

Intel® UHD Graphics Open Source

Programmer's Reference Manual

For the 2020 Intel Core™ Processors with Intel Hybrid Technology

based on the "Lakefield" Platform

Volume 8: Command Stream Programming

April 2021, Revision 1.0

ii Doc Ref # IHD-OS-LKF-Vol 8-4.21

Notices and Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Code names are used by Intel to identify products, technologies, or services that are in development and

not publicly available. These are not "commercial" names and not intended to function as trademarks.

Customer is responsible for safety of the overall system, including compliance with applicable safety-

related requirements or standards.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by

this document.

The products described may contain design defects or errors known as errata which may cause the

product to deviate from published specifications. Current characterized errata are available on request.

You may not use or facilitate the use of this document in connection with any infringement or other legal

analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free

license to any patent claim thereafter drafted which includes subject matter disclosed herein.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of

merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising

from course of performance, course of dealing, or usage in trade.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers

must not rely on the absence or characteristics of any features or instructions marked "reserved" or

"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for

conflicts or incompatibilities arising from future changes to them. The information here is subject to

change without notice. Do not finalize a design with this information.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its

subsidiaries. Other names and brands may be claimed as the property of others.

Doc Ref # IHD-OS-LKF-Vol 8-4.21 iii

Table of Contents

Command Stream Programming Introduction .. 1

Commands and Programming Interface ... 2

Command Buffers .. 3

Command Ring Buffers ... 3

Command Batch Buffers .. 3

Workaround Batch Buffers ... 4

Graphics Command Formats ... 6

Command Header ... 7

Memory Interface Commands .. 10

2D Commands .. 12

3D Commands .. 13

VEBOX Commands .. 18

MFX Commands ... 19

Execution Control Infrastructure .. 21

Watchdog Timers .. 21

Predication ... 22

Predicate Render Registers ... 22

MI_SET_PREDICATE .. 22

MI_PREDICATE.. 23

Predicated Rendering Support in HW ... 23

CS ALU Programming and Design .. 24

CS_GPR - Command Streamer General Purpose Registers .. 24

Command Streamer (CS) ALU Programming .. 24

Generic Purpose Registers .. 24

ALU BLOCK Diagram ... 25

Instruction Set .. 26

Instruction Format .. 26

LOAD Operation .. 26

Arithmetic/Logical Operations .. 27

STORE Operation .. 27

Summary for ALU .. 28

Summary of Instructions Supported ... 28

iv Doc Ref # IHD-OS-LKF-Vol 8-4.21

Table for ALU OPCODE Encodings .. 28

Table for Register Encodings ... 30

MI Commands for Graphics Processing Engines ... 31

Register Access and User Mode Privileges .. 32

User Mode Privileged Commands .. 33

Workload Submission and Execution Status .. 39

Scheduling .. 39

RINGBUF — Ring Buffer Registers .. 39

Command Stream Virtual Memory Control .. 39

Enhanced Execlists .. 39

Context Descriptor Format .. 40

Logical Ring Context Format .. 42

Context Status .. 43

Context Status Buffer in Global Hardware Status Page .. 44

Controls for Context Switch Status Reporting .. 45

Preemption ... 45

ExecList Scheduling ... 45

Execution Status ... 47

The Per-Process Hardware Status Page.. 47

Hardware Status Page ... 48

Interrupt Control Registers .. 48

Hardware-Detected Error Bit Definitions (for EIR EMR ESR) .. 49

Producer-Consumer Data ordering for MI Commands ... 50

Memory Data Ordering ... 50

Memory Data Producer ... 50

Memory Data - Consumer ... 52

MMIO Data Ordering ... 52

MMIO Data Producer ... 52

MMIO Data Consumer .. 53

Doc Ref # IHD-OS-LKF-Vol 8-4.21 1

Command Stream Programming Introduction

Command Streamer is the primary interface to the various engines that are part of the graphics

hardware.

The graphics HW consists of multiple parallel engines that can execute different kinds of workloads. E.g

Render engine for 3D and GPGPU tasks, Video Decode engine, Video Enhancement Engine and Blitter

engine.

Some product SKU’s have multiple instances of an engine (e.g 2 Video Decode engines).

As shown in figure 1, each of these engines have their own Command Streamer that is responsible for

processing the commands in the workload and enabling execution of the task.

Figure 1: High level view of Command Streamer

As shown in the figure, the command streamer is comprised of a Common Front end and an engine

specific backend.

The common front end allows each engine to provide a uniform software interface (e.g infrastructure for

submission of commands, synchronization, etc).

The back ends handle the engine specific commands and the protocols required to control the execution

of the underlying engine.

2 Doc Ref # IHD-OS-LKF-Vol 8-4.21

Commands and Programming Interface

Each command streamer provides an 8 element runlist port to allow the scheduler to submit up to 8

contexts for execution.

Contents of an element are described in the Context Descriptor structure.

Context descriptor includes control information (required for the context execution and SW tracking) and

a pointer to the Context State Memory Address (aka LRCA).

LRCA contains:

• State information required for context execution (Pointer to command buffers, pointers to per

process page tables)

• Memory for saving engine execution state of a context

Note that commands are fed through a hierarchy of command buffers - starting with the ring buffer at

the highest level and tiered batch buffers.

Doc Ref # IHD-OS-LKF-Vol 8-4.21 3

Command Buffers

Instructions to be executed by an engine are submitted to the hardware using command buffers.

Command Ring Buffers

Command ring buffers are the memory areas used to pass instructions to the device. Refer to the

Programming Interface chapter for a description of how these buffers are used to transport instructions.

The RINGBUF register sets (defined in Memory Interface Registers) are used to specify the ring buffer

memory areas. The ring buffer must start on a 4KB boundary and be allocated in linear memory. The

length of any one ring buffer is limited to 2MB.

Programming Note

Context: Command Ring Buffers in memory areas.

“Indirect” 3D primitive instructions (those that access vertex buffers) must reside in the same memory space as the

vertex buffers.

Command Batch Buffers

Command batch buffers are contiguous streams of instructions referenced via an

MI_BATCH_BUFFER_START and related instructions (see Memory Interface Instructions, Programming

Interface). They are used to transport instructions external to ring buffers.

Programming Note

Context: Command batch buffers in memory objects

Batch buffers can be tagged with any memory type when produced by IA. If WB memory type is used, it should be

tagged with "snoop required" for GPU consumption (to trigger snoop from CPU cache).

Programming Note

Context: Command batch buffers in memory objects

The batch buffer must be QWord aligned and a multiple of QWords in length. The ending address is the address of

the last valid QWord in the buffer. The length of any single batch buffer is “virtually unlimited” (i.e., could

theoretically be 4GB in length).

4 Doc Ref # IHD-OS-LKF-Vol 8-4.21

Workaround Batch Buffers

A Workaround batch buffer is a set of commands that is run by the hardware during context load time.

i.e when Command Streamer hardware is restoring the state of the context that it is about to execute

(before execution of any command in the ring buffer). The Workaround batch buffer uses pointers to

command buffers that are setup by the Kernel Mode driver in the context image.

Two flavors of Workaround batch buffers are supported by the hardware. They differ in terms of exactly

when the supplied workaround commands are executed in the context restore process. The mechanisms

supported are:

Indirect Context Pointer (INDIRECT_CTX)

As shown in the figure below, this workaround buffer can be invoked at any cacheline aligned offset in

the engine context.

Doc Ref # IHD-OS-LKF-Vol 8-4.21 5

Command streamer, when enabled through “INDIRECT_CTX” provides a mechanism to pause executing

context restore on a given cacheline aligned offset in the engine context image and execute a command

sequence from a command buffer before resuming context restore flow. This command buffer execution

during context restore is referred to as “Indirect Context Pointer” execution. The start address and the

size of the command buffer to be executed is provided through “INDIRECT_CTX” register and the offset

in the engine context restore is provided through “INDIRECT_CTX_OFFSET”. “INDIRECT_CTX” and

“INDIRECT_CTX_OFFSET” registers are part of the context image and gets restored as part of the given

context’s context restore flow, these registers are part of the ring context image which are prior to

engine context restore and hence the requirement of the offset being in engine context restore. “Indirect

Context Pointer” is always in the GGTT address space of the virtual function or physical function from

which the context is submitted. “Indirect context pointer” can be programmed differently for each

context providing flexibility to execute different command sequence as part of “Indirect Context Pointer”

execution during context restore flows.

Post Context Restore Workaround Batch Buffer

As shown in the figure, this workaround buffer is invoked at the end of the context restore.

6 Doc Ref # IHD-OS-LKF-Vol 8-4.21

Command streamer, when enabled through “BB_PER_CTX_PTR” provides a mechanism to execute a

command sequence from a batch buffer at the end of the context restore flow during context switch

process. This batch buffer is referred to as “Context Restore Batch Buffer”. The batch start address for the

“Context Restore Batch Buffer” gets programmed through “BB_PER_CTX_PTR”, which is part of the

context image and gets restored as part of the given context’s context restore flow. “Context Restore

Batch Buffer” execution begins (like a regular batch buffer) after the completion of fetching and

execution of all the commands for the context restore flow. “Context Restore Batch Buffer” execution

ends on executing MI_BATCH_BUFFER_END in the command sequence. “Context Restore Batch Buffer” is

always in the GGTT address space of the virtual function or physical function from which the context is

submitted. “BB_PER_CTX_PTR” can be programmed differently for every context giving flexibility to

execute different command sequence (batch buffers) as part of “Context Restore Batch Buffer” execution

or can be programmed to disable execution of the “Context Restore Batch Buffer” for a given context.

This mechanism is especially helpful in programming a set of commands/state that has to be always

executed prior to executing a workload from a context every time it is submitted to HW for execution.

Limited capability is built for “Context Restore Batch Buffer” unlike a regular MI_BATCH_BUFFER_START

due to envisioned usage model, refer BB_PER_CTX_PTR for detailed programming notes.

Graphics Command Formats

This section describes the general format of the graphics device commands.

Graphics commands are defined with various formats. The first DWord of all commands is called the

header DWord. The header contains the only field common to all commands, the client field that

determines the device unit that processes the command data. The Command Parser examines the client

field of each command to condition the further processing of the command and route the command

data accordingly.

Graphics commands vary in length, though are always multiples of DWords. The length of a command is

either:

• Implied by the client/opcode

• Fixed by the client/opcode yet included in a header field (so the Command Parser explicitly knows

how much data to copy/process)

• Variable, with a field in the header indicating the total length of the command

Note that command sequences require QWord alignment and padding to QWord length to be placed in

Ring and Batch Buffers.

The following subsections provide a brief overview of the graphics commands by client type provides a

diagram of the formats of the header DWords for all commands. Following that is a list of command

mnemonics by client type.

Doc Ref # IHD-OS-LKF-Vol 8-4.21 7

Command Header

Render Command Header Format

Type Bits

 31:29 28:24 23 22 21:0

Memory

 Interface

 (MI)

000 Opcode

 00h – NOP

 0Xh – Single DWord Commands

 1Xh – Two+ DWord Commands

 2Xh – Store Data Commands

 3Xh – Ring/Batch Buffer Cmds

 Identification No./DWord Count

 Command Dependent Data

 5:0 – DWord Count

 5:0 – DWord Count

 5:0 – DWord Count

Type Bits

 31:29 28:24 23:19 18:16 15:0

Reserved 001,

 010

Opcode – 11111 Sub Opcode 00h – 01h Reserved DWord Count

Type Bits

 31:29 28:27 26:24 23:16 15:8 7:0

Common 011 00 Opcode – 000 Sub Opcode Data DWord Count

Common (NP)1 011 00 Opcode – 001 Sub Opcode Data DWord Count

Reserved 011 00 Opcode – 010 – 111

Single Dword Command 011 01 Opcode – 000 – 001 Sub Opcode N/A

Reserved 011 01 Opcode – 010 – 111

Media State 011 10 Opcode – 000 Sub Opcode Dword Count

Media Object 011 10 Opcode – 001 – 010 Sub Opcode Dword Count

Reserved 011 10 Opcode – 011 – 111

3DState (Pipelined) 011 11 Opcode – 000 Sub Opcode Data DWord Count

3DState (NP)1 011 11 Opcode – 001 Sub Opcode Data DWord Count

PIPE_Control 011 11 Opcode – 010 Data DWord Count

3DPrimitive 011 11 Opcode – 011 Data DWord Count

Reserved 011 11 Opcode - 100

Reserved 011 11 Opcode - 101

Reserved 011 11 Opcode – 110 – 111

Reserved 100 XX

Reserved 101 XX

Reserved 110 XX

8 Doc Ref # IHD-OS-LKF-Vol 8-4.21

Notes:

1The qualifier “NP” indicates that the state variable is non-pipelined and the render pipe is flushed before

such a state variable is updated. The other state variables are pipelined (default).

Video Command Header Format

Type Bits

 31:29 28:24 23 22 21:0

Memory

 Interface

 (MI)

000 Opcode

 00h – NOP

 0Xh – Single DWord Commands

 1Xh – Reserved

 2Xh – Store Data Commands

 3Xh – Ring/Batch Buffer Cmds

 Identification No./DWord Count

 Command Dependent Data

 5:0 – DWord Count

 5:0 – DWord Count

 5:0 – DWord Count

Type Bits

 31:29 28:27 26:24 23:16 15:0

Reserved 011 00 XXX XX

MFX Single DW 011 01 000 Opcode: 0h 0

Reserved 011 01 1XX

Reserved 011 10 0XX

AVC State 011 10 100 Opcode: 0h – 4h DWord Count

AVC Object 011 10 100 Opcode: 8h DWord Count

VC1 State 011 10 101 Opcode: 0h – 4h DWord Count

VC1 Object 011 10 101 Opcode: 8h DWord Count

Reserved 011 10 11X

Reserved 011 11 XXX

Type Bits

 31:29 28:27 26:24 23:21 20:16 15:0

MFX Common 011 10 000 000 subopcode DWord Count

Reserved 011 10 000 001-111 subopcode DWord Count

AVC Common 011 10 001 000 subopcode DWord Count

AVC Dec 011 10 001 001 subopcode DWord Count

AVC Enc 011 10 001 010 subopcode DWord Count

Reserved 011 10 001 011-111 subopcode DWord Count

Reserved (for VC1 Common) 011 10 010 000 subopcode DWord Count

VC1 Dec 011 10 010 001 subopcode DWord Count

Reserved (for VC1 Enc) 011 10 010 010 subopcode DWord Count

Reserved 011 10 010 011-111 subopcode DWord Count

Reserved (MPEG2 Common) 011 10 011 000 subopcode DWord Count

Doc Ref # IHD-OS-LKF-Vol 8-4.21 9

Type Bits

MPEG2Dec 011 10 011 001 subopcode DWord Count

Reserved (for MPEG2 Enc) 011 10 011 010 subopcode DWord Count

Reserved 011 10 011 011-111 subopcode DWord Count

Reserved 011 10 100-111 XXX

Video Enhancement Command Header Format

Type Bits

 31:29 28:24 23 22 21:0

Memory

 Interface

 (MI)

000 Opcode

 00h – NOP

 0Xh – Single DWord Commands

 1Xh – Two+ DWord Commands

 2Xh – Store Data Commands

 3Xh – Ring/Batch Buffer Cmds

 Identification No./DWord Count

 Command Dependent Data

 5:0 – DWord Count

 5:0 – DWord Count

 5:0 – DWord Count

Reserved 001, 010

Type Bits

 31:29 28:27 26:24 23:21 20:16 15:12 11:0

VEBOX (Parallel Video

Pipe)

011
10: Pipeline

00:

Reserved

01:

Reserved

11:

Reserved

Command Opcode –

100

Sub Opcode

A

Sub Opcode

B

Reserved Dword

Count

Blitter Command Header Format

Type Bits

 31:29 28:24 23 22 21:0

Memory

 Interface

 (MI)

000 Opcode

 00h – NOP

 0Xh – Single DWord Commands

 1Xh – Two+ DWord Commands

 2Xh – Store Data Commands

 3Xh – Ring/Batch Buffer Cmds

 Identification No./DWord Count

 Command Dependent Data

 5:0 – DWord Count

 5:0 – DWord Count

 5:0 – DWord Count

Reserved 001, 011

10 Doc Ref # IHD-OS-LKF-Vol 8-4.21

Type Bits

 31:29 28:22 21:9 8:0

Blitter (2D) 010
Command Opcode

Command Dependent Data Dword Count

Memory Interface Commands

Memory Interface (MI) commands are basically those commands which do not require processing by the

2D or 3D Rendering/Mapping engines. The functions performed by these commands include:

• Control of the command stream (e.g., Batch Buffer commands, breakpoints, ARB On/Off, etc.)

• Hardware synchronization (e.g., flush, wait-for-event)

• Software synchronization (e.g., Store DWORD, report head)

• Graphics buffer definition (e.g., Display buffer, Overlay buffer)

• Miscellaneous functions

All of the following commands are defined in Memory Interface Commands.

Memory Interface Commands for RCP

Opcode

 (28:23) Command Pipes

1 DWord

00h MI_NOOP All

01h MI_SET_PREDICATE Render

02h MI_USER_INTERRUPT All

03h MI_WAIT_FOR_EVENT All

05h MI_ARB_CHECK All

07h MI_REPORT_HEAD All

08h MI_ARB_ON_OFF All except Blitter

0Ah MI_BATCH_BUFFER_END All

0Bh MI_SUSPEND_FLUSH All

0Ch MI_PREDICATE Render

2+ DWord

10h Reserved

12h MI_LOAD_SCAN_LINES_INCL Render and Blitter

13h MI_LOAD_SCAN_LINES_EXCL Render and Blitter

14h MI_DISPLAY_FLIP Render and Blitter

15h Reserved

17h Reserved

18h MI_SET_CONTEXT Render

Doc Ref # IHD-OS-LKF-Vol 8-4.21 11

Opcode

 (28:23) Command Pipes

1Ah MI_MATH All

1Bh MI_SEMAPHORE_SIGNAL All

1Ch MI_SEMAPHORE_WAIT All

1Dh MI_FORCE_WAKEUP All except Render

1Fh Reserved

Store Data

20h MI_STORE_DATA_IMM All

21h MI_STORE_DATA_INDEX All

22h MI_LOAD_REGISTER_IMM All

23h MI_UPDATE_GTT All

24h MI_STORE_REGISTER_MEM All

26h MI_FLUSH_DW All except Render

27h MI_CLFLUSH Render

29h MI_LOAD_REGISTER_MEM All

2Ah MI_LOAD_REGISTER_REG All

2Bh MI_RS_STORE_DATA_IMM Render

2Eh MI_MEM_TO_MEM All

2Fh MI_ATOMIC All

Ring/Batch Buffer

30h Reserved

31h MI_BATCH_BUFFER_START Render

32h-35h Reserved

36h MI_CONDITIONAL_BATCH_BUFFER_END All

37h-38h Reserved

39h Reserved All

39h-3Fh Reserved

12 Doc Ref # IHD-OS-LKF-Vol 8-4.21

2D Commands

The 2D commands include various flavors of BLT operations, along with commands to set up BLT engine

state without actually performing a BLT. Most commands are of fixed length, though there are a few

commands that include a variable amount of "inline" data at the end of the command.

All the following commands are defined in Blitter Instructions.

2D Command Map

Opcode

(28:22) Command

00h Reserved

01h XY_SETUP_BLT

02h Reserved

03h XY_SETUP_CLIP_BLT

04h-10h Reserved

11h XY_SETUP_MONO_PATTERN_SL_BLT

12h-23h Reserved

24h XY_PIXEL_BLT

25h XY_SCANLINES_BLT

26h XY_TEXT_BLT

27h-30h ReservedReserved

31h XY_TEXT_IMMEDIATE_BLT

32h-3Fh Reserved

40h COLOR_BLT

42h XY_FAST_COPY_BLT

43h SRC_COPY_BLT

45h-47h Reserved

49h-4Fh Reserved

50h XY_COLOR_BLT

51h XY_PAT_BLT

52h XY_MONO_PAT_BLT

53h XY_SRC_COPY_BLT

54h XY_MONO_SRC_COPY_BLT

55h XY_FULL_BLT

56h XY_FULL_MONO_SRC_BLT

57h XY_FULL_MONO_PATTERN_BLT

58h XY_FULL_MONO_PATTERN_MONO_SRC_BLT

59h XY_MONO_PAT_FIXED_BLT

5Ah-70h Reserved

Doc Ref # IHD-OS-LKF-Vol 8-4.21 13

Opcode

(28:22) Command

71h XY_MONO_SRC_COPY_IMMEDIATE_BLT

72h XY_PAT_BLT_IMMEDIATE

73h XY_SRC_COPY_CHROMA_BLT

74h XY_FULL_IMMEDIATE_PATTERN_BLT

75h XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BL

76h XY_PAT_CHROMA_BLT

77h XY_PAT_CHROMA_BLT_IMMEDIATE

78h-7Fh Reserved

3D Commands

The 3D commands are used to program the graphics pipelines for 3D operations.

Refer to the 3D chapter for a description of the 3D state and primitive commands and the Media chapter

for a description of the media-related state and object commands.

For all commands listed in 3D Command Map, the Pipeline Type (bits 28:27) is 3h, indicating the 3D

Pipeline.

3D Command Map

Opcode

 Bits 26:24

Sub Opcode

 Bits 23:16 Command Definition Chapter

0h 01h Reserved 3D Pipeline

0h 02h Reserved 3D Pipeline

0h 03h Reserved

0h 04h 3DSTATE_CLEAR_PARAMS 3D Pipeline

0h 05h 3DSTATE_DEPTH_BUFFER 3D Pipeline

0h 06h 3DSTATE_STENCIL_BUFFER 3D Pipeline

0h 07h 3DSTATE_HIER_DEPTH_BUFFER 3D Pipeline

0h 08h 3DSTATE_VERTEX_BUFFERS Vertex Fetch

0h 09h 3DSTATE_VERTEX_ELEMENTS Vertex Fetch

0h 0Ah 3DSTATE_INDEX_BUFFER Vertex Fetch

0h 0Bh 3DSTATE_VF_STATISTICS Vertex Fetch

0h 0Ch 3DSTATE_VF Vertex Fetch

0h 0Dh 3DSTATE_VIEWPORT_STATE_POINTERS 3D Pipeline

0h 0Eh 3DSTATE_CC_STATE_POINTERS 3D Pipeline

0h 10h 3DSTATE_VS Vertex Shader

0h 11h 3DSTATE_GS Geometry Shader

0h 12h 3DSTATE_CLIP Clipper

14 Doc Ref # IHD-OS-LKF-Vol 8-4.21

Opcode

 Bits 26:24

Sub Opcode

 Bits 23:16 Command Definition Chapter

0h 13h 3DSTATE_SF Strips & Fans

0h 14h 3DSTATE_WM Windower

0h 15h 3DSTATE_CONSTANT_VS Vertex Shader

0h 16h 3DSTATE_CONSTANT_GS Geometry Shader

0h 17h 3DSTATE_CONSTANT_PS Windower

0h 18h 3DSTATE_SAMPLE_MASK Windower

0h 19h 3DSTATE_CONSTANT_HS Hull Shader

0h 1Ah 3DSTATE_CONSTANT_DS Domain Shader

0h 1Bh 3DSTATE_HS Hull Shader

0h 1Ch 3DSTATE_TE Tesselator

0h 1Dh 3DSTATE_DS Domain Shader

0h 1Eh 3DSTATE_STREAMOUT HW Streamout

0h 1Fh 3DSTATE_SBE Setup

0h 20h 3DSTATE_PS Pixel Shader

0h 21h 3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP Strips & Fans

0h 22h 3DSTATE_CPS Course Pixel Shader

0h 23h 3DSTATE_VIEWPORT_STATE_POINTERS_CC Windower

0h 24h 3DSTATE_BLEND_STATE_POINTERS Pixel Shader

0h 25h 3DSTATE_DEPTH_STENCIL_STATE_POINTERS Pixel Shader

0h 26h 3DSTATE_BINDING_TABLE_POINTERS_VS Vertex Shader

0h 27h 3DSTATE_BINDING_TABLE_POINTERS_HS Hull Shader

0h 28h 3DSTATE_BINDING_TABLE_POINTERS_DS Domain Shader

0h 29h 3DSTATE_BINDING_TABLE_POINTERS_GS Geometry Shader

0h 2Ah 3DSTATE_BINDING_TABLE_POINTERS_PS Pixel Shader

0h 2Bh 3DSTATE_SAMPLER_STATE_POINTERS_VS Vertex Shader

0h 2Ch 3DSTATE_SAMPLER_STATE_POINTERS_HS Hull Shader

0h 2Dh 3DSTATE_SAMPLER_STATE_POINTERS_DS Domain Shader

0h 2Eh 3DSTATE_SAMPLER_STATE_POINTERS_GS Geometry Shader

0h 2Fh 3DSTATE_SAMPLER_STATE_POINTERS_PS Pixel Shader

0h 30h 3DSTATE_URB_VS Vertex Shader

0h 31h 3DSTATE_URB_HS Hull Shader

0h 32h 3DSTATE_URB_DS Domain Shader

0h 33h 3DSTATE_URB_GS Geometry Shader

0h 34h 3DSTATE_GATHER_CONSTANT_VS Vertex Shader

0h 35h 3DSTATE_GATHER_CONSTANT_GS Geometry Shader

0h 36h 3DSTATE_GATHER_CONSTANT_HS Hull Shader

Doc Ref # IHD-OS-LKF-Vol 8-4.21 15

Opcode

 Bits 26:24

Sub Opcode

 Bits 23:16 Command Definition Chapter

0h 37h 3DSTATE_GATHER_CONSTANT_DS Domain Shader

0h 38h 3DSTATE_GATHER_CONSTANT_PS Pixel Shader

0h 39h 3DSTATE_DX9_CONSTANTF_VS Vertex Shader

0h 3Ah 3DSTATE_DX9_CONSTANTF_PS Pixel Shader

0h 3Bh 3DSTATE_DX9_CONSTANTI_VS Vertex Shader

0h 3Ch 3DSTATE_DX9_CONSTANTI_PS Pixel Shader

0h 3Dh 3DSTATE_DX9_CONSTANTB_VS Vertex Shader

0h 3Eh 3DSTATE_DX9_CONSTANTB_PS Pixel Shader

0h 3Fh 3DSTATE_DX9_LOCAL_VALID_VS Vertex Shader

0h 40h 3DSTATE_DX9_LOCAL_VALID_PS Pixel Shader

0h 41h 3DSTATE_DX9_GENERATE_ACTIVE_VS Vertex Shader

0h 42h 3DSTATE_DX9_GENERATE_ACTIVE_PS Pixel Shader

0h 43h 3DSTATE_BINDING_TABLE_EDIT_VS Vertex Shader

0h 44h 3DSTATE_BINDING_TABLE_EDIT_GS Geometry Shader

0h 45h 3DSTATE_BINDING_TABLE_EDIT_HS Hull Shader

0h 46h 3DSTATE_BINDING_TABLE_EDIT_DS Domain Shader

0h 47h 3DSTATE_BINDING_TABLE_EDIT_PS Pixel Shader

0h 48h 3DSTATE_VF_HASHING Vertex Fetch

0h 49h 3DSTATE_VF_INSTANCING Vertex Fetch

0h 4Ah 3DSTATE_VF_SGVS Vertex Fetch

0h 4Bh 3DSTATE_VF_TOPOLOGY Vertex Fetch

0h 4Ch 3DSTATE_WM_CHROMA_KEY Windower

0h 4Dh 3DSTATE_PS_BLEND Windower

0h 4Eh 3DSTATE_WM_DEPTH_STENCIL Windower

0h 4Fh 3DSTATE_PS_EXTRA Windower

0h 50h 3DSTATE_RASTER Strips & Fans

0h 51h 3DSTATE_SBE_SWIZ Strips & Fans

0h 52h 3DSTATE_WM_HZ_OP Windower

0h 53h 3DSTATE_INT (internally generated state) 3D Pipeline

0h 54h 3DSTATE_RS_CONSTANT_POINTER Resource Streamer

0h 55h 3DSTATE_VF_COMPONENT_PACKING Vertex Fetch

0h 56h 3DSTATE_VF_SGVS_2 VertexFetch

0h 58h Reserved

0h 59h Reserved

0h 5Ah Reserved

0h 5Bh Reserved

16 Doc Ref # IHD-OS-LKF-Vol 8-4.21

Opcode

 Bits 26:24

Sub Opcode

 Bits 23:16 Command Definition Chapter

0h 5Ch Reserved

0h 5Dh-5Fh Reserved

0h 60h-63h Reserved

0h 64h-69h Reserved

0h 6Ah 3DSTATE_PTBR_MARKER 3D Pipeline

0h 6Bh 3DSTATE_PTBR_TILE_SELECT Vertex Fetch, Strips & Fans

0h 57h-59h Reserved

0h 60h-68h Reserved

0h 69h Reserved

0h 6Ch Reserved

0h 6Dh Reserved

0h 6Eh Reserved

0h 6Fh Reserved

0h 70h Reserved

0h 71h Reserved

0h 72h Reserved

0h 73h Reserved

0h 74h Reserved

0h 72h-73h Reserved

0h 75h Reserved

0h 76h Reserved

0h 77h-82h Reserved

0h 83h-FFh Reserved

1h 00h 3DSTATE_DRAWING_RECTANGLE Strips & Fans

1h 03h Reserved

1h 04h 3DSTATE_CHROMA_KEY Sampling Engine

1h 05h Reserved

1h 06h 3DSTATE_POLY_STIPPLE_OFFSET Windower

1h 07h 3DSTATE_POLY_STIPPLE_PATTERN Windower

1h 08h 3DSTATE_LINE_STIPPLE Windower

1h 0Ah 3DSTATE_AA_LINE_PARAMS Windower

1h 0Bh 3DSTATE_GS_SVB_INDEX Geometry Shader

1h 0Dh 3DSTATE_MULTISAMPLE Windower

1h 0Eh 3DSTATE_STENCIL_BUFFER Windower

1h 0Fh 3DSTATE_HIER_DEPTH_BUFFER Windower

1h 10h 3DSTATE_CLEAR_PARAMS Windower

Doc Ref # IHD-OS-LKF-Vol 8-4.21 17

Opcode

 Bits 26:24

Sub Opcode

 Bits 23:16 Command Definition Chapter

1h 11h 3DSTATE_MONOFILTER_SIZE Sampling Engine

1h 12h 3DSTATE_PUSH_CONSTANT_ALLOC_VS Vertex Shader

1h 13h 3DSTATE_PUSH_CONSTANT_ALLOC_HS Hull Shader

1h 14h 3DSTATE_PUSH_CONSTANT_ALLOC_DS Domain Shader

1h 15h 3DSTATE_PUSH_CONSTANT_ALLOC_GS Geometry Shader

1h 16h 3DSTATE_PUSH_CONSTANT_ALLOC_PS Pixel Shader

1h 17h 3DSTATE_SO_DECL_LIST HW Streamout

1h 18h 3DSTATE_SO_BUFFER HW Streamout

1h 19h 3DSTATE_BINDING_TABLE_POOL_ALLOC Resource Streamer

1h 1Ah 3DSTATE_GATHER_POOL_ALLOC Resource Streamer

1h 1Bh 3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC Resource Streamer

1h 1Ch 3DSTATE_SAMPLE_PATTERN Windower

1h 1Dh 3DSTATE_URB_CLEAR 3D Pipeline

1h 1Eh 3DSTATE_3D_MODE 3D Pipeline

1h 1Fh 3DSTATE_SUBSLICE_HASH_TABLE 3D Pipeline

1h 20h 3DSTATE_SLICE_TABLE_STATE_POINTERS 3D Pipeline

1h 21h 3DSTATE_PTBR_PAGE_POOL_BASE_ADDRESS 3D Pipeline

1h 22h 3DSTATE_PTBR_TILE_PASS_INFO 3D Pipeline

1h 23h 3DSTATE_PTBR_RENDER_LIST_BASE_ADDRESS 3D Pipeline

1h 24h 3DSTATE_PTBR_FREE_LIST_BASE_ADDRES 3D Pipeline

1h 25h-FFh Reserved

2h 00h PIPE_CONTROL 3D Pipeline

2h 01h-FFh Reserved

3h 00h 3DPRIMITIVE Vertex Fetch

3h 01h-FFh Reserved

4h-7h 00h-FFh Reserved

18 Doc Ref # IHD-OS-LKF-Vol 8-4.21

Pipeline Type (28:27) Opcode Sub Opcode Command Definition Chapter

Common (pipelined) Bits 26:24 Bits 23:16

0h 0h 03h STATE_PREFETCH Graphics Processing Engine

0h 0h 04h-FFh Reserved

Common (non-pipelined) Bits 26:24 Bits 23:16

0h 1h 00h Reserved N/A

0h 1h 01h STATE_BASE_ADDRESS Graphics Processing Engine

0h 1h 02h STATE_SIP Graphics Processing Engine

0h 1h 03h Reserved 3D Pipeline

0h 1h 04h GPGPU CSR BASE ADDRESS Graphics Processing Engine

0h 1h 05h Reserved

0h 1h 06h Reserved

0h 1h 07h Reserved

0h 1h 08h-FFh Reserved N/A

Reserved Bits 26:24 Bits 23:16

0h 2h-7h XX Reserved N/A

VEBOX Commands

The VEBOX commands are used to program the Video Enhancement engine attached to the Video

Enhancement Command Parser.

VEBOX Command Map

Pipeline Type (28:27) Opcode (26:24) SubopA (23:21) SubopB (20:16) Command

2h 4h 0h 0h VEBOX_SURFACE_STATE

2h 4h 0h 2h VEBOX_STATE

2h 4h 0h 3h VEBOX_DI_IECP

2h 4h 0h 1h VEBOX_TILING_CONVERT

Doc Ref # IHD-OS-LKF-Vol 8-4.21 19

MFX Commands

The MFX (MFD for decode and MFC for encode) commands are used to program the multi-format codec

engine attached to the Video Codec Command Parser. See the MFD and MFC chapters for a description

of these commands.

MFX state commands support direct state model and indirect state model. Recommended usage of

indirect state model is provided here (as a software usage guideline).

Pipeline

Type

(28:27)

Opcode

(26:24)

SubopA

(23:21)

SubopB

(20:16) Command Chapter

Recommended

Indirect State

Pointer Map Interruptable?

MFX Common (State)

2h 0h 0h 0h MFX_PIPE_MODE_SELECT MFX IMAGE N/A

2h 0h 0h 1h MFX_SURFACE_STATE MFX IMAGE N/A

2h 0h 0h 2h MFX_PIPE_BUF_ADDR_STATE MFX IMAGE N/A

2h 0h 0h 3h MFX_IND_OBJ_BASE_ADDR_STATE MFX IMAGE N/A

2h 0h 0h 4h MFX_BSP_BUF_BASE_ADDR_STATE MFX IMAGE N/A

2h 0h 0h 6h MFX_ STATE_POINTER MFX IMAGE N/A

2h 0h 0h 7-8h Reserved N/A N/A N/A

MFX Common (Object)

2h 0h 1h 9h MFD_ IT_OBJECT MFX N/A Yes

2h 0h 0h 4-1Fh Reserved N/A N/A N/A

AVC Common (State)

2h 1h 0h 0h MFX_AVC_IMG_STATE MFX IMAGE N/A

2h 1h 0h 1h MFX_AVC_QM_STATE MFX IMAGE N/A

2h 1h 0h 2h MFX_AVC_DIRECTMODE_STATE MFX SLICE N/A

2h 1h 0h 3h MFX_AVC_SLICE_STATE MFX SLICE N/A

2h 1h 0h 4h MFX_AVC_REF_IDX_STATE MFX SLICE N/A

2h 1h 0h 5h MFX_AVC_WEIGHTOFFSET_STATE MFX SLICE N/A

2h 1h 0h 6-1Fh Reserved N/A N/A N/A

AVC Dec

2h 1h 1h 0-7h Reserved N/A N/A N/A

2h 1h 1h 8h MFD_AVC_BSD_OBJECT MFX N/A No

2h 1h 1h 9-1Fh Reserved N/A N/A N/A

AVC Enc

2h 1h 2h 0-1h Reserved N/A N/A N/A

2h 1h 2h 2h MFC_AVC_FQM_STATE MFX IMAGE N/A

2h 1h 2h 3-7h Reserved N/A N/A N/A

2h 1h 2h 8h MFC_AVC_PAK_INSERT_OBJECT MFX N/A N/A

2h 1h 2h 9h MFC_AVC_PAK_OBJECT MFX N/A Yes

2h 1h 2h A-1Fh Reserved N/A N/A N/A

2h 1h 2h 0-1Fh Reserved N/A N/A N/A

20 Doc Ref # IHD-OS-LKF-Vol 8-4.21

Pipeline

Type

(28:27)

Opcode

(26:24)

SubopA

(23:21)

SubopB

(20:16) Command Chapter

Recommended

Indirect State

Pointer Map Interruptable?

VC1 Common

2h 2h 0h 0h MFX_VC1_PIC_STATE MFX IMAGE N/A

2h 2h 0h 1h MFX_VC1_PRED_PIPE_STATE MFX IMAGE N/A

2h 2h 0h 2h MFX_VC1_DIRECTMODE_STATE MFX SLICE N/A

2h 2h 0h 2-1Fh Reserved N/A N/A N/A

VC1 Dec

2h 2h 1h 0-7h Reserved N/A N/A N/A

2h 2h 1h 8h MFD_VC1_BSD_OBJECT MFX N/A Yes

2h 2h 1h 9-1Fh Reserved N/A N/A N/A

VC1 Enc

2h 2h 2h 0-1Fh Reserved N/A N/A N/A

MPEG2 Common

2h 3h 0h 0h MFX_MPEG2_PIC_STATE MFX IMAGE N/A

2h 3h 0h 1h MFX_MPEG2_QM_STATE MFX IMAGE N/A

2h 3h 0h 2-1Fh Reserved N/A N/A N/A

MPEG2 Dec

2h 3h 1h 1-7h Reserved N/A N/A N/A

2h 3h 1h 8h MFD_MPEG2_BSD_OBJECT MFX N/A Yes

2h 3h 1h 9-1Fh Reserved N/A N/A N/A

MPEG2 Enc

2h 3h 2h 0-1Fh Reserved N/A N/A N/A

The Rest

2h 4-5h, 7h x x Reserved N/A N/A N/A

Doc Ref # IHD-OS-LKF-Vol 8-4.21 21

Execution Control Infrastructure

This section describes the hardware infrastructure that can be used to control command execution.

Watchdog Timers

Watchdog Counter Control

The Watchdog Counter Control determines if the watchdog is enabled, disabled and count mode. The

watchdog is enabled is when the value of the register [30:0] is equal to zero([30:0] = ’d0). If enabled, then

the Watchdog Counter is allowed to increment. The watchdog is disabled is when the value of the

register [30:0] is equal to one where only bit zero is a value of ‘1’([30:0] = 0x00000001). If disabled, then

the value of Watchdog Counter is reset to a value of zero. Bit 31, specifies the counting mode. If bit 31 is

zero, then we will count based timestamp toggle (refer to Reported Timestamp Count register for toggle

time). If bit 31 is one, then we will count every ungated GPU clock.

Programming Notes: Watch dog timer will be disabled when there is no valid context. The watchdog

will continue counting and cause an interrupt only when a valid context is active.

This register is context saved as part of engine context.

Watchdog Counter Threshold

If the Watchdog Counter Threshhold is equal to Watchdog Counter, then the interrupt bit is set in the

IIR(bit 6) and the Watchdog Counter is reset to zero.

This register is context saved as part of engine context.

Watchdog Counter

The Watchdog Counter is the count value of the watchdog timer. The Counter can be reset due to the

Watchdog Counter Control being disabled or being equal to the Watchdog Counter Threshhold. The

increment of the Watchdog counter is enabled when the Watchdog Counter Control is enabled and the

current context is valid and execlist is enabled which includes the time to execute, flush and save the

context.

 The increment of the Watchdog counter is under the following conditions:

• Watchdog timer is enabled.

• Context is valid

The increment granularity is based controlled by Watchdog Counter Control mode(bit 31).

This register is not context saved and restored.

22 Doc Ref # IHD-OS-LKF-Vol 8-4.21

Predication

Predicate Render Registers

Register

MI_PREDICATE_SRC0 - Predicate Rendering Temporary Register0

MI_PREDICATE_SRC1 - Predicate Rendering Temporary Register1

MI_PREDICATE_DATA - Predicate Rendering Data Storage

MI_PREDICATE_RESULT - Predicate Rendering Data Result

MI_PREDICATE_RESULT_1 - Predicate Rendering Data Result 1

MI_PREDICATE_RESULT_2 - Predicate Rendering Data Result 2

MI_SET_PREDICATE

MI_SET_PREDICATE is a command that allows the driver to conditionally execute or skip a command

during execution time, as detailed in the instruction definition:

The following is a list of commands that can be programmed when the PREDICATE ENABLE field in

MI_SET_PREDICATE allows predication. Commands not listed here will have undefined behavior when

executed with predication enabled:

Command

3DSTATE_URB_VS

3DSTATE_URB_HS

3DSTATE_URB_DS

3DSTATE_URB_GS

3DSTATE_PUSH_CONSTANT_ALLOC_VS

3DSTATE_PUSH_CONSTANT_ALLOC_HS

3DSTATE_PUSH_CONSTANT_ALLOC_DS

3DSTATE_PUSH_CONSTANT_ALLOC_GS

3DSTATE_PUSH_CONSTANT_ALLOC_PS

MI_LOAD_REGISTER_IMM

MI_STORE_DATA_IMM

3DSTATE_WM_HZ_OP

MEDIA_VFE_STATE

MEDIA_OBJECT

MEDIA_OBJECT_WALKER

MEDIA_INTERFACE_DESCRIPTOR_LOAD

Doc Ref # IHD-OS-LKF-Vol 8-4.21 23

MI_PREDICATE

The MI_PREDICATE command is used to control the Predicate state bit, which in turn can be used to

enable/disable the processing of 3DPRIMITIVE commands.

MI_PREDICATE

Predicated Rendering Support in HW

DX10 defines predicated rendering, where sequences of rendering commands can be discarded based

on the result of a previous predicate test. A new state bit, Predicate, has been added to the command

stream. In addition, a PredicateEnable bit is added to 3DPRIMITIVE. When the PredicateEnable bit is set,

the command is ignored if the Predicate state bit is set.

A new command, MI_PREDICATE, is added. It contains several control fields which specify how the

Predicate bit is generated.

Refer to the diagram below and the command description (linked above) for details.

MI_PREDICATE Function

24 Doc Ref # IHD-OS-LKF-Vol 8-4.21

MI_LOAD_REGISTER_MEM commands can be used to load the MItemp0, MItemp1, and PredicateData

registers prior to MI_PREDICATE. To ensure the memory sources of the MI_LOAD_REGISTER_MEM

commands are coherent with previous 3D_PIPECONTROL store-DWord operations, software can use the

new Pipe Control Flush Enable bit in the PIPE_CONTROL command.

CS ALU Programming and Design

Command streamer implements a rudimentary ALU which supports basic Arithmetic (Addition and

Subtraction) and logical operations (AND, OR, XOR) on two 64bit operands. ALU has two 64bit registers

at the input SRCA and SRCB to which the operands should be loaded on which operations will be

performed and outputted to a 64 bit Accumulator. Zero Flag and Carry Flag are set based on

accumulator output.

CS_GPR - Command Streamer General Purpose Registers

Following are Command Streamer General Purpose Registers:

CS_GPR - General Purpose Register

Command Streamer (CS) ALU Programming

The command streamer implements a rudimentary Arithmetic Logic Unit (ALU) which supports basic

arithmetic (Addition and Subtraction) and logical operations (AND, OR, XOR) on two 64-bit operands.

The ALU has two 64-bit registers at the input, SRCA and SRCB, to which source operands are loaded. The

ALU result is written to a 64-bit accumulator. The Zero Flag and Carry Flag are assigned based on the

accumulator output.

See the ALU Programming section in the Render Engine Command Streamer, for a description of the ALU

programming model. Programming model is the same for all command streamers that support ALU, but

each command streamer uses its own MMIO address range to address the registers. The following

subsections describe the ALU registers and the programming details.

CS ALU Programming and Design

Generic Purpose Registers

Command streamer implements sixteen 64 bit General Purpose Registers which are MMIO mapped.

These registers can be accessed similar to any other MMIO mapped registers through LRI, SRM, LRR,

LRM or CPU access path for reads and writes. These registers will be labeled as R0, R1, … R15 throughout

the discussion. Refer table in the B-spec update section mapping these registers to corresponding MMIO

offset. A selected GPR register can be moved to SRCA or SRCB register using “LOAD” instruction. Outputs

of the ALU, Accumulator, ZF and CF can be moved to any of the GPR using “STORE” instruction.

Doc Ref # IHD-OS-LKF-Vol 8-4.21 25

ALU BLOCK Diagram

26 Doc Ref # IHD-OS-LKF-Vol 8-4.21

Instruction Set

The instructions supported by the ALU can be broadly categorized into three groups:

• To move data from GPR to SRCA/SRCB – LOAD instruction.

• To move data from ACCUMULATOR/CF/ZF to GPR – STORE Instruction.

• To do arithmetic/Logical operations on SRCA and SRCB of ALU - ADD/SUB/AND/XOR/OR. Note:

Accumulator is loaded with value of SRCA - SRCB on a subtraction.

Instruction Format

Each instruction is one Dword in size and consists of an ALU OPCODE, OPERAND1 and OPERAND2 in the

format shown below.

ALU OPCODE Operand-1 Operand-2

12 bits 10 bits 10 bits

LOAD Operation

The LOAD instruction moves the content of the destination register (Operand2) into the source register

(Operand1). The destination register can be any of the GPR (R0, R1, ..., R15) and the source registers are

SRCA and SRCB of the ALU. This is the only means SRCA and SRCB can be programmed.

LOAD has different flavors, wherein one can load the inverted version of the source register into the

destination register or a hard coded value of all Zeros and All ones.

 // Loads any of Reg0 to Reg15 into the SRCA or SRCB registers of ALU.

 LOAD <SRCA, SRCB>, <REG0..REG15>

 // Loads inverted (bit wise) value of the mentioned Reg0 to 15 into SRCA or SRCB registers of ALU.

 LOADINV <SRCA, SRCB>, <REG0..REG15>

 // Loads "0" into SRCA or SRCB

 LOAD0 <SRCA, SRCB>

 // Loads "1" into SRCA or SRCB

 LOAD1 <SRCA, SRCB>

31 20 19 10 9 0

Opcode Operand1 Operand2

LOAD SRCA/SRCB R0,R1..R15

LOADINV SRCA/SRCB R0,R1..R15

LOAD0 SRCA/SRCB N/A

LOAD1 SRCA/SRCB N/A

Doc Ref # IHD-OS-LKF-Vol 8-4.21 27

Arithmetic/Logical Operations

ADD, SUB, AND, OR, and XOR are the Arithmetic and Logical operations supported by Arithmetic Logic

Unit (ALU). When opcode corresponding to a logical operation is performed on SRCA and SRCB, the

result is sent to ACCUMULATOR (ACCU), CF and ZF. Note that ACCU is 64-bit register. A NOOP when

submitted to the ALU doesn’t do anything, it is meant for creating bubble or kill cycles.

31 20 19 10 9 0

Opcode Operand1 Operand2

ADD N/A N/A

SUB N/A N/A

AND N/A N/A

OR N/A N/A

XOR N/A N/A

NOOP N/A NA

STORE Operation

The STORE instruction moves the content of the destination register (Operand2) into the source register

(Operand1). The source register can be accumulator (ACCU), CF or ZF. STORE has different flavors,

wherein one can load the inverted version of the source register into destination register via STOREINV.

When CF or ZF are stored, the same value is replicated on all 64 bits.

 // Loads ACCMULATOR or Carry Flag or Zero Flag into any of the generic registers

 // Reg0 to Reg16. In case of CF and ZF same value is replicated on all the 64 bits.

 STORE <R0.. R15>, <ACCU, CF, ZF >

 // Loads inverted (ACCMULATOR or Carry Flag or Zero Flag) in to any of the

 // generic registers Reg0 to Reg15.

 STOREINV <R0.. R15>, <ACCU, CF, ZF>

31 20 19 10 9 0

Opcode Operand1 Operand2

STORE R0,R1..R15 ACCU/ZF/CF

STOREINV R0, R1.. R15 ACCU/ZF/CF

28 Doc Ref # IHD-OS-LKF-Vol 8-4.21

Summary for ALU

Total Opcodes Supported: 12

Total Addressable Registers as source or destination: 21

• 16 GPR (R0, R1 …R15)

• 1 ACCU

• 1ZF

• 1CF

• SRCA, SRCB

Summary of Instructions Supported

31 20 19 10 9 0

Opcode Operand1 Operand2

LOAD SRCA/SRCB REG0..REG15

LOADINV SRCA/SRCB REG0..REG15

LOAD0 SRCA/SRCB N/A

LOAD1 SRCA/SRCB N?A

ADD N/A N/A

SUB N/A N/A

AND N/A N/A

OR N/A N/A

XOR N/A N/A

NOOP N/A N/A

STORE REG0..REG15 ACCU/CF/ZF

STOREINV REG0..REG15 ACCU/CF/ZF

Table for ALU OPCODE Encodings

ALU OPCODE OPCODE ENCODING

NOOP 0x000

LOAD 0x080

LOADINV 0x480

LOAD0 0x081

LOAD1 0x481

ADD 0x100

SUB 0x101

AND 0x102

Doc Ref # IHD-OS-LKF-Vol 8-4.21 29

ALU OPCODE OPCODE ENCODING

OR 0x103

XOR 0x104

STORE 0x180

STOREINV 0x580

In the above mentioned table, ALU Opcode Encodings look like random numbers. The rationale behind

those encodings is because the ALU Opcode is further broken down into sub-sections for ease-of-design

implementation.

PREFIX OPCODE SUBOPCODE

11 10 9 7 6 0

PREFIX VALUE Description

0 Regular

1 Invert

OPCODE VALUE Description

0 NOOP

1 LOAD

2 ALU

3 STORE

ALU OPCODE ENCODING PREFIX OPCODE SUBOPCODE

 10 9 7 6 0

NOOP 0x000 0 0 0

LOAD 0x080 0 1 0

LOADINV 0x480 1 1 0

LOAD0 0x081 0 1 1

LOAD1 0x481 1 1 1

ADD 0x100 0 2 0

SUB 0x101 0 2 1

AND 0x102 0 2 2

OR 0x103 0 2 3

XOR 0x104 0 2 4

STORE 0x180 0 3 0

STOREINV 0x580 1 3 0

30 Doc Ref # IHD-OS-LKF-Vol 8-4.21

Table for Register Encodings

Register Register Encoding

R0 0x0

R1 0x1

R2 0x2

R3 0x3

R4 0x4

R5 0x5

R6 0x6

R7 0x7

R8 0x8

R9 0x9

R10 0xa

R11 0xb

R12 0xc

R13 0xd

R14 0xe

R15 0xf

SRCA 0x20

SRCB 0x21

ACCU 0x31

ZF 0x32

CF 0x33

Doc Ref # IHD-OS-LKF-Vol 8-4.21 31

MI Commands for Graphics Processing Engines

This chapter lists the MI Commands that are supported by Generic Command Streamer Front End

implemented in the graphics processing engines (Render, Video, Blitter and Video Enhancement).

Command

MI_NOOP

MI_ARB_CHECK

MI_ARB_ON_OFF

MI_BATCH_BUFFER_START

MI_CONDITIONAL_BATCH_BUFFER_END

MI_DISPLAY_FLIP

MI_LOAD_SCAN_LINES_EXCL

MI_LOAD_SCAN_LINES_INCL

MI_CLFLUSH

MI_MATH

MI_REPORT_HEAD

MI_STORE_DATA_IMM

MI_STORE_DATA_INDEX

MI_ATOMIC

MI_COPY_MEM_MEM

MI_LOAD_REGISTER_REG

MI_LOAD_REGISTER_MEM

MI_STORE_REGISTER_MEM

MI_USER_INTERRUPT

MI_WAIT_FOR_EVENT

MI_SEMAPHORE_SIGNAL

MI_SEMAPHORE_WAIT

32 Doc Ref # IHD-OS-LKF-Vol 8-4.21

Register Access and User Mode Privileges

This section describes access to the MMIO internal to the GPU and funny I/O and how to access the

ranges. Command streamer limits accesses for commands that are executed out of a PPGTT batch buffer.

This is also referred to a non-privilege command buffer.

Below are the Base Addresses of each command streamer and engine blocks. While this is not all the

ranges, it is the ones used to reference which registers are accessible or restricted by command streamer.

Unit MMIO Base Offset Description

RCS 0x2000 Render Command Streamer

POCS 0x18000 Position Command Streamer

BCS 0x22000 Blitter Command Streamer

VCS/MFC 0x1C0000 Video Command Streamer 0

VCS1/MFC 0x1C4000 Video Command Streamer 1

VCS2/MFC 0x1D0000 Video Command Streamer 2

VCS3/MFC 0x1D4000 Video Command Streamer 3

VCS4/MFC 0x1E0000 Video Command Streamer 4

VCS5/MFC 0x1E4000 Video Command Streamer 5

VCS6/MFC 0x1F0000 Video Command Streamer 6

VCS7/MFC 0x1F4000 Video Command Streamer 7

VECS/MFC 0x1C8000 Video Enhancement Command Streamer 0

VECS1 0x1D8000 Video Enhancement Command Streamer 1

VECS2 0x1E8000 Video Enhancement Command Streamer 2

VECS3 0x1F8000 Video Enhancement Command Streamer 3

HUC 0x1C2000

HUC1 0x1C6000

HUC2 0x1D2000

HUC3 0x1D6000

HUC4 0x1E2000

HUC5 0x1E6000

HUC6 0x1F2000

HUC7 0x1F6000

HEVC 0x1C2800

HEVC1 0x1C6800

HEVC2 0x1D2800

HEVC3 0x1D6800

HEVC4 0x1E2800

HEVC5 0x1E6800

HEVC6 0x1F2800

Doc Ref # IHD-OS-LKF-Vol 8-4.21 33

Unit MMIO Base Offset Description

HEVC7 0x1F6800

Compression IP VDBOX 1 0x15000

Compression IP

VEBOX

0x1B000

Compression IP VDBOX 2 0x1A000

User Mode Privileged Commands

A subset of the commands are privileged. These commands may be issued only from a privileged batch

buffer or directly from a ring. Batch buffers in GGTT memory space are privileged and batch buffers in

PPGTT memory space are non-privileged. On parsing privileged command from a non-privileged batch

buffer, a Command Privilege Violation Error is flagged and the command is dropped. Command Privilege

Violation Error is logged in Error identity register of command streamer which gets propagated as

“Command Parser Master Error” interrupt to SW. Privilege access violation checks in HW can be disabled

by setting “Privilege Check Disable” bit in GFX_MODE register. When privilege access checks are disabled

HW executes the Privilege command as expected.

User Mode Privileged Commands

User Mode Privileged Command Function in Non-Privileged Batch Buffers Source

MI_UPDATE_GTT Command is converted to NOOP. *CS

MI_STORE_DATA_IMM Command is converted to NOOP if Use Global GTT is

enabled.

*CS

MI_STORE_DATA_INDEX Command is converted to NOOP. *CS

MI_STORE_REGISTER_MEM Register read is always performed. Memory update is

dropped if Use Global GTT is enabled.

*CS

MI_BATCH_BUFFER_START
Command when executed from a batch buffer can set

its “Privileged” level to its parent batch buffer or lower.

Chained or Second level batch buffer can be

“Privileged” only if the parent or the initial batch buffer

is “Privileged”. This is HW enforced.

*CS

MI_LOAD_REGISTER_IMM Command is converted to NOOP if the register

accessed is privileged.

*CS

MI_LOAD_REGISTER_MEM
Command is converted to NOOP if Use Global GTT is

enabled.

Command is converted to NOOP if the register

accessed is privileged.

*CS

MI_LOAD_REGISTER_REG Register write to a Privileged Register is discarded. *CS

MI_REPORT_PERF_COUNT Command is converted to NOOP if Use Global GTT is Render CS

34 Doc Ref # IHD-OS-LKF-Vol 8-4.21

User Mode Privileged Command Function in Non-Privileged Batch Buffers Source

enabled.

PIPE_CONTROL
Still send flush down, Post-Sync Operation is NOOP if

Use Global GTT or Use “Store Data Index” is enabled.

Post-Sync Operation LRI to Privileged Register is

discarded.

Render CS

MI_SET_CONTEXT Command is converted to NOOP. Render CS

MI_ATOMIC Command is converted to NOOP if Use Global GTT is

enabled.

Render CS

MI_COPY_MEM_MEM Command is converted to NOOP if Use Global GTT is

used for source or destination address.

*CS

MI_SEMAPHORE_WAIT
Command is converted to NOOP if Use Global GTT is

enabled.

*CS

MI_ARB_ON_OFF Command is converted to NOOP. *CS

MI_DISPLAY_FLIP Command is converted to NOOP. *CS

MI_CONDITIONAL_BATCH_BUFFER_END Command is converted to NOOP if Use Global GTT is

enabled.

*CS

MI_FLUSH_DW Still send flush down, Post-Sync Operation is converted

to NOOP if Use Global GTT or Use “Store Data Index”

is enabled.

Blitter CS, Video

CS,

 Video

Enhancement CS

Parsing one of the commands in the table above from a non-privileged batch buffer flags an error and

converts the command to a NOOP.

The tables below list the non-privileged registers that can be written to from a non-privileged batch

buffer executed from various command streamers.

User Mode Non-Privileged Registers for Render Command Streamer (RCS) and POSH Command

Streamer (POCS)

MMIO Name MMIO Offset Size in DWords

Cache_Mode_0 0x7000 1

Cache_Mode_1 0x7004 1

GT_MODE 0x7008 1

L3_Config 0x7034 1

HDC_MODE 0xE5F4 1

NOPID 0x2094 1

NOPID (POCS) 0x18094 1

INSTPM 0x20C0 1

INSTPM (POCS) 0x180C0 1

Doc Ref # IHD-OS-LKF-Vol 8-4.21 35

MMIO Name MMIO Offset Size in DWords

IA_VERTICES_COUNT 0x2310 2

IA_VERTICES_COUNT (POSH) 0x18310 2

IA_PRIMIVTIVES_COUNT 0x2318 2

IA_PRIMITIVES_COUNT (POSH) 0x18318 2

VS_INVOCATION_COUNT 0x2320 2

VS_INVOCATION_COUNT (POSH) 0x18320 2

HS_INVOCATION_COUNT 0x2300 2

DS_INVOCATION_COUNT 0x2308 2

GS_INVOCATION_COUNT 0x2328 2

GS_PRIMITIVES_COUNT 0x2330 2

SO_NUM_PRIMS_WRITTEN0 0x5200 2

SO_NUM_PRIMS_WRITTEN1 0x5208 2

SO_NUM_PRIMS_WRITTEN2 0x5210 2

SO_NUM_PRIMS_WRITTEN3 0x5218 2

SO_PRIM_STORAGE_NEEDED0 0x5240 2

SO_PRIM_STORAGE_NEEDED1 0x5248 2

SO_PRIM_STORAGE_NEEDED2 0x5250 2

SO_PRIM_STORAGE_NEEDED3 0x5258 2

SO_WRITE_OFFSET0 0x5280 1

SO_WRITE_OFFSET1 0x5284 1

SO_WRITE_OFFSET2 0x5288 1

SO_WRITE_OFFSET3 0x528C 1

CL_INVOCATION_COUNT 0x2338 2

CL_INVOCATION_COUNT (POSH) 0x18338 2

CL_PRIMITIVES_COUNT 0x2340 2

CL_PRIMITIVES_COUNT (POSH) 0x18340 2

PS_INVOCATION_COUNT_0 0x22C8 2

PS_DEPTH_COUNT _0 0x22D8 2

PS_INVOCATION_COUNT_1 0x22F0 2

PS_DEPTH_COUNT _1 0x22F8 2

PS_INVOCATION_COUNT_2 0x2448 2

PS_DEPTH_COUNT_2 0x2450 2

PS_INVOCATION_COUNT_3 0x2458 2

PS_DEPTH_COUNT_3 0x2460 2

PS_INVOCATION_COUNT_4 0x2468 2

PS_DEPTH_COUNT_4 0x2470 2

PS_INVOCATION_COUNT_5 0x24A0 2

36 Doc Ref # IHD-OS-LKF-Vol 8-4.21

MMIO Name MMIO Offset Size in DWords

PS_DEPTH_COUNT_5 0x24A8 2

PS_INVOCATION_COUNT_6 0x25D0 2

PS_DEPTH_COUNT_6 0x25B0 2

PS_INVOCATION_COUNT_7 0x25D8 2

PS_DEPTH_COUNT_7 0x25B8 2

CPS_INVOCATION_COUNT 0x2478 2

GPUGPU_DISPATCHDIMX 0x2500 1

GPUGPU_DISPATCHDIMY 0x2504 1

GPUGPU_DISPATCHDIMZ 0x2508 1

MI_PREDICATE_SRC0 0x2400 1

MI_PREDICATE_SRC0 (POSH) 0x18400 1

MI_PREDICATE_SRC0 0x2404 1

MI_PREDICATE_SRC0 (POSH) 0x18404

MI_PREDICATE_SRC1 0x2408 1

MI_PREDICATE_SRC1 (POSH) 0x18408

MI_PREDICATE_SRC1 0x240C 1

MI_PREDICATE_SRC1 (POSH) 0x1840C

MI_PREDICATE_DATA 0x2410 1

MI_PREDICATE_DATA (POSH) 0x18410

MI_PREDICATE_DATA 0x2414 1

MI_PREDICATE_DATA (POSH) 0x18414

MI_PREDICATE_RESULT 0x2418 1

MI_PREDICATE_RESULT (POSH) 0x18418

MI_PREDICATE_RESULT_1 0x241C 1

MI_PREDICATE_RESULT_1 (POSH) 0x1841C

MI_PREDICATE_RESULT_2 0x23BC 1

MI_PREDICATE_RESULT_2 (POSH) 0x183BC

3DPRIM_END_OFFSET 0x2420 1

3DPRIM_END_OFFSET (POSH) 0x18420 1

3DPRIM_START_VERTEX 0x2430 1

3DPRIM_START_VERTEX (POSH) 0x18430 1

3DPRIM_VERTEX_COUNT 0x2434 1

3DPRIM_VERTEX_COUNT (POSH) 0x18434 1

3DPRIM_INSTANCE_COUNT 0x2438 1

3DPRIM_INSTANCE_COUNT (POSH) 0x18438 1

3DPRIM_START_INSTANCE 0x243C 1

3DPRIM_START_INSTANCE (POSH) 0x1843C 1

Doc Ref # IHD-OS-LKF-Vol 8-4.21 37

MMIO Name MMIO Offset Size in DWords

3DPRIM_BASE_VERTEX 0x2440 1

3DPRIM_BASE_VERTEX (POSH) 0x18440 1

3DPRIM_XP0 0x2690 1

3DPRIM_XP0 (POSH) 0x18690 1

3DPRIM_XP1 0x2694 1

3DPRIM_XP1 (POSH) 0x18694 1

3DPRIM_XP2 0x2698 1

3DPRIM_XP2 (POSH) 0x18698 1

GPGPU_THREADS_DISPATCHED 0x2290 2

BB_OFFSET 0x2158 1

BB_OFFSET (POCS) 0x18158 1

CS_GPR (1-16) 0x2600 32

CS_GPR (1-16) (POSH) 0x18600 32

OA_CTX_CONTROL 0x2360 1

OACTXID 0x2364 1

OA CONTROL 0x2B00 1

PERF_CNT_1_DW0 0x91b8 1

PERF_CNT_1_DW1 0x91bc 1

PERF_CNT_2_DW0 0x91c0 1

PERF_CNT_2_DW1 0x91c4 1

PR_CTR_CTL_RCSUNIT 0x2178 1

PR_CTR_THRSH_RCSUNIT 0x217C 1

VSR_PUSH_CONSTANT_BASE 0xE518 1

PTBR_PAGE_POOL_SIZE_REGISTER 0x18590 1

CMD_BUFF_CTL 0x2084 1

TCCNTLREG 0xB0A4 1

Z_DISCARD_EN 0x7040 1

38 Doc Ref # IHD-OS-LKF-Vol 8-4.21

MMIO Name MMIO Offset Size in DWords

BCS_GPR 0x22600 32

BCS_SWCTRL 0x22200 1

PR_CTR_CTL_BCSUNIT 0x22178 1

PR_CTR_THRSH_BCSUNIT 0x2217C 1

Refer to Register Access and User Mode Privileges section for Base address for the below offsets.

User Mode Non-Privileged Registers for Video Enhancement Command Streamer (VECS)

MMIO Name MMIO Base MMIO Offset Size in DWords

VECS_GPR VECS 0x600 32

PR_CTR_CTL_VECSUNIT VECS 0x178 1

PR_CTR_THRSH_VECSUNIT VECS 0x17C 1

* These registers are not at a standard offset from their corresponding CS MMIO base address and hence

are stated individually per CS in a separate table below.

User Mode Non-Privileged Registers for Video Command Streamer (ALL VCS)

MMIO Name Unit Base MMIO Range Size in DWords

VCS_GPR VCS 0x600 32

PR_CTR_CTL_VCSUNIT VCS 0x178 1

PR_CTR_THRSH_VCSUNIT VCS 0x17C 1

MFC_VDBOX1 VCS 0x800 512

HuC HUC 0x0A0 4

HuC HUC 0x064 1

HuC HUC 0x080 1

HEVC HEVC 0x00 64

* These registers are not at a standard offset from their corresponding CS MMIO base address and hence

are stated individually per CS in a separate table below.

VEBOX-0

MMIO Name MMIO Offset Size in DWords

Compression IP VEBOX 0x1B000 1024

VDBOX-0

MMIO Name MMIO Offset Size in DWords

Compression IP VDBOX 0x15000 1024

Doc Ref # IHD-OS-LKF-Vol 8-4.21 39

VDBOX-1

MMIO Name MMIO Offset Size in DWords

Compression IP VDBOX 0x1A000 1024

Workload Submission and Execution Status

This section describes the interface to submit work and obtain status

Scheduling

RINGBUF — Ring Buffer Registers

See the “Device Programming Environment” chapter for detailed information on these registers.

Register

RING_BUFFER_TAIL - Ring Buffer Tail

RING_BUFFER_HEAD - Ring Buffer Head

RING_BUFFER_START - Ring Buffer Start

RING_BUFFER_CTL - Ring Buffer Control

Command Stream Virtual Memory Control

Per-Process GTT (PPGTT) is setup for an engine (Render, Blitter, Video and Video Enhancement) by

programming corresponding Page Directory Pointer (PDP) registers listed below. Refer “Graphics

Translation Tables” in “Memory Overview” for more details on Per-Process page table entries and related

translations.

Enhanced Execlists

Execution-List provides a HW-SW interface mechanism to schedule context as a fundamental unit of

submission to GFX-device for execution. GFX-device has multiple engines (Render, Blitter, Video, Video

Enhancement) with each of them having an execution list for context submission. At any given time all

engines could be concurrently running different contexts.

A context is identified with a unique identifier called Context ID. Each context is associated with an

address space for memory accesses and is assigned a unique ring buffer for command submission.

SW submits workload for a context by programming commands in to its assigned ring buffer prior to

submitting context to HW (engine) for execution.

Context State:

Each context programs the engine state according to its workload requirements. All the hardware state

variables of an engine required to execute a context is called context state. Each context has its own

context state. Context state gets programmed on execution of commands from the context ring buffer.

 All the contexts designated to run on an engine have the same context format, however the values may

differ based on the individual state programming.

40 Doc Ref # IHD-OS-LKF-Vol 8-4.21

Logical Context Address:

Each context is assigned a Logical Context Address to which the context state is saved by the engine on a

context getting switched out from execution. Similarly, engine restores the context state from the logical

context address of a context on getting switched in for execution.

Logical context address is an absolute graphics virtual address in global virtual memory. Context state

save/restore mechanism by the engine avoids SW from re-programming the state across context

switches.

Each engine has its own hardware state variables and hence they have different context sate formats. A

context run on a Render engine can’t be submitted to Blitter engine and vice-versa and holds true for

any other engines.

Context Submission:

A context is submitted to an engine for execution by writing the context descriptor to the Execlist Submit

Port (ELSP). Refer ELSP for more details. Context descriptor provides the Context ID, Address space,

Logical Context Address and context valid. Refer context descriptor for more details.

Logical context address points to the context state in global virtual memory which has ring buffer details,

address space setup details and other important hardware state initialization for the corresponding

context. Refer Logical Context Format for more details.

 Note that this mechanism cannot be used when the Execlist Enable bit in the corresponding engines

MODE register is not set, i.e GFX_MODE register for Render Engine, BLT_MODE register for Blitter Engine,

VCS_MODE register for Video Engine, or VECS_MODE register for Video Enhancement Engine.

Context Descriptor Format

Context Descriptor Format

Before submitting a context for the first time, the context image must be properly initialized. Proper

initialization includes the ring context registers (ring location, head/tail pointers, etc.) and the page

directory.

Render CS Only: Render state need not be initialized; the Render Context Restore Inhibit bit in the

Context/Save image in memory should be set to prevent restoring garbage render context. See the

Logical Ring Context Format section for details.

Programming Note on Context ID field in the Context Descriptor

This section describes the current usage by SW.

Doc Ref # IHD-OS-LKF-Vol 8-4.21 41

General Layout:

6

3

6

2

6

1

6

0

5

9

5

8

5

7

5

6

5

5

5

4

5

3

5

2

5

1

5

0

4

9

4

8

4

7

4

6

4

5

4

4

4

3

4

2

4

1

4

0

3

9

3

8

3

7

3

6

3

5

3

4

3

3

3

2

3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

Eng. ID SW Counter

HW

Use SW Context ID

Eng. ID = Engine ID (a software defined enum to identify RCS, BCS etc..)

SW Counter = Submission Counter. (SW generates an unique counter value on every submission to

ensure GroupID + PASID is unique to avoid ambiguity in fault reporting & handling)

Bit 20 = Is Proxy submission. If Set to true, SW Context ID[19:0] = LRCA [31:20], else it is an index into the

Context Pool.

Direct Submission

Every application gets one context ID of their own.

SW Context ID + Engine ID + SW Counter forms the unique number

The Engine ID is used to identify which engine of a given context needs to be put into wait or ready state

based on Semphore/Page Fault ID value in Semaphore/Page fault FIFO.

This method allows the context to submit work to other engines while its blocked on one.

Proxy Submission

KMD creates one context for submitting work on behalf of various user mode contexts (user mode

application is not using direct submission model).

This method has certain key restrictions and behaviors:

• Work (LRCA) submitted will be scheduled on the CS in the order it was received.

• KMD uses its SW Context ID in [63:32] but uses the LRCA of the user mode context.

o KMD’s LRCA is not used for any work submission.

• If a workload hits a wait event, it does not lose its position in the schedule queue.

o Enforces “in order” ness.

• Due to in order execution, same engine – different context semaphore synchonization is not

possible.

o Therefore, cross engine sync is simple because it clears the semaphore of the head.

• Due to in order execution, page fault on a context cannot allow a different context on same engine

to execute (may preempt to idle as a power optimization).

This method allows a clean SW architecture to have KMD submissions and Ring 3 submissions to co-

exist.

42 Doc Ref # IHD-OS-LKF-Vol 8-4.21

Logical Ring Context Format

Context descriptor has the graphics virtual address pointing to the logical context in memory. Logical

context has all the details required for an engine to execute a context. This is the only means through

which software can pass on all the required information to hardware for executing a context. Engine on

selecting a context for execution will restore (fetch-context restore) the logical context from memory to

setup the appropriate state in the hardware. Engine on switching out the context from execution saves

(store- context save) the latest updated state to logical context in memory, the updated state is result of

the command buffer execution.

The Logical Context of each engine (Render, Video, Blitter, Video Enhancement, etc.) primarily consists of

the following sections:

• Per-Process HW Status Page (4K)

• Ring Context (Ring Buffer Control Registers, Page Directory Pointers, etc.)

• Engine Context (PipelineState, Non-pipelineState, Statistics, MMIO)

Per-Process of HW status Page (PPHWSP)

This is a 4KB scratch space memory allocated for each of the context in global address space. First few

cachelines are used by the engine for implicit reports like auto-report of head pointer, timestamp

statistics associated with a context execution, rest of the space is available for software as scratch space

for reporting fences through MI commands. Context descriptor points to the base of Per-Process HW

status page. See the PPHWP format in PPHWSP_LAYOUT.

Logical Ring Context

Logical Ring Context starts immediately following the PPHWSP in memory. Logical ring context is five

cachelines in size. This is the minimal set of hardware state required to be programmed by SW for setting

up memory access and the ring buffer for a context to be executed on an engine. Memory setup is

required for appropriate address translation in the memory interface. Ring buffer details the location of

the ring buffer in global graphics virtual address space with its corresponding head pointer and the tail

pointer. Ring context also has “Context Save/Restore Control Register-CTXT_SR_CTL” which details the

engine context save/restore format. Engine first restores the Logical Ring Context and upon processing

CTXT_SR_CTL it further decides the due course of Engine Context restore. Logical Ring Context is mostly

identical across all engines. Logical ring context is saved to memory with the latest up to date state when

a context is switched out.

Engine Context

Engine context starts immediately following the logical ring context in memory. This state is very specific

to an engine and differs from engine to engine. This part of the context consists of the state from all the

units in the engine that needs to be save/restored across context switches. Engine restores the engine

context following the logical ring context restore. It is tedious for software to populate the engine

context as per the requirements, it is recommended to implicitly use engine to populate this portion of

the context. Below method can be followed to achieve the same:

• When a context is submitted for the first time for execution, SW can inhibit engine from restoring

engine context by setting the “Engine Context Restore Inhibit” bit in CTXT_SR_CTL register of the

Doc Ref # IHD-OS-LKF-Vol 8-4.21 43

logical ring context. This will avoid software from populating the Engine Context. Software must

program all the state required to initialize the engine in the ring buffer which would initialize the

hardware state. On a subsequent context save engine will populate the engine context with

appropriate values.

• Above method can be used to create a complete logical context with engine context populated by

the hardware. This Logical context can be used as an Golden Context Image or template for

subsequently created contexts.

Engine saves the engine context following the logical ring context on switching out a context.

The detailed format of the logical ring context for Blitter, Video, and VideoEnhancement is documented

in the chapter.

The detailed formats of the Render Logical Ring and Engine Context, including their size, is mentioned in

the topic for each product.

Context Status

Hardware reports the change in state of context execution to software (scheduler) through Context

Status Dword. Soft-Ware can read the context status dword from time to time to track the state of

context execution in hardware. A context switch reason (Context Switch Status) quad-word (64bits) is

reported to the Soft-Ware (scheduler) on a valid context getting switched out. Context switch could be a

synchronous context switch (from one valid element to the other valid element in the EQ) or

asynchronous context switch (Load-switching from the current executing context to the very first valid

element of the newly updated EQ or on Preempt to Idle). Context switch reason is also reported on HW

executing the very first valid element from EQ coming out of idle indicating hardware has gone busy

from idle state (Idle to Active). Context ID reported in Context Status Dword on Idle-to-Active context

switch is undefined and note that there aren't any active contexts running in hardware coming out of

reset, power-on or idle.

A context switch reason reported is always followed by generation of a context switch interrupt to notify

the Soft-Ware about the context switch. Soft-Ware can selectively mask the context switch status being

reported and the corresponding interrupt due to a specific context switch reason. Refer Context Status

Report controls section for more details.

• A status QW for the context that was just switched away from will be written to the Context Status

Buffer in the Global Hardware Status Page. Context Status Buffer in Global Hardware Status Page is

exercised when IA based scheduling is done. The status contains the context ID and the reason for

the context switch.

Format of Context Status QWord

Context Status

Context Status should be inferred as described in the tables below. In the table below only one of the

context switch types will be set and it's quite possible multiple context switch reasons are set. A "Y" in a cell

indicates the possibility of the context switch type for the corresponding context switch reason.

44 Doc Ref # IHD-OS-LKF-Vol 8-4.21

Inference of Context Status

Ctx Switch Type

 Ctx Switch Reason IDLE to Active

Preempted/

 Execlist Switch Element Switch ACTIVE to IDLE

Context Complete X Y Y Y

Wait on Sync Flip X Y Y Y

Wait on V-Blank X Y Y Y

Wait on ScanLine X Y Y Y

Wait on Semaphore X Y Y Y

Preempt To Idle* Y** Y*** N Y***

"*" - Preempt To Idle is treated as special case of execlist submission with no valid contexts, causing preemption of

any ongoing context being executed followed by engine going IDLE. Context getting preempted due to "Preempt

To Idle" could be in a state of context complete or Wait on Sync Flip/V-Blank/Scanline/Semaphore.

"**"-Prempt To Idle occurred when hardware is idle.

"***"- Preempt to Idle occurred when hardware is actively executing a context.

"***"- Preempt to Idle occurred when hardware is actively executing a context. Both "Preempted" and

"ACTIVE to IDLE" bit are set in the Context Status.

Context Status Buffer in Global Hardware Status Page

Status QWords are written to the Context Status Buffer in Global Hardware Status Page at incrementing

locations starting from DWORD offset of 28h. The Context Status Buffer has a limited size (see Table

Number of Context Status Entries) and simply wraps around to the beginning when the end is reached.

The status QWs can be examined to determine the contexts executed by the hardware and the reason for

switching out. The most recent location updated in the Context Status Buffer is indicated by the Last

Written Status Offset in Global Hardware Status page at DWORD offset 47h.

Refer Global Hardware Status Page Layout at Hardware Status Page Layout.

Number of Context Status Entries

Number of Status Entries

12 (QW) Entries

Doc Ref # IHD-OS-LKF-Vol 8-4.21 45

Format of the Context Status Buffer starting at DWORD offset 28h in Global Hardware Status page

QW Description

15 Last Written Status Offset. The lower byte of this QWord is written on every context switch with the (pre-

increment) value of the Context Status Buffer Write Pointer. The lower 4 bits increment for every status

Qword write; bits[7:4] are reserved and must be ‘0’. The lowest 4 bits indicate which of the Context Status

Qwords was just written. The rest of the bits [63:8] are reserved.

14:12 Reserved: MBZ.

11:0
Context Status QWords. A circular buffer of context status QWs. As each context is switched away from, its

status is written here at ascending QWs as indicated by the Last Written Status Offset. Once QW11 has

been written, the pointer wraps around so that the next status is written at QW0.

Format = ContextStatusDW

Controls for Context Switch Status Reporting

This section describes various configuration bits available which control the hardware reporting

mechanism of Context Switch Status.

Hardware reports context switch reason through context switch status report mechanism on every

context switch. "Context Status Buffer Interrupt Mask" register provides mechanism to selectively

mask/un-mask the context switch interrupt and the context switch status report for a given context

switch reason. Hardware will not generate a context switch interrupt and context switch status report on

a context switch reason that is masked in "Context Status Buffer Interrupt Mask" register. Every context

switch reason reported by hardware may not be of interest to the scheduler. Scheduler may selectively

mas/un-mask the context switch reasons of its interest to get notified.

Context Status Buffer Interrupt Mask Register

Preemption

Preemption is a means by which HW is instructed to stop executing an ongoing workload and switch to

the new workload submitted. Preemption flows are different based on the mode of scheduling.

ExecList Scheduling

In ExecList mode of scheduling SW triggers preemption by submitting a new pending execlist to ELSP

(ExecList Submit Port). HW triggers preemption on a preemptable command on detecting the availability

of the new pending execlist, following preemption context switch happens to the newly submitted

execlist. As part of the context switch preempted context state is saved to the preempted context LRCA,

context state contains the details such that on resubmission of the preempted context HW can resume

execution from the point where it was preempted.

46 Doc Ref # IHD-OS-LKF-Vol 8-4.21

Example:

 Ring Buffer

 MI_ARB_ON_OFF // OFF

 MI_BATCH_START // Media Workload

 MI_ARB_ON_OFF // ON

 MI_ARB_CHK // Preemptable command outside media command buffer.

The following tables list the Preemptable Commands in ExecList mode of scheduling:

Engine

 (below)

Preemptable Commands

MI_ARB_

CHECK

Eleme

nt

Boun

dary

Semap

hore

Wait

Wait

for

Event

3DPRIM

ITIVE

GPGPU_W

ALKER

PIPE_CO

NTROL

MED

IA

STA

TE

FLU

SH

MEDIA_OBJECT

_WALKER/

 MEDIA_OBJECT

PIPELINE_

SELECT

Any

Non-

Pipeli

ned

State

3DSTATE_

PTBR_

TILE_PAS

S_INFO

Render

AP AP Unsucc

essful

& AP

Unsucc

essful

& AP

Object

Level (if

enabled

*)

Mid-

Thread (if

enabled

**)

PIPESEL-

GPGPU

MODE /

PIPESEL-

MEDIA

MODE

Mid-

Thre

ad (if

enab

led

**)

Thread Group PIPESEL-

GPGPU

MODE /

PIPESEL-

MEDIA

MODE

PIPES

EL-

GPGP

U

MOD

E /

PIPES

EL-

MEDI

A

MOD

E

N/A

Position

AP N/A Unsucc

essful

& AP

Unsucc

essful

& AP

Object

Level (if

enabled

*)

N/A N/A N/A N/A N/A N/A AP

Blitter

AP AP Unsucc

essful

& AP

Unsucc

essful

& AP

N/A N/A N/A N/A N/A N/A N/A N/A

Media(V

Dbox)

AP AP Unsucc

essful

& AP

N/A N/A N/A N/A N/A N/A N/A N/A N/A

Video

Enhance

ment

AP AP Unsucc

essful

& AP

N/A N/A N/A N/A N/A N/A N/A
N/A

N/A

Doc Ref # IHD-OS-LKF-Vol 8-4.21 47

Table Notes:

AP - Allow Preemption if arbitration is enabled.

* 0x20EC bit 0 determines whether the level of preemption is command or object level.

** 0x20E4 bits 2:1 determine the level of preemption for GPGPU workloads.

*** MI_ATOMIC and MI_SEMAPHORE_SIGNAL commands with Post Sync Op bit set are treated as PIPE_CONTROL

command with Post Sync Operation as Atomics or Semaphore Signal.

 **** Any Header with the value [31:29] = "011", [28:27] = "00" OR "11" and [26:24] = "001". Refer to Graphics

Command Formats

Execution Status

This section describes the infrastructure used to report status that the hardware provides

The Per-Process Hardware Status Page

The layout of the Per-Process Hardware Status Page is defined at PPHWSP_LAYOUT.

The DWord offset values in the PPHWSP_LAYOUT are in decimal.

Figure below explains the different timestamp values reported to PPHWSP on a context switch.

This page is designed to be read by SW to glean additional details about a context beyond what it can

get from the context status.

Accesses to this page are automatically treated as cacheable and snooped. It is therefore illegal to locate

this page in any region where snooping is illegal (such as in stolen memory).

48 Doc Ref # IHD-OS-LKF-Vol 8-4.21

Hardware Status Page

The hardware status page is a naturally aligned 4KB page residing in snooped system memory. This page

exists primarily to allow the device to report status via PCI master writes – thereby allowing the driver to

read/poll WB memory instead of UC reads of device registers or UC memory.

The address of this page is programmed via the HWS_PGA MI register. The definition of that register (in

Memory Interface Registers) includes a description of the layout of the Hardware Status Page.

Interrupt Control Registers

The Interrupt Control Registers described in this section all share the same bit definition. The bit

definition is as follows:

Bit Defintion for Interrupt Control Registers:

Engine Interrupt Vector Definition Table

Blitter Interrupt Vector

Render Engine Interrupt Vector

VideoDecoder Interrupt Vector

VideoEnhancement Interrupt Vector

The following table specifies the settings of interrupt bits stored upon a "Hardware Status Write" due to

ISR changes:

Bit Interrupt Bit

ISR Bit Reporting Via

Hardware Status Write

(When Unmasked Via

HWSTAM)

9 Reserved

8 Context Switch Interrupt. Set when a context switch has just occurred. Not supported to be

unmasked.

7 Page Fault. This bit is set whenever there is a pending PPGTT (page or directory)

fault.

 This interrupt is for handling Legacy Page Fault interface for all Command

Streamers (BCS, RCS, VCS, VECS). When Fault Repair Mode is enabled, Interrupt

mask register value is not looked at to generate interrupt due to page fault.

Please refer to vol1c "Page Fault Support" section for more details.

Set when event occurs,

cleared when event cleared.

 Not supported to be

unmasked.

6 Media Decode Pipeline Counter Exceeded Notify Interrupt. The counter

threshold for the execution of the media pipeline is exceeded. Driver needs to

attempt hang recovery.

Not supported to be

unmasked. Only for Media

Pipe.

5 L3 Parity interrupt Only for Render Pipe

4 Flush Notify Enable 0

3 Master Error Set when error occurs,

cleared when error cleared.

Doc Ref # IHD-OS-LKF-Vol 8-4.21 49

Bit Interrupt Bit

ISR Bit Reporting Via

Hardware Status Write

(When Unmasked Via

HWSTAM)

2 Reserved

0 User Interrupt 0

Command Streamer > Hardware Status Mask Register

Hardware-Detected Error Bit Definitions (for EIR EMR ESR)

This section defines the Hardware-Detected Error bit definitions and ordering that is common to the EIR,

EMR, and ESR registers. The EMR selects which error conditions (bits) in the ESR are reported in the EIR.

Any bit set in the EIR will cause the Master Error bit in the ISR to be set. EIR bits will remain set until the

appropriate bit(s) in the EIR is cleared by writing the appropriate EIR bits with 1 (except for the

unrecoverable bits described below).

The following structures describe the Hardware-Detected Error bits:

The following structures describe the Hardware-Detected Error bits:

Error Bits

RCS Hardware-Detected Error Bit Definitions Structure

BCS Hardware-Detected Error Bit Definitions Structure

VCS Hardware-Detected Error Bit Definitions Structure

VECS Hardware-Detected Error Bit Definitions Structure

The following are the EIR, EMR and ESR registers:

Registes

EIR - Error Identity Register

EMR - Error Mask Register

ESR - Error Status Register

50 Doc Ref # IHD-OS-LKF-Vol 8-4.21

Producer-Consumer Data ordering for MI Commands

This section details the explicit data ordering enforced by HW for produce-consume of data between MI

commands and explicit programming notes for data ordering not explicitly enforced by HW.

This section describes the MI commands that result in modification of data in Graphics memory or MMIO

registers. These commands can be treated as producers of data for which consumers can either be SW or

subsequent commands (MI or non-MI) executed by HW.

Operations (memory update or MMIO update) resulting from a command execution can be classified in

to posted or non-posted.

• An operation is classified as posted if the operation initiated by the command is not guaranteed to

complete (data change to be reflected) before HW moves on to the following command to

execute, the posted operation is guaranteed to complete eventually. Posted operations can be

forced to complete through explicit or implicit means, detailed in following section.

o For example, a memory write is called posted if the hardware moves on to the next

command after generating a memory write without waiting for the memory modification to

reach a global observable point.

• An operation is classified as non-posted if the operation initiated by the command is completed

before HW moves on to execute the following command.

o For example, a memory write is called non-posted if the hardware waits for the memory

write to reach a global observable point before it moves on to the next command to

execute.

There are certain commands which supported both posted and non-posted operations and can be

programmed by SW to select the appropriate behavior based on the usage model.

Memory Data Ordering

This section details the produce-consume data for MI commands accessing memory.

Memory Data Producer

This section describes the MI commands that modify data in graphics memory. Few commands always

generate posted memory writes whereas few commands provide programmable option to generate

posted Vs non-posted memory writes.

• A memory write is called posted if the hardware moves on to the next command after generating a

memory write and doesn’t wait for the memory modification to reach a global observable point.

Since HW doesn’t wait for the memory write completion it can execute the next command

immediately without incurring any additional latency. Read after Write hazard is applicable in this

scenario.

• A memory write is called non-posted if the hardware waits for the memory write to reach a global

observable point before it moves on to the next command to execute. Since HW waits for the

memory write completion before it goes on to the next command, it will incur additional latency

causing a stall at top of the pipe. Read after write hazard will not happen in this scenario.

Doc Ref # IHD-OS-LKF-Vol 8-4.21 51

A write completion of a non-posted memory write will guarantee all the prior posted memory writes are

to global observable (GO) point.

For optimal performance SW must use commands generating non-posted memory writes at the minimal.

For example a single non-posted memory write can be used just before the consume point to flush out

all the prior posted memory writes to global observable point. Based on the usage model SW can use a

combination of commands that generate posted memory writes and non-posted memory writes for

optimal performance.

Table below lists the MI Commands that can update/modify the data in graphics memory and the

associated type of memory write.

Command Memory Write Type

MI_STORE_REGISTER_MEM Posted

MI_COPY_MEM_MEM Posted

MI_STORE_DATA_INDEX Posted

MI_STORE_DATA_IMM Posted

MI_REPORT_HEAD Posted

MI_UPDATE_GTT Posted

MI_REPORT_PERF_COUNT Posted

MI_ATOMIC Posted, Non-Posted

MI_FLUSH_DW (With Post-Sync Operation) Non-Posted

PIPE_CONTROL (non-stalling, with Post-Sync Operation) Posted

PIPE_CONTROL (Stalling, Post-Sync Operation) Non-Posted

Apart from the MI commands that generate Non-Posted memory writes listed in the above table,

execution of following commands will also implicitly ensure all prior posted writes are to Global

Observable point.

Command

PIPE_CONTROL (Stalling)

MI_FLUSH_DWORD

52 Doc Ref # IHD-OS-LKF-Vol 8-4.21

Memory Data - Consumer

Table below lists the MI command that read the data from graphics memory as part of the command

execution. Data in memory should be coherent prior to execution of these command to achieve expected

functional behavior upon execution of these commands, Graphics memory writes by the earlier executed

MI commands must be GO prior to execution of these commands. However, hardware has started

explicitly enforcing data ordering for few of the commands (based on the prevalent usage models) and

mentioned in the table below.

Command Coherency Requirement

MI_LOAD_REGISTER_MEM HW implicitly ensures memory writes by the prior MI commands by the

corresponding engine are coherent for this command execution.

MI_BATCH_BUFFER_START SW must ensure the data cohrency.

MI_CONDITIONAL_BATCH_BUFFER_END SW must ensure the data cohrency.

MI_ATOMIC HW implicitly ensures memory writes by the prior MI commands by the

corresponding engine are coherent for this command execution.

MI_SEMAPHORE_WAIT HW implicitly ensures memory writes by the prior MI commands by the

corresponding engine are coherent for this command execution.

SW can use any of the MI commands that generate non-posted memory writes or the commands that

implicitly force prior memory writes to GO to ensure data is coherent in memory prior to execution of

these commands.

MMIO Data Ordering

This section details the produce-consume data for MI commands accessing MMIO registers.

MMIO Data Producer

Table below lists the MI commands that modify data in MMIO registers and also states if the MMIO

writes generated are posted Vs non-posted.

• A MMIO write is called non-posted if the hardware waits for the MMIO update to occur before it

moves on to the next command to execute.

• A MMIO write is called posted if the hardware moves on to the next command after generating a

MMIO write without waiting for the MMIO update to occur.

All the MI commands listed below generate non-posted MMIO writes and hence HW guarantees the

MMIO modification has taken place before HW moves on the following command.

Doc Ref # IHD-OS-LKF-Vol 8-4.21 53

MI_LOAD_REGISTER_MEM supports both posted and non-posted behavior and can be configured

through “Async Mode Enable” bit in the command header.

Command MMIO Write Type

MI_LOAD_REGISTER_IMM Non-Posted

PIPE_CONTROL Non-Posted

MI_LOAD_REGISTER_MEM Posted, Non-Posted

MI_MATH Non-Posted

MI_LOAD_REGISTER_REG Non-Posted

MMIO Data Consumer

All the commands that modify the MMIO are non-posted and hence any MI command consumer of

MMIO data will always get the latest updated value.

Software must take care of appropriately programming the “Async Mode Enable” bit in

MI_LOAD_REGISTER_MEM command based on the requirements to enforce data ordering between

producer and consumer. Table below lists the MI commands that consume the MMIO data.

Command

MI_STORE_REGISTER_MEM

MI_PREDICATE

MI_LOAD_REGISTER_REG

MI_MATH

MI_SET_PREDICATE

MI_SEMAPHORE_WAIT (register poll)

