed to value = SCS_ALPHA.							15:12	Reserved								Format:	MBZ						11:0	Resource Min LOD								Format: U4.8 in LOD unit	ts							For Sampling Engine Surfaces: This field indicates the most detailed LOD that is Refer to the "LOD Computation Pseudocode" see For Other Surfaces: This field is ignored.	s present in the resource underlying the surface. ction for the use of this field.							Value	Name							[0,14]																Programming Notes								This field must be zero if the ChromaKey Enable is enabled in the associated sampler.						89	63:0	Surface Base Address								Format: GraphicsAddress[63:0]SurfaceBase								Specifies the byte-aligned base address of the surface.								Programm	ning Notes								is field specifies the base address of first erpreted as a simple array of that single element ned to the element size (e.g., a buffer containing				R32G32B32A32_FLOAT elements must be 16-byte aligned). - For SURFTYPE_BUFFER non-rendertarget surfaces, this field specifies the base address of the first element of the surface, computed in software by adding the surface base address to the byte offset of the element in the buffer. The base address must be aligned to element size. - Linear depth buffer surface base addresses must be 64-byte aligned. Note that while render targets (color) can be SURFTYPE_BUFFER, depth buffers cannot. - Mipmapped surfaces																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					
are stored in a "monolithic" (fixed) format, and only require a single address for the base MIP. All other MIPs are positioned relative to the base MIP. - The Base Address for linear (non-tiled) render target surfaces and surfaces accessed with the typed surface read/write data port messages must be element-size aligned for Non-YUV surface formats, or a multiple of 2 element-sizes for YUV surface formats. - Other linear (non-tiled) surfaces have no alignment requirements (byte alignment is sufficient). - For tiled surfaces, the actual start of the surface can be offset from the Surface Base Address by the X Offset and Y Offset fields. Tiles are inherently page-aligned (4K or 64K). - Certain message types used to access surfaces have more stringent alignment requirements. Please refer to the specific data-port message documentation for additional restrictions. Tiled surface base addresses must be 4KB-aligned. Note that only the offsets from Surface Base Address are tiled, Surface Base Address itself is not transformed using the tiling algorithm. Tiled surface base addresses must be tile aligned (64KB aligned for TileYS, 4KB aligned for all other tile modes). For 1D surfaces, the base address must be 64KB aligned if Tiled Resource Mode is TRMODE_64KB, and 4KB aligned if Tiled Resource Mode is TRMODE_4KB. Compressed (BC*, ASTC, etc.) surface data is usually copied by re-describing each MIP/slice as a separate surface, using a size-equivalent RGBA format. But a MIP/slice within a packed **MIP Tail** doesn't have the tile-aligned **Surface Base Address** required for the re-description. This case must be specially handled by re-describing the packed **MIP Tail** as a single-MIP surface with the width/pitch/height/depth of a single tile, and then use drawing geometry to "reach out" to the desired tail slot (*x*, *y*, *z*) offset. #### 10..11	63:62 #### 63:62 Reserved	Format:	MBZ		------------	--------------------------------		Exists If:	([Surface Format] == 'PLANAR')	#### 63:12 **Auxiliary Surface Base Address**		([Surface Format] != 'PLANAR') AND [Memory Compression Enable] == 0		---------	---		Format:	GraphicsAddress[63:12]	Specifies the 4kbyte-aligned base address of the Auxiliary surface associated with the primary surface specified in other SURFACE STATE fields. #### 61:48 X Offset for V Plane	Exists If:	([Surface Format] == 'PLANAR')		------------	--------------------------------		Format:	U14	This field specifies the horizontal offset in pixels from the **Surface Base Address** to the start (origin) of the V plane. #### **Programming Notes** This field must be a multiple of 4 (bits 1:0 MBZ). If **Tiled Resource Mode** is enabled, this field must be a multiple of the tile width in pixels. This field is ignored if **Separate UV Plane Enable** is disabled. #### 47:46 Reserved	Exists If:	([Surface Format] == 'PLANAR')		------------	--------------------------------		Format:	MBZ	#### 45:32 Y Offset for V Plane	Exists If:	([Surface Format] == 'PLANAR')		------------	--------------------------------		Format:	U14	This field specifies the vertical offset in rows from the **Surface Base Address** to the start (origin) of the V plane. #### **Programming Notes** For surfaces where **Surface Format** = PLANAR* and **Separate UV Plane** is Enabled, the Y Offset must be programmed in multiples of **half-rows**. For example, for a surface where Y is physically followed by U and then V in memory, the Y Offset to V plane would be (2*Y-Height+U-Height). For all other PLANAR YUV formats this is programmed in multiples of full rows (e.g Y-Height + U-Height). For all format besides PLANAR_420_* This field must be a multiple of 4 (bits 1:0 MBZ). For formats PLANAR_420_* this field must be multiple of 4 if U plane is the first chroma plane after the Y (luma) plane. It can be a multiple of 2 if it is the second chroma plane. For formats PLANAR_420_* when this field is not a multiple of 4 the Out-of-Bounds Suppression check must be disabled to avoid false out of bound detection. If **Tiled Resource Mode** is enabled, this field must be a multiple of the tile height in rows. This field is ignored if **Separate UV Plane Enable** is disabled. #### 31:21 Auxiliary Table Index for Media Compressed Surface	Exists If:	Memory	Compression	Fnahlal1			------------	------------	--------------	--------------	--		EXISTS II.	HIVIEHICIV	COHIDIESSION	ciiabiei – i		This field is valid only if Media Memory Compression is on for the surface(Memory Compression Enable == 1). In that case, the Auxiliary Surface Base address is never expected to be used and hence can be overloaded. This represents the 11 bit index into the table in memory which maps the surface to the auxiliary base address. 11 Reserved MBZ #### 10 Clear Value Address Enable Format: Enable This field enables HW Managed Clear Value Layout for the Surface State. If this bit is enabled, Clear Value Address is present instead of explicit clear values.	Value	Name	Description		-------	---------	--		0h	Disable	Clear values are present in the surface state explicitly.		1h	Enable	Clear value Address is present instead of explicit clear values.	#### **Programming Notes** If this bit is cleared, then no clear value is being used for the surface. In this case, 3D Sampler will not fetch any clear value from memory and it is assumed that the AUX_CCS auxiliary surface will never indicate the clear state for this surface. This field must be enabled to program the discrad bit. If this field is not enabled, HW does not discard the color surfaces during the Tile Pass. #### 9:5 **Quilt Height** Format: U5 This field specifies the height of a quilted texture in units of quilt slices. Refer to the section on Quilted Textures for more details.	Value	Name	Description		--------	------	--		[0,31]		representing height of quilt - 1 (y/v dimension)	#### **Programming Notes** #### **Programming Notes** - Only power-of-2 **Quilt Height** and **Quilt Width** values are allowed: (1,2,4,8,16,32) mapping to (0,1,3,7,15,31) values in the fields. - A surface is defined as a quilted texture if either **Quilt Height** or **Quilt Width** is nonzero (actual field value, not the incremented value). - A quilted texture - is only supported by the sampling engine (other shared functions will ignore the **Quilt Width** and **Quilt Height** field, behaving as if they are set to zero). - must have a Surface Type of SURFTYPE_2D. - must have **Number of Multisamples** set to NUMSAMPLES 1. - must have Vertical Line Stride set to 0. - must have Auxiliary Surface Mode set to AUX_NONE. - **Depth** indicates the array dimension of the quilted texture if **Surface Array** is enabled. The valid range of **Depth** is [0, 2048 / (QuiltWidth * QuiltHeight) 1], i.e. the total number of underlying array slices including quilt slices cannot exceed 2048.				RE	NDER_SURFACE_STATE			----	------	---	--	---	--					e accessed with any ld* message type or using a sampler with the Non-zed Coordinate Enable field enabled.					4:0	Quilt Wic	lth						Format:		U5						specifies the extures for mo	width of a quilted texture in units of quilt slices. Refer to the section on ore details.					Value	Name	Description					[0,31]		representing width of quilt - 1 (x/u dimension)			12	31:6	Clear Col	or Address						Exists If:	[Clea	r Value Address Enable] == 'Enable']					Format:	Grap	hicsAddress[31:6]SurfaceState							Description					used to store the per surface discard bit in PTBR mode The memory layout of the clear color pointed to by this address is a value stored in the lower- order bytes of a 64-byte cache-line. The data will be formatted as 32-bit IEEE Floating-point per channel,32-bit UINT per channel,32-bit SINT per channel, or SRGB depending on the surface type (e.g. R32G32B32A32_UINT surfaces assume use 32-bit UINT for clear color). These supported formats are identical the definition for Red Clear Color field defined in the RENDER_SURFACE_STATE. For D24X8 depth surfaces (R24_UNORM_X8_TYPELESS), the format of the data at this location shall be UNORM24_X8 rather than a 32-bit format.						31:6	Clear Dep	oth Address L	.ow					Exists If:	([Auxiliary Su 'Enable')	rface Mode] == 'AUX_HIZ') AND ([Clear Value Address Enable] ==					Format:	GraphicsAdd	ress[31:6]SurfaceState					AUX_HIZ	: Specifies the ory format is	Surfaces and Render Targets with Auxiliary Surface Mode set to lower bits of Graphics Address where the depth clear value is stored. IEEE 32 bit float. The numeric range is required																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																										
to match the numeric STATE_CLEAR_PARAMS:Depth Clear Value.				31:6	Reserved							Exists If:		rface Mode] != 'AUX_CCS_D') AND ([Auxiliary Surface Mode] != AND ([Auxiliary Surface Mode] != 'AUX_HIZ')					Format:	MBZ					31:0	Red Clear	r Color						lf:		face Mode] == 'AUX_CCS_D' OR [Auxiliary Surface Mode] == PR [Auxiliary Surface Mode] == 'AUX_HIZ') AND [Clear Value Address sable')						F	RENDER_SURFACE_STATE					----	-------	--	------------------------------	---	--	--	--				For Sampling Engine Surfaces and Render Targets with Auxiliary Surface Mode set to AUX_CCS: Specifies the clear value for the red channel. For Depth Buffer Surfaces with Auxiliary Surface Mode set to AUX_HIZ and Clear Value Address Enable set to 'Disable': Specifies the depth clear value. For Other Surfaces: This field is ignored.											Programming Notes							Legacy values.	clear color is	s deprecated. This field shall not be used to store color or depth clear						5	Clear C	olor Conver	sion Enable							Exists If:	1	Surface Mode] == 'AUX_CCS_D' OR [Auxiliary Surface Mode] == E') AND [Clear Value Address Enable] == 'Enable')									nd hw to convert clear values into native format and write back to clear play and sampler can use the converted value for resolving fast cleared RTs							Value	Name	Description							1h	Enable [Default]	Enables Pixel backend hw to convert clear values into native format and write back to clear address, so that display and sampler can use the converted value for resolving fast cleared RTs							0h	Disable	Disable hw conversion and write back of clear value						5:0	Reserve	ed								Exists If: ([Auxiliary Surface Mode] == 'AUX_HIZ') AND ([Clear Value Address Enable 'Enable')									Format	t: MBZ							5:0	Reserve	ed								Exists If:		Surface Mode] != 'AUX_CCS_D') AND ([Auxiliary Surface Mode] != _E') AND ([Auxiliary Surface Mode] != 'AUX_HIZ')							Format	:: MBZ							4:0	Reserve	ed								Exists If:									Format: MBZ							13	31:16	Reserved									Exists (([Auxiliary Surface Mode] == 'AUX_CCS_D' OR [Auxiliary Surface Mode] == 'AUX_CCS_E' OR [Auxiliary Surface Mode] == 'AUX_HIZ') AND [Clear Value Ad Enable] == 'Enable')									Format: MBZ								31:0	Reserve	 ed								Exists I	f: [/	Auxiliary Surface Mode] == 'AUX_HIZ'							Format	t: N	MBZ						31:0	Green (Clear Color										RENDER_SURFACE_STATE						----	------	--	-------------------	---	--	--	--	--				Exists (([Auxiliary Surface Mode] == 'AUX_CCS_D' OR [Auxiliary Surface Mode] == 'House If: 'AUX_CCS_E') AND [Clear Value Address Enable] == 'Disable')											S: Specifi	gine Surfaces and Render Targets with Auxiliary Surface Mode set to es the clear value for the green channel. For Other Surfaces: This field is										Programming Notes								Legacy	clear colo	r is deprecated. This field shall not be used to store color clear values.							31:0	Reserve	d									Exists If:	'AUX_C	ry Surface Mode] != 'AUX_CCS_D') AND ([Auxiliary Surface Mode] != CS_E') AND ([Auxiliary Surface Mode] != 'AUX_HIZ')								Format	: MBZ								15:0	Clear Co	olor Addr	ess High								Exists If:		ary Surface Mode] == 'AUX_CCS_D' OR [Auxiliary Surface Mode] == CS_E') AND [Clear Value Address Enable] == 'Enable')										sAddress[47:32]SurfaceState								For Sampling Engine Surfaces and Render Targets with Auxiliary Surface Mode set to AUX_CCS: Specifies the higher bits of Graphics Address where clear value is stored from RGBA (R in the LSB and A in the MSB - in that order) For Other Surfaces: This field is ignored.									15:0	Clear Depth Address High										Exists If:										Format	: Graphic	sAddress[47:32]SurfaceState						14	31:0	Reserve	d									Exists If	•	[Auxiliary Surface Mode] == 'AUX_HIZ'								Format	•	MBZ							31:0	Blue Cle	ar Color									Exists If:		ry Surface Mode] == 'AUX_CCS_D' OR [Auxiliary Surface Mode] == S_E') AND [Clear Value Address Enable] == 'Disable')									S: Specifi	gine Surfaces and Render Targets with Auxiliary Surface Mode set to es the clear value for the green channel. For Other Surfaces: This field is								Programming Notes										Legacy	clear colo	r is deprecated. This field shall not be used to store color clear values.							31:0	Reserve	d									Exists If:		ary Surface Mode] == 'AUX_CCS_D' OR [Auxiliary Surface Mode] == CS_E') AND [Clear Value Address Enable] == 'Enable')								Format	: MBZ							15	31:0	Reserve	d									Exists If	•	[Auxiliary Surface Mode] == 'AUX_HIZ'										RENDER_SURFACE_STATE		--	------	---------------	-------------	---				Format	•	MBZ			31:0	Alpha C	lear Colo	r				Exists If:		y Surface Mode] == 'AUX_CCS_D' OR [Auxiliary Surface Mode] == S_E') AND [Clear Value Address Enable] == 'Disable')					S: Specific	gine Surfaces and Render Targets with Auxiliary Surface Mode set to es the clear value for the green channel. For Other Surfaces: This field is		Programming Notes Legacy clear color is deprecated. This field shall not be used to store				Programming Notes						r is deprecated. This field shall not be used to store color clear values.	# **Render Data Port Message Types**	MT_DP_RT - Render Data Port Message Types									---	-------------------------------------	--	-------------------------------	--------------	-------------------	--	--		Source:	Source: EuSubFunctionRenderDataPort								Size (in bits):		5							Default Value	:	0x0000000	C						Lists all the N	⁄lessag	e Types in a F	Render Data Port Message Desc	riptor [18:1	4].				DWord	Bit		Des	cription					0	4	Reserved																		Format:			MBZ						Ignored								3:0	Message Ty	pe																	Specifies type of message									Value Name Description									0Ch MT_RTW [Default] Render Target Write message									0Dh	MT_RTR	Render Ta	rget Read message						Others	Reserved	Ignored				# **Render Engine Interrupt Vector**			RENDER_INTR_VEC - Render Engine Interrupt Vector						------------	--------	--	--	--	--	--		Source:		BSpec						Size (in b	oits):	16						Default \	/alue	e: 0x00000000						DWord	Bit	Description						0	15	Catastrophic Error								This interrupt signals that a unrecoverable errorduring the engine processing.								When Memory interface signals this error, the Command Streamer will stop parsing any more instructions. Scheduler is expected to reset the engine to evict the context							14	EU Restart Interrupt							13	Spare 13							12	Spare 12							11	CS Wait On Semaphore							10	Spare 10							9	CS TR Invalid Tile Detection							8	CS Context Switch Interrupt							7	Legacy Context Per Process Page Fault Interrupt								This Fault interrupt is only delivered to the Host SW.								Fault interrupt is generated by GA fabric, not by the CS This interrupt is for handling Legacy Page Fault. When Fault Repair Mode is enabled, Interrupt mask								register value is not looked at to generate interrupt due to page fault. Please refer to vol1c "page								fault support" section for more details.							6	CS Watchdog Counter Expired							5	Spare 5							4	CS PIPE_CONTROL Notify							3	CS Error Interrupt							2	Spare 2							1	Reserved							0	CS MI User Interrupt					# **Render Target Index Message Header Control**	M	HC_	RT_RTI - Render Target Index I	Message	Header Control						------------	--------	---																																																																																																																																																																																																																																																																																																																																																																																																																																																		
---	-----------------------	--	--	--	--		Source:		BSpec								Size (in b	its):	32								Default V	'alue:	0x00000000								DWord	Bit	Descript	ion							0	31:3	Reserved																				Format:	Ignore									Ignored																			2:0	Render Target Index																				Format: U3										Specifies the render target index that will be used t	Specifies the render target index that will be used to select blend state from BLEND_STATE.						# **Render Target Message Header**			MH_RT - Render T	arget M	essage Header					-------------	-------	--	--------------	--	--	--	--		Source:		BSpec							Size (in bi	ts):	512	512						Default Va	alue:	·	000000, 0x00	000000, 0x00000000, 0x00000000, 000000, 0x00000000, 0x00000000, 000000					DWord	Bit		Descrip	tion					0.0-0.0	31:0	Render Target Controls 0																		Format:	MHC_RT_C	0							Specifies controls for Render Target	Write and Re	ad messages.					0.1-0.1	31:0	Color Calculator State Pointer									Format:	MHC_RT_CCSP								For Render Target Write message, s State. Ignored by Render Target Rea	•	WORD-aligned GeneralStateOffset for Color					0.2-0.2	31:0	Render Target Index									Format:	MHC_RT_RT	I							For Render Target Write message, specifies the render target index used to select blend state from BLEND_STATE. Ignored by Render Target Read message.							0.3-0.4	63:0	Reserved																		Format:		Ignore							Ignored							0.5-0.5	31:0	Color Code									- MANO DE CO									Format: MHC_RT_CC Hardware uses to track synchronizing events and free resources on thread completion.							0.6-0.7	63:0	Reserved																		Format:		Ignore							Ignored	Ignored								MH_RT - Reno	ler 1	Target Me	essage Header			---------	------	------------------------------	-------	------------	---------------	--										1.0-1.0	31:0	Reserved																Format:			Ignore					Ignored						1.1-1.1	31:0	Reserved																Format:			Ignore					lgnored						1.2-1.2	31:0	Subspan 0																Format:		RT_SUBSPAN						Upper left corner of subspan	1 0					1.3-1.3	31:0	Subspan 1								Format:	MHC_	RT_SUBSPAN						Upper left corner of subspan	n 1					1.4-1.4	31:0	Subspan 2	1															Format:		RT_SUBSPAN						Upper left corner of subspan	12					1.5-1.5	31:0	Subspan 3																Format:	J	RT_SUBSPAN						Upper left corner of subspan	1 3					1.6-1.6	31:0	Reserved								Format:			Ignore					Ignored			ignore			1.7-1.7	31:0	Pixel Sample Enables							•									Format: MHC_RT_PSM		MHC_RT_PSM								l .				MH_RT - Render Target Message Header							--------------------------------------	--	----------------------	--	--	--				Pixel Sample Enables				# **Render Target Message Header Control**		MI	HC_RT_C0 - R	ender Target Mes	sage l	Header Control						---------------------------	-------	---	--	------------	--------------------------------	------	--	--	--		Source:		BSpec									Size (in bits): 32											Default Value: 0x00000000											DWord	Bit		Descript	ion							0	31	Reserved																						Format:		Ignore									Ignored										30:27	Viewport Index																						Format:			U4									rite message, specifies the inde		viewport currently being used.									ed by Render Target Read mes	sage.								26:16	Render Target Array	/ Index										_											Format:	U11										•	ldex to be used for the following [0,511] SURFTYPE_2D: specifies	_	types: SURFTYPE_1D: specifies	tne							, .	47] SURFTYPE_BUFFER: must be	9									zero. SURFTYPE_CUB	(0,+x) (1,-x) (2,+y) (3,-y) (4,+z) (5,-z).									Programming Notes											The Render Target Array Index used by hardware for access to the Render Target i												if it is out of the range between	en									determination.	oth value of 5 is used for this											nding header when either this l	hit is									SW must use the EXT_FUNC_CTRL on side-band to avoid sending header, when either this bit is set or Render Target Index needs to be programmed. The typical use case of Multi-Render											Target Write messages requires setting these bit fields and avoiding to send header improves											HW performance.										15	Front/Back Facing P	Polygon		T								Format: U1												. , ,	icing. Use	d by the render cache to deter	mine							which stencil test sta	Name		Description								Value		A	•								0h	Front facing	A									1h	Back facing	A	II							14	Stencil Present to Render Target									M	HC_RT_C0 - Render Targ	jet Message Header Control					-----	--	--	--	--	--										Format:	Enable						For Render Target Write message, indic Must be zero for Render Target Read m	cates that computed stencil is included in the message. nessage.					13	Source Depth Present to Render Targ	jet													Format:	Enable						For Render Target Write Message, indic Must be zero for Render Target Read m	cates that source depth data is included in the message. nessage.					12	oMask to Render Target														Format:	Enable						For Render Target Write message, indice be used to mask off samples. Must be z	cates that oMask data is present in the message and is to zero for Render Target Read message.					11	Source0 Alpha Present to Render Targ	get						Format:	Enable						For Render Target Write message, indicates that Source0 Alpha (aka o0.a) data is included in RTWrite message. If present, these alpha values are used as inputs to AlphaTest and AlphaToCoverage functions. This is required to meet the API rules when writing to multiple render targets (MRTs). Must be zero for Render Target Read message.							Programming Notes							This bit should not be set when write to RTO, though sending and using redundant alpha will provide the correct results (at lower performance). This bit is not supported on Dual-Source Blend message types, as source0 alpha is already included in those messages.																																																																																																																																																																																																																																																																			
This bit is not supported on replicated data message types.							set or Render Target Index needs to be	ide-band to avoid sending header, when either this bit is programmed. The typical use case of Multi-Render these bit fields and avoiding to send header improves					10	Reserved						9:6								Format:	Ignore						Ignored Control of the th						0.0	Starting Sample Pair Index or Sample Format:	U4						When pixel shader is dispatched in per-sample mode or per-pixel mode with Per-Sample PS Enable bit cleared, this field indicates the index of the first sample pair of the dispatch. Range =						MHC_RT_C0 - Render Target Message Header Control						--	---	--------	--	--			[0,7]. When pixel shader is dispatched in per-pixel mode vindicates the index of a sample referenced by per-sa [0, 15].	·				5:0	Reserved						Format:	Ignore					Ignored										# **Replicated Pixel Render Target Data Payload Register**	MDPR	_RGBA	-	kel Render Target Data Payload gister			--	----------------	------------------------------------	--	--		Source: Size (in bits): Default Value:	BSpec : 256					DWord	Bit		Description			0	31:0	Red						Format: Specifies the value of all	slots' red channel.			1	31:0	Green						Format: Specifies the value of all	slots' green channel.			2	31:0	Blue						Format: Specifies the value of all	U32 slots' blue channel.			3	31:0	Alpha						Format: Specifies the value of all	U32 slots' alpha channel.			47	127:0	Reserved						Format:	Ignore		# **Replicated SIMD16 Render Target Data Payload**	MDP_RTW_16REP - Replicated SIMD16 Render Target Data Payload									--	---	---------------------------	-------------	--	--	--	--			rayiUau								Source:	ırce: BSpec								Size (in bits):	256									Default Value: 0x00000000, 0x000000000, 0x000000000, 0x00000000									<u> </u>	1							DWord	Bit		Description						0.0-0.7	255:0	RGBA																		Format:	MDPR_RGBA								RGBA for all slots [15:0]															# **Reversed SIMD Mode 2 Message Descriptor Control Field**	MDC_SM2R - Reversed SIMD Mode 2 Message Descriptor Control									--	---------------	--	-------	-------------	--	--	--					Field						Source:	Source: BSpec								Size (in bits)	:	1							Default Valu	ie:	0x00000000							DWord	Bit	Description							0	0	SIMD Mode																		Specifies the SIMD mode of the message (number of slots processed)									Value	Name	Description							00h SIMD16		SIMD16							01h	SIMD8	SIMD8				# $Rounding Precision Table_3_Bits$		Re	ounding	PrecisionTable_	3_Bits			-----------------	-----------	---------	--------------------	-------------	------		Source:	BSpec						Size (in bits):	3						Default Value:	0x0000000	0					DWor	d	Bit		Description			0		2:0	Rounding Precision							Format:		U3												Value		Name					000b	+1/16						001b	+2/16						010b	+3/16		011b 100b 101b 110b 111b +4/16 +5/16 +6/16 +7/16 +8/16 # **S0A SIMD8 Render Target Data Payload**	Source:	BSpec									-----------------	---	---	----------------------------	--	--	--	--	--		Size (in bits):	1280									Default Value:	0x00000000, 0x 0x00000000, 0x 0x00000000, 0x 0x00000000, 0x 0x000000000, 0x	x00000000, 0x00000000, 0x00000000, 0x00000000								DWord	Bit		Description							0.0-0.7	255:0	Source 0 Alpha	<u> </u>																			Format:	MDP_DW_SIMD8									Slots [7:0] Source	Slots [7:0] Source 0 Alpha							1.0-1.7	255:0	Red																				Format:	MDP_DW_SIMD8									Slots [7:0] Red								2.0-2.7	255:0	Green																				Format:	MDP_DW_SIMD8									Slots [7:0] Gree	n							3.0-3.7	255:0	Blue										Format:	MDP_DW_SIMD8									Slots [7:0] Blue								4.0-4.7	255:0	Alpha																											# **S0A SIMD16 Render Target Data Payload**	MDP_RT\	N_A16 - S	0A SIMD16 Re	nder Target Data Payload							-----------------	---	---	--------------------------	--	--	--	--	--		Source:	BSpec									Size (in bits):	2560									Default Value:	0x00000000, 0x00 0x000000000, 0x00 0x000000000, 0x00 0x000000000, 0x00 0x000000000, 0x00 0x000000000, 0x00 0x000000000, 0x00 0x000000000, 0x00 0x000000000, 0x00 0x000000000, 0x00	0, 0x00000000, 0x00000000, 0x00000000, 0x00000000								DWord	Bit		Description							0.0-0.7	255:0	Source 0 Alpha[7:0]										,										Format:	MDP_DW_SIMD8									Slots [7:0] Source 0 Alp	pha							1.0-1.7	255:0	Source 0 Alpha[15:7]										Format:	MDP_DW_SIMD8									Slots [15:8] Source 0 A								2.0-2.7	255:0	Red[7:0]																				Format:	MDP_DW_SIMD8							Slots [7:0] Red										3.0-3.7	3.0-3.7 255:0 Red[15:8]																					Format:	MDP_DW_SIMD8									Slots [15:8] Red								4.0-4.7	255:0	Green[7:0]								MDP_RT\	N_A16 - S	SOA SIMD16 R	Render Target Data Payload		---------	-----------	--------------------	----------------------------									Format:	MDP_DW_SIMD8				Slots [7:0] Green			5.0-5.7	255:0	Green[15:8]	1				Format:	MDP_DW_SIMD8				Slots [15:8] Green			6.0-6.7	255:0	Blue[7:0]					Format:	MDP_DW_SIMD8				Slots [7:0] Blue			7.0-7.7	255:0	Blue[15:8]										Format:	MDP_DW_SIMD8				Slots [15:8] Blue			8.0-8.7	255:0	Alpha[7:0]					Format:	MDP_DW_SIMD8				Slots [7:0] Alpha			9.0-9.7	255:0	Alpha[15:8]					-	MDD DW CIMDO				Format:	MDP_DW_SIMD8				Slots [15:8] Alpha		## SAMPLER_BORDER_COLOR_STATE ## SAMPLER_BORDER_COLOR STATE Source: BSpec Size (in bits): 128 #### **Description** The interpretation of the border color depends on the Texture Border Color Mode field in SAMPLER_STATE as follows: - DX9 mode: The border color is 8-bit UNORM format, regardless of the surface format chosen. For surface formats with one or more channels missing (i.e. R5G6R5_UNORM is missing the alpha channel), the value from the border color, if selected, will be used even for the missing channels. - DX10/OGL mode:the format of the border color depends on the format of the surface being sampled. If the map format is UINT, then the border color format is R32G32B32A32_UINT. If the map format is SINT, then the border color format is R32G32B32A32_SINT. Otherwise, the border color format is R32G32B32A32_FLOAT. For surface formats with one or more channels missing, the value from the border color is not used for the missing channels, resulting in these channels resulting in the overall default value (0 for colors and 1 for alpha) regardless of whether border color is chosen. The surface formats with "L" and "I" have special behavior with respect to the border color. The border color value used for the replicated channels (RGB for "L" formats and RGBA for "I" formats) comes from the red channel of border color. In these cases, the green and blue channels, and also alpha for "I", of the border color are ignored. The format of this state depends on the Texture Border Color Mode field. If the Texture Border Color Mode field in SAMPLER_STATE is set to DX9 and theMMIO register bit " Enable Missing Alpha Format Fix" is set in register E194h, then the interpretation of the border color format depends of the format of the surface being sampled: - 1. If the map format is UINT, border color is R8G8B8A8_UINT - 2. If the map format is SINT, border color is R8G8B8A8_SINT - 3. Otherwise, border color is R8G8B8A8_UNORM #### **Programming Notes** - DX9 mode is not supported for surfaces with more than 16 bits in any channel, other than 32-bit float formats which are supported. - The conditions under which this color is used depend on the **Surface Type** 1D/2D/3D surfaces use the border color when the coordinates extend beyond the surface extent; cube surfaces use the border color for "empty" (disabled) faces. - The border color itself is accessed through the texture cache hierarchy rather than the state cache hierarchy. Thus, if the border color is changed in memory, the texture cache must be invalidated and the state cache does not need to be invalidated. - MAPFILTER_MONO: The border color																																																																																																																																																																																																																																																																																																																																																																																																		
is ignored. Border color is fixed at a value of 0 by hardware. - The border color itself is accessed through the texture cache hierarchy rather than the state cache ## SAMPLER_BORDER_COLOR_STATE hierarchy. Thus, if the border color is changed in memory, the texture cache must be invalidated and the state cache does not need to be invalidated. If the Texture Border Color Mode field in SAMPLER_STATE is set to DX9 and the MMIO register bit " Enable Missing Alpha Format Fix" is set in register E194h and a surface with format SINT is being sampled, then each channel of the border color must be 00h or 01h (0 or 1 in SINT encoding).	OWord	Bit	Description									-------	-------	---------------------------------	---	--	--	--	--	--	--		0	31:24	Border Color Alpha											5 1 4 16	S										Exists If:	Structure[SAMPLER_STATE][Texture Border Color Mode] == 'DX9'										Format:	UNORM8										Texture B	order Color Mode = DX9									31:0	Border Co	olor Red - (DX10/0GL)										Exists If:	Structure[SAMPLER_STATE][Texture Border Color Mode] == 'DX10/0GL'										Format:	IEEE_FP										Texture B	order Color Mode = DX10/OGL									23:16	Border Co	olor Blue										Exists If:	Structure[SAMPLER_STATE][Texture Border Color Mode] == 'DX9'										Format:	UNORM8										Texture B	order Color Mode = DX9									15:8	Border Co	plor Green										Exists If:	Structure[SAMPLER_STATE][Texture Border Color Mode] == 'DX9'										Format:	UNORM8										Texture Border Color Mode = DX9										7:0	Border Color Red - (DX9)																							Structure[SAMPLER_STATE][Texture Border Color Mode] == 'DX9'										Format:	UNORM8										Texture B	order Color Mode = DX9								1	31:0	Border Co	olor Green																				SAMPLER_BORDER_COLOR_STATE									---	----------------------------	--------------------------------------	---------	--	--	--	--	--				Format: IEEE_FP										Texture Border Color Mode = DX10/OGL								2	31:0	Border Color Blue																				Format:	IEEE_FP									Texture Border Color Mode = DX10/OGL								3	31:0	Border Color Alpha																				Format: IEEE_FP										Texture Border Color Mode = DX10/OGL							## SAMPLER_INDIRECT_STATE_BORDER_COLOR ### SAMPLER INDIRECT STATE BORDER COLOR Source: BSpec Size (in bits): 128 #### **Description** This structure is a one version of the SAMPLER_INDIRECT_STATE structure, suitable for many needs. An instance of this structure is pointed to by the **Indirect State Pointer** field in SAMPLER_STATE. The interpretation of the border color depends on the **Texture Border Color Mode** field in SAMPLER_STATE as follows: - In **8BIT** mode, the border color is 8-bit UNORM format, regardless of the surface format chosen. For surface formats with one or more channels missing (i.e. R5G6R5_UNORM is missing the alpha channel), the value from the border color, if selected, will be used *even for the missing channels*. - In **OGL** mode, the format of the border color is R32G32B32A32_FLOAT, R32G32B32A32_SINT, or R32G32B32A32_UINT, depending on the surface format chosen. For surface formats with one or more channels missing, the value from the border color is not used for the missing channels, resulting in these channels resulting in the overall default value (0 for colors and 1 for alpha) regardless of whether border color is chosen. The surface formats with "L" and "I" have special behavior with respect to the border color. The border color value used for the replicated channels (RGB for "L" formats and RGBA for "I" formats) comes from the *red* channel of border color. In these cases, the green and blue channels, and also alpha for "I", of the border color are ignored. #### **Programming Notes** - 8BIT mode is not supported for surfaces with more than 16 bits in any channel, other than 32-bit float formats which are supported. - The conditions under which this color is used depend on the **Surface Type** 1D/2D/3D surfaces use the border color when the coordinates extend beyond the surface extent; cube surfaces use the border color for "empty" (disabled) faces. - The border color itself is accessed through the texture cache hierarchy rather than the state cache hierarchy. Thus, if the border color is changed in memory, the texture cache must be invalidated and the state cache does not need to be invalidated. - MAPFILTER_MONO: The border color is ignored. Border color is fixed at a value of 0 by hardware.	DWord	Bit		Description								-------	-------	------------------	---	--	--	--	--	--	--		0	31:24	Border Co	Border Color Alpha As U8																					Exists If:	//Structure[SAMPLER_STATE][Texture Border Color Mode] == '8BIT'										Format:	: U8									31:0	Border Co	Border Color Red As S31																			_	SAMP	PLER_INDIRECT_STATE_BORDER_COLOR		-------	---------------------	---				//Structure[SAMPLER_STATE][Texture Border Color Mode] == 'OGL' AND (Structure[RENDER_SURFACE_STATE][Surface Format]Property[IsSigned]=='true'			Format:	S31			Format:	U32			Format:	IEEE Float		23:16	Border Co	olor Blue As U8			Evicto If:	//Structure[SAMPLER_STATE][Texture Border Color Mode] == '8BIT'				U8		1 [.0				15.0	Border Co	olor Green As Go			Exists If:	//Structure[SAMPLER_STATE][Texture Border Color Mode] == '8BIT'			Format:	U8		7:0	Border Co	plor Red As U8								//Structure[SAMPLER_STATE][Texture Border Color Mode] == '8BIT'			<u> </u>	U8		31:0	Reserved				Fridata 16	//Chrostone/CAMDLED CTATELT stone Develop Color Madel 1 (ODIT)				//Structure[SAMPLER_STATE][Texture Border Color Mode] == '8BIT'		21.0	L	MBZ		31:0	Border Co	olor Green As S31			Exists	//Structure[SAMPLER_STATE][Texture Border Color Mode] == 'OGL' AND			If: ((Structure[RENDER_SURFACE_STATE][Surface Format]Property[IsSigned]=='true'			Format:	S31				U32			Format:	IEEE Float		31:0	Reserved				Exists If:	//Structure[SAMPLER_STATE][Texture Border Color Mode] == '8BIT'			Format:	MBZ		31:0	Border Co	olor Blue As S31			Cylists	//Standardolf CAMDIED CTATEIT state of Devider Calculated 1997				//Structure[SAMPLER_STATE][Texture Border Color Mode] == 'OGL' AND			llf:	(Structure[RENDER_SURFACE_STATE][Surface Format]Property[IsSigned] == 'true'			7:0 31:0 31:0	Exists If: Format: Format: Format: Format: 23:16 Exists If: Format: 15:8 Border Co Exists If: Format: 7:0 Exists If: Format: 31:0 Reserved Exists If: Format: 31:0 Reserved Exists If: Format: 31:0 Exists If: Format:			SAMPLER_INDIRECT_STATE_BORDER_COLOR									---	-------------------------------------	---------------------------	--	--	--	--	--	--				Format: U32										Format:	IEEE Float							3	31:0	Reserved																				Exists If:	//Structure[SAMPLER_STATE][Texture Border Color Mode] == '8BIT'									Format:	MBZ								31:0	Border Color Alpha As S31																					//Structure[SAMPLER_STATE][Texture Border Color Mode] == 'OGL' AND									If:	(Structure[RENDER_SURFACE_STATE][Surface Format]Property[IsSigned]=='true'									Format: S31										Format:	U32									Format:	IEEE Float						## SAMPLER_INDIRECT_STATE ### **SAMPLER INDIRECT STATE** Source: BSpec Size (in bits): 512 #### **Description** Note: There are three variations of this structure, defined separately because their payloads have different lengths. Currently only SAMPLER_INDIRECT_STATE_BORDER_COLOR is fully defined. This structure is pointed to by **Indirect State Pointer** (SAMPLER_STATE). The interpretation of the border color depends on the **Texture Border Color Mode** field in SAMPLER_STATE as follows: - In **8BIT** mode, the border color is 8-bit UNORM format, regardless of the surface format chosen. For surface formats with one or more channels missing (i.e. R5G6R5_UNORM is missing the alpha channel), the value from the border color, if selected, will be used *even for the missing channels*. - In **OGL** mode, the format of the border color is R32G32B32A32_FLOAT, R32G32B32A32_SINT, or R32G32B32A32_UINT, depending on the surface format chosen. For surface formats with one or more channels missing, the value from the border color is not used for the missing channels, resulting in these channels resulting in the overall default value (0 for colors and 1 for alpha) regardless of whether border color is chosen. The surface formats with "L" and "I" have special behavior with respect to the border color. The border color value used for the replicated channels (RGB for "L" formats and RGBA for "I" formats) comes from the *red* channel of border color. In these cases, the green and blue channels, and also alpha for "I", of the																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																											
border color are ignored. The format of this state depends on the **Texture Border Color Mode** field. #### **Programming Notes** - 8BIT mode is not supported for surfaces with more than 16 bits in any channel, other than 32-bit float formats which are supported. - The conditions under which this color is used depend on the **Surface Type** 1D/2D/3D surfaces use the border color when the coordinates extend beyond the surface extent; cube surfaces use the border color for "empty" (disabled) faces. - The border color itself is accessed through the texture cache hierarchy rather than the state cache hierarchy. Thus, if the border color is changed in memory, the texture cache must be invalidated and the state cache does not need to be invalidated. - MAPFILTER_MONO: The border color is ignored. Border color is fixed at a value of 0 by hardware. - The conditions under which this color is used depend on the Surface Type- 1D/2D/3D surfaces use the border color when the coordinates extend beyond the surface extent; cube surfaces use the border color for "empty" (disabled) faces. - The border color itself is accessed through the texture cache hierarchy rather than the state cache ## **SAMPLER_INDIRECT_STATE** hierarchy. Thus, if the border color is changed in memory, the texture cache must be invalidated and the state cache does not need to be invalidated.	DW I	D'1		December 6		-------	-------	--------------	--		DWord	Bit	D 1 6	Description		0	31:24	Border Co	olor Alpha				Fuiata 16	//Chrystyne (CAMDIED CTATE) (Touture Devider Caler Made) 100 (T				Exists If:	//Structure[SAMPLER_STATE][Texture Border Color Mode] == '8BIT'				Format:	UNORM8 order Color Mode = 8BIT				rexture b	order Color Mode – obri			31:0	Border Co	olor Red				Exists If:	//Structure[RENDER_SURFACE_STATE][Surface Format]Property[IsSigned] = = 'true'				Format:	SINT32 (2's complement) for all SINT surface formats				Format:	UINT32 for all UINT surface formats				Format:	IEEE_FP for all other surface formats			23:16	Border Co	olor Blue									Exists If:	//Structure[SAMPLER_STATE][Texture Border Color Mode] == '8BIT'				Format:	UNORM8				Texture B	order Color Mode = 8BIT			15:8	Border Co	olor Green									Exists If:	//Structure[SAMPLER_STATE][Texture Border Color Mode] == '8BIT'				Format:	UNORM8				Texture B	order Color Mode = 8BIT			7:0	Border Co	olor Red									Exists If:	//Structure[SAMPLER_STATE][Texture Border Color Mode] == '8BIT'				Format:	UNORM8				Texture B	order Color Mode = 8BIT		1	31:0	Reserved										Exists If:	//Structure[SAMPLER_STATE][Texture Border Color Mode] == '8BIT'				Format:	MBZ			31:0	Border Co	olor Green				SAMPLER_INDIRECT_STATE							-----	-------	--	--	--	--	--	--				Exists If: //Structure[RENDER_SURFACE_STATE][Surface Format]Property[IsSigned] == 'true'									Format: IEEE_FP									Format: S31									Format: U32							2	31:0	Reserved																		Exists If: //Structure[SAMPLER_STATE][Texture Border Color Mode] == '8BIT'									Format: MBZ								31:0	Border Color Blue									Exists If: //Structure[RENDER_SURFACE_STATE][Surface Format]Property[IsSigned] == 'true'									Format: IEEE_FP									Format: S31									Format: U32							3	31:0	Reserved																		Exists If: //Structure[SAMPLER_STATE][Texture Border Color Mode] == '8BIT'									Format: MBZ								31:0	Border Color Alpha									Exists If: //Structure[RENDER_SURFACE_STATE][Surface Format]Property[IsSigned] = = 'true'									Format: IEEE_FP									Format: S31									Format: U32							415	383:0	Reserved						## **SAMPLER_STATE_8x8_1D_CONVOLVE**				SAN	IPLER_S	STATE_8x8_1D_CO	NVOLVE				---------------------	-------	---	--	------------	--	---	--	--		Source:		BS	рес							Exists If:		//(Function==00001b && 1D Vertical Convolve) (Function==1001b && 1D Horizonta Convolve)								Size (in bits): 224										Default V	alue:	0xi 0xi 0xi 0xi	0x00000000, 0x00000000, 0x00000000, 0x00000000							DWord	Bit				Description					0	31:24	Reserve	ed									Format	t:			MBZ					23:20	MSB W	/IDTH									Valu	ue	Name	De	escription						1			Extends the Filter Size Width (upto 31.						0			No Change to the Filter Size																	Programming Notes										For 1D Vertical Convolve this should always be 0.									19:16	MSB HEIGHT It contains the MSB HEIGHT of the kernel and is used to extend the kernel width range to 31. Used along with bits[3:0] which represents the LSB for the kernel Height.										Valu	ue	Name	D	escription						1h			Extends the filter size height u	upto 31.																Programming Notes										For 1D Horizontal Convolve this should always be 0.									15:13	Reserve	ed									Format: MBZ									12			efficient								Value	Name		Descrip							0	8bit		B bits of the accumulator is forcon operation.	ced to zero or ignored during the						1	16bit	accumulato		operation. The final result of the e result as specified by the Scale [40:12] » scale_down)						S	AMPI	LER_STATE_8x8_	ID_CO	NVOLVE				------	-------	---	---------------	--------------------------------	------------	-----------------------	--	--			11:8	Scale do	wn value									Exists If: //Convolve Only											ı									Value	Name			iption						[0,10]		The final result is shifted by	this value	before clamp is done.					7:4	WIDTH It contain	ns the WII	OTH of the kernel.										Value		Name						[2-15]												Program	ming Note	es						For 1D V	ertical Co	nvolve this should always be	e 0.						3:0	HEIGHT										It contain	ns the HEI	GHT of the kernel.										Value		Name						[2-15]												Диолияна 1	mina Nat							For 1D b	lorizontal	Convolve this should always	ming Note	es				4.45	24.0	L		Convoive this should always	s de 0.					115	31:0	Reserved Format:	1			MBZ				16	31:16	L	officient			1.1102				10	31.10	Filter Coefficient[1] Exists If: //Filtering Operation										Format:		3.4(8bit)/S3.12(16bit) in 2's	Compleme	ent							-8.0, +8.0)	(,,,		***						Programming Notes										If not use	ed in the 1	filtering operation, must be	zero.						15:0	Filter Coefficient[0]										Exists If:	1.	/Filtering Operation								Format:	S	3.4(8bit)/S3.12(16bit) in 2's	Compleme	nt						Range: [-	-8.0, +8.0)									Programming Notes										If not used in the filtering operation, must be zero.								17	31:16	Filter Co	oefficient[3]									Exists If:	1.	/Filtering Operation								Format:	S	3.4(8bit)/S3.12(16bit) in 2's	Compleme	nt						Range: [-	8.0, +8.0)									Programming Notes									SAMPLER_STATE_8x8_1D_CONVOLVE							------	-------------------------------	----------------------------------	---	--	--	--				If not used i	n the filtering operation, must be zero.						15:0	Filter Coeffi	cient[2]							Exists If:	//Filtering Operation							Format:	S3.4(8bit)/S3.12(16bit) in 2's Complement							Range: [-8.0,	+8.0)								Programming Notes							If not used i	n the filtering operation, must be zero.					1819	31:0	Filter Coeffice This table ha	cient[7:4] as the same layout as shown above.					2023	31:0		Filter Coefficient[15:8] This table has the same layout as shown above.					2431	31:0	Filter Coeffice This table ha	cient[31:16] as the same layout as shown above.				## **SAMPLER_STATE_8x8_AVS_COEFFICIENTS**			SAMPLER_STATE_8x8_AVS_COEFFICIENTS				---------------	--------	---	--	--		Source:		BSpec				Size (in bits	s):	256				Default Val	lue:	0x00000000, 0x00000000, 0x00000000, 0x00000000						Description				ExistsIf = /	AVS &&	(Function_mode = 0)				DWord	Bit	Description				0	31:24	Table 0Y Filter Coefficient[n,1]						Format: S1.6 2's Complement						Range: [-2, +2)					23:16	Table 0X Filter Coefficient[n,1]						Format: S1.6 2's Complement						Range: [-2, +2)					15:8	Table 0Y Filter Coefficient[n,0]						Format: S1.6 2's Complement																																																																																																																																																																																																																														
			Range: [-2, +2)						Programming Notes						If the format is R10G10B10A2_UNORM or R8G8B8A8_UNORM, this field MBZ.					7:0	Table 0X Filter Coefficient[n,0]						Format: S1.6 2's Complement						Range: [-2, +2)						Programming Notes						If the format is R10G10B10A2_UNORM or R8G8B8A8_UNORM, this field MBZ.				1	31:24	Table 0Y Filter Coefficient[n,3]						Format: S1.6 2's Complement						Range: [-2.0, +2.0)					23:16	Table 0X Filter Coefficient[n,3]						Format: S1.6 2's Complement						Range: [-2.0, +2.0)					15:8	Table 0Y Filter Coefficient[n,2]						Format: S1.6 2's Complement						Range: [-2.0, +2.0)						SAMPLER_STATE_8x8_AVS_COEFFICIENTS				---	-------	---	--	--									7:0	Table 0X Filter Coefficient[n,2]						Format: S1.6 2's Complement						Range: [-2.0, +2.0)				2	31:24	Table 0Y Filter Coefficient[n,5]						Format: S1.6 2's Complement						Range: [-2.0, +2.0)					23:16	Table 0X Filter Coefficient[n,5]						Format: S1.6 2's Complement						Range: [-2.0, +2.0)					15:8	Table 0Y Filter Coefficient[n,4]						Format: S1.6 2's Complement						Range: [-2.0, +2.0)						Programming Notes						If the format is R10G10B10A2_UNORM or R8G8B8A8_UNORM, this field MBZ.					7:0	Table 0X Filter Coefficient[n,4]						Format: S1.6 2's Complement						Range: [-2.0, +2.0)						Programming Notes						If the format is R10G10B10A2_UNORM or R8G8B8A8_UNORM, this field MBZ.				3	31:24	Table 0Y Filter Coefficient[n,7]						Format: S1.6 2's Complement						Range: [-2, +2)					23:16	Table 0X Filter Coefficient[n,7]						Format: S1.6 2's Complement						Range: [-2, +2)					15:8	Table 0Y Filter Coefficient[n,6]						Format: S1.6 2's Complement						Range: [-2, +2)					7:0	Table 0X Filter Coefficient[n,6]						Format: S1.6 2's Complement						Range: [-2, +2)						SAMPLER_S	STATE_8x8_AVS_COEFFICIENTS		---	-------	----------------------------	---------------------------------------		4	31:24	Table 1X Filter Coef	ficient[n,3]				Format:	S1.6 2's Complement				Range: [-2.0, +2.0)				23:16	Table 1X Filter Coef	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				Format:	S1.6 2's Complement					Description				Range: [-2.0, +2.0)				15:0	Reserved					Format:	MBZ		5	31:16	Reserved					Format:	MBZ			15:8	Table 1X Filter Coef					Format:	S1.6 2's Complement					Description				Range: [-2.0, +2.0)				7:0	Table 1X Filter Coef	ficient[n,4]				Format:	S1.6 2's Complement				Range: [-2.0, +2.0)			6	31:24	Table 1Y Filter Coef	ficient[n,3]				Format:	S1.6 2's Complement				Range: [-2.0, +2.0)				23:16	Table 1Y Filter Coef	ficient[n,2]				Format:	S1.6 2's Complement					Description				Range: [-2.0, +2.0)				15:0	Reserved					Format:	MBZ		7	31:16	Reserved					Format:	MBZ			15:8	Table 1Y Filter Coef					Format:	S1.6 2's Complement		SAMPLER_STATE_8x8_AVS_COEFFICIENTS								------------------------------------	---------------------------	---------------------	--	--	--	--				Description							Range: [-2.0, +2.0)							7:0	Table 1Y Filter Coefficie	nt[n,4]							Format:	S1.6 2's Complement							Range: [-2.0, +2.0)														# intel ## SAMPLER_STATE_8x8_AVS ### **SAMPLER STATE 8x8 AVS** Source: BSpec Size (in bits): 8960 Default Value: 0x0294806C, 0x00000000, 0x39CFD1FF, 0x839F0000, 0x9A6E4000, 0x02601180, 0xFFFE2F2E, 0x00000000, 0xD82E0000, 0x8285ECEC, 0x00008282, 0x00000000, 0x02117000, 0xA38FEC96, 0x00008CC8, 0x00000000,			SAMPLER_STATE_8x8_AV	/S						------------	--------	--	--	----------------------------	-------------------------------	--	--				0x00000000, 0x00000000, 0x00000000, 0x00000000	0x00000000 0x000000000 0x000000000	, 0x00 , 0x00 , 0x00	000000, 000000, 000000,						Description							ExistsIf =	AVS &8	왕 (Function_mode = 0)							DWord	Bit	Description							0	31:28	Reserved									Format:								27:23	R3c Coefficient	MBZ							27.23				5															Format:	U0.5							22:18	R3x Coefficient									Default Value: 5																		Format:		U0.5						17:12	Strong Edge Threshold			1						Default Value:			8															Format:			U6						If EM > Strong Edge Threshold , the basic VSA detects a	i strong eug	je.						11:6	Weak Edge Threshold									Default Value:			1															Format:			U6						If Strong Edge Threshold > EM > Weak Edge Threshold , the basic VSA detects a weak edge.								5:0	Gain Factor									Default Value:			44															Format:			U6						User control sharpening strength									SAMPLER_S	TATE_8x8_AVS							---	-------	---	--------------	-------	--------------	--	--	--												1	31:0	Reserved											1407									Format:	MBZ							2	31:27	R5c Coefficient		1-								Default Value:		7								Formati		110.0	-						06.00	Format:		U0.5	D						26:22	R5cx Coefficient		7								Default Value:		/								Format:		U0.5							21:17			00.5	,						21.17	R5x Coefficient Default Value:										Beradit value.	7									Format:	UO.5	U0.5							16:14										10.14	Default Value:			7										-							Format:		U3								Sharpening strength when a strong edge is found in basic VSA.									13:11	Regular Weight										Default Value:			2																	Format:		U3								Sharpening strength when a weak edge is found in basic VSA.									10:8	Non Edge Weight										Default Value:			1																	Format:			U3							Sharpening strength when no edge is found in basic VSA.									7:0	Global Noise Estimation										Default Value:		2	255									SAMPLER_STATE_8x8_AVS							---	-------	--	--	--	--	--	--	--	--				Format		U	8								Global	Global noise estimation of previous frame.								3	31	Reserve	ed									30	Reserved										29:28	Enable	8-tap fil	ter											Description									R10G1	0B10A2_	r <mark>ing (Mode = 11) ExistsIf:</mark> _UNORM R8G8B8A8_UNORM (AYUV also) R8B8G8A8_UNO DRM R16G16B16A16	ORM								1 1	•	tering on UV channel (Mode = 10) ExistsIf: M, R16_UNORM									R10G1	0B10A2 ₋	iltering on UV channel (Mode = 10) ExistsIf: _UNORM R8G8B8A8_UNORM (AYUV also) R8B8_UNORM DRM B8G8R8A8_UNORM R16G16B16A16 Y8_UNORM	(CrCb) R8_UNORM								Value	Name	Description									00b		4-tap filter is only done on all channels.									01b		Enable 8-tap Adaptive filter on G-channel. 4-tap filter on	e filter on G-channel. 4-tap filter on other channels.								10b		8-tap filter is done on all channels (UV-ch uses the Y-coe	fficients)								11b		Enable 8-tap Adaptive filter all channels (UV-ch uses the	nannels (UV-ch uses the Y-coefficients).										Programming Notes									For 00 and 10, are applicable for RGB surfaces only or surface without Y-ch. In case it is a YUV surface it will default to adaptive mode automatically which is 01 and 11 respectively. Alpha channel is always bi-linear filter irrespective of the above modes.											Mode ()1 and 0	0 are legacy support and are supported on all surface forr	nats.										10 and Surface format is Y8_UNORM, Bypass X/Y Adaptive Sharp Level must be 255	e Filtering must be							27:22	Hue_Ma	ЭX										Default	Value:		14																				Format: U6										Rectangle half width.										21:16	Sat_Max	X										Default	Value:		31					
							Format:	S0.7 2's Complemen	nt							Deafult Value: 79/1	28							7:0	Sin(alpha)									Format:	S0.7 2's Complemer	nt .							Deafult Value: 101/							4	31:24	V_Mid									Default Value:			154						Format.			110						Format: U8 Rectangle middle-point V coordinate.									II A4: J								23:16	U_Mid Default Value:	110								Deraut value.									Format:			U8						Rectangle middle-point U coordinate.								15	VY_STD_Enable									Format:		Enable							Enables STD in the	VY subspace.	Lilable						14.12									14:12	Diamond Margin Default Value:			4															Format:			U3					11	Shuffle_OutputWri	teback for sample_8x8																	Value Name		Description								Writeback same as Original S	·	I lie a man						1 V	Writeback of Sample_8x8 Is I	Modified to Suite Sample	e_Unorm								SAMPI	LER_STA	TE_8x8_A\	/S			---	-------	--	------------------------	--------------	--	---------------	-------------------	---------------------			10:0	S3U			ı																	Format:			S2.8 2's Con	nplement						Dearun	Deafult Value: 0/256							5	31	SkinDe	tailFact	tor								_										Forma	t:				S0					Value	Name			Descript	tion					1		_	etailFactor) is s not detail re	•	the content of	f the detected skin				0		_	sign(SkinDetailFactor) is equal to -1, and the content of the detected tone area is detail revealed.		the detected skin				30:24	Diamo	nd_du	<u> </u>								Default Value:				2						_										Format: S6 2's Complement Complem										Rhombus center shift in the sat-direction, relative to the rectangle center.									23:21	HS_margin										Default Value:				3						Farment					112					Format: Defines rectangle margin				U3						Defines rectangle margin									20:13	Diamo	nd_alph	ıa								Forma	t:				U2.6					Deafai	Deafault Value: 100/64									1 / tan(β)									12:7		Diamond Th									Defaul	t Value:					35														Format		*b o wb = lr	a avia in the	at disaction		U6				Half lei	ngth of	trie rnombu	s axis in the s	at-direction.					6:0	Diamo	nd_dv									SAMPLE	R_STATE_8x8_A	AVS					---	-------	--	---------------------------------------	--	----	--	--				Default Value:	0								_									Format: Rhombus center shift in the k	· · · · · · · · · · · · · · · · · · ·	S6 2's Complement e-direction, relative to the rectangle center.							Mionibus center sinic in the r	ide direction, relative to t	ne rectangle cente					6	31:24	Y_point_4		1							Default Value:			55						Format:		U	18						Fourth point of the Y piecewi	ise linear membership fun	ction.						23:16	Y_point_3									Default Value:	2	54							Farmant.	10								Format: U8 Third point of the Y piecewise linear membership function.																	15:8	Y_point_2			47						Default Value:			47						Format:			U8						Second point of the Y piecewise linear membership function.								7:0	Y_point_1									Default Value:		46							Fa was at	110								Format: U8 First point of the Y piecewise linear membership function.																7	31:16	Reserved									Format:		MBZ						15:0	INV_Margin_VYL																		Format: 1/Margin_VYL = 3300/65536		0.16							1/1viaigii_v i L = 3300/03330							8	31:24	P1L									SAMPLER_STATE_8x8_AVS	5						---	-------	--	-----	--	--	--	--				Default Value:	216																	Format:	U8								Y Point 1 of the lower part of the detection PWLF.								23:16	POL									Default Value:	46								Formatt	110								Format: Y Point 0 of the lower part of the detection PWLF.	U8								The same of the second part of the detection in the second part of								15:0	INV_Margin_VYU									 1/Margin_VYU = 1600/65536									-							9	31:24	B1L Default Value:	130								Default Value:	130								Format:	U8								V Bias 1 of the lower part of the detection PWLF.	'							23:16	BOL									Default Value:	133																	Format:	U8								V Bias 0 of the lower part of the detection PWLF.								15:8	P3L									Default Value:	236								Format:	U8								Y Point 3 of the lower part of the detection PWLF.	00							7:0	P2L								7:0	Default Value:	236																	Format:	U8								Y Point 2 of the lower part of the detection PWLF.									SAN	MPLER_STATE_8x8_A	VS						----	-------	---	-----------------------------	------	------	--	--	--		10	31:27	Y_Slope_2																																																																																																																																																																																																																																																																																																															
								Format:		02.3	U2.3							Deafault Value: 31/8										Slope between points Y3 and Y4.									26:16	SOL										-	52.0.21.6									Format:	S2.8 2's Complement									Deafault Value: -5/256	6									Slope 0 of the lower p	part of the detection PWLF.								15:8	B3L										Default Value:		130								Format:		U8								V Bias 3 of the lower part of the detection PWLF.																			7:0	B2L Default Value:			130							Default Value.			150							Format:			U8					11	31:22	Reserved																				Format: MBZ									21:11	S2L										Format:	S2.8 2's Complement																			Default Value: 0/256									10.0	Slope 2 of the lower part of the detection PWLF.									10:0	S1L										Format:	S2.8 2's Complement																			Default Value: 0/256								12	21.27	Slope 1 of the lower part of the detection PWLF.								12	31:27	Y_Slope1									SAMPLER_STATE_8x8_AVS											----	-----------------------	---	---------------------	-------	----	--	--	--	--	--				_		110.0										Format:		U2.3										Default Value: 31/8																							26:19	P1U			T									Default Value:			66									Format:			U8									Y Point 1 of the upper part											18:11	POU												Default Value:	46											Format:	U8											Y Point 0 of the upper part	08																						10:0	S3L												Format:	S2.8 2's Complement											Default Value: 0/256												Slope 3 of the lower part of the detection PWLF.										13	31:24	B1U												Default Value:	53											Format:	8											V Bias 1 of the upper part	0																						23:16	B0U Default Value:	43											Detaut value.												Format:	8											V Bias 0 of the upper part of the detection PWLF.											15:8	P3U		1										Default Value:		23	36																					S	AMPLER_STA	TE_8x8_AVS						----	--------------------------	--	--------------	------------	-----	--	--	--				U8										Format: U8 Y Point 3 of the upper part of the detection PWLF.									7:0	P2U										Default Value:	150									Format:	U8									Y Point 2 of the u								14	14 31:27 Reserved											Format:		MBZ							26:16	<u> </u>		IVIDZ							26:16	SOU										Format:	S2.8 2's Com	plement								Default Value: 256/256										Slope 0 of the upper part of the detection PWLF.									15:8	B3U										Default Value:			140										110							Format: U8 V Bias 3 of the upper part of the detection PWLF.																			7:0	B2U			200							Default Value:			200							Format:			U8							V Bias 2 of the upper part of the detection PWLF.								15	31:22	Reserved																				Format:		MBZ							21:11	S2U										Format:	S2.8 2's Com	plement								Deafult Value: -179/256											SAMPLER	R_STATE_8x8_AVS							-------	--------	---	------------------------	--	--	--	--	--	--				Slope 2 of the upper part of the detection PWLF.										10:0																							Format:	.8 2's Complement										Deafult Valu	Deafult Value: 113/256										Slope 1 of the upper part of the detection PWLF.									16151	4351:0	Filter Coeffi	icient[016]										Format: SAMPLER_STATE_8x8_AVS_COEFFICIENTS[17]									152	31:24	Default Sha	rpness Level										Format:		U8									When adap	tive scaling is off, d	determines the balance between sharp and smooth scalers.									Value	Name	Description									0	[Default]	Contribute 1 from the smooth scalar									255		Contribute 1 from the sharp scalar								23:16	Max Derivative 4 Pixels											Format:		U8									Used in adaptive filtering to specify the lower boundary of the smooth 4 pixel area.										15:8	Max Deriva	tive 8 Pixels										Format:		U8									Used in adaptive filtering to specify the lower boundary of the smooth 8 pixel area.										7	Reserved											Format:		MBZ								6:4	Transition A	Area with 4 Pixels										Format:		U3									Used in adaptive filtering to specify the width of the transition area for the 4 pixel calculation.										3	Reserved											Format: MBZ										2:0	Transition Area with 8 Pixels											Format:		U3									Used in adaptive filtering to specify the width of the transition area for the 8 pixel calculation.									153	31:23	Reserved											Format:		MBZ								22	Bypass X Ac	daptive Filtering											SAM	PLER	STATE_8x8_A	VS				--------	--------	-----------------	---	--	------------------------------	---------------------------------------	--	--				Format: Disable												d, the X direction will use Default Sharpness Level to blend between the arp filters rather than the calculated value.								Value	Na	me		Description						1 Disble			Disable X Adaptive Filtering							0	Enable		Enable X Adaptive Filte	ering					21	Bypass Y A	daptive Filte	ering								Format:		Disable				
---	--	--	--	--		4	31:16	Filter Coefficient[0,9]								Format: S3.4(8bit)/S3.12(16bit) in 2's Complement								Range: [-8.0, +8.0)							15:0	Filter Coefficient[0,8]								Format: S3.4(8bit)/S3.12(16bit) in 2's Complement								Range: [-8.0, +8.0)						5	31:16	Filter Coefficient[0,11]								Format: S3.4(8bit)/S3.12(16bit) in 2's Complement								Range: [-8.0, +8.0)							15:0	Filter Coefficient[0,10]								Format: S3.4(8bit)/S3.12(16bit) in 2's Complement								Range: [-8.0, +8.0)						6	31:16	Filter Coefficient[0,13]								Format: S3.4(8bit)/S3.12(16bit) in 2's Complement								Range: [-8.0, +8.0)							15:0	Filter Coefficient[0,12]								Format: S3.4(8bit)/S3.12(16bit) in 2's Complement								Range: [-8.0, +8.0)						7	31:16	Filter Coefficient[0,15]								Format: S3.4(8bit)/S3.12(16bit) in 2's Complement								Range: [-8.0, +8.0)							15:0	Filter Coefficient[0,14]								Format: S3.4(8bit)/S3.12(16bit) in 2's Complement								Range: [-8.0, +8.0)					## SAMPLER_STATE_8x8_CONVOLVE ### **SAMPLER STATE 8x8 CONVOLVE** Source: BSpec Size (in bits): 16384 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, ## **SAMPLER STATE 8x8 CONVOLVE** 0x00000000, 0x00000000 #### **Description** #### SAMPLER STATE 8x8 CONVOLVE Function: 0001b ExistsIf: [Convolve] && [mode==0] && [(Kernel Size) = < (15x15)] Function: 1010b ExistsIf: "[1Pixel Convolution] && [(Kernel Size) = < (15x15)] Function: 0001b ExistsIf: [Convolve] && [mode==1] && [(Kernel Size) > (15x15)] **DWord** Bit Description 0 31:21 Reserved Format: MBZ 20 **MSB WIDTH** Exists If: //[Convolve] Only It contains the MSB Width of the kernel and is used to extend the kernel width range to 31. Used along with bits[3:0] which represents the LSB for the kernel Height. Value Name **Description EXTENDED** Extends the Filter Size Width upto 31. 0 NO CHANGE No Change to the Filter Size 19:17 Reserved Format: MBZ 16 **MSB HEIGHT** It contains the MSB HEIGHT of the kernel and is used to extend the kernel width range to 31. Used along with bits[3:0] which represents the LSB for the kernel Height. **Value Name Description EXTENDED** Extends the filter size height upto 31. NO CHANGE 0 No Change to the Filter Size 15:13 Reserved Format: MBZ 12 Size of the Coefficient Value Name **Description** 0 8bit The lower 8 bits of the accumulator is forced to zero or ignored during the accumulation operation. 16bit The lower 8 bits are also included for the operation. The final result of the accumulator is shifted before clamping the result as specified by the Scale down value.: Result[15:0] = Clamp(Accum[40:12] » scale_down) 11:8 Scale down value **Exists If:** //[Convolve] Only **Value** Name **Description** [0,10]The final result is shifted by this value before clamp is done. **WIDTH** 7:4	SAMPLER_STATE_8x8_CONVOLVE							---	--	--	-----------------------	------------------	----------------------------------				Exists If: //[Convolve] Only							It contains the WIDTH of the kernel.							Value Name			Name				[2-15]						3:0	HEIGHT							Exists If:		//[Convolve] C	Only				It contains th	ne HEIGHT of the	kernel.						Value		Name				[2-15]					115	479:0	Reserved							Format:			MBZ		16143	4095:0	Filter Coeffic	cient[15:0,15:0]						Exists If:	//[Filtering] Ope	ration					Format:	SAMPLER_STAT	E_8x8_CONVOL	.VE_COEFFICIENTS[16]				Columns [15	:0] of the coeffici	ent containing ´	16 coefficients for [15:0] rows.						Programi	ming Notes		Please note that this field is MBZ if not used in the Filtering M		in the Filtering Mode.					144511	11775:0	Filter Coeffic	cient[15:0,15:0]t	o[30:0,31:0]												Format:	SAMPLER_STAT	E_8x8_CONVOL	VE_COEFFICIENTS[46]				Expands Filter Coefficient[15:0,15:0] to account for columns [15:0] of the coefficient							containing 16 coefficients for [31:16] rows and columns [30:16] of the coefficient containing 31 coefficients for [31:0] rows.							31 coemicien	15 101 [5 1.0] 10 10.	Programi	ming Notes			Filter Coefficient beyond [15:0,15:0] are present only when Kernel size is greater to otherwise it is not present.					## SAMPLER_STATE_8x8_ERODE_DILATE_MINMAXFILTER ## SAMPLER_STATE_8x8_ERODE_DILATE_MINMAXFILTER Source: BSpec Size (in bits): 256 0x00000000, 0x00000000 ### **Description** The table is valid for the following functions: 0100 - Erode && (Function_mode==0) 0101 - Dilate && (Function_mode==0) 0011 - MinMaxFilter && (Function_mode==0) ## **Programming Notes** Max kernel size is 15x15. For sizes less than 15x15 the coefficients not used should be zeroed out.	DWord	Bit	Des	cription		-------	-------	-----------------------------	----------		0	31:16	16bit Mask for Row0 [15:0]				15:8	Reserved					Format:	MBZ			7:4	Width Of The Kernel					Value	Name				2-15				3:0	Height Of The Kernel					Value	Name				2-15			1	31:16	16bit Mask for Row2 [15:0]				15:0	16bit Mask for Row1 [15:0]			2	31:16	16bit Mask for Row4 [15:0]				15:0	16bit Mask for Row3 [15:0]			3	31:16	16bit Mask for Row6 [15:0]				15:0	16bit Mask for Row5 [15:0]			4	31:16	16bit Mask for Row8 [15:0]				15:0	16bit Mask for Row7 [15:0]			5	31:16	16bit Mask for Row10 [15:0]				15:0	16bit Mask for Row9 [15:0]			6	31:16	16bit Mask for Row12 [15:0]				15:0	16bit Mask for Row11 [15:0]			7	31:16	16bit Mask for Row14 [15:0]				15:0	16bit Mask for Row13 [15:0]		# SAMPLER_STATE Source: BSpec Exists If: //(MessageType != 'Deinterlace') && (MessageType != 'Sample_8x8') Size (in bits): 128 This is the normal sampler state used by all messages that use SAMPLER_STATE except sample_8x8 and deinterlace. The sampler state is stored as an array of up to 16 elements, each of which contains the dwords described here. The start of each element is spaced 4 dwords apart. The first element of the sampler state array is aligned to a 32-byte boundary.		.0 a 32	-byte boundary.						-------	---------	--	--	--	--	--		DWord	Bit	Description						0	31	Sampler Disable								Format: Disable								This field allows the sampler to be disabled. If disabled, all output ch	annels will return 0.						30	CPS LOD Compensation Enable								Format: Enable								·	This field, if enabled, causes derivatives used to compute LOD to be adjusted by scale factors for coarse pixel shading. The adjustment only occurs if the following are all true:							This field is enabled								CPS Message LOD Compensation Enable in the message here	ader is enabled							The scale.x and scale.y factors are computed in hardware and delivered dispatch time. The following adjustments generate new derivatives as follows:	ed to the sampler at thread																															$\frac{du}{dt} = \frac{du}{dt} *scale.y $ $\frac{dv}{dt} = \frac{dv}{dt} *scale.y $ $\frac{dr}{dt} = \frac{dr}{dt} *scale.y $						-									29	Texture Border Color Mode For some surface formats, the 32 bit border color is decoded different color mode. In addition, the default value of channels not included in affected by this field. Refer to the "Sampler Output Channel Mapping these channels, and for surface formats that may only support one of the definition of SAMPLER_BORDER_COLOR_STATE for more details of modes defined by this field.	the surface may be "table for the values of these modes. Also refer to							Value Name Description								0h OGL New mode for interpreting the border color								1h 8BIT Earlier mode for interpreting the border cold	r							Programming Notes					SETO_LEGACY: Undefined behavior if DX9 border is used with any feature added. See Legacy sampler feature page for details. This field must not be set to DX9 if there are null tiles in use This field is required to be the same for every message over a period of time. A flush of the sampler cache must occur before a message with the opposite state of this field is delivered. This field must be set to DX9 mode when used with surfaces that have Surface Format P4A4 UNORM or A4P4 UNORM. This field must be set to DX10/OGL mode when used with surfaces that have Surface Format YCRCB_SWAPUV or YCRCB_SWAPY. This field must be set to DX10/OGL mode if **Surface Format** for the associated surface is UINT OR SINT except when setting BORDER COLOR RED/GREEN/BLUE and ALPHA to 0 This field must be set to DX10/OGL mode if																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
REDUCTION_MINIMUM or REDUCTION_MAXIMUM or message type is sample_min or sample_max. ## 28:27 **LOD PreClamp Mode** This field determines whether the computed LOD is clamped to [max,min] mip level before the mag-vs-min determination is performed. PRECLAMP_OGL: LOD pre-clamped to Min LOD and Max LOD OpenGL API currently clamps LOD to the **Min LOD** and **Max LOD** (from Sampler State) prior to performing min/mag determination, and therefore it is expected that an OpenGL driver would need to set this field to PRECLAMP OGL.	Value	Name	Description		-------	----------	---------------------------------		0h	NONE	LOD PreClamp disabled		1h	Reserved			2h	OGL	LOD PreClamp enabled (OGL mode)	## 26:22 Coarse LOD Quality Mode	Format:	U5		---------	----	This field configures the coarse LOD image quality mode for the sample_d, sample_l, and sample_b messages in the sampling engine. In general, performance will increase and power consumption will decrease with each step of reduced quality (performance gain for sample_l and sample_b will be minimal).	Value	Name	Description		-------	----------	---		0h	Disabled	Full quality is enabled, matching prior products		01h-		Quality degrades with each larger value, performance improves with each		1Fh		larger value	### **Programming Notes** Although allowed, it is not recommended to program this field to a value greater than 17h to avoid masking the exponent which may generate incorrect LOD values. ### 21:20 Mip Mode Filter	Format:	U2 Enumerated Type		----------	--------------------		FUIIIal.	02 Enumerated Type	This field determines if and how mip map levels are chosen and/or combined when texture filtering.	Value	Name	Description		-------	----------	--		0h	NONE	Disable mip mapping - force use of the mipmap level corresponding to Min LOD.		1h	NEAREST	Nearest, Select the nearest mip map		2h	Reserved			3h	LINEAR	Linearly interpolate between nearest mip maps (combined with linear min/mag filters this is analogous to "Trilinear" filtering).	## **Programming Notes** MIPFILTER_LINEAR is not supported for surface formats that do not support "Sampling Engine Filtering" as indicated in the Surface Formats table unless using the sample_c message type or minimum/maximum operation. Mip Mode Filter must be set to MIPFILTER_NONE or MIPFILTER_NEAREST if Surface Format for the associated surface is UINT or SINT. However, all settings of this field are allowed with UINT/SINT if a minimum or maximum operation is being performed. Mip Mode Filter must be set to MIPFILTER_NONE for Planar YUV surfaces. ## 19:17 Mag Mode Filter	Format:	U3 Enumerated	Туре		---------	---------------	------		---------	---------------	------	This field determines how texels are sampled/filtered when a texture is being "magnified" (enlarged). For volume maps, this filter mode selection also applies to the 3rd (inter-layer) dimension.	Value	Name	Description		-------	-------------	---		0h	NEAREST	Sample the nearest texel		1h	LINEAR	Bilinearly filter the 4 nearest texels		2h	ANISOTROPIC	Perform an "anisotropic" filter on the chosen mip level		4h-5h	Reserved			6h	Reserved			7h	Reserved		## **Programming Notes** Only MAPFILTER_NEAREST and MAPFILTER_LINEAR are supported for surfaces of type SURFTYPE_3D. Only MAPFILTER_NEAREST is supported for surface formats that do not support "Sampling Engine Filtering" as indicated in the Surface Formats table unless using the sample_c message type or minimum/maximum operation. MAPFILTER_ANISOTROPIC may cause artifacts at cube edges if enabled for cube maps with the TEXCOORDMODE_CUBE addressing mode. MAPFILTER_ANISOTROPIC will be overridden to MAPFILTER_LINEAR when using a sample_I or sample_I_c message type or when Force LOD to Zero is set in the message header. #### 16:14 Min Mode Filter Format: U3 Enumerated Type This field determines how texels are sampled/filtered when a texture is being "minified" (shrunk). For volume maps, this filter mode selection also applies to the 3rd (inter-layer) dimension. See Mag Mode Filter	Value	Name	Description		-------	-------------	---		0h	NEAREST	Sample the nearest texel		1h	LINEAR	Bilinearly filter the 4 nearest texels		2h	ANISOTROPIC	Perform an "anisotropic" filter on the chosen mip level		4h-5h	Reserved			6h	Reserved			7h	Reserved		#### 13:1 **Texture LOD Bias** Format: S4.8 2's complement Range: [-16.0, 16.0) This field specifies the signed bias value added to the calculated texture map LOD prior to minvs-mag determination and mip-level clamping. Assuming mipmapping is enabled, a positive LOD bias will result in a somewhat blurrier image (using less-detailed mip levels) and possibly higher performance, while a negative bias will result in a somewhat crisper image (using more-detailed mip levels) and may lower performance. #### **Programming Notes** There is no requirement or need to offset the LOD Bias in order to produce a correct LOD for texture filtering (as was required for correct bilinear and anisotropic filtering in some legacy devices). ## 0 **LOD algorithm** Format: U1 Enumerated Type Controls which algorithm is used for LOD calculation. Generally, the EWA approximation algorithm results in higher image quality than the legacy algorithm.	Value	Name	Description		-------	-------------------	---		0h	LEGACY	Use the legacy algorithm for non-anisotropic filtering		1h	EWA Approximation	Use the new EWA approximation algorithm for anisotropic filtering	#### **Programming Notes** The EWA Algorithm should only be enabled for Anisotropic Filtering modes. It must not be enabled for non-anisotropic filtering as the increased accuracy of the LOD calculation will is not				SAI	MPLER_STATE						---	-------	---	--	---	--	--	--	--				required and will incre	ease the p	power and reduce overall efficiency	<i>'</i> .					1	31:20	Min LOD										_										Format:		U4.8 in LOD units								Range: [0.0, 14.0], where the upper limit is also bounded by the Max LOD.										This field specifies the minimum value used to clamp the computed LOD after LOD bias is applied. Note that the minification-vsmagnification status is determined after LOD bias and before this maximum (resolution) mip clamping is applied. The integer bits of this field are used to control the "maximum" (highest resolution) mipmap level that may be accessed (where LOD 0 is the highest resolution map). The fractional bits of this value effectively clamp the inter-level trilinear blend factor when trilinear filtering is in use.												Programming Notes								If Min LOD is greater t	than Max	LOD, Min LOD takes precedence, i	i.e. the resulting LOD will						19:8	Max LOD																				Format:		U4.8 in LOD units								Range: [0.0, 14.0]										applied. Note that the before this minimum (to control the "minimu bits of this value effec	minificat (resolutio um" (lowe tively clar nap acces	m value used to clamp the comput tion-vsmagnification status is dete on) mip clamping is applied. The inte est resolution) mipmap level that n mp the inter-level trilinear blend fa as to be between the mipmap spec value specified here.	ermined after LOD bias and eger bits of this field are used nay be accessed.The fractiona actor when trilinear filtering is						7											Format: Enable	This field	enables the chroma key function.								Programming Notes										upported only on a specific subset of surface formats. See section titled: "Surface Formats" in this section for supported formats. This field must be disabled if min or mag filter is MAPFILTER_ANISOTROPIC. This field must be disabled if used with a surface of type SURFTYPE_3D.									6:5											Format: U2										romat. U2							Range: [0, 3] This field specifies the index of the ChromaKey Table entry associated with this Sampler. This field is a "don't care" unless **ChromaKey Enable** is ENABLED. 4 ChromaKey Mode	Format:	U1 Enumerated Type		---------	--------------------	This field specifies the behavior of the device in the event of a ChromaKey match. This field is ignored if ChromaKey is disabled. KEYFILTER_REPLACE_BLACK: In this mode, each texel that matches the chroma key is replaced with																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
(0,0,0,0) (black with alpha=0) prior to filtering. For YCrCb surface formats, the black value is A=0, R(Cr)=0x80, G(Y)=0x10, B(Cb)=0x80. This will tend to darken/fade edges of keyed regions. Note that the pixel pipeline must be programmed to use the resulting filtered texel value to gain the intended effect, e.g., handle the case of a totally keyed-out region (filtered texel alpha==0) through use of alpha test, etc.	Value	Name	Description		-------	-----------------------------	---		Oh	KEYFILTER_KILL_ON_ANY_MATCH	In this mode, if any contributing texel matches the chroma key, the corresponding pixel mask bit for that pixel is cleared. The result of this operation is observable only if the Killed Pixel Mask Return flag is set on the input message.		1h	KEYFILTER_REPLACE_BLACK	In this mode, each texel that matches the chroma key is replaced with (0,0,0,0) (black with alpha=0) prior to filtering. For YCrCb surface formats, the black value is A=0, R(Cr)=0x80, G(Y)=0x10, B(Cb)=0x80. This will tend to darken/fade edges of keyed regions. Note that the pixel pipeline must be programmed to use the resulting filtered texel value to gain the intended effect, e.g., handle the case of a totally keyed-out region (filtered texel alpha==0) through use of alpha test, etc.	#### 3:1 Shadow Function	ı	onadow i directori							---	--------------------	--------------------	--	--	--	--		ı								ı								ı									Format:	U3 Enumerated Type					This field is used for shadow mapping support via the sample_c message type, and specifies the specific comparison operation to be used. The comparison is between the texture sample red channel (except for alpha-only formats which use the alpha channel), and the "ref" value provided in the input message.	Value	Name		-------	--------------------		0h	PREFILTEROP ALWAYS		1h	PREFILTEROP NEVER					S	AMPLER_STATE						---	-------	--	--	--	--	--	--	--				2h	PREFILT	TEROP LESS								3h	PREFILT	TEROP EQUAL								4h										5h	PREFIL1	TEROP GREATER								6h	PREFILTEROP NOTEQUAL									7h PREFILTEROP GEQUAL									0	Cube Surf	ace Control Mode	2								Format:		U1 Enumerated Type											controls whether the TC* Address erridden to TEXCOORDMODE_CUBE.								Value		Name							0h		PROGRAMMED								1h		OVERRIDE						2	31:24	Reserved																				Format:	MBZ								23:6	Indirect State Pointer										Format:	DynamicStateOffs	set[23:6]SAMPLER_INDIRECT_	STATE_BORDER_COLOR []									Description								This field specifies the pointer to SAMPLER_INDIRECT_STATE, which contains the border color										This pointer is relative to the Dynamic State Base Address.										This pointer is relative to the Dynamic State Base Address for Non-Bindless sampler state, and is relative to the Sample State Base Address for Bindless sampler state									5	Reserved																				Format:			MBZ						4	Reserved																				Format:			MBZ						3	This bit, w Green, and For cases ovewritter	d Blue channels will where the surface f In to return the filter	e filter_weight in the Alpha ch contain the sample result wi ormat contains an Alpha char weight.	annel of all non-border texels. Red, th border texels excluded. nnel, the result returned will be a, the result will still be returned in the					- '									------------	-------------------	--	--	--	--	--	--		Value	Name	Description							0h	Disable [Default]	When programmed to 0h, normal data will be returned on RGBA channels, including contribution from border color texels.							1h	Enable	When programmed to 1h, RGB channels return filter data contributed from non-border color texels, and A channel returns filter weight of contributing texels.						### **Programming Notes** If this bit is set then the border color and the Border Color Mode field (in SAMPLER_STATE) are ignored. Certain message types such as sample_c, sample_min/max and gather4_* have restrictions on the use of this mode. See the Messages section of the 3D sampler for more information. ## 2 Return Filter Weight for Null Texels This bit, when set, causes samples to return filter_weight of all non-NULL texels in the Alpha channel; Red, Green, and Blue channels are contain the filter result with NULL texels excluded; A non-NULL texel is a texel which does not reference a Null Tile. For cases where Tiled_Resource_Mode is TR_NONE, the result will always be 1.0 since no texels would be NULL. For cases where the surface format contains an Alpha channel, the result returned will be overridden to return the filter weight. For cases where the surface format does not contain Alpha, the result will still be returned in the Alpha Channel.	Value	Name	Description			-------	-------------------	---	--		0h	Disable [Default]	When programmed to 0h, filter weight will not be returned, and normal data will be returned on the Alpha channel.			1h	Enable	When programmed to 1h, filter weight will be returned on the Alpha channel rather than the normal data expected on the Alpha channel.		## **Programming Notes** Certain message types such as sample_c, sample_min/max and gather4_* have restrictions on the use of this mode. See the Messages section of the 3D sampler for more information. #### 1 SRGB DECODE This bit controls whether the 3D sampler will decode an sRGB formatted surface into RGB prior to any filtering operation. When set, it does not convert to linear RGB (via a reverse gamma conversion). This bit is ignored for ASTC formats, which are always converted to linear RGB prior to filtering.	Value	Name	Description			-------	----------------------	--	--		0h	DECODE_EXT [Default]	When set to 0h, the 3D sampler will convert texels from an sRGB surface to linear RGB prior to filtering and/or returning the value.			1h	SKIP_DECODE_EXT	When set to 1h, the 3D sampler will not convert texels to linear RGB before filtering and returning results.							S	AMF	PLER_STATE				---	-------	--																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
--	---	--	--	--	--			0	LOD Clamp Magnification Mode										Format: U1 Enumerated Type										This field allows the flexibility to control how LOD clamping is handled when in magnification mode.										Value Name Description					iption					MIPNONE	Filter is MIPFIL		ication mode, Sampler will clamp LOD as if the Mip Mode ER_NONE. This is how OpenGL defines magnification, and spected that those drivers would not set this bit.							1h	MIPFILTER		hen in magnification mode, Sampler will clamp LOD based on the valuip Mode Filter.					3	31:26	Reserve	ed									Format	:				MBZ				25	Reserve	ed									Default	: Value:				0				23:22	Note the also true Messag Min/Ma Map typ Indirect Coordin No clam Sampler No chro No posl Reducti Format This fie defined	at this will re. If they are e type samp g/Mip_filter on e = 2D //N offsets must be an expensed on the community of the makey on the community of the makey th	not force le e not true ole/sample r = neares o arrays st be zero be normali r half bord be disable	ow quait will ue_l it or lin ized der d //Sar U2 Enu	ality and sampler will or use the same algorithm ear. mpler state bit merated Type tion that will be perfore	DCalculationmode for power savings. Inly do it if the follow conditions are as before as selected by the EWA bit med on the texels in the footprint d is ignored if Reduction Type Enable					is disabl		Name			Description					0h	STD_FII			standard filter	Description					1h		ARISON		comparison followed	hy standard filter					2h	MINIM			minimum of footprint	·					3h	MAXIM			maximum of footprint									o less-	Programming Note	25						lowing mes sampleinfo	_ ,.	_	• -	n, sample_max, sample_unorm*,		If the current min/mag filter mode is MAPFILTER_MONO, this field is ignored. The sample_c, sample_l_c, sample_d_c, sample_b_c, gather4_c, and gather4_po_c message types, when used with STD_FILTER, MINIMUM, or MAXIMUM settings of this field, perform the operation of the message of the same name without the "_c". The ref parameter is ignored by hardware. For message types not listed above, when used with COMPARISON setting of this field, perfom the operation of the message of the same name with "_c" included. The ref parameter used by the operation (since it is not delivered in the message) is set to zero. Restrictions applying to the message whose behavior is being performed must be followed. For example, a sample message used with COMPARISON reduction filter must follow all of the restrictions of *sample_c*. An exception to this is the MINIMUM and MAXIMUM reduction types allow SURFTYPE_1D, 2D, 3D, and CUBE, including with **Surface Array** enabled, even though the sample_min/max messages only allow 2D. Restrictions applying to the message delivered need not be followed. For example, a *sample_c* message used with STD_FILTER reduction filter needs to follow only the restrictions of sample, not the restrictions of *sample_c*. ### 21:19 Maximum Anisotropy Format: U3 Enumerated Type This field clamps the maximum value of the anisotropy ratio used by the MAPFILTER_ANISOTROPIC filter (Min or Mag Mode Filter).	Value	Name	Description		-------	------------	--		0h	RATIO 2:1	At most a 2:1 aspect ratio filter is used		1h	RATIO 4:1	At most a 4:1 aspect ratio filter is used		2h	RATIO 6:1	At most a 6:1 aspect ratio filter is used		3h	RATIO 8:1	At most a 8:1 aspect ratio filter is used		4h	RATIO 10:1	At most a 10:1 aspect ratio filter is used		5h	RATIO 12:1	At most a 12:1 aspect ratio filter is used		6h	RATIO 14:1	At most a 14:1 aspect ratio filter is used		7h	RATIO 16:1	At most a 16:1 aspect ratio filter is used	## 18 U Address Mag Filter Rounding Enable Format: Enable Controls whether the texture address is rounded or truncated before being used to select texels to sample. Provides independent control of rounding on one texture address dimension (U/V/R) in either mag or min filter mode. ## **Programming Notes** Hardware will **not** force rounding enable. ### 17 U Address Min Filter Rounding Enable Format: Enable Controls whether the texture address is rounded or truncated before being used to select texels to sample. Provides independent control of rounding on one texture address dimension (U/V/R)			SAMPLER_ST/	ATE					-------	--	---	---	--	--	--			in eithe	r mag or min filter mode.							Programming Notes								Hardw	are will not force rounding enable.						16	V Addr	ess Mag Filter Rounding Enable							Format	<u> </u>	Enable						to samp		or truncated before being used to select texels ling on one texture address dimension (U/V/R)							Programmi	ing Notes						Hardw	are will not force rounding enable.						15	V Addr	ess Min Filter Rounding Enable							Format	t:	Enable						to samp		or truncated before being used to select texels ling on one texture address dimension (U/V/R)							Programmi	ing Notes						Hardw	are will not force rounding enable.						14	R Address Mag Filter Rounding Enable								Format	t:	Enable						Controls whether the texture address is rounded or truncated before being used to select texels to sample. Provides independent control of rounding on one texture address dimension (U/V/R) in either mag or min filter mode.								Programming Notes								Hardware will not force rounding enable.							13	R Addr	ess Min Filter Rounding Enable							Format		Enable						to samp		or truncated before being used to select texels ling on one texture address dimension (U/V/R)						Programming Notes								Hardware will not force rounding enable.							12:11									Format: U2 Enumerated Type									the quality level for the trilinear filter.							Value	Name	Description								-						0	FULL	Full Quality. Both mip maps are sampled under all circumstances.						0	FULL TRIQUAL_HIGH/MAG_CLAMP_MIPFILTER	1						T.	SAM	PLER_STATE		-----	----------------------------	---	---			3 LOV	N	Low Quality.		10	Non-norma	alized Coordinate Enal	ble			Format:		Enable			where each	•	t the input coordinates (U/V/R) are in non-normalized																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																												
space ne texel on LOD 0. If disabled, coordinates are normalized, entire surface.					Programming Notes			The followi	ng state must be set as	s indicated if this field is <i>enabled</i> :					Node must be TEXCOORDMODE_CLAMP, ORDER, or TEXCOORDMODE_CLAMP_BORDER.			• Surf	ace Type must be SURF	FTYPE_2D or SURFTYPE_3D.			• Mag	Mode Filter must be M	MAPFILTER_NEAREST or MAPFILTER_LINEAR.			• Min	Mode Filter must be M	1APFILTER_NEAREST or MAPFILTER_LINEAR.			• Mip	Mode Filter must be M	IIPFILTER_NONE.			• Min	LOD must be 0.				• Max	LOD must be 0.				• MIP	Count must be 0.				• Surf	ace Min LOD must be 0).			• Text	ure LOD Bias must be 0).		9	Reduction	Type Enable				Format:		Enable					Type field to modify the behavior of messages based on its messages behave as defined and the Reduction Type field		8:6	TCX Addres	ss Control Mode				Format:	Texture Coordina	ate Mode Enumerated Type			texture map (wrap/clamp	addresses - specifically o/mirror). The setting of	component of input texture coordinates are mapped to y, how coordinates "outside" the texture are handled f this field is subject to being overridden by the Cube Surfa from a SURFTYPE_CUBE surface.					Programming Notes			When using Control Mc		ordinates, each TC component must have the same Address					not used accessing a cube map, the map's Cube Face Enabl 111b (all faces enabled).			TEXCOORE	DMODE_CLAMP_BORDE	essing modes must all be set to ER. The Border Color is ignored in this mode, a constant va			of U is used	i ioi boidei color. Sottw	ware must pad the border texels within the map itself with (## 5:3 TCY Address Control Mode Format: **Texture Coordinate Mode** Enumerated Type Controls how the 2nd (TCY, aka V) component of input texture coordinates are mapped to texture map addresses - specifically, how coordinates "outside" the texture are handled (wrap/clamp/mirror). See Address TCX Control Mode above for details ## **Programming Notes** If this field is set to TEXCOORDMODE_CLAMP_BORDER or TEXCOORDMODE_HALF_BORDER and a 1D surface is sampled, incorrect blending with the border color in the vertical direction may occur. #### 2:0 TCZ Address Control Mode Format: **Texture Coordinate Mode** Enumerated Type Controls how the 3rd (TCZ) component of input texture coordinates are mapped to texture map addresses - specifically, how coordinates "outside" the texture are handled (wrap/clamp/mirror). See Address TCX Control Mode above for details ## **Programming Notes** TCZ Address Control Mode Cannot use MIRROR_101 mode. MIRROR_101 mode only works for 2D surfaces. # SCALER_COEFFICIENT_FORMAT SCALER_COEFFICIENT_FORMAT Source: BSpec Size (in bits): 16 Default Value: 0x00000000 Scaler coefficients are stored in sign-exponent-mantissa format. Two coefficients are stored in each dword, the table below show the data packing in each dword.	DWord	Bit	Description					-------	-------	----------------	--------------------	--------	-----------------------------		0	15	Sign								Value		Name				0b			Positive				1b			Negative			14	Reserved						13:12	Exponent							Represented	as 2^(-n)						Value	Name		Description				00b	2	2 or ı	mantissa is b.bbbbbbbb				01b	1	1 or ı	mantissa is 0.bbbbbbb				10b	0.5	0.5 o	r mantissa is 0.0bbbbbbbbb				11b	0.25	0.25	or mantissa is 0.00bbbbbbbb				Others	Reserved	Rese	ved			11:3	Mantissa							All the tap co	efficients use all	9 bits	of mantissa.			2:0	Reserved				## SCISSOR_RECT ## SCISSOR_RECT Source: RenderCS Size (in bits): 64 Default Value: 0x00000000, 0x00000000 The viewport-specific state used by the SF unit (SCISSOR_RECT) is stored as an array of up to 16 elements, each of which contains the DWords described below. The start of each element is spaced 2 DWords apart. The location of first element of the array, as specified by Pointer to SCISSOR_RECT, is aligned to a 32-byte boundary. ### Restriction #### Restriction: When executed in the POCS command stream, this command programs the scissor state for the SFR stage of the POCS pipeline	tile FOC	e POCS pipeline								--------------	--	--	--	--------------------	--	--	--		DWord	Bit		Description						0	31:16	Scissor Rectangle Y Min									Format:	U16 Pixels from Drawing Rectangle origin (upper left corner)						Specifies Y Min coordinate of (inclusive) Scissor Rectangle used for scissor test. Pixels Rectangle-relative) Y coordinates less than Y Min will be clipped out if Scissor Rectangle enabled. NOTE: If Y Min is set to a value greater than Y Max, all primitives will be disc										this viewpor	rt.									Value	Name							[0,16383]								15:0	Scissor Rec	tangle X Min																	Format: U16 Pixels from Drawing Rectangle origin (upper left corner)									Specifies X Min coordinate of (inclusive) Scissor Rectangle used for scissor test. Pixels with (Draw Rectangle-relative) X coordinates less than X Min will be clipped out if Scissor Rectangle is enabled. NOTE: If X Min is set to a value greater than X Max, all primitives will be discarded for this viewport.										Value	Name							[0,16383]							1	31:16	Scissor Rec	tangle Y Max																	Format:	U16 Pixels from Drawing Rectangle origin (upper left corner)							Specifies Y Max coordinate of (inclusive) Scissor Rectangle used for scissor test. Pixels with (Draw Rectangle-relative) Y coordinates greater than Y Max will be clipped out if Scissor Rectangle is enabled.										Value	Name							[0,16383]								15:0	Scissor Rec	tangle X Max						SCISSOR_RECT								--------------	---	--	--	--	--	--										Format:	U16 Pixels from Drawing Rectangle origin	n (upper left corner)						Specifies X	Max coordinate of (inclusive) Scissor Recta	angle used for scissor test. Pixels with						-	ngle-relative) Y coordinates greater than λ	(Max will be clipped out if Scissor						Rectangle is	enabled.							Value Name								0-16383							# **Scratch Hword Block Message Header**	Source:		_A32_HWB - Scr EuSubFunctionDataPo						-------------	------	---	------------------	---	-------------------------------------	--		Size (in bi	ts):	256						Default Va				0, 0x00000000, 0x00000000, 0x000000	00,			DWord	Bit			Description				02 95:0		Reserved								Format:		MBZ						Ignored						3	31:0	Per Thread Scratch Space								Format:	MHC_PTSS							Specifies amount of scratch space used by this thr			ead, for Stateless bounds checking.					Specifies difficulties service	tch space used b	y this thread, for Stateless bounds che	ecking			4	31:0	Reserved	tch space used b	y this thread, for Stateless bounds che	ecking			4	31:0		tch space used b	y this thread, for Stateless bounds che	ecking			4	31:0	Reserved	ich space used b		ecking			5	31:0	Reserved Format:	tch space used b		ecking			·		Reserved Format: Ignored			ecking			·		Reserved Format: Ignored Buffer Base Address Format:	MHC_A	MBZ	ecking			·		Reserved Format: Ignored Buffer Base Address Format:	MHC_A	MBZ 32_BBA	ecking			5	31:0	Reserved Format: Ignored Buffer Base Address Format: Specifies the surface add	MHC_A	MBZ 32_BBA	ecking		## **SF CLIP VIEWPORT** ## SF_CLIP_VIEWPORT Source: RenderCS Size (in bits): 512 ### Restriction Restriction: When executed in the POCS command stream, this command programs the viewport state for the CLR and SFR stage of the POCS pipeline.	DWord Bit Description	CLIVATIO	51 10 3	age of the roes pipeline.																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
--	----------	---------	---	----------------------------	------------	--	--	--		Format: IEEE_FLOAT32	DWord	Bit		Description						1 31:0 Viewport Matrix Element m11 Format: IEEE_FLOAT32 2 31:0 Viewport Matrix Element m22 Format: IEEE_FLOAT32 3 31:0 Viewport Matrix Element m30 Format: IEEE_FLOAT32 4 31:0 Viewport Matrix Element m31 Format: IEEE_FLOAT32 5 31:0 Viewport Matrix Element m32 Format: IEEE_FLOAT32 6 31:0 Reserved Format: MBZ 7 31:0 Reserved Format: MBZ 8 31:0 X Min Clip Guardband Format: IEEE_FLOAT32 8 31:0 X Min Clip Guardband Format: IEEE_FLOAT32 9 31:0 X Max Clip Guardband Format: IEEE_FLOAT32 9 31:0 X Max Clip Guardband Format: IEEE_FLOAT32 This 32-bit float represents the XMin guardband boundary (normalized to Viewpont) Format: IEEE_FLOAT32 This 32-bit float represents the XMax guardband boundary (normalized to Viewpont) Format: IEEE_FLOAT32 This 32-bit float represents the XMax guardband boundary (normalized to Viewpont)	0	31:0	Viewport Matrix Element m00							Format: IEEE_FLOAT32			Format:	IEEE_FLOAT32						2 31:0 Viewport Matrix Element m22 Format: IEEE_FLOAT32 3 31:0 Viewport Matrix Element m30 Format: IEEE_FLOAT32 4 31:0 Viewport Matrix Element m31 Format: IEEE_FLOAT32 5 31:0 Viewport Matrix Element m32 Format: IEEE_FLOAT32 6 31:0 Reserved Format: MBZ 7 31:0 Reserved Format: MBZ 8 31:0 X Min Clip Guardband Format: IEEE_FLOAT32 8 X Min Clip Guardband Format: IEEE_FLOAT32 9 31:0 X Max Clip Guardband Format: IEEE_FLOAT32 This 32-bit float represents the XMin guardband boundary (normalized to Viewpondary of the NDC guardband) Format: IEEE_FLOAT32 This 32-bit float represents the XMax guardband boundary (normalized to Viewpondary) This 32-bit float represents the XMax guardband boundary (normalized to Viewpondary) This 32-bit float represents the XMax guardband boundary (normalized to Viewpondary) This 32-bit float represents the XMax guardband boundary (normalized to Viewpondary) This 32-bit float represents the XMax guardband boundary (normalized to Viewpondary)	1	31:0	Viewport Matrix Element m11	iewport Matrix Element m11						Format: IEEE_FLOAT32 3 31:0 Viewport Matrix Element m30 Format: IEEE_FLOAT32 4 31:0 Viewport Matrix Element m31 Format: IEEE_FLOAT32 5 31:0 Viewport Matrix Element m32 Format: IEEE_FLOAT32 6 31:0 Reserved Format: MBZ 7 31:0 Reserved Format: MBZ 8 31:0 X Min Clip Guardband Format: IEEE_FLOAT32 . This 32-bit float represents the XMin guardband boundary (normalized to Viewport Matrix Element m32 9 31:0 X Max Clip Guardband Format: IEEE_FLOAT32 . This 32-bit float represents the IEEE_FLOAT32 . This 32-bit float represents the IEEE_FLOAT32 . This 32-bit float represents the XMax guardband boundary (normalized to Viewport Matrix IEEE_FLOAT32 . This 32-bit float represents the XMax guardband boundary (normalized to Viewport Matrix IEEE_FLOAT32 . This 32-bit float represents the XMax guardband boundary (normalized to Viewport Matrix Element m31 IEEE_FLOAT32 IEEE_FLOAT32 IEEE_FLOAT32 This 32-bit float represents the XMax guardband boundary (normalized to Viewport Matrix Element m31 IEEE_FLOAT32 IEEE_FLOAT32 IEEE_FLOAT32 This 32-bit float represents the XMax guardband boundary (normalized to Viewport Matrix Element m31 IEEE_FLOAT32 IEEE_FLOAT32 IEEE_FLOAT32 IEEE_FLOAT32 IEEE_FLOAT32 IEEE_FLOAT32			Format:	IEEE_FLOAT32						31:0 Viewport Matrix Element m30 Format: IEEE_FLOAT32 4 31:0 Viewport Matrix Element m31 Format: IEEE_FLOAT32 5 31:0 Viewport Matrix Element m32 Format: IEEE_FLOAT32 6 31:0 Reserved Format: MBZ 7 31:0 Reserved Format: MBZ 8 31:0 X Min Clip Guardband Format: IEEE_FLOAT32 . This 32-bit float represents the XMin guardband boundary (normalized to Viewport 1.0f). This corresponds to the left boundary of the NDC guardband. 9 31:0 X Max Clip Guardband Format: IEEE_FLOAT32 This 32-bit float represents the XMax guardband boundary (normalized to Viewport 1.0f). This corresponds to the left boundary of the NDC guardband.	2	31:0	Viewport Matrix Element m22							Format: IEEE_FLOAT32 4 31:0 Viewport Matrix Element m31 Format: IEEE_FLOAT32 5 31:0 Viewport Matrix Element m32 Format: IEEE_FLOAT32 6 31:0 Reserved Format: MBZ 7 31:0 Reserved Format: MBZ 8 31:0 Reserved Format: IEEE_FLOAT32 8 31:0 Reserved Format: MBZ 9 31:0 X Min Clip Guardband Format: IEEE_FLOAT32 . This 32-bit float represents the XMin guardband boundary (normalized to Viewpondary of the NDC guardband) Format: IEEE_FLOAT32 This 32-bit float represents the XMax guardband boundary (normalized to Viewpondary of the NDC guardband) Format: IEEE_FLOAT32 This 32-bit float represents the XMax guardband boundary (normalized to Viewpondary of the NDC guardband)			Format:	IEEE_FLOAT32						4 31:0 Viewport Matrix Element m31 Format: IEEE_FLOAT32 5 31:0 Viewport Matrix Element m32 Format: IEEE_FLOAT32 6 31:0 Reserved Format: MBZ 7 31:0 Reserved Format: MBZ 8 31:0 X Min Clip Guardband Format: IEEE_FLOAT32 . This 32-bit float represents the XMin guardband boundary (normalized to Viewpond 1.0f). This corresponds to the left boundary of the NDC guardband. 9 31:0 X Max Clip Guardband Format: IEEE_FLOAT32 This 32-bit float represents the XMax guardband boundary (normalized to Viewpond 1.0f). This corresponds to the left boundary of the NDC guardband.	3	31:0	Viewport Matrix Element m30							Format: IEEE_FLOAT32 5 31:0 Viewport Matrix Element m32 Format: IEEE_FLOAT32 6 31:0 Reserved Format: MBZ 7 31:0 Reserved Format: MBZ 8 31:0 X Min Clip Guardband Format: IEEE_FLOAT32 . This 32-bit float represents the XMin guardband boundary (normalized to Viewpond 1.0f). This corresponds to the left boundary of the NDC guardband. 9 31:0 X Max Clip Guardband Format: IEEE_FLOAT32 This 32-bit float represents the XMax guardband boundary (normalized to Viewpond 1.0f). This corresponds to the left boundary of the NDC guardband.			Format:	IEEE_FLOAT32						5 31:0 Viewport Matrix Element m32 Format: IEEE_FLOAT32 6 31:0 Reserved Format: MBZ 7 31:0 Reserved Format: MBZ 8 31:0 X Min Clip Guardband Format: IEEE_FLOAT32 . This 32-bit float represents the XMin guardband boundary (normalized to Viewpont 1.0f). This corresponds to the left boundary of the NDC guardband. 9 31:0 X Max Clip Guardband Format: IEEE_FLOAT32 This 32-bit float represents the XMax guardband boundary (normalized to Viewpont 1.0f). This corresponds to the left boundary of the NDC guardband.	4	31:0	Viewport Matrix Element m31							Format: IEEE_FLOAT32 6 31:0 Reserved			Format:	IEEE_FLOAT32						Reserved Format: MBZ Reserved Format: MBZ MBZ MBZ MBZ MBZ MBZ MBZ MB	5	31:0	Viewport Matrix Element m32							Format: MBZ Reserved Format: MBZ MBZ MBZ Satisful America			Format: IEEE_FLOAT32							7 31:0 Reserved Format: MBZ 8 31:0 X Min Clip Guardband Format: IEEE_FLOAT32 . This 32-bit float represents the XMin guardband boundary (normalized to Viewp 1.0f). This corresponds to the left boundary of the NDC guardband. 9 31:0 X Max Clip Guardband Format: IEEE_FLOAT32 This 32-bit float represents the XMax guardband boundary (normalized to Viewpools).	6	31:0	Reserved							8 31:0 X Min Clip Guardband Format: IEEE_FLOAT32 . This 32-bit float represents the XMin guardband boundary (normalized to Viewp 1.0f). This corresponds to the left boundary of the NDC guardband. 9 31:0 X Max Clip Guardband Format: IEEE_FLOAT32 This 32-bit float represents the XMax guardband boundary (normalized to Viewpools).			Format:		MBZ					8 31:0 X Min Clip Guardband Format: IEEE_FLOAT32 . This 32-bit float represents the XMin guardband boundary (normalized to Viewp 1.0f). This corresponds to the left boundary of the NDC guardband. 9 31:0 X Max Clip Guardband Format: IEEE_FLOAT32 This 32-bit float represents the XMax guardband																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																											
boundary (normalized to Viewpood 1.0	7	31:0	Reserved							Format: IEEE_FLOAT32 . This 32-bit float represents the XMin guardband boundary (normalized to Viewp 1.0f). This corresponds to the left boundary of the NDC guardband. 9			Format:		MBZ					. This 32-bit float represents the XMin guardband boundary (normalized to Viewponds). This corresponds to the left boundary of the NDC guardband. 9	8	31:0	X Min Clip Guardband							1.0f). This corresponds to the left boundary of the NDC guardband. 9			Format:	IEEE_FLOAT32						9 31:0 X Max Clip Guardband Format: IEEE_FLOAT32 This 32-bit float represents the XMax guardband boundary (normalized to Viewpo			. This 32-bit float represents the XMin guardband boundary (normalized to Viewport.XMin =							Format: IEEE_FLOAT32 This 32-bit float represents the XMax guardband boundary (normalized to Viewpo			1.0f). This corresponds to the left b	oundary of the NDC gu	uardband.					Format: IEEE_FLOAT32 This 32-bit float represents the XMax guardband boundary (normalized to Viewpo	9	31:0	X Max Clip Guardband										Format:	IEEE_FLOAT32						1.0f). This corresponds to the right boundary of the NDC guardband.			•	_	· ·								<u> </u>	boundary of the NDC of	guardband.					10 31:0 Y Min Clip Guardband	10	31:0	Y Min Clip Guardband									SF	_CLIP_VIEWPORT						----	------	--	--	--	--	--	--				Format:	IEEE_FLOAT32								•	the YMin guardband boundary (normalized to Viewport.YMin == - e bottom boundary of the NDC guardband.						11	31:0	Y Max Clip Guardband									Format: IEEE_FLOAT32									•	the YMax guardband boundary (normalized to Viewport.YMax == e top boundary of the NDC guardband.						12	31:0	X Min ViewPort									Format:	IEEE_Float								This 32-bit float represents	the Viewport.XMin.								This is the X min of the viewport extents as programmed by API, and this value should be programmed in Screen Space coordinate and not as normalized coordinate.							13	31:0	X Max ViewPort																		Format:	IEEE_FLOAT32								This 32-bit float represents the Viewport.XMax.									This is the X max of the viewport extents as programmed by API, and this value should be programmed in Screen Space coordinate and not as normalized coordinate.							14	31:0	Y Min ViewPort																		Format:	IEEE_FLOAT32								This 32-bit float represents the Viewport.YMin.									This is the Y min of the viewport extents as programmed by API, and this value should be programmed in Screen Space coordinate and not as normalized coordinate.							15	31:0	Y Max ViewPort									Format:	IEEE_FLOAT32								This 32-bit float represents	the Viewport.Ymax.									vport extents as programmed by API, and this value should be ce coordinate and not as normalized coordinate.					# SF_OUTPUT_ATTRIBUTE_DETAIL			SF_OUT	PUT_ATTRIBUTE_DETAIL						------------	-----------------	---	--	--	--	--	--		Source:		RenderCS							Size (in b	oits):	16							Default \	/alue:	0x00000000							DWord	Bit Description								0	15	Component Override W									Format:	Enable								If set, the W component of constant vector specified by	this output Attribute is overridden by the W component of the ConstantSource.							14	Component Override Z									Format:	Enable								If set, the Z component of t vector specified by Constant	his output Attribute is overridden by the Z component of the constant Source.						-	13	Component Override Y									Format:	Enable								If set, the Y component of output Attribute is overridden by the Y component of the constant vector specified by ConstantSource.							=	12	Component Override X									Format:	Enable								If set, the X component of output Attribute is overridden by the X component of the constant vector specified by ConstantSource.							-	11	1 Swizzle Control Mode																		Format:	U1 Enumerated Type								When Attribute Swizzle Enable is ENABLED, this bit controls whether attributes 0-15 or 16-31 are subject to the following swizzle controls:									Component Override	X/Y/Z/W								Constant Source									Swizzle Select									Source Attribute									WrapShortest Enable	S									Output Attributes field specifies how many attributes are output. pact any functions which provide separate states for all 32 attributes interpolation).							SF_OUTPUT_ATTRIBUTE_DETAIL Note: This field is only valid for the first indexed attribute (Attribute[0]). For all other indices, it is Reserved and MBZ.										------	---	--	---------------------------	---	--	--	--	--	--		10:9	Consta	Constant Source										Format	Format: U2 enumerated type										This sta Attribut		tor which o	can be used to c	override individual components of th							Value	e Name			Description							0h	CONST_0000		Constant.xyzw	y = 0.0,0.0,0.0,0.0							1h	CONST_0001_FLOAT		Constant.xyzw	y = 0.0,0.0,0.0,1.0							2h	CONST_1111_FLOAT		Constant.xyzw	y = 1.0,1.0,1.0,1.0							3h	PRIM_ID		Constant.xyzw	= PrimID (replicated)						8	Reserve	ed										Format	Format:			MBZ						7:6	Swizzle Select											Format: U2 enumerated type											This sta	ate, along with Source At	tribute, spe	ecifies the sourc	e for this output Attribute.							Value	Name			Description							0h	INPUTATTR	This attrib	ute is sourced f	rom AttrInputReg[SourceAttribute]							1h	INPUTATTR_FACING	AttrInputF	f the object is front-facing, this attribute is sourced from AttrInputReg[SourceAttribute]. If the object is back-facing, this attribute is sourced from AttrInputReg[SourceAttribute+1].								2h	INPUTATTR_W		attribute is sourced from AttrInputReg[SourceAttribute]. Tomponent is copied to the X component.								3h	INPUTATTR_FACING_W	AttrinputF attribute i	e object is front-facing, this attribute is sourced from InputReg[SourceAttribute]. If the object is back-facing, this bute is sourced from AttrInputReg[SourceAttribute+1]. The omponent is copied to the X component.							5	Reserve	ed										Format	:			MBZ						4:0	Source	Attribute										Format				U5								ld selects the source attr of data indicated by Ver			urce attribute 0 corresponds to the fi					# SFC_8x8_AVS_COEFFICIENTS SFC_8x8_AVS_COEFFICIENTS Source: BSpec Size (in bits): 256 Default Value: 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 **Description**	DWord	Bit		Description			-------	-------	-------------------------	---------------------	--		0	31:24	ZeroYFilterCoefficient1						Format:	S1.6 2's Complement					Range: [-2, +2]					23:16	ZeroXFilterCo	efficient1					Format:	S1.6 2's Complement					Range: [-2, +2]					15:8	ZeroYFilterCo	efficient0					Format:	S1.6 2's Complement					Range: [-2, +2]					7:0	ZeroXFilterCoefficient0						Format:	S1.6 2's Complement					Range: [-2, +2]				1	31:24	ZeroYFilterCo	efficient3					Format:	S1.6 2's Complement					Range: [-2, +2]					23:16	ZeroXFilterCo	efficient3					Format:	S1.6 2's Complement					Range: [-2, +2]					15:8	ZeroYFilterCo	efficient2					Format:	S1.6 2's Complement					Range: [-2, +2]					7:0	ZeroXFilterCo	efficient2					Format:	S1.6 2's Complement				S	FC_8x8_AV	S_COEFFICIENTS			---	-------	--------------------------	---------------------	--				Range: [-2, +2)				2	31:24	ZeroYFilterCoefficient5				_	J	Format:	S1.6 2's Complement					Range: [-2, +2)	•				23:16	ZeroXFilterCoef	fficient5					Format:	S1.6 2's Complement					Range: [-2, +2)					15:8	ZeroYFilterCoef	ficient4					Format:	S1.6 2's Complement					Range: [-2, +2)					7:0	ZeroXFilterCoef	fficient4					Format:	S1.6 2's Complement					Range: [-2, +2)				3	31:24	ZeroYFilterCoef	ficient7																																																																																																																																																																																																																																																																																																																																																										
	Format:	S1.6 2's Complement					Range: [-2, +2)					23:16	ZeroXFilterCoef	ficient7					Format:	S1.6 2's Complement					Range: [-2, +2)					15:8	ZeroYFilterCoef	ficient6					Format:	S1.6 2's Complement					Range: [-2, +2)					7:0	ZeroXFilterCoef	fficient6					Format:	S1.6 2's Complement					Range: [-2, +2)				4	31:24	OneXFilterCoef	ficient3					Format:	S1.6 2's Complement					Range: [-2.0, +2.	.0)				23:16	OneXFilterCoef	ficient2					Format:	S1.6 2's Complement					1					S	FC_8x8_AV	S_COEFFICIE	INTS			---	-------	-------------------------	---------------	--------	--				Range: [-1.0, +1						15:0	Reserved							Format:		MBZ			5	31:16	Reserved							Format:		MBZ				15:8	OneXFilterCoefficient5							Format:	S1.6 2's Comp	lement					Range: [-1.0, +1	.0)					7:0	OneXFilterCoef	ficient4						Format:	S1.6 2's Comp	lement					Range: [-2.0, +2	2.0)				6	31:24	OneYFilterCoef	ficient3						Format:	S1.6 2's Comp	lement					Range: [-2.0, +2	2.0)					23:16	OneYFilterCoef	ficient2						Format:	S1.6 2's Comp	lement					Range: [-1.0, +1	.0)					15:0	Reserved							Format:		MBZ			7	31:16	Reserved							Format:		MBZ				15:8	OneYFilterCoef	ficient5						Format:	S1.6 2's Comp	lement					Range: [-1.0, +1	.0)					7:0	OneYFilterCoef	ficient4						Format:	S1.6 2's Comp	lement					Range: [-2.0, +2	2.0)										# SFC_AVS_CHROMA_COEFF_TABLE_BODY		SFC	C_AVS_CHROMA_COEFF_TABLE_BODY				-----------------	-----------------	--	--	--		Source:	BSpec					Size (in bits):	·	2048				Default Value:		0x00000000, 0x00000000, 0x00000000, 0x00000000				Delault Value.		000000, 0x00000000, 0x00000000, 0x00000000						000000, 0x00000000, 0x00000000, 0x00000000						000000, 0x00000000, 0x00000000, 0x00000000						000000, 0x00000000, 0x00000000, 0x00000000					0x000	000000, 0x00000000, 0x00000000, 0x00000000					0x000	000000, 0x00000000, 0x000000000, 0x00000000						000000, 0x00000000, 0x00000000, 0x00000000						000000, 0x00000000, 0x00000000, 0x00000000						000000, 0x00000000, 0x00000000, 0x00000000					0x000	000000, 0x00000000, 0x00000000, 0x00000000				DWord	Bit	Description				01	63:56	Table 1Y Filter Coefficient[[n],5]						Format: S1.6 2's Complement											Range: [-2, +2)							Chroma table for Y-direction.						Programming Notes						Filter tap index3 in U/V 4-tap filtering					55:48	Table 1X Filter Coefficient[[n],5]						Format: S1.6 2's Complement												Range: [-2, +2)						Chroma table for X-direction.						ementa table for X uncerton.						Programming Notes						Filter tap index3 in U/V 4-tap filtering					47:40	Table 1Y Filter Coefficient[[n],4]						Format: S1.6 2's Complement						Range: [-2, +2)						Chroma table for Y-direction.						Cilionia table for 1-direction.						Programming Notes						Filter tap index 2 in U/V 4-tap filtering					SFC	C_AVS_CHROMA_COEFF_TABLE_BODY					-------	-------	--	--------------------------	--	--			39:32	Table 1X Filter	Coefficient[[n],4]						Format:	S1.6 2's Complement													Range: [-2, +2							Chroma table t	for X-direction.							Programming Notes						Filter tap index					31:24		Table 1Y Filter Coefficient[[n],3]						31.24	Format:	S1.6 2's Complement						Torride.	31.0 L 3 Complement						Range: [-2, +2)						Chroma table t	or Y-direction.														Programming Notes						Filter tap index	1 in U/V 4-tap filtering					23:16	Table 1X Filter	Coefficient[[n],3]						Format:	S1.6 2's Complement													Range: [-2, +2) Chroma table for X-direction.							Chroma table i	or x-direction.							Programming Notes						Filter tap index	1 in U/V 4-tap filtering					15:8	<u> </u>	Coefficient[[n],2]					13.0	Format:	S1.6 2's Complement													Range: [-2, +2)						Chroma table t	or Y-direction.														Programming Notes						Filter tap index0 in U/V 4-tap filtering						7:0		Coefficient[[n],2]						Format:	S1.6 2's Complement						Pangar [2 12							Range: [-2, +2							Chroma table for X-direction.								Programming Notes												SFC	AVS_CHROMA_COEFF_TABLE_BODY				-----	--------	--	--	--				Filter tap index0 in U/V 4-tap filtering				263	1983:0	Filter Coefficients						Format:			# SFC_AVS_LUMA_COEFF_TABLE_BODY		9	SFC_AVS_LUMA_COEFF_TABLE_BODY					-----------------	--	---	--	--	--		Source:	BSp	ес					Size (in bits):	4096	4096					Default Value	e: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x0	·					DWord	Bit	Description					03	127:120	Table 0Y Filter Coefficient[[n],7]							Format: S1.6 2's Complement							Range: [-2, +2) Luma table for Y-direction.						Programming Notes For 5x5 filter mode, table 0, 6 and 7 must be programmed to zero.							119:112	Table 0X Filter Coefficient[[n],7]							Format: S1.6 2's Complement							Range: [-2, +2)							Luma table for X-direction.													S	FC_AVS_LUMA_COEFF_TABLE_BODY				-------	---------	---	--	--				Programming Notes						For 5x5 filter mode, table 0, 6 and 7 must be programmed to zero.					111:104	Table 0Y Filter	Coefficient[[n],6]						S1.6 2's Complement					Range: [-2, +2						Luma table for												For EvE filter m	Programming Notes			_	103:96		node, table 0, 6 and 7 must be programmed to zero.				103:96	Format:	Coefficient[[n],6] S1.6 2's Complement						o no 20 complement					Range: [-2, +2]						Luma table for	X-direction.					Programming Notes						For 5x5 filter m	node, table 0, 6 and 7 must be programmed to zero.			95:88		Table 0Y Filter Coefficient[[n],5]						Format:	S1.6 2's Complement					Range: [-2, +2						Luma table for												For EvE filton m	Programming Notes			_	07.00		node, table 0, 6 and 7 must be programmed to zero.				87:80	Format:	Coefficient[[n],5] S1.6 2's Complement						'					Range: [-2, +2						Luma table for X-direction.							Programming Notes					For 5x5 filter m	node, table 0, 6 and 7 must be programmed to zero.				79:72	Table 0Y Filter	Coefficient[[n],4]					Format:	S1.6 2's Complement					Paner (2 + 2)						Range: [-2, +2	J			I	FC_AVS_LUMA_COEFF_TABLE_BODY				-------	-------------------------------------	--	--			Luma table for Y-direction	n.									For Full filter mondo toldo	Programming Notes			71.64	L	0, 6 and 7 must be programmed to zero.			71:64	Table 0X Filter Coefficient Format:	1.6 2's Complement				Torriat.	1.0 2 3 Complement				Range: [-2, +2)					Luma table for X-direction	ղ.					Programming Notes				For 5x5 filter mode, table	0, 6 and 7 must be programmed to zero.			63:56	Table 0Y Filter Coefficien					Format: S	1.6 2's Complement				Range: [-2, +2)					Luma table for Y-direction.											Programming Notes				For 5x5 filter mode, table	0, 6 and 7 must be programmed to zero.			55:48	Table 0X Filter Coefficien					Format: S	1.6 2's Complement				Range: [-2, +2)					Luma table for X-direction	٦.										Programming Notes				L	0, 6 and 7 must be programmed to zero.			47:40	Table 0Y Filter Coefficien					Format: S	1.6 2's Complement				Range: [-2, +2)					Luma table for Y-direction.											Programming Notes				L	0, 6 and 7 must be programmed to zero.			39:32	Table 0X Filter Coefficien					Format: S	1.6 2's Complement								Range: [-2, +2) Luma table for X-direction. Programming Notes For 5x5 filter mode, table 0, 6 and 7 must be programmed to zero. 31:24 Table 0Y Filter Coefficient[[n],1] Format: S1.6 2's Complement Range: [-2, +2) Luma table for Y-direction. Programming Notes For 5x5 filter mode, table 0, 6 and 7 must be programmed to zero. 23:16 Table 0X Filter Coefficient[[n],1] Format: S1.6 2's Complement Range: [-2, +2) Luma table for X-direction. Programming Notes For 5x5 filter mode, table 0, 6 and 7 must be programmed to zero.			SFC_AVS_LUMA_COEFF_TABLE_BODY																																																																																																																					
---	------	--------	---	--		Programming Notes For 5x5 filter mode, table 0, 6 and 7 must be programmed to zero. 31:24 Table 0Y Filter Coefficient[[n],1] Format: S1.6 2's Complement Range: [-2, +2) Luma table for Y-direction. Programming Notes For 5x5 filter mode, table 0, 6 and 7 must be programmed to zero. 23:16 Table 0X Filter Coefficient[[n],1] Format: S1.6 2's Complement Range: [-2, +2) Luma table for X-direction. Programming Notes			Range: [-2, +2)			For 5x5 filter mode, table 0, 6 and 7 must be programmed to zero. 31:24 Table 0Y Filter Coefficient[[n],1] Format: S1.6 2's Complement Range: [-2, +2) Luma table for Y-direction. Programming Notes For 5x5 filter mode, table 0, 6 and 7 must be programmed to zero. 23:16 Table 0X Filter Coefficient[[n],1] Format: S1.6 2's Complement Range: [-2, +2) Luma table for X-direction. Programming Notes			Luma table for X-direction.			For 5x5 filter mode, table 0, 6 and 7 must be programmed to zero. 31:24 Table 0Y Filter Coefficient[[n],1] Format: S1.6 2's Complement Range: [-2, +2) Luma table for Y-direction. Programming Notes For 5x5 filter mode, table 0, 6 and 7 must be programmed to zero. 23:16 Table 0X Filter Coefficient[[n],1] Format: S1.6 2's Complement Range: [-2, +2) Luma table for X-direction. Programming Notes						Table 0Y Filter Coefficient[[n],1] Format: S1.6 2's Complement Range: [-2, +2) Luma table for Y-direction. Programming Notes For 5x5 filter mode, table 0, 6 and 7 must be programmed to zero. 23:16 Table 0X Filter Coefficient[[n],1] Format: S1.6 2's Complement Range: [-2, +2) Luma table for X-direction. Programming Notes			Programming Notes			Format: S1.6 2's Complement Range: [-2, +2) Luma table for Y-direction. Programming Notes For 5x5 filter mode, table 0, 6 and 7 must be programmed to zero. 23:16 Table 0X Filter Coefficient[[n],1] Format: S1.6 2's Complement Range: [-2, +2) Luma table for X-direction. Programming Notes			For 5x5 filter mode, table 0, 6 and 7 must be programmed to zero.			Range: [-2, +2) Luma table for Y-direction. Programming Notes For 5x5 filter mode, table 0, 6 and 7 must be programmed to zero. 23:16 Table 0X Filter Coefficient[[n],1] Format: S1.6 2's Complement Range: [-2, +2) Luma table for X-direction. Programming Notes		31:24	Table 0Y Filter Coefficient[[n],1]			Programming Notes For 5x5 filter mode, table 0, 6 and 7 must be programmed to zero. 23:16 Table 0X Filter Coefficient[[n],1] Format: S1.6 2's Complement Range: [-2, +2) Luma table for X-direction. Programming Notes			Format: S1.6 2's Complement			Programming Notes For 5x5 filter mode, table 0, 6 and 7 must be programmed to zero. 23:16 Table 0X Filter Coefficient[[n],1] Format: S1.6 2's Complement Range: [-2, +2) Luma table for X-direction. Programming Notes			Range: [-2, +2)			For 5x5 filter mode, table 0, 6 and 7 must be programmed to zero. 23:16 Table 0X Filter Coefficient[[n],1] Format: S1.6 2's Complement Range: [-2, +2) Luma table for X-direction. Programming Notes			Luma table for Y-direction.			23:16 Table 0X Filter Coefficient[[n],1] Format: S1.6 2's Complement Range: [-2, +2) Luma table for X-direction. Programming Notes			Programming Notes			Format: S1.6 2's Complement Range: [-2, +2) Luma table for X-direction. Programming Notes			For 5x5 filter mode, table 0, 6 and 7 must be programmed to zero.			Range: [-2, +2) Luma table for X-direction. Programming Notes		23:16	Table 0X Filter Coefficient[[n],1]			Luma table for X-direction. Programming Notes			Format: S1.6 2's Complement			Programming Notes			Range: [-2, +2)						Luma table for X-direction.									For 5x5 filter mode, table 0, 6 and 7 must be programmed to zero.			Programming Notes						For 5x5 filter mode, table 0, 6 and 7 must be programmed to zero.			15:8 Table 0Y Filter Coefficient[[n],0]		15:8	Table 0Y Filter Coefficient[[n],0]			Format: S1.6 2's Complement			Format: S1.6 2's Complement			Range: [-2, +2)			Range: [-2, +2)			Luma table for Y-direction.						Duo muonomina Notos			Drogramming Nates			Programming Notes For 5x5 filter mode, table 0, 6 and 7 must be programmed to zero.						7:0 Table 0X Filter Coefficient[[n],0]		7:0				Format: S1.6 2's Complement		7.0										Range: [-2, +2)			Range: [-2, +2)			Luma table for X-direction.			Luma table for X-direction.			Programming Notes			Programming Notes			For 5x5 filter mode, table 0, 6 and 7 must be programmed to zero.						4127 3967:0 Filter Coefficients	4127	3967:0				SFC_AVS_LUMA_COEFF_TABLE_BODY					-------------------------------	--	---------	------------------------------------				Format:	Luma_Filter_Coefficients_Array[31]	# SFC_AVS_STATE_BODY				SFC	C_AVS_STATE_BODY					------------	---	---	------------------	--	--	--	--		Source:		BSpec							Size (in b	re (in bits): 96								Default \	fault Value: 0x00000000, 0x00000000, 0x00000000								DWord	Bit	Description							0	31:24	Sharpness Le									Format:		U8							When adapti	ve scaling is o	off, determines the balance between sharp and smooth scalers.							Value	Name	Description							0		Contribute 1 from the smooth scalar							255		Contribute 1 from the sharp scalar						23:7	Reserved									Format:		MBZ						6:4	Transition A	rea with 4 Pix	xels							Format:		U3							Used in adaptive filtering to specify the width of the transition area for the 4 pixel calculation.								3	Reserved									Format:		MBZ						2:0	Transition A	rea with 8 Pix								Format:		U3							Used in adap	tive filtering t	to specify the width of the transition area for the 8 pixel calculation.					1 31:24		Reserved									Format:		MBZ						23:16	Max Derivative 4 Pixels									Format: U8									Used in adaptive filtering to specify the lower boundary of the smooth 4 pixel area.								15:8	Reserved									Format:		MBZ						7:0	MAX Derivat	tive Point 8								Format:		U8							Used in adaptive filtering to specify the lower boundary of the smooth 8 pixel area.							2	31:12	Reserved								Format:		MBZ					------	--	-----------------------	--	-----	--	--		11:8	Input Horizontal Si	ting Value - Specific	es the horizontal siting of the in	put													Value		Name						0000b	0(fraction in int	eger)						0001b	1/8							0010b	2/8							0011b	3/8							0100b	4/8							0101b	5/8							0110b	6/8							0111b	7/8							1000b	8/8															Programming Notes								For 444 format, horizontal chroma siting should be programmed to zero.							7:4	Reserved							3:0	Input Vertical Siting - Specifies the vertical siting of the input									Value	Nam	e					000b		0						0001b		1/8						1100010		1.7 0						0010b		2/8														0010b		2/8						0010b 0011b		2/8 3/8						0010b 0011b 0100b		2/8 3/8 4/8						0010b 0011b 0100b 0101b		2/8 3/8 4/8 5/8						0010b 0011b 0100b 0101b 0110b		2/8 3/8 4/8 5/8 6/8						0010b 0011b 0100b 0101b 0110b 0111b		2/8 3/8 4/8 5/8 6/8 7/8				## SFC_FRAME_START_BODY	SFC	FRAME	START	BODY		-----	--------------	-------	-------------						Source: BSpec Size (in bits): 32 Default Value: 0x00000000		-							-------	------	-------------	-----	--	--	--		DWord	Bit	Description						0	31:0	Reserved								Format:	MBZ				## SFC_HDR_STATE					SFC_HDR_	STAT	Έ				------------	--------	--	--------------------	---------------------	-----------	--------	--------------------------------------	--		Source:		BSpec								Size (in b	oits):	96								Default \	/alue:	0x000000	000, 0x000	00000, 0x00000000)					DWord	Bit			D	escripti	on				01	63:48	Reserved										Format:					MBZ				47:12	Address		_								Format:		GraphicsAddress[4								Specifies the g	raphics ba	se address used to	fetch SF	C_EO	TF_OETF_STATE surfacetable into SFC.				11:0	Reserved										Format:					MBZ			2	31:15	Reserved										Format:				MBZ					14:13	Surface Tiled Mode										Format:					U2																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
faces: This	field specifies the	tiled res	ource						Value		Name			Description					0	TRMODE				iled resources					1	TRMODE.				tiled resources					2	TRMODE.	_IILEYS		64KB	B tiled resources					3	Reserved								12	Reserved					1.457					Format:		_			MBZ				11	Scratch Buffer	Cache Se	lect			0 Disable					Default Value:					0 Disable					Format: U1										Programming Notes										This must be set to 0									10	Compression 1	Гуре									Default Value:					0 Disable					Format:					boolean							•	ompress	ion is	enabled.As memory compression is					not supported on this surface, it must be 0.										SFC_HDR	STATE				-----	--	-------------------	----------	-----------	--		9	Memory Con	npression Enable						Default Value	•		0 Disable				Format:			Enable					Programming Notes						Memory compression is not supported for this surface Must be 0.						8:7	Arbitration Priority Control							Format:	HEVC_ARBITRATION_	PRIORITY				6:1	Index to Memory Object Control State (MOCS) Tables							Format:			U6				The index to define the L3 and system cache memory properties. The details of the controls are further defined in L3 and Page walker (memory interface) control registers. The field is defined to populate 64 different surface controls to be used concurrently. Related control registers can be updated during runtime.						0	Reserved					## SFC_IEF_STATE_BODY	Source: BSpec Size (in bits): 736 Default Value: 0x0294806C, 0x39CFD1FF, 0x039F0000, 0x9A6E4000, 0x00000000, 0x02117000, 0xA38FEC96, 0x00000000, 0x8285ECEC, 0x00008282, 0x00000000, 0x00000000, 0x000000000, 0x00000000			SFC_IEF_STATE_BODY					---	-------	--------	---	------------------------	--------------------	--------------------		Default Value:		oits):	·					31:28 Reserved Format: MBZ	·	-	0x00000000, 0xD82E0000, 0x8285ECEC, 0x00008282, 0xA38FEC96, 0x00008CC8, 0x00000000, 0x00002000,	0x0000000 0x0000000	0, 0x02 0, 0x00	2117000,		Format: MBZ	DWord	Bit	Description					27:23 R3c Coefficient Default Value: Format: IEF smoothing coefficient, see IEF map. 22:18 R3x Coefficient Default Value: Format: IEF smoothing coefficient, see IEF map. 17:12 Strong Edge Threshold Default Value: Format: If EM > Strong Edge Threshold → the basic VSA detects a strong edge. 11:6 Weak Edge Threshold Default Value: Format: If Strong Edge Threshold → the basic VSA detects a strong edge. 11:6 Gain Factor Default Value: Format: U6 Strong Edge Threshold > EM > Weak Edge Threshold → the basic VSA detects a weak edge. 5:0 Gain Factor Default Value: Format: U6 U5 U6 U6 Strong Edge Threshold > EM > Weak Edge Threshold → the basic VSA detects a weak edge. 5:0 Sain Factor Default Value: Format: U5 U5 U6 U5 U5 U5 U5 U5 U5 U5	0	31:28		MD7				Default Value: Format: U0.5				IVIDZ				Format:		27:23			_			IEF smoothing coefficient, see IEF map. 22:18 R3x Coefficient Default Value: Format: IEF smoothing coefficient, see IEF map. 17:12 Strong Edge Threshold Default Value: Format: If EM > Strong Edge Threshold → the basic VSA detects a strong edge. 11:6 Weak Edge Threshold Default Value: Format: If Strong Edge Threshold → Weak Edge Threshold → the basic VSA detects a weak edge. 5:0 Gain Factor Default Value: Format: U6 U6 U5 U5 U5 U6								22:18 R3x Coefficient Default Value: Format: IEF smoothing coefficient, see IEF map. 17:12 Strong Edge Threshold Default Value: Format: If EM > Strong Edge Threshold → the basic VSA detects a strong edge. 11:6 Weak Edge Threshold Default Value: Format: If Strong Edge Threshold → the basic VSA detects a strong edge. 11:6 Weak Edge Threshold Default Value: Format: If Strong Edge Threshold > EM > Weak Edge Threshold → the basic VSA detects a weak edge. 5:0 Gain Factor Default Value: Format: User control sharpening strength.					00.5			Default Value: Format: 17:12 Strong Edge Threshold Default Value: Format: If EM > Strong Edge Threshold → the basic VSA detects a strong edge. 11:6 Weak Edge Threshold Default Value: Format: If Strong Edge Threshold Default Value: Format: If Strong Edge Threshold Default Value: Format: If Strong Edge Threshold > EM > Weak Edge Threshold → the basic VSA detects a weak edge. 5:0 Gain Factor Default Value: Format: U6 U5: U5: U5: U5: U5: U5: U5: U5: U5: U5			ter smoothing coefficient, see ter map.					Format: U0.5 IEF smoothing coefficient, see IEF map. 17:12 Strong Edge Threshold Default Value: 8 Format: U6 If EM > Strong Edge Threshold → the basic VSA detects a strong edge. 11:6 Weak Edge Threshold Default Value: 1 Format: U6 If Strong Edge Threshold > EM > Weak Edge Threshold → the basic VSA detects a weak edge. 5:0 Gain Factor Default Value: 44 Format: U6 User control sharpening strength. 1 31:27 R5c Coefficient		22:18	R3x Coefficient					IEF smoothing coefficient, see IEF map. 17:12 Strong Edge Threshold Default Value: Format: U6 If EM > Strong Edge Threshold → the basic VSA detects a strong edge. 11:6 Weak Edge Threshold Default Value: Format: U6 If Strong Edge Threshold > EM > Weak Edge Threshold → the basic VSA detects a weak edge. 5:0 Gain Factor Default Value: Format: U6 U5 U6 U6 U7 U8 U9 U9 U9 U9 U9 U9 U9 U9 U9			Default Value:		5			17:12 Strong Edge Threshold Default Value: Format: If EM > Strong Edge Threshold → the basic VSA detects a strong edge. 11:6 Weak Edge Threshold Default Value: Format: If Strong Edge Threshold > EM > Weak Edge Threshold → the basic VSA detects a weak edge. 5:0 Gain Factor Default Value: Format: U6 U5er control sharpening strength.			Format:		U0.5			Default Value: Format: U6 If EM > Strong Edge Threshold → the basic VSA detects a strong edge. 11:6 Weak Edge Threshold Default Value: Format: U6 If Strong Edge Threshold > EM > Weak Edge Threshold → the basic VSA detects a weak edge. 5:0 Gain Factor Default Value: Format: U6 User control sharpening strength.			IEF smoothing coefficient, see IEF map.					Format: U6 If EM > Strong Edge Threshold → the basic VSA detects a strong edge. 11:6 Weak Edge Threshold Default Value: 1 Format: U6 If Strong Edge Threshold > EM > Weak Edge Threshold → the basic VSA detects a weak edge. 5:0 Gain Factor Default Value: 44 Format: U6 User control sharpening strength.		17:12	Strong Edge Threshold					If EM > Strong Edge Threshold → the basic VSA detects a strong edge. 11:6 Weak Edge Threshold Default Value: Format: If Strong Edge Threshold > EM > Weak Edge Threshold → the basic VSA detects a weak edge. 5:0 Gain Factor Default Value: Format: U6 User control sharpening strength.			Default Value:			8		11:6 Weak Edge Threshold Default Value: Format: If Strong Edge Threshold > EM > Weak Edge Threshold → the basic VSA detects a weak edge. 5:0 Gain Factor Default Value: Format: U6 U5er control sharpening strength.						U6		Default Value: Format: If Strong Edge Threshold > EM > Weak Edge Threshold → the basic VSA detects a weak edge. 5:0 Gain Factor Default Value: Format: U6 44 Format: U6 User control sharpening strength.			If EM > Strong Edge Threshold → the basic VSA detects a	strong edge	<u>.</u>			Format: U6 If Strong Edge Threshold > EM > Weak Edge Threshold → the basic VSA detects a weak edge. 5:0 Gain Factor Default Value: 44 Format: U6 User control sharpening strength.		11:6	Weak Edge Threshold					If Strong Edge Threshold > EM > Weak Edge Threshold → the basic VSA detects a weak edge. 5:0 Gain Factor Default Value: Format: U6 User control sharpening strength.			Default Value:			1		5:0 Gain Factor Default Value: Format: User control sharpening strength. 1 31:27 R5c Coefficient			Format:			U6		Default Value: Format: User control sharpening strength. 1 31:27 R5c Coefficient			If Strong Edge Threshold \rightarrow EM \rightarrow Weak Edge Threshold \rightarrow	the basic V	SA de	tects a weak edge.		Format: U6 User control sharpening strength. 1 31:27 R5c Coefficient	ļ.	5:0	Gain Factor					User control sharpening strength. 1 31:27 R5c Coefficient			Default Value:			44		1 31:27 R5c Coefficient			Format:			U6					User control sharpening strength.					Default Value: 7	1	31:27	R5c Coefficient								Default Value:		7					SFC_IEF_STATE_BODY				---	-------	---	----------	----				Format:	U0.5																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
		IEF smoothing coefficient, see IEF map.	<u>'</u>				26:22	R5cx Coefficient						Default Value:	7					Format:	U0.5					IEF smoothing coefficient, see IEF map.					21:17	R5x Coefficient						Default Value:	7					Format:	U0.5					IEF smoothing coefficient, see IEF map.					16:14	Strong Edge Weight						Default Value:		7				Format:		U3				Sharpening strength when a <u>STRONG</u> edge is found in basic VSA	۹.				13:11	Regular Weight						Default Value:		2				Format:		U3				Sharpening strength when a <u>WEAK</u> edge is found in basic VSA.					10:8	Non Edge Weight						Default Value:		1				Format:		U3				. Sharpening strength when <u>NO EDGE</u> is found in basic VSA.					7:0	Global Noise Estimation						Default Value:	25	55				Format:	U	3				Global noise estimation of previous frame.				2	31:28	Reserved						Format: MBZ					27:22	Hue_Max						Default Value:		14				Format:		U6				Rectangle half width.						SFC_IEF_STATE_BODY						---	-------	--	-----	--	--	--			21.16	Sat_Max							21.10	Default Value:	31							Format:	U6							Rectangle half length.	00							Rectarigle nan length.							15:8	STD Cos(alpha)								Format: S0.7 2's Complement								Default Value = 79/128							7:0	STD Sin(alpha)								Format: S0.7 2's Complement								Default Value = 101/128						3	31:24	V_Mid								Default Value:	154							Format:	U8							Rectangle middle-point V coordinate.							23:16	U_Mid								Default Value:	110							Format:	U8							Rectangle middle-point U coordinate.							15	VY_STD_Enable								Format: Enable								Enables STD in the VY subspace.							14:12									Default Value:	4							Format:	U3						11	Reserved	,							Format: MBZ							10:0	S3U								Format: S2.8 -2's Complement								Slope 3 of the upper part of the detection PWLF.								Deafult: 0/256						A	21							4	31	Skin Detail Factor									SFC_IEF_S1	TATE_BODY					---	-------	---	---	--	--------------------------------	--	--				Format:	U1 Enumera	ated Type							This flag bit is in operation only when one of the following conditions exists:									when the con-	trol bit SkinToneTu	inedIEF_Enable is on.							content of the	e detected skin tone n DetailFactor) is eq	to 0, sign(SkinDetailFactor) is eq e area is detail revealed.When Ski qual to -1, and the content of the	n DetailFactor is equal						Value		Name							0	Detail Revealed [D	efault]							1	Not Detail Reveale	d						30:24	Diamond_du									Default Value:		0							Format:		S6 -2's Complement							Rhombus center shi	ft in the sat-direction	on, relative to the rectangle center															23:21	HS_margin									Default Value:			3						Format: U3									Defines rectangle margin.								20:13	Diamond_alpha									Format:		U2.6							_									1 / tan(β)									Deafult: 100/64								12:7	Diamond_Th			25						Default Value:			35						Format: U6									Half length of the rhombus axis in the sat-direction.								6:0	Diamond_dv									Default Value:		0							Format:		S6 -2's Complement							Rhombus center shi	ft in the hue-directi	on, relative to the rectangle cente	er.				5	31:24	Y_point_4									Default Value:			255						Format:			U8						SFC_IEF_STATE_BODY									---	-------	---	-----	--	--	--	--	--	--				Fourth point of the Y piecewise linear membership function.										23.16	Y_point_3										25.10	Default Value:	254										Format:	U8										Third point of the Y piecewise linear membership function.	1																				15:8	Y_point_2	47										Default Value:	47										Format: Second point of the Y piecewise linear membership function.	U8										beesta point of the 1 piecewise intent membership function.										7:0	Y_point_1											Default Value:	46										Format:	U8										First point of the Y piecewise linear membership function.									6	31:16	Reserved											Format: ME	3Z									15:0	INV_Margin_VYL											Format: U0.16											1 / Margin_VYL											Default: 3300/65536									7	31:24										1	31.24	Default Value:	216										Format:	U8										Y Point 1 of the lower part of the detection PWLF.										23:16	DOI										25.10	Default Value:	46										Format:	U8										Y Point 0 of the lower part of the detection PWLF.										15:0	INV_Margin_VYU										. 3.0	Format: U0.16																						1 / Margin_VYL												SFC_IEF_STATE_B	ODY							---	-------	--	-----------------------------	------	-----	--	--	--	--		8	31:24	B1L											Default Value:			130								Format:			U8								V Bias 1 of the lower p	art of the detection PWLF.									23:16	BOL											Default Value:			133								Format:			U8								V Bias 0 of the lower p	part of the detection PWLF.									15:8	P3L											Default Value:			236								Format:			U8								Y Point 3 of the lower part of the detection PWLF.										7:0	P2L											Default Value:			236								Format:			U8								Y Point 2 of the lower	part of the detection PWLF.								9	31:27	Y_Slope_2											Format:		U2.3									Slope between points Y3 and Y4.											Default: 31/8										26:16	SOL											Format:	S2.8 -2's Complement										Slope 0 of the lower part of the detection PWLF.											Default: -5/256										15:8	B3L											Default Value:			130			
the detection PWLF.								7.0									7:0	B2U Default Value:		200							Format:		U8							V Bias 2 of the upper par	t of the detection PWLF.	00					14	31.22	Reserved								31.22	Format:		MBZ						21:11									21,11	Format:	S2.8 -2's Complement									1 = 1 = 0 = 0 mprement								Default: -179/256									Slope 2 of the upper par	t of the detection PWLF.									SFC_IEF_STATE_BODY						----	-------	-------------------------------	-----------------------------	------	--	--	--			10:0	S1U									Format:	S2.8 -2's Complement																	Default: 113/256									Slope 1 of the upper p	part of the detection PWLF.						15	31:29	Reserved									Format:	MBZ							28:16	C1									Default Value:	0								Format:	S2.10 -2's Complement								Transform coefficient								15:3	CO									Default Value:	1024	1024							Format: S2.10 -2's Complement									Transform coefficient								2	Reserved									Format:	MBZ							1	YUV Channel Swap								0	Transform Enable							16	31:26	Reserved									Format:	MBZ							25:13	C 3									Default Value:	0								Format:	S2.10 -2's Complement								Transform coefficient								12:0	C2									Default Value:	0								Format:	S2.10 -2's Complement								Transform coefficient							17	31:26	Reserved									Format:	MBZ							25:13										Default Value:	0								Format:	S2.10 -2's Complement								SFC	LIEF_STATE_BODY						----	-------	-------------------------------	-----------------------	--	--	--	--				Transform coefficient								12.0									12:0	C4 Default Value:	1024								Format:	S2.10 -2's Complement								Transform coefficient	SELTO ES COMPIEMEN															18	31:26	Reserved									Format:	MBZ							25:13		1								Default Value:	0								Format:	S2.10 -2's Complement								Transform coefficient								12:0	C 6									Default Value:	0								Format: S2.10 -2's Complement									Transform coefficient							19	31:13	Reserved									Format:	MBZ							12:0	C8									Default Value:	1024								Format: S2.10 -2's Complement									Transform coefficient							20	31:22	Reserved									Format:	MBZ							21:11	Offset out 1									Default Value:	0								Format:	S2.8 -2's Complement								Offset out for Y/R.								10:0	Offset in 1									Default Value:	0								Format:	S2.8 -2's Complement								Offset in for Y/R.	· · ·						21	31.22	Reserved																	SFC_IEF_STATE_BODY								----	--------------------	---------------------	----------------------	----	--	--	--				Format:	MBZ							21:11	Offset out 2									Default Value:	0								Format:	S2.8 -2's Complement								Offset out for U/G.								10:0	Offset in 2									Default Value:	0								Format:	S2.8 -2's Complement								Offset in for U/G.							22	31:22	Reserved									Format:	MBZ							21:11	Offset out 3		-1							Default Value:	0								Format:	S2.8 -2's Complement								Offset out for V/B.								10:0	Offset in 3									Default Value:	0								Format:	S2.8 -2's Complement								Offset in for V/B.						# SFC_LOCK_BODY		SFC_LOCK_BODY										---	---------------	----------------	--	---	--	--	--	--	--		Source: BSpec											Size (in b	oits):	32									Default \	/alue:	0x00000	000								DWord	Bit			Description							0	31:2	Reserved											Format:			MBZ							1	memory. It cou	ucted Pixel Out this field specifi ld be pre or pos VC state comm	tput Enable es the enabling of writing o st- ILDB filter pixel output b	ased on the p	•							0	1	Filtered Pixels (allow ON/C	PFF)	Filter Pixels Sent to SFC for Scaling					1 0 Non-filter (bypass) pixels (allow ON/OFF)						Non-Filter Pixels Sent to SFC for Scaling							1	1	Non-filter (bypass) pixels (all ON/OFF) Filtered pixels (all	Filter Pixels Sent to SFC for Scaling.							0	VE-SFC Pipe Se	lect		·					## SFC_STATE_BODY					SFC_STATE_BODY						----------------------	--------	--	--	---	--------------------------	------------	--	--		Source:		В	Spec							Size (in bits): 1472		472								Default \	/alue:	0:	x000000	00, 0x00000000, 0x00000000, 0x00000000, 0x00000000	0x00000000, 0x0000000	00,								00, 0x00000000, 0x00000000, 0x00000000, 00, 0x00000000, 0x0000000, 0x00000000,		-								00, 0x00000000, 0x00000000, 0x00001000,		•								00, 0x00000000, 0x00000000, 0x00000000,		·								00, 0x00000000, 0x00000000, 0x00000000, 00, 0x00000000, 0x0000000, 0x00000000	0x00000000, 0x0000000	00,				DWord	Bit		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Description						0	31:12	Reserve	ed	-																		Format:			MBZ						11	Reserve	Reserved									Format:			MBZ						10:8	VD/VE Input Ordering Mode										Format: U3																				VD mode: (SFC pipe mode set as "0")										VE mode: (pipe mode set as "1 and 4")										For values for each mode, please refer to the table below:										HCP mode : SFC Pipe Mode set as "2"										For val	ues for e	each mode, please refer to the table below:								Value	Name	Description		Exists If						0		16x16 block z-scan order - no shift		//VD Mode						1		16x16 block z-scan order - 4 pixels shift սր	oward	//VD Mode						2		8x8 block jpeg z-scan order		//VD Mode						3		16x16 block jpeg z-scan order		//VD Mode						4		16x16 block VP8 row-scan order - no shift		//VD Mode						5-7		Reserved		//VD Mode						0		16x16 block HEVC Decoderrow-scan order	r -4 pixel shift upward	//HCP Mode						1		32x32block HEVC Decoderrow-scan order	-4 pixel shift upward	//HCP Mode						2		64x64 block HEVC Decoder row-scan orde	er -4 pixel shift upward	//HCP Mode				SFC_STATE_BODY									----------------	---	--	---------------------------	----------	-------------------------------------	----------	--------------------------------------		3	3 64x64 block VP9 Decoderrow-scan order - 8 pixel shift upward								[4-7]	[4-7] Reserved						//HCP Mode	
progressive input and output only (interlace/mbaff is not supported).	progressive input and output only (interface, mount is not supported).								--	-------------	----------------------	----------------------	--	--	--		Video Mode	Surface	SFC Input Chroma Sub	VD/VE Input ordering						Format	Sampling	mode					HEVC 16x16 LCU	420/422/444	1/2/4	0					HEVC 32x32 LCU	420/422/444	1/2/4	1					HEVC 64x64 LCU	420/422/444	1/2/4	2					VP9 64x64 LCU	420/444	1/4	3 / 4				7:4 SFC Input Chroma Sub-Sampling	Value	Name	Description		-------	-------------------------------	---------------------------		0	4:0:0	SFC to insert UV channels		1	4:2:0			2	4:2:2 Horizonatal	VD: 2:1:1		3	Reserved			4	4:4:4 Progressive/Interleaved		#### **Programming Notes** This field shall be programmed according to video modes used in VDBOX. NOTE: SFC supports progressive input and output only (Interlaced/MBAFF is not supported).	Video Mode	Surface Format	SFC Input Chroma Sub-Sampling	VD/VE Input Ordering Mode		---	-------------------	----------------------------------	------------------------------		VC1 w/o LF and w/o OS Note: VC1 LF applies for either ILDB	420 (NV12)	1	0		VC1 w/ LF or w/ OS or w/ both Note: VC1 LF applies for either ILDB		INVALID with SFC	INVALID with SFC		AVC w/o LF	Monochrome	0	0		AVC w/o LF	420 (NV12)	1	0		AVC with LF	Monochrome	0	1		AVC/VP8 with LF	420 (NV12)	1	1		VP8 w/o LF	420 (NV12)	1	4		JPEG (YUV Interleaved)	Monochrome	0	2		JPEG (YUV Interleaved)	420	1	3					SF	C_STA	TE_BC	DY					---	-------	------------------------	-----------------------------------	-------------	-------------------	------------------	-----------------	------------------	--				JPEG (YUV Int	erleaved)		422H_2Y		2	2					JPEG (YUV Interleaved)			422H_4Y 2		2	3					JPEG (YUV Int	erleaved)		444		4	2					This field shall	be programme	ed accord	ling to Ima	ge enl	nancement modes	used in VEBOX.					VEBOX MODE		Surf			nput Chroma Sub	VD/VE Input							Forn		Samp	lling	Ordering Mode						/IECP features		ochrome	0		0						/IECP features		(NV12)	1		0						/IECP features	4221	1	2		0						/IECP features	444		4		0					Capture/Came		Mor	ochrome	0		1					Capture/Came		420	(NV12)	1		1					Capture/Came	• •	4221	+	2		1					Capture/Came		444		4		1				3:0	SFC Pipe Mode											Value	Name	Description									0		VD-to-S	SFC AVS								1		VE-to-SF	C AVS + IE	+ IEF + Rotation							2		HCP-to-	SFC AVS	VS							3		Reserved	k								4		VE-to-SF	C Integral	Image							5											[6,15]		Reserved	k	I									P	Programming Notes									Pipe mode set t sub-IECP featu				• •	MUST be enabled.			1	31:30	Reserved																						Format: MBZ										29:16	Input Frame R	esolution Heig	ht																				Format:				U1	4-1														#### **SFC STATE BODY** Minus 1 in unit of pixel [13:0]. It is set to the value of the output resolution or number of pixels streaming into SFC from VD/HCP or VEBOX. Since the Max value support in 16K pixels, the max value allowed in 16K minus 1. VDBOX frame height is multiple of 16 for Video source and JPEG formats other than 400, 444 and 422H_2Y. VDBOX frame height is multiple of 8 for JPEG formats 400, 444 and 422H_2Y. • VEBOX frame height is multiple of 4. • HEVC frame height is multiple of 8 • VP9 frame height is multiple of 8. Min Resolution is 128 pixels. Max Resolution is up to 16K pixel eq. for 1920x1080 content, FrameHeightInMBsMinus1 is equal to 1087 (1080 rounded up 16 pixel boundary, minus 1. i.e. effectively specified as 1088 instead). Restriction: For Integral Image Mode, this field is Reserved and MBZ. 15:14 Reserved Format: MBZ 13:0 Input Frame Resolution Width U14-1 Format: Minus 1 in unit of pixel [13:0]. It is set to the value of the output resolution or number of pixels streaming into SFC from VD/HCP or VEBox. Since the max value support is 16k pixels, the max value allowed is 16K minus 1. VDBOX frame width is multiple of 16 for Video source and JPEG formats other than 400, 444 and 422H 2Y. VDBOX frame width is multiple of 8 for JPEG formats 400, 444 and 422H_2Y. VEBOX frame width is multiple of 16. • HEVC frame width is multiple of 8. • VP9 frame width is multiple of 8. Min Resolution is 128 pixels. Max Resolution is up to 16K pixels. e.g. for 1920x1080 content, FrameHeightInMBsMinus1 is equal to 1087 (1080 rounded up 16 pixel boundary, minus 1. i.e. effectively specified as 1088 instead). Restriction For Integral Image Mode, this field is Reserved and MBZ. 31:23 Reserved 2 Format: MBZ 22:18 Reserved			S	FC_STATE_BOI	ΟY				-------	---	--------------------------------	-----------------------------	-------------------------	---------------------------------	--											Format:			ME	BZ			17	Reserved																Format:			ME	3Z			16	-	Space - 0- YU\ s the color spa		GB is valid	d only with the VE-SFC mode.				Value			Na	ame				0		YUV Color Space						1		RGB Color Space					15:12	Output Chro	ma Downsam	pling co-siting position	n Horizon	tal Direction				Format:				U4				This field spe	ecifies the fract	ional position of the bilir	near filter	for chroma downsampling. In the				X-axis.								Value		Name		Description				0000b	0/8 (Left full	pixel)	0 (fraction_in_integer)					0001b	1/8		1 (fraction_in_integer)					0010b	1/4 (2/8)			on_in_integer)				0011b	3/8			on_in_integer)				0100b	1/2 (4/8)			on_in_integer)				0101b	5/8			on_in_integer)				0110b	3/4 (6/8)			on_in_integer)				0111b	7/8		7 (fraction	on_in_integer)				1000b	8/8															Programming Notes							110	For 444 format, horizontal chroma-siting should be programmed to zero.							11:8	Output Chroma Downsampling co-siting position Vertical Direction								Format:	ocifies the fract	ional position of the hilir	oor filtor	for chroma downsampling. In the				This field specifies the fractional position of the bilinear filter for chroma downsampling. In the Y-axis.								Value		Name		Description				0000b	0/8 (Left full	pixel)	0 (fractio	on_in_integer)				0001b	1/8		1 (fractio	on_in_integer)				0010b	1/4 (2/8)		2 (fraction_in_integer)					0011b	3/8		3 (fractio	on_in_integer)				0100b	1/2 (4/8)			on_in_integer)						SFC_STAT	E_BOD	Υ				-----	---------------------------------	---------------	------------------------	--------------------------	-------------------------	------------	--			0101b	5/8			5 (fra	ction_in_i	nteger)			0110b	3/4 (6,	' 8)		6 (fra	ction_in_i	nteger)			0111b	7/8			7 (fraction_in_integer)					1000b 8/8												•	N					For 444 a	nd 422 form		gramming co-siting va			orogrammed to zero.		7:6	Reserved			<u>_</u>						Format:					MBZ			5	RGBA_Ch	annel_Swap	Enable							Default V	alue:				0													Format:					Ena	able				set, the R an		•			version is turned on. When B channels as shown in the			Name	Bits	MSB Color Order	Swapped						RGBA8	8:8:8	A:B:G:R	A:R:G:B						RGBA10	2:10:10:10	A:R:G:B	A:B:G:R						RGB 5:6:5	5:6:5	R:G:B	B:G:R					4	Reserved																		Format:					MBZ			3:0	Output Surface Format type									SFC output surface format type.									Reserved									Value	Name	Desc	ription			Exists If			0	AYU	V 4:4:4 (8:8:8:8 MSB	-A:Y:U:V)			//Tile-Y/ Tile-X/Linear			1	RGB	A8 4:4:4:4 (8:8:8:8 N	1SB-A:B:G:R	R)		//Tile-Y/ Tile-X/Linear			2	RGB	A10 10:10:10:2 (2:10	D:10:10 MSE	3-A:R:	G:B)	//Tile-Y/ Tile-X/Linear			3	RGB	5:6:5 (5:6:5 MSB-R:	G:B)			//Tile-Y/ Tile-X/Linear			4	Plan	ar NV12 4:2:0 8-bit				//Tile-Y			5	Pacl	ced YUYV 4:2:2 8-bit				//Tile-Y/ Tile-X/Linear			6	Pacl	ced UYVY 4:2:2 8-bit				//Tile-Y/ Tile-X/Linear			7	Pacl	ked integral Image 3	32-bit			//Linear			8	Pacl	ked integral Image 6	64-bit			//Linear					SF	C_STATE_BODY					---	-------	--	---	------------------------------	---	--	--				9	P016 format		//Tile-Y						10	Y210 / Y216 BitDepth = 0 BitDepth = 7) => Y210	//Tile-Y / Tile-X /																																																																																																																																																																																																																																																																																														
Linear						11	Y410 / Y416 BitDepth = 0 BitDepth = 1) => Y410	//Tile-Y / Tile-X / Linear								Restriction							For Integral Image Mode, output surface format type must be set to 32/64-bit Integral Image Plane. Driver/SW must ensure the max accumulated integral image value does not exceed the programmable output precision. HW will simply generate wrong value once it overflow in wrap around case.							3	31:23	Reserved Format:			MBZ					22	Tile Type									Format:			bool						0 : Real HCP Tile Mode 1 : Virtual HCP Tile Mode									Programming Notes									This field is only used when SFC Pipe Mode is HCP-to-SFC. In Real HCP Tile Mode, video streams defines the tile boundary. In Virtual HCP Tile Mode, driverstreams defines the tile boundary.								21:20	BitDepth This field is valid only for output formats P016/Y216/Y416. This field is used to specify how many of the LSB bits have valid data.									Value	Name		Description						0	10BitFormat	Higher 10 bits are valid and	l lower 6 bits are 0					19		s set when YUV to R	nversion matrix need to be	on is required or the RGB/YUV range programmed accordingly.						Restriction									For Integral Image Mode, this field is Reserved and MBZ.								18	Color Fill	Enable								TI: C. II		Programming Note							resolution			smaller than the output/display able pixel values. Else, nothing will be									when a new surface is allocated/ used. filled with default pixels by prior			#### **SFC STATE BODY** passes. In scalability mode ie. (SFC Engine Mode != 00), gray fill should be set only for left mosttile and for other tiles it should be disabled. 17:16 Rotation Mode Format: U2 **Value** Name 00b 0 (degrees) 01b 90 Clockwise 10b 180 Clockwise 11h 270 Clockwise **Programming Notes** SFC rotation (90, 180 and 270) should be set only on VEBox input mode and SFC output set to TileY. Restriction: For Integral Image Mode, this field is Reserved and MBZ. • For VDBox Mode, this field is Reserved and MBZ. For linear or TileX SFC output, this field is Reserved and MBZ. **15:13 Reserved** Format: MBZ 12 **Chroma Upsampling Enable** This field enables the high-quality UV channel upsampler prior to IEF filter process. This field should be disabled when the source pixels and output pixels are kept with the same chroma subsample type and IEF is disabled. Restriction For Integral Image Mode, this field is Reserved and MBZ. 11 Reserved Format: MBZ 10 **RGB Adaptive** This should be always set to 0 for YUV input and can be enabled/disabled for RGB input. This should be enabled only if we enable 8-tap adaptive filter for RGB input. 0: Disable the RGB Adaptive equation and use G-Ch directly for adaptive filter 1: Enable the RGB Adaptive filter using the equation (Y=(R+2G+B)»2) **Bypass X Adaptive Filtering** Value Name **Description** 0 Enable X Adaptive Filtering	_				SFC_STATE_BODY						---	---------	--	--------------------------------	--	--	--	--	--			1	Disable X Adaptive Fi	Itering	The X direction will use Defaul the smooth and sharp filters ra	t Sharpness Level to blend between ther than the calculated value.						8 Bypa:	ss Y Adaptive	s Y Adaptive Filtering								Valu	e Nam	е	De	escription						0	Enable Y										Adaptive Fi	Itering								1	Disable Y			t Sharpness Level to blend between							<u> </u>		the smooth and sharp filters ra	ther than the calculated value.							AVS Scaling Enable									Valu			Descri	ption						1	Enable									0	Disable	The sca	aling factor is ignored and a scal	ing ratio of 1:1 is assumed.							tive Filter for	all Cha	annels							Valu			Name	Description						1		•	Filter on UV/RB Channels	8-tap Adaptive Filter Mode is on						0	Disable A	daptive	Filter on UV/RB Channels								Programming Notes									The f										L	The field can be enabled if 8-tap Adaptive filter mode is on. Else it should be disabled. AVS Filter Mode								3		alue		Name							0		Poly-ph	nase filter + Bilinear (adaptive)							1			nase filter + Bilinear (adaptive)							2										3		Bilinear filter only Reserved									T to st										Programming Notes									In VE	-to-SFC mod	e, value	of 1 is not allowed.							3 Enabl	e 8 tap for C	hroma	channels filtering							This I	oit enables 8 t	ap filte	ring for Chroma Channels.	1									Programming Note							•	tap enable should only be enabled when SFC Input Chroma Sub-Sampling = 4 (ie. 444 input										at to SFC).										mooth_Enab	le 		• ••						Valu				iption						0	[Default]			detail filter based on 5x5 region.						1		IEF IS	operating as a content adaptive	smooth filter based on 3x3 region																		SFC_STAT	E_BODY					---	-------	---	---	--	--	--	--						Restriction							For Integral Image	Mode, this field is Res	erved and MBZ.						1	Skin Tone Tuned IEF_Enable									Exists If:	//IEF Er	nable = 1									Restriction							For Integral Image	Mode, this field is Res							0	IEF Enable									Value	Name		Description						1	Enable	IEF Filter is Enal							0	Disable	IEF Filter is Disa	abled															Familiate and lines are	Marda and MD Marda d	Restriction	and and MD7					24.20	3 3	Mode and VD Mode, t	this field is Reser	ved and MBZ.				4	31:30	Reserved									Format:			MBZ					29:16	Source Region He	iaht								Format:	-9	U14	-1								'							This field specifies view. It defines the max value should 1 field. e.g. for 1920x1080 the crop region he usable and should	the source/crop region out-of-frame boundar be programmed to be content, FrameHeight eight should be set to 1	n of the input fra ry used prior to equal or small th InMBsMinus1 is 079(1080 lines). pixels for Scalin	ne in Unit of Pixel [13:0]. Ime used for scaling of the graphic AVS/IEF interpolation operation. The man the input FrameHeightinMBminus equal to1087 (1088 lines); however, The last 8 lines are assumed to be not g or IEF operations. Otherwise, the output frame.						Restriction : For In	tegral Image Mode, thi	s field is Reserve	ed and MBZ.						Restriction: For AVS mode, the restriction is tied to chroma input format type: 420 - multiple of 2. 422/444/400 - no restrictions, except for AVS bypass case (ie. 1:1 scaling) where restriction is tied to chroma output format. Min Resolution is 128 pixels. Max Resolution is 16K pixels.											Restriction							In VD-to-SFC and Frame Resolution			orogrammed to same value as Input					15:14	Reserved																		SFC_STATE_BOD	Υ						---	-------	--	--	--	--	--	--				Format:	N	MBZ						13:0	Source Region Width									Format:	U14-1								romat.	014-1								Source/Crop Region Width Minus 1 of the Input Frame in Unit of Pixel [13:0]. This field specifies the source/crop region of the input frame used for scaling of the graphic view. It defines the out-of-frame boundary used prior to AVS/IEF interpolation operation. The max value should be programmed to be equal or small than the input FrameWidthinMBminus 1 field. e.g. for 1920x1080 content, FrameWidthInMBsMinus1																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					
is equal to1919 (1920 pixel wide); however, the crop region width should be set to less than 1909(1910 pixel wide). The last 10 pixels of the frame are assumed to be not usable and should not be used as source pixels for Scaling or IEF operations. Otherwise, the bad pixels will breach and cause artifacts into the									Restriction : For Integral Image Mode, this field is Reserved and MBZ.									Restriction: For AVS mode, the restriction is tied to c 2. 422 - multiple of 2. 444/400 - no restrictions, excel where restriction is tied to chroma output format. Mi Resolution is 16K pixels.	pt for A	AVS bypass case (ie. 1:1 scaling)							Restriction									In VD-to-SFC and HCP-to-SFC modes, this field must Frame Resolution Width.	be pro	ogrammed to same value as Input					5	31:30	Reserved																		Format:	N	MBZ						29:16	Source Region Vertical Offset									Format:		U14							[· · · · · · · · · · · · · · · · · · ·									Descriptio	n								Vertical Offset Of The SRC Region Relative To The In Unit Of Pixel [13:0] This field specifies the vertical offset of the starting p starting position (pixel 0,0) of the output frame. It de prior to AVS/IEF interpolation operation. This value s of the crop region is same as the input frame region. region size heightminus1 must be programmed to be FrameHeightinMBminus 1 field. Restriction: For Integral Image Mode, this field is Restriction.	osition fines th hould I The su e equa	n of the scaled region relatives to the he out-of-frame boundary used be set to zero if the starting corner um of this value and the src/crop Il or small than the input							SFC_STATE_BODY	Y				---	-------	---	----------	--------------------------------------	--				Restriction: For AVS mode, the restriction is tied to ch 2. 422/444/400 - no restrictions.	iroma	input format type: 420 - multiple of					Restriction							In VD-to-SFC and HCP-to-SFC modes, this field is Rese	erved	and MBZ				15:14	Reserved														Format:	M	ИВZ				13:0	Source Region Horizontal Offset							Format:		U14					Format:		014					Description)						Frame In Unit Of Pixel [13:0] This field specifies the horizontal offset of the starting position of the scaled region relatives to the starting position (pixel 0,0) of the output frame. It defines the out-of-frame boundary used prior to AVS/IEF interpolation operation. This value should be set to zero if the starting corner of the crop region is same as the input frame region. The sum of this value and the src/crop region size widthminus1 must be programmed to be equal or small than the input FrameWidthinMBminus 1 field. Restriction: For Integral Image Mode, this field is Reserved and MBZ. Restriction: For AVS mode, the restriction is tied to chroma input format type: 420 - multiple of 2. 444/400 - no restrictions.							Restriction							In VD-to-SFC and HCP-to-SFC modes, this field is Rese	erved	and MBZ			6	31:30	Reserved														Format:	N	ИВZ				29:16	Output Frame Height							Format:	J14-1						Tomat.	717 1						It is set to the value of the final output resolution of the support is 16k pixels, the max value allowed is 16K mir	_	•					Restriction : For Integral Image Mode, this field is Rese	erved	and MBZ.					Restriction: For AVS mode, the restriction is tied to ch of 2. 422/444/400 - no restrictions. Min Resolution is						SFC_STATE_BODY							---	----------------	---	-------	------------------------------	--	--			15:14	Reserved																Format:		MBZ					13:0	Output Frame Width	1															Format:	U14-	-1						It is set to the value of the final output resolution of support is 16k pixels, the max value allowed is 16K m	_	•						Restriction : For Integral Image Mode, this field is Re	serve	ed and MBZ.						Restriction: For AVS mode, the restriction is tied to of 2. 422 - multiple of 2. 444/400 - no restrictions. M Resolution is 16K pixels.						7	31:30	Reserved																Format:		MBZ					29:16	Scaled Region Size Height	ı															Format:	U14-	-1						It is set to the height of the scaled region over the o	utput	: frame of the graphic view.						It is set to the height of the scaled region over the output frame of the graphic view Restriction: For AVS mode, if rotation_mode = 0/180, the restriction is tied to chroma output for 420 - multiple of 2. 422/444/400 - no restrictions. For AVS mode, if rotation_mode = 90/270, the restriction is tied to chroma output for 420/422 - multiple of 2. 444/400 - no restrictions. Min Resolution is 128 pixels. Max Resolution is 16K pixels.								Programming	Note	25						The Max Value = < [The Output Frame Height Minus	1].						15:14	Reserved																Format:		MBZ					13:0	Scaled Region Size Width																Format:	U14-	-1						It is set to the Width of the scaled region over the ou	utput	frame of the graphic view.						Restriction : For AVS mode, the restriction is tied to d	•	<u> </u>														SFC_STATE_BODY								---	-------	---	---	--	--	--	--	--				of 2. 422 - multiple of 2. 444/400 - no restrictions. Min Re Resolution is 16K pixels	esolution is 128 pixels. Max									Programming Note	os.									The Max Value = < [The Output Frame Width Minus1].								8	31	Reserved								-												Format:	MBZ								30:16	Scaled Region Vertical Offset																				Format:	S14									Vertical Offset (in pixels) Of The Scaled Region Relative Output Frame In Unit Of Pixel [13:0]	es to The Starting Position Of The									This field specifies the vertical offset of the starting positio starting position (pixel 0,0) of the output frame. The gap be shall be filled by hardware with a set of programmed YUV/should be set to zero if the starting corner of the scaled region. The sum of this value and the scaled region size He be equal or small than the output FrameHeightinMBminus Programming Note	etween the scaled and output frame /RGB values (Grey Bar). This value gion is same as the output frame eightminus1 must be programmed to s 1 field plus 16.									This field must be set to zero if SFC Output surface format type is P010/P016.										This field flust be set to zero if 3i C Output surface format type is ro 10/ro 10.										Restriction										For Integral Mode, this field is reserved and MBZ										For AVS mode, the restriction is tied to chroma output for 422/444/400 - no restrictions.	rmat type: 420 - multiple of 2.									This field must be set to zero if SFC Output surface forma	t type is NV12.								15	Reserved										Format:	MBZ								14:0	Scaled Region Horizontal Offset										Format:	S14																			Description										Horizontal Offset (in pixels) Of The Scaled Region Relatives to The Starting Position Of The Output Frame In Unit Of Pixel [13:0] This field specifies the horizontal offset of the starting position of the scaled region relatives to the starting position (pixel 0,0) of the output frame. The gap between the scaled and output										frame shall be filled by hardware with a set of programme	ed YUV/RGB values (Grey Bar). This									SFC_STATE_BODY		----	-------																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																													
---				value should be set to zero if the starting corner of the scaled region is same as the output frame region. The sum of this value and the scaled region size Widthminus1 must be programmed to be equal or small than the output FrameWidthinMBminus 1 field plus 16.				Restriction : For Integral Image Mode, this field is Reserved and MBZ.				Restriction : For AVS mode, the restriction is tied to chroma output format type: 420 - multiple of 2. 422 - multiple of 2. 444/400 - no restrictions.				Restriction : This field must be set to zero if SFC output surface format type is NV12.				This field must be set to zero if SFC Output surface format type is P010/P016.		9	31:26	Reserved				Format: MBZ			25:16	Gray Bar Pixel - Y/R				Format: 10-bit UNORM Type								Range:[0.0, +1.0]				This is the default value used to fill in the area between the scaled region and the output frame				size (aka Gray Bar) in Y or R channel on the AYUV or RGBA domain respectively.				Restriction				For Integral Image Mode, this field is Reserved and MBZ.			15:10	Reserved			13.10	Format: MBZ			9:0	Gray Bar Pixel - U/G			3.0	Format: 10-bit UNORM Type								Range:[0.0, +1.0]				This is the default value used to fill in the area between the scaled region and the output frame				size (aka Gray Bar) in U or G channel on the AYUV or RGBA domain respectively.				Restriction				For Integral Image Mode, this field is Reserved and MBZ.		10	31:26	Reserved				Format: MBZ			25:16	Gray Bar Pixel - V/B				Format: 10-bit UNORM Type												Range:[0.0, +1.0]				Range:[0.0, +1.0] This is the default value used to fill in the area between the scaled region and the output frame size (aka Gray Bar) in V or B channel on the AYUV or RGBA domain respectively.					SFC_STATE_BODY					----	-------	--	---	--	--	--					Restriction							For Integral Image Mode, this field is Reserved and MBZ.							15:10	Reserved								Format:	MBZ						9:0	Gray Bar Pixe	I - A							Format:	10-bit UNORM Type															Range: [0.0, +									fault value used to fill in the area between the scaled region and the output frame respectively.								Restriction							For Integral Ir	mage Mode, this field is Reserved and MBZ.					11	31:26	Reserved								Format:	MBZ						25:16	UV Default value for V channel (For Mono Input Support)								Exists If:	//Input NOT originated by VEBOX.							Format:	10-bit UNORM Type							Range: [0.0, +									cifies the UV default value fill in to the UV output channels when input from to Monochrome.								Restriction							Not used whe	en input is originated by VEBOX (Including Integral Image Mode).						15:10	Reserved	mparis ongmates sy various and mosque image moses,						13.10	Format:	MBZ						9:0	UV Default va	alue for U channel (For Mono Input Support)							Exists If:	//Input NOT originated by VEBOX.							Format:	10-bit UNORM Type							Range: [0.0, +	1.0]							•	cifies the UV default value fill in to the UV output channels when input from to Monochrome.								Restriction							Not used whe	en input is originated by VEBOX (Including Integral Image Mode).					12	31:10	Reserved								SFC_STATE_BODY	•					----	---------------------	--	--	--	--	--				Format:	MBZ						9:0	Alpha Default Value								Format: 10-bit UNORM Type																Range:[0.0, +1.0]								This field specifies the Alpha default value fill into the a format type is set to RGBA8/10.	alpha output channel when output							Restriction								For Integral Image Mode, this field is Reserved and ME	Z.					13	31:28	Reserved								Format:	MBZ						27:5	Scaling Factor Height									U4.19							This field specifies the scaling ratio of the vertical sizes	petween the crop/source region and the							scaled region. The destination pixel coordinate, y-axis, is multiplied with this scaling factor to								mapping back to the source input pixel coordinate.								The field specifies the ratio of crop height resolution/ scaled height resolution. This implies $1/sf_u$								in the equation.							4:0	Reserved							7.0	Format:	MBZ						21.20	Reserved						14								14	31.20		MBZ					14		Format:	MBZ					14	27:5	Format: Scale Factor Width						14		Format: Scale Factor Width Format:	U4.19					14		Format: Scale Factor Width Format: This field specifies the scaling ratio of the horizontal size	U4.19 es between the crop/source region and					14		Format: Scale Factor Width Format: This field specifies the scaling ratio of the horizontal siz the scaled region. The destination pixel coordinate, x-ax	U4.19 es between the crop/source region and					14		Format: Scale Factor Width Format: This field specifies the scaling ratio of the horizontal siz the scaled region. The destination pixel coordinate, x-as mapping back to the source input pixel coordinate.	U4.19 es between the crop/source region and kis, is multiplied with this scaling factor to					14		Format: Scale Factor Width Format: This field specifies the scaling ratio of the horizontal siz the scaled region. The destination pixel coordinate, x-ax	U4.19 es between the crop/source region and kis, is multiplied with this scaling factor to					14		Format: Scale Factor Width Format: This field specifies the scaling ratio of the horizontal siz the scaled region. The destination pixel coordinate, x-as mapping back to the source input pixel coordinate. The field specifies the ratio of crop width resolution/ sc	U4.19 es between the crop/source region and kis, is multiplied with this scaling factor to					14	27:5	Format: Scale Factor Width Format: This field specifies the scaling ratio of the horizontal siz the scaled region. The destination pixel coordinate, x-as mapping back to the source input pixel coordinate. The field specifies the ratio of crop width resolution/ sc the equations above.	U4.19 es between the crop/source region and kis, is multiplied with this scaling factor to					14	27:5	Format: Scale Factor Width Format: This field specifies the scaling ratio of the horizontal siz the scaled region. The destination pixel coordinate, x-ax mapping back to the source input pixel coordinate. The field specifies the ratio of crop width resolution/ sc the equations above. Reserved	U4.19 es between the crop/source region and kis, is multiplied with this scaling factor to aled width resolution. This implies 1/sfu in						27:5	Format: Scale Factor Width Format: This field specifies the scaling ratio of the horizontal siz the scaled region. The destination pixel coordinate, x-ax mapping back to the source input pixel coordinate. The field specifies the ratio of crop width resolution/ sc the equations above. Reserved Format:	U4.19 es between the crop/source region and kis, is multiplied with this scaling factor to aled width resolution. This implies 1/sfu in						27:5 4:0 31:0	Format: Scale Factor Width Format: This field specifies the scaling ratio of the horizontal siz the scaled region. The destination pixel coordinate, x-as mapping back to the source input pixel coordinate. The field specifies the ratio of crop width resolution/ sc the equations above. Reserved Format: Reserved	U4.19 es between the crop/source region and is, is multiplied with this scaling factor to aled width resolution. This implies 1/sfu in MBZ					15	27:5 4:0 31:0	Format: Scale Factor Width Format: This field specifies the scaling ratio of the horizontal siz the scaled region. The destination pixel coordinate, x-ax mapping back to the source input pixel coordinate. The field specifies the ratio of crop width resolution/ sc the equations above. Reserved Format: Reserved Format:	U4.19 es between the crop/source region and kis, is multiplied with this scaling factor to aled width resolution. This implies 1/sfu i MBZ MBZ								SFC_ST	ATE_BODY	1				----	-------	---	------------------------	---------------------	--	--	--				For Integral I surface.	mage mode, the accumi	ulated integral ima	age values will be packed linear in this						Programming Notes									This field is ignored if I-frame only mode is set to 0 (Disable).								11:0	Reserved																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
Format:			MBZ				17	31:16	Reserved									Format:			MBZ					15:0	Output Frame Surface Base Address High									This field is for the upper range [47:32] of Output Frame Surface Base Address.									For Integral Image mode, the accumulated integral image values will be packed linear in this surface.							18	31:15	Reserved									Format:			MBZ					14:13	Output Surface Tiled Mode									Format: U2									For Media Surfaces: This field specifies the tiled resource mode.									Value		ne	Description						0h	TRMODE_NONE		No tiled resource						1h TRMODE_TILEYF									3h Reserved								12	Output Frame Surface Base Address - Row Store Scratch Buffer Cache Select									Format: MBZ									Value	Name		Description						0 D	isable [Default]	This field must	t be programmed to 0															Programming Notes									This must be	This must be set to 0							11	Reserved									Format: MBZ								10	Compression Type									Format: U1										pplicable only when Me								Value			ame						0	Media Compression E	nabled [Default]								SFC_STATE_BODY					----	-------	--	--	--	--	--				1 Render Compression Enabled							9	Output Frame Surface Base Address - Memory Compression Enable								Format:	Enable							Memory compression will be attempted for this surface.							8:7	Output Frame Surface Base Address - Arbitration Priority Control Format: HEVC_ARBITRATION_PRIORITY							6:1	Output Frame Surface Base Address - Index to Memory Object Control State (MOCS) Tables								Format:	U6							The index to define the L3 and system cache memory properties. The details of the controls are further defined in L3 and Page walker (memory interface) control registers.								The field is defined to populate 64 different surface controls to be used concurrently. Related control registers can be updated during runtime.							0	Reserved						19	51.12	AVS Line Buffer Surface Base Address Specifies the 4K byte aligned frame buffer address for scratch space used for row/column store. This surface is used only if the internal buffer inside the SFC HW is not large enough to contain all row/column memory accesses. The AVS line buffer needs to be a valid address even for 1:1 scaling if SFC is used. Programming Notes								This field needs to be programmed separately and exclusively for each pipe when SFC engine mode is not programmed 2'b00(Scalability workloads).							11:0	Reserved								Format:	MBZ					20	31:16	Reserved								Format:	MBZ						15:0	AVS Line Buffer Surface Base Address High This field is for the upper range [47:32] of AVS Line Buffer Surface Base Address. AVS Line buffer address needs to be valid even for 1:1 scaling if SFC is used.								Programming Notes								This field needs to mode is not prog	be programmed separately and exclusively for each pipe when SFC engine rammed 2'b00.					21	31:15	Reserved								Format:	MBZ						14:13	AVS Line Buffer	filed Mode							Format:	U2								es: This field specifies the tiled resource mode.										TE_BOD	/ 1			------------------	--	--------	--------------	-------------------------------	------------------------	------------------------------	---------------------------			Value	TDA		lame		N. C. I	Description			0h		IODE_NONE			No tiled re			1h TRMODE_TILEYF				4KB tiled re						2h		1ODE_TILEYS	<u> </u>		64KB tiled	resources			3h	-	erved						12	AVS Line Buff	fer Ba	se Address	- Row S	tore Scratch	Buffer Ca				Format:		D. C.				U1			This field controls if the Row Store is going to store inside Media Cache (rowstore cache LLC.					ia Cacne (rowstore cacne) or				Value		Nan	ne		I	Description			0		LLC		Buffer goir	g to LLC								•	N				This a C				ogramming					This suface do		t support to	put in f	cow Store Sc	ratch Buffei	· .		11	Reserved									Format: MBZ								10	AVS Line Buffer Base Address - Memory Compression Mode									Default Value:			0 Horizontal Compression Mode						Format: U1									Distinguishes vertical from horizontal compression. Please refer to vol1a? Memory Data Formats chapter - section ?media Memory Compression for more details.									Programming Notes									Memory compression is not supported. ?This bit is not used. Default to 0								9	AVS Line Buffer Base Address - Memory Compression Enable									Default Value				<i>y</i> ==p. c	0 Disa				Format:					Enabl				This bit control memory compression for this surface									Programming Notes									This bit must be set to 0 (Memory compression is not supported in this surface)								8:7	AVS Line Buff	fer Ba	se Address	- Arbitr	ation Priori	ty Control				Format:				ON_PRIORIT	•			6:1	AVS Line Buff	fer Ba	se Address	- Index	to Memory	Object Co	ntrol State (MOCS) Tables			Format:					•	U6			The index to define the L3 and system cache memory properties. The details of the controls are further defined in L3 and Page walker (memory interface) control registers.											SFC_STATE_E	BODY				----	-------	--	---	-------------	---------------------------------------	--					efined to populate 64 different su ters can be updated during runtin		rols to be used concurrently. Related				0	Reserved						22	31:12	IEF Line Buffer Surface Base Address Specifies the 4K byte aligned frame buffer address for the scratch space used for row/column store. This surface is used only if the internal buffer inside SFC HW is not large enough to contain all row/column memory accesses. Programming Notes This field needs to be programmed separately and exclusively for each pipe when SFC engine								mode is not	programmed 2'b00.								Rest	triction						For Integral I	mage Mode, this field is Reserved	and MBZ.					11:0	Reserved								Format:			MBZ			23	31:16	Reserved								Format:			MBZ					This field is for the upper range [47:32] of IEF Line Buffer Surface Base Address. Programming Notes This field needs to be programmed separately and exclusively for each pipe when SFC engine mode is not programmed 2'b00.								Restriction								For Integral Image Mode, this field is Reserved and MBZ.						24	31:15	Reserved								Format:			MBZ				14:13	IEF Line Buff	er Tiled Mode							Format:			U2						Irfaces: This field specifies the tile	d resource						Value	Name	NI - 4	Description					0h 1h	TRMODE_NONE		tiled resource tiled resources					2h	TRMODE_TILEYF TRMODE_TILEYS		B tiled resources					3h	Reserved	0410	b theu resources				12		er Base Address - Row Store Scr	atch Buff	er Cache Select				12	Format:	C. Bust Audiess - NOW Stole Sti	aten buil	U1					This field cor	ntrols if the Row Store is going to	store insid	e Media Cache (rowstore cache) or to						SFC_STA	TE_BODY						-------------------	---	--	--	--------------------	----------------------	---------------------	--	--				Value	Name		Description							0	LLC	Buffer going to	LLC								,											ogramming Not								This surface does n	ot support Rowstore	Scratch Buffer C	ache. ?Must be pro	ogrammed to 0					11	Reserved										Format:			MBZ						10	IEF Line Buffer Bas	e Address - Memor	y Compression I	Mode	,						Default Value:				0						Format:				U1						Distinguishes vertic	cal from																																																																																																																																																																																																																																																																																																																																																			
horizontal co											ogramming Not								<u>L</u>	nory compression is n			ult to0					9	IEF Line Buffer Base Address - Memory Compression Enable										Default Value:			0 Disable							Format:			Enable							Programming Notes										Memory compression is not supported for this surface										Must be 0.									8:7	IEF Line Buffer Bas	e Address - Arbitrat	tion Priority Con	itrol							Format:	HEVC_ARBITRATIO	ON_PRIORITY							6:1	IEF Line Buffer Base Address - Index to Memory Object Control State (MOCS) Tables										Format:			U6							The index to define the L3 and system cache memory properties. The details of the controls are further defined in L3 and Page walker (memory interface) control registers.											to populate 64 diffe in be updated during		rols to be used cor	ncurrently. Related					0	Reserved								25	25 31:12 SFD Line Buffer Surface Base Address Specifies the 4K byte aligned frame buffer address for the scratch space used fo store. This surface is used only if the internal buffer inside SFC HW is not large enall row/column memory accesses.									Programming Notes				es								This field needs to mode is not progra	be programmed sepa ammed 2'b00.	arately and exclus	sively for each pipe	e when SFC engine								Restriction										SFC_STATE	BOL	ΟY				----	-------	--	----------	---	---------------------	-------------------	------------------------------	--				For Integ	ral Im	age Mode, this field is Reserv	ed and	MBZ.					11:0	Reserved	Reserved									Format:				MBZ				26	31:16	Reserved										Format:	ormat:			MBZ					15:0			er Surface Base Address High the upper range [47:32] of SF		Buffer Surface	Base Address.							Progra	mming	Notes								s to be programmed separate ogrammed 2'b00.	ely and o	exclusively for	each pipe when SFC engine							Re	estrictio	on						For Integ	ral Im	age Mode, this field is Reserv	ed and	MBZ.				27	31:15	Reserved				Į.						Format:				MBZ					14:13	SFD Line	Buffe	r Tiled Mode			T					Format:					U2							faces: This field specifies the t	iled res	ource mode.						Valu	е	Name	Description							0h		TRMODE_NONE	No tiled resource							1h		TRMODE_TILEYF	4KB tiled resources							2h		TRMODE_TILEYS		64KB tiled res	sources					3h		Reserved							12		Buffe	er Base Address - Row Store	Scratch	n Buffer Cache						Format:	contr	rols if the Row Store is going t	o storo	incida Madia (U1					LLC.	COIIti	ois if the Now Store is going t	o store	iliside iviedia (cache (rowstore cache) or to					Value		Name		D	Description					0	LLC		Buffer	going to LLC						1	Med	ia Storage [Default]	Data v	will first cache	in Media Storage															Programming Notes										This surface does not support Rowstore Scratch Buffer Cache. Must be programmed to 0					st be programmed to 0				11	Reserved				1						Format:				MBZ					10	SFD Line Default V		er Base Address - Memory Co	ompres	sion Mode	0							SFC_STATE_BC	DDY					----	-------	---	----------------------	----------------------------	---	--	--	--				Format:				U1						Distinguishes vertical from horizontal compression. Please refer to vol1a Memory Data Formats chapter - section media Memory Compression for more details.												Programmi	ing Not	res						Must be zero; me	emory c	compression is not suppo	rted for	this surface. Default to0					9	SFD Line Buffer	Base Ac	ddress - Memory Compi	ression	Enable						Default Value:				0 Disable						Format:				Enable								D	NI - 4							Mamary compre	ossion is	Programmi		es						Must be 0.	2551011 15	s not supported for this s	urrace						8:7	SFD Line Buffer I	Base Ad	ddress - Arbitration Pric	ority Co	ntrol						Format:	HEV	/C_ARBITRATION_PRIOR	RITY						6:1	SFD Line Buffer	Base Ac	ddress - Index to Memo	ry Obje	ect Control State (MOCS) Tables						Format:				U6						further defined in The field is defined	n L3 and ed to po	d Page walker (memory ir	nterface	operties. The details of the controls are) control registers. rols to be used concurrently. Related					0	Reserved								28	31:28	Output Surface Format									27	Output Surface Interleave Chroma Enable									26:20	20 Reserved																				Format:				MBZ					19:3	Output Surface F	Pitch																			Format:		U17-1 Pitch in (Bytes - 1)							This field specifie	es the su			Description						[0,2047]	CLIDET	Name TYPE_BUFFER Surfaces	Г1	Description B, 2048B]						[0,131071]		Linear Surfaces		<u> </u>						[511,131071]		d Surface	[64B, 512KB] = [1 CL, 8K CLs] [512B, 256KB] = [1tile, 512 tiles]							[127,131071]		I surfaces		28B,256KB] = [1 tile, 2048 tiles]						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1											Programmi	ng Not	es			#### **SFC STATE BODY** - For tiled surfaces, the pitch must be a multiple of the tile width - For Linear surfaces, the pitch must be a multiple of CL (64B) width - If **Half Pitch for Chroma** is set, this field must be a multiple of two tile widths for tiled surfaces, or a multiple of 2 bytes for linear surfaces. If Media Memory Compression is enabled, the following max pitch size restriction must be honored. For larger resolution, Media Memory compression Must be disabled.	Tiling Mode	Pixel Format	Max Frame Width (bytes)	Max Frame Width (pixels)	Max Pitch (bytes)		----------------	-----------------	-------------------------	--------------------------	----------------------		Legacy 4K	8bpp	16k	16k	16k + 127			16bpp	16k	8k	16k + 127			32bpp	16k	4k	16k + 127			64bpp	16k	2k	16k + 127			128bpp	16k	1k	16k + 127		TileYF	8bpp	8k	8k	8k + 63			16bpp	16k	8k	16k + 127			32bpp	16k	4k	16k + 127			64bpp	16k	2k	16k + 255			128bpp	16k	1k	16k + 255		TileYS	8bpp	16k	16k	16k + 255			16bpp	16k	8k	16k + 511			32bpp	16k	4k	16k + 511			64bpp	16k	2k	16k + 1023			128bpp	16k	1k	16k + 1023	2 Output Surface Half Pitch For Chroma	Exists If:	//PLANAR Surface Formats Only		------------	-------------------------------		Format:	Enable	This field indicates that the chroma plane(s) will use a pitch equal to half the value specified in the Surface Pitch field. #### 1 Output Surface Tiled	Format:	Boolean		---------	---------		---------	---------	This field specifies whether the surface is tiled.	Value	Name	Description			-------	-------	-------------	--		1	True	Tiled			0	FALSE	Linear		#### **Programming Notes** #### **SFC STATE BODY** Linear surfaces can be mapped to Main Memory (uncached) or System Memory (cacheable, snooped). Tiled surfaces can only be mapped to Main Memory. The corresponding cache(s) must be invalidated before a previously accessed surface is accessed again with an altered state of this bit. **Output Surface Tile Walk** 0 Format: SFC Tile Walk This field specifies the type of memory tiling (XMajor or YMajor) employed to tile this surface. See Memory Interface Functions for details on memory tiling and restrictions. **Value Name** 0 TILEWALK XMAJOR TILEWALK YMAJOR **Programming Notes** The corresponding cache(s) must be invalidated before a previously accessed surface is accessed again with an altered state of this bit. This field is ignored when the surface is linear. 29 31:30 Reserved MBZ Format: 29:16 Output Surface X Offset For U Exists If: //PLANAR Surface Formats Only Format: U14 Pixel Offset This field specifies the horizontal offset in pixels from the **Surface Base Address** to the start (origin) of the U(Cb) plane or the interleaved UV plane if Interleave Chroma is enabled. **Programming Notes** For PLANAR 420 and PLANAR 422 surface formats, this field must be zero. 15:14 Reserved Format: MBZ 13:0 **Output Surface Y Offset For U** Exists If: //PLANAR Surface Formats Only Format: U14 Pixel Row Offset This field specifies the vertical offset in rows from the **Surface Base Address** to the start (origin) of the U(Cb) plane or the interleaved UV plane if Interleave Chroma is enabled. **Programming Notes**				SFC_STATE_BODY						--	---	---	---																																																																																																																																																																																																																																																																																																																																																																																																																																																
---	--	--	--				For PLANAI multiple MI	R_420 and PLANAR_422 surface formats, this f $3s$.	ield must be multiple of 16 pixels - i.e.					30	31:30	Reserved											1.407						20.15	Format:	MBZ							29:16	Output Sur	face X Offset For V								Exists If:	//PLANAR Surface Formats with Interleaved	Chroma Disable							Format:	U14 Pixel Offset								-	pecifies the horizontal offset in pixels from the ne V(Cr) plane.	Surface Base Address to the start							, , ,	Programming Note	25							For PLANAR_420 and PLANAR_422 surface formats, this field must indicate an even number of pixels.								15:14	Reserved																		Format: MBZ								13:0	Output Surface Y Offset For V									F :	((DIANIAD C. C. F	GI							Exists If: Format:	//PLANAR Surface Formats with Interleaved U14 Pixel Offset	Chroma Disable								recifies the vertical offset in rows from the Sur	face Base Address to the start (origin)								Programming Note	es							For PLANAI pixels.	R_420 and PLANAR_422 surface formats, this f	ield must indicate an even number of					31	31:1	Reserved							32	31:0	Reserved							33	31:30	Reserved		1							Format:		MBZ						29:16	SourceEnd	<u> </u>	1144					Format: U14 Indicates the X-direction end location in the original input frame				t frame to SEC For 420/422 this field						t name to 31 c. 1 of 420/422 this field										es										only programmed when SFC Pipe Mode is HC be in sync with tile widthsize programmed in							15:14	Reserved								1										SFC_STATE_BODY						----	-------	---	--	--	--	--				Format: MBZ							13:0	SourceStartX								Format: U14								Indicates the X-direction start location in the original input frame to SFC. For 420/422 this field should be in multiple of 2.								Programming Notes								This field is only programmed when SFC Pipe Mode is HCP-to-SFC This should be in sync with tile width size programmed in HCP_TILE_CODING command						34	31:30	Reserved								Format: MBZ							29:16	DestinationEndX								Format: U14								Indicates the X-direction end location in the output frame of SFC.								Programming Notes								This field is valid only in Scalability Mode. Please refer to SFC Programming Model to program this field.							15:14	Reserved								Format: MBZ							13:0	DestinationStartX								Format: U14								Indicate the X-direction start location in the output frame of SFC.								Programming Notes								This field is valid only in Scalability Mode. Please refer to SFC Programming Model to program this field.						35	31:29	Reserved								Format: MBZ							28:5	Xphaseshift								Format: s4.19								Xphaseshift would be programmed to do output centering in x-direction.								Programming Notes								This field allows user to program the horizontal address/coordinate of the center of scaling. For the valid programming where the scaling center is within the original image, the numerical/floatingvalue for the Xphaseshift would be $c_x*(1/sf_hor - 1)$. The sf_hor in the above equation is the numerical/floating value of the horizontal scaling factor while c_x corresponds to the normalized horizontal coordinate of the scaling center (i.e., $0 <= c_x <= 1$). For example, if $(c_x, c_y) = (0, 0)$, the scaling center would be the legacy top-left mode while $(c_x, c_y) = (0.5, 0.5)$ would be the center mode which corresponds to the default of many other								display solutions.									SFC_STATE_BOD	ΟY				----	--	---	---	-------------------------	--	--			4:0	Reserved								Format:		MBZ				36	31:29	Reserved								Format:		MBZ					28:5	Yphaseshift								Format:		s4.19						Yphaseshift wou	lld be programmed to do output ce	ntering in y-direction.							Programming	Notes					s/coordinate of the center of scaling. r is within the original image, the se c_y*(1/sf_ver- 1). rating value of the verticalscaling factor rdinate of the scaling center (i.e., 0 <= would be the legacy top-left mode while ch corresponds to the default of many other								4:0	Reserved								Format:		MBZ				37	31:12	or the scratch space used for row/column nside SFC HW is not large enough to contain								For Integral Image Mode, this field is Reserved and MBZ.							11:0	Reserved								Format:		MBZ				38	31:16	Reserved								Format:		MBZ					15:0		uffer Surface Base Address High he upper range [47:32] of AVS Line Restriction							For Integral Ima	ge Mode, this field is Reserved and					39	21.15	Reserved	ge wode, this field is neserved and	WIDE.				39	31.15	Format:		MBZ					14:13	AVS Line Tile B	uffer Tiled Mode							Format:		U2							aces: This field specifies the tiled res							Value	Name	Description						SFC_STATE	BODY				-----	---	---	----------------	---------------------	-----------------------			0h	TRMODE_NONE	No t	tiled resource				1h	TRMODE_TILEYF	4KB	tiled resources				2h	TRMODE_TILEYS	64KI	B tiled resources				3h	Reserved					12	AVS Line Tile	Buffer Base Address - Row S	tore Scratch	Buffer Cache Sel	ect			Format:			U1				This field cont	rols if the Row Store is going t	to store insid	e Media Cache (rov	wstore cache) or to			Value	Name		Descrip	tion			0	LLC [Default]	Buffer	going to LLC											This surface d		amming Not						oes not support Rowstore Scra	atch Buffer C	ache. Must be prog	grammed to 0		11	Reserved Format:		MBZ				10	<u> </u>	D	C				10	Default Value:	Buffer Base Address - Memo	ory Compres	sion Mode	0			Format:	U1						Distinguishes	vertical from horizontal compr						Programming Notes							Must be zero;	memory compression is not s	upported for	this surface. Defau	ılt to0		9	AVS Line Tile	Buffer Base Address - Memo	ory Compres	sion Enable				Default Value:		,	0 Disable				Format: Enable			Enable											Programming Notes							Memory compression is not supported for this surface Must be 0.						8:7	AVS Line Tile	Buffer Base Address - Arbitr	ation Priorit	y Control				Format:	HEVC_ARBITRATION_P	RIORITY				6:1	AVS Line Tile	Buffer Base Address - Index	to Memory	Object Control St	ate (MOCS) Tables			Format:			U6					efine the L3 and system cache d in L3 and Page walker (mem		•	s of the controls are				fined to populate 64 different ers can be updated during run		rols to be used cor	ncurrently. Related					SFC_STATE_BO	DY		----	-------	---																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
--	---			0	Reserved				40	31:12	Specifies the 4l store. This surfa all row/column	, ,				11:0	Reserved	age Wode, this held is Neserved and	3 HBZ.			11.0	Format:		MBZ		41	31.16	Reserved		I		••	31.10	Format:		MBZ			15:0	IEF Line Tile Bu	uffer Surface Base Address High	- I					the upper range [47:32] of IEF Line	Tile Buffer Surface Base Address.					Restrict	tion				For Integral Im	age Mode, this field is Reserved and	d MBZ.		42	31:15	Reserved						Format:		MBZ			14:13		ıffer Tiled Mode					Format:	te e e e This Cold en estima de editor de	U2				Value	faces: This field specifies the tiled re	Description				0h	TRMODE_NONE	No tiled resource				1h	TRMODE_TILEYF	4KB tiled resources				2h	TRMODE_TILEYS	64KB tiled resources				3h	Reserved				12	IEF Line Tile Bu	ıffer Base Address - Row Store Sc	ratch Buffer Cache Select				Format:		U1				This field contr LLC.	ols if the Row Store is going to stor	e inside Media Cache (rowstore cache) or to				Value	Name	Description				0	LLC [Default]	Buffer going to LLC										TI: 6 1	Programmir						bes not support Rowstore Scratch Bi	uffer Cache. Must be programmed to 0			11	Reserved		MP7			10	Format:	effect Description of the Company	MBZ			10		uffer Base Address - Memory Com					Default Value:		0				SFC_STATE_BODY			----	-------	--	--------------------------------------				Format:	U1				Distinguishes vertical from horizontal compression. Please chapter - section media Memory Compression for more	_				Programming Note	es				Must be zero; memory compression is not supported for	this surface. Default to0			9	IEF Line Tile Buffer Base Address - Memory Compressi	on Enable				Default Value:	0 Disable				Format:	Enable				Programming Note	es				Memory compression is not supported for this surface Must be 0.				8:7	IEF Line Tile Buffer Base Address - Arbitration Priority Format: HEVC_ARBITRATION_PRIORITY	Control			6:1	IEF Line Tile Buffer Base Address - Index to Memory O	bject Control State (MOCS) Tables				Format:	U6									The index to define the L3 and system cache memory profurther defined in L3 and Page walker (memory interface)	•				The field is defined to populate 64 different surface control registers can be updated during runtime.	ols to be used concurrently. Related			0	Reserved			43	31:12	SFD Line Tile Buffer Surface Base Address Specifies the 4K byte aligned frame buffer address for the store. This surface is used only if the internal buffer inside all row/column memory accesses.	•				Restriction					For Integral Image Mode, this field is Reserved and MBZ.				11:0	Reserved					Format:	MBZ		44	31:16	Reserved					Format:	MBZ			15:0	SFD Line Tile Buffer Surface Base Address High This field is for the upper range [47:32] of SFD Line Tile Bo	uffer Surface Base Address.				Restriction					For Integral Image Mode, this field is Reserved and MBZ.			45	31:15	Reserved	1				Format:	MBZ				SFC_STAT	E_BODY	7				-------	---	---	-----------------	----------------------	--------------------	--		14:13	SFD Line Tile	Buffer Tiled Mode							Format:			U2						irfaces: This field specifies th	e tiled resour						Value	Name		Descri	ption				0h	TRMODE_NONE	No	o tiled resource					1h	TRMODE_TILEYF	4K	(B tiled resources					2h	TRMODE_TILEYS	64	64KB tiled resources					3h	Reserved						12		Buffer Base Address - Row	Store Scrate	ch Buffer Cache Sel	ect				Format:			U1					LLC.	trols if the Row Store is goin	g to store ins	·	·				Value	Name		Descrip	otion				0	LLC [Default]	Buff	er going to LLC						Proc	gramming No	otes					This surface of	does not support Rowstore S			grammed to 0			11	Reserved								Format: MBZ							10	SFD Line Tile Buffer Base Address - Memory Compression Mode								Default Value	e:			0				Format:				U1				_	s vertical from horizontal com tion media Memory Compre	•		emory Data Formats					Prog	gramming No	otes					Must be zero; memory compression is not supported for this surface. Default to0							9	SFD Line Tile	Buffer Base Address - Men	nory Compre	ession Enable					Default Value	e:		0 Disable					Format:			Enable						Prog	gramming No	otes					Memory cor Must be 0.	npression is not supported fo	or this surface	2				8:7	SFD Line Tile	Buffer Base Address - Arbi	tration Prior	rity Control					Format:	HEVC_ARBITRATION	_PRIORITY						CED 1: T'I	Duffer Page Address Inde	4	. Ol.: 4 C 4 1 C4	ata (MOCC) Tables			6:1	SFD Line Tile	Buffer Base Address - Inde	x to wemor	y Object Control St	ate (MOCS) Tables				SFC_STATE_BODY		---	--			The index to define the L3 and system cache memory properties. The details of the controls are further defined in L3 and Page walker (memory interface) control registers.			The field is defined to populate 64 different surface controls to be used concurrently. Related control registers can be updated during runtime.		0	Reserved	## **SIMD1 Untyped BUFFER Surface 64-Bit Address Payload**	MAP64B_U	SU_SIMI	D1 - SIMD1 Untyped BUFFER	Surface 64-Bit		-----------------	---------------	--------------------------------------	----------------				Address Payload			Source:	BSpec				Size (in bits):	64				Default Value:	0x00000000, 0	0x00000000			DWord	Bit	Description			0.0-0.1	63:0	UO										Format:	U64				Specifies the U channel for slot [0]	·						## **SIMD8 Dual Source Render Target Data Payload**	MDP_RTW_	_8DS - SIN	ID8 Dual S	ource Render Target Data Payload		-----------------	---------------	--------------------	--		Source:	BSpec				Size (in bits):	2048				Default Value:			00000, 0x00000000, 0x00000000, 0x00000000			•	·	00000, 0x00000000, 0x00000000, 0x00000000			•	·	00000, 0x00000000, 0x00000000, 0x00000000					00000, 0x00000000, 0x00000000, 0x00000000			•	•	00000, 0x00000000, 0x000000000, 0x00000000					00000, 0x00000000, 0x00000000, 0x00000000			0x00000000, 0	0x00000000, 0x000	00000, 0x00000000, 0x00000000, 0x00000000					00000, 0x00000000, 0x00000000, 0x00000000					00000, 0x00000000, 0x00000000, 0x00000000			0x00000000, (Jx000000000, 0x000	00000, 0x00000000		DWord	Bit		Description		0.0-0.7	255:0	Src0 Red	1									Format:	MDP_DW_SIMD8				Slots[7:0] or [15:	8] of Src0 Red		1.0-1.7	255:0	Src0 Green										Format:	MDP_DW_SIMD8				Slots[7:0] or [15:	8] of Src0 Green		2.0-2.7	255:0	Src0 Blue										Format:	MDP_DW_SIMD8																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																													
Slots[7:0] or [15:	8] of Src0 Blue		3.0-3.7	255:0	Src0 Alpha										Format:	MDP_DW_SIMD8				Slots[7:0] or [15:	8] of Src0 Alpha		4.0-4.7	255:0	Src1 Red										Format:	MDP_DW_SIMD8				Slots[7:0] or [15:	8] of Src1 Red		MDP_RTW_	8DS - SIN	1D8 Dual Sour	ce Render Target Data Payload		----------	-----------	---------------------------	-------------------------------							5.0-5.7	255:0	Src1 Green					Format:	MDP_DW_SIMD8				Slots[7:0] or [15:8] of 9	Src1 Green		6.0-6.7	255:0	Src1 Blue										Format:	MDP_DW_SIMD8				Slots[7:0] or [15:8] of 9	Src1 Blue		7.0-7.7	255:0	Src1 Alpha										Format:	MDP_DW_SIMD8				Slots[7:0] or [15:8] of 5	Src1 Alpha	# **SIMD8 LOD Message Address Payload Control**	MACR_	LOD_SIMD		D Message Address Payload		-----------------	---------------	-------------------------------	---		Source:	BSpec	Cont	roi		Size (in bits):	256				Default Value:	0x00000000, (00, 0×00000000, 0×00000000, 0×00000000,		DWord	Bit		Description		0.0	31:0	Slot0 LOD					Format: Specifies the LOD for	MACD_LOD or slot 0		0.1	31:0	Slot1 LOD					Format:	MACD_LOD				Specifies the LOD for	or slot 1		0.2	31:0	Slot2 LOD					Format:	MACD_LOD				Specifies the LOD for	or slot 2		0.3	31:0	Slot3 LOD					Format:	MACD_LOD				Specifies the LOD for	pr slot 3		0.4	31:0	Slot4 LOD						MACD LOD				Format: Specifies the LOD for	mACD_LOD or slot 4		0.5	31:0	Slot5 LOD										Format:	MACD_LOD				Specifies the LOD fo	or slot 5		MACR_LO	D_SIMD	08 - SIMD8 LOI Contr	O Message Address Payload ol		---------	--------	-------------------------	------------------------------		0.6	31:0	Slot6 LOD					Format:	MACD_LOD				Specifies the LOD for	slot 6		0.7	31:0	Slot7 LOD					Format:	MACD_LOD				Specifies the LOD for	slot 7	## **SIMD8 MSAA Typed Surface 32-Bit Address Payload**	MAP32B_	MSAA_1	rs_simd8 -	SIMD8 MSAA Typed Surface 32-Bit		--	--	--	---				Add	ress Payload		Source: Size (in bits): Default Value:	0x000000 0x000000 0x000000 0x000000 0x000000	00, 0x00000000, 0x 00, 0x00000000, 0x 00, 0x00000000, 0x 00, 0x00000000, 0x 00, 0x00000000, 0x	x00000000, 0x00000000, 0x00000000, 0x00000000		DWord	Bit		Description		0.0	31:0	Slot0 Sample N	lumber				Format:	MACD_MSAA_SN				Specifies the sa	imple number for slot 0		0.1	31:0	Slot1 Sample N	lumber				Format: Specifies the sa	MACD_MSAA_SN ample number for slot 1		0.2	31:0	Slot2 Sample N	·									Format:	MACD_MSAA_SN				Specifies the sa	imple number for slot 2		0.3	31:0	Slot3 Sample N	lumber				Format:	MACD_MSAA_SN					imple number for slot 3		0.4	31:0	Slot4 Sample N	lumber				Format:	MACD_MSAA_SN				Specifies the sa	imple number for slot 4		0.5	31:0	Slot5 Sample N	lumber		Format: Specifies the sar Slot6 Sample No	MACD_MSAA_SN mple number for slot 6		--	--		Slot6 Sample Note Format: Specifies the sample Note Slot7 Samp	mple number for slot 5 lumber MACD_MSAA_SN mple number for slot 6		Slot6 Sample Note Format: Specifies the sample Note Slot7 Samp	mple number for slot 5 lumber MACD_MSAA_SN mple number for slot 6		Slot6 Sample No. Format: Specifies the sar Slot7 Sample No.	MACD_MSAA_SN mple number for slot 6		Format: Specifies the sar	MACD_MSAA_SN mple number for slot 6		Specifies the sar	mple number for slot 6		Slot7 Sample N				lumber		Format:				MACD_MSAA_SN		Specifies the sar	mple number for slot 7		U			_	MACD COL		Format:	MACR_32b		specifies the 0 c	channel for slots [7:0]		V						Format:	MACR_32b		Specifies the V c	channel for slots [7:0]		R						Format:	MACR_32b		Specifies the R c	channel for slots [7:0]		LOD			Format:	MACR_LOD_SIMD8		ļ				Specifies the V R Format: Specifies the R	## **SIMD8 Render Target Data Payload**	MDP_RTW_8 - SIMD8 Render Target Data Payload						--	---------------------------------------	-------------------	---	--		Source:	BSpec					Size (in bits):	1024					Default Value:	· · · · · · · · · · · · · · · · · · ·	•	000, 0x00000000, 0x00000000, 0x00000000,				•	•	000, 0x00000000, 0x00000000, 0x00000000,						000, 0x00000000, 0x00000000, 0x00000000, 0x00000000				· · · · · · · · · · · · · · · · · · ·	00000000, 0x00000	000, 0x00000000, 0x00000000, 0x00000000,			DWord	Bit		Description			0.0-0.7	255:0	Red												Format:	MDP_DW_SIMD8					Slots [7:0] Red				1.0-1.7	255:0	Green						Format:	MDP_DW_SIMD8					Slots [7:0] Greer						31013 [7.0] Green				2.0-2.7	255:0	Blue						Format:	MDP_DW_SIMD8					Slots [7:0] Blue				3.0-3.7	255:0	Alpha												Format:	MDP_DW_SIMD8					Slots [7:0] Alpha			## **SIMD8 Typed Surface 32-Bit Address Payload**	MAP32B_TS_SIMD8 - SIMD8 Typed Surface 32-Bit Address							--	---	--------------------------	---	---------------------	--					Payload				Source: Size (in bits):	BSpec						Default Value:	1024 0x00000000, 0x00000000, 0x00000000, 0x00000000						DWord	Bit			Description			0.0-0.7	0.0-0.7 255:0								Format: Specifies the	U channel for slots	MACR_32b s [7:0]			1.0-1.7	255:0	V							Format: Specifies the	V channel for slots	MACR_32b [7:0]			2.0-2.7	255:0	R							Format: Specifies the	R channel for slots	MACR_32b : [7:0]			3.0-3.7	255:0	LOD							Format: Specifies the	Format: MACR_LOD_SIMD8 Specifies the LOD for slots [7:0]			# **SIMD8 Untyped BUFFER Surface 32-Bit Address Payload**	MAP32B	MAP32B_USU_SIMD8 - SIMD8 Untyped BUFFER Surface 32-Bit						-----------------	--	---------------------	------------------	----------	--				Addres	ss Payloa	nd			Source:	Source: BSpec						Size (in bits):	256						Default Value:	Default Value: 0x00000000, 0x00000000, 0x000000000, 0x00000000						DWord	Bit	Bit Description					0.0-0.7	255:0	U														Format:		MACR_32b					Specifies the U cha	nnel for slots [[7:0]		## **SIMD8 Untyped BUFFER Surface 64-Bit Address Payload**	MAP64B_USU_SIMD8 - SIMD8 Untyped BUFFER Surface 64-Bit						--	---	-----------------	-------------------	----------				Addre	ess Payloa	ad		Source:	BSpec					Size (in bits):	512					Default Value:	0x0000000, 0x00000000, 0x00000000, 0x00000000					DWord	Bit	Description				0.0-0.7	255:0	U3_U0						Format:		MACR_64b				Specifies the U	channel for slots	s [3:0]		1.0-1.7																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
255:0	U7_U4		1				Format:		MACR_64b				Specifies the U	channel for slots	s [7:4]	#### **SIMD8 Untyped STRBUF Surface 32-Bit Address Payload**	MAP32B_USUV_SIMD8 - SIMD8 Untyped STRBUF Surface 32-Bit							---	--	---------------------	-----------------------	--	--				Addres	s Payload				Source:	BSpec						Size (in bits):	512						Default Value:	0x00000000, 0x00000000, 0x00000000, 0x00000000						DWord	Bit		Description				0.0-0.7	255:0	U							Format:	MACR_32b						Specifies the U ch	annel for slots [7:0]				1.0-1.7	255:0	V														Format:	MACR_32b						Specifies the V cha	annel for slots [7:0]			#### **SIMD8 URB Channel Mask Message Address Payload** written to the URB.	MAPU_CMASK_SIMD8 - SIMD8 URB Channel Mask Message								---	--------	--	-----------------	--	--	--					Address Payload					Source:		BSpec						Size (in b	oits):	256	256					Default \	/alue:	0x00000000, 0x00000000, 0x00000000, 0x00000000						DWord	Bit		Description					0.0-0.7	255:0	Per Slot Channel Mask								Format: MACD_URB_CMASK[8]					Each slot's mask field is combined with the execution mask to determine which Dwords are # **SIMD8 URB Offset Message Address Payload**	M	APU	_SIMD8 - SIMD8 URB Offset M	essage Address Payload				------------	---	--	------------------------	--	--		Source:		BSpec					Size (in b	oits):	256					Default \	Default Value: 0x00000000, 0x000000000, 0x000000000, 0x00000000						DWord	Bit	Description	on				0.0-0.7	255:0	Slot Offset							Format: U32[8]							Each slot's offset field is added to the Global Offset (specified in the message descriptor) and the slot's URB Handle (specified in the message header)to generate the URB address for this access. This offset and the Global Offset are specified as Oword units (128 bits).							Value	Name						[0-2047]				## **SIMD16 Render Target Data Payload**	MDP	_RTW_16 -	SIMD16 Ren	nder Target Data Payload				-----------------	--	---------------------	--	--	--		Source:	BSpec						Size (in bits):	2048						Default Value:	0x00000000, 0x00000000, 0x00000000, 0x00000000							0x00000000, 0x0	00000000, 0x0000000	0, 0x00000000, 0x00000000, 0x00000000,					0x00000000, 0x0	00000000, 0x0000000	00, 0x00000000, 0x00000000, 0x000000000,							0, 0x00000000, 0x00000000, 0x00000000,							0, 0x0000000, 0x00000000, 0x00000000,							00, 0x00000000, 0x000000000, 0x000000000							00, 0x00000000, 0x00000000, 0x00000000,					•	·	0, 0x00000000, 0x00000000, 0x00000000,							00, 0x00000000, 0x00000000, 0x000000000,							00, 0x00000000, 0x000000000, 0x000000000					<u> </u>	00000000, 0x0000000					DWord	Bit		Description				0.0-0.7	255:0	Red[7:0]														Format:	MDP_DW_SIMD8						Slots [7:0] Red	,											1.0-1.7	255:0	Red[15:8]														Format:	MDP_DW_SIMD8						Slots [15:8] Red												2.0-2.7	255:0	Green[7:0]														Format:	MDP_DW_SIMD8						Slots [7:0] Green												3.0-3.7	255:0	Green[15:8]					5.5 5									Format:	MDP_DW_SIMD8						Slots [15:8] Green	MDI _DW_SIMDO						310tS [13.6] Green					4.0-4.7	255:0	Blue[7:0]					1.0 1.7	233.0	5.00[0]							Format:	MDP_DW_SIMD8						Slots [7:0] Blue	1.121 _D11_D11.120						Siots [7.0] Blue					MDP_	RTW_16	- SIMD16 Re	ender Target Data Payload			---------	--------	-------------------	---------------------------	--		5.0-5.7	255:0	Blue[15:8]						Format:	MDP_DW_SIMD8					Slots [15:8] Blue				6.0-6.7	255:0	Alpha[7:0]						Format:	MDP_DW_SIMD8					Slots [7:0] Alpha				7.0-7.7	255:0	Alpha[15:7]							MDD DW GWDG					Format:	MDP_DW_SIMD8					Slots [15:7] Alph	a		## **SIMD16 Untyped BUFFER Surface 32-Bit Address Payload**	MAP32B_USU_SIMD16 - SIMD16 Untyped BUFFER Surface 32-Bit						--	--	--------------------	------------------------	---------				Address	s Payload			Source:	BSpec					Size (in bits):	512					Default Value:	0x00000000, 0x00000000, 0x00000000, 0x00000000					DWord	Bit		Desci	ription		0.0-1.7	511:0	U						Format:		U32[16]				Specifies the U ch	nannel for slots [15:0	סן	#### SIMD16 Untyped BUFFER Surface 64-Bit Address Payload	MAP64B_	USU_SIM	D16 - SIMD16	5 Untyped BUFFER Surface 64-Bit					------------------------------	--	----------------------	---------------------------------	--	--	--				Address	Payload					Source: Size (in bits):	BSpec 1024	BSpec						Default Value:	0x00000000, 0x00000000, 0x00000000, 0x00000000							DWord	Bit		Description					0.0-0.7	255:0	U3_U0								Format:	MACR_64b							Specifies the U char	nnel for slots [3:0]					1.0-1.7	255:0	U7_U4								Format:	MACR_64b							Specifies the U char	nnel for slots [7:4]					2.0-2.7	255:0	U11_U8								Format:	MACR_64b							Specifies the U char	nnel for slots [11:8]					3.0-3.7 255:0 U15_U12										Format:	MACR_64b							Specifies the U char	nnel for slots [15:12]				#### SIMD16 Untyped STRBUF Surface 32-Bit Address Payload	MAP32B_USUV_SIMD16 - SIMD16 Untyped STRBUF Surface 32-Bit							---	--	--	--	--	--				Address Payload					Source:	BSpec						Size (in bits):	1024						Default Value:	0x00000000, 0x00000000, 0x00000000, 0x00000000						DWord	Bit	Description					0.0-1.7	511:0	U							Format: U32[16]							Specifies the U channel for slots [15:0]					2.0-3.7	511:0	V							Format: U32[16]							Specifies the V channel for slots [15:0]				# **SIMD 32-Bit Address Payload Control**	ize (in bits):		BSpec				----------------	------	---	------------------------------	--				256				efault Value	e:	0x00000000, 0x00000000, 0x00000000, 0x0000000 0x00000000, 0x00000000	000, 0x00000000, 0x00000000,			DWord	Bit	Descript	Description			0.0	31:0	Offset0						Format:	U32					Specifies the address offset for slot 0 in this pay	yload register.			0.1	31:0	Offset1						Format:	U32					Specifies the address offset for slot 1 in this pay	/load register.			0.2	31:0	Offset2												Format: Specifies the address offset for slot 2 in this pay	U32 /load register.			0.3	31:0	Offset3				0.5	31.0	Officers						Format:	U32					Specifies the address offset for slot 3 in this payload register.				0.4	31:0	Offset4						Format:	U32					Specifies the address offset for slot 4 in this pay	load register.			0.5	31:0	Offset5	T					Format:	U32					Specifies the address offset for slot 5 in this pay				0.6	31:0	Offset6				MACR_32B - SIMD 32-Bit Address Payload Control							--	------	---	----------------	--	--				Format: Specifies the address offset for slot 6 in this payload re-	U32 gister.				0.7	31:0	Offset7							Format: Specifies the address offset for slot 7 in this payload re	U32 gister.			# **SIMD 64-Bit Address Payload Control**	MAC	R_64B - SIMD 64-Bit A	Address Payload Control					------------------	--	--	--	--	--		Source: BSpec							e (in bits): 256							e:	0x00000000, 0x00000000, 0x00000000 0x00000000, 0x00000000	0, 0x00000000, 0x00000000, 0x00000000,					Bit		Description					63:0	Offset0														Format:	U64						Specifies the address offset for slot	0 in this payload register.					63:0	Offset1							Formati	U64							-					63:0	Offset2														Format:	U64						Specifies the address offset for slot	2 in this payload register.					63:0	Offset3							Format:	U64																																																																																																																																																																																																																												
									Bit 63:0	256 0x00000000, 0x00000000, 0x0000000 0x00000000, 0x00000000 Bit 63:0 Format: Specifies the address offset for slot 63:0 Offset1 Format: Specifies the address offset for slot 63:0 Offset2 Format: Specifies the address offset for slot 63:0 Offset3				# **SIMD8 32-Bit Address Payload**	N	/AP32B	SIMD8 - SIN	MD8 32-Bit Address Payload				----------------------------	--------------	--	----------------------------	--	--		Source: Size (in bits):	BSpec 256						Default Value:		0x00000000, 0x00000000, 0x00000000, 0x00000000					DWord	Bit		Description				0.0-0.7	255:0	Offset[7:0] Format: MACR_32b Specifies the address offset for Slots [7:0].				# **SIMD8 64-Bit Address Payload**	M	AP64B_S	SIMD8 - SII	MD8 64-Bit Address Payload					-----------------	----------	--	-------------------------------	--	--	--		Source:	BSpec	BSpec						Size (in bits):	512							Default Value:	0x000000	0000, 0x00000000, 0x00000000, 0x00000000						DWord	Bit		Description					0.0-0.7	255:0	Offset[3:0]																Format:	MACR_64b							Specifies the ad	dress offset for slots [3:0].					1.0-1.7	255:0	Offset[7:4]								Format:	MACR_64b							Specifies the ad	dress offset for slots [7:4].				# **SIMD16 32-Bit Address Payload**	MA	P32B_S	IMD16 - SIM	D16 32-Bit Address Payload				-----------------	--	--	----------------------------	--	--		Source:	BSpec						Size (in bits):	512						Default Value:	0x00000000, 0x00000000, 0x00000000, 0x00000000						DWord	Bit	Description					0.0-1.7	511:0	Offset Format:	U32[16]						Specifies the address offset for slots [15:0].				### **SIMD16 64-Bit Address Payload**	MA	AP64B_S	IMD16 - SIN	ID16 64-Bit Address Payload					-----------------	----------	-----------------------	---	--	--	--		Source:	BSpec							Size (in bits):	1024							Default Value:	0x000000	000, 0x000000000, 0x0	0000000, 0x00000000, 0x00000000, 0x00000000								0000000, 0x00000000, 0x00000000, 0x00000000								00000000, 0x00000000, 0x00000000, 0x00000000								00000000, 0x00000000, 0x00000000, 0x00000000							000, 0x000000000	, 0,000000, 0,0000000, 0,00000000, 0,000000					DWord	Bit		Description					0.0-0.7	255:0	Offset[3:0]																Format:	MACR_64b					Specifies			pecifies the address offsets for slots [3:0].					1.0-1.7	255:0	Offset[7:4]	1															Format:	MACR_64b							Specifies the add	ress offsets for slots [7:4].					2.0-2.7	255:0	Offset[11:8]																Format:	MACR_64b							Specifies the add	ress offsets for slots [11:8].					3.0-3.7	255:0	Offset[15:12]																Format:	MACR_64b							Specifies the add	ress offsets for slots [15:12].												### **SIMD Mode 2 Message Descriptor Control Field**	MD	MDC_SM2 - SIMD Mode 2 Message Descriptor Control Field							----------------	--	--	---------	-------------	--	--		Source:		BSpec						Size (in bits)):	1						Default Valu	ıe:	0x00000000						DWord	Bit		Descrip	tion				0	0	SIMD Mode																Specifies the SIMD mode of the message (number of slots processed)								Value	Name	Description						00h	SIMD8	SIMD8						01h	SIMD16	SIMD16			# **SIMD Mode 3 Message Descriptor Control Field**	MD	C_S	M3 - SIMD I	Mode 3 Message D	escriptor Control Field				---------------	-----	------------------------------	-----------------------------	-------------------------	--	--		Source:		BSpec						Size (in bits):	2						Default Val	ue:	0x00000000						DWord	Bit	Description						0	1:0	SIMD Mode Specifies the SIMD	mode of the message (number	of slots processed)						Value	Name	Description						00h	Reserved	Ignored						01h	SIMD16	SIMD16						02h	SIMD8	SIMD8						03h	Reserved	Ignored			#### **SLICE_HASH_TABLE** #### **SLICE HASH TABLE - SLICE HASH TABLE** Source: BSpec Size (in bits): 1024 0x00000000, 0x00000000 #### **Description** The slice hash table state is stored as an array tables (2 slices-8 slices), each of which contains the 32 DWords described here. 16x16 lookup table for slice indexed by lower bits of pixel block address. Each entry in the table indicates the **physical**slice_id to map that XY. If a slice is disabled, then it must not be present in the table. Entries in the table that point to disabled slice will be mapped to lowest enabled slice_id.	DWord	Bit		Pescription		-------	--------	-----------------------------	-------------		031	1023:0	Slice Hashing Table Entries					Format:	U4[16][16]	# **SLM Block Message Header**			MH_SLM_GO - SLM Block Messa	age Header					------------	---	--	-------------------------------------	--	--	--		Source:	Source: EuSubFunctionDataPort0							Size (in b	its):	256						Default \	/alue:	0x00000000, 0x00000000, 0x00000000, 0x00000000	0x00000000, 0x00000000,					DWord	Bit	Description						01	63:0	Reserved								Format:	MBZ							Ignored						2	31:0	Global Offset								Format:	U32							Specifies the global element index into the buffer, in units (depending on the message).	of Hwords, Owords, Dwords, or Bytes							Programming Notes							The Global Offset for Aligned Block operations is specified as a Dword-aligned byte off (offset bits [1:0] = 0), or Oword-aligned byte offset (offset bits [3:0]=0), or Hword-align offset (offset bits [4:0]=0).							37	159:0	Reserved								Format:	MBZ							Ignored													### **Slot Group 2 Message Descriptor Control Field**	I	MDC_SG2 - Slot Group 2 Message Descriptor Control Field							------------	---	---	------	------------------	--	--		Source:		BSpec						Size (in b	oits):	1						Default \	√alue	e: 0x00000000						DWord	Bit		De	scription				0	0	SIMD Mode																Controls which 8 bits of Pixel/Sample Mask in the message header are ANDed with the execution								mask to determine which slots are accessed. This field is ignored if the header is not present.								Value	Name	Description						00h	SG8L	Use low 8 slots						01h	SG8U	Use high 8 slots			### **Slot Group 3 Message Descriptor Control Field**	N	MDC_SG3 - Slot Group 3 Message Descriptor Control Field								------------	---	---------------	-----------	--	--	--	--		Source:		BSpec							Size (in b	oits):	2							Default \	√alu∈	e: 0x00000000							DWord	Bit		Descri	ption					0	1:0	SIMD Mode	SIMD Mode									•	message header are ANDed with the execution eld is ignored if the header is not present.							Value	Name	Description							00h	Reserved	Ignored							01h	SG8L	Use low 8 slots							02h	SG8U	Use high 8 slots							03h	Reserved	Ignored				### **Slot Group Select Render Cache Message Descriptor Control Field**		MDC_RT_SGS - Slot Group Select Render Cache Message Descriptor Control Field							------------	--	--	------------------------	--	--	--		Source:		BSp	oec					Size (in l	oits):	1						Default \	Valu	e: 0x0	0000000					DWord	Bit			Description				0	0	Slot Group	Slot Group Select																	or slots 31:16 are used for bypassed data. Bypassed data						includes the antialias alpha, multisample coverage mask, and if the header is not present also								includes the	X/Y addresses and pixe	el enables. For 8- and 16-pixel dispatches, SLOTGRP_LO must be						selected on every message. For 32-pixel dispatches, this field must be set correctly for each								message based on which slots are currently being processed.								Value	Name	Description						00h	SLOTGRP_LO	Choose bypassed data for slots 15:0						01h	SLOTGRP_HI	Choose bypassed data for slots 31:16			#### SO_DECL				•	20_DECT					------------	--------------------	-----------------------------																																																																																																																																																																																																																																																																																																														
---	--	---------------------	-------------	--		Source:		Rende	erCS						Size (in b	oits):	16							Default \	/alue:	0x000	00000						a) the so	ource a to skip	nd destinatio	are passed in the 3D on of an up-to-4-DWo destination SO buffer	ord appending wri	te into	an SO buf	•		DWord	Bit			Descript	ion				0	15:14	Reserved				T.														Format:				MBZ				13:12	Output Buf	fer Slot	1																Format:		U2 Buffer Index							This field se	lects the destination of	output buffer slot.						11	Hole Flag																		Format:			Enable	9					(leave unmo The only per	dified in memory) in t mitted Component M	the selected outpu lask values are as	it buffe follows	er. The Reg	bit locations to skip over pister Index field is ignored.					ords are skipped over	(SO_DECL perform	ns no c	peration)					0x1 (X) Skip										p 2 DWords									kip 3 DWords								L	Skip 4 DWords							10	Reserved													N 4D 7					Format:	_			MBZ				9:4	Register Inc	lex 								Format:	U6 128-bit granular	offset into the sou	ırce ve	rtex read o	lata				_	is clear, this field spece source data to be wi				urce vertex data which ere the individual 32-	#### **SO DECL** component destination locations are selected by Component Mask. e.g., Register Index 0 corresponds with the first 128 bits of the data read from the vertex URB entry (as per corresponding Vertex Read Offset state) There is only enough internal storage for the 128-bit vertex header and 32 128-bit vertex attributes.	Value	Name		--------	-----------		[0,32]			0h	[Default]	#### **Programming Notes** It is the responsibility of software to map any API-visible source data specifications (e.g., vertex register number) into 128-bit granular URB read offsets. **Component Mask** 3:0	component mask			----------------	-------------------					Format:	U4			Format: Enable[4]			4-bit Mask	This field is a 4-bit bitmask that selects which contiguous 32-bit component(s) are either written or skipped-over in the destination buffer. If this field is zero the SO_DECL operation is effectively a no-op. No data will be appended to the destination and the destination buffer's write pointer will not be advanced. If the **Hole Flag** is set, this field (if non-zero) indirectly specifies how much the destination buffer's write pointer should be advanced. See **Hole Flag** description above for restrictions on this field. If the **Hole Flag** is clear, this field (if non-zero) selects which source components are to be written to the destination buffer. The components must be contiguous, e.g. YZW is legal, but XZW is not. The selected source components are written to the destination buffer starting at the current write pointer, and then the write pointer is advanced past the written data. E.g., if YZW is specified, the three (YZW) components of the source register will be written to the destination buffer at the current write pointer, and the write pointer will be advanced by 3 DWords.	ad various by 5 2 monday							--------------------------	---------------------------------	--	--	--	--		Value	Name						0h	SO_DECL_COMPMASK_NONE [Default]						xxx1b	SO_DECL_COMPMASK_X						xx1xb	SO_DECL_COMPMASK_Y						x1xxb	SO_DECL_COMPMASK_Z						1xxxb	SO_DECL_COMPMASK_W					#### **SO_DECL_ENTRY**			SO_D	DECL_ENTR	Υ		-----------------	--------	--	------------------	-----------		Source:	Rende	rCS				Size (in bits):	64					Default Value:	0x0000	00000, 0x00000000				DWord	Bit		De	scription		01	63:48	Stream 3 Decl						Format:		SO_DECL				This field contains Stream 3 SO_DECL [n]					47:32	Stream 2 Decl						Format:		SO_DECL				This field contains	Stream 2 SO_DECL	[n]			31:16	Stream 1 Decl						Format:		SO_DECL				This field contains	Stream 1 SO_DECL	[n]			15:0	Stream 0 Decl						Format:		SO_DECL				This field contains	Stream 0 SO_DECL	[n]	# Split_coding_unit_flags			Split_coding_ur	nit_flags					-----------------	-----------	--	----------------------	--	--	--		Source:		VideoCS						Size (in bits):		21						Default Value	e:	0x00000000						Contains the	split lev	el flags, level 0 through 2.						DWord	Bit	D	escription					0	20	Split_flag_level0								Format:	U1						19:16	Split_flag_level1								Format:	U4							[19:16] is in raster order. Bit16 is for partition0 in raster order.						-	15:12	Split_flag_level2 level1part3								Format:	U4							Split flags for bit19 partition.								[15:12] is in raster order. Bit12 is for partition0 in raster order.						-	11:8	Split_flag_level2 level1part2								Format:	U4							Split flags for bit18 partition.								[11:8] is in raster order. Bit8 is for partiti	on0 in raster order.						7:4	Split_flag_level2 level1part1								Format:	U4							Split flags for bit17 partition.								[7:4] is in raster order. Bit4 is for partitio	n0 in raster order.						3:0	Split_flag_level2 level1part0								Format:	U4							Split flags for bit16 partition.								[3:0] is in raster order. Bit0 is for partitio	n0 in raster order.				# ${\bf Split Base Address 4 KByte Aligned}$	SplitBaseAddress4KByteAligned									-------------------------------	---	--------------	----------------------	-----	--	--	--		Size (in bits):	64								Default Value:	0x00000000, 0	0x00000000							'	Specifies a 64-bit (48-bit canonical) 4K-byte aligned memory base address. GraphicsAddress is a 64-bit value [63:0], but only a portion of it is used by hardware. The upper reserved bits are ignored and MBZ.								DWord	Bit		Description						01	63:12	Base Address																		Format:	GraphicsAddress63-12							11:0	Reserved																		Format:		MBZ				# ${\bf Split Base Address 64 Byte Aligned}$	SplitBaseAddress64ByteAligned									-------------------------------	----------------	-----------------------	---------------------	-----	--	--	--		Source:	BSpec								Size (in bits):	64								Default Value:	0x00000000,	0x0000000							Specifies a 64-bit (48	B-bit canonica	l) 64-byte aligned me	mory base address.						DWord	Bit		Description						01	63:6	Base Address																		Format:	GraphicsAddress63-6							5:0	Reserved																		Format:		MBZ				#### **SrcRegNum** #### **SrcRegNum** Source: Eulsa Size (in bits): 8 Default Value: 0x00000000 #### **Description** Register Number The register number for the operand. For a GRF register, is the part of a register address that aligns to a 256-bit (32-byte) boundary. For an ARF register, this field is encoded such that MSBs identify the architecture register type and LSBs provide the register number. An ARF register can only be dst or src0. Any src1 or src2 operands cannot be ARF registers. RegNum and SubRegNum together provide the byte-aligned address for the origin of a register region. RegNum provides bits 12:5 of that address. For one-source and two-source instructions, SubregNum provides bits 4:0. For three-source instructions, the address must be DWord-aligned; SubRegNum provides bits 4:2 of the address and bits 1:0 are zero. This field is present for the direct addressing mode and not present for indirect addressing. This field applies to both source and destination operands.	DWord	Bit		Description								-------	-----	--------	-----------------------------------	--	--	--	--	--	--		0	7:0	Source	Source Register Number										Value	Name	Description									0-127	If											{Dst/Src0/Src1/Src2}.RegFile==GRF										0-	If	This field is used to encode the architecture register									0ffh	{Dst/Src0/Src1/Src2}.RegFile==ARF	as well as providing the register number. See											Execution Environment chapter for details.						#### **SrcSubRegNum** #### **SrcSubRegNum** Source: Eulsa Size (in bits): 5 Default Value: 0x00000000 #### **Description** Subregister Number The subregister number for the operand. For a GRF register, is the byte address within a 256-bit (32-byte) register. For an ARF register, determines the sub-register number according to the specified encoding for the given architecture register. RegNum and SubRegNum together provide the byte-aligned address for the origin of a GRF register region. RegNum provides bits 12:5 of that address. For one-source and two-source instructions, SubregNum provides bits 4:0. For three-source instructions, the address must be DWord-aligned; SubRegNum																																																																																																																																																																																																																																																																																																																																																																																																																																																																													
provides bits 4:2 of the address and bits 1:0 are zero. #### **Programming Notes** Note: The recommended instruction syntax uses subregister numbers within the GRF in units of actual data element size, corresponding to the data type used. For example for the F (Float) type, the assembler syntax uses subregister numbers 0 to 7, corresponding to subregister byte addresses of 0 to 28 in steps of 4, the element size.	DWo	rd	Bit		Description							-----	----	-----	--------	-----------------------------------	--	--	--	--	--		0		4:0	Source	Source Sub Register Number										Value	Name	Description									0-31	If											{Dst/Src0/Src1/Src2}.RegFile==GRF										0-	If	This field is used to encode the architecture register									0ffh	{Dst/Src0/Src1/Src2}.RegFile==ARF	as well as providing the register number. See											Execution Environment chapter for details.					#### **Stateless Binding Table Index Message Descriptor Control Field** #### **MDC_STATELESS** - Stateless Binding Table Index Message **Descriptor Control Field**	Source.			вэрес						-------------------------	-------	-------	--	---	--	--	--		Size (in bits):			8						Default V	/alue	e:	0x000000FF						DWord	Bit			Description					0	7:0	•	Binding Table Index Specifies the message is Stateless								Value	Name	Description							0FFh	A32_A64 [Default]	Specifies a A32 or A64 Stateless access that is locally coherent (coherent within a thread group)							0FDh	A32_A64_NC	Specifies a A32 or A64 Stateless access that is non-coherent (coherent within a thread).					Others Reserved Ignored				Ignored									Restriction				When using A32_A64_NC, SW must ensure that 2 threads do not both access the same cache line (64B) # **Stateless Block Message Header**			MH_A32_GO - Stateless Block Message Header						-----------------	--------	---	--	--	--	--		Source:		EuSubFunctionDataPort0						Size (in bits):		256						Default \	√alue:	0x00000000, 0x00000000, 0x00000000, 0x00000000						DWord	Bit	Description						01	63:0	Reserved								Format: MBZ								Ignored						2	31:0	Global Offset								Format: U32								Specifies the global element index into the buffer, in units of Owords, Dwords, or Bytes (depending on the message).								Programming Notes								If the address offset calculated with the Buffer Base Address and Global Offset is greater than the PTSS size or the GeneralStateBufferSize, then the access is Out-of-Bounds.						3	31:0	Per Thread Scratch Space								Format: MHC_PTSS								Specifies amount of scratch space used by this thread, for Stateless bounds checking.						4	31:0	Reserved								Format: MBZ								Ignored						5	31:0	Buffer Base Address								Format: MHC_A32_BBA								Description								Specifies the surface address offset page [31:10] for A32 stateless messages.								Restriction: When using stateless A32 Data Port messages, General State Base Address[47:12] + Buffer Base Address[31:10] must be less than 2^48. It is illegal for this to be greater or equal than 2^48.								Programming Notes								This field is internally forced to 0 in hardware for CSR cycles.						6.7	62.0							67	63:0	Reserved								Format: MBZ								Ignored					# **Stateless Surface Message Header**		N	1H1_A32 - Stateless	Surface Mess	age Header			--------------------------------	-------	---	--------------	------------	--		Source: EuSubFunctionDataPort1							Size (in bits	s):	256					Default Value:		0x00000000, 0x00000000, 0x00000000, 0x00000000					DWord	Bit	Description					04	159:0	Reserved							Format:		MBZ					Ignored					5	31:0	Buffer Base Address							Format:	MHC_A32_BBA						Specifies the surface address offset page [31:10] for A32 stateless messages.					67	63:0	Reserved							Format:		MBZ					Ignored		_		# **Stateless Surface Pixel Mask Message Header**	MH1	_A32	PSM - Stateless Su	rface Pixel Ma	ask Message Header				---------------	-------	---	---	------------------------	--	--		Source:		EuSubFunctionDataPort1						Size (in bits	s):	256						Default Val	ue:	0x00000000, 0x00000000, 0x00 0x00000000, 0x00000000	0x00000000, 0x00000000, 0x000000000, 0x00000000					DWord	Bit		Description					04	159:0	Reserved								Format:		MBZ						Ignored						5	31:0	Buffer Base Address								Format:	MHC_A32_BBA							Specifies the surface address off	set page [31:10] for A	32 stateless messages.				6	31:0	Reserved								Format:		MBZ						Ignored						7	31:0	Reserved																Format:		МВО						If the optional header is delivered, this field must be all ones.		ll ones.			#### **Static Frame Control Parameters0**			Static Frame Control Par	rameters0					------------	---------------	--	-----------	--	--	--		Source:	Source: BSpec							Size (in b	oits):	128						Default \	/alue:	0x00000000, 0x00000000, 0x00000000, 0x00000	0000					Please r	ote tha	t DW0-3, correspond to DW96-99 of WiGig Paramet	ters.					DWord	Bit	Descriptio	n					0	31:0	Reserved								Format:	MBZ					1	31:0	Reserved								Format:	MBZ					2	31:0	Reserved								Format:	MBZ					3	31:18	Reserved								Format:	MBZ						17	Skip Frame Enable When display asserts skip frame flag and target QP is reached, WDBOX converts all MB of a frame to SKIP. No new reference picture is generated.							16:14	Reserved								Format:	MBZ					13:8		QP Skip Threshold Each MB is CR coded (provided CR is enabled feature) or Intra coded (CR feature is disabled) when both previous and current frame QPs are less than or equal to this field (threshold) and the current frame is static frame.							7:0	Reserved								Format:	MBZ				#### **Stencil Message Data Payload Register** ### MDPR_STENCIL - Stencil Message Data Payload Register Source: BSpec Size (in bits): 256	DWord	Bit		Description		-------	-------	---------------------	-------------		0	31:24	Stencil3					Format:	U8				Stencil for Slot 3.				23:16	Stencil2					Format:	U8				Stencil for Slot 2.				15:8	Stencil1					Format:	U8				Stencil for Slot 1.	·			7:0	Stencil0					Format:	U8				Stencil for Slot 0.			1	31:24	Stencil7					Format:	U8				Stencil for Slot 7.				23:16	Stencil6					Format:	U8				Stencil for Slot 6.				15:8	Stencil5	1				Format:	U8				Stencil for Slot 5.				7:0	Stencil4					Format:	U8				Stencil for Slot 4.			27	191:0	Reserved					Format:	Ignore	# **Subset Atomic Integer Trinary Operation Message Descriptor Control Field**	MDC_AOP3S - Subset Atomic Integer Trinary Operation Message Descriptor Control Field										--	---------------	-------------------	---	---	--	--	--	--		Source:	Source: BSpec									Size (in bits):	:	4								Default Valu	e:	0x0000	0000E							DWord	Bit	Description								0	3:0		Atomic Integer Operation Type Specifies the atomic integer trinary operation to be performed									Value	Name	Description								0Eh	AOP_CMPWR [Default]	new_dst = (src0 == old_dst) ? src1 : old_dst								Others	Reserved	Ignored																		Programming Notes										When Re	turn Data Control is set, old_d	When Return Data Control is set, old_dst is returned.					### **Subset Reversed SIMD Mode 2 Message Descriptor Control Field**	MDC_SM2RS - Subset Reversed SIMD Mode 2 Message Descriptor								--	------------------------	--------------------	---	-------------	--	--					Control Field					Source:	Source: BSpec							Size (in bits):	:	1						Default Valu	e:	0x0000001						DWord	Bit		Description					0	0	SIMD Mode	SIMD Mode																																																																																																																																																																																																																																																										
Specifies the SIMI	D mode of the message (number of slots pr	ocessed)					Value Name Description			Description					0h Reserved Not used									01h	SIMD8 [Default]	SIMD8			### **Subset SIMD Mode 2 Message Descriptor Control Field**	MDC_SM2S - Subset SIMD Mode 2 Message Descriptor Control Field								--	------------------------	--	----------	---------	--	--		Source:		BSpec						Size (in bits):	1						Default Value: 0x00000000								DWord	Bit	Description						0	0	SIMD Mode Specifies the SIMD mode of the message (number of slots processed)							Value Name Description								00h SIMD8 SIMD8									01h	Reserved	Ignored			#### **Subset SIMD Mode 3 Message Descriptor Control Field**	MDC_SM3S - Subset SIMD Mode 3 Message Descriptor Control Field								--	-----	--	----------	-------------	--	--		Source:		BSpec						Size (in bits):	2						Default Valu	ue:	0x00000000						DWord	Bit	Description						0	1:0	SIMD Mode Specifies the SIMD mode of the message (number of slots processed)								Value	Name	Description						00h	Reserved	Ignored						01h	Reserved	Ignored						02h	SIMD8	SIMD8						03h	Reserved	lanored			# **Subspan Render Target Message Header Control**	MHC_RT_SUBSPAN - Subspan Render Target Message Header								---	-------	--	---------	--	--	--				Control						Source:	BSpe	c						Size (in bits):	32							Default Value:	0x00	000000						DWord	Bit	Descri	ription					0	31:16	Y								Format:	U16							Y coordinate for upper-left pixel of this su	ubspan						15:0	5:0 X								Format:	U16							X coordinate for upper-left pixel of this su	ıbspan				#### **Surface Binding Table Index Message Descriptor Control Field** # MDC_BTS - Surface Binding Table Index Message Descriptor Control Field Source: BSpec Size (in bits): 8 Default Value: 0x00000000 #### DWord Bit Description 0 7: #### 7:0	Binding Table Index Specifies the Binding Table index for the message, which must be a Surface State Model.	Value	Name	Description		---------------	--------------	---		00h- 0EFh	BTS	Index of Binding Table State Surfaces		0F0h- 0FAh	Reserved	Reserved		0FCh	SSO_BINDLESS	Specifies a Surface State Offset into the Bindless Surface State heap, supplied by the extended message descriptor.		0FBh	Reserved			Others	Reserved	Ignored	#### **Programming Notes** For Render Target Views, the Binding Table index need to be confined to the 00h to 0Fh range if Binding Table is not in the 256B alignment (18:8) mode. In the 256B alignment mode, the Binding Table Index need to be confined to the 00h to 3Fh range if slice common register 3. state cache perf fix disabled is set to 1, the entire range of BTI is supported. # **Surface or Stateless Binding Table Index Message Descriptor Control Field** #### MDC_BTS_A32 - Surface or Stateless Binding Table Index Message Descriptor Control Field Source: BSpec Size (in bits): 8 Default Value: 0x00000000 #### DWord Bit Description 0 7: #### 7:0 **Binding Table Index** Specifies the surface for the message, either Surface State Model or Stateless.	Value	Name	Description		---------------	--------------	---		00h- 0EFh	BTS	Index of Binding Table State Surfaces		0F0h- 0FAh	Reserved	Reserved		0FCh	SSO_BINDLESS	Specifies a Surface State Offset into the Bindless Surface State heap, supplied by the extended message descriptor.		0FBh	Reserved			0FFh	A32_A64	Specifies a A32 or A64 Stateless access that is locally coherent (coherent within a thread group)		0FDh	A32_A64_NC	Specifies a A32 or A64 Stateless access that is non-coherent (coherent within a thread).		Others	Reserved	Ignored	#### Restriction When using A32_A64_NC, SW must ensure that 2 threads do not both access the same cache line (64B) #### **Surface Pixel Mask Message Header** MH1_BTS_PSM - Surface Pixel Mask Message Header Source: EuSubFunctionDataPort1 Size (in bits): 256 0x00000000, 0x00000000		0,00000000, 0,00000000						-------	------------------------	---	------------------	--	--		DWord	Bit	Description					06	223:0	Reserved							Format:	MBZ						Ignored					7	31:0	Reserved							Format:	MBO						Restriction : This field must be all ones when this hea	der is required.			#### SW Generated BINDING_TABLE_STATE #### **SW Generated BINDING TABLE STATE** Source: BSpec Size (in bits): 32 Default Value: 0x00000000 #### **Description** The binding table binds surfaces to logical resource indices used by shaders and other compute engine kernels. It is stored as an array of up to 256 elements, each of which contains one dword as defined here. The start of each element is spaced one dword apart. The first element of the binding table is aligned to a 64-byte boundary. Binding table indexes beyond 256 will automatically be mapped to entry 0 by the HW, w/ the exception of any messages which support the special indexes 240 through 255, inclusive.	DWord	Bit	Description				--------------	------	---	--------------------------	-----		0	31:6	Surface State Pointer						Format:	SurfaceStateOffset[31:6]					This 64-byte aligned address points to a surface state block. This pointer is relative to the Surface State Base Address					5	Reserved						Format:		MBZ		4:0 Reserved								Format:		MBZ	# **SZ OM S0A SIMD8 Render Target Data Payload**	MDP_RTW_	ZMA8 -	SZ OM SOA SIMD8 R	ender Target Data Payload				--	---	--	---------------------------	--	--		Source:	BSpec						Size (in bits):	1792						Default Value:	0x0000000, 0x00000000, 0x00000000, 0x00000000							0x00000000, 0x00000000, 0x00000000, 0x00000000							0x00000000, 0x00000000, 0x00000000, 0x00000000							0x00000000, 0x00000000, 0x00000000, 0x00000000							0x00000000, 0x00000000, 0x00000000, 0x00000000							0x00000000, 0x00000000, 0x000000000, 0x00000000							0x00000000, 0x00000000, 0x00000000, 0x00000000							0x00000000, 0x00000000, 0x000000000, 0x00000000						0x00000000, 0x00000000, 0x00000000, 0x00000000							DWord	Bit	Description					0.0-0.7	255:0	Source 0 Alpha							Format: MDP_D	DW_SIMD8						Slots [7:0] Source 0 Alpha					1.0-1.7	255:0	oMask							Format: MDP	PR_OMASK						Slots [7:0] oMask. Upper half ignored.					2.0-2.7	255:0	Red							Format: MDP_D	DW_SIMD8						Slots [7:0] Red					3.0-3.7	255:0	Green							Format: MDP_D	DW_SIMD8						Slots [7:0] Green					4.0-4.7	255:0	Blue							Format: MDP_D	DW_SIMD8						Slots [7:0] Blue					5.0-5.7	255:0	Alpha							Format: MDP_D	DW_SIMD8						Slots [7:0] Alpha					6.0-6.7	255:0	Source Depth								DW_SIMD8						Slots [7:0] Source Depth				# **SZ OM S0A SIMD16 Render Target Data Payload**	MDP_R	TW_ZMA16	- SZ OM SO	A SIMD16 Render Target Data				-----------------	--	--	--	--	--				Paylo	oad				Source:	BSpec						Size (in bits):	3328						Default Value:	0x00000000, 0x0	00000000, 0x000000	00, 0x0000000, 0x00000000, 0x00000000,					0x00000000, 0x00000000, 0x00000000, 0x00000000							0x00000000, 0x0	0000000, 0x000000	000, 0x00000000, 0x000000000, 0x00000000					0x00000000, 0x0	00000000, 0x000000	00, 0x00000000, 0x00000000, 0x00000000,							000, 0x00000000, 0x000000000, 0x00000000							000, 0x00000000, 0x000000000, 0x00000000							00, 0x0000000, 0x00000000, 0x00000000,							00, 0x0000000, 0x00000000, 0x00000000,					·	· ·	000, 0x00000000, 0x00000000, 0x00000000,					·	•	00, 0x0000000, 0x00000000, 0x00000000,						0x00000000, 0x00000000, 0x00000000, 0x00000000							0x00000000, 0x00000000, 0x00000000, 0x00000000								000, 0x00000000, 0x00000000, 0x000000000					0x00000000, 0x00000000, 0x00000000, 0x00000000							0x00000000, 0x00000000, 0x00000000, 0x00000000														0x00000000, 0x0		000, 0x00000000, 0x00000000, 0x00000000,				DWord	Bit		Description				0.0-1.7	511:0	Source 0 Alpha	•				0.0 1.7	311.0	Format:	MDP_DW_SIMD16						Slots [15:0] Sour					2.0-2.7	255:0	oMask	се о Агрпа				2.0-2.1	255.0	Format:	MDPR_OMASK						L							Slots [15:0] oMa	SK																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																												
3.0-4.7	511:0	Red							Format:	MDP_DW_SIMD16						Slots [15:0] Red					5.0-6.7	511:0	Green							Format:	MDP_DW_SIMD16						Slots [15:0] Gree	n				7.0-8.7	511:0	Blue							Format:	MDP_DW_SIMD16						Slots [15:0] Blue					9.0-10.7	511:0	Alpha					MDP_RTW_ZMA16 - SZ OM S0A SIMD16 Render Target Data							---	-------	------------------------	---------------	--	--		Payload									Format:	MDP_DW_SIMD16						Slots [15:0] Alpha					11.0-12.7	511:0	Source Depth							Format:	MDP_DW_SIMD16						Slots [15:0] Source De	epth			## **SZ OM SIMD8 Dual Source Render Target Data Payload**	MDP_F	RTW_Z	M8DS - SZ OM SIMD	08 Dual Source Render Target					--	--	--	---	--	--	--				Data Pay	/load					Source: Size (in bits): Default Value:	256 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x	Spec						DWord	Bit		Description					0.0-0.7	255:0		IDPR_OMASK Operation selects upper or lower half.					1.0-1.7	255:0	Src0 Red Format: MDI Slots[7:0] or [15:8] of Src0 Red	P_DW_SIMD8					2.0-2.7	255:0	Src0 Green Format: MDP_DW_SIMD8 Slots[7:0] or [15:8] of Src0 Green						3.0-3.7	255:0	Slots[7:0] or [15:8] of Src0 Blue	P_DW_SIMD8					4.0-4.7	255:0	Src0 Alpha						MDP_	RTW_Z	M8DS - SZ	OM SIMD8 Dual Source Render Target		---------	----------	----------------------	------------------------------------			<u> </u>	1	Data Payload				Format:	MDP_DW_SIMD8				Slots[7:0] or [15:8]] of Src0 Alpha		5.0-5.7	255:0	Src1 Red					Format:	MDP_DW_SIMD8				Slots[7:0] or [15:8]] of Src1 Red		6.0-6.7	255:0	Src1 Green	Т				Format:	MDP_DW_SIMD8				Slots[7:0] or [15:8]] of Src1 Green		7.0-7.7	255:0	Src1 Blue	T				Format:	MDP_DW_SIMD8				Slots[7:0] or [15:8]] of Src1 Blue		8.0-8.7	255:0	Src1 Alpha					Format:	MDP_DW_SIMD8				Slots[7:0] or [15:8]			9.0-9.7	255:0	Source Depth					Format:	MDP_DW_SIMD8					B] of Source Depth	# **SZ OM SIMD8 Render Target Data Payload**	MDP_RT	W_ZM8	- SZ OM SIN	/ D8 R	tender Target Data Payload				-----------------	-----------	--	-----------------	---	--	--		Source:	BSpec							Size (in bits):	1536							Default Value:	0x0000000	00, 0x00000000, 0x00	000000, 0	0x0000000, 0x00000000, 0x00000000,					0x0000000	0, 0x0000000, 0x00000000, 0x00000000, 0x00000000								00, 0x00000000, 0x00000000, 0x00000000, 0x00000000										0x00000000, 0x00000000, 0x00000000,								0x00000000, 0x00000000, 0x00000000,						·	•	0x00000000, 0x00000000, 0x000000000, 0x00000000, 0x00000000, 0x00000000,								0x00000000, 0x00000000, 0x00000000,				DWord	Bit			Description Description				0.0-0.7	255:0	oMask		2 00011-2-1011				0.0-0.7	233.0	Olviask								Format:		MDPR_OMASK						Slots [7:0] oMask	. Upper ha	alf ignored.				1.0-1.7	255:0	Red						1.0 1										Format:	M	IDP_DW_SIMD8							Slots [7:0] Red					2.0-2.7	255:0	Green																Format:	N	IDP_DW_SIMD8						Slots [7:0] Green						3.0-3.7	255:0	Blue																Format:	N	1DP_DW_SIMD8						Slots [7:0] Blue						4.0-4.7	255:0	Alpha																Format:	N	1DP_DW_SIMD8						Slots [7:0] Alpha						5.0-5.7	255:0	Source Depth																Format:	M	MDP_DW_SIMD8						Slots [7:0] Source	Depth				## **SZ OM SIMD16 Render Target Data Payload**	MDP_RTW_	ZM16 - SZ	OM SIMD16 R	Render Target Data Payload		-----------------	--	---	--		Source:	BSpec				Size (in bits):	2816				Default Value:	0x00000000, 0x000 0x00000000, 0x000	000000, 0x00000000, 0x0 000000, 0x0	00000000, 0x00000000, 0x00000000, 00000000		DWord	Bit		Description		0.0-0.7	255:0	oMask	•				Format: Slots [15:0] oMask	MDPR_OMASK		1.0-1.7	255:0	Red[7:0]										Format:	MDP_DW_SIMD8				Slots [7:0] Red			2.0-2.7	255:0	Red[15:8]					Format:	MDP_DW_SIMD8				Slots [15:8] Red			3.0-3.7	255:0	Green[7:0]										Format:	MDP_DW_SIMD8				Slots [7:0] Green			4.0-4.7	255:0	Green[15:7]			MDP_RTW_Z	:M16 - SZ	OM SIMD1	6 Render Target Data Payload		-----------	-----------	--------------------------------	------------------------------									Format:	MDP_DW_SIMD8				Slots [15:8] Green	1		5.0-5.7	255:0	Blue[7:0]					Format:	MDP_DW_SIMD8				Slots [7:0] Blue			6.0-6.7	255:0	Blue[15:8]					Format:	MDP_DW_SIMD8				Slots [15:8] Blue			7.0-7.7	255:0	Alpha[7:0]										Format:	MDP_DW_SIMD8				Slots [7:0] Alpha			8.0-8.7	255:0	Alpha[15:8]					Format:	MDP_DW_SIMD8				Slots [15:8] Alpha			9.0-9.7	255:0	Source Depth[7:	0]									Format:	MDP_DW_SIMD8				Slots [7:0] Source	e Depth		10.0-10.7	255:0	Source Depth[15	:8]				Form of:	MDP_DW_SIMD8				Format: Slots [15:8] Source					5.005 [15.0] 50010	с Бериг	# **SZ S0A SIMD8 Render Target Data Payload**	MDP_RTV	N_ZA8 - S 2	Z SOA SIMD	8 Render Target Data Payload					-----------------	--	---------------------------------------	---	--	--	--		Source:	BSpec							Size (in bits):	1536							Default Value:	0x00000000, 0x00000000, 0x00000000, 0x00000000								0x00000000, 0x	00000000, 0x000000	000, 0x00000000, 0x00000000, 0x000000000								000, 0x00000000, 0x00000000, 0x000000000						·	· · · · · · · · · · · · · · · · · · ·	000, 0x00000000, 0x00000000, 0x00000000,							•	000, 0x00000000, 0x00000000, 0x00000000, 0x00000000							•	000, 0x00000000, 0x000000000, 0x00000000								000, 0x00000000, 0x00000000, 0x00000000					DWord	Bit		Description					0.0-0.7	255:0	Source 0 Alpha									MDD DW/ CIMDO							Format: Slots [7:0] Source	MDP_DW_SIMD8							e u Alpna						1.0-1.7	255:0	Red	1															Format:	MDP_DW_SIMD8							Slots [7:0] Red						2.0-2.7	255:0	Green																Format:	MDP_DW_SIMD8							Slots [7:0] Green						3.0-3.7	255:0	Blue	1							Format:	MDP_DW_SIMD8							Slots [7:0] Blue						4.0-4.7	255:0	Alpha																Format:	MDP_DW_SIMD8							Slots [7:0] Alpha						5.0-5.7	255:0	Source Depth																Format:	MDP_DW_SIMD8							Slots [7:0] Source	e Depth				## **SZ S0A SIMD16 Render Target Data Payload**	MDP_RTW_2	ZA16 - SZ S	SOA SIMD16 R	ender Target Data Payload			-------------------	-------------------	-----------------------------	------------------------------------	--		Source: B	Spec					Size (in bits): 3	072					Default Value: 0	x00000000, 0x000	00000, 0x00000000, 0x0	0000000, 0x00000000, 0x00000000,			0	x00000000, 0x000	00000, 0x00000000, 0x0	0000000, 0x00000000, 0x00000000,			0	x00000000, 0x000	00000, 0x00000000, 0x0	0000000, 0x00000000, 0x00000000,			0	x00000000, 0x000	00000, 0x00000000, 0x0	0000000, 0x00000000, 0x00000000,			0	x00000000, 0x000	00000, 0x00000000, 0x0	0000000, 0x00000000, 0x00000000,				•	·	0000000, 0x00000000, 0x00000000,						00000000, 0x00000000, 0x00000000,						00000000, 0x00000000, 0x00000000,						00000000, 0x00000000, 0x000000000,						0000000, 0x00000000, 0x00000000,						0000000, 0x00000000, 0x00000000,						00000000, 0x00000000, 0x00000000,				•	·	0000000, 0x00000000, 0x00000000,						0000000, 0x00000000, 0x00000000,						0000000, 0x00000000, 0x00000000,			0	x000000000, 0x000	00000, 0x00000000, 0x0	0000000, 0x00000000, 0x00000000			DWord	Bit		Description			0.0-0.7	255:0	Source 0 Alpha[7:0]												Format:	MDP_DW_SIMD8					Slots [7:0] Source 0 Al	pha			1.0-1.7	255:0	Source 0 Alpha[15:8]												Format:	MDP_DW_SIMD8					Slots [15:8] Source 0 A	Alpha			2.0-2.7	255:0	Red[7:0]	,											Format:	MDP_DW_SIMD8					Slots [7:0] Red				3.0-3.7	255:0	Red[15:8]						F .	MDP_DW_SIMD8					Format: Slots [15:8] Red																																																																																																																																							
MDF_DW_SIMDO			40.47	255.0					4.0-4.7	255:0	Green[7:0]						Format:	MDP_DW_SIMD8					Slots [7:0] Green					-----------	-------	------------------------------	--------------	--	--		5.0-5.7	255:0	Green[15:8]														Format:	MDP_DW_SIMD8						Slots [15:8] Gree	en				6.0-6.7	255:0	Blue[7:0]														Format:	MDP_DW_SIMD8						Slots [7:0] Blue					7.0-7.7	255:0	Blue[15:7]							Farmat.	MDP_DW_SIMD8						Format: Slots [15:8] Blue					8.0-8.7	255:0						8.0-8.7	255:0	Alpha[7:0]							Format:	MDP_DW_SIMD8						Slots [7:0] Alpha	1				9.0-9.7	255:0	Alpha[15:8]														Format:	MDP_DW_SIMD8						Slots [15:8] Alph	na				10.0-10.7	255:0	Source Depth[7	:0]						F	MDP_DW_SIMD8						Format:					11.0.11.7	255.0	Slots [7:0] Source					11.0-11.7	255:0	Source Depth[1	5:0]						Format:	MDP_DW_SIMD8						Slots [15:8] Sou				## **SZ SIMD8 Dual Source Render Target Data Payload**	MDP_RTW_Z8DS - SZ SIMD8 Dual Source Render Target Data						--	--	------------------------------------	-------------------------	--				Paylo	oad			Source: Size (in bits):	BSpec 2304					Default Value:	0x00000000, 0x00000000, 0x00000000, 0x00000000					DWord	Bit		Description			0.0-0.7	255:0	Format: Slots[7:0] or [15:8] of	MDP_DW_SIMD8 Src0 Red			1.0-1.7	255:0	Src0 Green						Format: Slots[7:0] or [15:8] of	MDP_DW_SIMD8 Src0 Green			2.0-2.7	255:0	Src0 Blue Format:	MDP_DW_SIMD8					Slots[7:0] or [15:8] of	Src0 Blue			3.0-3.7	255:0	Format: Slots[7:0] or [15:8] of	MDP_DW_SIMD8 Src0 Alpha			4.0-4.7	255:0	Src1 Red						Format: Slots[7:0] or [15:8] of	MDP_DW_SIMD8 Src1 Red			5.0-5.7	255:0	Src1 Green				MDP_RT	MDP_RTW_Z8DS - SZ SIMD8 Dual Source Render Target Data							---------	--	--------------------	---------------------	--	--	--			Ť	Pa	ayload															Format:	MDP_DW_SIMD8							Slots[7:0] or [15:	8] of Src1 Green					6.0-6.7	255:0	Src1 Blue								Format:	MDP_DW_SIMD8							Slots[7:0] or [15:	8] of Src1 Blue					7.0-7.7	255:0	Src1 Alpha																Format:	MDP_DW_SIMD8							Slots[7:0] or [15:	8] of Src1 Alpha					8.0-8.7	255:0	Source Depth																Format:	MDP_DW_SIMD8							Slots [7:0] or [15	:8] of Source Depth				# **SZ SIMD8 Render Target Data Payload**	MDP_I	RTW_Z8 -	SZ SIMD8 Re	ender Target Data Payload			----------------------------	--	---------------------------------	---------------------------	--		Source: Size (in bits):	BSpec 1280					Default Value:	0x00000000, 0x00000000, 0x00000000, 0x00000000					DWord	Bit		Description			0.0-0.7	255:0	Format: Slots [7:0] Red	MDP_DW_SIMD8			1.0-1.7	255:0	Green Format:	MDP_DW_SIMD8					Slots [7:0] Green				2.0-2.7	255:0	Format: Slots [7:0] Blue	MDP_DW_SIMD8			3.0-3.7	255:0	Alpha Format: Slots [7:0] Alpha	MDP_DW_SIMD8			4.0-4.7	255:0	Format: Slots [7:0] Source	MDP_DW_SIMD8 Depth		## **SZ SIMD16 Render Target Data Payload**	MDP_RT	W_Z16 - S	SZ SIMD16 Ren	der Target Data Payload		-----------------	--	---------------------------------------	--		Source:	BSpec				Size (in bits):	2560				Default Value:	0x00000000, 0x00000000, 0x00000000, 0x00000000					0x00000000, 0x0	0000000, 0x00000000, 0x	00000000, 0x00000000, 0x00000000,			0x00000000, 0x000000000, 0x000000000, 0x00000000					•	· · · · · · · · · · · · · · · · · · ·	(0000000, 0x00000000, 0x00000000,					00000000, 0x00000000, 0x00000000,			•	· · · · · · · · · · · · · · · · · · ·	x00000000, 0x00000000, 0x00000000,					(00000000, 0x00000000, 0x00000000,					x00000000, 0x00000000, 0x00000000, x00000000, 0x00000000, 0x00000000,					00000000, 0x00000000, 0x00000000,			•	·	x00000000, 0x00000000, 0x00000000,					00000000, 0x00000000, 0x00000000,					x00000000, 0x00000000, 0x00000000,			0x00000000, 0x0	0000000			DWord	Bit		Description		0.0-0.7	255:0	Red[7:0]										Format:	MDP_DW_SIMD8				Slots [7:0] Red			1.0-1.7	255:0	Red[15:8]										Format:	MDP_DW_SIMD8				Slots [15:8] Red			2.0-2.7	255:0	Green[7:0]										Format:	MDP_DW_SIMD8				Slots [7:0] Green			3.0-3.7	255:0	Green[15:8]										Format:	MDP_DW_SIMD8				Slots [15:8] Green			4.0-4.7	255:0	Blue[7:0]										Format:	MDP_DW_SIMD8				Slots [7:0] Blue			5.0-5.7	255:0	Blue[15:8]			MDP_R1	rw_Z16 -	SZ SIMD16 F	Render Target Data Payload		---------	-----------------	--------------------	----------------------------				Format:	MDP_DW_SIMD8				Slots [15:8] Blue			6.0-6.7	255:0	Alpha[7:0]					Format:	MDP_DW_SIMD8				Slots [7:0] Alpha			7.0-7.7	255:0	Alpha[15:8]					Format:	MDP_DW_SIMD8				Slots [15:8] Alpha			8.0-8.7	255:0	Source Depth[7:0)]				Format:	MDP_DW_SIMD8				Slots [7:0] Source			9.0-9.7	255:0	Source Depth[15										Format:	MDP_DW_SIMD8				Slots [15:8] Sourc	e Depth	#### **Thread EOT Message Descriptor** **TS_EOT** - Thread EOT Message Descriptor Source: RenderCS Size (in bits): 32 Default Value: 0x02000000 End of Thread message is sent to SFID_TS (07h) to end GPGPU and Media threads. The EU send instruction must also set the EOT control (bit 5) of the extended message descriptor. This message is sent with single register message payload, which is a copy of the R0 thread payload sent with the thread dispatch.	the thread dispatch.	1						----------------------	-------	------------------------------	-------------	----------	--		DWord	Bit		Description				0	31:29	Reserved							Format:		MBZ				28:25	Message Length							Default Value:	1h	One GRF					Format:	U4					24:20	Response Length							Default Value: Oh Zero GRF		Zero GRF					Format:	U5					19	Header Present							Format:		MBZ				18:1	Reserved							Format:		MBZ				0	Message Type							Default Value:	0h End	l Thread					Format:	Opcod	le					End of Thread message opcode											#### TILE_RECT			TILE_RECT					--------------	----------------------	---	-----------------------------	--	--		Source:	RenderCS, PositionCS						Size (in bit	Size (in bits): 64						Default Va	lue:	0x00000000, 0x00000000					DWord	Bit	Description					0	31:16	Tile Rectangle Y Min														Format:	U16						Specifies Y Min coordinate of (inclusive) Tile Region use	ed for tile rendering test.						Value	Name						[0,16383]						15:0	Tile Rectangle X Min														Format: U16							Specifies X Min coordinate of (inclusive) Tile Region used for tile rendering test.							Value	Name						[0,16383]					1	31:16	Tile Rectangle Y Max														Format:	U16						Specifies Y Max coordinate of (inclusive) Tile Region us							Value	Name						[0,16383]						15:0	Tile Rectangle X Max														Format:	U16						Specifies X Max coordinate of (inclusive) Tile Region us							Value	Name						[0,16383]				#### **TileW SIMD8 Data Control Dword**		MD	CD_TILEW - TileW SIMD8 Data Co	ontro	ol Dword		-----------------	------	--	---------	----------		Source: BSpec						Size (in bits):		32				Default Value	2:	0x00000000				DWord	Bit	Description				0	31:8	Reserved	_											Format:	MBZ					Ignored					7:0	Red												Format:		U8				Specifies the value of the red channel to be read or w	ritten.		# **TileW SIMD8 Data Payload**	M	DP_TIL	.EW_SIMD8	- TileW SIMD8 Data Payload					-----------------	--------	---------------------------------------	---	--	--	--		Source:	BSpec							Size (in bits):	256							Default Value:		0000, 0x00000000, 0	000, 0x00000000, 0x00000000, 0x00000000, 0x00000000					DWord	Bit		Description					0.0	31:0	Red Slot0								Format:	MDCD_TileW							Specifies the Slo	t 0 red channel data					0.1	31:0	Red Slot1								Format:	MDCD_TileW							Specifies the Slo	t 1 red channel data					0.2	31:0	Red Slot2								Format:	MDCD_TileW							Specifies the Slo	t 2 red channel data					0.3	31:0	Red Slot3								Format:	MDCD_TileW							Specifies the Slot 3 red channel data						0.4	31:0	Red Slot4								Format:	MDCD_TileW							Specifies the Slo	t 4 red channel data					0.5	31:0	Red Slot5																																																										
Format:	MDCD_TileW							Specifies the Slo	t 5 red channel data					0.6	31:0	Red Slot6								Format:	MDCD_TileW							Specifies the Slo	Specifies the Slot 6 red channel data					0.7	31:0	Red Slot7								Format:	MDCD_TileW							Specifies the Slo	t 7 red channel data				# **Timeout Data Payload**			MDP_TIMEOUT - Timeout Data	a Payload					------------	--------	---	------------------------------------	--	--	--		Source:		EuSubFunctionGateway						Size (in b	oits):	256						Default \	/alue:	0x00000000, 0x00000000, 0x00000000, 0x00000000	0x00000000, 0x00000000,					DWord	Bit	Description						0	31:10	Reserved								Format:	MBZ						9:0	Timeout Value								Format:	U10							The amount of time GW should wait before sending a writ of 1024 clocks. Thus, with a 1Ghz clock it would be approxi illegal values since the actual timeout time can be short by value.	mately in terms of uS. 0 and 1 are					17	223:0	Reserved								Format:	MBZ				# **Transpose Message Header**			MH_T - Transpose Me	ssage Header					--------------	-------	---	-----------------------------------	--	--	--		Source:		EuSubFunctionDataPort1						Size (in bit	s):	256						Default Va	lue:	0x00000000, 0x00000000, 0x00000000, 0x 0x00000000, 0x00000000	00000000, 0x00000000, 0x00000000,					DWord	Bit	Des	scription					0	31:0	X Offset								Format:	S31							X offset (in bytes) of the upper left corner of	f the block into the surface.							Programming Notes								This field must be a multiple of the Block Width in bytes. Must be DWORD aligned.						1	31:0	Y Offset								Format:	S31							Y offset (in rows) of the upper left corner of	the block into the surface.							Programming Notes								This field must be a multiple of the Block He	eight.					2	31:0	Block Dimensions								Format: MHC	BDIM							The height and width of the block to transpo	ose.					37	159:0	Reserved								Format:	MBZ							Ignored					### TS_CONSTANTS_REMOVED			TS_CONSTANTS_REMOVED			-----------------	--	---	--		Source:	BSpec				Size (in bits):	2048				Default Value:	0x00000000, 0x00000000, 0x00000000, 0x00000000				DWord	Bit	Description			07	255:0	Push Constants for Texel Shader slot 0.			815	255:0	Push Constants for Texel Shader slot 1.			1623	255:0	Push Constants for Texel Shader slot 2.			2431	255:0	Push Constants for Texel Shader slot 3.			3239	255:0	Push Constants for Texel Shader slot 4.			4047	255:0	Push Constants for Texel Shader slot 5.			4855	255:0	Push Constants for Texel Shader slot 6.			5663	255:0	Push Constants for Texel Shader slot 7.		### TS_CONSTANTS_REMOVED	TS_CONSTANTS_REMOVED						----------------------	--	---	--	--		Source:	BSpec	BSpec				Size (in bits):	2048	·				Default Value:	0x00000000, 0x00000000, 0x00000000, 0x00000000					DWord	Bit	Description				07	255:0	Push Constants for Texel Shader slot 0.				815	255:0	Push Constants for Texel Shader slot 1.				1623	255:0	Push Constants for Texel Shader slot 2.				2431	255:0	Push Constants for Texel Shader slot 3.				3239	255:0	Push Constants for Texel Shader slot 4.				4047	255:0	Push Constants for Texel Shader slot 5.				4855	255:0	Push Constants for Texel Shader slot 6.				5663	255:0	Push Constants for Texel Shader slot 7.			Others Reserved ### **Untyped Write Channel Mask Message Descriptor Control Field**	MDC_UW_CMASK - Untyped Write Channel Mask Message Descriptor Control Field						--	------------	--	--	--								Size (in bits):	4					Default Value:	0x00000000											Size (in b	oits):	4	4							------------	---------------------------	-------	--	--	--	--	--	--		Default \	Default Value: 0x00000000									DWord	OWord Bit Description									0	3:0	Mask											d surface write messages, to the surface.	, indicates which channels are included in the message payload								Value	Name	Description								00h	RGBA [Default]	Red, Green, Blue, and Alpha are included								08h	RGB Red, Green, and Blue are included									0Ch	RG	Red and Green are included								0Eh	R	Red is included					Ignored # **Upper Oword Block Data Payload**	N	MDP_OW1U - Upper Oword Block Data Payload						-----------------	---	-------------------------	------------------	------	--		Source:	BSpec						Size (in bits):	256						Default Value:	Default Value: 0x00000000, 0x000000000, 0x000000000, 0x00000000						DWord	Bit		Description				0.0-0.3	127:0	Reserved							Format:		MBZ					Ignored					0.4-0.7	127:0	Oword							Format:		U128					Specifies the upper Owo	ord data element			# **URB Channel Mask Payload Control**		MACD_URB_CMASK - URB Channel Mask Payload Control							------------	---	---	------------	-----	--	--		Source:		BSpec						Size (in l	oits):	32						Default \	Value:	0x00000000						DWord	Bit	D	escription					0	31:24	Reserved								Format:		MBZ					23:16	Channel Mask								Format:	Enable[8]							For each channel present in the message data payload, the corresponding channel mask bit is ANDed with the slot's execution mask to determine the final channel enable. When final channel enable is 1 it indicates that Dword data will be written to the surface.							15:0	Reserved								Format:		MBZ			#### **URB Handle Message Header** This is the URB handle where slot 5 results are written or read. 0.6 This is the URB handle where slot 6 results are written or read. This is the URB handle where slot 7 results are written or read.	MH	I_URB_HANDLE - URB Hand	le M	essage	Header					-------------------	---	------	----------	----------------	--	--	--		Source:	BSpec								Size (in bits):	256								Default Value:	Default Value: 0x00000000, 0x000000000, 0x000000000, 0x00000000									DWord	Bit		Description						0.0	31:0	Handle 0						This is the URB h	nandle where slot 0 results are written or read.		Format:	MHC_URB_HANDLE						0.1	31:0	Handle 1						This is the URB h	andle where slot 1 results are written or read.		Format:	MHC_URB_HANDLE						0.2	31:0	Handle 2						This is the URB h	andle where slot 2 results are written or read.		Format:	MHC_URB_HANDLE						0.3	31:0	Handle 3						This is the URB h	andle where slot 3 results are written or read.		Format:	MHC_URB_HANDLE						0.4	31:0	Handle 4						This is the URB h	nandle where slot 4 results are written or read.		Format:	MHC_URB_HANDLE				31:0 31:0 31:0 Handle 5 Format: Handle 6 Format: Handle 7 Format: MHC_URB_HANDLE MHC_URB_HANDLE MHC_URB_HANDLE ### **URB Handle Message Header Control**	MHC URB	HANDLE -	URB Handle	Message	Header	Control		---------	-----------------	-------------------	---------	--------	---------		---------	-----------------	-------------------	---------	--------	---------	Source: BSpec Size (in bits): 0 Default Value: 0x00000000	DWord	Bit	Description		-------	-------	-------------		0	31:25	Reserved			24:0	Reserved	#### VC1			VC1					--------------	------	---	--	--	--		Source:		VideoCS					Size (in bit	s):	16					Default Va	lue:	0x0000000					DWord	Bit	Description					0	15:8	Reserved							Format: MBZ						7	Syncmarker Error This flag indicates missing sync marker SEs coded in the bit-stream.						6	Mbmode SE Error This flag indicates inconsistent Macroblock SEs coded in the bit-stream.						5	Transformtype SE Error This flag indicates inconsistent transform type SEs coded in the bit-stream.						4	Coefficient Error This flag indicates inconsistent Coefficient SEs coded in the bit-stream.						3	Motion Vector SE Error This flag indicates inconsistent Motion Vector SEs coded in the bit-stream.						2	Coded Block Pattern CY SE Error This flag indicates inconsistent CBPCY SEs coded in																																																																																																																																																																																																																																																																																																																																																											
the bit-stream.						1	Mquant Error This flag indicates inconsistent MQUANT SEs coded in the bit-stream.						0	MB Concealment Flag . Each pulse from this flag indicates one MB is concealed by hardware.				#### **VCS Hardware-Detected Error Bit Definitions**			VCS Har	dware-Det	tected Error Bi	it Definitions													--	-------------------	--------------------	--------------------	----------------------------	--	--	--	--	--	--	--	--	---	--	--------------------------	-----		Source:		VideoCS																Size (in b	ize (in bits): 16																	Default Value: 0x00000000																		DWord Bit Description																		0	15:3	Reserved																		Format:			MBZ														2		command classifi		ed in a non-privileged batch buffer. The ntinue.														1	Reserved																		Format:			MBZ													 Instruction Error This bit is set when the Renderer Instruction Parser detects an error while parsing an in Instruction errors include: Client ID value (Bits 31:29 of the Header) is not supported (only MI, 2D and 3D a supported). Defeatured MI Instruction Opcodes: 					· · ·															Value	Name		Description																										1		Instruction Error detect	ted						_																		Programming Note																This error indicat	ions cannot be cle	eared except by reset (i.e	e., it is a fatal error).												### VD_CONTROL_STATE_BODY			VD_CONTROL_STATE_BODY						--	--------	---	--	--	--	--		Source:		BSpec						Size (in b	oits):	64						Default \	/alue:	: 0x00000000, 0x00000000						DWord	Bit	Description						0	31:1	Reserved								Format: MBZ						0 Pipeline Initialization This bit, when set, clears internal states for HCP Pipe if Media Instruction Opcode is set f Pipe								1	31:3	Reserved								Format: MBZ							2	Memory Implicit Flush This is used to initiate an implicit flush to memory to make sure all the memory request goes to memory. This should be programmed at the end of each frame after frame completion and before MI_FLUSH.							1	Scalable Mode Pipe Unlock This is used for decoder/encoder pipe to unlock all the pipes for scalable mode. It should be programmed at the end of frame.							0	Scalable Mode Pipe Lock This is used for decoder/encoder pipe to lock all the pipes for scalable mode. It should be programmed at the start of frame.					## VDENC_64B_Aligned_Lower_Address			VDENC_64B		ddress				-----------------	------	-----------------------	-------------------------------	--------	--	--		Source:	Vid	leoCS						Size (in bits):	32							Default Value:	0x0	0000000						DWord	Bit		Description					0	31:6	Address								Format:	GraphicsAddress[31:6]							1								[31:6]	[31:6]							This field is for the	26 bits of the lower address.						5:0	Reserved								Format:		MBZ			# ${\bf VDENC_64B_Aligned_Upper_Address}$		VDENC_64B_Aligned_Upper_Address							------------	---	-------------	-----	--	--	--		Source:	Source: VideoCS							Size (in l	oits):	32						Default \	Default Value: 0x00000000							DWord	Bit	Description						0	31:16	Reserved								Format:	MBZ						15:0 Address Upper DWord Bits [47:32] of the Address. GraphicsAddress is 64-bit value [63:0], but only a portion of it is used by hardware. The uppermost bits [63:48] are ignored and MBZ.						### VDENC_Block_8x8_4	VDENC_Block_8x8_4								-------------------	------------	-------	-------------	----------	--	--		Source:	VideoCS							Size (in bits):	16							Default Value:	0x00000000							DWo	ord	Bit	Des	cription				0		15:12	Block8x8[3]								Format:	U4						11:8	Block8x8[2]								Format:	U4						7:4	Block8x8[1]								Format:	U4						3:0	Block8x8[0]	_							Format:	114			### **VDENC_Colocated_MV_Picture**	VDENC_Colocated_MV_Picture								----------------------------	--------	--	---------------------------------	--	--	--		Source:		VideoCS						Size (in bits):		96						Default \	/alue:	0x00000000, 0x00000000, 0x00000000						DWord	Bit	Bit Description						0	31:0	Lower Address								Format:	VDENC_64B_Aligned_Lower_Address															64 byte aligned buffer.								This field is used to write the DMV data by VDEnc. VDEnc only supports spatial direct prediction and not temporal direct. Hence the HW precomputes the ColZeroFlag per 8x8 block and writes 8-bits per macroblock. HW accumulates a CL worth of data before writing it out. This is a linear buffer, can be considered to be a frame level row-store. There is no read/write happening to the surface for any given frame.								HW only writes to this surface for P-Frames.								HW only reads from this surface for B-Frames.								Size = 8-bits/ MB linear buffer.						1	31:0	Upper Address								Format:	VDENC_64B_Aligned_Upper_Address					2	31:0	Picture Fields								Format:	VDENC_Surface_Control_Bits				### **VDENC_Down_Scaled_Reference_Picture**	VDENC_Down_Scaled_Reference_Picture								-------------------------------------	--	------------------------------------	---------------------------------	--	--	--		Source:		VideoCS	VideoCS					Size (in bits):		96						Default Value:		0x00000000, 0x00000000, 0x00000000						DWord	Bit	Description						0	31:0	Lower Address								Format:	VDENC_64B_Aligned_Lower_Address						Specifies the 64 byte aligned DownScaled reference frame buffer address. VDEnc down-scaled reference pictures for HME search. (2 fwd and 1 bwd).							1	31:0	Upper Address								Format:	VDENC_64B_Aligned_Upper_Address					2	31:0	Picture Fields								Format:	VDENC_Surface_Control_Bits				# ${\bf VDENC_Original_Uncompressed_Picture}$		VDENC_Original_Uncompressed_Picture							------------	-------------------------------------	--	---------------------------------	--	--	--		Source:	ource: VideoCS							Size (in b	oits):	96						Default \	/alue:	0x0000000	0, 0x0000000, 0x00000000					DWord	Bit		Description					0	31:0	Lower Address								Format:	VDENC_64B_Aligned_Lower_Address							Specifies the 64 byte aligned frame buffer address for fetching YUV pixel data from the origina uncompressed input picture for encoding. This field is only valid in encoding mode.						1	31:0	Upper Address	Upper Address							Format: VDENC_64B_Aligned_Upper_Address						2	31:0	Picture Fields	Picture Fields							Format:	VDENC_Surface_Control_Bits				## **VDENC_Reference_Picture**	VDENC_Reference_Picture							--	----------------	---	---------------------------------	--	--		Source:	ource: VideoCS						Size (in b	oits):	96					Default \	/alue:	0x0000000	0, 0x0000000, 0x00000000				DWord	Bit		Description				0	31:0	Lower Address							Format:	VDENC_64B_Aligned_Lower_Address				Specifies the 64 byte aligned reference frame buffer addresses corresponding to fwd refere index = 0 in the bitstream. VDEnc supports upto 4 reference pictures for IME search. (3 fwd bwd).							1																																																																																																																																																																																																																																																																																																																							
31:0	Upper Address							Format: VDENC_64B_Aligned_Upper_Address					2	31:0	Picture Fields							Format:	VDENC_Surface_Control_Bits			## **VDENC_Reference_Surface_State_Fields**			VDENC_	Referen	ce_Surface_Sta	te_Fields				---	--------	---	---	---------------------------	--------------------------------------	--	--		Source:		VideoCS							Size (in b	oits):	128							Default Value: 0x00000000, 0x000000003, 0x000000000, 0x00000000									DWord	Bit			Description					0	31:18	Height									Format:		U14-1							This field specifies the field indicates the he	9	'	ls. For PLANAR surface formats, this						Value	Name		Description						[0,16383]		Representing heights [1	1,16384]								Programming Notes	s				-		This should be a mu	Itiple of 8 for H	HEVC and VP9.						17:4	Width									Format:		U14-1							•	nis field specifies the width of the Picture in units of pixels/residuals. For PLANAR surface mats, this field indicates the width of the Y (luma) plane.								Value	Name		Description						[0,16383]		Representing widths [1	s [1,16384]						Programming Notes									The Width specified by this field multiplied by the pixel size in bytes must be less than or equal to the surface pitch (specified in bytes via the Surface Pitch field). Width (field value + 1) must be a multiple of 2 for PLANAR_420, VDEnc HW does not use this field, the picture width is read from IMG State instead, because this field may not equal to the actual picture width. This field is used by the KMD to allocate surface in GTT.							-	3:2	Reserved									Format:			MBZ				-	1:0	Cr(V)/Cb(U) Pixel O	ffset V Directi	ion							Format:			U0.2						Exactly as shown in the original spec.									Specifies the distant direction.	ce to the U/V v	alues with respect to the	e even numbered Y channels in the V								Programming Notes	5						This field is currently	/ ignored in the								Land Held 15 carrettily		C . D E. 10.							•	VDENC_R	eference_Surface	_State_Fields				---	----------------	---	--------------------	--	--	---	--		1	31:28	Surface Format									Format: U4									Specifies the format of the surface. All supported formats are assumed to by Tile-Y.									Value	Name		Description						0	YUY2Variant	Y1 U0 Y0), 8 bit planar 422.	d YUY2 format YUYV/YUY2 (8:8:8:8 MSB V0 The chroma is UV interleaved and is at an nilar to NV12) but is the same height as the						1	Reserved								2	AYUVVariant	format. The U channel is be direction (similar to NV12) I	odified AYUV4444 format, 8 bit planar 444 low the luma and is at an offset in the Y-but is the same height as the luma. The V is at an offset in the Y-direction (similar to ht as the luma.						3	Reserved								4	PLANAR_420_8	(NV12, IMC1,2,3,4, YV12)							[5,7]	Reserved								8	P010Variant	>8 bit planar 420 with MSB	together and LSB at an offset in x direction.						9	Reserved								10	Y416Variant	with MSB bytes packed tog direction where the x-offset The U channel is below the luma and is at an offset in t same height as the luma. < The V channel is below the	luma, has identical MSB and LSB split as he Y-direction (similar to NV12) but is the						11	Reserved									12	Y216Variant	MSB bytes packed together direction where the x-offset interleaved with identical M	Y210/Y216 format, >8 bit planar 422 with and LSB bytes at an offset in the X- t is 32-bit aligned. The chroma is UV ISB and LSB split as luma and is at an offset NV12) but is the same height as the luma.					[13,15]	Reserved						-	27	Interlea	ve Chroma							Format: Enable										This field indicates that the chroma fields are interleaved in a single plane rather than stored as two separate planes. This field is only used for PLANAR surface formats. For 444 formats, they are stored as two separate planes one below the other. But on the 422 and									420 1011	nats, they are int	Name	Description							varac	Hame	Description					0	Disa	able				-------	---	--	---																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
--	--			1	Ena	ble				26:22	Reserved	<u> </u>		<u>_</u>				Format:			МВ	Z		21:20	Reserved21_20						19:3	Surface Pitch							Format:			U	J17			-1 pitch in Bytes	<u> </u>						I 		ce pitch in (#Bytes).					,							Value	9	Name		Description			[0,2047]			to [1B, 204	18B]					Programn	ning Notes				Pitch for Chroma is set, this field must be a multiple of two tile widths for tiled surfaces, or a multiple of 2 bytes for linear surfaces. For Y-tiled surfaces: Range = [127, 524287] to [128B,256KB] = [1 tile, 2048 tiles].							multiple of 2 by	tes for linea	r surfaces. For Y-tile	•			2	multiple of 2 by	tes for linea [1 tile, 2048	r surfaces. For Y-tile	•			2	multiple of 2 by [128B,256KB] = Half Pitch for Cl Format:	tes for linea [1 tile, 2048 hroma	r surfaces. For Y-tiled tiles].	d surfaces: Rai	nge = [127, 524287] to		2	multiple of 2 by [128B,256KB] = Half Pitch for Cl Format: (This field must equal to half the	tes for linea [1 tile, 2048 hroma be set to Disvalue specification of the Disvalue sp	r surfaces. For Y-tiled tiles]. sable.) This field indified in the Surface Pi	Enable cates that the itch field. This	nge = [127, 524287] to chroma plane(s) will use a plane(s) records the chroma plane(s) will use a plane(s		2	multiple of 2 by [128B,256KB] = Half Pitch for Cl Format: (This field must equal to half the	tes for linea [1 tile, 2048 hroma be set to Disvalue specification of the Disvalue sp	r surfaces. For Y-tiled tiles]. sable.) This field indi	Enable cates that the itch field. This	nge = [127, 524287] to chroma plane(s) will use a plane(s) records the chroma plane(s) will use a plane(s		2	multiple of 2 by [128B,256KB] = Half Pitch for Cl Format: (This field must equal to half the surface formats.	tes for linea [1 tile, 2048 hroma be set to Disvalue specification of the Disvalue sp	r surfaces. For Y-tiled tiles]. sable.) This field indified in the Surface Pigored by VDEnc (ur	Enable cates that the itch field. This	chroma plane(s) will use a pfield is only used for PLANA		2	multiple of 2 by [128B,256KB] = Half Pitch for Cl Format: (This field must equal to half the surface formats. Value	tes for linea [1 tile, 2048 hroma be set to Disvalue specifications of the set to be set to Disvalue specifications of the specifi	r surfaces. For Y-tiled tiles]. sable.) This field indified in the Surface Pigored by VDEnc (ur	Enable cates that the itch field. This	chroma plane(s) will use a pfield is only used for PLANA		2	multiple of 2 by [128B,256KB] = Half Pitch for Cl Format: (This field must equal to half the surface formats. Value	tes for linea [1 tile, 2048 hroma be set to Dis value specif This field is Disable [[r surfaces. For Y-tiled tiles]. sable.) This field indified in the Surface Pigored by VDEnc (ur	Enable cates that the itch field. This	chroma plane(s) will use a pfield is only used for PLANA			multiple of 2 by [128B,256KB] = Half Pitch for Cl Format: (This field must equal to half the surface formats. Value 0 1	tes for linea [1 tile, 2048 hroma be set to Dis value specif This field is Disable [[r surfaces. For Y-tiled tiles]. sable.) This field indified in the Surface Pigored by VDEnc (ur Name Default]	Enable cates that the itch field. This	chroma plane(s) will use a pfield is only used for PLANA			multiple of 2 by [128B,256KB] = Half Pitch for Cl Format: (This field must equal to half the surface formats. Value 0 1 Tiled Surface Format:	tes for linea [1 tile, 2048 hroma be set to Disvalue specification of the set to Disvalue specification of the set to TR	r surfaces. For Y-tiled tiles]. sable.) This field indified in the Surface Pigored by VDEnc (ur Name Default]	Enable cates that the itch field. This nless we suppose	chroma plane(s) will use a pfield is only used for PLANA			multiple of 2 by [128B,256KB] = Half Pitch for Cl Format: (This field must equal to half the surface formats. Value 0 1 Tiled Surface Format: (This field must	tes for linea [1 tile, 2048 hroma be set to Disvalue specification of the set to Disvalue specification of the set to TR	r surfaces. For Y-tiled tiles]. sable.) This field indified in the Surface Pigored by VDEnc (ur Name Default]	Enable cates that the itch field. This nless we suppose	chroma plane(s) will use a pfield is only used for PLANA ort YV12). Description			multiple of 2 by [128B,256KB] = Half Pitch for Cl Format: (This field must equal to half the surface formats. Value 0 1 Tiled Surface Format: (This field must ignored by VDEn	tes for linea [1 tile, 2048 hroma be set to Disvalue specification of the set to Disvalue specification of the set to TR	r surfaces. For Y-tiled tiles]. sable.) This field indified in the Surface Pigored by VDEnc (ur Name Default]	Enable cates that the itch field. This nless we suppose the suppos	chroma plane(s) will use a pfield is only used for PLANA ort YV12). Description ther the surface is tiled. This			multiple of 2 by [128B,256KB] = Half Pitch for Cl Format: (This field must equal to half the surface formats. Value 0 1 Tiled Surface Format: (This field must ignored by VDEn Value	tes for linea [1 tile, 2048 hroma be set to Disvalue specification of the set to Disvalue specification of the set to TR increase.	r surfaces. For Y-tiled tiles]. sable.) This field indified in the Surface Prigored by VDEnc (ur Name Default] UE: Tiled.) This field Name	Enable cates that the itch field. This aless we suppose Boolean specifies where	chroma plane(s) will use a pfield is only used for PLANA ort YV12). Description Cher the surface is tiled. This			multiple of 2 by [128B,256KB] = Half Pitch for Cl Format: (This field																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
must equal to half the surface formats. Value 0 1 Tiled Surface Format: (This field must ignored by VDEn Value	tes for linea [1 tile, 2048 hroma be set to Disvalue specification of the set to Disvalue specification of the set to TR accusage. False	r surfaces. For Y-tiled tiles]. sable.) This field indified in the Surface Prigored by VDEnc (ur Name Default] EUE: Tiled.) This field Name	Enable cates that the itch field. This aless we suppose Boolean specifies where	chroma plane(s) will use a pfield is only used for PLANA ort YV12). Description Cher the surface is tiled. This Description Linear				VD	ENC_Reference_Surf	ace_State_Fig	elds				---	-------	--	---	--------------------------	------------------------------	--	--				of this bit.								0	Tile Walk									Format:		l	J1						(XMajor or Y memory tilir	nust be set to 1: TILEWALK_YMAJO 'Major) employed to tile this surfac ng and restrictions.This field is igno s this as set to 1 for all VDEnc usag	ce. See Memory Interface	ace Functions for details on						Value	Name		Description						0h	XMAJOR	TILEWALK_X	MAJOR						1h	YMAJOR [Default]	TILEWALK_Y	MAJOR							Рискион	oming Notes							The correct	oonding cache(s) must be invalidat	nming Notes	vaccossed surface is						•	gain with an altered state of this bi		accessed surface is				2	31	Reserved									Format:		MBZ						30:16	X Offset for U(Cb)									Default Valu	ue:	0							Format: U15									Pixel Offset									This field specifies the horizontal offset in pixels from the Surface Base Address to the start (origin) of the U(Cb) plane or the interleaved UV plane if Interleave Chroma is enabled. This field is only used for PLANAR surface formats. This field must be set to zero for all formats.								15	Reserved									Format:		MBZ						14:0	Y Offset for U(Cb)									Format: U15									Pixel Row Offset									This field specifies the vertical offset in rows from the Surface Base Address to the start (origin) of the U(Cb) plane or the interleaved UV plane if Interleave Chroma is enabled. This field is only used for all reference formats.							3	31:29	Reserved									Format:		MBZ						28:16	X Offset for	· V(Cr)								Format:		U13							Offset in Di	vals //n>								Offset in Pix	λειs. \/ μ >							VDENC_Reference_Surface_State_Fields							------	---	--	--	--	--	--											This field specifies the horizontal offset in pixels from the Surface Base Address to the (origin) of the V(Cr) plane. This field is only used for PLANAR surface formats with Int Chroma disabled. This field MBZ for all reference VDEnc formats.							15:0	Y Offset for V(Cr)								Format: U16								Row Offset in Pixels This field specifies the vertical offset in rows from the Surface Base Address to the start (origin) of the V(Cr) plane. It is only used for 444 planar formats for reference frames (AYUV4444V and Y416). This field MBZ for PLANAR_420_8, P010V, YUY2V and Y216V formats.						## **VDENC_Row_Store_Scratch_Buffer_Picture**			VDENC	_Row_Store_Scratch_Buffer_Picture					--------------	--------	--	-----------------------------------	--	--	--		Source:		VideoCS						Size (in b	oits):	96						Default \	/alue:	0x0000000	0, 0x00000000, 0x00000000					Structu	re_V[DENC_Row_Store_S	Scratch_Buffer_Picture					Υ								DWord	Bit		Description					0	31:0	Lower Address								Format:	VDENC_64B_Aligned_Lower_Address							This field provides the base address of the scratch buffer (read/write) used by VDEnc to store MB information of the previous row for processing of each macroblock in the current row. The Row Store buffer must be 64-byte cacheline aligned. Hardware uses the horizontal address of the current macroblock to address the Row Store.								AVC: Size = 256 bits/MB. 4K wide picture needs 128 CLs.						1	31:0	Upper Address								Format:	VDENC_64B_Aligned_Upper_Address					2	31:0	Buffer Picture Fie	lds							Format:	VDENC_Surface_Control_Bits				## **VDENC_Streamin_Data_Picture**		VDENC_Streamin_Data_Picture							--	-----------------------------	---	--	--	--	--		Source:	Source: VideoCS							Size (in b	oits):	96						Default \	/alue:	0x0000000	0, 0x00000000, 0x00000000					DWord	Bit		Description					0	31:0	Lower Address								Format:	VDENC_64B_Aligned_Lower_Address					Specifies the address for per-MB indirect data in memory when the StreamInEnable is se VDENC_PIPE_MODE_SELECT command. Currently this surface is intended to have 1CL pe and is a linear surface. This has parameters such as extra predictors with refidx (intended used for IME search), MB level quantization parameters and Region of Interest bits. The individual parameters have enables in the VDENC_IMG_STATE to indicate which of the parameters are valid in the streamin surface. Size = 1CL/MB linear surface.			DE_SELECT command. Currently this surface is intended to have 1CL per MB face. This has parameters such as extra predictors with refidx (intended to be ch), MB level quantization parameters and Region of Interest bits. The exters have enables in the VDENC_IMG_STATE to indicate which of the alid in the streamin surface.					1	31:0	Upper Address								Format: VDENC_64B_Aligned_Upper_Address						2	31:0	Picture Fields								Format:	VDENC_Surface_Control_Bits				## VDENC_Sub_Mb_Pred_Mode	VDENC_Sub_Mb_Pred_Mode							------------------------	-------	-------	------------------	-----------	--		Source:	Video	CS					Size (in bits):	8						Default Value:	0x000	00000					DWord		Bit	De	scription			0		7:6	SubMbPredMode[3]							Format:	U2					5:4	SubMbPredMode[2]							Format:	U2					3:2	SubMbPredMode[1]							Format:	U2					1:0	SubMbPredMode[0]							Format:	U2		## **VDENC_Surface_Control_Bits**				VDEN	C_Surface_Cont	rol_Bits				---------------------------	--------	---	-----------------	--	----------------	---------------------------	--		Source:		Vide	oCS						Size (in b	oits):	32							Default Value: 0x00000000									DWord	Bit			Descripti	on				0	31:15	Reserved									Format:			MBZ					14:13	Tiled Reso	urce Mode																	Format:				U2					For Media	Surfaces: This	field specifies the tiled res	ource mode.						Value		Name		Description					0h	TRMODE_	NONE	No tiled reso						1h	TRMODE_	TILEYF	4KB tiled res						2h	TRMODE_	TILEYS	64KB tiled re	sources					3h	Reserved								Due automotive Notes									This field should be programmed the same for all these VDEnc surfaces listed below. DS FWD REF0, DS FWD REF1, DS BWD REF0. FWD REF0, FWD REF1, FWD REF2, BWD REF0.								12	Cache Select									Exists If:		cture_VDENC_Row_Store_S	cratch_Buffer	_Picture] == 'true')					Format:	Format: U1																			Descripti							This field controls if the Row Store is going to store inside Media Cache (rowstore cache) or to LLC.									When this is programmed to "1"																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																									
(going to Media Cache), the corresponding base address will											starting position in the me Page" in HEVC section	edia cache. Th	e programming table is in					Value	Name		Description	on					0		Buffer going to LLC.							1		Buffer going to Internal N	Лedia Storage					12:11	Reserved	<u>'</u>								Exists If:	(Property[Struc	ture_VDENC_Row_Store_S	cratch_Buffer	_Picture] == 'false')					Format:	MBZ																	VDENC_Surface_	Con	trol_Bits					---	---	--	---------	--------------------	----------------------------------	--	--		11	Reserved									Exists If:	s If: (Property[Structure_VDENC_Row_Store_Scratch_Buffer_Picture]			icture] == 'true')					Format: MBZ								10	Reserved								9	Memory C	Compression Enable								Format:			Enable						Memory c	ompression will be attempted for	this su	rface.							Value			Name					0h		Disabl							1h		Enable	9							Progra	ammin	g Notes						This field	should be programmed the same			aces listed below. DS FWD					REF0, DS FWD REF1, DS BWD REF0. FWD REF0, FWD REF1, FWD REF2, BWD REF								8:7	Arbitratio	n Priority Control								Format:	J2									This field controls the priority of arbitration used in the GAC/GAM pipeline for this surface.								Value		e		Description					00b	Highest priority								01b	Second highest priority								10b	Third highest priority								11b	Lowest priority							6:1		Memory Object Control State (M	IOCS) T		1					Format:			U	J6				The index to define the L3 and system cache memory properties. The detail further defined in L3 and Page walker (memory interface) control registers.											s defined to populate 64 different gisters can be updated during rur		e controls to be u	used concurrently. Related				0	Reserved							## **VDENC_Surface_State_Fields**		VDENC_Surface_State_Fields						------------	----------------------------	--	---	--	--		Source:		VideoCS					Size (in b	oits):	128					Default \	/alue:	0x00000000, 0	x00000003, 0x	0000000, 0x00000000			DWord	Bit			Description			0	31:18	Height							Format:		U14-1					•	9	e Picture in units of pixels. For PLANAR surface formats, this uma) plane. Note: Video Codecs must program less than and					Value	Name	Description					[0,16383]		Representing heights [1,16384]														Programming Notes					 AVC specific Note: When surface tiling is TileY, the Frame Height needs to be programmed as 16-pixel aligned. When surface tiling is Linear (supported only for Source surface), the Frame Height can be programmed 2-pixel aligned. 						17:4	Width							Format:		U14-1					This field specifies the width of the Picture in units of pixels/residuals. For PLANAR surface formats, this field indicates the width of the Y (luma) plane.							Value	Name	Description					[0,16383]		Representing widths [1,16384]							Programming Notes					 equal to the s Width (field v VDEnc HW do because this 	surface pitch (s value + 1) mus oes not use thi	field multiplied by the pixel size in bytes must be less than or specified in bytes via the Surface Pitch field). t be a multiple of 2 for PLANAR_420, is field, the picture width is read from IMG State instead, equal to the actual picture width. This field is used by the GTT.				3	Color space selection	on						Format:		U1					0 Use BT.601 Space	conversion					VDENC_Surface_State_Fields								---	----------------------------	--------------------------------------	-------------------------------------	--	---	--	--				1 Use	BT.709 Space conve	ersion						2	Reserved								1:0	Cr(V)/Cb(U) Pixel Offset V Direction									Forma	t:	U0.2							Evacth	as shown in the ori	ginal spec							l 		ne U/V values with respect to the even num	hered Y channels in the V						directi											Programming Notes							This fie	eld is ignored for all	formats except PLANAR_420_8.					1	31:27	Forma	t																										value	Name	Description	Programming Notes						0h	YUY2 format								1 <u>h</u>	RGB 8 format								2 <u>h</u>	A <u>YUV4444 format</u>		D04014 1 1 1						3h	P010Variant		P010Variant is a modified P010 format, >8 bit planar 420 with MSB together and LSB at an offset in x direction where the x-offset should be 32-bit aligned.						4h	PLANAR_420_8		5						5h-	YCRCB SwapY format								6 <u>h</u>	Y <u>CRCB SwapUV</u> format								7 <u>h</u>	Y <u>CRCB SwapUVY</u> format								8 <u>h</u>	Y <u>216 format</u>	This format is used for source only. Any 422 mode with more than 8 bits per sample component uses this format.							9 <u>h</u>	RGB 10 format								A <u>h</u>	Y <u>410 format</u>								B <u>h</u>	N <u>V21</u> <u>Planar 420 8</u>							VDEN	C_Surface_State_Fields			-------------	---	--	--			Format				C <u>h</u>	Y <u>416 format</u>				Dh	P010				Eh	P016		This is added for VP9 8./10/12 bit decode		Fh	Y <u>8 format</u>				1 <u>0h</u>	Y <u>16 format</u>				11h	Y216Variant	Y216Variant is the modifed Y210/Y216					format, 8 bit planar 422 with MSB bytes packed together and LSB bytes at an offset in the X-direction where the x-offset is 32-bit aligned. The chroma is UV interleaved with identical MSB and LSB split as luma and is at an offset in the Y-direction (similar to NV12) but is the same height as the luma.			1 <u>2h</u>	Y <u>416Variant</u> Y <u>UY2Variant</u>	Y416Variant is the modifed Y410/Y412/Y416 format,8 bit planar 444 with MSB bytes packed together and LSB bytes at an offset in the X-direction where the x-offset is 32-bit aligned. The U channel is below the luma, has identical MSB and LSB split as luma and is at an offset in the Y-direction (similar to NV12) but is the same height as the luma The V channel is below the U, has identical MSB and LSB split as luma and is at an offset in the Y-direction (similar to NV12) but is the same height as the luma. YUY2Variant is the modifed YUY2 format, 8 bit planar 422. The chroma is UV interleaved and is at an offset in the Y- direction (similar to NV12) but is the same height as the luma.			1 <u>4h</u>	A <u>YUV4444Variant</u>	AYUV4444Variant is the modifed AYUV4444 format, 8 bit planar 444 format. The U channel is below the luma and is at an offset in the Y-direction (similar to NV12) but is the same height as the luma. The V channel is below the and is at an offset in the Y-direction (similar to NV12) but is the same height as the luma.					VD	ENC_Su	urface_Sta	te_Fields					-------	---																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
--	---------------	----------------	-----------	--	--	--			1 <u>5h-</u> 1Fh	Reserved								26:23	Reserv	/ed	·								Forma	at:			MBZ					22:20	Chrom	na Downsamp	le Filter Con	itrol							Forma	at:				U3					Value	Left Side Tap	Center Tap	Right Side Tap							0	0	64	0							1	16	32	16							2	15	34	15							3	14	36	14							4	13	38	13							5	12	40	12							6	11	42	11							7	0	32	32																		Programming Notes									For Tile Y 444 -> 420, Filter settings on 0 and 7 are valid. All other combinations are invalid. This true for 10 bit and 8 bit.									19:3	Surface Pitch										Forma	at:		U17							-1 nit	ch in Rytes									-1 pitch in Bytes This field specifies the surface pitch in (#Bytes).										This held specifies the surface pitch in (#bytes).											Programming Notes									If Half or a m	For tiled surfaces, the pitch must be a multiple of the tile width (i.e.128 bytes aligned). If Half Pitch for Chroma is set, this field must be a multiple of two tile widths for tiled surfaces, or a multiple of 2 bytes for linear surfaces. For Y-tiled surfaces: Range = [127,131071] to [128B,128KB] = [1 tile, 1028 tiles].									For TileYF and TileYS surfaces, the range is dependent on the Cu parameter (refer to Memory Data Formats section for the definition of the Cu parameter depending on the case). The range in bytes is [2 ^{cu} -1, 131071] -> [(2 ^{cu})B, 128KB] = [1 tile, 128KB/(2 ^{cu}) tiles] The field specifies the surface pitch in (#Bytes - 1)									2	Half P	itch for Chron	na								Forma	at:			Enable											oma plane(s) will use a I is only used for PLAN							VDENC_Surface_S	tate_Fie	ds				---	-------	---	--	-----------------------------------	---	--	--				surface formats	s. This field is igored by VDEnc (u	ınless we sup	port YV12).						Value	Name	Name							0	Disable [Default]								1	Enable							1	Tiled Surface									Format:		Boolean									d specifies wh	ether the surface is tiled. This field is						ignored by VDE									Value	Name		Description						0	False		Linear						1	True [Default]		Tiled							Program	ming Notes							Linear surfaces can be mapped to Main Memory (uncached) or System Memory (cacheable, snooped). Tiled surfaces can only be mapped to Main Memory. The corresponding cache(s) must be invalidated before a previously accessed surface is accessed again with an altered state									of this bit.								0	Tile Walk									Format: U1									(This field must be set to 1: TILEWALK_YMAJOR.) This field specifies the type of memory tiling (XMajor or YMajor) employed to tile this surface. See Memory Interface Functions for details on memory tiling and restrictions. This field is ignored when the surface is linear. Internally H/W always treats this as set to 1 for all VDEnc usage.									Value	Name	Description							0h	XMAJOR	TILE	WALK_XMAJOR						1h	YMAJOR [Default]	TILE	WALK_YMAJOR								•							Programming Notes									The corresponding cache(s) must be invalidated before a previously accessed surface is accessed again with an altered state of this bit.							2	31	Reserved									Format: MBZ								30:16	X Offset for U((Cb)								Format:			U15						Pixel Offset									(origin) of the field is only use	ifies the horizontal offset in pixel U(Cb) plane or the interleaved U ed for PLANAR surface formats. ield must be zero for NV12 and	V plane if Into This field mus	erleave Chroma is enabled. This st be set to zero. X Offset for U(Cb)					_	VDENC_Surface_State_Fields					---	-------	---	--	--	--				Programming Notes							For PLANAR_420 and PLANAR_422 surface formats, this field must be zero.						15	Reserved							Format: MBZ						14:0	Y Offset for U(Cb)							Format: U15							Pixel Row Offset							This field specifies the vertical offset in rows from the Surface Base Address to the start (origin) of the U(Cb) plane or the interleaved UV plane if Interleave Chroma is enabled. This field is only used for PLANAR surface formats.							Programming Notes							Programming Notes For PLANAR_420 and PLANAR_422 surface formats, this field must be multiple of 8 pixels - i.e. multiple MBs.					3	31:29	Reserved							Format: MBZ						28:16	X Offset for V(Cr)							Format: U13							Offset in Pixels							This field must be zero for NV12 and IMC 1 and 3.							This field specifies the horizontal offset in pixels from the Surface Base Address to the start (origin) of the V(Cr) plane. This field is only used for PLANAR surface formats with Interleave Chroma disabled.														Programming Notes							For PLANAR_420 and PLANAR_422 surface formats, this field must indicate an even number of pixels.						15:0	Y Offset for V(Cr)							Format: U16														Row Offset in Pixels							This field specifies the vertical offset in rows from the Surface Base Address to the start (origin) of the V(Cr) plane. This field is only used for PLANAR surface formats with Interleave Chroma disabled. This field is ignored by all video codec, only used by JPEG.							Programming Notes							For PLANAR_420 surface formats, this field must be multiple of 16 pixels - i.e. multiple MBs.				#### VEB_DI_IECP_COMMAND_SURFACE_CONTROL_BITS		V	EB_DI_IEC	P_COMMAND_SURFA	CE_CONTROL_BITS					------------	--------	---	--	---	--	--	--		Source:		VideoEnh	ancementCS						Size (in b	oits):	32							Default \	√alue:	0x000000	00						DWord	Bit		Descripti	on					0	31:11	Reserved									Format:		MBZ						10:9		Mode for Output Frame Surface B								Value	aces: This field specifies the tiled res										Description							0h	TRMODE_NONE	No tiled resource							1h	TRMODE_TILEYF	4KB tiled resources							2h	TRMODE_TILEYS	64KB tiled resources							3h	Reserved							8	Memory Compression Mode Distinguishes Vertical from Horizontal compression.									Value		Name							0 Horizontal Compression Mo		ode						7	Memory Compression Enable									Format:		Enable							Memory compression will be attempted for this surface.								6:1	Index to Memory Object Control State (MOCS) Tables										The index to define the L3 and system cache memory properties. The details of the controls are										rface) control registers. The field is defined to							updated during		ncurrently. Related control registers can be						0	Reserved						#### **VEBOX_ACE_LACE_STATE**		VEBOX_ACE_LACE_STATE							---	---	--	-----------------------	--	--	--		Source:		٧	/ideoEnhancementC	CS				Size (in b	ze (in bits): 416							Default \	efault Value: 0x00000068, 0x4C382410, 0x9C887460, 0xEBD8C4B0, 0x604C3824, 0xB09C8874, 0x0000D8C4, 0x04000400, 0x04000400, 0x04000400, 0x04000400, 0x04000400,									0	x00000400					This stat	te struc	ture cor	ntains the IECP State	e Table Contents for ACE state.				DWord	Bit			Description				0	31:16	31:16 Min_ACE_luma								Format:																																																																																																																																																																																																																																																																																																																																																																																					
U16							15:14	LACE S	ingle Histogram S	et												This bit tells LACE which frames will be included in the histogram when the Deinterlacer enabled.										Value	Name	Description						00b	Current	The histogram includes only the current frame.						01b	Previous	The histogram includes only the previous frame.						10b	Current + Previous	The histogram includes pixels from both the current and previous frame.						11b	Previous + Current	The histogram includes the previous frame followed by the current frame.								Programming Notes						output	a single field then	disabled, this field must be 00b. If DI Output Frames is set to only the histogram can not be collected on the disabled field. This Field DN/DI First Frame is set to 1					13	LACE H	listogram Size								Value	Name						0		128-bin histogram						1		256-bin histogram					12	LACE H	listogram Enable							Defaul	t Value:	0						This bit enables the collection of LACE histogram data. If this bit is 0 then only the ACE								histogram will be collected.								TI. 1.		Programming Notes							t must be set to "0"						11:7	Reserve	ed							VEBOX_AC	E_LACE_STATE							---	-------	---	---------------------------------------	------	--	--	--	--				Format:	MBZ								6:2	Skin Threshold										Format:	U5									Used for Y analysis (min/max) for pixe	els which are higher than skin thresh	old.								Value	Name									[1,31]										26	[Default]								1	Reserved										Format:	MBZ								0	ACE Enable										Format:	Enable										Dua manunia a Natas									This bit must be set to "0"	Programming Notes								24.24									1	31:24	Default Value:		76								Format: U8										The value of the y_pixel for point 3 in	PWI	00								The value of the y_pixer for point 3 in t we.									23:16	Y2										Default Value:		56								Format: U8										The value of the y_pixel for point 2 in PWL.									15:8	<u>Y1</u>										Default Value:		36								Format:		U8								The value of the y_pixel for point 1 in	PWL.								7:0	Ymin										Default Value:		16								Format:	U8									The value of the y_pixel for point 0 in	PWL.							2	31:24	Y7										Default Value:		156								Format:		U8								The value of the y_pixel for point 7 in	PWL.									VEBOX_ACE_LACE_S	TATE					---	-------	---	----------	----	--	--			23:16	Y6								Default Value:	1	36						Format:	U	8						The value of the y_pixel for point 6 in PWL.	-						15:8	Y5								Default Value: 11		16						Format:	U	8						The value of the y_pixel for point 5 in PWL.							7:0	Y4								Default Value:		96						Format:		U8						The value of the y_pixel for point 4 in PWL.						3	31:24									Default Value:	+	35						Format:	U	8						The value of the y_pixel for point 11 in PWL.							23:16	Y10								Default Value:	2	16						Format: U		8						The value of the y_pixel for point 10 in PWL.	-						15:8	Υ9								Default Value:	1	96						Format:	U	8						The value of the y_pixel for point 9 in PWL.							7:0	Y8								Default Value:	1	76						Format:	U	8						The value of the y_pixel for point 8 in PWL.						4	31:24			1						Default Value:		96						Format:		U8						VEBOX_ACE_LACE_	STATE						---	-------	---	-------	-----	--	--	--				The value of the bias for point 4 in PWL.								23:16	B3									Default Value:		76							Format:		U8							The value of the bias for point 3 in PWL.								15:8	B2									Default Value:		56							Format:		U8							The value of the bias for point 2 in PWL.								7:0	B1									Default Value:		36							Format:		U8							The value of the bias for point 1 in PWL.							5	31:24										Default Value:		176							Format:		U8							The value of the bias for point 8 in PWL.								23:16	B7									Default Value:		156							Format:		U8							The value of the bias for point 7 in PWL.								15:8	B6	I								Default Value:		136							Format:		U8							The value of the bias for point 6 in PWL.								7:0	B5									Default Value:		116							Format:		U8							The value of the bias for point 5 in PWL.							6	31:16	Reserved									Format:	MBZ								VEBOX_ACE_LA	CE_STATE					---	-------	--	----------	-----	--	--			15:8	B10								Default Value:		216						Format:		U8						The value of the bias for point 10 in PWL.															7:0	B9		T						Default Value:		196						Format:		U8						The value of the bias for point 9 in PWL.						7	31:27	Reserved								Format:	MBZ						26:16	S1								Default Value:	1024							Format: U1.10		0						The value of the slope for point 1 in PWL								The default is 1024/1024							15:11	Reserved								Format:	MBZ						10:0	S0								Default Value:	1024							Format:	U1.10)						The value of the slope for point 0 in PWL								The default is 1024/1024						8	31:27	Reserved								Format:	MBZ						26:16	S3								Default Value:	1024							Format:	U1.10)						The value of the slope for point 3 in PWL								The default is 1024/1024							15:11	Reserved								Format:	MBZ						10:0	S2	<u>'</u>							Default Value:	1024							VEBOX_ACE_L	ACE_STATE			----	-------	---	-----------	--				Format:	U1.10											The value of the slope for point 2 in PWL						The default is 1024/1024				9	31:27	Reserved	MD7				26.46	Format:	MBZ				26:16		1024					Default Value:						Format:	U1.10					The value of the slope for point 5 in PWL
This applies to all					16	Alpha from State	Alpha from State Select								Format: U1 Enumerated type																		Value	Nam	ie							0	alpha is taken from message								1	alpha is taken from state									Programming Notes								If the input format does not have alpha available and the output format provides alpha, this bit should be set to 1. This should be 0 when Alpha Plane Enable is 1.								15:0	Color Pipe Alpha									Format:		U16	U16															Programming Notes									The 8 MSB of this field will be used for output formats that have 8-bits of alpha.							1	31:30	Reserved							Forr		Format:		ИBZ						29:16				1						Default Value:			0						Format:			U14						will occur within th	inimum X - The ACE histogram and Skin The MinX/MinY to MaxX/MaxY area (inclus pixel is in the AOI.		5						VEBOX_AI	LPHA_AOI_STATE						---	-------	--	-------------------	-----	--	--	--				The Area of Interest applies to the RGB Histogram and the White/Gray point sun																		This reduce would be a woulding of	Programming Notes							45.44	This value must be a multiple of	4 minus 1.							15:14	Reserved Format:	MBZ							12.0		IVIDZ							13:0	AOI Min X Default Value:		0							Format:		U14							ronnat.		014							Programming Notes									This value must be a multiple of 4.							2	31:30	Reserved									Format:	MBZ							29:16	AOI Max Y									Default Value:		0							Format:		U14								Programming Notes								This value must be a multiple of 4 minus 1.								15:14	Reserved									Format:	MBZ							13:0	AOI Min Y	·								Default Value:		0							Format:		U14								Programming Notes								This value must be a multiple of 4.									This value must be a multiple of 4.						#### **VEBOX_CAPTURE_PIPE_STATE**			VEBOX_CAPT	URE_PIPE_STATE						---------------------	---	---	---	---------	-------------	--	--		Source:		VideoEnhancementCS							Size (in bits): 224									Default \	Default Value: 0x8511FF23, 0xAA64AFAA, 0xE6FD4000, 0x00000000, 0x00000000, 0x00000000, 0x00000000								This cor	nmand	l contains variables for controlling Dem	osaic and the White Balance Sta	istics.					DWord	Bit		Description						0	31:30	DirMap_Scale									Default Value:			2						Format:			U2					29:24	Good Pixel Threshold									Format:	U6								The difference threshold between adj	The difference threshold between adjacent pixels for a pixel to be considered "good".								Value	Name								5h	[Default]							23	Reserved									Format:	MBZ							22:20	Shift Min Cost									Default Value:			1h						Format:		U3							The amount to shift the H2/V2 versions of min_cost.								19:16	Green Imbalance Threshold									Default Value:		1h							Format:			U4					15:8	Average Color Threshold									Format:	U8								The threshold between two colors in a	a pixel for the Avg interpolation	o be o	considered.						Value	Name								FFh [Default]																Programming Notes									Must be set to 255.										7:6	Reserved									Format:	U2							5:0	Good Pixel Neighbor Threshold									Default Value:		231	h						VEBOX_CAPTURE_PIPE_ST	ГАТЕ					---	-------	---	----------------------	-----------------	--	--				Format:	U	6						Number of comparisons with neighbor pixels which pass I	pefore a pixel is c	onsidered good.				1	31:28	Scale For Min Cost								Default Value:		Ah						The amount to scale the min_cost difference during the co	onfidence check.						27:24	Good Intesity Threshold								Default Value:		Ah						Format:		U4					23:16	Bad Color Threshold 1								Default Value:	64	1h						Format:	U	8						Color value threshold used during the bad pixel check.	•						15:8	Bad Color Threshold 2	T							Default Value:	AF	·h						Format:	U8	3						Color value threshold used during the bad pixel check.							7:4	Number Big Pixel Threshold								Default Value:		Ah						Format:		U4						Number of comparisons with neighbor pixels which pass l	pefore a pixel is co	onsidered good.					3:0	Bad Color Threshold 3								Default Value:		Ah						Format:		U4						Color value threshold used during the bad pixel check.						2	31:24	Y Bright Value								Default Value:		5h						The whitepoint threshold percentile in the Y histogram. Any pixel with Y value above this could be a whitepoint. This is the larger of the calculated Ybright value and the Ythreshold value, which is the minimum Y required to be considered a white point.								Programming Note	es							"00000000" is appended to the LSBs before comparing with Y.							23:16	Y Outlier Value								Default Value:	FD	h						Default Value: FDh The outlier threshold percentile in the Y histogram. Any pixel with Y value above this either									VEBOX_C/	APTURE_F	PIPE	STATE				---	-------	---	-------------------------------	--------------------	----------	---------------------	------------------	--				clipped or an outlier in the image. These points will not be included in the white patch calculation.												Program	ming N	lotes						"00000000"	is appended to the	LSBs before co	mparing	g with Y.					15:8	UV Threshol	d Value									The value de considered a	notes the maximur gray point.	n threshold of t	he ratic	between U+V to	Y can have to be					Value	Name			Description						[255,0]		Encode a value	from 2	255/256 to 0/256						64	[Default]	0.25 * 255 = 64	4						7	Black Point	Offset Red MSB								6	Black Point	Offset Green Top	MSB							5	Black Point	Offset Blue MSB								4	Black Point	Offset Green Botto	om MSB							3	RGB Histogr	am Enable									Enables the collection of RGB Histograms for Auto-white balance correction and of										Programming Notes										This bit can be set without White Balance enable being set.									2	Vignette Correction Format										Defines what shift should be assumed for the Vignette Correction input values:											Value			Name						0			U8.8							1 U4.12									1		Correction Enable									Format:			En	able					0	l I	ce Correction Enal	ble								Format:			En	able								D		1-4						DCD History		Program		lotes				_			am enable must be	set ii this bit is	set.					3	31:16	Black Point										Default Value:				0						Format:	atad for a Dad wive	la af Davier mast		nalaina aditla NACI	U16					Value subtracted from Red pixels of Bayer pattern - combined with MSB to form a 2's complement signed number.									15:0		Offset Green Top									Default Valu	e:				0					Format:					U16					VEBOX_CAPTUI	RE_PIPE_STATE					---	-------	--	-----------------------------	-------------------------------	--	--				Value subtracted from the top Green pixe combined with MSB to form a 2's comple		Y=0 for Bayer Pattern #1) -				4	31:16	Black Point Offset Blue								Default Value:		0						Format:		U16						Value subtracted from Blue pixels of Baye complement signed number.	er pattern - Combine with	MSB to form a 2's					15:0	Black Point Offset Green Bottom
Bay	er pattern(X=1, Y=0 for Bayer				6	31:16	White Balance Blue Correction								Format:	U4.12							The correction factor multiplied by the B	lue pixels of the Bayer pat	tern.					15:0	White Balance Green Bottom Correctio	n							Format:	U4.12							The correction factor multiplied by the bottom Green pixels of the Bayer pattern (X=0, Y=1 for Bayer Pattern #1)					#### **VEBOX_CCM_STATE** **VEBOX_CCM_STATE** VideoEnhancementCS Source: Size (in bits): 480 Default Value: 0x00004750, 0x00000AE80, 0x000000470, 0x000000220, 0x001FFCC0, 0x0000D230, $0x00000A80,\,0x001FFF40,\,0x0000D6A0,\,0x00000000,\,0x00000000,\,0x000000000,\\$ 0x00000000, 0x00000000, 0x00000000	This state stru	cture conta	ins the IECP State Table Conter	nts for the Color Corr	ection Matrix State.				-----------------	-------------	------------------------------------	---------------------------	----------------------	--	--		DWord	Bit		Description					0	31	Color Correction Matrix Ena	able							Format:	Enal	ole						This bit enables the Color Co	rrection Matrix.								Programming No	otes						Single Pipe IECP Enable must	t also be set if this bit	is enabled.						This bit must be set to "0"							30:21	Reserved								Format:		MBZ					20:0	C1								Default Value:	0004750h = 18256	5/65536						Format:	S4.16							Coefficient of 3x3 Transform	matrix.													1	31:21	Reserved		1						Format:		MBZ					20:0	C0		1						Default Value:	000AE80h = 44672	2/65536						Format:	S4.16							Coefficient of 3x3 Transform	matrix.					2	31:21	Reserved		T						Format:		MBZ					20:0	C3	1							Default Value:	0000470h = 1136	/65536						Format:	S4.16							Coefficient of 3x3 Transform	matrix.					3	31:21	Reserved								Format:		MBZ					20:0	C2								VEBO	X_CCN	/I_STATE			---	-------	--------------------------	-----------	------------------------	--				Default Value:		0000220h = 544/65536					Format:		S4.16					Coefficient of 3x3 Train	nsform ma	atrix.										4	31:21	Reserved							Format:		MBZ				20:0	C5							Default Value:		1FFCC0h = -832/65536					Format:		S4.16					Coefficient of 3x3 Train	nsform ma	atrix.			5	31:21	Reserved							Format:		MBZ				20:0	C4							Default Value:	(000D230h = 53808/65536					Format: S4.16		54.16					Coefficient of 3x3 Trail	nsform ma	atrix.			6	31:21	Reserved							Format: MBZ						20:0	C7							Default Value:		0000A80h = 2688/65536					Format:		S4.16					Coefficient of 3x3 Trai	nsform ma	atrix.			7	31:21	Reserved							Format:		MBZ				20:0	C6							Default Value:		1FFF40h = -192/65536					Format:		S4.16					Coefficient of 3x3 Tra	nsform ma	atrix.			8	31:21	Reserved							Format:		MBZ				20:0	C8							Default Value:	C	000D6A0h = 54944/65536					Format:	9	54.16					Coefficient of 3x3 Train	nsform ma	atrix.			9	31:17	Reserved							Format:		MBZ					VEBOX_CCM_STATE						---------	-------	--	----------	-----	--	--			16:0	Offset_in_R								Default Value:		0						Format:		S16						The input offset for red component.						10	31:17	Reserved	Reserved							Format:	MBZ						16:0	Offset_in_G								Default Value:		0						Format:		S16						The input offset for green component.						11	31:17	Reserved								Format:	MBZ						16:0	Offset_in_B								Default Value:		0						Format:		S16						The input offset for blue component.		-				12	31:17	Reserved								Format:	MBZ						16:0	Offset_out_R								Default Value:		0						Format:		S16						The output offset for red component.						13	31:17	Reserved								Format:	MBZ						16:0	Offset_out_G								Default Value:		0						Format:		S16						The output offset for green component.						14	31:17	Reserved						Format:		MBZ							16:0	Offset_out_B								Default Value:		0						Format:		S16						The output offset for blue component.					# ${\bf VEBOX_Ch_Dir_Filter_Coefficient}$		VEBO	X_Ch_Dir_Fil	ter_Coefficient				-----------------	------------------	------------------------	---------------------	--	--		Source:	BSpec						Size (in bits):	64						Default Value:	0x00000000, 0x00						DWord	Bit		Description				01	63:56	Filter Coefficien	t[7]						Format:	S1.6 2's Complement						Range: [-2, +2)						55:48	Filter Coefficien	t[6]						Format:	S1.6 2's Complement						Range: [-2, +2)						47:40	Filter Coefficien	t[5]						Format:	S1.6 2's Complement						Range: [-2, +2)						39:32	Filter Coefficient[4]							Format:	S1.6 2's Complement						Range: [-2, +2)						31:24	Filter Coefficient[3]							Format:	S1.6 2's Complement						Range: [-2, +2)						23:16	Filter Coefficien	t[2]						Format:	S1.6 2's Complement						Range: [-2, +2)						15:8	Filter Coefficien	t[1]						Format:	S1.6 2's Complement						Range: [-2, +2)						7:0	Filter Coefficien	t[0]						Format:	S1.6 2's Complement						Range: [-2, +2)				## **VEBOX_CSC_STATE**			VEBO	OX_CS	C_STATE					---------------	-----------	--	-----------	----------------------	------	--	--		Source:		VideoEnhancementCS							Size (in bits	s):	384							Default Val	ue:	0x00010000, 0x00000000, 0x00000000, 0x00000000							This state	structure	contains the IECP State Tabl	e Content	ts for CSC state.					DWord	Bit	Description							0	31	Transform Enable									Format:		Enable	e							P	rogramming Note	es						This bit must be set to "0"								29:19	Reserved									Format:			MBZ					18:0	СО									Default Value:		10000h or 1.0							Format:		S2.16 2's complement							Transform coefficient.							1	31:19	Reserved									Format:			MBZ					18:0	C1									Default Value:		0							Format:		S2.16 2's complen	nent						Transform coefficient.							2	31:19	Reserved									Format:			MBZ					18:0	C2									Default Value:		0							Format:		S2.16 2's complen	nent						Transform coefficient.							3	31:19	Reserved									Format:			MBZ					18:0	C3									VEBOX_	CSC_STATE				---	-------	----------------------------------	--	--	--				Default Value:	0						Format:	S2.16 2's complement						Transform coefficient.												4	31:19	Reserved							Format:	MBZ					18:0	C4							Default Value:	10000h or 1.0						Format:	S2.16 2's complement						Transform coefficient.					5	31:19	Reserved							Format:	MBZ				
Complement					Offset out for V/B. The offset value is multiplied by 2 before being added to the output					15:0	Offset in 3						Default Value:	0					Delaalt value.						Format:	S15 2's Complement		# VEBOX_DNDI_STATE		VEBOX_DNDI_STATE							-----------------	------------------	--	------------------------------	---------	-----------	-------------		Source:		VideoEnhancementCS						Size (in bits):		1440						Default Value:		0x00000000, 0x80000000, 0x00000400, 0x00000000, 0x00000000, 0x00000000, 0x00000000						This state t	table is ι	used by the <i>Denois</i>	e and Deinterlacer functions					DWord	Bit		Desc	ription				0	31:17	Denoise STAD Th	reshold							Format: U15								Threshold for denoise sum of temporal absolute differences.							16:8	Reserved								Format: MB			MBZ				7:0	Denoise Maximum History								Format:				U8				Maximum allowed	d value for denoise history.	i							Value			Name				[128,240]						1	31:28	Denoise History increase Amount that denoise_history is increased by. MAX:15								Value	Name		I	Description				8h	[Default]							15		Maximui	n Allowed	d			27:23	Denoise Moving	Pixel Threshold							Format:				U5													Value			Name				[0,16]							22:12	Reserved								Format:			MBZ				11:0	Denoise ASD Thr	eshold							Format:			U12					VEBOX_DNI	DI_STATE						---	-------	---	---	--------------	--	--	--				Threshold for denoise absolute sum of	differences.								Value	Name								[0,1023]							2	31:20	Temporal Difference Threshold									Format:	U12																	Pro	gramming Notes								0 < (Temporal Difference Threshold - Lower when both thresholds are set to 0.	ow Temporal Difference Threshold) <=	256 except						19:11	Reserved									Format: MBZ								10:5	Initial Denoise History									Default Value:	32								Format:	U6								Duo muomoming Motos									Programming Notes Initial value for Denoise history for both Luma and Chroma								4.0									4:0	Reserved Format: MBZ							3	31:20	Low Temporal Difference Threshold	IVIOL						3	31.20	Format:	U12								0 < (Temporal Difference Threshold - Lo		256 except							when both thresholds are set to 0.								19:11	Reserved									Format:	MBZ							10	Progressive DN									Format:	Enable								Indicates that the denoise algorithm sho neighboring pixels. This bit must be set		tering							Value Name	Description								0 DN assumes interlaced	video and filters alternate lines togeth	er							1 DN assumes progressiv	ve video and filters neighboring lines to	gether																DI Enable must be disabled when this f	gramming Notes							0.2		iciu is ciiavicu.							9:2	Hot Pixel Count Luma Format:	U8								Number of neighboring pixels different		a a nivel is							I realise of heighboring pixels different	more than not rixer infestiola belon	е а ріхеі із							VEBOX_DNDI_S	TATE				---	-------	--	--	--	--				considered hot.							Value	Name						[0,8]															ning Notes						0 will cause all pixels to be considered hot and image.	I will perform a median filter on the entire					1:0	Reserved							Format:	MBZ				4	31:20	Denoise Threshold for Sum of Complexity M	leasure Luma						Format: U12						19:12	Hot Pixel Threshold Luma							Format:	U8						Threshold for a difference from the value of a rebefore compare.	neighboring pixel. Is shifted up to 16-bits					11:0	Block Noise Estimate Noise Threshold							Format:	U12						Threshold for noise maximum/minimum.							Value	Name						[0,4095]					5	31:17	Chroma Denoise STAD Threshold							Format:	U15						Threshold for denoise sum of temporal absolu	te differences.					16	Reserved							Format:	MBZ					15:8	Hot Pixel Threshold Chroma U							Format:	U8						Threshold for a difference from the value of a perfore compare.	neighboring pixel. Is shifted up to 16-bits												7:0	Hot Pixel Count Chroma U						7:0	Hot Pixel Count Chroma U Format:	U8					7:0						6	7:0	Format: Number of neighboring pixels different more t							VEBOX_DNDI_STATE			---	-------	--	-----------------------------------				0 < (Chroma Temporal Difference Threshold - Chroma Low Ter <=256 except when both thresholds are set to 0	nporal Difference Threshold)			19:12	Reserved					Format: MBZ				11:1	Block Noise Estimate Edge Threshold					Default Value:	80				Threshold for detecting an edge in block noise estimate.				0	Chroma Denoise Enable					Format: Enable										Value Name Description					The U and V channels will be passed to the nex					1 The U and V chroma channels will be denoise fi	Itered.		7	31:20	Chroma Low Temporal Difference Threshold					Format: U12 0 < (Chroma Temporal Difference Threshold - Chroma Low Ter					<= 256 except when both thresholds are set to 0	inporar binerence mileshold)			19:16	Reserved					Format: MBZ				15:8	Hot Pixel Threshold Chroma V					Format:	U8				Threshold for a difference from the value of a neighboring pixe before compare.	el. Is shifted up to 16-bits			7:0	Hot Pixel Count Chroma V					Format:	U8				Number of neighboring pixels different more than Hot Pixel T considered hot	hreshold before a pixel is		8	31:29	Reserved					Format: MBZ				28:24	Chroma Denoise Moving Pixel Threshold					Format:	U5			23:12	Chroma Denoise ASD Threshold					Format: U12					Threshold for denoise absolute sum of differences.			-	•						VEBOX_DNDI_ST	ATE						----	-------	--	-----	--	--	--	--			11:0	Chroma Denoise Threshold for Sum of Compl							9	31:30	Reserved									Format:	MBZ							29:25	DnY_Wr5[4:0] Weight to be applied when: th4 <= (difference in luma, Bayer or RGB value)								24:20	DnY_Wr4[4:0] Weight to be applied when: th3 <= (difference in luma, Bayer or RGB value) < th4								19:15	DnY_Wr3[4:0] Weight to be applied when: th2 <= (difference in luma, Bayer or RGB value) < th3								14:10	DnY_Wr2[4:0] Weight to be applied when: th1 <= (difference in luma, Bayer or RGBvalue) < th2								9:5	DnY_Wr1[4:0] Weight to be applied when: th0 <= (difference in luma, Bayer or RGB value) < th1								4:0	DnY_Wr0[4:0] Weight to be applied when: (difference in luma, Bayer or RGB value) < th0							10	31:29	Reserved									Format:	MBZ							28:16	DnY_thmax[12:0] Maximum threshold value for luma, Bayer or RGB								15:13	Reserved									Format:	MBZ							12:0	DnY_thmin[12:0] Minimum threshold value							11	31:29	Reserved									Format:	MBZ							28:16	DnY_prt5[12:0]								15:13	Reserved									Format:	MBZ							12:0	DnY_dyn_thmin[12:0] Minimum Dynamic threshold value							12	31:29	Reserved									Format:	MBZ							28:16	DnY_prt4[12:0] Multiplied by thrscale and then used as the threshold for comparing the luma or RGB differences.								15:13	Reserved									Format:	MBZ							12:0	DnY_prt3[12:0]							13	31:29	Reserved									VEBOX_DNDI_STATE							----	-------	---	-------------------	--	--	--	--				Format:	MBZ							28:16	DnY_prt2[12:0]								15:13	Reserved									Format:	MBZ							12:0	DnY_prt1[12:0]							14	31:29	Reserved									Format:	MBZ							28:16	DnY_prt0[12:0]								15	Reserved									Format:	MBZ							14:10	DnY_wd22[4:0] Weight to be applied to the 4 luma, Bayer or RGB pixels that are at X±2 and Y±2								9:5	DnY_wd21[4:0] Weight to be applied to the 4 luma, Bayer or RGB pixels that are at X±1 and Y±2								4:0	DnY_wd20[4:0] Weight to be applied to the 2 luma, Bayer or RGB pixels that are at X and Y±2							15	31:30	Reserved									Format:	MBZ							29:25	DnY_wd12[4:0] Weight to be applied to the 4 luma, Bayer or RGB pixels that are at X±2 and Y±1								24:20	DnY_wd11[4:0] Weight to be applied to the 4 luma, Bayer or RGB pixels that are at X±1 and Y±1								19:15							
DnY_wd10[4:0] Weight to be applied to the 2 luma, Bayer or RGB pixels that are at X and Y±1								14:10	DnY_wd02[4:0] Weight to be applied to the 2 luma, Bayer or RGB pixels that are at X±2 and Y								9:5	DnY_wd01[4:0] Weight to be applied to the 2 luma, Bayer or RGB pixels that are at X±1 and Y								4:0	DnY_wd00[4:0] Weight to be applied to the 1 luma, Bayer or RGB pixels that are at X and Y							16	31:30	Reserved	,								Format:	MBZ								DnU_Wr5[4:0] Weight to be applied when: th4 <= (difference in chroma U value)								29:25		ma U value)							29:25										Weight to be applied when: th4 <= (difference in chrono DnU_Wr4[4:0]	ma U value) < th4						Weight to be applied when: th1 <= (difference in chroma Uvalue) < th2 9:5							---	---	--	--	--	--		Weight to be applied when: th0 <= (difference in chroma U value) < th1 4:0 DnU_Wr0[4:0] Weight to be applied when: (difference in chroma U value) < th0 17 31:29 Reserved Format: MBZ 28:16 DnU_thmax[12:0] Maximum threshold value for chroma U 15:13 Reserved Format: MBZ 12:0 DnU_thmin[12:0] Minimum threshold value							Weight to be applied when: (difference in chroma U value) < th0 17							Format: MBZ 28:16 DnU_thmax[12:0] Maximum threshold value for chroma U 15:13 Reserved Format: MBZ 12:0 DnU_thmin[12:0] Minimum threshold value							28:16 DnU_thmax[12:0] Maximum threshold value for chroma U 15:13 Reserved Format: MBZ 12:0 DnU_thmin[12:0] Minimum threshold value							Maximum threshold value for chroma U 15:13 Reserved Format: MBZ 12:0 DnU_thmin[12:0] Minimum threshold value							Format: MBZ 12:0 DnU_thmin[12:0] Minimum threshold value							12:0 DnU_thmin[12:0] Minimum threshold value							Minimum threshold value							10 21:20 P ercented							18 31:29 Reserved							Format: MBZ							28:16 DnU_prt5[12:0]	DnU_prt5[12:0]						15:13 Reserved							Format: MBZ							12:0 DnU_dyn_thmin[12:0] Minimum Dynamic threshold value.							19 31:29 Reserved							Format: MBZ							28:16 DnU_prt4[12:0] Multiplied by thrscale and then used as the threshold for comparing chroma U difference.	DnU_prt4[12:0] Multiplied by thrscale and then used as the threshold for comparing chroma U differences.						15:13 Reserved							Format: MBZ							12:0 DnU_prt3[12:0]	DnU_prt3[12:0]						20 31:29 Reserved							Format: MBZ							28:16 DnU_prt2[12:0]							15:13 Reserved							Format: MBZ							12:0 DnU_prt1[12:0]							21 31:29 Reserved							Format: MBZ							28:16 DnU_prt0[12:0]							15 Reserved									VEBOX_DNDI_STATE					----	-------	--	--	--	--				Format: MBZ						14:10	DnU_wd22[4:0] Weight to be applied to the 4 chroma U pixels that are at X±2 and Y±2						9:5	DnU_wd21[4:0] Weight to be applied to the 4 chroma U pixels that are at X±1 and Y±2						4:0	DnU_wd20[4:0] Weight to be applied to the 2 chroma U pixels that are at X and Y±2					22	31:30	Reserved Format: MBZ						20.25							29:25	DnU_wd12[4:0] Weight to be applied to the 4 chroma U pixels that are at X±2 and Y±1						24:20	DnU_wd11[4:0] Weight to be applied to the 4 chroma U pixels that are at X±1 and Y±1						19:15	DnU_wd10[4:0] Weight to be applied to the 2 chroma U pixels that are at X and Y±1						14:10	DnU_wd02[4:0] Weight to be applied to the 2 chroma U pixels that are at X±2 and Y						9:5	DnU_wd01[4:0] Weight to be applied to the 2 chroma U pixels that are at X±1 and Y						4:0	DnU_wd00[4:0] Weight to be applied to the 1 chroma U pixels that are at X and Y					23	31:30	Reserved							Format: MBZ						29:25	DnV_Wr5[4:0] Weight to be applied when: th4 <= (difference in chroma V value)						24:20	DnV_Wr4[4:0] Weight to be applied when: th3 <= (difference in chroma V value) < th4						19:15	DnV_Wr3[4:0] Weight to be applied when: th2 <= (difference in chroma V value) < th3						14:10	DnV_Wr2[4:0] Weight to be applied when: th1 <= (difference in chroma V value) < th2						9:5	DnV_Wr51[4:0] Weight to be applied when: th0 <= (difference in chroma V value) < th1						4:0	DnV_Wr0[4:0] Weight to be applied when: (difference in chroma V value) < th0					24	31:29	Reserved							Format: MBZ						28:16	DnV_thmax[12:0] Maximum threshold value for chroma V							Maximum threshold value for chroma V Reserved							VEBOX_DND	STATE							----	-------	---	------------------------------	--	--	--	--	--				Format:	MBZ								12:0	DnV_thmin[12:0] Minimum threshold value								25	31:29	Reserved										Format:	MBZ								28:16	DnV_prt5[12:0]									15:13	Reserved										Format:	MBZ								12:0	DnV_dyn_thmin[12:0] Minimum Dynamic threshold value.								26	31:29	Reserved										Format:	MBZ								28:16	Multiplied by thrscale and then used as the threshold for comparing chroma V differences.									15:13	Reserved										Format:	MBZ								12:0	DnV_prt3[12:0]								27	31:29	Reserved										Format:	MBZ								28:16	DnV_prt2[12:0]									15:13	Reserved										Format:	MBZ								12:0	DnV_prt1[12:0]								28	31:29	Reserved										Format:	MBZ								28:16	DnV_prt0[12:0]									15	Reserved										Format:	MBZ								14:10	DnV_wd22[4:0] Weight to be applied to the 4 chroma V pixels that are at X±2 and Y±2									9:5	DnV_wd21[4:0] Weight to be applied to the 4 chroma V pixels that are at X±1 and Y±2									4:0	DnV_wd20[4:0] Weight to be applied to the 2 chroma V p	pixels that are at X and Y±2							29	31:30	Reserved										Format:	MBZ								29:25	DnV_wd12[4:0]										VEBOX_DNDI_STATE									----	---------------	--	----------------	--	--	--	--	--	--				Weight to be applied to the 4 chroma V pixels that are at X±2 ar	nd Y:	±1								24:20	DnV_wd11[4:0] Weight to be applied to the 4 chroma V pixels that are at X±1 and Y±1										19:15	DnV_wd10[4:0] Weight to be applied to the 2 chroma V pixels that are at X and Y±1										14:10	DnV_wd02[4:0] Weight to be applied to the 2 chroma V pixels that are at X±2 and Y										9:5	DnV_wd01[4:0] Weight to be applied to the 2 chroma V pixels that are at X±1 ar	nd Y									4:0	DnV_wd00[4:0] Weight to be applied to the 1 chroma V pixels that are at X and \(\)									30	31:17	Eight Direction Edge Threshold											Default Value:	10)24									Format:	U	15									Threshold to determine an edge in eight directional edge detector										16:7	Valid Pixel Threshold											Default Value:		480									Format:		U10									Torriat.		010								6:0	Reserved		010								6:0			010							31	6:0	Reserved									31		Reserved Format: MBZ		480							31		Reserved Format: MBZ Small Sobel Threshold Default Value: Format:									31		Reserved Format: MBZ Small Sobel Threshold Default Value:		480							31		Reserved Format: MBZ Small Sobel Threshold Default Value: Format: Threshold for weak Sobel response		480							31	31:19	Reserved Format: MBZ Small Sobel Threshold Default Value: Format: Threshold for weak Sobel response	24	480							31	31:19	Reserved Format: MBZ Small Sobel Threshold Default Value: Format: Threshold for weak Sobel response Large Sobel Threshold Default Value: Format:		480 U13							31	31:19	Reserved Format: MBZ Small Sobel Threshold Default Value: Format: Threshold for weak Sobel response Large Sobel Threshold Default Value: Format: Threshold for strong Sobel response		480 U13							31	31:19	Reserved Format: MBZ Small Sobel Threshold Default Value: Format: Threshold for weak Sobel response Large Sobel Threshold Default Value: Format: Threshold for strong Sobel response Programming Notes		480 U13							31	31:19	Reserved Format: Small Sobel Threshold Default Value: Format: Threshold for weak Sobel response Large Sobel Threshold Default Value: Format: Threshold for strong Sobel response																																																																																																																																																																																																																																																																																																																																	
Programming Notes Large Sobel Threshold > Small Sobel Threshold		480 U13							31	31:19	Reserved Format: Small Sobel Threshold Default Value: Format: Threshold for weak Sobel response Large Sobel Threshold Default Value: Format: Threshold for strong Sobel response Programming Notes Large Sobel Threshold > Small Sobel Threshold Small Sobel Count Threshold	U	480 U13							31	31:19	Reserved Format: Small Sobel Threshold Default Value: Format: Threshold for weak Sobel response Large Sobel Threshold Default Value: Format: Threshold for strong Sobel response Programming Notes Large Sobel Threshold > Small Sobel Threshold Small Sobel Count Threshold Format:	U U6	480 U13 400 13							31	31:19	Reserved Format: Small Sobel Threshold Default Value: Format: Threshold for weak Sobel response Large Sobel Threshold Default Value: Format: Threshold for strong Sobel response Programming Notes Large Sobel Threshold > Small Sobel Threshold Small Sobel Count Threshold	U U6	480 U13 400 13							31	31:19	Reserved Format: MBZ Small Sobel Threshold Default Value: Format: Threshold for weak Sobel response Large Sobel Threshold Default Value: Format: Threshold for strong Sobel response Programming Notes Large Sobel Threshold > Small Sobel Threshold Small Sobel Count Threshold Format: Threshold for number of pixels in a block that have weak Sobel response	U6 response	480 U13 400 13								31:19 18:6	Reserved Format: MBZ Small Sobel Threshold Default Value: Format: Threshold for weak Sobel response Large Sobel Threshold Default Value: Format: Threshold for strong Sobel response Programming Notes Large Sobel Threshold > Small Sobel Threshold Small Sobel Count Threshold Format: Threshold for number of pixels in a block that have weak Sobel response	U6 espo	480 U13 400 13 onse (Default: 6)										VEBOX_	DND	_STATE						----	-------	----------------------------------	--------------------	-----------	----------------	------------	----------------------	--	--														25:20	Large Sobel Count Threshold											Format:				U							Threshold for nu	umber of pixels in	a block	that have stro	ng Sobel r	esponse (Default: 6)					19:6	Block Sigma Di	ff Threshold										Default Value:					480						Format:					U14						Threshold for th	e difference betw	een max	kimum and mi	nimum sig	ma within a block					5:0	Reserved				1							Format:				MBZ					33	31:19	Max Sobel Thre	shold										Default Value:					1440						Format:					U13					18:0	Reserved											Format:									34	31:16	Reserved											Format:				MBZ						15:13	Reserved																						Format:				MBZ						12:10	STMM C2											Format:				U	3							n STMM equation	<u>1.</u>									Value	Name			Descript	tion						[0,7]		Repres	enting values	[1,8]						9:6	Content Adaptive Threshold Slope											Format:					4							slope of the Cont	ent Ada	ptive Threshol								Value	Name			Des	cription						9	[Default]		CAT_slope va	alue = 10									Progr	amming Not	<u> </u>							+1 added interr	nally to get CAT_s		anning Not	<u> </u>						5.2	<u> </u>										5.2	Default Value:	JiiJiu				5					5:2	SAD Tight Thre		юре.			5								VEBOX_DI	NDI_STATE				----	-------	--	------------	-----------------------	------------------------------	-----------------------	--				Format	•			U4				1:0	Smooth	MV Th	reshold							Format	:			U2			35	31	STMM	Blending	Constant Select							Format	:			U1														Value	Name		Description	Thana C					0			nstant for small values of S									nstant for large values of S	TIMINI FOR STMM_Ma_th				30:24			ant across time for I	arge values of STMM	U7					Format				07				23:16	Format		ant across time for s	mall values of STMM	U8				45.44	L				08				15:14		Reserved							10.0	Format: MBZ								13:8	Multiplier for VECM Format: U6									Determines the strength of the vertical edge complexity measure.																	7:0	Maxim	ım STM	M							Format				U8					Largest	allowed	STMM in blending e	quations.				36	31:24	Minimu	ım STMI	M							Format				U8					Smallest allowed STMM in blending equations								23:22	STMM S	Shift Do	wn							Format	:			U2					Amoun		STMM down (quant	1							'	Value		lame					0			Shift by 4						1			Shift by 5						2			Shift by 6						3			Reserved					21:20		Shift Up			110					Format		CTMANA / '	N	U2					Amoun	t to shift	STMM up (set range).						VEBOX_DI	NDI_S	TATE					----	-------	--	----------	------------	----	-----	--				Value		Na	me						0	Shift by	<i>i</i> 6							1	Shift by	<i>i</i> 7							2	Shift by	<i>i</i> 8							3	Reserve	ed						19:16	STMM Output Shift									Format:		U	J4						Value			Na	me					[0,15]																				ming Notes							The value of this field must satisfy the following equation: stmm_max - stmm_min = 2 ^ stmm_output_shift								15:12	ChromaTDM_WT									Default Value:			0						Format:			U	2.2				11:8	LumaTDM_WT									Default Value:			4						Format:	U	2.2						7:0	FMD Temporal Difference Thresho	ld								Format:			J8				37	31:28	Reserved									Format:	MBZ							27:24	Deltabit value for SHCM		1.							Format:			J4						Value		Naı	me						5	[Defaul	t]							[0,8] Range								23:16	Coring Threshold for SHCM									Default Value:				255					Format:				U8				15:12	Reserved									Format:		MBZ						11:8	Deltabit value for SVCM									Format:		<u> </u>	J4							VEE	BOX_DNDI_ST	ATE				----	-------	--------------------	----------------	---	---------------------------------------	-----	----					Value		Nar	ne					5		[Default]							[0,8]		Range						7:0	Coring Thre	shold for SV	CM							Default Valu				255	;				Format:				U8			38	31:24	FMD #1 Ver									Format:			U	J8				23:16	FMD #2 Ver	tical Differer	nce Threshold	·						Format:			l	J8				15:14	CAT Thresh	old								Default Valu	ıe:				0				Format:					U2			13:8	FMD Tear Threshold									Format:			ι	J6				7			d Deinterlace algorithm Programminable is off.						6:4	Reserved									Format:			MBZ					3	DN/DI Top	First								Format:			Enable							1	rirst in sequence, other							Value	Name	Datter C. I.I.	Description	1					0		Bottom field occurs first	· · · · · · · · · · · · · · · · · · ·					2.2	D :		Top field occurs first	ırı sequence					2:0	Reserved Format:			MBZ				20	21.20	L			IVIDA				39	31:26	Reserved Format:			MBZ					25	FasterCover	gence		IVIDE					23	Default Valu	_				0				Format:					U1											24	Luma Sr	VEBOX_DNDI_STATE maller Window for TDM								-------	--															
--	--------------------------	-----------------	--	--	--	--			Format:		U1							23	Chroma	Smaller Window for TDM	l e								Format:		U1							22:19	Neighb	or Pixel Threshold	<u> </u>								Default			10							Format:			U4						18	Reserve	d									Format:	. M	1BZ							17:16	Progres	sive Cadence Reconstruction For 2nd Field Of P	revious Frame								Format:		U2								Value	Name	D	escription							0	Deinterlace		escription							1	Put together with previous field in sequence	1st field of	previous fram							2	Put together with next field in sequence		current frame																	Programming Notes										Deflicker can be enabled only in De-interlace mode and not in Cadence construction mod									15:10		el Consistency Threshold									Default			25							Format:			U6						9:8		sive Cadence Reconstruction for 1st Field of Cu									Format:		U2								Value	Name	D	escription							0	Deinterlace									1	Put together with previous field in sequence	2 nd field of	previous fram							2	Put together with next field in sequence	2 nd field of	current frame																		Due N.									Dofficies	Programming Notes	ot if oither field	s aro in Cada								Programming Notes er can be enabled only in De-interlace mode and note on the control of con	ot if either field	ls are in Cader						7:4		er can be enabled only in De-interlace mode and no ction mode.	ot if either field	ls are in Cadei						7:4	constru	er can be enabled only in De-interlace mode and no ction mode.	ot if either field	s are in Cader									VI	BOX_DNDI_STATE						----	-------	--------------------------	----------	------------------------------	-----	----	--	--				Default Value:				5						Format:				U4				40	31:24	SAD_WT[3]								10	31.21	Format:			U8																	Value		Name								192		Default for Natural								38		Default for Synthetic							23:16	SAD_WT[2]			1							Format:			U8							Walne		Nome								Value		Default for Natural								179									45.0	25 Default for Synthetic									15:8	SAD_WT[1] Format:			U8							Format.			100							Value		Name								166		Default for Natural								12		Default for Synthetic							7:0	SAD_WT[0]										Format:			U8																	Value		Name								0		lt for Natural and Synthetic						41	31:24		ld for (Chroma SAD calculation		1						Default Value:				0						Format:				U8					23:16		ld for I	Luma SAD calculation		1						Default Value:				0						Format:				U8					15:8	SAD_WT[6]										Format:			U8							Value		Name								217		Default for Natural								64		Default for Synthetic										Deladic for Synthetic								V	EBOX_DNDI_STATE						----	-------	---------------------------------------	-----------------------	-----------	--	--	--			7:0	SAD_WT[4]	,								Format:	U8								Value	Name								218	Default for Natural								90	Default for Synthetic						42	31	Reserved	Delaute for Synthetic						42	31	Format: MBZ								30	Bypass Deflicker									Format:	U1							29	PAR_UseSyntheticCo	ntentMedian								Default Value:		0							Format:		U1						28	PAR_LocalCheck									Default Value:		1							Format:		U1						27	PAR_SyntheticContentCheck									Default Value:		0							Format:		U1						26:24	PAR_DirectionCheck	Гһ								Default Value:		3							Format:		U3						23:16	PAR_TearingLowThre	eshold	1							Default Value:		20							Format:		U8						15:8	PAR_TearingHighThr	reshold	100							Default Value: Format:		100 U8						7.0	<u> </u>	Plana da al al	06						7:0	PAR_DiffCheckSlackT Default Value:	nresnoid	15							Format:		U8					43	31:24	LPFWtLUT[3]							73	31.24	Default Value:		0							Format:		U8						23:16	LPFWtLUT[2]									Default Value:		0							VEBOX_DNDI_STATE			----	-------	------------------	-----				Format:	U8			15:8	LPFWtLUT[1]					Default Value:	0				Format:	U8			7:0	LPFWtLUT[0]					Default Value:	0				Format:	U8		44	31:24	LPFWtLUT[7]					Default Value:	.55				Format:	J8			23:16	LPFWtLUT[6]	,				Default Value:	28				Format:	J8			15:8	LPFWtLUT[5]					Default Value:	64				Format:	U8			7:0	LPFWtLUT[4]					Default Value:	32				Format:	U8	# **VEBOX_Filter_Coefficient**		VEBOX_Filter_Coefficient									-----------------	--------------------------	-----------------	-----------------------	--	--	--	--	--		Source:	BSpec									Size (in bits):	8									Default Value:	0x000	00000								DWord	Bit		Description							0	7:0	2's Complemer	nt Filter Coefficient									Format:	S1.6 2's Complement									Range: [-2, +2)																	### VEBOX_FORWARD_GAMMA_CORRECTION_STATE ### **VEBOX FORWARD GAMMA CORRECTION STATE** Source: VideoEnhancementCS Size (in bits): 64 > 0x00000000, #### VEBOX FORWARD GAMMA CORRECTION STATE 0x00000000, 0x00000000 **DWord** Bit **Description** 0..2047 63:0 **PRGB Corrected Value** VEBOX_RGB_TO_GAMMA_CORRECTION Format: **Programming Notes** Order in which the values are stored: **Interleaves** 256 1 257 2 258 255 511 0 512 768 513 769 514 770 767 1023 Point 0-255, 256-511 are interleaved first followed by interleaving the next set of 512points, interleaving between points 512-767, 768-1023. ### VEBOX_FRONT_END_CSC_STATE ## VEBOX_FRONT_END_CSC_STATE Source: VideoEnhancementCS Size (in bits): 384 Default Value: 0x00010000, 0x000000000, 0x000000000, 0x000010000, 0x000010000, 0x000000000,	This state str	ructure co	ntains the IECP State Table Contents for Fro	nt-end CSC	state.				----------------	------------	--	-----------------	----------	--	--		DWord	Bit	Description						0	31	Front End CSC Transform Enable								Format:	Enable	e															nming Note							Single Pipe IECP Enable must also be set	t if this is er	nabled.						This bit must be set to "0"							30:19	Reserved	1							Format:		MBZ					18:0	FECSC C0: Transform coefficient								Default Value:	10000h	or 1.0						Format:	S2.16					1	31:19	Reserved								Format:		MBZ					18:0	FECSC C1: Transform coefficient								Default Value:		0 or 0.0						Format:		S2.16				2	31:19	Reserved								Format:	1BZ						18:0	FECSC C2: Transform coefficient								Default Value:		0 or 0.0						Format:		S2.16				3	31:19	Reserved								Format:		MBZ					18:0	FECSC C3: Transform coefficient				
or 0.0						Format:		S2.16				4	31:19	Reserved								Format:		MBZ					18:0	VEBOX_FRONT_END_CS							----	-------	---	------------	-------------	------	--	--			16.0	Default Value:	10000h o	r 1 0							Format:	S2.16	1 1.0						24.40		32.10						5	31:19	Reserved		ИBZ							Format:	<u> </u>	VIDZ						18:0	FECSC C5: Transform coefficient									Default Value:		0 or 0.0							Format:		S2.16					6	31:19	Reserved									Format:	N	ИBZ						18:0	FECSC C6: Transform coefficient		1							Default Value:		0 or 0.0							Format:		S2.16					7	31:19	Reserved									Format:								18:0	FECSC C7: Transform coefficient									Default Value: 0 or 0.									Format:		S2.16					8	31:19	Reserved									Format:	N	ИBZ						18:0	FECSC C8: Transform coefficient									Default Value:	10000h o	r 1.0							Format:	S2.16						9	31:16	FEC SC Offset out 1: Offset out for Y/R									Default Value:	0								Format:	S15								The offset value is multiplied by 2 before being added to the output.								15:0	FEC SC Offset in 1: Offset in for Y/R									Default Value:			0						Format:	S15								The offset value is multiplied by 2 before being added to the output.							10	31:16	FEC SC Offset out 2: Offset out for U/G									Default Value:			0						Format:			S15						The offset value is multiplied by 2 before be	eing added	to the outp	out.					15:0	FEC SC Offset in 2: Offset out for U/G			_				VEBOX_FRONT_END_CSC_STATE									---------------------------	-------	---	-----	--	--	--	--				Format:	S15								The offset value is multiplied by 2 before being added to the output.							11	31:16	FEC SC Offset out 3: Offset out for V/B									Default Value:	0								Format:	S15								The offset value is multiplied by 2 before being added to the output.								15:0	FEC SC Offset in 3: Offset out for V/B									Default Value:	0								Format:	S15								o the output.						# **VEBOX_GAMUT_CONTROL_STATE**			VEBOX_GAM	1UT	_CONTROL_STATE				---------------	-------	--	--------	-----------------------------	-----	--		Source:		VideoEnhancementCS						Size (in bits):	576						Default Val	ue:	0xDA004750, 0x0000AE80, 0x00000470, 0x00000220, 0x001FFCC0, 0x0000D230, 0x000000A80, 0x001FFF40, 0x0000D6A0, 0x00000000, 0x00000000, 0x00000000,										00000, 0x0CD2911F, 0xB00003				DWord	Bit	Description						0	31:23	A(r)								Default Value:			436					Format:			U9					Gain_factor_R (default: 436, preferred range: 256-511).							22	Global Mode Enable								Format:		U1						The gain factor derived from	n stat	e CM(w).						Value		Name						0	Adva	vance Mode						1	Basic	asic Mode					21	Reserved								Format: MBZ							20:0	C1								Default Value:		0004750h = 18256/65536						Format:	S4.16							Coefficient of 3x3 Transform matrix.						1	31:22	CM(w)								Format: U10								WeightingFactorForGain_factor (only enabled when the GlobalModeEnable is on).							21	Reserved								Format: MBZ							20:0	СО								Default Value: 000AE80h = 44672/65536								Format:		S4.16						Coefficient of 3x3 Transform matrix.						2	31:22	CM(s)						_	51,22	Format:		U2.8						. 3		02.0						VEBOX_G	AMUT_CONTROL_STATE				---	-------	--	-----------------------	--	--				AccurateColorComponentScaling (default: 640/256, preferred range: [512-1023]/256).						21	Reserved							Format:	MBZ					20:0	<u>C3</u>							Default Value:	0000470h = 1136/65536						Format:	S4.16						Coefficient of 3x3 Transform matrix.					3	31:25	A(g)							Format:	U7						Gain_factor_G (default: 26/256, preferred range: [26-127]/256).						24:21	Reserved							Format:	MBZ					20:0	C2							Default Value:	0000220h = 544/65536						Format:	S4.16						Coefficient of 3x3 Transform matrix.					4	31:25	A(b)							Format: U7							Gain_factor_B (default: 26/256, preferred range: [26-127]/256).						24:21	Reserved	T						Format:	MBZ					20:0	C5							Default Value:	1FFCC0h = -832/65536						Format:							Coefficient of 3x3 Transform matrix.					5	31:22	R(s)							Format:	U2.8						RedScaling (default: 768/256, preferred range: [512-1023]/256).						21	Reserved							Format:	MBZ					20:0	C4							Default Value: 000D230h = 53808/65536							VEBOX_GAMUT	_CONTROL_STAT	Έ				---	-------	--	----------------------------------	-----	--	--				Format: S4.16								Coefficient of 3x3 Transform mat	rix.					6	31:24	CM(i)								Format:	U0.8							AccurateColorComponentOffset (default: 192/256, preferred range: [0-192]/256).							23:21	Reserved								Format: MBZ							20:0	C7								Default Value:	ult Value: 0000A80h = 2688/65536							Format:	S4.16							Coefficient of 3x3 Transform mat	rix.					7	31:24	R(i)								Format: U0.8								RedOffset (default: 128/256, preferred range: [0-128]/256).							23:21	Reserved								Format:	MBZ						20:0	C6								Default Value:	1FFF40h = -192/65536							Format:	S4.16							Coefficient of 3x3 Transform matrix.						8	31:21	Reserved								Format:	MBZ						20:0	С8								Default Value:	00D6A0h = 54944/65536							Format:	S4.16							Coefficient of 3x3 Transform matrix.						9	31:17	Reserved								Format: MBZ							16:0	Offset_in_R								Default Value:		0						Format:		S16						The input offset for red component.																VEBOX_GAMUT_CONTF	ROL_STATE			------	-------	--	-----------	-----		10	31:17	Reserved						Format:	MBZ				16:0	Offset_in_G		_				Default Value:		0				Format:		S16				The input offset for green component.				11	31:17	Reserved						Format:	MBZ				16:0	Offset_in_B						Default Value:		0				Format:		S16				The input offset for blue component.				12	31:17	Reserved						Format:	MBZ			16:0	16:0	Offset_out_R						Default Value:	0					Format:		S16				The output offset for red component.				13	31:17	Reserved						Format:	MBZ				16:0	Offset_out_G						Default Value:		0				Format:		S16				The output offset for green component.				14	31:17	Reserved						Format:	MBZ				16:0	Offset_out_B					
ROL S	STATE						----	-------	----------------------	----------------------	-------------------------------------	-------------------------------	---------------------------------------	--	--	--	--														17	31:30	GCC Bas	icModeS	election										Format: U2												Value		Name		Description								00b	Default	[Default]		Beschiption								01b	Scaling		Used a	long with Dword66 Bits 28:11								10b		xis Gamma Correction		long with Dword67 Bit 29								11b	Scaling	factor with fixed luma	Used a	long with Dword37 Bits 28:11							29	LumaCh	ChormaOnlyCorrection											Format:		U1										Val			No									Val		Name Uma Only Correction [Default]										1		Chorma Only Correction	uma Only Correction [Default]								28:25	Reserve	<u> </u>			<u> </u>								Format:				MBZ							24:11	BasicMo	deScalin	gFactor										Format:			U2	2.12								Used what scaling fa		angeMappingEnable is in bas	ic mode	and base mode selection bit is set to																			10:1	Reserve				MBZ							0	Cpi Ove		IVIBZ									U	Format:	rriue	U1												[01										V	alue	Name										0		[Default]										1		Override Cpi calculation							# intel ## VEBOX_IECP_STATE			VEBOX_IECP_STATE		-----------------	--	--		Source:	Vi	ideoEnhancementCS		Size (in bits):	36	680		Default Value:	0> 0> 0> 0> 0> 0> 0> 0> 0> 0> 0> 0> 0> 0	x9A6E39F0, 0x00000000, 0x000000000, 0x000000000, 0x00000000		DWord	Bit	Description		028	927:0	STD/STE State				Format: VEBOX_STD_STE_STATE				For description of this state, refer to STD/STE State Section.		2941	415:0	ACE State				Format: VEBOX_ACE_LACE_STATE				For description of this state, refer to ACE State Section.		4252	351:0	TCC State				Format: VEBOX_TCC_STATE				For description of this state, refer to TCC State Section.		5354	63:0	ProcAmp State				Format: VEBOX_PROCAMP_STATE				For description of this state, refer to <i>ProcAmp State Section</i> .		5566	383:0	CSC State			VEBOX_IECP_STATE								-------	------------------	--	-----------------	----------------------------------	--	--	--				Format:		VEBOX_CSC_STATE							For description	n of this sta	ate, refer to CSC State Section.					6769	95:0	Alpha/AOI Sta	Alpha/AOI State								Format:	VEB	OX_ALPHA_AOI_STATE							For description of this state, refer to Alpha State Section.							7084	479:0	CCM State									Format: VEBOX_CCM_STATE									For description of this state, refer to CCM State Section.							8596	383:0	Front-end CSC	2								Format: VEBOX_FRONT_END_CSC_STATE									For description of this state, refer to Front-end CSC State Section.							97114	575:0	Gamut_STATE									Format:	VEBOX	_GAMUT_CONTROL_STATE				#### **VEBOX_PROCAMP_STATE**			VEBOX_PROC	CAN	IP_STATE							-------------------	--------------	----------------------------------	---------	----------------------	--------	---	--	--	--		Source:	Video	oEnhancementCS									Size (in bits):	64										Default Value:	0x01	000001, 0x01000000									This state struct	ture contair	ns the IECP State Table Conten	its for	ProcAmp state.							DWord	Bit	Description									0	31:28	Reserved											Format:		N	ИВZ							27:17	Contrast											Default Value:	80h	= 1.0 in fixed point	: U4.7								Format:	U4.7										Contrast magnitude.										16:13	Reserved											Format:			ИВZ							12:1	Brightness											Default Value:	ļ										Format: S7.4 2's complement		ent									Brightness magnitude.										0	PROCAMP Enable											Default Value:			1								Format:			Enable									Pro	ogramming Notes	S								This bit must be set to "0"									1	31:16	Cos_c_s											Default Value:		256									Format:		S7.8 2's complem	ent								UV multiplication cosine factor.										15:0	Sin_c_s											Default Value:		0									Format:		S7.8 2's complem	ent								UV multiplication sine facto	or.			,				#### VEBOX_RGB_TO_GAMMA_CORRECTION		VEBOX_RGB_TO_GAMMA_CORE	RECTION							----------------------------	----------------------------------	---	--	--	--	--	--		Source: VideoEnhancementCS									its):	64								/alue:	0x00000000, 0x00000000								pth is	16 bits.								Bit	Description								63:48	B-ch Corrected Value									Default Value:	0h								Format:	U16							47:32	G-ch Corrected Value									Default Value:	0h								Format:	U16							31:16	R-ch Corrected Value									Default Value:	0h								Format:	U16							15:0	Pixel Value									Default Value:	0h								Format:	U16																Programming Notes											Value 1023 should be always								Value: Ppth is Phit 63:48 47:32	its): 64 /alue: 0x00000000, 0x00000000 ppth is 16 bits. Bit Description 63:48 B-ch Corrected Value Default Value: Format: 47:32 G-ch Corrected Value Default Value: Format: 31:16 R-ch Corrected Value Default Value: Format: 15:0 Pixel Value Default Value: Format:						## intel ## **VEBOX_Scalar_State**			VEBOX_Scalar_State					-----------------	-------	--	--	--	--		Source:		BSpec					Size (in bits):		960					Default Value:		0x00000000, 0x00000000, 0x00000000, 0x00000000					DWord	Bit	Description					01	63:0	Table Y-ch X-dir Filter Coefficient[0,7:0]							Format: VEBOX_Ch_Dir_Filter_Coefficient					23	63:0	Table Y-ch Y-dir Filter Coefficient[0,7:0]							Format: VEBOX_Ch_Dir_Filter_Coefficient					45	63:0	Table Y-ch X-dir Filter Coefficient[1,7:0]							Format: VEBOX_Ch_Dir_Filter_Coefficient					67	63:0	Table Y-ch Y-dir Filter Coefficient[1,7:0]							Format: VEBOX_Ch_Dir_Filter_Coefficient					89	63:0	Table UV-ch X-dir Filter Coefficient[0,7:0]							Format: VEBOX_Ch_Dir_Filter_Coefficient					1011	63:0	Table UV-ch Y-dir Filter Coefficient[0,7:0]							Format: VEBOX_Ch_Dir_Filter_Coefficient					1213	63:0	Table UV-ch X-dir Filter Coefficient[1,7:0]							Format: VEBOX_Ch_Dir_Filter_Coefficient					1415	63:0	Table UV-ch Y-dir Filter Coefficient[1,7:0]							Format: VEBOX_Ch_Dir_Filter_Coefficient					1617	63:0	Table UV-ch X-dir Filter Coefficient[2,7:0]							Format: VEBOX_Ch_Dir_Filter_Coefficient					1819	63:0	Table UV-ch Y-dir Filter Coefficient[2,7:0]							Format: VEBOX_Ch_Dir_Filter_Coefficient					2021	63:0	Table UV-ch X-dir Filter Coefficient[3,7:0]							Format: VEBOX_Ch_Dir_Filter_Coefficient					2223	63:0	Table UV-ch Y-dir Filter Coefficient[3,7:0]							Format: VEBOX_Ch_Dir_Filter_Coefficient					24	31:24	Default Sharpness Level							Format: U8								VEBOX_S	Sca	lar_State					----	-------	---	------------------------------	--------	----------------------	----------------	------------------------	--				When ada	ptive scaling is off, deter	rmine	es the balance betw	een sharp a	and smooth scalers.					Value	Name			Description	on					0	Smooth [Default]		Contribute 1 from	the smooth	scalar					255	Sharp		Contribute 1 from	the sharp so	calar				23:16	Max Deriv	ative 4 Pixels									Format:				U8						Used in a	daptive filtering to specify	fy the	e lower boundary o	f the smootl	h 4 pixel area.				15:8	Max Deriv	vative 8 Pixels									Format:				U8						Used in a	daptive filtering to specify	fy the	e lower boundary of	f the smootl	h 8 pixel area.				7	Disable A	daptive Filter			
Transition	Area with 8 Pixels									Format:				U3							daptive filtering to specify	fy the	e width of the trans	ition area fo	r the 8 pixel					calculation	n.							25	31:8	Reserved										Format: MBZ									7:0	Edge_Th										Default Va	alue:				20h					Format:					U8			26	31:22	Reserved										Format:			N	1BZ					21:18	DirDiag T	hreshold		-							Format:				U4					VEB	BOX_	Scalar_State						-------	-------------------------------	----------	--	-------------------	--	--	--			Value		Name							2	Defaul	t [Default]							[0, 2]	Valid F	Range						17:14	Dir2 Threshold	1								Format:		U4							Value		Name							2	Defaul	t [Default]							[0, 2]	Valid F							13	Mode									Default Value:			1h						Format:			U1					12	Disable Chroma Channel	Diago	nal Interpolation							Default Value:			0h						Format:			U1								Programming Notes							The Chroma Diagonal inte	erpolati	on should be disabled when the input for	ormat is 420/422.					11:10										Format:		U2																Value		Name							0h		[Default]							[0, 2]		Valid Range									Programming Notes							11	_	al interpolation is disabled. This is used	only in 420/422						input surface formats. Sho								9:8	Chroma Co-sited Vertical	l positi								Format:		U2							Value		Name							0h		[Default]							[0, 2]		Valid Range																W I' I I I G	D:	Programming Notes	1 . 420:						valid only when Chroma I	Diagona	al interpolation is disabled. This is used	only in 420input							VEBOX_Scalar_	_State			----	-------	--	--------	----				surface formats. Should be set to 0 otherwis	e.				7:0	Num_Trans_Th						Default Value:		3				Format:		U8		27	31:16	Vertical_TH						Default Value:	1023											Format:	U16				11:0	Tearing_TH						Default Value:	708h					Format:	U12			28	31:24	SAD_WT[3]						Default Value:		38				Format:		U8			23:16	SAD_WT[2]						Default Value:		25				Format:		U8			15:8	SAD_WT[1]						Default Value:		12				Format:		U8			7:0	SAD_WT[0]		1				Default Value:		0				Format:		U8		29	31:24	D5_TH		1				Default Value:		60										Format:		U8			23:16	Complexity_TH	1					Default Value:	12	28						_				Format:	U	8			15:8	SAD_WT[5]		CA				Default Value:		64				Format:		U8			7:0	SAD_WT[4]		54				Default Value:		51		VEBOX_Scalar_State						--------------------	---------	----	--	--			Format:	U8			#### **VEBOX_STD_STE_STATE**			VEB	OX_STD_STE_STATE						----------------	----------	--	--------------------------	-----	----	--	--		Source:		VideoEnhancementC	5						Size (in bits):	928							Default Value:		0x9A6E39F0, 0x400D3C65, 0x000C9180, 0xFE2F2E00, 0x0003FFFF, 0x00140000, 0xD82E0640, 0x8285ECEC, 0x07FB8282, 0x00000000, 0x02117000, 0xA38FEC96, 0x0100C8C8, 0x003A6871, 0x01478000, 0x0007C300, 0x1291F008, 0x00094855, 0x1C1BD100, 0x03802008, 0x0002A980, 0x00080180, 0x0007CFFB, 0x18D1F07C, 0x000800BD, 0x1C080100, 0x03800000, 0x0008012B, 0x0008012B							This state s	tructure	contains the state used	by the STD/STE function.						DWord	Bit		Description						0	31:24	V_Mid			1						Default Value:		1	54						Format:		U	8						Rectangle middle-poi	nt V coordinate.							23:16	U_Mid									Default Value:		1	10						Format:		U	8						Rectangle middle-point U coordinate.								15:10	Hue_Max									Default Value:			14						Format:			U6						Rectangle half width.								9:4	Sat_Max									Default Value:			31						Format:			U6						Rectangle half length.								3	Reserved									Format:	N	1BZ						2	Output Control									Value	Na	me							0	Output Pixels								1	Output STD Decisions							1	STE Enable									VEBOX_STD_	STE_STAT	Έ					---	-------	--	-------------------	--------	----	--	--				Format:	Enak	ole																Programming Notes									This bit must be set to "0"								0	STD Enable									Format: Enable																			rogramming No								This needs to be enabled if 'STD Sco	ore Output is ena	iblea.							This bit must be set to "0"							1	31	STD Score Output	Frank	-1-							Format: Enable								30:28	Diamond Margin									Default Value:			4						Format:			U3					27:21	Diamond_du									Default Value:	0								Format:	S6 2's comple		1						Rhombus center shift in the sat-direction, relative to the rectangle center.								20:18	HS_margin									Default Value:			3						Format:			U3						Defines rectangle margin.								17:10	Cos(α)								17.10	Default Value:	79								Format:	S0.7 2's comple	ement							The default is 79/128								9:8	Reserved									Format:		MBZ						7:0	Sin(α)		•							Default Value:	101								Format:	S0.7 2's comple	ement							The default is 101/128							2	31:21	Reserved									VEBOX_STD_S	STE_STATE			---	-------	--	---------------------------------	-----------				Format:	MBZ				20:13	Diamond_alpha	<u> </u>					Default Value:		100				Format:		U2.6				1/tan(β) The default is 100/64					12:7	Diamond_Th						Default Value:		35				Format:		U6				Half-length of the rhombus axis in the	sat-direction.				6:0	Diamond_dv						Default Value:	0					Format:	S6 2's complement					Rhombus center shift in the hue-direc	tion, relative to the rectangle	e center.		3	31:24	Y_point_3						Default Value:		254				Format:		U8				Third point of the Y piecewise linear m	nembership function.				23:16	Y_point_2						Default Value:		47				Format:		U8				Second point of the Y piecewise linear	membership function.				15:8	Y_point_1						Default Value:		46				Format:		U8				First point of the Y piecewise linear me	embership function.				7	VY_STD_Enable				
			Default Value:			133								Format:			U8								V Bias 0 of the lower part of the dete	ction PWLF.									15:8	P3L											Default Value:			236								Format:			U8								Y Point 3 of the lower part of the detection PWLF.										7:0	P2L											Default Value:			236								Format:			U8								Y Point 2 of the lower part of the det	ection PWLF.								8	31:27	Reserved											Format:		MBZ								26:16	SOL											Default Value:	7FBh										Format:	S2.8 2's comple	ment									Slope 0 of the lower part of the detection PWLF.											The default is -5/256	CHOILE AND E.									15.0											15:8	Default Value:			130																			Format: U8 V Bias 3 of the lower part of the detection PWLF.										7:0	B2L										7.0	Default Value:			130								Format:			U8																			VEBOX_STD	STE STATE						----	-------	--	---------------------	-----	--	--	--				V Bias 2 of the lower part of the det							9	31:22	Reserved							9	31.22	Format:	MBZ							21:11	S2L								21.11	Default Value:									Default Value: 0 Format: S2.8 2's complement									The default is 0/256	· ·	J						100									10:0	S1L Default Value:	10								Format:	S2.8 2's complement								Torriat.	32.0 2 3 complement								Slope 1 of the lower part of the detection PWLF.									The default is 0/256							10	31:27	Reserved									Format:	MBZ							26:19	P1U									Default Value:		66							Format:		U8							Y Point 1 of the upper part of the detection PWLF.								18:11	POU								10.11	Default Value:		46							Format:		U8							Y Point 0 of the upper part of the de	etection PWLF.							10:0	S3L									Default Value:	0								Format:	S2.8 2's complement								Slope 3 of the lower part of the detection PWLF.									The default is 0/256							11	31:24	B1U		-							Default Value:		163							Format:		U8							V Bias 1 of the upper part of the det	tection PWLF.							23:16	BOU								25.10	1-0-5								VEBOX_STD	STE_STATE						-------	---	--	--	--	--	--			Default Value:		143						Format:		U8						V Bias 0 of the upper part of the det	ection PWLF.						15:8	P3U								Default Value:		236						Format:		U8						Y Point 3 of the upper part of the de	etection PWLF.						7:0	P2U								Default Value:		150						Format:		U8						Y Point 2 of the upper part of the de	etection PWLF.						31:27	Reserved								Format:							26:16	SOU								Default Value:	256							Format:	S2.8 2's complement															Slope 0 of the upper part of the det	ection PWLF.							The default is 256/256							15:8	B3U								Format:	U8							V Bias 3 of the upper part of the detection PWLF.								Value	Name							200	[Default]							140							7:0	B2U								Default Value:		200						Format:		U8						V Bias 2 of the upper part of the det	ection PWLF.						31:22	Reserved								Format:	MBZ						21:11	S2U	<u>.</u>							Default Value:	74Dh															7:0 31:27 26:16 7:0 31:22	Default Value: Format: V Bias 0 of the upper part of the det 15:8 P3U Default Value: Format: Y Point 3 of the upper part of the det 7:0 P2U Default Value: Format: Y Point 2 of the upper part of the det Format: Slope 0 of the upper part of the det The default is 256/256 15:8 B3U Format: V Bias 3 of the upper part of the det Value 200 140 7:0 B2U Default Value: Format: V Bias 2 of the upper part of the det 31:22 Reserved Format: Format: V Bias 2 of the upper part of the det 31:22 Reserved Format:	Format: V Bias 0 of the upper part of the detection PWLF. 15:8 P3U Default Value: Format: Y Point 3 of the upper part of the detection PWLF. 7:0 P2U Default Value: Format: Y Point 2 of the upper part of the detection PWLF. 31:27 Reserved Format: Sou Default Value: 256							VEBO	(_STD_	STE_STAT	E				----	-------	---	----------------	----------------------	---------------------	------	----				Slope 2 of the upper part	of the dete	ection PWLF.							The default is -179/256								10:0	S1U									Default Value:				113					Format:				S2.8					Slope 1 of the upper part	of the dete	ection PWLF.							The default is 113/256							14	31:28	Reserved									Format:			MBZ					27:20	Skin_types_margin									Default Value:					20				Format:					U8				Skin types Y margin Restrict Skin_types_thresh >= Skin_types_margin > 0 Restrict (Skin_types_thresh + Skin_types_margin) <= 255								19:12	Skin_types_thresh									Default Value:				12	0				Format:				U8	3				Skin types Y margin Restri (Skin_types_thresh + Skin_	n_types_margii	n >	0 Restrict						Skin_Types_Enable								11									11	Default Value:			0 Disable					11	Default Value: Format:			0 Disable Enable					11		d dark skin	types						10:0	Format:	d dark skin	types							Format: Treat differently bright an	d dark skin	types 0							Format: Treat differently bright an	d dark skin	1	Enable						Format: Treat differently bright an S3U Default Value:		0 S2.8 2's comple	Enable						Format: Treat differently bright an S3U Default Value: Format:		0 S2.8 2's comple	Enable				15		Format: Treat differently bright an S3U Default Value: Format: Slope 3 of the upper part		0 S2.8 2's comple	Enable				15	10:0	Format: Treat differently bright an S3U Default Value: Format: Slope 3 of the upper part The default is 0/256		0 S2.8 2's comple	Enable				15	10:0	Format: Treat differently bright an S3U Default Value: Format: Slope 3 of the upper part The default is 0/256 Reserved		0 S2.8 2's comple	Enable						VEBOX_S	STD_	STE_	STATE				----	-------	---	--	-----------	--------------	------	---				First bias for the saturation P	WLF (bri	ght skir	n).						The default numerical value i	is -8/4								Value Name									3F8h								20:14	SATP3									Default Value:		31							Format:		S6 2'	s complement						Third point for the saturation	n PWLF (b	oright sl	kin).					13:7	SATP2									Default Value:		6							Format:		S6 2'	s complement						Second point for the saturation	on PWLF	(bright	skin).					6:0	SATP1									Format:	S6 2's co	mpleme	ent						First point for the saturation F The default numerical valueis		ight ski	າ).						Value				Name					7Ah							16	31	Reserved									Format:			MBZ					30:20	SATS0									Default Value:				297					Format:				U3.8														Zeroth slope for the saturation PWLF (bright skin)									The default is 297/256								19:10	SATB3		1			1				Default Value:		124
The default is 297/256								10:0	SATS1									Default Value:		85							Format:	U3.8								First slope for the saturation PWLF (bright skin)									The default is 85/256							18	31:25	HUEP3									Default Value:	14								Format: S6 2's complement									Third point for the hue PWL	F (bright skin)							24:18	HUEP2									Default Value:	6								Format:	S6 2's complement								Second point for the hue PV	VLF (bright skin)							17:11	HUEP1									Default Value:	7Ah -6								Format:	S6 2's complement								First point for the hue PWLF	(bright skin)							10:0	SATS3									Default Value:		256							Format:		U3.8							Third slope for the saturation	on PWLF (bright skin)								The default is 256/256									VEBOX_STD	STE STATE							------------	-------	--	---------------------	------	--	--	--	--		19	31:30	Reserved										Format:	MBZ								29:20	HUEB3										Default Value:	56									Format:	S7.2 2's complement									Third bias for the hue PWLF (bright	skin)									The default is 56/4									19:10	HUEB2										Default Value:	8									Format:	S7.2 2's complement									Second bias for the hue PWLF (brig	ıht skin)									The default is 8/4									9:0	HUEB1										Format: S7.2 2's complement										First bias for the hue PWLF (bright skin)										The default is 8/4	SKIII)									The default is 0/4										Value	Na	me								8	[Default]									0xf8								20	31:22	Reserved										Format:	MBZ								21:11	HUES1										Default Value:		85								Format:		U3.8								First slope for the hue PWLF (bright skin)										The default is 85/256									10:0	HUES0										Default Value:		384								Format:		U3.8								Zeroth slope for the hue PWLF (brig	aht skin)									The default is 384/256	giit skiii)							21	31:22	Reserved								<i>L</i> 1	31.22											VEBOX_STD_	STE_STATI	E					----	-------	---	-------------------	-----------	--	--	--				Format:		MBZ						21:11	HUES3									Default Value:	256								Format:		U3.8							Third slope for the hue PWLF (bright The default is 256/256	skin)							10:0	HUES2								10.0	Default Value:		384							Format:		U3.8									'							Second slope for the hue PWLF (brig	ht skin)								The default is 384/256							22	31	Reserved									Format: MBZ								30:21	SATB1_DARK									Default Value:	0								Format: S7.2 2's complement									First bias for the saturation PWLF (dark skin)									The default is 0/4								20:14	SATP3_DARK									Default Value:	31								Format:	S6 2's complei	ment							Third point for the saturation PWLF (dark skin)							13:7	SATP2_DARK									Default Value:	31								Format:	S6 2's complei	ment							Second point for the saturation PWLI	F (dark skin)							6:0	SATP1_DARK									Default Value:	7Bh								Format:	S6 2's complei	ment							First point for the saturation PWLF (d	ark skin) Default	Value: -5					23	31	Reserved							23	3.	Format:		MBZ							VEBOX_STD_	STE_STATE				----	-------	--	------------------	------	--			30:20	SATS0_DARK							Default Value:		397					Format:		U3.8							•					Zeroth slope for the saturation PWLF	(dark skin)						The default is 397/256						19:10	SATB3_DARK	ATB3_DARK						Default Value:	124						Format:	S7.2 2's complen	nent					Third him for the cost water a DAU F (d							Third bias for the saturation PWLF (d	ark skin)						The default is 124/4						9:0	SATB2_DARK	124						Default Value:	124						Format: S7.2 2's complement							Second bias for the saturation PWLF (dark skin)							The default is 124/4					24	31:22	Reserved							Format:		MBZ				21:11	SATS2_DARK							Default Value:		256					Format:		U3.8												Second slope for the saturation PWLF (dark skin)							The default is 256/256						10:0	SATS1_DARK							Default Value:		189					Format:		U3.8					First slope for the saturation PWLF (dark skin)							The default is 189/256	Jank Skiriy				25	31:25	HUEP3_DARK					23	31.23	Default Value:	14						Format:	S6 2's complen	nent					Third point for the hue PWLF (dark sl													24:18	HUEP2_DARK							VEBOX_STD_	STE_STATE					----	-------	---	---------------------	------	--	--				Default Value:	2							Format:	S6 2's complement							Second point for the hue PWLF (dark	skin).														17:11	HUEP1_DARK								Default Value:	0							Format:	S6 2's complement							First point for the hue PWLF (dark ski	n).						10:0	SATS3_DARK		_						Default Value:		256						Format:		U3.8						Third slope for the saturation PWLF (dark skin)							The default is 256/256						26	31:30	Reserved								Format:	MBZ						29:20	HUEB3_DARK								Default Value:	56							Format:	S7.2 2's complement							Third bias for the hue PWLF (dark skin).								The default is 56/4							19:10	HUEB2_DARK							13110	Default Value:	0							Format:	S7.2 2's complement															Second bias for the hue PWLF (dark skin).								The default is 0/4							9:0	HUEB1_DARK	1							Default Value:	0							Format:	S7.2 2's complement							First bias for the hue PWLF (dark skin).								The default is 0/4						27	31:22	Reserved								Format:	MBZ						21:11	HUES1_DARK																VEBOX_STD	_STE_STATE				----	-------	---------------------------------------	------------	------	------				Default Value:		
							The saturation factor for cyan.									The default is 220/128									Value		Name							220	[Default]								160								15:8	SatFactor4									Format:		U1.7							The saturation factor for green.									The default is 220/128										T								Value		Name							220 [Default]									160								7:0	Reserved		1	1						Format:		MBZ					2	31:30	Reserved		1.457							Format:		MBZ						29:20	BaseColor3			402						Default Value:			483						VEBOX_TCC_STATE			---	-------	---	-------				Format:	U10				Base Color 3 - this value must be greater than BaseCo	olor2			19:10	BaseColor2					Default Value:	307				Format:	U10				Base Color 2 - this value must be greater than BaseCo	olor1			9:0	BaseColor1					Default Value:	145				Format:	U10				Base Color 1			3	31:30	Reserved					Format:	MBZ			29:20	BaseColor6					Default Value:	995				Format:	U10				Base Color 6 - this value must be greater than BaseCo	olor5			19:10	BaseColor5					Default Value:	819				Format:	U10				Base Color 5 - this value must be greater than BaseCo	olor4			9:0	BaseColo4					Default Value:	657				Format:	U10				Base Color 4 - this value must be greater than BaseCo	olor3		4	31:16	ColorTransitSlope23					Default Value:	744				Format:	U0.16				The calculation result of 1 / (BC3 - BC2) [1/62]				15:0	ColorTransitSlope2					Default Value:	405				Format:	U0.16				The calculation result of 1 / (BC2 - BC1) [1/57]					VEBOX_TCC_STATE			---	-------	--	-------							5	31:16	ColorTransitSlope45					Default Value:	407				Format:	U0.16				The calculation result of 1 / (BC5 - BC4) [1/57]				15:0	ColorTransitSlope34					Default Value:	1131				Format:	U0.16				The calculation result of 1 / (BC4 - BC3) [1/61]			6	31:16	ColorTransitSlope61					Default Value:	377				Format:	U0.16				The calculation result of 1 / (BC1 - BC6) [1/62]				15:0	ColorTransitSlope56				13.0	Default Value:	372				Format:	U0.16				The calculation result of 1 / (BC6 - BC5) [1/62]			_	24.00				7	31:22	ColorBias3					Default Value:	0				Format:	U2.8				Color bias for BaseColor3.				21:12	ColorBias2					Default Value:	150				Format:	U2.8				Color bias for BaseColor2.					The default is 150/256				11:2	ColorBias1					Default Value:	0				Format:	U2.8				Color bias for BaseColor1.				1:0	Reserved					Format:	MBZ		8	31:22	ColorBias6					VEBOX_TCC_STAT	E				---	-------	---	----------	------	----				Default Value:		0					Format:		U2.8					Color bias for BaseColor6.		•				21:12	ColorBias5							Default Value:		0					Format:		U2.8					Color bias for BaseColor5.						11:2	ColorBias4							Default Value:		0					Format:		U2.8					Color bias for BaseColor4.						1:0	Reserved							Format:	MBZ				9	31	Reserved	<u>,</u>						Format:	MBZ					30:24	UV Threshold							Default Value:			3				Format:			U7				Low UV threshold.						23:19	Reserved							Format:	MBZ					18:16	UV Threshold Bits							Default Value:			3				Format:			U3				Low UV transition width bits.						15:13	Reserved			1				Format:	MBZ					12:8	STE Threshold							Default Value:			0				Format:			U5				Skin tone pixels enhancement threshold.						7:3	Reserved							VEBOX_TCC_STATE	E					----	-------	---	------------------	---------	--------------	--				Format: MBZ							2:0	STE Slope Bits								Default Value:			0					Format:			U3					Skin tone pixels enhancement slope bits.						10	31:16	Inv_UVMaxColor								Default Value:		146	146					Format:			U16					1 / UVMaxColor. Used for the SFs2 calculation.							15:9	Reserved								Format:	MBZ						8:0	UVMaxColor								Default Value:		44	8					Format:		US)					The maximum absolute value of the legal UV pixe	els. Used for th	ne SFs2	calculation.		#### **VEBOX_VERTEX_TABLE** #### **VEBOX VERTEX TABLE** Source: VideoEnhancementCS Size (in bits): 16384 > 0x00000000,		VEBOX_VERTEX_TABLE		-----------	--		0x00000	0000, 0x00000000, 0x00000000, 0x00000000		0000, 0x00000000, 0x00000000, 0x00000000			0000, 0x00000000, 0x00000000, 0x00000000		0x00000 0x00000000		DWord Bit	Description		VEBOX_VERTEX_TABLE							--------------------	---------	------------------	-------------------------------	--	--		0511	16383:0	VertexTableEntry							Format:	VEBOX_VERTEX_TABLE_ENTRY[512]			### **VEBOX_VERTEX_TABLE_ENTRY** **Value** 400h-A00h		VEBOX_VERTEX_TABLE_ENTRY						-----------------	--------------------------	--------------------	------------	-----------------------	---------------		Source:	V	/ideoEnhancementCS	5				Size (in bits):	3	2					Default Value	e: 0	x00000000					DWord	Bit			Description			0	31:28	Reserved							Format:			MBZ			27:16	Vertex table entry	0 - Lv (12	bits)					Value	Name		Description				100h-ED6h		Range for Vertices BT	601 and BT709			15:12	Reserved							Format:			MBZ			11:0	Vertex table entry	0 - Cv (12	bits)		**Name** **Description** Range for Vertices BT601 and BT709 ### **VECS Hardware-Detected Error Bit Definitions**			VECS Ha	rdware-De	tected E	rror Bit Definitions			------------	---------------------------	---	---	-----------------	---	--		Source:	ource: VideoEnhancementCS							Size (in b	its):	16						Default \	/alue:	0x000000	00					DWord	Bit			Descr	iption			0	15:3	Reserved								Format:			MBZ			=	2	Command Privile	ege Violation Err	or														This bit is set if a	command classifi	ed as privilege	ed is parsed in a non-privileged batch buffer. The					command will be	converted to a NO	OOP and parsi	ng will continue.			-	1	Reserved								Format:			MBZ					Instruction errorsClient ID va supported)	en the Renderer Ir include: alue (Bits 31:29 of	the Header) is	er detects an error while parsing an instruction. s not supported (only MI, 2D and 3D are					Value	Name		Description					1		Instruction Er	ror detected							Programm	ning Notes					This error indications cannot be cleared except by reset (i.e., it is a fatal error).					### **VERTEX_BUFFER_STATE** ### **VERTEX_BUFFER_STATE** Source: RenderCS Size (in bits): 128 This structure is used in 3DSTATE_VERTEX_BUFFERS to set the state associated with a VB. The VF function will use this state to determine how/where to extract vertex element data for all vertex elements associated with the VB.	Bit		Description						-------	--	--	---------------------------------------	--	--	--		31:26	Vertex Buffer Index								Format:	U6 index							This field contains an index v	alue which selects the VB s	tate being defined.						Value		Name						[0,32]							25	Reserved								Format:		MBZ					24:23	Reserved								Format:		MBZ					22:16	Memory Object Control Sta	te							Format: MEMORY_	OBJECT_CONTROL_STATE							Specifies the memory object control state for this vertex buffer.							15	Reserved								Format:		MBZ					14	Address Modify Enable If set, the Buffer Starting Address field is used to update the state of this buffer. If clear, is ignored and the previously-programmed value is maintained.							13	Null Vertex Buffer								Format:	Enal	ole						This field enabled causes any fetch for vertex data to return 0.								Programming Notes								VERTEX_BUFFER_STATE.Null Size is 0x0.	Vertex Buffer must be set v	when the VERTEX_BUFFER_STATE.Buffer					12	Reserved								Format: MBZ							11:0	Buffer Pitch																																																													
	Format:	U12 Count of bytes							31:26 25 24:23 22:16 15 14	31:26 Format: This field contains an index v Value [0,32] 25 Reserved Format: 24:23 Format: Memory Object Control Starting Addissing and the previously- 15 Reserved Format: 14 Address Modify Enable If set, the Buffer Starting Addissing and the previously- 13 Null Vertex Buffer Format: This field enabled causes any VERTEX_BUFFER_STATE.Null Size is 0x0. 12 Reserved Format: 11:0 Buffer Pitch	31:26 Vertex Buffer Index Format:							VERT	EX_BUFFER_ST	ATE			----	------	---	-----------------------------	----------------------------	---				This field specifies the pitch in bytes of the structures accessed within the VB. This information is required in order to access elements in the VB via a structure index.							Value	Name		Description				[0,4095]		Bytes						Programming N	Notes					different Buffer Pitch v			he same memory region using ress.		12	63:0	Buffer Starting Address					12			aphics Address [63:0]						This field contains the byte-aligned Graphics Address LSBs of the first element of interest within the VB. Software must program this value with the combination (sum) of the base address of the memory resource and the byte offset from the base address to the starting structure within the buffer. If the Address ModifyEnable bit is clear, this field is ignored and the previous value of Buffer Starting Address for this buffer is maintained.								Programming N	lotes					will be fetched. When Buffer Starting Addres	accessing an element co	ntaining 64 fset values	mory, or UNPREDICTABLE data 4-bit floating point values, the 5 must add to a 64-bit aligned				VBs can only be alloca	ted in linear (not tiled) g	raphics me	emory.				issue with accesses to	-	address val	ue) the start of the buffer. c checking (see below).		3	31:0	Buffer Size							Format:	U32 Count of bytes						This field specifies the size of past the end of the buffer will there is no valid data in the bu	return 0's for all elemen		accesses which straddle or go at BufferSize=0 indicates that					Value		Name				[0, FFFFFFFh]				#### **VERTEX_ELEMENT_STATE** #### **VERTEX ELEMENT STATE** Source: RenderCS Size (in bits): 64 Default Value: 0x00000000, 0x00000000 #### **Description** This structure is used in 3DSTATE_VERTEX_ELEMENTS to set the state associated with a vertex element. A vertex element is defined as an entity supplying from one to four DWord vertex components, to be stored in the vertex URB entry. The number of supported vertex elements is 34. The VF function will use this state, and possibly the state of the associated vertex buffer, to fetch/generate the source vertex element data, perform any required format conversions, padding with zeros, and store the resulting destination vertex element data into the vertex URB entry. #### **Programming Notes** - The (new) 3DSTATE_VF_SGVS command is used to specify optional insertion of VertexID and/or InstanceID into the input vertex data, logically following the processing of the VERTEX_ELEMENT_STATE structures. The VFCOMP_STORE_VID/IID encodings are no longer available in VERTEX_ELEMENT_STATE. - When SourceElementFormat is set to one of the *64*_PASSTHRU formats, 64-bit components are stored in the URB without any conversion. In this case, vertex elements must be written as 128 or 256 bits, with VFCOMP_STORE_0 being used to pad the output as required. E.g., if R64_PASSTHRU is used to copy a 64-bit Red component into the URB, Component 1 must be specified as VFCOMP_STORE_0 (with Components 2,3 set to VFCOMP_NOSTORE) in order to output a 128-bit vertex element, or Components 1-3 must be specified as VFCOMP_STORE_0 in order to output a 256-bit vertex element. Likewise, use of R64G64B64_PASSTHRU requires Component 3 to be specified as VFCOMP_STORE_0 in order to output a 256-bit vertex element. - When SourceElementFormat is set to one of the *64*_PASSTHRU formats then VFCOMP_STORE_SRC must be used for every valid component. - Any SourceElementFormat of *64*_PASSTHRU cannot be used with an element which has edge flag enabled. The SourceElementFormat needs to be a single-component format with an element which has edge flag enabled. Software shall not attempt to disable any components (via 3DSTATE_VF_COMPONENT_PACKING) for elements associated with 256-bit SURFACE_FORMATs.	DWord	Bit		Description			-------	-------	---	-------------	----		0	31:26	Vertex Buffer Inde	x					Format:		U6				This field specifies which vertex buffer the element is sourced from.						Value	Name		#### **VERTEX ELEMENT STATE** [0,32] Up to 33 VBs are supported #### **Programming Notes** It is possible for a vertex element to include only internally-generated data (VertexID, etc.), in which case the associated vertex buffer state is ignored. #### 25 Valid Format: Boolean	Value	Name	Description		-------	-------	--		1h	TRUE	this vertex element is used in vertex assembly		0h	FALSE	this vertex element is not used.	#### 24:16 **Source Element Format** Format: SURFACE_FORMAT Range: Valid formats are found in the 3D Primitive Processing FormatConversion portion of the vertex fetch chapter. #### Format: The encoding of this field is identical the Surface Format field of the ${\tt SURFACE_STATE}$ structure, as described in the Sampler chapter. This field specifies the format in which the memory-resident source data for this particular vertex element is stored in the memory buffer. This only applies to elements stored with VFCOMP_STORE_SRC component control. (All other component types have an explicit format). #### 15 Edge Flag Enable Format: Enable #### **Description** When ENABLED, the source element is interpreted as an EdgeFlag for the vertex. If the source element is zero, the EdgeFlag will be set to FALSE. If the source element is non-zero, the EdgeFlag will be set to TRUE. The EdgeFlag bit will travel down the fixed function pipeline along with the vertex handle, etc. and not be stored in the vertex data like the other vertex elements. Refer to the fixed function descriptions for how this EdgeFlag affects rendering. Edge flags are supported for the following primitive topology types only, otherwise EdgeFlagEnable must not be ENABLED. - 3DPRIM_TRILIST* - 3DPRIM_TRISTRIP* - 3DPRIM_TRIFAN* - 3DPRIM_POLYGON If this bit is DISABLED for all valid VERTEX_ELEMENTs, the vertex will be assigned a default EdgeFlag of TRUE. Edge flags are supported for all primitive topology types.		-	1	VERTEX_ELEMENT_S	STATE				---	-------	--	------------------------------------	--	--	--					Programming	Notes						 This bit must only be ENABLED on the last valid VERTEX_ELEMENT structure. When set, Component 0 Control must be set to VFCOMP_STORE_SRC, and Component 1-3 Control must be set to VFCOMP_NOSTORE. 							14:12	Reserved Format:		MBZ					11:0	Source Element Of	frat						11.0	Format:	U12 byte offset									structures comprising the vertex buffer.						byte offset of the se	Value	Name						[0,2047]								Programming Notes								See note on 64-bit	float alignment in Buffer Starting	Address.				1	31	Reserved								Format:		MBZ					30:28	Component 0 Control								Format:	3D_Vertex_Component_Contro	1						Refer to the 3D_Vertex_Component_Control table below							27	Reserved								Format:		MBZ					26:24	Component 1 Cont	rol							Format:	3D_Vertex_Component_Contro	l						Refer to the 3D_Vert	ex_Component_Control table bel	low					23	Reserved								Format:		MBZ					22:20	Component 2 Cont	rol							Format:	3D_Vertex_Component_Contro	1						Refer to the 3D_Vert	ex_Component_Control table bel	low					19	Reserved								Format:		MBZ					18:16	Component 3 Cont	rol							Format:	3D_Vertex_Component_Contro	1						Refer to the 3D_Vert	ex_Component_Control table bel	low					15:8	Reserved								Format:		MBZ				VERTEX_ELEMENT_STATE								----------------------	----------	-----	--	--	--	--		7:0	Reserved								Format:	MBZ					# **Vertical Line Stride Override Message Descriptor Control Field**	M	OC.		e Stride Override Message Descriptor Control Field													------------	--------	--	--	--	--	--	--	--	--	--	--	--	---	--		Source:		BSpec																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
									Size (in b	oits):	3														Default \	/alue	e: 0x00000000														DWord	Bit		Description													0	2	Vertical Line Stride Override																Format:	Enable															If set, override the Vertical Line S the fields below.	tride and Vertical Line Stride Offset fields in the surface state with														1	Vertical Line Stride																Format:	U1																										Specifies number of lines (0 or 1) interleaved (field) surfaces as text	to skip between logically adjacent lines - provides support of ures.			0	Vertical Line Stride Offset																Format:	U1															Specifies the offset of the initial I VerticalLine Stride is 0.	ine from the beginning of the buffer. Ignored when Override												# **VideoDecoder Interrupt Vector**	V	IDEC	ODECODER_INTR_VEC - VideoDecoder Interrupt Vector		------------	--------	---		Source:		BSpec		Size (in l	oits):	16		Default \	/alue:	0x00000000		DWord	Bit	Description		0	15	Catastrophic Error This interrupt signals that a unrecoverable error (for e.g encountered fault when accessing a page mapped in Global GTT) during the engine processing. When Memory interface signals this error, the Command Streamer will stop parsing any more instructions. Scheduler is expected to reset the engine to evict the context			14:12	Reserved			11	VCS Wait On Semaphore Exec-List Scheduling: Set when MI_SEMAPHORE_WAIT command is un-successful and when "Inhibit Synchronous Context Switch" is set. Scheduler can use this interrupt to preempt the context waiting on semaphore wait. Ring Buffer Scheduling: Set when MI_SEMAPHORE_WAIT command is un-successful.			10	Reserved			9	Reserved			8	VCS Context Switch Interrupt Set when a context switch has just occurred. Execlist Enable bit needs to be set for this interrupt to occur.			7	Legacy Context Per Process Page Fault Interrupt Fault interrupt is generated by GA fabric, not by the CS This interrupt is for handling Legacy context PP GTT Page Fault.			6	VCS Watchdog Counter Expired Set when the VCS timeout counter has reached the timeout thresh-hold value.			5	Reserved			4	VCS MI Flush DW Notify The Pipe Control packet (Fences) specified in 3D pipeline document may optionally generate an Interrupt. The Store QW associated with a fence is completed ahead of the interrupt.			3	When this status bit is set, it indicates that the hardware has detected an error. It is set by the device upon an error condition and cleared by a CPU write of a one to the appropriate bit contained in the Error ID register followed by a write of a one to this bit in the IIR. Further information on the source of the error comes from the "Error Status Register" which along with the "Error Mask Register" determine which error conditions will cause the error status bit to be set and the interrupt to occur. Page Table Error: Indicates a page table error. Instruction Parser Error: The Blitter Instruction Parser encounters an error while parsing an		VIDE	VIDEODECODER_INTR_VEC - VideoDecoder Interrupt Vector						------	--	--	--	--	--			instruction.						2:1	Reserved						0	VCS1 MI User Interrupt This status bit is set when an MI_USER_INTERRUPT instruction is executed on the Video Command Parser. Note that instruction execution is not halted and proceeds normally. A mechanism such as an MI_STORE_DATA instruction is required to associate a particular meaning to a user interrupt.					# **VideoEnhancement Interrupt Vector**	VIDE	OEN	NHANCE_INTR_VEC - VideoEnhancement Interrupt Vector		------------	--------	--		Source:		BSpec		Size (in b	oits):	16		Default \	Value:	0x00000000		DWord	Bit	Description		0	15	Catastrophic Error This interrupt signals that a unrecoverable error (for e.g encountered fault when accessing a page mapped in Global GTT) during the engine processing. When Memory interface signals this error, the Command Streamer will stop parsing any more instructions. Scheduler is expected to reset the engine to evict the context			14:12	Reserved			11	VECS Wait On Semaphore			10	Reserved			9	Reserved			8	VECS Context Switch Interrupt			7	Legacy Context Per Process Page Fault Interrupt Fault interrupt is generated by GA fabric, not by the CS This interrupt is for handling Legacy context PPTGTT Page Fault.			6	VECS Watchdog Counter Expired			5	Reserved			4	VECS MI Flush DW Notify			3	VECS Error Interrupt			2:1	Reserved			0	VECS MI User Interrupt	### **VP8 Encoder StreamOut Format**		V	P8 Encoder StreamOut Forma	at			--	----------------------------	--	-----	---		Source: Size (in bits): Default Value:	VideoCS 128 0x000000	00, 0x00000000, 0x00000000, 0x00000000				DWord	Bit	Description				0	31:24	MbY						Format:	U8				23:16	MbX						Format:	U8				15:8	MbClock16						Format:	U8				7:3	Reserved						Format:	MBZ				2	MbRcFlag						Format:	U1				1	MBLevelInterMBConformanceFlag						Format:	U1				0	MBLevelIntraMBConformanceFlag						Format:	U1			1	31:29	Reserved						Format:	MBZ				28:16	MB_Residual_BitCount						Format:	U13				15:13	Reserved						Format:	MBZ				12:0	MB_Total_BitCount						Format:	U13			2	31:25	Reserved		1				Format:	MBZ				24:0	Cbp						Format:	U25			3	31	Reserved						Format:	MBZ				30	LastMbFlag				VP8 Encoder StreamOut Format						------------------------------	------------------	-----	--	--			Format:	U1				29	IntraMBFlag	_					Format:	U1				28:24	MBType5Bits						Format:	U5				23:19	Reserved						Format:	MBZ				18	QindexClampHigh						Format:	U1				17	QindexClampLow						Format:	U1				16	CoeffClampStatus						Format:	U1				15:0	Reserved						Format:	MBZ			# **WDBoxOAInterrupt Vector**			WDOA_INTR_VEC - WDBoxOAInterrupt Vector							------------	--------	--	--	--	--	--	--		Source:		BSpec							Size (in k	oits):	16							Default \	/alue:	0x00000000							DWord	Bit	Description							0	15:13	Reserved								12	Performance Monitoring Buffer Half-Full Interrupt For internal trigger (timer event based) reporting, this interrupt is generated if the report buffer crosses the half full limit.								7:6	RESERVED								5	WDBox 2 Status Interrupt								4	WDBox 2 End of Frame Interrupt								3:2	Reserved								1	VDBox 1 Status Interrupt								0	WDBox 1 End of Frame Interrupt						### **WDE Packetization Parameters0**				V	VDE Packetization Parameters0					------------	----------	---	-----------	--	--	--	--		Source:		B:	Spec						Size (in l	oits):		24						Default \	Value:			00, 0x00000000, 0x00000000, 0x00000000, 0x00000000					Please r	note tha	at DW0-9	9, corres	pond to DW80-89 of WiGig Parameters .					DWord	Bit			Description					0	31:0	Reserve	ed								Format	:	MBZ					1	31:0	Reserve	ed								Format	:	MBZ					2	31:0	Reserve	ed								Format	:	MBZ					34	31:0	Reserve	ed								Format	:	MBZ					5	31:0	Reserved																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																												
Format	:	MBZ					68	31:0	Reserve	ed								Format: MBZ		MBZ					9	31:24	GFX WNIC METADATA offset in CL Offset relatives to 4K/8K TFD entry base address.											Programming Notes									d be set to 63 CLs (4032B) or 127 CLs (8132B) respective to 4K or 8KB ARED_DATABUFFER_PACKSIZE.						23:12	Reserve	ed								Format	:	MBZ						11:0	WNIC_TAIL_PTR_TRANSMIT_RATE This field specifies the transmission rate at which the WDBOX sends the updated tail pointer message to the WNIC device.									Value	Name	Description							0		Illegal							1		Indicates a tail pointer message is sent for each TFD output by WDbox.							2- 4095		WDbox shall send a tail pointer/interrupt at the granularity programmed. A final/last tail pointer update message is sent at the end of each frame to flush incomplete/remaining data i.e., a program value of 2 implies a single tail pointer message is sent for every two TFD packages or 2K buffers written into the circular buffer.				### **WDE Packetization Parameters1**				WDE	Packetization Parame	eters1				------------	---------------------	--	------------	---	-------------------------	--	--		Source:	Source: BSpec								Size (in b	Size (in bits): 192								Default \	/alue:	0x000	00000, 0	00000000, 0x00000000, 0x00000000,	, 0x0000000, 0x00000000				Please n	ote tha	at DW0-5, co	rrespond	to DW90-95 of WiGig Parameters .					DWord	Bit			Description					0	31:16	GFX_WNIC_SHARED_DATABUFFER_STRIDE This register contains the size (in bytes) of the stride - used to determine the start of the next TFD buffer. For e.g: if WNIC points each TFD descriptor to a separate 4KB page then stride would be 4KB. This register is populated by the graphics driver in concert with the WNIC driver. The address must not be changed when a wireless session is active. If MMIO address needs to change due to PCI rebalancing, graphics driver must take steps to stop wireless session, program the register and then re-activate the wireless session. Programming Notes This field can be programmed to 4K or 8K Buffer stride size. Each TFD entry can only contain one WiGig WDE packet.								15:0	The maximum size of a WDE packet is 7920 bytes for 8K stride (this is the maximum packets that go into the WiGig MAC (max MSDU size)) and 4032 for 4K stride. 15:0 Reserverd								. 5.15	Format:			MBZ				1	31:16	Reserved									Format:			MBZ					15:0	TFD message Timer Expiration Count									Format:		U16 # of Clocks							This field specified the time-out threshold value. If the idle timer is greater than this threshold, any completed TFD packets in the TFD output queue will be flushed to WNIC TFD Buffer.									Value	Name	Desc	cription						0		Timer Timeout is Disabled							1-FFFFh		Number of Clock to wait before flus	hing the output queue				2	31:28	Reserved									Format:			MBZ					27:16	Start 2k by	te offset	position for AV multiplexer							Format:			MBZ						This field sl	nould be s	set to zero in functional mode (Resen	ved) Reserved.					15:12	Reserved									Format:			MBZ							WDE Pac	ketization Param	eters1				---	-------	--	----------------	------------------------------	--------------------------------------	--	--			11:0	Max Buffer pointer Minus 1									Format:			U12						This field specifies the number TFD entries / Size of the Circular buffer. For example a value o									indicates 64 TFD entries. A value of 4095 indicates 4096 TFD entries.							3	31:16	Reserved			1						Format:			MBZ					15		Direction Mode								Master Inte 16 bits [31:		SA for WGBOX interrupt mess	sages is located at 2005_020Ch upper						Value	Name		Description						0	Host	Interrupt message is sent to	o SA (HOST)						1	Reserved							14:2	Reserved									Format:			MBZ					1	TFD head pointer update interrupt message enable If set, WGBOX will send interrupt message after updating TFD head pointer to WNIC.								0	EOF Interrupt Message Enable If set, WGBOX will send interrupt message at the end of the frame to SA as indication of frame completion.							4	31:24	Reserved									Format:			MBZ					23:0	Video Packet ID Header Parameter This field specifies the static program fields in MPEG/WDE header for each Video packet.									Programming Notes									Bit 23 - Reserved.									Bit 22:16 - This field specifies the WDE PESXF stream ID (STIDEXT) (7-bit). The valid range for AVC video data is 0x48 to 0x48.									range for AVC video data is 0x48 to 0x4F. • Bit 15:8 - This field specifies the WDE subheader Stream ID (8-bit)									Bit 15:8 - This field specifies the WDE subheader Stream ID (8-bit). Bit 7:0 - This field specifies the WDE subheader field Program Number (8-bit).									Bit 7:0 - This field specifies the WDE subheader field Program Number (8-bit).							F	31:0	Reserved							5		Format:			MBZ			# **WD Interrupt Bit Definition**			WD Interrupt Bit Definition						---	--------	--	--	--	--	--		Source:		BSpec						Size (in b	its):	16						Default \	/alue:	0x0000000						The WD	Inter	rupt Registers all share the same bit definitions from this table.						DWord	Bit	Description						0	15:9	Reserved								Format: MBZ							8	Reserved							7	WD_Frame_Complete This event occurs when WD capture fully completes a frame.							6	WD_GTT_Fault This event occurs when a GTT fault is detected.							5	WD_Vblank This event occurs at the start of the WD internal vertical blank.						4 WD_Capture_sync This event occurs when WD counter reached the programmed frame time interval.									3	WD_Capturing This event occurs when WD capture starts to capture pixels.							2	WD_Writes_Complete This event occurs when WD capture data writes complete for the current frame, before the data has been flushed to memory. WD Frame Complete should be used to find when the captured data can be accessed.							1	WD_TG_Late_Run This event occurs when capsync for the next frame occurred before WD completed capturing a the pixels in the previous frame.							0	WD_WDBOX_Late_Run This event occurs when capsync for the next frame occurred before the wdbox frame completion message was received for the previous frame.					# intel # **WiGig Parameters**			WiGig Parameters		--------------------------------	------	--		Source:		BSpec		Size (in bits):		512		Size (in bits): Default Value:		0x00000000, 0x00000000, 0x00000000, 0x00000000		DWord	Bit	Description		09	31:0	Encoder Control State Parameters0 For the description of this structure, please refer to Encoder Control State Parameters0 in the following section.		1019	31:0	Encoder Base Address Parameters1 For the description of this structure, please refer to Encoder Base Address Parameters1 in the following sections.		2029	31:0	Encoder Base Address Parameters2 For the description of this structure, please refer to Encoder Base Address Parameters2 in the following sections.		3039	31:0	Encoder Base Address Parameters3 For the description of this structure, please refer to Encoder Base Address Parameters3 in the following sections.		4049	31:0	Encoder Base Address Parameters4 For the description of this structure, please refer to Encoder Base Address Parameters4 in the following sections.		5059	31:0	Encoder State Parameters5				WiGig Parameters		--------	------	--				For the description of this structure, please refer to <i>Encoder State Parameters5</i> in the following sections.		6061	31:0	Encoder State Parameters6 For the description of this structure, please refer to <i>Encoder State Parameters6</i> in the following sections.		6263	31:0																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																										
Display Source Parameters For the description of this structure, please refer to <i>Display Source Parameters</i> in the following sections. | | 6469 | 31:0 | Motion Decision Setting Parameters0 For the description of this structure, please refer to <i>Motion Decision Setting Parameters0</i> in the following section. | | 7079 | 31:0 | Motion Decision Setting Parameters1 For the description of this structure, please refer to Motion Decision Setting Parameters1 in the following section. | | 8089 | 31:0 | Packetization Parameters0 for the description of this structure, please refer to <i>Packetization Parameters0</i> in the following section. | | 9095 | 31:0 | Packetization Parameters1 for the description of this structure, please refer to Packetization Parameters1 in the following section. | | 9699 | 31:0 | Static Frame Control Parameters For the description of this structure, please refer to Control State Parameters0 in the following section. | | 100109 | 31:0 | MBHRD State Parameters1 For the description of this structure, please refer to MBHRD State Parameters1 in the following sections. | | 110119 | 31:0 | MBHRD State Parameters2 For the description of this structure, please refer to MBHRD State Parameters2 in the following sections. | | 120127 | 31:0 | MBHRD State Parameters3 For the description of this structure, please refer to MBHRD State Parameters3 in the following sections. |