intel

Intel® UHD Graphics Open Source
Programmer's Reference Manual

For the 2020 Intel Core™ Processors with Intel Hybrid Technology
based on the "Lakefield" Platform

Volume 9: Render Engine

April 2021 Revision 1.0

intel

Notices and Disclaimers
Intel technologies may require enabled hardware, software or service activation.
No product or component can be absolutely secure.

Code names are used by Intel to identify products, technologies, or services that are in development and
not publicly available. These are not "commercial" names and not intended to function as trademarks.

Customer is responsible for safety of the overall system, including compliance with applicable safety-
related requirements or standards.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by
this document.

The products described may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

You may not use or facilitate the use of this document in connection with any infringement or other legal
analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free
license to any patent claim thereafter drafted which includes subject matter disclosed herein.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising
from course of performance, course of dealing, or usage in trade.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to
change without notice. Do not finalize a design with this information.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

ii Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Table of Contents

Render Engine 1
Workload Submission 1
Context Submission Overview 1
Render-3D-GPGPU Command Streamer 3
MI Commands Supported by POCS 12
Engine State 32
3D Pipeline Stages 58
3D Pipeline-Level State 59
3D Pipeline Geometry 60
Patch Header DWO-7 124
3D Pipeline Rasterization 171
Pixel 241
COLOR_CALC_STATE 294
3DSTATE_BLEND_STATE_POINTERS 294
3DSTATE_DEPTH_STENCIL_STATE_POINTERS 294
DEPTH_STENCIL_STATE 294
BLEND_STATE 295
CC_VIEWPORT 295
Statistics Gathering 295
GPGPU Compute Pipeline 295
General Purpose Compute Model 296
GPGPU Context in GPU Hardware 299
GPGPU PIPE Overview 300
Programming the GPGPU Pipeline 300
Commands for GPGPU Pipe 308
MEDIA_VFE_STATE 309
MEDIA_STATE_FLUSH 309
Thread Spawner (TS) 315
Thread Dispatch 331
Thread Tracking and Synchronization 337
Context Switch for GPGPU and Media 340
3D and GPGPU Programs 342

Doc Ref # IHD-OS-LKF-Vol 9-4.21 iii

intel

EU Overview

342

Integer Numeric Data Types

425

Floating-Point Numeric Data Types

427

Packed Signed Half-Byte Integer Vector

429

430

Packed UnSigned Half-Byte Integer Vector
Packed Restricted Float Vector

431

IEEE Floating Point Mode

434

Alternative Floating Point Mode

437

IEEE Floating-Point Exceptions

445

Floating-Point Compare Operations

450

454

Float to Integer

Integer to Integer with Same or Higher Precision

454

Integer to Integer with Lower Precision

455

Integer to Float

455

Double Precision Float to Single Precision Float

455

455

Single Precision Float to Double Precision Float

458

Invoking the System Routine

Returning to the Application Thread

459

System IP (SIP)

459

System Routine Register Space

459

System Scratch Memory Space

460

Conditional Instructions Within the System Routine

Use of NoDDClr

461

461

lllegal Opcode

462

Undefined Opcodes

462

Software Exception

462

Context Save and Restore

463

463

lllegal Instruction Format

Malformed Message

GRF Register Out of Bounds

463
464

Hung Thread

464

Instruction Fetch Out of Bounds

464

FPU Math Errors

464

464

Computational Overflow

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

SIMD Instructions and SIMD Width 468
Instruction Operands and Register Regions 468
Instruction Execution 469
Instruction Fields 473
Native Instruction Layouts 489
Move and Logic Instructions 504
Flow Control Instructions 505
Miscellaneous Instructions 506
Parallel Arithmetic Instructions 506
Vector Arithmetic Instructions 507
Special Instructions 507
Instruction Groups 508
Destination Register 510
Source Register 511
Address Registers 512
Register Files and Register Numbers 512
Relative Location and Stack Control 513
Regions 514
Types 514
Write Mask 514
Swizzle Control 514
Immediate Values 515
Predication and Modifiers 515
Instruction Options 516
Grammar 524
IGA Grammar 524
Load-Store Pseudo Instructions 533
Syntax 533
Loads 533
Stores 533
Operand Syntax 534
Examples 535
Supported Messages 535
Split-Sends and Conditional Sends 544

Doc Ref # IHD-OS-LKF-Vol 9-4.21 v

intel

Operand Mapping 544
Load Pseudo-Instructions 544
Block Messages 544
Vector Messages with a Header 545
Headerless Vector Messages 545
Store Pseudo-Instructions 545
Block Messages 546
Vector Messages with a Header 547
Headerless Vector Messages 548
Round Instructions 552
INV - Inverse 556
LOG - Logarithm 556
EXP - Exponent 556
SQRT - Square Root 557
RSQ - Reciprocal Square Root 557
POW - Power Function 558
SIN - SINE 559
COS - COSINE 559
INT DIV - Integer Divide 560
INVM/RSQRTM 560
EU Instructions 570
SEND Instructions 572
Control Flow Instructions 573
Shared Functions 574
TEXCOORDMODE_MIRROR_101 600
3D Sampler Message Types 623
gather4 Message Types 635
Definitions 635
Supported Variants: 635
Restrictions and Programming Notes for gather4: 636
Restrictions and Programming Notes for gather4_c: 636
Restrictions and Programming Notes for gather4_po: 637
Restrictions and Programming Notes for gather4_po_c: 637
sampleinfo Message Type 637

Vi

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Supported Variants: 638
Restrictions and Programming Notes for sampleinfo: 638
LOD Message Type 638
LOD Message Definition 638
Supported Variants: 638
Restrictions and Programming Notes for LOD: 639
resinfo Message Type 639
Supported Variants: 640
Restrictions and Programming Notes for resinfo: 640
cache_flush Message Type 640
cache_flush Message Definition 640
Supported Variants: 640
Media Message Types 641
sample_unorm Message Types 641
Supported Variants: 642
Restrictions and Programming Notes for sample_unorm, sample_unorm_RG, sample_unorm_killpix,
sample_unorm_RG_killpix: 642
sample_8x8 Message Type 643
Supported Variants: 643
Restrictions and Programming Notes for sample_8x8: 643
HWord Aligned Block Read/Write Messages 700
DWord URB Read/Write Messages 722
Message-Specific Descriptors 748
Render Target Write Message 748
Replicate Data 754
Single Source 754
Dual Source 755
Message Data Payloads 756
Render Target Data Payloads 756
Shape Decision 775
BINDING_TABLE_STATE 777
SURFACE_STATE 777
VME_STATE 777
SIMD32_64 Message Descriptor 786

Doc Ref # IHD-OS-LKF-Vol 9-4.21 vii

intel

SIMD32_64 Message Header 786
SIMD32_64 Payload Parameter Definition 790
SIMD32_64 Message Types 790

viii Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Render Engine

The Render Engine supports command streams used both for 3D and Compute (GPGPU) workloads.
These command streams fetch the data, and dispatch individual work items to many threads that operate
in parallel. The threads run small software programs (also called kernels or shaders) on the GPU
processors (called Execution Units).

The command streamers control the programmable pipelines in the Render Engine so that the individual
programs run in parallel but are synchronized to start only when their required data is available, and
complete when all the work is done.

Each pipeline in the Render Engine shares common state with all the threads running in the pipeline. The
command streamer manages that state.

Workload Submission

This section describes work submission to the Rendering engine which can run 3D, Compute and
Programmable Media workloads

Context Submission Overview

Work into the Render/GPGPU engine is fed using the Render Command Streamer.

The Render engine runs in one of the following modes (that is specified using the PIPE_SELECT
command):

e 3D
e Media/GPGPU

When Software submits multiple elements(contexts) into the execution list, the hardware executes the
elements serially.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 1

intel.

Host
Interrupts
Workload _ il
Submission A
Execution list Intemrupts

POSH
Command
Streamer

M slices

2 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Render-3D-GPGPU Command Streamer

This section describes the infrastructure provided by the Command Streamer of the Render engine which
supports 3D, Compute and Programmable Media.

Render Engine Command Streamer (RCS)

The RCS (Render Command Streamer) unit primarily serves as the software programming interface
between the O/S driver and the Render Engine. It is responsible for fetching, decoding, and dispatching
of data packets (3D/Media Commands with the header DWord removed) to the front end interface
module of Render Engine.

Logic Functions Included

e MMIO register programming interface.

o DMA action for fetching of ring data from memory.

e Management of the Head pointer for the Ring Buffer.

e Decode of ring data and sending it to the appropriate destination: 3D (Vertex Fetch Unit) & GPGPU.
e Handling of user interrupts.

e Flushing the 3D and GPGPU Engine.

e Handle NOP.

e DMA action for fetching of execlists from memory.

e Handling of ring context switch interrupt.

The register programming bus is a DWord interface bus that is driven by the configuration master. The
RCS unit only claims memory mapped I/O cycles that are targeted to its range of 0x2000 to Ox27FF. The
Gx and MFX Engines use semaphore to synchronize their operations.

RCS operates completely independent of the MFx CS.

The simple sequence of events is as follows: a ring (say PRBO) is programmed by a memory-mapped
register write cycle. The DMA inside RCS is kicked off. The DMA fetches commands from memory based
on the starting address and head pointer. The DMA requests cache lines from memory (one cacheline CL
at a time). There is guaranteed space in the DMA FIFO (8 CL deep) for data coming back from memory.
The DMA control logic has copies of the head pointer and the tail pointer. The DMA increments the head
pointer after making requests for ring commands. Once the DMA copy of the head pointer becomes
equal to the tail pointer, the DMA stops requesting.

The parser starts executing once the DMA FIFO has valid commands. All the commands have a header
DWord packet. Based on the encoding in the header packet, the command may be targeted towards
Vertex Fetch Unit or GPPGU engine or the command parser. After execution of every command, the
actual head pointer is updated. The ring is considered empty when the head pointer becomes equal to
the tail pointer.

Batch Buffer Privilege Register

FORCE_TO_NONPRIV - FORCE_TO_NONPRIV

Doc Ref # IHD-OS-LKF-Vol 9-4.21 3

intel

Mode Registers

The following are the Mode Registers:

Register

INSTPM - Instruction Parser Mode Register

EXCC - Execute Condition Code Register

NOPID - NOP Identification Register

CSPREEMPT - CSPREEMPT

IDLEDLY - Idle Switch Delay

SEMA_WAIT_POLL - Semaphore Polling Interval on Wait

HWS_PGA - Hardware Status Page Address Register

Hardware Status Page Layout

Logical Context Support

The following are the Logical Context Support Registers:

Register

BB_ADDR - Batch Buffer Head Pointer Register

BB_ADDR_UDW - Batch Buffer Upper Head Pointer Register

CXT_SIZE - Context Sizes

CXT_EL_OFFSET - Exec-List Context Offset

SYNC_FLIP_STATUS - Wait For Event and Display Flip Flags Register

SYNC_FLIP_STATUS_1 - Wait For Event and Display Flip Flags Register 1

SYNC_FLIP_STATUS_2 - Wait For Event and Display Flip Flags Register 2

WAIT_FOR_RC6_EXIT - Control Register for Power Management

SBB_ADDR - Second Level Batch Buffer Head Pointer Register

SBB_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Register

SBB_STATE - Second Level Batch Buffer State Register

PS_INVOCATION_COUNT_SLICEO - PS Invocation Count for Slice0

PS_INVOCATION_COUNT_SLICE1 - PS Invocation Count for Slicel

PS_INVOCATION_COUNT_SLICE2 - PS Invocation Count for Slice2

PS_DEPTH_COUNT_SLICEO - PS Depth Count for Slice0

PS_DEPTH_COUNT_SLICE1 - PS Depth Count for Slicel

PS_DEPTH_COUNT_SLICEZ2 - PS Depth Count for Slice2

DISPLAY_MESSAGE_FORWARD_STATUS - Display Message Forward Status Register

R_PWR_CLK_STATE - Render Power Clock State Register

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Context Save Registers

The following are the Context Save Registers:

Register

BB_PREEMPT_ADDR - Batch Buffer Head Pointer Preemption Register

BB_PREEMPT_ADDR_UDW - Batch Buffer Upper Head Pointer Preemption Register

RING_BUFFER_HEAD_PREEMPT_REG - RING_BUFFER_HEAD_PREEMPT_REG

BB_START_ADDR - Batch Buffer Start Head Pointer Register

BB_START_ADDR_UDW - Batch Buffer Start Upper Head Pointer Register

BB_ADDR_DIFF - Batch Address Difference Register

BB_OFFSET - Batch Offset Register

SBB_PREEMPT_ADDR - Second Level Batch Buffer Head Pointer Preemption Register

SBB_PREEMPT_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Preemption Register

BB_PER_CTX_PTR - Batch Buffer Per Context Pointer

MI Commands for Render Engine

This chapter describes the formats of the “Memory Interface” commands, including brief descriptions of
their use. The functions performed by these commands are discussed fully in the Memory Interface
Functions Device Programming Environment chapter.

This chapter describes Ml Commands for the original graphics processing engine. The term “for
Rendering Engine” in the title has been added to differentiate this chapter from a similar one describing
the MI commands for the Media Decode Engine.

The commands detailed in this chapter are used across product families. However, slight changes may be
present in some commands (i.e., for features added or removed), or some commands may be removed
entirely. Refer to the Preface chapter for product specific summary.

Commands

MI_NOOP

MI_ARB_CHECK

MI_ARB_ON_OFF

MI_BATCH_BUFFER_START

MI_BATCH_BUFFER_END

MI_CONDITIONAL_BATCH_BUFFER_END

MI_DISPLAY_FLIP

MI_LOAD_SCAN_LINES_EXCL

MI_LOAD_SCAN_LINES_INCL

MI_CLFLUSH

MI_MATH

MI_REPORT_HEAD

MI_STORE_DATA_IMM

Doc Ref # IHD-OS-LKF-Vol 9-4.21 5

intel

Commands

MI_ATOMIC

MI_COPY_MEM_MEM

MI_LOAD_REGISTER_REG

MI_LOAD_REGISTER_MEM

MI_STORE_REGISTER_MEM

MI_SUSPEND_FLUSH

MI_USER_INTERRUPT

MI_WAIT_FOR_EVENT

MI_SEMAPHORE_SIGNAL

MI_SEMAPHORE_WAIT

MI_FORCE_WAKEUP

Watchdog Timer Registers

These registers together implement a watchdog timer. Writing ones to the control register enables the
counter, and writing zeros disables the counter. The second register is programmed with a threshold
value which, when reached, signals an interrupt that then resets the counter to 0. Program the threshold
value before enabling the counter or extremely frequent interrupts may result.

Note: The counter itself is not observable. It increments with the main render clock.

Programming Notes: When watch dog timer is enabled, HW does not trigger any kind of idle
sequences. SW must enable and disable watch dog timer for any given workload within the same
command buffer dispatch. SW must disable watch dog timer around semaphore waits and wait for
events commands so that HW can trigger appropriate idle sequence for power savings.

Position Only Shader Command Streamer (POCS)

Position only shader (POSH) is a new geometry pipeline that has the optional ability to execute the
position only vertex shaders and perform the visibility test on these vertices before the actual vertex
shader is executed. POSH pipe can run ahead of the original geometry pipe by executing position only
vertex shaders and doing visibility test on these vertices and recording this information. Geometry pipe
when processing the vertices will use this visibility information outputted by POSH pipe to skip the vertex
fetch and shading for vertices that are already marked as culled.

POSH pipe has its own command streamer called Position only command streamer (POCS). A context
running on render pipe can exercise POSH capabilities through Render Command Streamer (RCS). RCS
manages the POSH pipe through POCS for POSH enabled contexts. Render command streamer loads the
context to execute on POCS when a POSH enable context execution begins in render pipe, similarly
preempts context executing in POCS when the POSH enabled context switches out of render pipe. Once
POCS is loaded with context it starts executing the ring buffer similar to RCS, refer Programming Model
section for more details.

6 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Position Only Command Streamer (POCS)

The POCS (Position Only Shader Command Streamer) unit primarily serves as the programming interface
between the render command streamer and the POSH pipe. It is responsible for fetching, decoding, and
dispatching of data packets (3D Commands with the header DWord removed) for the POSH pipe.

Logic Functions Included

e MMIO register programming interface.

e DMA action for fetching of ring buffer and batch buffer data from memory.

¢ Management of the Head pointer for the Ring Buffer.

e Decode and execution of command programmed in ring buffer and batch buffers.
e Flushing the POSH pipe.

Handle NOOP.

The register programming bus is a DWord interface bus that is driven by the configuration master. The
POCS unit only claims memory mapped I/O cycles that are targeted to its range of 0x1_8000 to Ox1_9FFF.
The POCS and RCS use semaphore to synchronize their operations.

POSH Programming Model

The POSH + Render pipeline will appear as a monolithic engine from SW perspective. Render Command
Streamer (RCS) is hardware front end interface to the SW for the modified Render + POSH pipeline. SW
will use a single context (and associated LRCA) to submit work to the modified Render + POSH pipeline
through its associated ring buffer.

Context submission model should be visualized as context submitted to RCS. RCS will set up the context
definition in HW and triggers POSH pipe to execute the same context, resulting in execution of the same
ring buffer by render pipe and POSH pipe in parallel. POSH pipe has its own command streamer called
POCS (POSH Command Streamer). Similarly, when the context is switched out on the render pipe due to
whatever reasons (Wait For Event, Semaphore Wait or Preemption due to pending execlist), RCS will
ensure POSH pipe is preempted and its corresponding logic state is saved through POCS.

POCS and RCS get to see the same ring buffer, however the execution of the same ring buffer by POCS
and RCS are asynchronous to each other and its SW responsibility to ensure POCS and RCS are
synchronized through semaphores as and when required. SW will provide independent command buffers
(batch buffers) to be executed by RCS and POCS. Marking of batch buffers for POCS and RCS and
execution of ring buffer are detailed in the latter subsections.

This model of execution has the following implications:

e POCS and RCS have to run on the same context definition. RCS sets up context with GAM and
POCS runs within this address space.

e Even though the currently running context may not be utilizing the POSH pipe, a waiting context
with POSH enabled has to wait for the current context to be evicted. (waiting context cannot take
advantage of the idle POSH pipe ahead of getting scheduled on the render engine)

Doc Ref # IHD-OS-LKF-Vol 9-4.21 7

intel

POSH Enabled Context

A context submitted to render engine exercising POSH functionality is called "POSH Enabled” context.
Application (UMD) decides if a context is POSH Enabled at the time of context creation. A context is
indicated as POSH enabled to HW by setting “POSH Enable” bit in CTX_SR_CTL register of RCS. SW
allocates additional separate memory space (POSH LRCA) for the POSH Enabled contexts. POSH pipe
uses the POSH LRCA for its context state management.

Context Submission and LRCA for POSH

SW will continue to submit POSH enabled contexts to ELSP in RCS. There is no change in the pending
execlist submission or context switch status report mechanism to/from RCS.

Listed below are the SW changes required for submission of the POSH enabled context:

e "POSH Enable” bit in CTX_SR_CTL of RCS must be set to indicate POSH enabled context to HW.
Refer POSH functionality control section for the bit definition and programming.

e POSH LRCA is provided to RCS through register programming in the ring context of RCS. Refer
RCS ring context details below.

e POSH LRCA format is similar to that of RCS, i.e PPHWSP followed by ring context followed by the
engine context. However POSH ring context will only have the ring buffer and batch buffer details.
POSH ring context will not have the page directory pointers details as the PPGTT is setup by RCS.

e SW does not control POCS context ID independently. The context ID for POCS will be supplied
from RCS, and thus will be the same.

e SW must update the ring context of POSH with ring buffer details on the very first submission and
whenever the ring buffer start address, control and head pointer details are updated. POSH pipe
(POCS) will sample the tail pointer from RCS. Note that the POCS and RCS share the same ring
buffer.

RCS Ring Context

The table below highlights the POSH LRCA details in RCS ring context. Ring context listed below is for
illustration of the change, "Register State Context” in "Render Logical Context Data” should be referred as
the final format for implementation.

Description Unit | # of DW
NOOP CSEL 1
MI_LOAD_REGISTER_IMM CSEL 1
Ring Buffer Head CSEL 2
Ring Tail Pointer Register CSEL 2
RING_BUFFER_START CSEL 2
RING_BUFFER_CONTROL CSEL 2
Batch Buffer Current Head Register (UDW) | CSEL 2
Batch Buffer Current Head Register CSEL 2

8 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Description Unit | # of DW
Batch Buffer State Register CSEL 2
SECOND_BB_ADDR_UDW CSEL 2
SECOND_BB_ADDR CSEL 2
SECOND_BB_STATE CSEL 2
BB_PER_CTX_PTR CSEL 2
RCS_INDIRECT_CTX CSEL 2
RCS_INDIRECT_CTX_OFFSET CSEL 2
NOOP CSEL 2
NOOP CSEL 1
MI_LOAD_REGISTER_IMM CSEL 1
CTX_TIMESTAMP CSEL 2
PDP3_UDW CSEL 2
PDP3_LDW CSEL 2
PDP2_UDW CSEL 2
PDP2_LDW CSEL 2
PDP1_UDW CSEL 2
PDP1_LDW CSEL 2
PDPO_UDW CSEL 2
PDPO_LDW CSEL 2
MI_LOAD_REGISTER_IMM CSEL 1
POSH_LRCA CSEL 2
NOOP CSEL 9
NOOP CSEL 1
MI_LOAD_REGISTER_IMM CSEL 1
R_PWR_CLK_STATE CSEL 2
GPGPU_CSR_BASE_ADDRESS CSEL 3
NOOP CSEL 9

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

intel

POCS Ring Context

Table below details the POSH ring context. Ring context listed below is for illustration of the change,
"Register State Context” in “Render Logical Context Data” should be referred as the final format for

implementation.

Description Unit | # of DW
NOOP CSEL 1
MI_LOAD_REGISTER_IMM CSEL 1
Ring Buffer Head CSEL 2
Ring Tail Pointer Register CSEL 2
RING_BUFFER_START CSEL 2
RING_BUFFER_CONTROL CSEL 2
Batch Buffer Current Head Register (UDW) | CSEL 2
Batch Buffer Current Head Register CSEL 2
Batch Buffer State Register CSEL 2
SECOND_BB_ADDR_UDW CSEL 2
SECOND_BB_ADDR CSEL 2
SECOND_BB_STATE CSEL 2
BB_PER_CTX_PTR CSEL 2
RCS_INDIRECT_CTX(Always Invalid) CSEL 2
RCS_INDIRECT_CTX_OFFSET CSEL 2
NOOP CSEL 2
NOOP CSEL 48

10

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

POSH Command Transport

This following subtopics describe the command transport mechanism from SW to POCS.

"POSH Start" Batch Buffers

Batch buffers dedicated to be executed by POSH pipe are indicated by setting the field “POSH Start” in
the MI_BATCH_BUFFER_START command header. Once “POSH Start” is set in a batch buffer all the
following chained batch buffers and next level batch buffers will implicitly inherit the “POSH Start” field
value. Once "POSH Start” is set in a batch buffer all the following command sequences are to be
executed by POCS until the corresponding batch buffer sequencing is terminated through
MI_BATCH_BUFFER_END/MI_CONDITIONAL_BATCH_BUFFER_END command.

Example:

e Once "POSH Start” is encountered in a first level batch buffer by HW, it will get reset only when the
first level batch buffer execution is terminated through batch buffer end and the command
execution sequence goes back to the ring buffer,

e Similarly, once "POSH Start” is encountered in a second level batch buffer by HW, it will get reset
only when the second level batch buffer execution is terminated through batch buffer end and the
command execution sequence goes back to the first level buffer,

e Similarly, once when “POSH Start” is encountered in a third level batch buffer by HW, it will get
reset only when the third level batch buffer execution is terminated through batch buffer end and
the command execution sequence goes back to the second level batch buffer.

Command sequences executed from the “POSH Start” batch buffer may lead to chained batch buffers or
next level batch buffers. Batch buffers executed by POCS may have Ml Commands, 3DSATE commands
and 3DPRIMTIVE commands for POSH pipe, however these will be a subset of the commands that are
supported by render pipe. RCS on parsing MI_BATCH_BUFFER_START command with “POSH Start”
enabled NOOPS the command and moves on the following command.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 11

intel

MI Commands Supported by POCS

POCS supports all the Ml commands supported by RCS except for the below exceptions.

POCS doesn't support below commands and SW must not program them as part of the POSH command
sequence.

Commands not supported in POSH executed command buffers:

Column Title1

MI_DISPLAY_FLIP

MI_LOAD_SCANLINES_INCL/EXCL

MI_WAIT_FOR_EVENT

MI_USER_INTERRUPT

MI_REPORT_PERF_COUNT

MI_SET_CONTEXT

MI_ARB_ON_OFF

POCS can semaphore signal RCS and vice-versa.

3D State Commands Supported by POCS

The table below lists the 3DSTATE Commands Supported by POSH Pipe. State commands programmed
for POSH which are not listed in the table below will be gracefully discarded (NOOP’'d) by POCS.

3D State Commands

e 3DSTATE_VF

o 3DSTATE_INDEX_BUFFER

e 3DSTATE_VERTEX_BUFFER

e 3DSTATE_VERTEX_ELEMENTS

e 3DSTATE_VF_COMPONENT_PACKING

e 3DSTATE_VF_INSTANCING

e 3DSTATE_VF_SGVS

e 3DSTATE_VF_TOPOLOGY

e 3DSTATE_VF_STATISTICS

e 3DPRIMTIVE

o 3DSTATE_VS

o 3DSTATE_PUSH_CONSTANT_ALLOC_VS
o 3DSTATE_CONSTANT_VS

o 3DSTATE_BINDING_TABLE_POOL_ALLOC
o 3DSTATE_BINDING_TABLE_POINTERS_VS
o 3DSTATE_SAMPLER_STATE_POINTERS_VS
e 3DSTATE_URB_VS

12 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

3D State Commands

e 3DSTATE_CLIP
e 3DSTATE_SFFE

o 3DSTATE_VIEWPORT_STATE_POINTERS_SF_C
LIP

o 3DSTATE_SCISSOR_STATE_POINTERS
o 3DSTATE_MULTISAMPLE

o 3DSTATE_RASTER

o 3DSTATE_DRAWING_RECTANGLE

o 3DSTATE_INT

e PIPECONTROL Command

e 3DSTATE_SBE (for PID computation)

e 3DSTATE_SAMPLE_PATTERN

e 3DSTATE_PTBR_PAGE_POOL_BASE_ADDRESS
e 3DSTATE_PTBR_FREE_LIST_BASE_ADDRESS

e 3DSTATE_PTBR_RENDER_LIST_BASE_ADDRES
S

e 3DSTATE_PTBR_TILE_PASS_INFO

Common Non-Pipeline Sate Commands

o STATE_BASE_ADDRESS

"POSH Enable" Batch Buffers

POCS parses/traverses (doesn't execute) the ring buffer to look for batch buffers programmed with
“POSH Start” field set. “POSH Enable” field in the MI_BATCH_BUFFER_START command is a hint to POCS
to traverse (parse, don't execute) the batch buffer to look for “POSH Start” batch buffers. “POSH Enable”
field is only inherited to the chained batch buffer and doesn’t get inherit to the next level batch buffers
unlike “POSH Start” field. "POSH Enable” field must be explicitly set in the MI_BATCH_BUFFER_START
command which calls the next level batch buffers in order for the POCS to parse them to look for “POSH
Start” batch buffers. POCS ends the "POSH Enable” batch buffer on executing MI_BATCH_BUFFER_END or
on MI_CONDITIONAL_BATCH_BUFFER_END meeting the required condition. "POSH Start” field takes
precedence over the “POSH Enable” field in POCS.

Example:

e Once "POSH Enable” is encountered in a first level batch buffer, POCS will traverse the whole of the
first level batch buffers (including chained first level) to check for "POSH Start” field in
MI_BATCH_BUFFER_START command. POCS by default will not traverse the second level batch
buffers. SW must explicitly set the "POSH Enable” field for the second level batch buffer called
from first level batch buffer if the second level batch buffer have to be traversed by POCS.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 13

intel

e Similarly, Once “POSH Enable” is encountered in a second level batch buffer, POCS will traverse the
whole of the second level batch buffers (including chained second level) to check for “POSH Start”
field in MI_BATCH_BUFFER_START command. POCS by default will not traverse the third level batch
buffers. SW must explicitly set the "POSH Enable” field for the third level batch buffer called from
second level batch buffer if the third level batch buffer have to be traversed by POCS.

e Similarly, Once "POSH Enable” is encountered in a third level batch buffer, POCS will traverse the
whole of the third level batch buffers (including chained second level) to check for “POSH Start”
field in MI_BATCH_BUFFER_START command.

RCS ignores “POSH Enable” field and has no implications due to the “POSH Enable” field set in the
MI_BATCH_BUFFER_START command.

POSH Ring Buffer

POCS and RCS share the same ring buffer. POCS parses the ring buffer to look for batch buffers start
commands with “POSH Enable” or "POSH Start” fields set, it doesn’t execute any commands
programmed in the ring buffer. POCS and RCS executing the same ring buffer results in two different
command sequences based on the “POSH Start” and "POSH Enable” fields programmed in various batch
buffers.

POSH Preemption

Once the context is loaded to POCS, only way it can be switched out is through explicit preemption from
RCS, POCS doesn't switch out an context on encountering un-successful Wait for Events or Semaphore
Wait or running out of commands on head equal to tail pointer. RCS on switching out the context either
due to synchronous context switch or preemption, it also preempts POCS if the context is POSH enabled.
POCS receives preemption from RCS and triggers the preemption flow for POSH pipe. POSH pipe
supports 3D object level preemption. Preemption from RCS can happen when POCS is in one of the
below states:

e POCSFE has executed the context and have Head Equals Tail.

e POCSFE is busy executing commands.

POCS and RCS Synchronization

Once POCS is triggered, it executes parallel to RCS, it only stops (doesn’t switch out) when it runs out of
command (head equals to tail) or on encountering unsuccessful semaphore wait. Command sequence
execution of POCS is completely asynchronous to RCS command sequence execution. SW is responsible
to explicitly synchronize POCS and RCS command sequence execution whenever required based on the
various produce consume model using MI_SEMAPHORE_WAIT command.

GPGPU/Media

POSH pipe is dedicated for 3D workloads and doesn’t support execution of GPGPU or Media workloads.
SW must ensure POSH pipe is flushed and stalled while render pipe is executing GPGPU or Media
workloads for POSH enabled contexts. This must be achieved using explicit MI_SEMAPHORE_WAIT

14 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

commands. This is necessary to ensure the Execution Units only sees either 3D workloads or
GPGPU/Media workloads, current architecture doesn't support executing both 3D and GPGPU workloads
concurrently.

HW Binding Table with RS Disabled

RCS sets up the HW Binding Table functionality when 3DSTATE_BTP_POOL_ALLOC is programmed with
RS disabled. POSH pipe uses the mode set by RCS. SW will explicitly synchronize POCS and RCS to
ensure they always work in the same mode of operation wither HW BTP Enabled or Disabled. Note that
both POCS and RCS will maintain their own copies of 3DSTATE_BTP_POOL_ALLOC.

Protection-On/Off Mode

RenderCS controlls the Protection-On/Off mode at all times for both POSH and Render pipes.
Protection-on/off mode set by RenderCS applies to memory clients form both render pipe and POSH
pipe. based on the protection on signal from RCS. SW must explicitly ensure both POSH and Render
pipes are synchronized around Protection and ProtectionOff zones during the command sequencing.

POSH MMIO

POSH pipe implements its own set of MMIO registers similar to render pipe, however POSH pipe
implements the registers relevant to the functionality supported in POSH pipeline. Listed below are the
only registers that are accessible in POSH pipeline.

egisters in POCSFE

MMIO SYMBOL Suffix
DMA_FADD POCS
ACTHD POCS
ACTHD_UDW POCS
CS_ALU_ACCU POCS
CS_ALU_CF POCS
CS_ALU_SRCA POCS
CS_ALU_SRCB POCS
CS_ALU_ZF POCS
BB_ADDR POCS
BB_ADDR_DIFF POCS
BB_ADDR_UDW POCS
BB_OFFSET POCS
BB_PER_CTX_PTR POCS
BB_PREEMPT_ADDR POCS
BB_PREEMPT_ADDR_UDW POCS
BB_START_ADDR POCS

Doc Ref # IHD-OS-LKF-Vol 9-4.21 15

intel

MMIO SYMBOL Suffix
BB_START_ADDR_UDW POCS
BB_STATE POCS
CCID POCS
CTXT_PREMP_DBG POCS
CTXT_SR_CTL POCS
CXT_EL_OFFSET POCS
CMD_CCTL.O POCS
RCS_CTXID_PREEMPTION_HINT POCS
CTX_TIMESTAMP POCS
CTX_WA_BB_ADDR POCS
EXCC POCS
FORCE_TO_NONPRIV_0 POCS
FORCE_TO_NONPRIV_1 POCS
FORCE_TO_NONPRIV_2 POCS
FORCE_TO_NONPRIV_3 POCS
FORCE_TO_NONPRIV_4 POCS
FORCE_TO_NONPRIV_5 POCS
FORCE_TO_NONPRIV_6 POCS
FORCE_TO_NONPRIV_7 POCS
FORCE_TO_NONPRIV_8 POCS
FORCE_TO_NONPRIV_9 POCS
FORCE_TO_NONPRIV_10 POCS
FORCE_TO_NONPRIV_11 POCS
CS_GPR_RO POCS
CS_GPR_R_1 POCS
CS_GPR R_2 POCS
CS_GPR R 3 POCS
CS_GPR R 4 POCS
CS_GPR_R 5 POCS
CS_GPR_ R 6 POCS
CS_GPR_R 7 POCS
CS_GPR_R 8 POCS
CS_GPR_R 9 POCS
CS_GPR_R_10 POCS
CS_GPR_R_11 POCS
CS_GPR_R_12 POCS
CS_GPR_R_13 POCS

16

Doc Ref # IHD-OS-LKF-Vol 9-4.21

MMIO SYMBOL Suffix
CS_GPR_R_14 POCS
CS_GPR_R_15 POCS
GFX_MODE POCS
HWS_PGA POCS
PWRCTX_MAXCNT POCS
IPEHR POCS
IDLEDLY POCS
CSCMDOP POCS
CSCMDVLD POCS
INSTPM POCS
INSTPS POCS
MI_PREDICATE_RESULT 1 POCS
MI_PREDICATE_RESULT_2 POCS
MI_MODE POCS
NOPID POCS
PDPO POCS
PDP1 POCS
PDP2 POCS
PDP3 POCS
PR_CTR_THRSH POCS
PREEMPTDLY POCS
PREEMPTION_HINT POCS
PREEMPTION_HINT_UDW POCS
DMA_FADD_P_UDW POCS
RING_BUFFER_CTL POCS
RING_BUFFER_HEAD POCS
RING_BUFFER_HEAD_PREEMPT_REG | POCS
RING_BUFFER_START POCS
RING_BUFFER_TAIL POCS
TIMESTAMP POCS
RESET_CTRL POCS
SBB_ADDR POCS
SBB_ADDR_UDW POCS
SBB_PREEMPT_ADDR POCS
SBB_PREEMPT_ADDR_UDW POCS
SBB_STATE POCS
SEMA_WAIT_POLL POCS

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

17

intel

MMIO SYMBOL Suffix
RC_PSMI_CTRL POCS
CURRENT_LRCA POCS

Registers in POCSBE

MMIO SYMBOL Suffix
3DPRIM_BASE_VERTEX POCS
3DPRIM_END_OFFSET POCS
3DPIM_INSTANCE_COUNT [POCS
3DPRIM_START_INSTANCE | POCS
3DPRIM_START_VERTEX POCS
3DPRIM_VERTEX_COUNT |POCS
3DPRIM_XPO POCS
3DPRIM_XP1 POCS
3DPRIM_XP2 POCS
IA_PRIMITIVES_COUNT POCS
IA_VERTICES_COUNT POCS
VS_INVOCATION_COUNT |POCS
CL_INVOCATION_COUNT |POCS
CL_PRIMITIVES_COUNT POCS
MI_PREDICATE_DATA POCS
MI_PREDICATE_RESULT POCS
MI_PREDICATE_SRCO POCS
MI_PREDICATE_SRC1 POCS
CSBEFSM POCS
CSFLFLAG POCS
CSFLFSM POCS
CSFLTRK POCS
CS_CONTEXT_STATUS1 POCS
CTX_RESTORE_ACK_0 POCS
CTX_RESTORE_ACK_1 POCS
FF_MODE POCS
STATE_ACK POCS
STATE_ACK_SLICE1 POCS
STATE_ACK_SLICE2 POCS
STATE_ACK_SLICE3 POCS
State_ACK_Register_Slice_5 | POCS
State_Ack_Register_Slice4 |POCS

18

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

POSH Functionality Controls

POSH functionality enabling and disabling is hierarchically controlled at various levels in the context
execution flow.

e Context Granularity

e Batch Buffer Granularity

e 3DPRIMTIVE Granularity

POSH Control Description

Context POSH feature can be enabled or disabled at context level by programming the “POSH Enable”
Granularity field in CTX_SR_CTL register of the RCS. When POSH is disabled in CTX_SR_CTL register, RCS will
not engage POSH.

Usage model is one-time programming of “POSH Enable” field at context creation time.

Dynamic enabling or disabling of POSH during context execution should be achieved through
Batch Buffer and 3DPRIMTIVE granularity controls.

Batch Buffer POSH Enable:

Granularity "POSH Enable” field in MI_BATCH_BUFFER_START command indicates the possibility of

encountering “POSH Start” batch buffer from the corresponding command sequence.
POSH Start:

Commands to be executed by the POCS must be programmed in a dedicated batch buffer and
this batch buffer is indicated with a bit “POSH Start” in the MI_BATCH_BUFFER_START command.
Once POCS encounters the batch buffer with “POSH Start” it executes all the command in the
corresponding batch buffer and also the chained batch buffers from the corresponding buffer.

RCS skips the MI_BATCH_BUFFER_START command with “POSH Start” set and goes on the
following command.

Programming Notes:

POCS executes only the MI_BATCH_BUFER_START commands programmed in the ring buffer
with "POSH Enable” set and NOOPS (predicates) all the other commands in the ring buffer. POCS
only parses/traverses the batch buffer with “POSH Enable” to check for any batch buffer
programmed with "POSH Start” set.

SW must set "POSH Enable” field in the MI_BATCH_BUFFER_START command programmed in
ring buffer if the commands in the corresponding batch buffer or the chained batch buffers
(includes Second Level and third level) has at least one batch buffer start command with “POSH
Start” set (also implies 3DPRIMITIVE command for which POSH is enabled).

3DPRIMTIVE "POSH Enable” field in the 3DPRIMTIVE command indicates the POSH pipe to create the visibility
Granularity recording data and indicates Render pipe to use visibility recording data for the corresponding
3DPRIMTIVE command.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 19

intel

POSH Interrupts

There are no interrupts generated by POSH pipe.

Software Interface

This chapter describes the memory-mapped registers associated with the Memory Interface, including
brief descriptions of their use. Refer to each registers description and related feature for more
information on each individual bit. Unless noted otherwise within the description of the bit, any mode bit
must only be updated following a flush to ensure the pipeline is idle.

The registers detailed in this chapter are extensions to previous projects. However, slight changes may be
present in some registers (i.e., for features added or removed), or some registers may be removed
entirely. These changes are clearly marked within this chapter.

Synchronization of the 3D Pipeline

Two types of synchronizations are supported for the 3D pipe: top of the pipe and end of the pipe. Top of
the pipe synchronization really enforces the read-only cache invalidation. This synchronization
guarantees that primitives rendered after such synchronization event fetches the latest read-only data
from memory. End of the pipe synchronization enforces that the read and/or read-write buffers do not
have outstanding hardware accesses. These are used to implement read and write fences as well as to
write out certain statistics deterministically with respect to progress of primitives through the pipeline
(and without requiring the pipeline to be flushed.) The PIPE_.CONTROL command (see details below) is
used to perform all of above synchronizations.

Top-of-Pipe Synchronization

Top-of-pipe synchronization refers to SW actions to prepare HW for new state-binding at the beginning
of the rendering sequence in a given context. HW may have residual states cached in the state-caches
and read-only surfaces in various caches. With new rendering sequence, read-only surfaces may go
through change in the binding. Hence read-only invalidation is required before such new rendering
sequence. Read-only cache invalidation is top-of-pipe synchronization. Upon parsing this specific pipe-
control command, HW invalidates all caches in GT domain that have read-only surfaces but does not
guarantee invalidation beyond GT caches

Upon parsing this specific pipe-control command, HW invalidates all caches in GT domain that have
read-only surfaces but does not guarantee invalidation beyond GT caches (i.e. LLC).

Further, HW does not guarantee that all prior accesses to those read-only surfaces have completed.
Therefore SW must guarantee that there are no pending accesses to those read-only surfaces before
initializing the top-of-pipe synchronization. PIPE-CONTROL command described below allows for
invalidating individual read-only stream type. It is recommended that driver invalidates only the required
caches on the need basis so that cache warm-up overhead can be reduced.

20 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

End-of-Pipe Synchronization

The driver can use end-of-pipe synchronization to know that rendering is complete (although not
necessarily in memory) so that it can deallocate in-memory rendering state, read-only surfaces,
instructions, and constant buffers. An end-of-pipe synchronization point is also sufficient to guarantee
that all pending depth tests have completed so that the visible pixel count is complete prior to storing it
to memory. End-of-pipe completion is sufficient (although not necessary) to guarantee that read events
are complete (a “read fence” completion). Read events are still pending if work in the pipeline requires
any type of read except a render target read (blend) to complete.

Write synchronization is a special case of end-of-pipe synchronization that requires that the render cache
and/or depth related caches are flushed to memory, where the data will become globally visible. This
type of synchronization is required prior to SW (CPU) actually reading the result data from memory, or
initiating an operation that will use as a read surface (such as a texture surface) a previous render target
and/or depth/stencil buffer. Exercising the write cache flush bits (Render Target Cache Flush Enable,
Depth Cache Flush Enable, DC Flush) in PIPE_CONTROL only ensures the write caches are flushed and
doesn't guarantee the data is globally visible.

SW can track the completion of the end-of-pipe-synchronization by using “Notify Enable” and “Post-
Sync Operation - Write Immediate Data” in the PIPE_.CONTROL command. “Notify Enable” and “Post-
Sync Operation - Write Immediate Data” generate a fence cycle on achieving end-of-pipe-
synchronization for the corresponding PIPE_CONTROL command. Fence cycle ensures all the write cycles
in front of it are to global visible point before they themselves get processed. It is guaranteed the data
flushed out by the PIPE_CONTROL is updated in memory by the time SW receives the corresponding
Pipe Control Notify interrupt.

In case the data flushed out by the render engine is to be read back in to the render engine in coherent
manner, then the render engine has to wait for the fence completion before accessing the flushed data.
This can be achieved by following means on various products:

PIPE_CONTROL command with CS Stall and the required write caches flushed with Post-Sync-Operation
as Write Immediate Data.

Example:

e WorklLoad-1 (3D/GPGPU/MEDIA)

o PIPE_CONTROL (CS Stall, Post-Sync-Operation Write Immediate Data, Required Write Cache Flush
bits set)

WorkLoad-2 (Can use the data produced or output by Workload-1)
Synchronization Actions

In order for the driver to act based on a synchronization point (usually the whole point), the reaching of
the synchronization point must be communicated to the driver. This section describes the actions that
may be taken upon completion of a synchronization point which can achieve this communication.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 21

intel

Writing a Value to Memory

The most common action to perform upon reaching a synchronization point is to write a value out to
memory. An immediate value (included with the synchronization command) may be written. In lieu of an
immediate value, the 64-bit value of the PS_DEPTH_COUNT (visible pixel count) or TIMESTAMP register
may be written out to memory. The captured value will be the value at the moment all primitives parsed
prior to the synchronization commands have been completely rendered, and optionally after all said
primitives have been pushed to memory. It is not required that a value be written to memory by the
synchronization command.

Visible pixel or TIMESTAMP information is only useful as a delta between 2 values, because these
counters are free-running and are not to be reset except at initialization. To obtain the delta, two
PIPE_CONTROL commands should be initiated with the command sequence to be measured between
them. The resulting pair of values in memory can then be subtracted to obtain a meaningful statistic
about the command sequence.

PS_DEPTH_COUNT

If the selected operation is to write the visible pixel count (PS_DEPTH_COUNT register), the
synchronization command should include the Depth Stall Enable parameter. There is more than one
point at which the global visible pixel count can be affected by the pipeline; once the synchronization
command reaches the first point at which the count can be affected, any primitives following it are
stalled at that point in the pipeline. This prevents the subsequent primitives from affecting the visible
pixel count until all primitives preceding the synchronization point reach the end of the pipeline, the
visible pixel count is accurate and the synchronization is completed. This stall has a minor effect on
performance and should only be used in order to obtain accurate “visible pixel” counts for a sequence of
primitives.

The PS_DEPTH_COUNT count can be used to implement an (API/DDI) "Occlusion Query” function.

Generating an Interrupt

The synchronization command may indicate that a “Sync Completion” interrupt is to be generated (if
enabled by the Ml Interrupt Control Registers — see Memory Interface Registers) once the rendering of all
prior primitives is complete. Again, the completion of rendering can be considered to be when the
internal render cache has been updated, or when the cache contents are visible in memory, as selected
by the command options.

Invalidating of Caches

If software wishes to use the notification that a synchronization point has been reached in order to reuse
referenced structures (surfaces, state, or instructions), it is not sufficient just to make sure rendering is
complete. If additional primitives are initiated after new data is laid over the top of old in memory
following a synchronization point, it is possible that stale cached data will be referenced for the
subsequent rendering operation. In order to avoid this, the PIPE_CONTROL command must be used. (See
PIPE_CONTROL Command description).

22 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

PIPE_CONTROL Command

The PIPE_CONTROL command provides mechanism to achieve the synchronization of the 3D pipeline
and to execute post-synchronization operations as described in the section “Synchronization of the 3D
pipeline”. Parsing a PIPE_CONTROL command stalls the 3D pipe only if the stall enable bit is set.
Commands after PIPE_CONTROL will continue to be parsed and processed in the 3D pipeline. This may
include additional PIPE_CONTROL commands. The implementation does enforce a practical upper limit
(8) on the number of PIPE_CONTROL commands that may be outstanding at once. Parsing a
PIPE_CONTROL command that causes this limit to be reached will stall the parsing of new commands
until the first of the outstanding PIPE_CONTROL commands reaches the end of the pipe and retires.

Although PIPE_CONTROL is intended for use with the 3D pipe, it is legal to issue PIPE_CONTROL when
the Media pipe is selected. In this case PIPE_CONTROL will stall at the top of the pipe until the Media FFs
finish processing commands parsed before PIPE_CONTROL. Post-synchronization operations, flushing of
caches and interrupts will then occur if enabled via PIPE_CONTROL parameters. Due to this stalling
behavior, only one PIPE_CONTROL command can be outstanding at a time on the Media pipe.

For the invalidate operation of the pipe control, the following pointers are affected. The invalidate
operation affects the context restore of these packets. If the pipe control invalidate operation is
completed before the context save, the indirect pointers will not be context restored from memory on a
context switch.

e Pipeline State Pointer
e Media State Pointer
e Constant Buffer Packet

Programming Note

e SW must ensure to invalidate the Media State and Constant Buffers using “Generic Media State Clear” prior
to the releasing the associated resources (memory).

e SW must ensure to invalidate the Push Constants using “Indirect State Pointers Disable” prior to the
releasing the associated resources (memory).

It is up to software to program the appropriate read-only cache invalidation such as the sampler and
constant read caches or the instruction and state caches. Once notification is observed, new data may
then be loaded (potentially “on top of” the old data) without fear of stale cache data being referenced
for subsequent rendering.

If software wishes to access the rendered data in memory (for analysis by the application or to copy it to
a new location to use as a texture, for example), it must also ensure that the write cache (render cache) is
flushed after the synchronization point is reached so that memory will be updated. This can be done by
setting the Write Cache Flush Enable bit. Note that the Depth Stall Enable bit must be clear in order
for the flush of the render cache to occur. Depth Stall Enable is intended only for accurate reporting of
the PS_DEPTH counter; the render cache cannot be flushed nor can the read caches be invalidated
(except for the instruction/state cache) in conjunction with this operation.

Vertex caches are only invalidated when the VF invalidate bit is set in PIPE_CONTROL (i.e. decision is
done in software, not hardware) Note that the index-based vertex cache is always flushed between

Doc Ref # IHD-OS-LKF-Vol 9-4.21 23

intel

primitive topologies and of course PIPE_CONTROL can only be issued between primitive topologies.
Therefore only the VF (“address-based”) cache is uniquely affected by PIPE_CONTROL.

PIPE_CONTROL

PIPE_CONTROL
Hardware supports up to 32 pending PIPE_CONTROL flushes.

The table below explains all the different flush/invalidation scenarios.

Caches Invalidated/Flushed by PIPE_CONTROL Bit Settings

Write Non-VF RO Pipeline Top of Pipe
Cache | Notification Cache VF RO Cache [Marker | Marker Completion |Invalidate Pulse
Flush Enabled Invalidate Invalidate Sent Enable Requested from CS

0 0 0 0 N/A N/A N/A N/A

0 0 0 1 Yes No N/A No

0 0 1 0 No N/A N/A Yes

0 0 1 1 Yes No No Yes

X 1 0 X Yes Yes Yes No

X 1 1 X Yes Yes Yes Yes

1 X 0 X Yes Yes Yes No

1 X 1 X Yes Yes Yes Yes

Programming Restrictions for PIPE_CONTROL

PIPE_CONTROL arguments can be split up into three categories:

e Post-sync operations
e Flush Types
o Stall

Post-sync operation is only indirectly affected by the flush type category via the stall bit. The stall
category depends on the both flush type and post-sync operation arguments. A PIPE_CONTROL with no
arguments set is Invalid.

Post-Sync Operation

These arguments relate to events that occur after the marker initiated by the PIPE_.CONTROL command is
completed. The table below shows the restrictions:

Argument Bits Restriction
LRI Post Sync 23 |Post Sync Operation ([15:14] of DW1) must be set to 0x0.
Operation

Global Snapshot Count | 19 [This bit must not be exercised on any product.
Reset Requires stall bit ([20] of DW1) set.

24 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Argument Bits Restriction

Generic Media State 16 |Requires stall bit ([20] of DW1) set.

Clear

Generic Media State 16 |Must not be set in PIPECONTROL command programmed for POCS.

Clear

Indirect State Pointers 9 |Requires stall bit ([20] of DW1) set.

Disable

Store Data Index 21 |Post-Sync Operation ([15:14] of DW1) must be set to something other than '0".

Sync GFDT 17 |Post-Sync Operation ([15:14] of DW1) must be set to something other than '0' or
0x2520[13] must be set.

TLB inv 18 |Requires stall bit ([20] of DW1) set.

TLB inv (POCS Only) 18 | Post-Sync Operation ([15:14] of DW1) must be set to something other than '0".

Post Sync Op 15:14| LRI Post Sync Operation ([23] of DW1) must be set to '0".

Post Sync Op 15:14 | Post Sync Operations must not be set to "Write PS Depth Count" in PIPECONTROL
command programmed for POCS.

Notify En 8 |Must not be set in PIPECONTROL command programmed for POCS.

Flush Types

These are arguments related to the type of read only invalidation or write cache flushing is being
requested. Note that there is only intra-dependency. That is, it is not affected by the post-sync operation
or the stall bit. The table below shows the restrictions:

Arguments |Bit

Restrictions

Tile Cache Flush | 28

SW must always set CS Stall bit when Tile Cache Flush Enable bit is set in the
PIPECONTROL command.

SW must ensure level1 depth and color caches are flushed prior to flushing the tile
cache. This can be achieved by following means:

Single PIPECONTROL command to flush level1 caches and the tile cache.
Attributes listed below must be set. OR

Tile Cache Flush Enable

Render Target Cache Flush Enable
DC Flush Enable

Depth Cache Flush Enable

Flushing of L1 caches followed by flushing of tile cache through two different
PIEPCONTROL commands. SW must ensure not to issue any rendering
commands between the two PIPECONTROL commands.

Depth Stall

Must not set in PIPECONTROL command programmed for POCS.

Render Target

Cache Flush

Must not be set in PIPECONTROL command programmed for POCS.

Doc Ref # IHD-OS-LKF-Vol 9-4.21

25

intel

Arguments |Bit Restrictions

Depth Cache Must not be set in PIPECONTROL command programmed for POCS.

Flush

Stall Pixel 1 | No Restriction.

Scoreboard

Stall Pixel Must not be set in PIPECONTROL command programmed for POCS.

Scoreboard

DC Flush Enable Must not be set in PIPECONTROL command programmed for POCS.

Inst invalidate 11 | No Restriction.

Tex invalidate 10 | Requires stall bit ([20] of DW) set for all GPGPU Workloads.

Constant 3 [No Restriction.

invalidate

State Invalidate | 2 [No Restriction.

Stall

If the stall bit is set, the command streamer waits until the pipe is completely flushed.

Arguments | Bit| Restrictions

Stall Bit

20 [No Restrictions.

3D Registers

Context Save Registers

VF Instance Count Registers

VF Instance Count Register Set

Register MMIO_VF

Type:

Address: 08300h - 08384h
Default 0000 0000h
Value:

Access: RO

Size: 1088 bits

Description: | Set of Registers for storing the index count values. In case of preempted drawcalls, these register

store index count/number per element. For the non-preempted drawcalls, the values stored are
ignored upon restore.
These are saved as part of render context.

DWord

Bits Description

31:0 | Index Count 0. Index Count value for Element 0.
Format: U32

31:0 | Index Count 1. Index Count value for Element 1.

26

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

VF Instance Count Register Set

Format: U32

31:0{...

33 31:0 | Index Count 33. Index Count value for Element 33.
Format: U32

Mode and Misc Ctrl Registers

This section contains various registers for controls and modes

Controls/Modes

MI_MODE - Mode Register for Software Interface

FF_MODE - Thread Mode Register

GFX_MODE - Graphics Mode Register

GT_MODE - GT Mode Register

SAMPLER_MODE - SAMPLER Mode Register

CACHE_MODE_1 - Cache Mode Register 1

GAFS_MODE - Mode Register for GAFS

FBC_RT_BASE_ADDR_REGISTER - FBC_RT_BASE_ADDR_REGISTER

FBC_RT_BASE_ADDR_REGISTER_UPPER - FBC_RT_BASE_ADDR_REGISTER_UPPER

L3CNTLREG - L3 Control Register

B/D/F/Type:

Address Offset: 0x7034

Default Value: 60000060h

Access: RW; RO;

Size: 32 bit

Below Register provides GT2 based L3 sizes.
For GT1 - all sizes need to be multiplied by 0.5.
For GT3 - all sizes need to be multiplied by 2.
For GT4 - all sizes need to be multiplied by 3.
All L3 ways have to be included in the programming to ensure that no ways are left out.

L3CNTLREG - L3 Control Register
CACHE_MODE_SS - Cache Mode Subslice Register

Doc Ref # IHD-OS-LKF-Vol 9-4.21

27

intel

Pipelines Statistics Counter Registers

These registers keep continuous count of statistics regarding the 3D pipeline. They are saved and
restored with context but should not be changed by software except to reset them to 0 at context
creation time. Write access to the statistics counter in this section must be done through
MI_LOAD_REGISTER_IMM, MI_LOAD_REGISTER_MEM, or MI_LOAD_REGISTER_REG commands in ring
buffer or batch buffer. These registers may be read at any time; however, to obtain a meaningful result, a
pipeline flush just prior to reading the registers is necessary to synchronize the counts with the primitive
stream.

Registers

IA_VERTICES_COUNT - IA Vertices Count

IA_PRIMITIVES_COUNT - Primitives Generated By VF

VS_INVOCATION_COUNT - VS Invocation Counter

HS_INVOCATION_COUNT - HS Invocation Counter

DS_INVOCATION_COUNT - DS Invocation Counter

GS_INVOCATION_COUNT - GS Invocation Counter

GS_PRIMITIVES_COUNT - GS Primitives Counter

CL_INVOCATION_COUNT - Clipper Invocation Counter

PS_INVOCATION_COUNT - PS Invocation Count

PS_INVOCATION_COUNT_SLICEO - PS Invocation Count for Slice0

PS_INVOCATION_COUNT_SLICE1 - PS Invocation Count for Slicel

PS_INVOCATION_COUNT_SLICEZ2 - PS Invocation Count for Slice2

PS_INVOCATION_COUNT_SLICE4 - PS Invocation Count for Slice4

PS_INVOCATION_COUNT_SLICES - PS Invocation Count for Slice5

CPS_INVOCATION_COUNT - CPS Invocation Counter

PS_DEPTH_COUNT

PS_DEPTH_COUNT_SLICEO - PS Depth Count for Slice0

PS_DEPTH_COUNT_SLICE1 - PS Depth Count for Slicel

PS_DEPTH_COUNT_SLICE2 - PS Depth Count for Slice2

PS_DEPTH_COUNT_SLICE3 - PS Depth Count for Slice3

PS_DEPTH_COUNT_SLICE4 - PS Depth Count for Slice4

PS_DEPTH_COUNT_SLICES - PS Depth Count for Slice5

TIMESTAMP - Reported Timestamp Count

Stream Output 0 Write Offset

Stream Output 1 Write Offset

Stream Output 2 Write Offset

Stream Output 3 Write Offset

Window Hardware Generated Clear Value

28 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

CS_CTX_TIMESTAMP- CS Context Timestamp Count:
This register provides a mechanism to obtain cumulative run time of a GPU context on HW.
CS_CTX_TIMESTAMP - CS Context Timestamp Count

Diagram below details on when CS_CTX_TIMESTAMP run time, save/restored during a GPGPU context
switch flow.

) Context Life Cycle in HW
Time

Y

S_fe preempt \fo = presmpt_done

B ontext-4 Workload Execution
[Save

* | Context-A Save -

!

CTX_TIMESTAMP First TH Launch by CTX_TIMESTANP
Restared T5G TG FUL PREEET Saved
CT_TIMESTAMP

Timer Run Period

CTX_TIMESTAMP Run Time for Context-A

Fig: CTX_TIMESTAMP fucntionality during context execution

AUTO_DRAW Registers

3DPRIM_END_OFFSET - Auto Draw End Offset
3DPRIM_START_VERTEX - Load Indirect Start Vertex
3DPRIM_VERTEX_COUNT - Load Indirect Vertex Count
3DPRIM_INSTANCE_COUNT - Load Indirect Instance Count
3DPRIM_START_INSTANCE - Load Indirect Start Instance
3DPRIM_BASE_VERTEX - Load Indirect Base Vertex
3DPRIM_XPO - Load Indirect Extended Parameter 0
3DPRIM_XP1 - Load Indirect Extended Parameter 1
3DPRIM_XP2 - Load Indirect Extended Parameter 2

MMIO Registers for GPGPU Indirect Dispatch

These registers are normally written with the MI_LOAD_REGISTER_MEMORY command rather than from
the CPU.
GPGPU_DISPATCHDIMX - GPGPU Dispatch Dimension X

GPGPU_DISPATCHDIMY - GPGPU Dispatch Dimension Y

Doc Ref # IHD-OS-LKF-Vol 9-4.21 29

intel

GPGPU_DISPATCHDIMZ - GPGPU Dispatch Dimension Z
TS_GPGPU_THREADS_DISPATCHED - Count Active Channels Dispatched

Commands

This section describes the commands specific to 3D-Compute engine

State Commands

This section covers the following commands:

e STATE_PREFETCH command. The STATE_PREFETCH command is provided strictly as an optional
mechanism to possibly enhance pipeline performance by prefetching data into the GPE's
Instruction and State Cache (ISC).

e STATE_SIP command

Command

STATE_SIP

3DSTATE_URB_CLEAR

STATE_BASE_ADDRESS

The STATE_BASE_ADDRESS command sets the base pointers for subsequent state, instruction, and media
indirect object accesses by the GPE. (See Memory Access Indirection for details.)

The following commands must be reissued following any change to the base addresses:
e 3DSTATE_PIPELINE_POINTERS

e 3DSTATE_BINDING_TABLE_POINTERS
e MEDIA_STATE_POINTERS

Execution of this command causes a full pipeline flush; thus its use should be minimized for higher
performance.

Command

STATE_BASE_ADDRESS

PIPELINE_SELECT

The Pipeline Select state is contained within the logical context.

Memory Interface Commands for Rendering Engine

Command

MI_SET_CONTEXT

MI_TOPOLOGY_FILTER

30 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Command Ordering Rules

There are several restrictions regarding the ordering of commands issued to the GPE. This subsection
describes these restrictions along with some explanation of why they exist. Refer to the various
command descriptions for additional information.

PIPELINE_SELECT

The previously active pipeline needs to be flushed immediately before switching to a different pipeline
via use of the PIPELINE_SELECT command.
Refer to for details on the PIPELINE_SELECT command.

PIPELINE_SELECT

PIPE_CONTROL

The PIPE_CONTROL command does not require URB fencing/allocation to have been performed, nor
does it rely on any other pipeline state. It is intended to be used on both the 3D pipe and the Media
pipe. It has special optimizations to support the pipelining capability in the 3D pipe which do not apply
to the Media pipe.

Common Pipeline State-Setting Commands

The following commands are used to set state common to both the 3D and Media pipelines. This state is
comprised of CS FF unit state, non-pipelined global state (EU, etc.), and Sampler shared-function state.

e STATE_BASE_ADDRESS

e STATE_SIP

o 3DSTATE_CHROMA_KEY

o 3DSTATE_BINDING_TABLE_POOL_ALLOC

The state variables associated with these commands must be set appropriately prior to initiating activity
within a pipeline (i.e., 3DPRIMITIVE or MEDIA_OBJECT).

3D Pipeline-Specific State-Setting Commands

The following commands are used to set state specific to the 3D Pipeline.

e 3DSTATE_PIPELINED_POINTERS

o 3DSTATE_BINDING_TABLE_POINTERS
o 3DSTATE_VERTEX_BUFFERS

o 3DSTATE_VERTEX_ELEMENTS

o 3DSTATE_INDEX_BUFFERS

o 3DSTATE_VF_STATISTICS

e 3DSTATE_DRAWING_RECTANGLE

e 3DSTATE_CONSTANT_COLOR

Doc Ref # IHD-OS-LKF-Vol 9-4.21 31

intel

o 3DSTATE_DEPTH_BUFFER
e 3DSTATE_POLY_STIPPLE_OFFSET
e 3DSTATE_POLY_STIPPLE_PATTERN
e 3DSTATE_LINE_STIPPLE
e 3DSTATE_GLOBAL_DEPTH_OFFSET
The state variables associated with these commands must be set appropriately prior to issuing

3DPRIMITIVE.

Media Pipeline-Specific State-Setting Commands
The following command is used to set state specific to the Media pipeline:
e MEDIA_STATE_POINTERS

The state variables associated with this command must be set appropriately prior to issuing
MEDIA_OBJECT.

3DPRIMITIVE

Before issuing a 3DPRIMITIVE command, all state (with the exception of MEDIA_STATE_POINTERS) needs
to be valid. Thus, the commands used to assigned that state must be issued before issuing 3DPRIMITIVE.

MEDIA_OBJECT

Before issuing a MEDIA_OBJECT command, all state (with the exception of 3D-pipeline-specific state)
needs to be valid. Therefore, the commands used to set this state need to have been issued at some
point prior to the issue of MEDIA_OBJECT.

Engine State

This section describes the state specific to the 3D-Compute Engine

Memory Access Indirection

The GPE supports the indirection of certain graphics (GTT-mapped) memory accesses. This support
comes in the form of two base address state variables used in certain memory address computations with
the GPE.

The intent of this functionality is to support the dynamic relocation of certain driver-generated memory
structures after command buffers have been generated but prior to their submittal for execution. For
example, as the driver builds the command stream it could append pipeline state descriptors, kernel
binaries, etc. to a general state buffer. References to the individual items would be inserted in the
command buffers as offsets from the base address of the state buffer. The state buffer could then be
freely relocated prior to command buffer execution, with the driver only needing to specify the final base
address of the state buffer. Two base addresses are provided to permit surface-related state (binding
tables, surface state tables) to be maintained in a state buffer separate from the general state buffer.

32 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

While the use of these base addresses is unconditional, the indirection can be effectively disabled by
setting the base addresses to zero. The following table lists the various GPE memory access paths and
which base address (if any) is relevant.

Base Address Utilization

Base Address
Used Memory Accesses
General State DataPort Read/Write DataPort memory accesses resulting from ‘stateless’ DataPort
Base Address Read/Write requests. See DataPort for a definition of the ‘stateless’ form of requests.

Dynamic State
Base Address

Sampler reads of SAMPLER_STATE data and associated SAMPLER_BORDER_COLOR_STATE.

Viewport states used by CLIP, SF, and WM/CC

COLOR_CALC_STATE, DEPTH_STENCIL_STATE, and BLEND_STATE

Push Constants (depending on state of INSTPM <CONSTANT_BUFFER Address Offset
Disable>)

Instruction Base
Address

Normal EU instruction stream (non-system routine)

System routine EU instruction stream (starting address = SIP)

Surface State
Base Address

Sampler and DataPort reads of BINDING_TABLE_STATE, as referenced by BT pointers passed via
3DSTATE_BINDING_TABLE_POINTERS

Sampler and DataPort reads of SURFACE_STATE data

Indirect Object
Base Address

MEDIA_OBJECT Indirect Data accessed by the CS unit.

None

CS unit reads from Ring Buffers, Batch Buffers

CS writes resulting from PIPE_CONTROL command

All VF unit memory accesses (Index Buffers, Vertex Buffers)

All Sampler Surface Memory Data accesses (texture fetch, etc.)

All DataPort memory accessesexcept ‘stateless’ DataPort Read/Write requests (e.g., RT
accesses.) See DataPort for a definition of the ‘stateless’ form of requests.

Memory reads resulting from STATE_PREFETCH commands

Any physical memory access by the device

GTT-mapped accesses not included above (i.e., default)

Push Constants (depeding on state of INSTPM<CONSTANT_BUFFER Address Offset Disable>
)

The following notation is used in the PRM to distinguish between addresses and offsets:

Notation

Definition

PhysicalAddress[n:m]

Corresponding bits of a physical graphics memory byte address (not mapped by a GTT)

GraphicsAddress[n:m]

Corresponding bits of an absolute, virtual graphics memory byte address (mapped by a
GTT)

GeneralStateOffset[n:m]

Corresponding bits of a relative byte offset added to the General State Base Address
value, the result of which is interpreted as a virtual graphics memory byte address
(mapped by a GTT)

Doc Ref # IHD-OS-LKF-Vol 9-4.21 33

intel

Notation

Definition

DynamicStateOffset[n:m] |Corresponding bits of a relative byte offset added to the Dynamic State Base Address

value, the result of which is interpreted as a virtual graphics memory byte address
(mapped by a GTT)

InstructionBaseOffset[n:m] | Corresponding bits of a relative byte offset added to the Instruction Base Address value,

a GTT)

the result of which is interpreted as a virtual graphics memory byte address (mapped by

SurfaceStateOffset[n:m] | Corresponding bits of a relative byte offset added to the Surface State Base Address

value, the result of which is interpreted as a virtual graphics memory byte address
(mapped by a GTT)

Context Image

Logical Contexts are memory images used to store copies of the device's rendering and ring context.

Logical Contexts are aligned to 256-byte boundaries.

Logical contexts are referenced by their memory address. The format and contents of rendering contexts
are considered device-dependent and software must not access the memory contents directly. The
definition of the logical rendering and power context memory formats is included here primarily for

internal documentation purposes.
Power Context Image

Render Engine Power Context

The table below captures the data from CS power context save/restored by PM. Address offsets in this
table are relative to the starting location of CS in the overall power context image managed by PM.

RCS Power Context Image

of Address Offset
Description Offset Unit| DW (PWR) CSFE/CSBE

NOOP cs |1 0 CSFE
Load_Register_Immediate header 0x1100 10DB (CS |1 001 CSFE
Load_Register_Immediate header 0x1100 10BF (CS |1 0001 CSFE
GFX_MODE 0x229C cS |2 0002 CSFE
GHWSP 0x2080 cS |2 0004 CSFE
RING_BUFFER_CONTROL (Ring Always 0x203C cS |2 0006 CSFE
Disabled)

Ring Head Pointer Register 0x2034 CS |2 0008 CSFE
Ring Tail Pointer Register 0x2030 CS |2 000A CSFE
RING_BUFFER_START 0x2038 cs |2 000C CSFE
RING_BUFFER_CONTROL (Original status) 0x203C cS |2 000E CSFE
Batch Buffer Current Head Register (UDW) 0x2168 cS |2 0010 CSFE

34

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

of Address Offset
Description Offset Unit| DW (PWR) CSFE/CSBE
Batch Buffer Current Head Register 0x2140 cs |2 0012 CSFE
Batch Buffer State Register 0x2110 cs |2 0014 CSFE
SECOND_BB_ADDR_UDW 0x211C cS |2 0016 CSFE
SECOND_BB_ADDR 0x2114 cSs |2 0018 CSFE
SECOND_BB_STATE 0x2118 cSs |2 001A CSFE
RC_PSMI_CONTROL 0x2050 cSs |2 001C CSFE
RC_PWRCTX_MAXCNT 0x2054 cSs |2 001E CSFE
CTX_WA_PTR 0x2058 cSs |2 0020 CSFE
NOPID 0x2094 cSs |2 0022 CSFE
HWSTAM 0x2098 cs |2 0024 CSFE
IMR 0x20A8 cs |2 0026 CSFE
EIR 0x20B0 cs |2 0028 CSFE
EMR 0x20B4 cs |2 002A CSFE
CMD_CCTL_O 0x20C4 cs |2 002C CSFE
UHPTR 0x2134 cs |2 002E CSFE
BB_PREEMPT_ADDR_UDW 0x216C cs |2 0030 CSFE
BB_PREEMPT_ADDR 0x2148 cs |2 0032 CSFE
RING_BUFFER_HEAD_PREEMPT_REG 0x214C cs |2 0034 CSFE
PREEMPT_DLY 0x2214 cs |2 0036 CSFE
CTXT_PREMP_DBG 0x2248 cs |2 0038 CSFE
SYNC_FLIP_STATUS 0x22D0 cS |2 003A CSFE
SYNC_FLIP_STATUS_1 0x22D4 cS |2 003C CSFE
SYNC_FLIP_STATUS_2 0x22EC cSs |2 003E CSFE
WAIT_FOR_RC6_EXIT 0x20CC cS |2 0040 CSFE
RCS_CTXID_PREEMPTION_HINT 0x24CC cS |2 0042 CSFE
CS_PREEMPTION_HINT_UDW 0x24C8 cs |2 0044 CSFE
CS_PREEMPTION_HINT 0x24BC cs |2 0046 CSFE
CCID Regjister 0x2180 cs |2 0048 CSFE
SBB_PREEMPT_ADDRESS_UDW 0x2138 cs |2 004A CSFE
SBB_PREEMPT_ADDRESS 0x213C cs |2 004C CSFE
MI_PREDICATE_RESULT _2 0x23BC cs |2 004E CSFE
CTXT_ST_PTR 0x23A0 cs |2 0050 CSFE
CTXT_ST_BUF 0x2370 CS |24 0052 CSFE
SEMA_WAIT_POLL 0x224C cs |2 0082 CSFE
IDLEDELAY 0x223C CS 0084 CSFE
DISPLAY MESSAGE FORWARD STATUS O0x22E8 CS 0086 CSFE
Doc Ref # IHD-OS-LKF-Vol 9-4.21 35

intel.

of Address Offset
Description Offset Unit| DW (PWR) CSFE/CSBE
RCS_FORCE_TO_NONPRIV 0x24D0 CS |24 0088 CSFE
EXECLIST_STATUS_REGISTER 0x2234 cs |2 00A0Q CSFE
CXT_OFFSET 0x21AC cs |2 00A4 CSBE
STOP_PARSER_CONTROL 0x2424 cSs |2 00A6 CSBE
STOP_PARSER_HINT_ADDR 0x2428 Cs |4 00A8 CSBE
SYNC_FLIP_STATUS_3 0x22B8 cSs |2 00AC CSFE
SYNC_FLIP_STATUS_4 0x22C0 cs |2 00AE CSFE
SYNC_FLIP_STATUS_5 0x22C4 cSs |2 00BO CSFE
SYNC_FLIP_STATUS_6 0x21F8 cSs |2 00B2 CSFE
DISPLAY MESSAGE FORWARD STATUS_2 0x2188 cS |2 00B4 CSFE
DISPLAY MESSAGE FORWARD STATUS_3 0x218C cS |2 00B6 CSFE
EXECLIST_SQ_CONTENTS 0x2510- CS (32 00B8 CSFE
0x254F

CSB_INTERRUPT_MASK 0x2218 cs |2 00D8 CSFE
Reserved 0x25A4 cs 00DC CSFE
NOOP CS 00DE CSFE
00EO CSBE

00ET CSBE

00E6 CSBE

00EC CSBE

00F2 CSBE

00F4 CSBE

00F8 CSBE

00FA CSBE

00FC CSBE

OOFF CSBE

36

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

POSH Power Context

The table below captures the data from CS power context save/restored by PM. Address offsets in this
table are relative to the starting location of CS in the overall power context image managed by PM.

POCS Power Context Image

Description Offset Unit | # of DW | Address Offset (PWR) | CSFE/CSBE

NOOP POCS |1 0 CSFE
Load_Register_Immediate header 0x1100 1045 |POCS |1 001 CSFE
GFX_MODE 0x1829C POCS |2 0002 CSFE
GHWSP 0x18080 POCS |2 0004 CSFE
RC_PSMI_CONTROL 0x18050 POCS |2 0006 CSFE
RC_PWRCTX_MAXCNT 0x18054 POCS |2 0008 CSFE
CTX_WA_PTR 0x18058 POCS |2 000A CSFE
NOPID 0x18094 POCS |2 000C CSFE
CMD_CCTL O 0x180C4 POCS |2 000E CSFE
PREEMPT_DLY 0x18214 POCS |2 0010 CSFE
CTXT_PREMP_DBG 0x18248 POCS |2 0012 CSFE
WAIT_FOR_RC6_EXIT 0x180CC POCS |2 0014 CSFE
RCS_CTXID_PREEMPTION_HINT 0x184CC POCS |2 0016 CSFE
CS_PREEMPTION_HINT_UDW 0x184C8 POCS |2 0018 CSFE
CS_PREEMPTION_HINT 0x184BC POCS |2 001A CSFE
MI_PREDICATE_RESULT_2 0x183BC POCS |2 001C CSFE
SEMA_WAIT_POLL 0x1824C POCS |2 001E CSFE
IDLEDELAY 0x1823C POCS |2 0020 CSFE
RCS_FORCE_TO_NONPRIV 0x184D0 POCS |24 0022 CSFE
EXECLIST_STATUS_REGISTER 0x18234 POCS |2 003A CSFE
CXT_OFFSET 0x181AC POCS |2 003E CSFE
STOP_PARSER_CONTROL 0x18424 POCS |2 0040 CSFE
STOP_PARSER_HINT_ADDR 0x18428 POCS |4 0042 CSFE
Reserved 0x185A4 POCS |2 0046 CSFE
NOOP POCS |8 0048 CSFE
0050 CSBE

0051 CSBE

0056 CSBE

0060 CSBE

0062 CSBE

0064 CSBE

Doc Ref # IHD-OS-LKF-Vol 9-4.21 37

intel

Description Offset Unit | # of DW | Address Offset (PWR) | CSFE/CSBE
006E
006F CSBE

Engine Register and State Context

This section describes programming requirements for the Register State Context.

Programming Note

Context: Register State Context

o All the MMIO registers part of the "Engine Register and State Context Image” are context specific and gets
context save/restored upon a context switch. MMIO register values belonging to a context can be exercised
through HOST/IA MMIO interface only when the context is active in HW. Exercising context specific MMIO
registers through HOST/IA MMIO is completely asynchronous to the context execution in HW and can't
guarantee a desired sampling point during execution. In execlist mode of scheduling there is no active
context when HW is Idle.

o All the write access to MMIO registers listed in the “Engine Register and State Context image” subsections
below must be done through MI commands (MI_LOAD_REGISTER_IMM, MI_LOAD_REG_MEM,
MI_LOAD_REGISTER_REG) in the command sequence.

e MMIO reads or writes to any of the registers listed in the “Engine Register and State Context image”
subsections through HOST/IA MMIO interface must follow the steps below:

e SW should set the Force Wakeup bit to prevent GT from entering C6.
e Write 0x2050[31:0] = 0x00010001 (disable sequence).

e Disable IDLE messaging in CS (Write 0x2050[31:0] = 0x00010001).

e Poll/Wait for register bits of 0x22A4[6:0] turn to 0x30 value.

e Read/Write to desired MMIO registers.

e Enable IDLE messaging in CS (Write 0x2050[31:0] = 0x00010000).

e Force Wakeup bit should be reset to enable C6 entry.

EXECLIST CONTEXT(Ring)
EXECLIST CONTEXT (PPGTT Base)
ENGINE CONTEXT(CSFE)
ENGINE CONTEXT(CSBE)
ENGINE CONTEXT(SOL)
ENGINE CONTEXT(VF)
ENGINE CONTEXT(GAMWC)
ENGINE CONTEXT(GAMT)
ENGINE CONTEXT(LNCF)

ENGINE CONTEXT(SVG)
ENGINE CONTEXT(SVL)

38 Doc Ref # IHD-OS-LKF-Vol 9-4.21

ENGINE CONTEXT(TDL)

ENGINE CONTEXT(WM)

ENGINE CONTEXT(SC)

ENGINE CONTEXT(DM)

ENGINE CONTEXT(VFE)

ENGINE CONTEXT(CS - Footer)

POSH Context Image

EXECLIST CONTEXT(Ring)

EXECLIST CONTEXT (PPGTT Base)

ENGINE CONTEXT(CSFE)

ENGINE CONTEXT(CSBE)

ENGINE CONTEXT(VFR)

ENGINE CONTEXT(OVR)

ENGINE CONTEXT(SVGR)

ENGINE CONTEXT(CS - Footer)

Register State Context

Color Coding

EXECLIST CONTEXT

EXECLIST CONTEXT(PPGTT Base)

ENGINE CONTEXT

EXTENDED ENGINE CONTEXT

intel

Description MMIO Offset/Command Unit # of DW
NOOP CSEL 1
MI_LOAD_REGISTER_IMM 0x1100_101D CSEL 1
Ring Buffer Head 0x2034 CSEL 2
Ring Tail Pointer Register 0x2030 CSEL 2
RING_BUFFER_START 0x2038 CSEL 2
RING_BUFFER_CONTROL 0x203C CSEL 2
Batch Buffer Current Head Register (UDW) 0x2168 CSEL 2
Batch Buffer Current Head Register 0x2140 CSEL 2
Batch Buffer State Register 0x2110 CSEL 2
SECOND_BB_ADDR_UDW 0x211C CSEL 2
SECOND_BB_ADDR 0x2114 CSEL 2
SECOND_BB_STATE 0x2118 CSEL 2
Doc Ref # IHD-OS-LKF-Vol 9-4.21 39

intel

Description MMIO Offset/Command Unit # of DW
BB_PER_CTX_PTR 0x21CO0 CSEL 2
RCS_INDIRECT_CTX 0x21C4 CSEL 2
RCS_INDIRECT_CTX_OFFSET 0x21C8 CSEL 2
CCID 0x2180 CSEL 2
NOOP CSEL 1
MI_LOAD_REGISTER_IMM 0x1100_1011 CSEL 1
CTX_TIMESTAMP 0x23A8 CSEL 2
PDP3_UDW 0x228C CSEL 2
PDP3_LDW 0x2288 CSEL 2
PDP2_UDW 0x2284 CSEL 2
PDP2_LDW 0x2280 CSEL 2
PDP1_UDW 0x227C CSEL 2
PDP1_LDW 0x2278 CSEL 2
PDPO_UDW 0x2274 CSEL 2
PDPO_LDW 0x2270 CSEL 2
MI_LOAD_REGISTER_IMM 0x1100_1001 CSEL 1
POSH_LRCA 0x21B0 CSEL 2
NOOP CSEL 9
NOOP CSEL 1
MI_LOAD_REGISTER_IMM 0x1100_0001 CSEL 1
R_PWR_CLK_STATE 0x20C8 CSEL 2
GPGPU_CSR_BASE_ADDRESS CSEL 3
NOOP CSEL 9
NOOP CSFE 1
MI_LOAD_REGISTER_IMM 0x1100_1057 CSFE 1
EXCC 0x2028 CSFE 2
MI_MODE 0x209C CSFE 2
INSTPM 0x20C0 CSFE 2
PR_CTR_CTL 0x2178 CSFE 2
PR_CTR_THRSH 0x217C CSFE 2
TIMESTAMP Register (LSB) 0x2358 CSFE 2
BB_START_ADDR_UDW 0x2170 CSFE 2
BB_START_ADDR 0x2150 CSFE 2
BB_ADD_DIFF 0x2154 CSFE 2
BB_OFFSET 0x2158 CSFE 2
MI_PREDICATE_RESULT_1 0x241C CSFE 2
CS_GPR (1-16) 0x2600 CSFE 64

40

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Description MMIO Offset/Command Unit # of DW
IPEHR 0x2068 CSFE 2
NOOP CSFE 6
NOOP CSBE 1
MI_LOAD_REGISTER_IMM 0x1100_10AD CSBE 1
CS_CONTEXT_STATUS1 0x2184 CSBE 2
IA_VERTICES_COUNT 0x2310 CSBE 4
[A_PRIMITIVES_COUNT 0x2318 CSBE 4
VS_INVOCATION_COUNT 0x2320 CSBE 4
HS_INVOCATION_COUNT 0x2300 CSBE 4
DS_INVOCATION_COUNT 0x2308 CSBE 4
GS_INVOCATION_COUNT 0x2328 CSBE 4
GS_PRIMITIVES_COUNT 0x2330 CSBE 4
CL_INVOCATION_COUNT 0x2338 CSBE 4
CL_PRIMITIVES_COUNT 0x2340 CSBE 4
PS_INVOCATION_COUNT_O 0x22C8 CSBE 4
PS_DEPTH_COUNT _0 0x22D8 CSBE 4
GPUGPU_DISPATCHDIMX 0x2500 CSBE 2
GPUGPU_DISPATCHDIMY 0x2504 CSBE 2
GPUGPU_DISPATCHDIMZ 0x2508 CSBE 2
MI_PREDICATE_SRCO 0x2400 CSBE 2
MI_PREDICATE_SRCO 0x2404 CSBE 2
MI_PREDICATE_SRC1 0x2408 CSBE 2
MI_PREDICATE_SRC1 0x240C CSBE 2
MI_PREDICATE_DATA 0x2410 CSBE 2
MI_PREDICATE_DATA 0x2414 CSBE 2
MI_PRED_RESULT 0x2418 CSBE 2
3DPRIM_END_OFFSET 0x2420 CSBE 2
3DPRIM_START_VERTEX 0x2430 CSBE 2
3DPRIM_VERTEX_COUNT 0x2434 CSBE 2
3DPRIM_INSTANCE_COUNT 0x2438 CSBE 2
3DPRIM_START_INSTANCE 0x243C CSBE 2
3DPRIM_BASE_VERTEX 0x2440 CSBE 2
Load Indirect Extended Parameter 0 0x2690 CSBE 2
Load Indirect Extended Parameter 1 0x2694 CSBE 2
Load Indirect Extended Parameter 2 0x2698 CSBE 2
GPGPU_THREADS_DISPATCHED 0x2290 CSBE 4
PS_INVOCATION_COUNT_1 0x22F0 CSBE 4

Doc Ref # IHD-OS-LKF-Vol 9-4.21

41

intel

Description MMIO Offset/Command Unit # of DW
PS_DEPTH_COUNT _1 Ox22F8 CSBE 4
DUMMY_REG 0x215C CSBE 2
DUMMY_REG 0x2480 CSBE 2
DUMMY_REG 0x2484 CSBE 2
DUMMY_REG 0x2490 CSBE 2
DUMMY_REG 0x2494 CSBE 2
Reserved 0x2194 CSBE 4
OA_CTX_CONTROL 0x2360 CSBE 2
OACTXID 0x2364 CSBE 2
PS_INVOCATION_COUNT_2 0x2448 CSBE 4
PS_DEPTH_COUNT_2 0x2450 CSBE 4
DUMMY_REG 0x2174 CSBE 2
CPS_INVOCATION_COUNT 0x2478 CSBE 4
PS_INVOCATION_COUNT_3 0x2458 CSBE 4
PS_DEPTH_COUNT_3 0x2460 CSBE 4
PS_INVOCATION_COUNT_4 0x2468 CSBE 4
PS_DEPTH_COUNT_4 0x2470 CSBE 4
PS_INVOCATION_COUNT_5 0x24A0 CSBE 4
PS_DEPTH_COUNT_5 0x24A8 CSBE 4
PS_INVOCATION_COUNT_6 0x25D0 CSBE 4
PS_DEPTH_COUNT_6 0x25B0 CSBE 4
PS_INVOCATION_COUNT_7 0x25D8 CSBE 4
PS_DEPTH_COUNT_7 0x25B8 CSBE 4
NOOP CSBE 6
MI_TOPOLOGY_FILTER CSBE 1
NOOP CSBE 2
PIPELINE_SELECT CSBE 1
STATE_BASE_ADDRESS CSBE 22
3DSTATE_PUSH_CONSTANT_ALLOC_VS CSBE 2
3DSTATE_PUSH_CONSTANT_ALLOC_HS CSBE 2
3DSTATE_PUSH_CONSTANT_ALLOC_DS CSBE 2
3DSTATE_PUSH_CONSTANT_ALLOC_GS CSBE 2
3DSTATE_PUSH_CONSTANT_ALLOC_PS CSBE 2
3DSTATE_BINDING_TABLE_POOL_ALLOC CSBE 4
DUMMY_CMD 0x791A0002 CSBE 4
DUMMY_CMD 0x791B0002 CSBE 4

42

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Description MMIO Offset/Command Unit # of DW
DUMMY_CMD 0x30000001 CSBE 1
3DSTATE_PTBR_TILE_PASS_INFO CSBE 4
NOOP CSBE 5
NOOP SOL 1
MI_LOAD_REGISTER_IMM 0x1100_1027 SOL 1
SO_NUM_PRIMS_WRITTENO 0x5200 SOL 4
SO_NUM_PRIMS_WRITTENT 0x5208 SOL 4
SO_NUM_PRIMS_WRITTEN2 0x5210 SOL 4
SO_NUM_PRIMS_WRITTEN3 0x5218 SOL 4
SO_PRIM_STORAGE_NEEDEDO 0x5240 SOL 4
SO_PRIM_STORAGE_NEEDED1 0x5248 SOL 4
SO_PRIM_STORAGE_NEEDED?2 0x5250 SOL 4
SO_PRIM_STORAGE_NEEDED3 0x5258 SOL 4
SO_WRITE_OFFSETO 0x5280 SOL 2
SO_WRITE_OFFSET1 0x5284 SOL 2
SO_WRITE_OFFSET2 0x5288 SOL 2
SO_WRITE_OFFSET3 0x528C SOL 2
3DSTATE_SO_BUFFER SOL 32
NOOP SOL 3
3DSTATE_SO_DECL_LIST SOL 259
NOOP SOL 0
3DSTATE_INDEX_BUFFER VF 5
3DSTATE_VERTEX_BUFFERS VF 133
3DSTATE_VERTEX_ELEMENTS VF 69
3DSTATE_VF_STATISTICS VF 1
3DSTATE_VF VF 2
3DSTATE_SGVS VF 2
3DSTATE_VF_INSTANCING VF 69
3DSTATE_VF_TOPOLOGY VF 2
NOOP VF 5
MI_LOAD_REGISTER_IMM 0x1100_10C7 VF 1
INSTANCE CNT 08300 - 08384h VF 68
INSTANCE INDX 08400 - 08484h VF 68
COMMITTED VERTEX NUMBER 08390h VF 2
COMMITTED INSTANCE ID 08394h VF 2
COMMITTED PRIMITIVE ID 08398h VF 2
STATUS 0839Ch VF 2
Doc Ref # IHD-OS-LKF-Vol 9-4.21 43

intel

Description MMIO Offset/Command Unit # of DW
COMMON VERTEX 083A0h VF 2
VF_GUARDBAND 083A4h VF 2
INDEX_OPCODE_DATAQ0 08490h VF 2
INDEX_OPCODE_DATAO1 08494h VF 2
INDEX_OPCODE_DATA10 08498h VF 2
INDEX_OPCODE_DATA11 0849Ch VF 2
TOKPROC_CULL_COUNTO 084A0h VF 2
TOKPROC_CULL_COUNT1 084A4h VF 2
TOKPROC_PID_COUNTO 084A8h VF 2
TOKPROC_PID_COUNT1 084ACh VF 2
TOKPROC_CULL_VERTEX 084B0h VF 2
TOKPROC_PID_OBJECT 084B4h VF 2
TOKPROC_DUMMY_OBIJECT 084B8h VF 2
TOKPROC_CL_PTR 084BCh VF 2
TOKPROC_CL_MISC 084C0h VF 2
TOKPROC_STG1_DATA 084C4h VF 2
TOKPROC_STG1_VERTEX_COUNT 084C8h VF 2
TOKPROC_STG1_OBJECT_COUNT 084CCh VF 2
TOKPROC_STG1_VALID 084D0h VF 2
TOKPROC_STGO_INSTANCE_COUNT 084D4h VF 2
TOKPROC_STGO_VERTEX_COUNT 084D8h VF 2
TOKPROC_STGO_COUNT 084DCh VF 2
TOKPROC_STGO_VALID 084EO0h VF 2
TOKIN_DATAO 084F0h VF 2
TOKIN_DATA1 084F4h VF 2
TOKIN_DATA2 084F8h VF 2
TOKIN_DATA3 084FCh VF 2
NOOP VF 7
3DSTATE_VF_COMPONENT_PACKING VF 5
3DSTATE_VF_SGVS_2 VF 3
3DSTATE_PTBR_TILE_SELECT VF 2
NOOP VF 6
NOOP GAMWC |1
MI_LOAD_REGISTER_IMM 0x1100_107F GAMWC |1
GFX_MOCS_0 C800 GAMWC |2
GFX_MOCS_1 C804 GAMWC |2

44

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Description MMIO Offset/Command Unit # of DW
GFX_MOCS_2 C808 GAMWC |2
GFX_MOCS_3 c8oC GAMWC |2
GFX_MOCS_4 c810 GAMWC |2
GFX_MOCS_5 C814 GAMWC |2
GFX_MOCS_6 C818 GAMWC |2
GFX_MOCS_7 c81C GAMWC |2
GFX_MOCS_8 820 GAMWC |2
GFX_MOCS_9 C824 GAMWC |2
GFX_MOCS_10 828 GAMWC |2
GFX_MOCS_11 c82C GAMWC |2
GFX_MOCS_12 C830 GAMWC |2
GFX_MOCS_13 C834 GAMWC |2
GFX_MOCS_14 C838 GAMWC |2
GFX_MOCS_15 C83C GAMWC |2
GFX_MOCS_16 C840 GAMWC |2
GFX_MOCS_17 C844 GAMWC |2
GFX_MOCS_18 C848 GAMWC |2
GFX_MOCS_19 C84C GAMWC |2
GFX_MOCS_20 C850 GAMWC |2
GFX_MOCS_21 C854 GAMWC |2
GFX_MOCS_22 C858 GAMWC |2
GFX_MOCS_23 C85C GAMWC |2
GFX_MOCS_24 C860 GAMWC |2
GFX_MOCS_25 C864 GAMWC |2
GFX_MOCS_26 C868 GAMWC |2
GFX_MOCS_27 Cc86C GAMWC |2
GFX_MOCS_28 870 GAMWC |2
GFX_MOCS_29 C874 GAMWC |2
GFX_MOCS_30 C878 GAMWC |2
GFX_MOCS_31 c87C GAMWC |2
GFX_MOCS_32 880 GAMWC |2
GFX_MOCS_33 C884 GAMWC |2
GFX_MOCS_34 888 GAMWC |2
GFX_MOCS_35 C88C GAMWC |2
GFX_MOCS_36 C890 GAMWC |2
GFX_MOCS_37 C894 GAMWC |2
GFX_MOCS_38 C898 GAMWC |2

Doc Ref # IHD-OS-LKF-Vol 9-4.21

45

intel

Description MMIO Offset/Command Unit # of DW
GFX_MOCS_39 C89C GAMWC |2
GFX_MOCS_40 C8A0 GAMWC |2
GFX_MOCS_41 C8A4 GAMWC |2
GFX_MOCS_42 C8A8 GAMWC |2
GFX_MOCS_43 C8AC GAMWC |2
GFX_MOCS_44 C8B0 GAMWC |2
GFX_MOCS_45 C8B4 GAMWC |2
GFX_MOCS_46 C8B8 GAMWC |2
GFX_MOCS_47 C8BC GAMWC |2
GFX_MOCS_48 C8COo GAMWC |2
GFX_MOCS_49 c8c4 GAMWC |2
GFX_MOCS_50 C8C8 GAMWC |2
GFX_MOCS_51 C8CC GAMWC |2
GFX_MOCS_52 C8D0 GAMWC |2
GFX_MOCS_53 C8D4 GAMWC |2
GFX_MOCS_54 C8D8 GAMWC |2
GFX_MOCS_55 C8DC GAMWC |2
GFX_MOCS_56 C8EO GAMWC |2
GFX_MOCS_57 C8E4 GAMWC |2
GFX_MOCS_58 C8E8 GAMWC |2
GFX_MOCS_59 C8EC GAMWC |2
GFX_MOCS_60 C8F0 GAMWC |2
GFX_MOCS_61 C8F4 GAMWC |2
GFX_MOCS_62 C8F8 GAMWC |2
GFX_MOCS_63 C8FC GAMWC |2
NOOP GAMWC |14
NOOP GAMT 1
MI_LOAD_REGISTER_IMM 0x1100_100B GAMT 1
TR_VATT_L3 4DEQ GAMT 2
Tiled Resources VA Translation Table L3 ptr - DW1 4DE4 GAMT 2
TRNULLDETCT 4DE8 GAMT 2
TiledResources Invalid Tile Detection Register ADEC GAMT 2
TiledResources Invalid Tile Detection Register 4DFO0 GAMT 2
NOOP GAMT 2
NOOP LNCF 1
MI_LOAD_REGISTER_IMM 0x1100_1001 LNCF 1
L3CNTLREG 7034 LNCF 2

46

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Description MMIO Offset/Command Unit # of DW
NOOP LNCF 1
MI_LOAD_REGISTER_IMM 0x1100_1041 LNCF 1
LNCFCMOCSO0 B020 LNCF 2
LNCFCMOCS1 B024 LNCF 2
LNCFCMOCS2 B028 LNCF 2
LNCFCMOCS3 B02C LNCF 2
LNCFCMOCS4 B030 LNCF 2
LNCFCMOCS5 B034 LNCF 2
LNCFCMOCS6 BO38 LNCF 2
LNCFCMOCS7 BO3C LNCF 2
LNCFCMOCS8 B040 LNCF 2
LNCFCMOCS9 B044 LNCF 2
LNCFCMOCS10 B048 LNCF 2
LNCFCMOCS11 B04C LNCF 2
LNCFCMOCS12 B050 LNCF 2
LNCFCMOCS13 B054 LNCF 2
LNCFCMOCS14 B058 LNCF 2
LNCFCMOCS15 BO5C LNCF 2
LNCFCMOCS16 B060 LNCF 2
LNCFCMOCS17 BO64 LNCF 2
LNCFCMOCS18 B068 LNCF 2
LNCFCMOCS19 BO6C LNCF 2
LNCFCMOCS20 B070 LNCF 2
LNCFCMOCS21 BO74 LNCF 2
LNCFCMOCS22 BO78 LNCF 2
LNCFCMOCS23 BO7C LNCF 2
LNCFCMOCS24 B080 LNCF 2
LNCFCMOCS25 B084 LNCF 2
LNCFCMOCS26 B0O88 LNCF 2
LNCFCMOCS27 B08C LNCF 2
LNCFCMOCS28 B090 LNCF 2
LNCFCMOCS29 B094 LNCF 2
LNCFCMOCS30 B098 LNCF 2
LNCFCMOCS31 B09C LNCF 2
TCCNTLREG BOA4 LNCF 2
NOOP LNCF 8
3DSTATE_CONSTANT_VS_Commited SVG 11

Doc Ref # IHD-OS-LKF-Vol 9-4.21

47

intel

Description MMIO Offset/Command Unit # of DW
3DSTATE_CONSTANT_HS_Commited SVG 11
3DSTATE_CONSTANT_DS_Commited SVG 11
3DSTATE_CONSTANT_GS_Commited SVG 11
3DSTATE_VS SVG 9
3DSTATE_BINDING_TABLE_POINTERS_VS SVG 2
3DSTATE_SAMPLER_STATE_POINTERS_VS SVG 2
3DSTATE_URB_VS SVG 2
3DSTATE_STREAMOUT SVG 5
3DSTATE_CLIP SVG 4
3DSTATE_SF SVG 4
3DSTATE_SCISSOR_STATE_POINTERS SVG 2
3DSTATE_VIEWPORT_STATE_POINTERS_CL_SF SVG 2
3DSTATE_RASTER SVG 5
3DSTATE_WM_HZ_OP SVG 5
3DSTATE_MULTISAMPLE SVG 2
3DSTATE_HS SVG 9
3DSTATE_BINDING_TABLE_POINTERS_HS SVG 2
3DSTATE_SAMPLER_STATE_POINTERS_HS SVG 2
3DSTATE_URB_HS SVG 2
3DSTATE_TE SVG 4
3DSTATE_DS SVG 11
3DSTATE_BINDING_TABLE_POINTERS_DS SVG 2
3DSTATE_SAMPLER_STATE_POINTERS_DS SVG 2
3DSTATE_URB_DS SVG 2
3DSTATE_GS SVG 10
3DSTATE_BINDING_TABLE_POINTERS_GS SVG 2
3DSTATE_SAMPLER_STATE_POINTERS_GS SVG 2
3DSTATE_URB_GS SVG 2
3DSTATE_CONSTANT_VS_NonComitted SVG 11
3DSTATE_CONSTANT_HS_NonComitted SVG 11
3DSTATE_CONSTANT_DS_NonComitted SVG 11
3DSTATE_CONSTANT_GS_NonComitted SVG 11
3DSTATE_DRAW_RECTANGULAR SVG 4
MI_LOAD_REGISTER_IMM 0x1100_1001 SVG 1
FF_PERF_REG 0x6b1c SVG 2
NOOP SVG 1
3DSTATE_CONSTANT_PS_comitted SVL 11

48

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Description MMIO Offset/Command Unit # of DW
NOOP SVL 1
3DSTATE_WM SVL 2
3DSTATE_VIEWPORT_STATE_POINTER_CC SVL 2
3DSTATE_CC_STATE_POINTERS SVL 2
3DSATE_WM_SAMPLEMASK SVL 2
3DSTATE_WM_DEPTH_STENCIL SVL 4
3DSTATE_WM_CHROMAKEY SVL 2
3DSTATE_DEPTH_BUFF SVL 8
3DSTATE_HIZ_DEPTH_BUFF SVL 5
3DSTATE_STC_DEPTH_BUFF SVL 5
3DSTATE_CLEAR_PARAMS SVL 3
3DSTATE_CPS SVL 9
3DSTATE_SBE SVL 6
3DSTATE_SBE_SWIZ SVL 11
3DSTATE_PS SVL 12
3DSTATE_BINDING_TABLE_POINTERS_PS SVL 2
STATE_SAMPLER_STATE_POINTERS_PS SVL 2
3DSTATE_BLEND_STATE_POINTERS SVL 2
3DSTATE_PS_EXTRA SVL 2
3DSTATE_PS_BLEND SVL 2
NOOP SVL 1
3DSTATE_CONSTANT_PS_NonComitted SVL 11
3DSTATE_3D_MODE SVL 2
3DSTATE_SAMPLE_PATTERN SVL 9
3DSTATE_SUBSLICE_HASH_TABLE SVL 6
NOOP SVL 33
MI_LOAD_REGISTER_IMM 0x1100_101B SVL 1
Cache_Mode_0 0x7000 SVL 2
Cache_Mode_1 0x7004 SVL 2
GT_MODE 0x7008 SVL 2
FBC_RT_BASE_ADDR_REGISTER 0x7020 SVL 2
FBC_RT_BASE_ADDR_REGISTER_UPPER 0x7024 SVL 2
OA_CULL 0x7030 SVL 2
Z_DISCARD_EN 0x7040 SVL 2
NOOP SVL 6
NOOP TDL 1
MI_LOAD_REGISTER_IMM 0x1100_104F TDL 1

Doc Ref # IHD-OS-LKF-Vol 9-4.21

49

intel

Description MMIO Offset/Command Unit # of DW
TD_CTL E400 TDL 2
TD_CTL2 E404 TDL 2
TD_VF_VS_EMSK E408 TDL 2
TD_GS_EMSK E40C TDL 2
TD_WIZ_EMSK E410 TDL 2
TD_TS_EMSK E428 TDL 2
TD_HS_EMSK E4BO TDL 2
TD_DS_EMSK E4B4 TDL 2
EU_PERF_CNT_CTLO E458 TDL 2
EU_PERF_CNT_CTL1 E558 TDL 2
EU_PERF_CNT_CTL2 E658 TDL 2
EU_PERF_CNT_CTL3 E758 TDL 2
EU_PERF_CNT_CTL4 E45C TDL 2
EU_PERF_CNT_CTL5 E55C TDL 2
EU_PERF_CNT_CTL6 E65C TDL 2
CULLBIT3 E488 TDL 2
CACHE_MODE_SS E420 TDL 2
VSR_PUSHCONSTANT_BASE E518 TDL 2
VSR_EMASK E51C TDL 2
SLM_BANKHASH E660 TDL 2
NOOP TDL 10
STATE_SIP TDL 3
NOOP TDL 1
NOOP WM 1
MI_LOAD_REGISTER_IMM 0x1100_1007 WM 1
WMHWCLRVAL 0x5524 WM 2
3DSTATE_POLY_STIPPLE_PATTERN WM 33
3DSTATE_AA_LINE_PARAMS WM 3
3DSTATE_POLY_STIPPLE_OFFSET WM 2
3DSTATE_LINE_STIPPLE WM 3
3DSTATE_SLICE_HASH_STATE_POINTERS WM 2
NOOP WM 11
3DSTATE_MONOFILTER_SIZE SC 2
3DSTATE_CHROMA_KEY SC 16
NOOP SC 1
MI_LOAD_REGISTER_IMM 0x1100_100D SC 1
SAMPLER_MODE OxE18C SC 2

50

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Description MMIO Offset/Command Unit # of DW
NOOP SC 14
NOOP DM 1
3DSTATE_SAMPLER_PALETTE_LOADO DM 257
NOOP DM 1
3DSTATE_SAMPLER_PALETTE_LOAD1 DM 257
NOOP DM 1
MI_LOAD_REGISTER_IMM 0x1100_0001 DM 1
DM_DUMMY_REG O0xEOQ0 DM 2
NOOP DM 8
MI_BATCH_BUFFER_END CSEND 1
NOOP CSEND |127
POSH Register State Context
Color Coding
EXECLIST CONTEXT
EXECLIST CONTEXT(PPGTT Base)
ENGINE CONTEXT
EXTENDED ENGINE CONTEXT
URB_ATOMIC CONTEXT
Description MMIO Offset/Command Unit # of DW
NOOP POCSEL |1
MI_LOAD_REGISTER_IMM 0x1100_101B POCSEL |1
0x18244 POCSEL |2
Ring Buffer Head 0x18034 POCSEL |2
Ring Tail Pointer Register 0x18030 POCSEL |2
RING_BUFFER_START 0x18038 POCSEL |2
RING_BUFFER_CONTROL 0x1803C POCSEL |2
Batch Buffer Current Head Register (UDW) 0x18168 POCSEL |2
Batch Buffer Current Head Register 0x18140 POCSEL |2
Batch Buffer State Register 0x18110 POCSEL |2
SECOND_BB_ADDR_UDW 0x1811C POCSEL |2
SECOND_BB_ADDR 0x18114 POCSEL |2
SECOND_BB_STATE 0x18118 POCSEL |2
BB_PER_CTX_PTR 0x181C0 POCSEL |2
RCS_INDIRECT_CTX 0x181C4 POCSEL |2
Doc Ref # IHD-OS-LKF-Vol 9-4.21 51

intel

Description MMIO Offset/Command Unit # of DW
RCS_INDIRECT_CTX_OFFSET 0x181C8 POCSEL |2
NOOP POCSEL |2
NOOP POCSEL (48
NOOP POCSFE |1
EXCC 0x18028 POCSFE |2
MI_MODE 0x1809C POCSFE |2
INSTPM 0x180C0 POCSFE |2
TIMESTAMP Register (LSB) 0x18358 POCSFE |2
BB_START_ADDR_UDW 0x18170 POCSFE |2
BB_START_ADDR 0x18150 POCSFE |2
BB_ADD_DIFF 0x18154 POCSFE |2
BB_OFFSET 0x18158 POCSFE |2
MI_PREDICATE_RESULT_1 0x1841C POCSFE |2
CS_GPR (1-16) 0x18600 POCSFE |64
IPEHR 0x18068 POCSFE |2
NOOP POCSFE |10
NOOP POCSBE |1
MI_LOAD_REGISTER_IMM 0x1100_1045 POCSBE 1
CS_CONTEXT_STATUS1 0x18184 POCSBE |2
IA_VERTICES_COUNT 0x18310 POCSBE |4
IA_PRIMITIVES_COUNT 0x18318 POCSBE |4
VS_INVOCATION_COUNT 0x18320 POCSBE |4
CL_INVOCATION_COUNT 0x18338 POCSBE |4
CL_PRIMITIVES_COUNT 0x18340 POCSBE |4
MI_PREDICATE_SRCO 0x18400 POCSBE |2
MI_PREDICATE_SRCO 0x18404 POCSBE |2
MI_PREDICATE_SRC1 0x18408 POCSBE |2
MI_PREDICATE_SRC1 0x1840C POCSBE |2
MI_PREDICATE_DATA 0x18410 POCSBE |2
MI_PREDICATE_DATA 0x18414 POCSBE |2
MI_PRED_RESULT 0x18418 POCSBE |2
3DPRIM_END_OFFSET 0x18420 POCSBE |2
3DPRIM_START_VERTEX 0x18430 POCSBE |2
3DPRIM_VERTEX_COUNT 0x18434 POCSBE |2
3DPRIM_INSTANCE_COUNT 0x18438 POCSBE |2
3DPRIM_START_INSTANCE 0x1843C POCSBE |2
3DPRIM_BASE_VERTEX 0x18440 POCSBE |2

52

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Description MMIO Offset/Command Unit # of DW
Load Indirect Extended Parameter 0 0x18690 POCSBE |2
Load Indirect Extended Parameter 1 0x18694 POCSBE |2
Load Indirect Extended Parameter 2 0x18698 POCSBE |2
MI_TAGADDR 0x18194 POCSBE |4
Reserved 0x1859C POCSBE |2
Reserved 0x185A0 POCSBE |2
PTBR_NUM_PAGES_RECORDED_REGISTER 0x18594 POCSBE |2
PTBR_PAGE_POOL_SIZE_REGISTER 0x18590 POCSBE |2
NOOP POCSBE |8
MI_TOPOLOGY_FILTER POCSBE |1
NOOP POCSBE |2
PIPELINE_SELECT POCSBE |1
STATE_BASE_ADDRESS POCSBE |22
3DSTATE_PUSH_CONSTANT_ALLOC_VS POCSBE |2
3DSTATE_BINDING_TABLE_POOL_ALLOC POCSBE |4
DUMMY_CMD 0x791A0002 POCSBE |4
3DSTATE_PTBR_POOL_BASE_ADDRESS POCSBE |3
3DSTATE_PTBR_FREE_LIST_BASE_ADDRESS POCSBE |3
3DSTATE_PTBR_RENDER_LIST_BASE_ADDRESS POCSBE |3
3DSTATE_PTBR_TILE_PASS_INFO POCSBE |4
NOOP POCSBE |15
3DSTATE_INDEX_BUFFER VFR 5
3DSTATE_VERTEX_BUFFERS VFR 133
3DSTATE_VERTEX_ELEMENTS VFR 69
3DSTATE_VF_STATISTICS VFR 1
3DSTATE_VF VFR 2
3DSTATE_SGVS VFR 2
3DSTATE_VF_INSTANCING VFR 69
3DSTATE_VF_TOPOLOGY VFR 2
NOOP VFR 5
0x1100_1095 VFR 1
INSTANCE CNT 16E00 - 16E84h VFR 68
Doc Ref # IHD-OS-LKF-Vol 9-4.21 53

intel

POSH Register State Context

Color Coding

EXECLIST CONTEXT

EXECLIST CONTEXT(PPGTT Base)

ENGINE CONTEXT

EXTENDED ENGINE CONTEXT

URB_ATOMIC CONTEXT

Description MMIO Offset/Command Unit # of DW
NOOP POCSEL |1
MI_LOAD_REGISTER_IMM 0x1108_1019 CSEL 1
Ring Buffer Head 0x18034 POCSEL |2
Ring Tail Pointer Register 0x18030 POCSEL |2
RING_BUFFER_START 0x18038 POCSEL |2
RING_BUFFER_CONTROL 0x1803C POCSEL |2
Batch Buffer Current Head Register (UDW) 0x18168 POCSEL |2
Batch Buffer Current Head Register 0x18140 POCSEL |2
Batch Buffer State Register 0x18110 POCSEL |2
BB_PER_CTX_PTR 0x181C0 POCSEL |2
RCS_INDIRECT_CTX 0x181C4 POCSEL |2
RCS_INDIRECT_CTX_OFFSET 0x181C8 POCSEL |2
CCID 0x18180 POCSEL |2
SEMAPHORE_TOKEN 0x182B4 POCSEL |2
NOOP POCSEL |4
NOOP POCSEL |54
NOOP POCSFE |1
BB_STACK_WRITE_PORT 0x18588 POCSFE |12
EXCC 0x18028 POCSFE |2
MI_MODE 0x1809C POCSFE |2
INSTPM 0x180C0 POCSFE |2
TIMESTAMP Register (LSB) 0x18358 POCSFE |2
BB_START_ADDR_UDW 0x18170 POCSFE |2
BB_START_ADDR 0x18150 POCSFE |2
BB_ADD_DIFF 0x18154 POCSFE |2
BB_OFFSET 0x18158 POCSFE |2
MI_PREDICATE_RESULT_1 0x1841C POCSFE |2

54

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Description MMIO Offset/Command Unit # of DW
CS_GPR (1-16) 0x18600 POCSFE |64
IPEHR 0x18068 POCSFE |2
CS_MI_ADDRESS_OFFSET 0x183B4 POCSFE |2
MI_SET_PREDICATE_RESULT 0x183B8 POCSFE |2
WPARID 0x1821C POCSFE |2
PREDICATION_MASK Ox181FC POCSFE |2
NOOP POCSFE |6
NOOP POCSBE |1
CS_CONTEXT_STATUS1 0x18184 POCSBE |2
IA_VERTICES_COUNT 0x18310 POCSBE |4
IA_PRIMITIVES_COUNT 0x18318 POCSBE |4
VS_INVOCATION_COUNT 0x18320 POCSBE |4
CL_INVOCATION_COUNT 0x18338 POCSBE |4
CL_PRIMITIVES_COUNT 0x18340 POCSBE |4
MI_PREDICATE_SRCO 0x18400 POCSBE |2
MI_PREDICATE_SRCO 0x18404 POCSBE |2
MI_PREDICATE_SRC1 0x18408 POCSBE |2
MI_PREDICATE_SRC1 0x1840C POCSBE |2
MI_PREDICATE_DATA 0x18410 POCSBE |2
MI_PREDICATE_DATA 0x18414 POCSBE |2
MI_PRED_RESULT 0x18418 POCSBE |2
3DPRIM_END_OFFSET 0x18420 POCSBE |2
3DPRIM_START_VERTEX 0x18430 POCSBE |2
3DPRIM_VERTEX_COUNT 0x18434 POCSBE |2
3DPRIM_INSTANCE_COUNT 0x18438 POCSBE |2
3DPRIM_START_INSTANCE 0x1843C POCSBE |2
3DPRIM_BASE_VERTEX 0x18440 POCSBE |2
Load Indirect Extended Parameter 0 0x18690 POCSBE |2
Load Indirect Extended Parameter 1 0x18694 POCSBE |2
Load Indirect Extended Parameter 2 0x18698 POCSBE |2
MI_TAGADDR 0x18194 POCSBE |4
PTBR_NUM_PAGES_RECORDED_REGISTER 0x18594 POCSBE |2
NOOP POCSBE |12
MI_TOPOLOGY_FILTER POCSBE |1
NOOP POCSBE |2
PIPELINE_SELECT POCSBE |1
STATE_BASE_ADDRESS POCSBE |22

Doc Ref # IHD-OS-LKF-Vol 9-4.21

55

intel

Description MMIO Offset/Command Unit # of DW
3DSTATE_PUSH_CONSTANT_ALLOC_VS POCSBE |2
3DSTATE_BINDING_TABLE_POOL_ALLOC POCSBE |4
NOOP POCSBE |4
3DSTATE_PTBR_POOL_BASE_ADDRESS POCSBE |3
3DSTATE_PTBR_FREE_LIST_BASE_ADDRESS POCSBE |3
3DSTATE_PTBR_RENDER_LIST_BASE_ADDRESS POCSBE |3
3DSTATE_PTBR_TILE_PASS_INFO POCSBE |4
NOOP POCSBE |15
3DSTATE_INDEX_BUFFER VFR 5
3DSTATE_VERTEX_BUFFERS VFR 133
3DSTATE_VF_STATISTICS VFR 1
3DSTATE_VF VFR 2
3DSTATE_VFG VFR 4
3DSTATE_VF_INSTANCING VFR 69
3DSTATE_VF_TOPOLOGY VFR 2
NOOP VFR 5
COMMITTED VERTEX NUMBER 16E90h VFR 2
COMMITTED INSTANCE ID 16E94h VFR 2
COMMITTED PRIMITIVE ID 16E98h VFR 2
STATUS 16E9Ch VFR 2
COMMON VERTEX 16EAON VFR 2
VF_GUARDBAND 16EA4h VFR 2
NOOP VFR 21
NOOP VFR 2
NOOP VFR 6
OVR Context OVR 1040
3DSTATE_CONSTANT_VS_Commited SVGR 11
NOOP SVGR 11
NOOP SVGR 11
NOOP SVGR 11
3DSTATE_VERTEX_ELEMENTS SVGR 69
3DSTATE_VF_COMPONENT_PACKING SVGR 5
3DSTATE_VF_SGVS SVGR 2
3DSTATE_VF_SGVS_2 SVGR 3
3DSTATE_VS SVGR 9
3DSTATE_BINDING_TABLE_POINTERS_VS SVGR 2
3DSTATE_SAMPLER_STATE_POINTERS_VS SVGR 2

56

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Description MMIO Offset/Command Unit # of DW
3DSTATE_URB_ALLOC_VS SVGR 3
NOOP SVGR 37
3DSTATE_CLIP SVGR 4
3DSTATE_PRIMITIVE_REPLICATION SVGR 6
3DSTATE_SF SVGR 4
3DSTATE_SCISSOR_STATE_POINTERS SVGR 2
3DSTATE_VIEWPORT_STATE_POINTERS_CL_SF SVGR 2
3DSTATE_RASTER SVGR 5
NOOP SVGR 9
3DSTATE_MULTISAMPLE SVGR 2
NOOP SVGR 55
3DSTATE_DRAWING_RECTANGLE SVGR 4
NOOP SVGR 1
MI_LOAD_REGISTER_IMM 0x1100_1011 SVGR 1
FF_PERF_REG 0x17b1c SVGR 2
CULLBIT1 0x17100 SVGR 2
VFLSKPD 0x172A8 SVGR 2
Reserved 0x17204 SVGR 2
Reserved 0x17208 SVGR 2
Reserved 0x1720c SVGR 2
FF_MODE 0x17210 SVGR 2
Reserved 0x17280 SVGR 2
Reserved 0x17284 SVGR 2
PTBR_PAGE_POOL_SIZE_REGISTER 0x17520 SVGR 2
NOOP SVGR 2
NOOP SVGR 4
MI_BATCH_BUFFER_END CSEND 1
NOOP CSEND 127
Doc Ref # IHD-OS-LKF-Vol 9-4.21 57

intel

3D Pipeline Stages

The following table lists the various stages of the 3D pipeline and describes their major functions.

Pipeline Stage

Functions Performed

Command Stream
(CS)

The Command Stream stage is responsible for managing the 3D pipeline and passing
commands down the pipeline. In addition, the CS unit reads “constant data” from memory
buffers and places it in the URB.

Note that the CS stage is shared between the 3D, GPGPU and Media pipelines.

Vertex Fetch (VF)

The Vertex Fetch stage, in response to 3D Primitive Processing commands, is responsible for
reading vertex data from memory, reformatting it, and writing the results into Vertex URB
Entries. It then outputs primitives by passing references to the VUEs down the pipeline.

Vertex Shader (VS)

The Vertex Shader stage is responsible for processing (shading) incoming vertices by passing
them to VS threads.

Hull Shader (HS)

The Hull Shader is responsible for processing (shading) incoming patch primitives as part of
the tessellation process.

Tessellation Engine
(TE)

The Tessellation Engine is responsible for using tessellation factors (computed in the HS
stage) to tessellate U,V parametric domains into domain point topologies.

Domain Shader (DS)

The Domain Shader stage is responsible for processing (shading) the domain points
(generated by the TE stage) into corresponding vertices.

Geometry Shader
(GS)

The Geometry Shader stage is responsible for processing incoming objects by passing each
object’s vertices to a GS thread.

Stream Output Logic
(SOL)

The Stream Output Logic is responsible for outputting incoming object vertices into Stream
Out Buffers in memory.

Clipper (CLIP)

The Clipper stage performs Clip Tests on incoming objects and clips objects if required.
Objects are clipped using fixed-function hardware.

Strip/Fan (SF)

The Strip/Fan stage performs object setup. Object setup uses fixed-function hardware.

Windower/Masker | The Windower/Masker performs object rasterization and determines visibility coverage.
(WM)
CPS Pipeline stage that gathers coarse pixels (CPs) for Coarse Pixel Shading (CPS).

PS Dispatch (PSD)

PSD assembles and dispatches Pixel Shader (PS) threads at one of these rates: CP, Pixel (P), or
Sample (S).

58

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

3D Pipeline-Level State

This section contains table commands for the 3D Pipeline Level.

Programming Note

Context: 3D Pipeline-Level State - Push Constant URB Allocation

The push constants are buffered in the Push Constant section of the URB which is part of the L3$. Software is
required to program the hardware to allocate space in the URB for each shader push constant. The software is
limited to the low addresses of the URB and must ensure that none of the shaders have overlapping handles.

Software may use some if not all of the Push Constant region of the URB for pr-stage handle allocations as long as
none of the push constants and handle allocations overlap.

Refer to the various 3DSTATE_PUSH_CONSTANT_ALLOC_xx state commands for details regarding the maximum
size of the Push Constant and other state programming information.

Below is a diagram that represents how the hardware may move and store one CONSTANT_BUFFER
command for a fixed function shader:

MEMORY URB GRF

Constant Buffer 1 Constant Buffer O
Constant Buffer O

Constant Buffer 1

Constant Buffer 1

Constant Buffer0

Constant Buffer 2

Constant Buffer 2
Constant Buffer 2 Constant Buffer 3

Constant Buffer 3

Constant Buffer 3

Doc Ref # IHD-OS-LKF-Vol 9-4.21 59

intel

The bubbles in the URB are caused by the constant buffer in memory starting on a half cacheline and
being an even number in length. If the constant buffer starts on an odd cacheline and has an odd
number length, then there will only be a bubble at the beginning of the buffer in the URB. If the constant
buffer in memory starts on a cache line boundary and has an odd number length, then the bubble will
only be at the end of the constant buffer in the URB. Once the constant buffer is written to the GRF space
then all the bubbles will be removed.

Software must guarantee that there is enough space in the push constant buffer in the URB to hold one
constant buffer from memory. This includes any buffering to write the 512b aligned requests from
memory into the URB. Because the L3$ only supports writes from memory in 512b chunks, the URB may
have some bubbles between each constant buffer fetch.

3DSTATE_3D_MODE

3D Pipeline Geometry

Block Diagram

The following block diagram shows the stages of the Geometry Pipeline and where they are positioned in
the overall 3D Pipeline.

Render Command
Streamer (RCS)
- L

Vertex Fetch (VF)
] L

Vertex Shader (VS)
L

Hull Shader (HS)
[

Tessellation Engine (TE)

Domain Shader (DS)
=

Geometry Shader (GS,
Y (Gs) Thread-Requesting Stage

g
- Fixed-Function-Only Stage
StreamOut (SO)
g
Clipper

HRasterization—»F—Geometry Pipeline

60 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

POSH Pipeline Overview

The Position-Only Shading (POSH) pipeline (aka “Cull Pipe” or “Record Pipe") is utilized to improve 3D
rendering performance by removing culled objects from the Render pipeline workload. The POSH
pipeline pre-processes geometry objects using simple “position-only” vertex input and vertex shaders.
These objects are then subjected to clipper/setup cull tests. The results of these cull tests are then stored
(compressed) as streams of “visibility tokens” in memory. Later, when the same geometry work is
submitted to the Render pipe, the VF stage of the Render pipe will receive the pre-recorded visibility
tokens and use those tokens to skip over culled objects and only process the non-culled objects. The
POSH pipe is designed to run ahead of the Render pipe by buffering visibility data for render passes and
possibly entire frames before being consumed by the Render pipe.

— e —— —— —— — —_— e ——— —

| [
, POSH Pipe | | RENDER Pipe |
| | | :
| | | :
I e Res i
|

| | |
. L v |
| WFR I I WF |

| | |
| VER I | | V5 :
: CLR : : HS |
| SFR | | TE :
: OVR : : o5 |
| | | G5 :
: SOL [
o | cL :

i=ihili |
Wisibility | = |
Data | |
(Memory) b e |

POSH Pipeline Work Submission

Work is performed on the POSH pipeline by submitting command streams to the POSH CS (POCS) unit
which operates similarly to the Render CS (RCS) unit. Refer to Command Stream Programming for POCS
programming details.

Geometry & Setup Stages of POSH Pipeline

The POSH pipeline contains POSH-specific versions of a subset of the Render pipe stages:

e VFR (POSH VF)
e VSR (POSH VS)
e CLR (POSH CL)
e SFR (POSH SF)

Doc Ref # IHD-OS-LKF-Vol 9-4.21 61

intel

Note that the POSH pipeline does not contain HS, DS, GS or StreamOut stages and therefore does not
support those functions. Work submitted to the POSH pipeline shall not contain state commands for
those stages not attempt to enable those functions.

These POSH stages are programmed in a similar manner as the corresponding Render stages. When
stage-related state commands are submitted to the POSH pipeline, the corresponding stages in the
POSH pipeline are programmed. POSH/Render pipeline programming differences are described in the
state command definitions.

OVR Stage of POSH Pipeline

An Object Visibility Recording (OVR) stage is located at the end of the POSH pipe. It is used to compress
and store visibility token streams in memory, as well as reading those streams during rendering and
passing the tokens to the VF stage. Refer to the Render Engine Command Streamer BXML for
programming details.

URB Programming when POSH Enabled

When the POSH pipeline is enabled, a URB allocation for the VSR stage is required. This allocation is
programmed via execution of 3DSTATE_URB_*_VS commands in the POSH pipeline. Software shall be
required to manage this allocation, taking into account the synchronous operation of the RCS and POCS
workloads. This programming may require explicit synchronization between the pipelines, e.g., when
Render vs. POSH URB allocation boundaries are changed.

When the POSH pipeline is enabled, a URB allocation for the POSH pipeline Push Constants may be
defined. Refer to the relevant Push Constant URB commands for details on how this allocation is defined
and used.

General Programming of Thread-Generating Stages (VS, HS, DS, GS)

This section provides common programming information for the thread-generating Geometry FF stages
(VS, HS, DS, GS). The intent is to include the common description here in order to avoid redundancy in
the subsequent stage-specific sections. The stage-specific sections will include any unique or exception
information, restrictions, etc. relevant to those stages.

3DSTATE_ Common State Variables

This section describes FF state variables, programmed via 3DSTATE_<FF> commands, that are common
to at least two thread-generating FF stages (VS, HS, DS, GS).

The states described in these sections are only used by HW when the given stage is enabled (i.e., can
request thread execution), unless specifically called out as an exception.

Thread Management State

These state variables are used by a stage to manage thread request generation.

62 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

State VS|HS|DS|GS

Maximum Number of Threads|Y |Y |Y |Y

Maximum Number Of Threads

This field specifies, for a particular stage, the maximum number of threads allowed to be simultaneously
active. Here "active” refers to (a) outstanding in the thread request queue, (b) resident in the EUs, or (c) in
the thread retirement queue — up to the point the stage sees the thread retirement. Note that the sum of
(a) and (c) above is non-zero, and therefore — depending on configuration — the allowed number of
active threads can exceed the total number of thread slots available in the EUs.

There are two main factors to consider when programming this state variable:

e Scratch space availability: In the case where threads require scratch space, SW shall allocate
enough contiguous scratch space for the stage to allow each active thread (as programmed by this
field) to access its full per-thread allocation (as programmed by PerThreadScratchSpace). This
may require SW to reduce MaximumNumberOfThreads to accommodate limitations on scratch
space availability.

e Performance: For best performance, it is recommended that SW program this field to its
maximum value. This will maximize the number of threads available to perform the stage’s
function. However, SW is free to program a smaller value (as long as it meets any restrictions), e.g.,
for performance or workaround experimentation.

Thread State Initialization State

The following values are programmed as state, subsequently included by the stage as thread request
control information, and eventually loaded into an EU architectural (ARF) register upon thread dispatch.
In most instances these initial values can be subsequently overwritten by the thread.

For a complete description of these EU ARF register fields, refer to the EU Execution Environment section.

These values do not appear in the thread payload. (This information may be referred to as the thread’s
“transparent header”, as it is forwarded to the EUs but not visible in the thread payload.)

State EU State |VS|HS|DS|GS
Kernel Start Pointer ip[31:6] |Y [Y |Y |Y
Floating Point Mode cr0.0[0] |Y (Y |Y |Y
Single Program Flow cr0.0[2] I[N |Y [N |Y
Vector Mask Enable cr0.0[3]1 |Y (Y |Y |Y
lllegal Opcode Exception Enable [cr0.1[12] |Y [Y |Y |Y
Software Exception Enable cr01[13]1|Y (Y |Y |Y
Thread Priority sr0.0[231|Y |Y |Y |Y
Binding Table Pointer seenote |Y |Y [Y |Y

Doc Ref # IHD-OS-LKF-Vol 9-4.21 63

intel

Kernel Start Pointer (KSP)

This field specifies bits [31:6] of the value loaded into the EU’s Instruction Pointer (ip), which in turn
specifies the starting offset of the kernel program to be executed. The state is specified as a 64B-granular
offset from the Instruction Base Address register (programmed via STATE_BASE_ADDRESS). Bits[5:3]
of the EU 'ip’ register (which identify a Dword within a 64B region) are loaded with 0 upon thread
dispatch.

Note (below) that Kernel Start Pointer [47:32] can be programmed via FF state, but these bits are
ignored by HW as the EU ‘ip’ register only supports a 32-bit value.

A stage may support more than one KSP state, where HW performs an on-the-fly selection of one of the
KSPs based on some criteria. Refer to the stage-specific sections for details. For those stages that support
multiple dispatch modes but only a single KSP state, SW shall ensure that the KSP value programmed
corresponds with the selected dispatch mode.

Floating Point Mode

This state bit is loaded into the EU’s Single Precision Floating Point Mode (FPMode, cr0.0[0]) which, in
turn, controls how certain single-precision floating point operations are performed within the EU
subsystem.

Single Program Flow

This state bit is loaded into the EU's Single Program Flow (SPF, cr0.0[2]) which, in turn, controls how
certain flow control instructions operate across the EU channels.

Vector Mask Enable

This state bit is loaded into the EU’s Vector Mask Enable (VME, cr0.0[3]) which, in turn, selects whether
the EU’s Dispatch Mask or Vector Mask register is used as the execution mask for subsequent
instructions.

lllegal Opcode Exception

This state bit is loaded into the EU’s lllegal Opcode Exception Enable (cr0.1[12]) which, in turn, enables
or disables the EU’s illegal opcode exception mechanism.

Software Exception Enable

This state bit is loaded into the EU’'s Software Exception Enable (cr0.1[13]) which, in turn, enables or
disables the EU's software exception mechanism.

Thread Dispatch Priority

This state bit can be used to give thread requests eminating from a Geometry FF stage higher thread
dispatch priority than thread request sources that are not marked as high priority.

This state bit is also loaded into the EU’s Priority Class (sr0.0[23]) which, in turn, determines whether the
EU thread is considered as belonging to the high priority class.

64 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Binding Table Pointer (BTP)

Upon thread request, the BTP specified for the relevant FF stage is passed to, and stored in, the EU as
part of thread state. This BTP value is subsequently passed to the Shared Functions (e.g., Sampler) that
are required to access surfaces specified in the Binding Table. Here the BTP is passed via a side-band
channel and not directly in the message descriptor or message header.

Thread State Initialization State (Defaulted)

The following EU state variables are defaulted upon thread dispatch and therefore cannot be controlled
via Geometry FF state programming. Refer to the relevant EU sections for an understanding of these
state variables and whether the thread can overwrite the defaulted values. Note that this is not an
exhaustive list of defaulted EU state variables, only the ones deemed most interesting for Geometry FF
threads.

State EU State Default Value
FFID sr0.0[27:24] | see below
Rounding Mode cr0.0[5:4] |O
Single Precision Denorm Mode | cr0.0[7] 0
Double Precision Denorm Mode | cr0.0[6] 0
Stack Overflow Exception Enable | cr0.1[11] 0
External Halt Exception Enable |cr0.1[14] 0
Breakpoint Exception Enable cr0.1[15] |0
Instruction Pointer [5:3] ip[5:3] 0
Stack Pointer sp.0 0 (see note below)
Stack Pointer Limit sp_limit 0 (see note below)
FFID

The EU’s Fixed Function Identifier (FFID, sr0.0[27:24]) is initialized to a value corresponding to the
Geometry FF stage that requested the thread dispatch. Note that this simply identifies the source FF unit,
not the specific thread dispatched.

Stack Pointer, Stack Pointer Limit

These EU state registers are defaulted to 0 for threads requested by Geometry FF units, as opposed to
other thread request sources that may cause them to be initialized differently. The threads can overwrite
the defaulted values if so desired.

Prefetch State

The following state variables can be used by SW to attempt the prefetch of certain state from memory
into internal state cache. The prefetch is requested as part of the first thread dispatch after these state
variables are specified.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 65

intel

Programming Restriction: Software shall not specify a prefetch region that extends into an invalid
memory page, otherwise the prefetch may incur page faults.

Performance Note: Early prefetch of the state that will likely be referenced by the thread can improve
thread execution performance. This is not guaranteed, especially if the amount of prefetched data is
large which may result in state cache thrashing. Also, these prefetch requests are considered low priority
hints by HW and may be dropped under conditions of high memory demand.

State VS|HS|DS|GS

Sampler Count

Binding Table Entry Count[Y |Y

Sampler Count

This field specifies how many SAMPLER_STATE structures are prefetched from memory. The count can be
specified as 0 or as a multiple of 4 (4,8,12,16). Refer to the state definition for encodings and further
details.

Performance Note: It is recommended that SW program this field to (roughly) equal the number of
sampler state structures referenced by the thread.

Binding Table Entry Count

This field specifies how many binding table entries (BTEs) and associated SURFACE_STATE structures are
prefetched from memory. The format of this field depends on whether or not HW-generated binding
tables are enabled, as determined by
3DSTATE_BINDING_TABLE_POOL_ALLOC::BindingTablePoolEnable.

SW Usage Note: When HW-generated binding tables are enabled, it is recommended that the Binding
Table Entry Count value be generated when the shader is compiled.

HW-Generated Binding Tables Disabled:

The field has a Format of U8 and specifies a count of BTEs to be prefetched ([0,255]). Each of the
SURFACE_STATE structures referenced by the BTEs will also be prefetched.

HW-Generated Binding Tables Enabled:

This field has a Format of Bitmask8 and indicates which 64B cache lines of BTEs will be fetched. Each bit
in this field corresponds to a cache line, where a cache line holds 8 16-bit BTEs. Bit O refers to the
cacheline starting at the Binding Table Pointer, as programmed by
3DSTATE_BINDING_TABLE_POINTER_xx.

By default, only the SURFACE_STATE structures referenced by the first 4 non-zero BTEs of each 64B
cacheline will be prefetched.

66 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Common Thread Payload-Related State

The following state variables are either included directly in the thread payload and/or used to control or
compute other fields in the thread payload.

State VS |HS DS |GS
Sampler State Pointer Y [Y |Y |Y
Per-Thread Scratch Space |Y |Y [Y |Y
Scratch Space Base Pointer|Y |Y |Y |Y
Include Vertex Handles N |Y [N |Y

Sampler State Pointer

This state variable specifies the starting, 32B-granular offset of the stage’s SAMPLER_STATE table in
memory, relative to the DynamicStateBaseAddress. It is programmed via
3DSTATE_SAMPLER_STATE_POINTERS_xx commands.

This value is included in thread payloads in R0.3[31:5] and is also directly propagated to the Sampler
shared function for use in processing “headerless” messages. If a thread can potentially send any
messages to the Sampler shared function that requires the Sampler State Pointer in the message header,
that thread shall ensure that it passes along the Sampler State Pointer value passed in the thread
payload.

Scratch Space

The Per-Thread Scratch Space state variable specifies the amount of scratch memory required by each
active thread of a stage. The value is specified as a 4-bit power of two (in excess of 10) bytes, where
programmed values in the valid range [0,11] specify scratch space requirements in the range [1KB, 2MB].

When a thread becomes “active” it is allocated a portion of scratch space, sized according to
PerThreadScratchSpace. The starting location of each thread's scratch space allocation,
ScratchSpaceOffset, is passed in the thread payload in R0.5[31:10] and is specified as a TKB-granular
offset from the GeneralStateBaseAddress. The computation of ScratchSpaceOffset includes the
starting address of the stage’'s scratch space allocation, as programmed by ScratchSpaceBasePointer.
The maximum number of active threads for a stage is specified by the MaximumNumberOfThreads
state. SW shall abide by the scratch space restrictions included in the description of
MaximumNumberOfThreads.

This value is also included within thread payloads in R0.3[3:0]. If a thread can potentially send any "A32
Stateless” messages to the DataPort shared function, that thread shall ensure that it passes along the
PerThreadScratchSpace value passed in the thread payload.

The state command specifies starting offset of the scratch memory region allocated to a stage (Scratch
Space Base Pointer). It is specified as a 22-bit, 1TKB-aligned offset from the GeneralStateBaseAddress.

Each thread requested by the FF stage will be allocated it's exclusive portion of this space, with the per-
thread allocation size specified by Per-Thread Scratch Space. The computed offset of the thread-
specific portion is passed in the thread payload as Scratch Space Offset. If the thread needs to access
this scratch space, it shall utilize “stateless” DataPort read/write message, where the DataPort will cause

Doc Ref # IHD-OS-LKF-Vol 9-4.21 67

intel

the General State Base Address to be added to the specific scratch space offset passed in the message
header.

Include Vertex Handles

This state variable specifies whether input vertex URB handles are included in the thread payload for
threads requested by the FF stage. SW shall set this bit if the thread kernel requires access to the data
contained input vertex URB entries, either in addition to or instead of the input vertex data pushed into
the thread payload.

URB Payload State

The following state variables specify certain parameters related to the amount and location of URB-
sourced data in the thread payload. State variables specifying other parameters are found in other state
commands. Refer to the Thread Payload Overview subsection for more details.

State VS |HS|DS|GS

Dispatch GRF Start Register for URB Data|Y |Y |Y |Y

Vertex/Patch URB Entry Read Offset Y [Y |Y |Y

Vertex/Patch URB Entry Read Length Y |[Y |Y |Y

Dispatch GRF Start Register for URB Data

This state variable specifies a 5b GRF# (32B offset) within the thread payload where URB-sourced data
starts. The URB-sourced data starts with some (possibly zero) amount of pushed Constant data, followed
by some (possibly zero) amount of Vertex or Patch data.

Programming Restriction: Software shall ensure that it does not cause URB data to overwrite the RO
Header or Extended Header.

Vertex/Patch URB Entry Read Offset

This state variable specifies the 32B offset at which data is to be read from each Vertex or Patch URB
entry before being included in the thread payload.

Vertex/Patch URB Entry Read Length

This state variable specifies the number of 16B (vertex elements) to be read from each Vertex or Patch
URB entry, starting from the offset specified by the Vertex/PatchURBEntryReadOffset state.

If the read length is non-zero, SW shall ensure that the specification of the source (URB) data does not
extend beyond the allocated and valid data in the URB entry. Other restrictions are described in the
Thread Payload Overview subsection.

Pre-Rasterization Vertex State

The following state variables are implemented in the FF stages whose associated threads generate
vertices (therefore the HS stage is excluded). The state variables control some aspects of how the
generated (“output”) vertices are treated if the pipeline is configured to have the stage’s vertices to reach

68 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

the Clip and Setup stages. Hardware determines which stage produces these “pre-rasterization” vertices
as a function of which FF stages are enabled. For example, if the GS and DS stages are disabled, the VS
stage’s set of state variables will be used or alternatively, if the GS stage is enabled, the GS stage's set of
state variables will be used.

There are "Force” state bits in the Clip & Setup stages that can be used to override use of these per-FF
state variables and instead use corresponding state variables programmed in the Clip and/or Setup
stages.

State VS|HS|DS|GS

Vertex URB Entry Output Read Offset

Vertex URB Entry Output Read Length

User Clip Distance Clip Test Enable Bitmask

<[<[=<]=<
zlz|z|z
<[<[=<]=<
<[<[=<]=<

User Clip Distance Cull Test Enable Bitmask

Vertex URB Entry Output Read Offset

This state variable specifies the 32B offset at which attribute data is to be read from each Vertex URB
entry for use by the Setup stage.

Vertex URB Entry Output Read Length

This state variable specifies the number of 16B attributes to be read from each Vertex URB entry for use
by the Setup stage, starting from the offset specified by the VertexURBEntryOutputReadOffset state.

User Clip Distance Clip Test Enable Bitmask

This state variable is used in the Clip stage’s clip test functionality. See Clip stage documentation for
details.

User Clip Distance Cull Test Enable Bitmask

This state variable is used in the Clip stage’s cull test functionality. See Clip stage documentation for
details.

UAYV Access State

This state variable is used by the HW UAV Coherency mechanism.

State VS |HS|DS|GS

Accesses UAV|Y [Y |Y |Y

Accesses UAV

This state bit indicates that threads requested by this FF stage may perform accesses to UAV resources. If
SW enables the HW UAV Coherency function, it shall set this bit in order to include this stage in the
coherency activities. For improved performance, SW should only set this bit for those FF stages that
require it. If the HW UAV Coherency function is enabled, this bit is ignored.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 69

intel

Statistics Enable

This state variable is used to enable/disable the statistic counter for a FF stage.

State VS|HS |DS|GS

Statistics Enable|[Y |Y |Y |Y

Statistics Enable

This state bit controls whether or not the statistic counter(s) associated with a FF stage are enabled. Refer
to the specific FF stage descriptions for details on the statistics counter(s) supported.

SW shall disable statistics counting via this bit prior to submitting any 3DPRIMITIVE commands that are
not to be included in statistics counting. For example, if the statistics counters are to be maintained to
only track application-submitted work, SW shall ensure that any driver-generated work is not included in
the statistics.

Thread State (Ignored)

The following state variables can be programmed but are ignored in the HW implementation.

State VS|HS |DS|GS

Kernel Start Pointer [47:32] Y

Scratch Space Base Offset Upper|Y [Y |Y |Y

URB Allocation Overview

The Geometry FF stages use the URB for temporary storage of vertex and/or patch data as URB Entries,
as well as Push Constant (PC) URB Buffers. Software can program the total size of the URB (see URB/L3
documentation). Software can also partition the URB space into FF stage-specific allocations for URB
Entries and/or PC URB Buffers. These allocations can be changed dynamically to accommodate changing
pipeline configurations and shader data requirements, though such changes may have performance
impacts. There shall be no overlap between the individual allocations and no allocation may extend
beyond the programmed URB upper limit.

Only the first 32KB of the URB can be used for VS, HS, DS, GS, and PS PC URB Buffer allocations. See Push
Constant Programming.

Software can place URB Entry allocations following any PC URB Buffer allocations. Software shall define
allocations for all the relevant Geometry FFs (VS, HS, DS, GS), though a subset of these allocations can be
“null” allocations that do not consume URB space. The VS stage always requires a non-null allocation.
The HS and DS stages only require non-null allocations when tessellation is enabled. Likewise, the GS
stage only requires a non-null allocation when GS is enabled.

When POSH is Enabled (via CTXT_SR_CTL), an additional 32KB block of URB is allocated for POCS
pipeline Push Constants.

This block is located immediately after the RCS Push Constant URB Buffer Allocation.

70 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

When enabled, the size of the Push Constant URB allocation mentioned in the URB programming
information (below) will increase to 64KB total (vs. the 32KB size shown)

URB Space Partitioning

Programmed URB
URB Size

<FF> Stage
URB Entry Allocation
[8KB-Aligned]

<FF> Stage URB Entry
Allocations may start below
the 32KB boundary, though
above any PC allocations.

<FF> Stage
URB Entry Allocation
[8KB-Aligned]

32KB

Push Constant
URB Buffer Allocation
[0-32KB in 2KB increments] PC URB Buffer Allocations
. constrained to first 32KB.

Push Constant
URB Buffer Allocation

0 [0-32KB in 2KB increments] L

The starting offset (within the URB space) of a FF URB Entry allocation is specified by a URBStartAddress
state. The size of an allocation is defined by a NumberOfURBENtries state and a corresponding
URBEntryAllocationSize state.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 71

intel

URB Entry and Entry Allocation

URB Entry
€ 648 3
URB 0
URB Starting . URB Entry
Address /,,f”“: Allocated Size
(8KB aligned) ~ -
x - ,

URBEnty[0] &

<EF>URB | Number of
Entry 3 URB Entries
Allocation

URB Entry [NumURBEntries-1]

Multiple-Slice Implications

The FF URB allocations are programmed based on the URB size for a single slice. If the configuration
includes multiple slices, the HW will automatically adjust the URBStartAddress and
NumberOfURBENtries states according to the number of slices. The URBEntryAllocationSize states are
not affected, nor are the PC URB Buffer allocations affected. The NumberOfURBEntries states are simply
multiplied by the number of slices. The URBStartAddress states are scaled by the number of slices after
being first decreased by 32KB, with a 32KB offset added back in after scaling. This scales the allocation
start addresses relative to the 32KB boundary versus the start of the URB.

The following diagram provides an example of how this scaling would be applied in a 2-slice
configuration.

72 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

2 * 1-slice URB 2-slice URB
Size -
128KB — — —
G5 Stage o
URB Entry Allocation =
StartAddress = 96KB b
1-Slice URB 1-Slice URB
Size
80KB — |- —.T 96KB — | —L
GS Stage |
URB Entry Allocation 2
StartAddress = 64KB “”L
64KB — - —l 48kB - - -
V5 Stage LA
40KB - + = URB Entry Allocation 2
VS Stage 71 - Fa
URB Entry Allocation 2 SRS = 1
32KB - StartAddress = 32KB L ey ¢ J I e — L
0 0

Allocation State Variables

URB Starting Address
This state variable defines the 8KB-aligned starting offset of the URB allocation for a given FF stage.

URB Entry Allocated Size

Programming Note

Context: Allocation State Variables

e This state variable defines the amount of storage allocated for each URB Entry within the allocation. It is 64B-
granular. (Note that the contents of a URB entry can be accessed at 32B granularity). The required size of a
URB Entry is typically dictated by API parameters and APl shader programs.

e Software should attempt to minimize the size of URB entries in order to maximize the number of URB Entries
that can be stored in a given allocation. However, as changing URB-related state variable can incur
performance penalties, software may decide to employ sizing heuristics that permit a limited amount of
wasted space in URB entries as a performance tradeoff.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 73

intel

Number of URB Entries

Programming Note

Context: Allocation State Variables

e This state variable defines the number of URB Entries allocated for a given FF stage. If the stage is disabled,
the number of entries can be programmed as 0, though this is not required. If the stage is enabled (which is
always true for the VS stage), a non-zero number of entries shall be specified. If the URBEntryAllocatedSize
is less than or equal to 8 64B units, this number shall be 0 or a multiple of 8.

e The minimum number of entries required as well as the maximum number supported are specific to the FF
stage and state programming (e.g., a function of Dispatch Mode) — see the documentation for the specific
stage.

Thread Payload Overview

Like all threads, the threads spawned by Geometry FF stages have some amount of payload data pre-
loaded into the GRF for use as initial input to a thread’s kernel. Some of the data is sourced directly from
the spawning FF and/or intermediate Thread Dispatch functions, while some is sourced from the URB as
specified by the spawning FF. The Geometry FF thread payloads have a similar structure, though the
exact payload size/content/layout is unique to each FF stage. This subsection describes the general
layout of the payload — refer to the specific FF stage descriptions for details and differences.

The payload data loaded into the GRF starting at RO and is divided into two main sections: the Payload
Header followed by the Payload URB Data. The Payload Header contains information passed from FF
units, while the Payload URB Data is obtained from the URB.

Geometry FF Thread Payload Layout (General)

GRF#
RO RO Header T l
. Payload
R [Extended Header] [Header
Dispatch GRF ~] —
Start Register [Push Constant Data] ‘
for URB Data N Payload
URB Data
[URB Entry Data]
_J
R111

R112
Not Available for Payload Data
R127

The Payload Header is further subdivided into a leading RO Header and (if present) a variable-sized
Extended Header. The RO fields are laid out to closely match the message header (MO) of thread-
generated messages to shared functions. The Extended Header (if present) starts in R1 and its length
varies.

74 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

The Payload URB Data section is optional and can contain a variable amount of Push Constant Data
and/or a variable amount of (vertex or patch) URB Entry Data. The Payload URB Data starts at the GRF#
defined by the DispatchGRFStartRegisterForURBData FF state variable. Software can use this state
variable to place the Payload URB Data at a common starting GRF# even when the size of the Extended
Header varies.

RO Header

The RO header is used to pass various parameters to threads. This information contains SW-provided
state information, primitive information received by the FF unit from the FF pipeline, and parameters
generated/computed by the FF unit or Thread Dispatch HW.

Below is a list and description of the RO Header fields common to all Geometry FF thread payloads. Refer
to the specific payload definitions for more details and (if relevant) other FF-specific fields.

RO Header Field RO Header Location
Thread ID R0.6[23:0]
FF Thread ID (FFTID) R0.5[9:0]
Scratch Space Offset R0.5[31:10]
Per Thread Scratch Space R0.3[3:0]
Sampler State Pointer RO.3[31:5]
Thread ID

This field is a sequence number that identifies this thread within the all threads spawned by the relevant
FF stage over some unspecified period of time.

FF Thread ID

This field is assigned by the relevant FF stage and used to identify the thread within the set of currently
outstanding threads spawned by the FF unit. It shall be included in EOT messages sent by the thread as
required by the relevant message header.

Scratch Space Offset

This field specifies the starting offset of the 1KB-aligned scratch space region allocated to this particular
thread. See the definition of ScratchSpaceBaseAddressLow, which specifies the starting offset for scratch
space region allocated to the FF stage.

Per Thread Scratch Space

This field is a copy of the PerThreadScratchSpace state variable programmed by SW via the
3DSTATE_<FF> commands.

Sampler State Pointer

This field is a copy of the SamplerStatePointer state variable programmed by SW via the
3DSTATE_<FF> commands

Doc Ref # IHD-OS-LKF-Vol 9-4.21 75

intel

Extended Header (R1+)

In some cases, additional FF-sourced information is passed in a variable-size Extended Header, which
starts at GRF R1. Some of the field definitions are common across two or more payloads and are
described below. Refer to specific payload definitions for more details and (if relevant) other FF-specific
fields.

Extended Header Fields

Output URB Handles

Input URB Handles

PrimitivelDs

Output URB Handles

This set of 16-bit fields contains the 64B-aligned offsets into the URB at which a thread is to write output
URB data (i.e., vertex or patch data) via URB Write messages. In the VS thread payload URB Handles are
used both for input and output. Up to 8 Output URB Handles can be included in a thread payload. In
some SIMD4x2 payloads, these handles are passed in the RO Header.

Input URB Handles

This set of 16-bit fields contains the 64B-aligned offsets into the URB at which a thread can access input
URB data (i.e., vertex or patch data) via URB Read messages. In the VS thread payload URB Handles are
used both for input and output. Up to 256 Input URB Handles can be passed in the Extended Header.

As it is often possible for all input URB data to be pushed in the thread payload, the thread may not
require Input URB Handles. As these handles may not be needed, a corresponding
IncludeVertexHandles state bit is typically included in the FF stage’s state (via 3DSTATE_<FF>). This
state bit controls whether the Input URB Handles are included in the Extended Header.

PrimitivelDs

This set of 32-bit fields contains the PrimitivelD values corresponding to input objects being processed
by the thread. See Vertex Fetch for a description of PrimitivelD. As PrimitivelD may not be required as
input by the thread, a corresponding IncludePrimitivelD state bit is typically included in the FF stage's
state (via 3DSTATE_<FF>). This state bit controls whether the PrimitivelDs are included in the Extended
Header.

Payload URB Data Layouts

Before going into more detail about URB-sourced payload contents, it is important to discuss the three
basic layouts of this data: Linear, SIMD4x2 Interleaved, and SIMD8. These layouts are linked to how data
can be accessed by the EU (therefore the EU documentation should be comprehended).

Linear

In Linear layout, data is read from the URB and placed in successive GRFs starting at DWO of the starting
destination GRF, as shown below. Data in this layout can be accessed by all EU channels of execution and

76 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

it is therefore used to hold “constant” data as well as patch data for DS dispatch modes that work on a
single patch at a time.

GRF

DW7 | DW6 | DWS5S | DW4 | DW3 | DW2 | DW1 | DWO
Start of Entry
R[I] e — Data
R[i+1] l&———— — = .
R[i+2] J
R[(+3)| f———+———

SIMD4x2 Interleaved

In SIMD4x2 Interleaved layout, the GRFs receive data from two URB entries, with the “first” URB entry
loaded into the 4 lower DWs of the GRFs and the “second” URB entry loaded into the upper DWs, as
shown below. This layout is primarily used to accommodate a kernel executing in SIMD4x2 execution
mode (see EU documentation). It is also used to pass data from two input patches into a DS
DUAL_PATCH payload, where the kernel may be executing in SIMD8 mode, but with the lower 4 SIMD8
channels operating on one patch and the upper 4 SIMD8 channels operating on another patch.

Doc Ref # IHD-OS-LKF-Vol 9-4.21

77

intel

R[i]
R[i+1]
R[i+2]
R[i+3]

SIMDS8

GRF

DW 7 ‘ DW 6 ‘ DW 5 ‘ DW 4

DW 3 ‘ DW 2 ‘ DW 1 ‘ DW 0

Start of
Entrleata\
- A
_—
< —————————————————

Start of
Entry O Data

In SIMDS8 layout, each DW position of the target GRFs can receive data from a different URB entry, as
shown below. (Note that it may be possible for the data from one source URB entry to be replicated in
two or more channels). This layout is used for kernels executing in SIMD8 mode, where each channel
operates on independent data.

Dw7 | DW6 | DWS | w4

Start of
Entry 7 Data h

R[i]

R[i+1]

R[i+2]
R[i+3]

A A A A A A A A

A A A A A A A A

A A A A A A A A

ow3 [ow2 | ow1 | owo
Start of
Entry 1 Data
4l 4 4L "
‘\. ‘-. ‘\ ‘-_
~ L ““-. . -\\. »” “"-_ > \\
Y ., " TN
“‘\.. “"-. \\. \\.
it P s P “JJ s) =,
i [S Bt
N N N N
P P P P
<« <« « |~
~. ~ J ~ ~
]~
Y e - i
N N N N
PR PN PN P
“-. “-. “-. “\.
- - - -
it P s P “JJ Ity P =,
Y e - Y
. . -~ ~
RN PN PN P
« « I" -

78

Start of
Entry 0 Data

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Payload URB Data

In most Geometry FF thread payloads some amount of URB-sourced data is required as input to the
thread. This data is comprised of an optional amount of Push Constant data, immediately followed by an
optional amount of URB Entry data (vertex or patch data).

The starting GRF# of the Payload URB Data section is specified by the
DispatchGRFStartRegisterForURBData per-FF state variable (programmed via 3DSTATE_<FF>). See
URB Payload State above for more information on the state variables that affect the Payload URB Data.

Push Constant Data

This section of the Payload URB Data is used to pass Push Constant data to the thread kernel. Software
can define up to 4 Push Constant Memory Buffer regions for each Geometry FF stage that requests
thread dispatches, after which the contents of those memory regions are automatically included in each
subsequent payload relevant to the FF stage. A FF stage-specific Push Constant URB Buffer is used to
buffer the memory contents, though any padding required by the URB buffer is removed before the data
is placed in the payload. See Push Constant Programming.

URB Entry Data

All Geometry FF threads have some number of (vertex or patch) Input URB Entries that serve as input to
the thread. Some amount (and possibly all) of the data from those Input URB Entries can be pushed into
the thread payload for immediate use by the thread’s kernel. While the number of Input URB Entries
associated with a thread is only indirectly controlled by software (e.g., via Dispatch Mode), the source
region within each of the Input URB Entries is directly programmed. This source region definition applies
to all of the Input URB Entries pushed into the payload.

The diagram below shows how the Vertex/Patch URB Entry Read Offset and Length states are used to
define the source region of a URB Entry that will be copied into the URB Entry Data area of the thread
payload.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 79

intel

Input URB Entry Source Region Definition

URB

URE Entry
Handle .,

Vertex/Patch URB N
Entry Read Offset

Vertex/Patch URB
Entry Read Length

Sourced Data

| Allocated
(" URB Entry
—

The number of Input URB Entries pushed and the layout of the payload data is described in the relevant
FF stage descriptions.

Push Constant Programming Overview

Push constants are constant values that are pushed as part of the thread payload. Pushing constants
allow for the data to be available to the Execution Units as soon as the thread payload is loaded in the
GRF. The alternative to push constants are kernel-fetched constants.

All shaders (VS, HS, DS, GS and PS) have a section of the thread payload for constant data. For the
geometry shaders, this is inserted between the R headers and URB Vertex Data. For Pixel Shaders, this is
inserted prior to Setup Data. For more information, see the detailed descriptions of each Shader's
payload in the corresponding sections.

Below is the format for the constant portion of the thread payload:

Rn Registers prior to Push Constants

[Varles] 2550 Indirect Push Constants:

optional
Push Constant data indirectly fetched from memory based on the 3DSTATE_CONSTANT_*
command and read from the URB. The amount of data provided is defined by the sum of the
read lengths in the last 3DSTATE_CONSTANT_*command

Data Vertex or Setup Data

80 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Indirect Push Constant Programming

Note: The Resource Streamer-based "Gather Constant” function is an extension of the Push Constant
function and is described in detail in the Resource Streamer section. The Geometry FF state
programming aspects are included below, after the basic Push Constant function is described.

3D APIs and their associated shader languages support the access of constant values, typically sourced
from memory-resident Constant Buffers. Additionally, shader kernels may require access to compiler
and/or driver-generated constants. The device supports a basic Push Constant (PC) mechanism to have a
limited amount of constant data to be pushed into GRF registers via the thread payload where they are
immediately available to the kernel program. It is up to software to determine which constants (if any)
are pushed into the payload versus being dynamically referenced from memory via a shared function.
Besides functional restrictions, there are several performance tradeoffs involved in this decision: GRF
register pressure, locality of constant references, multiple references, expected shared function latency,
etc.

The device supports a basic mechanism where software can specify -- for each FF stage that generates
thread requests — up to 4 memory regions as the source for the PC data and one URB allocation used to
buffer the data internally to the device. The device will fetch the PC source data from memory and write
it into the URB Buffer, and at thread dispatch time the PC data will be read from the URB and inserted
into the thread payload GRF registers.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 81

intel

PC Memory Buffers
In Memory

PC Memory Source Data
Stored in PC URB Entry

PC Memory Source Data
Pushed in Payload in GRF

[Padding]

Buffer Region 0 Data
Buffer Region 2 Buffer Region 0 Data

[Padding]
[Padding]

Buffer Region 1 Data

Buffer Region 1 Data
Buffer Region 0 : Buffer Region 2 Data

[Padding]
[Padding]

Buffer Region 3 Data

Buffer Region 2 Data

[Padding]
[Padding]

Buffer Region 3

Buffer Region 3 Data

[Padding]

Buffer Region 1

Push Constant Memory Buffers

The 3DSTATE_CONSTANT_<FF> commands specify a set of state variables that define up to 4 PC
Memory Buffer regions in memory. The commands also initiate the process of reading the PC source
data (if any) from memory and placing it in the associated PC URB Buffer for inclusion in subsequent
thread payloads.

Up to four PC Memory Buffers can be specified. ConstantBufferReadLength specifies a 32B-granular
amount of PC data residing in the PC Memory Buffer. A length of 0 disables the corresponding buffer.
Disabling all four buffers causes no PC data to be inserted in thread payloads. SW shall disable all four
buffers whenever the corresponding PC URB Buffer is disabled. If SW disables a buffer, it shall also
specify a Pointer value of 0.

The location of a PC Memory Buffer is specified either by:

82 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

e 32-Byte granular GraphicsAddress

e 32-Byte granular DynamicStateOffset from the DynamicStateBaseAddress GraphicsAddress
(programmed via STATE_BASE_ADDRESS)

The GatherPoolEnable state bit (programmed via 3DSTATE_GATHER_POOL_ALLOC) is used to enable
option (c) for Buffer 1 only. Otherwise the CONSTANT_BUFFERAddressOffsetDisable bit of the INSTPM
register controls the use of Pointer state variables:

e If the buffers are specified via a DynamicStateOffset, the DynamicStateMemoryObjectControlState
(programmed via STATE_BASE_ADDRESS) is used and corresponding DynamicState bounds
checking is performed during the memory access.

e If the buffers are specified via a GraphicsAddress, the ConstantBufferObjectControlState state
variable is used to control the memory accesses, though no bounds checking is performed.

Note that the starting location and length of the PC source data in each PC Memory Buffer is specified
via 32B-aligned/granular parameters, while the PC URB Buffer is specified via 64B-aligned/granular
parameters. The implications of this are described in the PC URB Buffer description.

State Command

Constant Buffer Object Control State | SDSTATE_CONSTANT_<FF>

Constant Buffer Read Length [0-3] 3DSTATE_CONSTANT_<FF>

Pointer to Constant Buffer [0-3] 3DSTATE_CONSTANT_<FF>

Pointer to Constant Buffer High [0-3] | 3DSTATE_CONSTANT_<FF>

Push Constant URB Buffer Allocation

The 3DSTATE_PUSH_CONSTANT_ALLOC_<FF> commands specify a set of state variables is used to
define the PC URB Buffer allocation for each relevant FF stage. Each buffer is used to collect 64B-
granular/aligned PC source data prior to use in thread dispatch.

State Command

Constant Buffer Offset | SDSTATE_PUSH_CONSTANT_ALLOC_<FF>

Constant Buffer Size | 3DSTATE_PUSH_CONSTANT_ALLOC_<FF>

ConstantBufferOffset specifies the 2KB-granular offset of a FF stage’s PC URB Buffer allocation. If the
ConstantBufferSize is zero, this offset is ignored.

ConstantBufferSize specifies the size of a FF stage’s PC URB Buffer allocation as a possibly-zero count of
2KB increments. Specifying a size of 0 disables the buffer. It is invalid to specify a non-zero amount of PC
source data (via 3DSTATE_CONSTANT_<FF>) when the corresponding PC URB Buffer is disabled.

In order to use PCs for a FF stage, SW shall first program ConstantBufferSize to a non-zero value. The
buffer shall be large enough to accommodate the worst-case buffering requirements of any single set of
PC Memory Buffer definitions (see below). It is invalid to specify more PC source data than can be
accommodated in the allocated PC URB Buffer. Additionally, in order to allow the device to pipeline the

Doc Ref # IHD-OS-LKF-Vol 9-4.21 83

intel

prefetching of subsequent PC Memory Buffers, it is recommended that SW allocate PC URB Buffers larger
than this minimum requirement.

A PC URB Buffer is used to buffer 64B-granular/aligned push constant data from memory, though the PC
memory regions are defined as 32B-granular/aligned. In order to accommodate the worst case
alignment, where a specific PC memory region is not 64B aligned but is 64B granular in size, the PC URB
Buffer requires 32B of padding at both the beginning and end of the PC data and would therefore need
to be sized at least 64B larger than the source data region wrt that source buffer. If this condition holds
for all 4 PC source buffers, the PC URB Buffer needs to be sized 256B larger than the worst-case amount
of source data. If SW knows a priori that the PC source data is 64B-aligned/granular, then there is no
need to allocate additional room for 64B padding.

An important example of this PC URB Buffer sizing restriction is with respect to supporting a maximum
amount of PC source data. The per-FF limit on the amount of PC data that can be specified for inclusion
in thread payloads at any given time is 2KB (64 * 32B) spread across up to 4 source buffers. Here
minimume-sized (2KB) PC URB Buffer could only be used if all the source data was 64B aligned and 64B
granular is size, as the PC URB Buffer would have no room for padding. If any 64B padding was required,
(at least) a 4KB PC URB Buffer would need to be allocated.

Push Constant URB Buffer Placement: SW shall program all Push Constant URB Buffer allocations to be
either disabled or completely contained within the first 32KB of the URB. There are no ordering
requirements on the placement of the allocations relative to the particular FF stages (e.g., the VS
allocation can come before or after the GS allocation). SW shall not program enabled buffers to overlap.
If 32KB is greater than the amount of URB space required for all the Push Constant URB Buffers and SW
packs the allocations starting at offset 0, SW can utilize the URB space after the last allocation for URB
Entry allocations (e.g., VS VUEs), subject to URB Fence alignment restrictions.

3D Primitives Overview

The 3DPRIMITIVE command (defined in the VF Stage chapter) is used to submit 3D primitives to be
processed by the 3D pipeline. Typically, the processing results in the rendering of pixel data into the
render targets, but this is not required.

There is considerable confusion surrounding the term ‘primitive’, e.g., is a triangle strip a ‘primitive’, or is
a triangle within a triangle strip a ‘primitive’? Some APIs use the term ‘topology’ to describe the higher-
level construct (e.g., a triangle strip), and uses the term ‘primitive’ when discussing a triangle within a
triangle strip. In this spec, we will try to avoid ambiguity by using the term ‘object’ to represent the basic
shapes (point, line, triangle), and 'topology’ to represent input geometry (strips, lists, etc.). Unfortunately,
terms like '3DPRIMITIVE" must remain for legacy reasons.

84 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

The following table describes the basic primitive topology types supported in the 3D pipeline.

Programming Note

Context:

3D Primitives Overview

e There are several variants of the basic topologies. These have been introduced to allow slight variations in
behavior without requiring a state change.

e Number of vertices and Dangling Vertices: Topologies have an “expected” number of vertices in order to
form complete objects within the topologies (e.g., LINELIST is expected to have an even number of vertices).
The actual number of vertices specified in the 3DPRIMITIVE command, and as output from the GS unit, is
allowed to deviate from this expected number, in which case any “dangling” vertices are discarded. The
removal of dangling vertices is initially performed in the VF unit. To filter out dangling vertices emitted by GS
threads, the CLIP unit also performs dangling-vertex removal at its input.

3D Primitive Topology Types

3D Primitive Topology
Type (ordered
alphabetically)

Description

LINELIST o

A list of independent line objects (2 vertices per line).

Normal usage expects a multiple of 2 vertices, though incomplete objects are
silently ignored.

LINELIST_ADJ

A list of independent line objects with adjacency information (4 vertices per
line).

Normal usage expects a multiple of 4 vertices, though incomplete objects are
silently ignored.

Not valid as output from GS thread.

LINELOOP .

Similar to a 3DPRIM_LINESTRIP, though the last vertex is connected back to the
initial vertex via a line object. The LINELOOP topology is converted to LINESTRIP
topology at the beginning of the 3D pipeline.

Normal usage expects at least 2 vertices, though incomplete objects are silently
ignored. (The 2-vertex case is required by OGL).

Not valid after the GS stage (i.e., must be converted by a GS thread to some
other primitive type).

LINESTRIP °

A list of vertices connected such that, after the first vertex, each additional
vertex is associated with the previous vertex to define a connected line object.

Normal usage expects at least 2 vertices, though incomplete objects are silently
ignored.

LINESTRIP_ADJ o

A list of vertices connected such that, after the first vertex, each additional
vertex is associated with the previous vertex to define connected line object.
The first and last segments are adjacent—only vertices.

Normal usage expects at least 4 vertices, though incomplete objects are silently

Doc Ref # IHD-OS-LKF-Vol 9-4.21

85

intel

3D Primitive Topology
Type (ordered
alphabetically)

Description

ignored.
Not valid as output from GS thread.

LINESTRIP_BF

Similar to LINESTRIP, except treated as “backfacing’ during rasterization (stencil
test).

This can be used to support “line” polygon fill mode when two-sided stencil is
enabled.

LINESTRIP_CONT

Similar to LINESTRIP, except LineStipple (if enabled) is continued (vs. reset) at
the start of the primitive topology.

This can be used to support line stipple when the API-provided primitive is split
across multiple topologies.

LINESTRIP_CONT_BF

Combination of LINESTRIP_BF and LINESTRIP_CONT variations.

POINTLIST A list of point objects (1 vertex per point).
POINTLIST_BF e Similar to POINTLIST, except treated as "backfacing’ during rasterization (stencil
test).
e This can be used to support “point” polygon fill mode when two-sided stencil is
enabled.
POLYGON e Similar to TRIFAN, though the first vertex always provides the “flat-shaded”
values (vs. this being programmable through state).
e Normal usage expects at least 3 vertices, though incomplete objects are silently
ignored.
QUADLIST e Alist of independent quad objects (4 vertices per quad).
e The QUADLIST topology is converted to POLYGON topology at the beginning
of the 3D pipeline.
o Normal usage expects a multiple of 4 vertices, though incomplete objects are
silently ignored.
QUADSTRIP e A list of vertices connected such that, after the first two vertices, each additional

pair of vertices are associated with the previous two vertices to define a
connected quad object.

Normal usage expects an even number (4 or greater) of vertices, though
incomplete objects are silently ignored.

86

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

3D Primitive Topology
Type (ordered
alphabetically)

Description

RECTLIST

e Alist of independent rectangles, where only 3 vertices are provided per
rectangle object, with the fourth vertex implied by the definition of a
rectangle. VO=LowerRight, V1=LowerLeft, V2=UpperLeft. Implied V3 = VO-
V1+V2.

e Normal usage expects a multiple of 3 vertices, though incomplete objects
are silently ignored.

The RECTLIST primitive is supported specifically for 2D operations (e.g., BLTs and
“stretch” BLTs) and not as a general 3D primitive. Due to this, a number of restrictions
apply to the use of RECTLIST:

e Must utilize “screen space” coordinates (VPOS_SCREENSPACE) when the
primitive reaches the CLIP stage. The W component of position must be 1.0
for all vertices. The 3 vertices of each object should specify a screen-aligned
rectangle (after the implied vertex is computed).

¢ Clipping: Must not require clipping or rely on the CLIP unit's ClipTest logic
to determine if clipping is required. Either the CLIP unit should be
DISABLED, or the CLIP unit's Clip Mode should be set to a value other than
CLIPMODE_NORMAL.

e Viewport Mapping must be DISABLED (as is typical with the use of screen-
space coordinates).

RECTLIST_SUBPIXEL The subpixel precise, axis-aligned bounding box of the object's 3 vertices is rendered.

TRIFAN .

Triangle objects arranged in a fan (or polygon). The initial vertex is maintained
as a common vertex. After the second vertex, each additional vertex is
associated with the previous vertex and the common vertex to define a
connected triangle object.

Normal usage expects at least 3 vertices, though incomplete objects are silently
ignored.

TRIFAN_NOSTIPPLE o

Similar to TRIFAN, but poylgon stipple is not applied (even if enabled).

This can be used to support “point” polygon fill mode, under the combination
of the following conditions:

(a) when the frontfacing and backfacing polygon fill modes are different (so the
final fill mode is not known to the driver),

(b) one of the fill modes is "point” and the other is “solid”,
(c) point mode is being emulated by converting the point into a trifan,

(d) polygon stipple is enabled. In this case, polygon stipple should not be
applied to the points-emulated-as-trifans.

Doc Ref # IHD-OS-LKF-Vol 9-4.21

87

intel

3D Primitive Topology
Type (ordered

alphabetically) Description
TRILIST e Alist of independent triangle objects (3 vertices per triangle).
eNormal usage expects a multiple of 3 vertices, though incomplete objects are
silently ignored.

TRILIST_AD) e Alist of independent triangle objects with adjacency information (6 vertices per

triangle).
¢ Normal usage expects a multiple of 6 vertices, though incomplete objects are
silently ignored.
e Not valid as output from GS thread.

TRISTRIP o Alist of vertices connected such that, after the first two vertices, each additional
vertex is associated with the last two vertices to define a connected triangle
object.

e Normal usage expects at least 3 vertices, though incomplete objects are silently
ignored.

TRISTRIP_AD)J

e Alist of vertices where the even-numbered (including Oth) vertices are
connected such that, after the first two vertex pairs, each additional even-
numbered vertex is associated with the last two even-numbered vertices to
define a connected triangle object. The odd-numbered vertices are adjacent-
only vertices.

e VFUNIT will complete a drawcall with the topology of tristrip_adj even if there is
a preemption request in the middle of the draw call.

e Normal usage expects at least 6 vertices, though incomplete objects are silently

ignored.

e Not valid as output from GS thread.

TRISTRIP_REVERSE

Similar to TRISTRIP, though the sense of orientation (winding order) is reversed — this

allows SW to break long tristrips into smaller pieces and still maintain correct face
orientations.

List of n-vertex "patch” objects. These topologies cannot be rendered directly — the

PATCHLIST_n
tessellation units must be used to convert them into points, lines, or triangles to
produce rasterization results. (VS, GS, and StreamOutput operations can also be
performed.)

88 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

The following diagrams illustrate the basic 3D primitive topologies. (Variants are not shown if they have
the same definition with respect to the information provided in the diagrams).

4 u] 1 2 3 n-2 n-1
POIMTLIST - L 3 - - |]]
% A
4 u] 1 2 3 n-2 n-1
LIMELTST »—h » » » i
. A
4 u] 1 2 3 4 5 & 7
LIMELIST_&D] - - L -] | il L il
n-4 n-3 n-2 n-1
L i : .
h,
f u] 1 2 3 n-2 n-1
LIMESTRIP L L L i & i
h,
a 1 2 3 4 5 n-2 n-1
LIMESTRIP_AD] L - i L L i i il
.\
4 1 2
u] 3
LIMELZP
\ n-1 n-2

B&213-01

A note on the arrows you see below: These arrows are intended to show the vertex ordering of triangles
that are to be considered having “clockwise” winding order in screen space. Effectively, the arrows show
the order in which vertices are used in the cross-product (area, determinant) computation. Note that for
TRISTRIP, this requires that either the order of odd-numbered triangles be reversed in the cross-product
or the sign of the result of the normally-ordered cross-product be flipped (these are identical
operations).

Doc Ref # IHD-OS-LKF-Vol 9-4.21 89

intel

r 4 n-2 3
TRILIST
1 2 n-1 n-1
L A
n-E n-] ™
n-g
TRILIST_ADJ @ neE -l
n-1 J
"H

TSR STETET

k v] 2 4 n-] n-1 J

f 1 2 3 n-2 ™
momsses SOEGET,

k_ i] 2 4 n-] n-1 A

r ™)
TRISTRIP_ALJ

L v,

r ™
TRIFAH
PG

\, nl v

B&Zle-01

90 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

4 1 2 B i} n-3 n-2 A
LI} 3 4 7 n-4 n-1
L A
f 1 3 3 n-1 h
QUADS TRIP \ / \ /
1} 2 4 n-2

h, 7
r . ! I

z (Implied) 5 (Implied) n-1 (Implied)

1 LI} 4 3 n-2 n-3
X, A

Bes18-01

Thread Request Generation

Once a FF unit determines that a thread can be requested, it must gather all the information required to
submit the thread request to the Thread Dispatcher. This information is divided into several categories,
as listed below and subsequently described in detail.

e Thread Control Information: This is the information required (from the FF unit) to establish the
execution environment of the thread.

e Thread Payload Header: This is the first portion of the thread payload passed in the GRF, starting
at GRF RO. This is information passed directly from the FF unit. It precedes the Thread Payload
Input URB Data.

¢ Thread Payload Input URB Data: This is the second portion of the thread payload. It is read from
the URB using entry handles supplied by the FF unit.

Thread Control Information

The following table describes the various state variables that a FF unit uses to provide information to the
Thread Dispatcher and which affect the thread execution environment. Note that this information is not
directly passed to the thread in the thread payload (though some fields may be subsequently accessed
by the thread via architectural registers).

Doc Ref # IHD-OS-LKF-Vol 9-4.21 91

intel

State Variables Included in Thread Control Information

State
Variable

Usage

FFs

Kernel Start
Pointer

This field, together with the General State Pointer, specifies the starting location
(1=t EU instruction) of the kernel program run by threads spawned by this FF unit.
It is specified as a 64-byte-granular offset from the General State Pointer.

All FFs spawning
threads

GRF Register

Specifies, in 16-register blocks, how many GRF registers are required to run the

All FFs spawning

Block Count |kernel. The Thread Dispatcher will only seek candidate EUs that have a sufficient |threads
number of GRF register blocks available. Upon selecting a target EU, the Thread
Dispatcher will generate a logical-to-physical GRF mapping and provide this to
the target EU.
Single Specifies whether the kernel program has a single program flow (SIMDnxm with All FFs spawning
Program B . ; ... |threads
m = 1) or multiple program flows (SIMDnxm with m > 1). See CRO description in
Flow (SPF) . ;
ISA Execution Environment.
Thread The Thread Dispatcher will give priority to those thread requests with Thread All FFs spawning
Dispatch Dispatch Priority of HIGH_PRIORITY over those marked as LOW_PRIORITY. Within |threads
Priority these two classes of thread requests, the Thread Dispatcher applies a priority
order (e.g., round-robin --- though this algorithm is considered a device
implementation-dependent detail).
Eo’att":\z d This determines the initial value of the Floating Point Mode bit of the EU’s CRO tAk:| FF; spawning
ointlode | architectural register that controls floating point behavior in the EU core. (See reads
ISA.)
Exceptions | This bitmask controls the exception handing logic in the EU. (See ISA.) All FFs spawning
Enable threads
zamptler This is a hint which specifies how many indirect SAMPLER_STATE structures Al sta?fs
oun should be prefetched concurrent with thread initiation. It is recommended that SUPpT, mgVS
software program this field to equal the number of samplers, though there may sampling (V5,
. . el GS, WM)
be some minor performance impact if this number gets large.
This value should not exceed the number of samplers accessed by the thread as
there would be no performance advantage. Note that the data prefetch is treated
as any other memory fetch (with respect to page faults, etc.).
:u:lims t This is a hint which specifies how many indirect BINDING_TABLE_STATE 31” FF; spawning
Czu:t MY structures should be prefetched concurrent with thread initiation. (The notes reads

included in Sampler Count (above) also apply to this field).

92

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Thread Payload Generation

FF units are responsible for generating a thread payload — the data pre-loaded into the target EU’'s GRF
registers (starting at R0) that serves as the primary direct input to a thread's kernel. The general format of
these payloads follow a similar structure, though the exact payload size/content/layout is unique to each
stage. This subsection describes the common aspects — refer to the specific stage’s chapters for details
on any differences.

The payload data is divided into two main sections: the payload header followed by the payload URB
data. The payload header contains information passed directly from the FF unit, while the payload URB
data is obtained from URB locations specified by the FF unit.

The first 256 bits of the thread payload (the initial contents of RO, aka “the RO header”) is specially
formatted to closely match (and in some cases exactly match) the first 256 bits of thread-generated
messages (i.e., the message header) accepted by shared functions. In fact, the send instruction supports
having a copy of a GR’s contents (such as RO) used as the message header. Software must take this
intention into account (i.e., “don't muck with RO unless you know what you're doing”). This is especially
important given the fact that several fields in the RO header are considered opaque to SW, where use or
modification of their contents might lead to UNDEFINED results.

The payload header is further (loosely) divided into a leading fixed payload header section and a trailing,
variable-sized extended payload header section. In general the size, content and layout of both payload
header sections are FF-specific, though many of the fixed payload header fields are common amongst
the FF stages. The extended header is used by the FF unit to pass additional information specific to that
FF unit. The extended header is defined to start after the fixed payload header and end at the offset
defined by Dispatch GRF Start Register for URB Data. Software can cause use the Dispatch GRF Start
Register for URB Data field to insert padding into the extended header in order to maintain a fixed
offset for the start of the URB data.

Fixed Payload Header

The payload header is used to pass FF pipeline information required as thread input data. This
information is a mixture of SW-provided state information (state table pointers, etc.), primitive
information received by the FF unit from the FF pipeline, and parameters generated/computed by the FF
unit. Most of the fields of the fixed header are common between the FF stages. These non-FF-specific
fields are described in Fixed Payload Header Fields (non-FF-specific). Note that a particular stage's
header may not contain all these fields, so they are not “common” in the strictest sense.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 93

intel

Fixed Payload Header Fields (non-FF-specific)

Fixed Payload

Header Field
(non-FF-
specific) Description FFs
FF Unit ID Function ID of the FF unit. This value identifies the FF unit within the GPU All FFs spawning

subsystem. The FF unit uses this field (when transmitted in a Message Header
to the URB Function) to detect messages emanating from its spawned threads.

threads

Snapshot Flag

All FFs spawning
threads

Thread ID

This field uniquely identifies this thread within the FF unit over some period.

All FFs spawning
threads

Scratch Space
Pointer

This is the starting location of the thread’s allocated scratch space, specified as
an offset from the General State Base Address. Note that scratch space is
allocated by the FF unit on a per-thread basis, based on the Scratch Space
Base Pointer and Per-Thread Scratch Space Size state variables. FF units
assign a thread an arbitrarily-positioned region within this space. The scratch
space for multiple (API-visible) entities (vertices, pixels) is interleaved within
the thread's scratch space.

All FFs spawning
threads

Dispatch ID

This field identifies this thread within the outstanding threads spawned by the
FF unit. This field does not uniquely identify the thread over any significant
period.

Implementation Note: This field is effectively an "active thread index”. It is
used on a thread’'s URB allocation request to identify which thread’s handle
pool is to source the allocation. It is used upon thread termination to free up
the thread's scratch space allocation.

All FFs spawning
threads

Binding Table
Pointer

This field, together with the Surface State Base Pointer, specifies the starting
location of the Binding Table used by threads spawned by the FF unit. It is
specified as a 64-byte-granular offset from the Surface State Base Pointer.
See Shared Functions for a description of a Binding Table.

All FFs spawning
threads

Sampler State

This field, together with the General State Base Pointer, specifies the starting

All FFs spawning

Pointer location of the Sampler State Table used by threads spawned by the FF unit. It |threads which
is specified as a 64-byte-granular offset from the General State Base Pointer. | sample (VS, GS,
See Shared Functions for a description of a Sampler State Table. WM)

Per Thread This field specifies the amount of scratch space allocated to each thread All FFs spawning

Scratch Space

spawned by the FF unit.

The driver must allocate enough contiguous scratch space, starting at the
Scratch Space Base Pointer, to ensure that the Maximum Number of
Threads can each get Per-Thread Scratch Space size without exceeding the
driver-allocated scratch space.

threads

Handle ID <n>

This ID is assigned by the FF unit and links the thread to a specific entry within
the FF unit. The FF unit will use this information upon detecting a URB_WRITE
message issued by the thread.

Threads spawned by the GS, CLIP, and SF units are provided with a single
Handle ID / URB Return Handle pair. Threads spawned by the VS are provided

VS, GS, CLIP, SF

94

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Fixed Payload
Header Field
(non-FF-

specific) Description FFs

with one or two pairs (depending on how many vertices are to be processed).
Threads spawned by the WM do not write to URB entries, and therefore this
info is not supplied.

URB Return This is an initial destination URB handle passed to the thread. If the thread VS, GS, CLIP, SF
Handle <n> does output URB entries, this identifies the destination URB entry.

Threads spawned by the GS, CLIP, and SF units are provided with a single
Handle ID / URB Return Handle pair. Threads spawned by the VS are provided
with one or two pairs (depending on how many vertices are to be processed).
Threads spawned by the WM do not write to URB entries, and therefore this
info is not supplied.

Primitive As part of processing an incoming primitive, a FF unit is often required to GS, CLIP, SF, WM
Topology Type |spawn a number of threads (for example, for each individual triangle in a
TRIANGLE_STRIP). This field identifies the type of primitive which is being
processed by the FF unit, and which has lead to the spawning of the thread.

Kernels written to process different types of objects can use this value to
direct that processing. E.g., when a CLIP kernel is to provide clipping for all the
various primitive types, the kernel would need to examine the Primitive
Topology Type to distinguish between point, lines, and triangle clipping
requests.

Note: In general, this field is identical to the Primitive Topology Type
associated with the primitive vertices as received by the FF unit. Refer to the
individual FF unit chapters for cases where the FF unit modifies the value
before passing it to the thread. (for example, certain units perform toggling of
TRIANGLESTRIP and TRIANGLESTRIP_REV).

Extended Payload Header

The extended header is of variable-size, where inclusion of a field is determined by FF unit state
programming.

In order to permit the use of common kernels (thus reducing the number of kernels required), the
Dispatch GRF Start Register for URB Data state variable is supported in all FF stages. This SV is used to
place the payload URB data at a specific starting GRF register, irrespective of the size of the extended
header. A kernel can therefore reference the payload URB data at fixed GRF locations, while conditionally
referencing extended payload header information.

Payload URB Data

In each thread payload, following the payload header, is some amount of URB-sourced data required as

input to the thread. This data is divided into an optional Constant URB Entry (CURBE), following either by
a Primitive URB Entry (WM) or a number of Vertex URB Entries (VS, GS, CLIP, SF). A FF unit only knows the
location of this data in the URB, and is never exposed to the contents. For each URB entry, the FF unit will

Doc Ref # IHD-OS-LKF-Vol 9-4.21 95

intel

supply a sequence of handles, read offsets and read lengths to the GPU EU subsystem. The subsystem
will read the appropriate 256-bit locations of the URB, optionally perform swizzling (VS only), and write
the results into sequential GRF registers (starting at Dispatch GRF Start Register for URB Data).

State Variables Controlling Payload URB Data

State Variable Usage FFs
Dispatch GRF This SV identifies the starting GRF register receiving payload URB data. FFs
Start Register Software is responsible for ensuring that URB data does not overwrite the Fixed |spawning
for URB Data or Extended Header portions of the payload. threads
Vertex URB This SV specifies the starting offset within VUEs from which vertex data is to be VS, GS
Entry Read read and supplied in this stage’s payloads. It is specified as a 256-bit offset into
Offset any and all VUEs passed in the payload.

This SV can be used to skip over leading data in VUEs that is not required by the
stage’s threads (e.g., skipping over the Vertex Header data at the SF stage, as that
information is not required for setup calculations). Skipping over irrelevant data
can only help to improve performance.
Specifying a vertex data source extending beyond the end of a vertex entry is
UNDEFINED.
Vertex URB This SV determines the amount of vertex data (starting at Vertex URB Entry Read
Entry Read Offset) to be read from each VUEs and passed into the payload URB data. It is
Length specified in 256-bit units.

A zero value is INVALID (at very least one 256-bit unit must be read).

Specifying a vertex data source extending beyond the end of a VUE is
UNDEFINED.

Programming Restrictions: (others may already been mentioned)

e The maximum size payload for any thread is limited by the number of GRF registers available to
the thread, as determined by min(128, 16 * GRF Register Block Count). Software is responsible
for ensuring this maximum size is not exceeded, taking into account:

o The size of the Fixed and Extended Payload Header associated with the FF unit.
o The Dispatch GRF Start Register for URB Data SV.
o The amount of CURBE data included (via Constant URB Entry Read Length)

o The number of VUEs included (as a function of FF unit, it's state programming, and incoming
primitive types)

o The amount of VUE data included for each vertex (via Vertex URB Entry Read Length)
o (For WM-spawned PS threads) The amount of Primitive URB Entry data.
e For any type of URB Entry reads:

o Specifying a source region (via Read Offset, Read Length) that goes past the end of the URB
Entry allocation is illegal.

96

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

» The allocated size of Vertex/Primitive URB Entries is determined by the URB Entry

Allocation Size value provided in the pipeline state descriptor of the FF unit owning
the VUE/PUE.

» The allocated size of CURBE entries is determined by the URB Entry Allocation Size
value provided in the CS_URB_STATE command.

Vertex Data Overview

The 3D pipeline FF stages (past VF) receive input 3D primitives as a stream of vertex information packets.
(These packets are not directly visible to software.) Much of the data associated with a vertex is passed
indirectly via a VUE handle. The information provided in vertex packets includes:

e The URB Handle of the VUE: This is used by the FF unit to refer to the VUE and perform any
required operations on it (e.g., cause it to be read into the thread payload, dereference it, etc.).

¢ Primitive Topology Information: This information is used to identify/delineate primitive
topologies in the 3D pipeline. Initially, the VF unit supplies this information, which then passes
through the VS stage unchanged. GS and CLIP threads must supply this information with each
vertex they produce (via the URB_WRITE message). If a FF unit directly outputs vertices (that were
not generated by a thread they spawned), that FF unit is responsible for providing this information.

e PrimType: The type of topology, as defined by the corresponding field of the 3DPRIMITIVE
command.

e StartPrim: TRUE only for the first vertex of a topology.
e EndPrim: TRUE only for the last vertex of a topology.

e (Possibly, depending on FF unit) Data read back from the Vertex Header of the VUE.

Vertex URB Entry (VUE) Formats

In general, vertex data is stored in Vertex URB Entries (VUEs) in the URB, and only referenced by the
pipeline stages indirectly via VUE handles. Therefore (for the most part) the contents/format of the vertex
data is not exposed to 3D pipeline hardware — the FF units are typically only aware of the handles and
sizes of VUEs.

VUEs are written in two ways:

e At the top of the 3D Geometry pipeline, the VF's InputAssembly function creates VUEs and
initializes them from data extracted from Vertex Buffers as well as internally-generated data.

e VS, GS, HS and DS threads can compute, format, and write new VUEs as thread output.
There are only a few points in the 3D FF pipeline where the FF units are exposed to the VUE data.
Otherwise the VUE remains opaque to the 3D pipeline hardware.

e TE stage reads back Patch Headers from Patch URB Entries

e GS stage (optionally) reads back VertexCounts and Control Data Headers from GS VUEs

e StreamOutput stage reads back VUE contents in order to stream the vertices out
e Clip stage reads back VertexHeaders from VUEs

Doc Ref # IHD-OS-LKF-Vol 9-4.21 97

intel

Software must ensure that any VUEs subject to readback by the 3D pipeline start with a valid Vertex
Header. This extends to all VUEs with the following exceptions:

e If the VS function is enabled, the VF-written VUEs are not required to have Vertex Headers, as the
VS-incoming vertices are guaranteed to be consumed by the VS (i.e., the VS thread is responsible
for overwriting the input vertex data).

e If the GS FF is enabled, neither VF-written VUEs nor VS thread-generated VUEs are required to
have Vertex Headers, as the GS will consume all incoming vertices.

e If Rendering is disabled, VertexHeaders are not required anywhere.

The following table defines the Vertex Header. The Position fields are described in further detail below.

VUE Vertex Header

DWord | Bits Description

Do 310 Reserved: MBZ

D1 31:0 Render Target Array Index (RTAIndex). This value is (eventually) used to index into a specific

element of an “array” Render Target. It is read back by the GS unit (for all exiting vertices) and the
Clip unit (for all clip-generated vertices), subsequently routed into the PS thread payload, and
eventually included in the RTWrite DataPort message header for use by the DataPort shared
function.

Software is responsible for ensuring this field is zero whenever a programmable index value is not
required. When a programmable index value is required

, software must ensure that the correct 11-bit value is written to this field. Specifically, the kernels
must perform a reange check of computed index values against [0,2047], and output zero if that
range is exceeded. Note that the unmodified “renderTargetArraylndex” must be maintained in the
VUE outside of the Vertex Header.

Software can force an RTAIndex of 0 to be used (effectively ignoring the setting of this DWord) by
use of the ForceZeroRTAIndex bit (3DSTATE_CLIP). Otherwise the read-back value will be used to
select an RTArray element, after being clamped to the RTArray surface’'s [MinimumArrayElement,
Depth] range (SURFACE_STATE).

Format: 0-based U32 index value

D2 310 Viewport Index. This value is used to select one of a possible 16 sets of viewport (VP) state

parameters in the Clip unit's VertexClipTest function and in the SF unit's ViewportMapping and
Scissor functions.

The Clip unit (if enabled) will read back this value. The Clip unit will range-check the value against
[0,Maximum VPIndex] (see 3DSTATE_CLIP).

Software can force a value of 0 to be used by programming Maximum VPIndex to 0.

Format: 0-based U32 index value

b3 310 Point Width. This field specifies the width of POINT objects in screen-space pixels. It is used only for

vertices within POINTLIST and POINTLIST_BF primitive topologies, and is ignored for vertices

98 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

DWord | Bits Description
associated with other primitive topologies.
This field is read back by the Clip unit.
Format: FLOAT32

D4 31:0 - . I . e
Vertex Position 0 X Coordinate. This field contains the X component of the vertex's first 4D space
position.
Format: FLOAT32

D5 31:0 - . - . e
Vertex Position 0 Y Coordinate. This field contains the Y component of the vertex’s first 4D space
position.
Format: FLOAT32

D6 31:0 . . - . e
Vertex Position 0 Z Coordinate. This field contains the Z component of the vertex's first NDC space
position.
Format: FLOAT32

D7 31:0 - . _— . e
Vertex Position 0 W Coordinate. This field contains the Z component of the vertex's first 4D space
position.
Format: FLOAT32

D8 310 ~psopms . A . . .
ClipDistance 0 Value (optional). If the UserClipDistance Clip Test Enable Bitmask bit
(3DSTATE_CLIP) is set, this value will be read from the URB in the Clip stage. If the value is found to
be less than 0 or a NaN, the vertex's UCF<0> bit will set in the Clip unit's VertexClipTest function.
If the UserClipDistance Clip Test Enable Bitmask bit is clear, this value will not be read back, and
the vertex's UCF<0> bit will be zero by definition.
Format: FLOAT32
ClipDistance Values are enabled for clip/cull test in the Clip stage in one of two modes: Normally the
corresponding Enable Bitmasks are obtained from the state programmed in the last “vertex-
producing” stage (VS/DS/GS) that is enabled prior to the Clip stage. E.g., if VS and DS are enabled
but GS is disabled, the masks are obtained from 3DSTATE_DS. Alternatively, the Enable Bitmasks can
be obtained directly from corresponding masks programmed via 3DSTATE_CLIP, through use of
3DSTATE_CLIP's Force User Clip Distance [Cull/Clip] Test Enable Bitmask state bits (see description of
3DSTATE_CLIP).

D3 310 ClipDistance 1 Value (optional). See above.

D10 310 ClipDistance 2 Value (optional). See above.

D11 310 ClipDistance 3 Value (optional). See above.

D12 31:0

ClipDistance 4 Value (optional). See above.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 99

intel

DWord | Bits Description

D13 310 ClipDistance 5 Value (optional). See above.

D14 310 ClipDistance 6 Value (optional). See above.

D15 310 ClipDistance 7 Value (optional). See above.

31:0 | End of Vertex Header Padding (if required). The Vertex Header shall be padded at the and so that
the header ends on a 32-byte boundary and therefore the Remainder of Vertex Elements (below)
starts on a 32B boundary.

310 (Remainder of Vertex Elements).

The absolute maximum size limit on this data is specified via a maximum limit on the amount of data
that can be read from a VUE (including the Vertex Header) (Vertex Entry URB Read Length has a
maximum value of 63 256-bit units). Therefore, the Remainder of Vertex Elements has an absolute
maximum size of 62 256-bit units. Of course, the actual allocated size of the VUE can and will limit
the amount of data in a VUE.

Vertex Positions

(For brevity, the following discussion uses the term map as a shorthand for “compute screen space
coordinate via perspective divide followed by viewport transform”.)

The “Position” fields of the Vertex Header are the only vertex position coordinates exposed to the 3D
Pipeline. The CLIP and SF units are the only FF units which perform operations using these positions. The
VUE will likely contain other position attributes for the vertex outside of the Vertex Header, though this
information is not directly exposed to the FF units. For example, the Clip Space position will likely be
required in the VUE (outside of the Vertex Header) to perform correct and robust 3D Clipping in the CLIP
thread.

CLIP unit uses the 3DSTATE_CLIP.PerspectiveDivideDisable bit to determine whether to perform a
perspective projection (divide by w) of the read-back 4D Position.

When Perspective Divide is enabled, the Clip Space position is defined in a homogeneous 4D coordinate
space (pre-perspective divide), where the visible “view volume” is defined by the APIs. The API's VS, GS or
DS shader program will include geometric transforms in the computation of this clip space position such
that the resulting coordinate is positioned properly in relation to the view volume (i.e., it will include a
"view transform” in this computation path). When Perspective Divide is enabled, the 3D FF pipeline will
perform a perspective projection (division of x,y,z by w), perform clip-test on the resulting NDC
(Normalized Device Coordinates), and eventually perform viewport mapping (in the SF unit) to yield
screen-space (pixel) coordinates.

When Perspective Divide is disabled, the read-back Position does not undergo perspective projection
by the 3D FF pipeline.

100 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Clip Space Position

The clip-space position of a vertex is defined in a homogeneous 4D coordinate space where, after
perspective projection (division by W), the visible “view volume” is some canonical (3D) cuboid. Typically
the X/Y extents of this cuboid are [-1,+1], while the Z extents are either [-1,+1] or [0,+1]. The API's VS or
GS shader program will include geometric transforms in the computation of this clip space position such
that the resulting coordinate is positioned properly in relation to the view volume (i.e., it will include a
"view transform” in this computation path).

Note that, under typical perspective projections, the clip-space W coordinate is equal to the view-space Z
coordinate.

A vertex's clip-space coordinates must be maintained in the VUE up to 3D clipping, as this clipping is
performed in clip space.

Vertex clip-space positions must be included in the Vertex Header, so that they can be read-back (prior
to Clipping) and then subjected to perspective projection (in hardware) and subsequent use by the FF
pipeline.

NDC Space Position

A perspective divide operation performed on a clip-space position yields a [X,Y,Z,RHW] NDC (Normalized
Device Coordinates) space position. Here “normalized” means that visible geometry is located within the
[-1,+1] or [0,+1] extent view volume cuboid (see clip-space above).

e The NDC X,Y,Z coordinates are the clip-space X,Y,Z coordinates (respectively) divided by the clip-
space W coordinate (or, more correctly, the clip-space X,Y,Z coordinates are multiplied by the
reciprocal of the clip space W coordinate).

o Note that the X,Y,Z coordinates may contain INFINITY or NaN values (see below).

e The NDC RHW coordinate is the reciprocal of the clip-space W coordinate and therefore, under
normal perspective projections, it is the reciprocal of the view-space Z coordinate. Note that NDC
space is really a 3D coordinate space, where this RHW coordinate is retained in order to perform
perspective-correct interpolation, etal. Note that, under typical perspective projections.

o Note that the RHW coordinate make contain an INFINITY or NaN value (see below).

Doc Ref # IHD-OS-LKF-Vol 9-4.21 101

intel

Screen-Space Position

Screen-space coordinates are defined as:

e XY coordinates are in absolute screen space (pixel coordinates, upper left origin). See Vertex X,Y
Clamping and Quantization in the SF section for a discussion of the limitations/restrictions placed
on screenspace X,Y coordinates.

e Z coordinate has been mapped into the range used for DepthTest.

e RHW coordinate is actually the reciprocal of clip-space W coordinate (typically the reciprocal of the
view-space Z coordinate).

Vertex Fetch (VF) Stage

The Vertex Fetch Stage performs one major function: executing 3DPRIMITIVE commands. This is handled
by the VF's InputAssembly function.

The following subsections describe some high-level concepts associated with the VF stage:

e State
e 3D Primitive Command
e Functions

State

This section contains various state registers.

Control State

Register

3DSTATE_VF

3DSTATE_VF_TOPOLOGY

Index Buffer (IB) State

The 3DSTATE_INDEX_BUFFER command is used to define an Index Buffer (IB) used in subsequent
3DPRIMITIVE commands.

The RANDOM access mode of the 3DPRIMITIVE command involves the use of a memory-resident IB. The
IB, defined via the 3DSTATE_INDEX_BUFFER command described below, contains a 1D array of 8, 16 or
32-bit index values. These index values will be fetched by the InputAssembly function, and subsequently
used to compute locations in VERTEXDATA buffers from which the actual vertex data is to be fetched.
(This is opposed to the SEQUENTIAL access mode were the vertex data is simply fetched sequentially
from the buffers).

102 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

The following table lists which primitive topology types support the presence of Cut Indices.

Definition Cut Index?

3DPRIM_POINTLIST

3DPRIM_LINELIST

3DPRIM_LINESTRIP

3DPRIM_TRILIST

<|=<|=<|=<

3DPRIM_TRISTRIP

3DPRIM_TRIFAN

3DPRIM_QUADLIST

3DPRIM_QUADSTRIP

3DPRIM_LINELIST_AD)J

3DPRIM_LINESTRIP_ADJ

3DPRIM_TRILIST_ADJ

3DPRIM_TRISTRIP_ADJ

<|<|=<|=<|=<

3DPRIM_TRISTRIP_REVERSE

3DPRIM_POLYGON

z

3DPRIM_RECTLIST

3DPRIM_LINELOOP

3DPRIM_POINTLIST_BF

3DPRIM_LINESTRIP_CONT

3DPRIM_LINESTRIP_BF

3DPRIM_LINESTRIP_CONT_BF

Zl<|<|=<]|=<

3DPRIM_TRIFAN_NOSTIPPLE

3DPRIM_PATCHLIST_n

3DSTATE_INDEX_BUFFER

Vertex Buffers (VB) State

The 3DSTATE_VERTEX_BUFFERS and 3DSTATE_VF_INSTANCING commands are used to define Vertex
Buffers (VBs) used in subsequent 3DPRIMITIVE commands.

Most input vertex data is sourced from memory-resident VBs. A VB is a 1D array of structures, where the
size of the structure as defined by the VB's BufferPitch. VBs are accessed either as VERTEXDATA buffers
or INSTANCEDATA buffers, as defined by the InstancingEnable state in 3DSTATE_VF_INSTANCING. The
VB's access type will determine whether the VF-computed Vertexindex or Instancelndex is used to access
data in the VB.

Given that the RANDOM access mode of the 3DPRIMITIVE command utilizes an IB (possibly provided by
an application) to compute VB index values, VB definitions contain a MaxIndex value used to detect
accesses beyond the end of the VBs. Any access outside the extent of a VB returns 0.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 103

intel

Register

3DSTATE_VERTEX_BUFFERS

VERTEX_BUFFER_STATE

VERTEXDATA Buffers - SEQUENTIAL Access

This section pertains to (a) 3DPRIMITIVE commands with VertexAccessType = SEQUENTIAL and (b) vertex
elements with InstancingEnable set to DISABLED. Instead of “VBState.StartingBufferAddress +
VBState.MaxIndex x VBState.BufferPitch”, the address of the byte immediately beyond the last valid byte
of the buffer is determined by "VBState.StartingBufferAddress + VBState.BufferSize".

YR State, BufferPitch

! o
YBState, StartingBufferAddress »
B0PRIM, Starting e rter Lo cation
5 WBState, BufferPitch
| YBInstanceR astartiddrass I k4 LW
[restart here each instance L WertexD atafve]
VertexD atavq]
L PRIM Merter CountPerln stance
" wertexData[va.1]
YR State MarInden »
u YBState, BufferPitch
Bea2e-01

104 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

VERTEXDATA Buffers - RANDOM Access

This section pertains to (a) 3DPRIMITIVE commands with VertexAccessType = RANDOM and (b) vertex
elements with InstancingEnable set to DISABLED. Instead of “VBState.StartingBufferAddress +
VBState.MaxIndex x VBState.BufferPitch”, the address of the byte immediately beyond the last valid byte
of the buffer is determined by "VBState.StartingBufferAddress + VBState.BufferSize”".

VB State, B ufferFitch

4 =
VBState, StartingBufferaddress »
[ertexIndes +
ZDPRIM.B ase e rten Location)
VB State, BufferPitch
¥l
wertex Datal v.]

VB State, ManInden b d
1 WBState, BufferPitch

Be=zy-01

Doc Ref # IHD-OS-LKF-Vol 9-4.21 105

intel

INSTANCEDATA Buffers

This section pertains to vertex elements with InstancingEnable set to ENABLED. Instead of
"VBState.StartingBufferAddress + VBState.MaxIndex x VBState.BufferPitch”, the address of the byte
immediately beyond the last valid byte of the buffer is determined by “VBState.StartingBufferAddress +
VBState.BufferSize".

B State, BufferPitch

ot P
VBState, StartingBufferAaddress e
20PRIM, StartingInstancelocation
% WBState, BufferPitch
LA
Pointer advances according to Instancelatal 0]

WBState InstanceStepR ate

Instancelata[instance# div rate]

Instancel atal n]

VBState, ManInden
H WBState, BufferPitch

Bes3a-01

106 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Vertex Definition State

The following subsections define the state information for vertex data and describe some related
processing.

Input Vertex Definition

The 3DSTATE_VERTEX_ELEMENTS command is used to define the source and format of input vertex data
and the format of how it is stored in the destination VUE as part of 3DPRIMITIVE processing in the VF
unit.

Two additional commands are added. 3DSTATE_VF_INSTANCING specifies the InstanceStepRate on a
per-vertex-element basis. 3DSTATE_VF_SGVS specifies optional insertion of VertexID and/or InstancelD
into the input vertex data (logically following the processing of the VERTEX_ELEMENT_STATE structures).

Refer to 3DPRIMITIVE Processing below for the general flow of how input vertices are input and stored
during processing of the 3DPRIMITIVE command.

Register

VERTEX _ELEMENT_STATE

3DSTATE_VERTEX_ELEMENTS

3D_Vertex_Component_Control

3DSTATE_VF_INSTANCING

3DSTATE_VF_SGVS

3DSTATE_VF_SGVS_2

3DSTATE_VF_COMPONENT_PACKING

3D Primitive Command

Following are 3D Primitive Commands:
3DPRIMITIVE

3D Primitive Topology Type Encoding

The following table defines the encoding of the Primitive Topology Type field. See 3D Pipeline for details,
programming restrictions, diagrams, and a discussion of the basic primitive types.

3D_Prim_Topo_Type

Functions

This section covers the various functions for Vertex Fetch.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 107

intel

Input Assembly

The VF's InputAssembly function includes (for each vertex generated):

e Generation of Vertexindex and Instancelndex for each vertex, possibly via use of an Index Buffer.
e Lookup of the Vertexindex in the Vertex Cache (if enabled)
e If a cache miss is detected:

e Use of computed indices to fetch data from memory-resident vertex buffers

e Format conversion of the fetched vertex data

e Assembly of the format conversion results (and possibly some internally generated data) to
form the complete "input” (raw) vertex

e Storing the input vertex data in a Vertex URB Entry (VUE) in the URB
e Output of the VUE handle of the input vertex to the VS stage

e If a cache hit is detected, the VUE handle from the Vertex Cache is passed to the VS stage (marked
as a cache hit to prevent any VS processing).

Vertex Assembly

The VF utilizes a number of VERTEX_ELEMENT state structures to define the contents and format of the
vertex data to be stored in Vertex URB Entries (VUEs) in the URB. See below for a detailed description of
the command used to define these structures (3DSTATE_VERTEX_ELEMENTS).

Each active VERTEX_ELEMENT structure defines up to 4 contiguous DWords of VUE data, where each
DWord is considered a “component” of the vertex element. The starting destination DWord offset of the
vertex element in the VUE is specified, and the VERTEX_ELEMENT structures must be defined with
monotonically increasing VUE offsets. For each component, the source of the component is specified.
The source may be a constant (0, 0x1, or 1.0f), a generated ID (VertexID, InstancelD or PrimitivelD), or a
component of a structure in memory (e.g,. the Y component of an XYZW position in memory). In the case
of a memory source, the Vertex Buffer sourcing the data, and the location and format of the source data
with that VB are specified.

The VF's Vertex Assembly process can be envisioned as the VF unit stepping through the
VERTEX_ELEMENT structures in order, fetching and format-converting the source information (if memory
resident), and storing the results in the destination VUE.

The information supplied via the 3DSTATE_VF_SGVS command is also used to optionally insert VertexID
and/or InstancelD into the input vertex data, after the VERTEX_ELEMENT structures are processed.

Vertex Cache

The VF stage communicates with the VS stage in order to implement a Vertex Cache function in the 3D
pipeline. The Vertex Cache is strictly a performance-enhancing feature and has no impact on 3D pipeline
results (other than a few statistics counters).

The Vertex Cache contains the VUE handles of VS-output (shaded) vertices if the VS function is enabled,
and the VUE handles of VF-output (raw) vertices if the VS function is disabled. (Note that the actual

108 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

vertex data is held in the URB, and only the handles of the vertices are stored in the cache). In either case,
the contents of the cache (VUE handles) are tagged with the VertexIndex value used to fetch the input
vertex data. The rationale for using the VertexIndex as the tag is that (assuming no other state or
parameters change) a vertex with the same Vertexindex as a previous vertex will have the same input
data, and therefore the same result from the VF+VS function.

Note that any change to the state controlling the InputAssembly function (e.g., vertex buffer definition),
or any change to the state controlling the VS function (if enabled) (e.g., VS kernel), will result in the
Vertex Cache being invalidated. In addition, any non-trivial use of instancing (i.e., more than one instance
per 3DPRIMITIVE command and the inclusion of instance data in the input vertex) will effectively
invalidate the cache between instances, as the Instancelndex is not included in the cache tag. See Vertex
Caching in Vertex Shader for more information on the Vertex Cache (e.g., when it is implicitly disabled,
etc.)

The hardware interface to supply instancing state information is slightly different. Individual vertex
elements (instead of buffers) are tagged as instanced or not.

Input Data: Push Model vs. Pull Model

Given the programmability of the pipeline, and the ability of shaders to input (load/sample) data from
memory buffers in an arbitrary fashion, the decision arises in whether to push instance/vertex data into
the front of the pipeline or defer the data access (pull) to the shaders that require it. Modern APIs directly
support the latter model via auto-generated IDs in the Input Assembly function. An

incrementing VertexID, InstancelD, and PrimitivelD are generated in the Input Assembly process, and
these values can be declared as input to the “first enabled, relevant” shader. That shader can, for
example, use the HW-generated ID as an index into a memory resource such as a constant buffer or
vertex buffer. The 3D pipeline HW supports these IDs as required by the APIs.

There are tradeoffs involved in deciding between these models. For vertex data, it is probably always
better to push the data into the pipeline, as the VF hardware attempts to cover the latency of the data
fetch. The decision is less clear for instance data, as pushing instance data leads to larger Vertex URB
entries which will be holding redundant data (as the instance data for vertices of an object are by
definition the same). Regardless, the 3D pipeline supports both models.

Generated IDs

Note that the generated IDs are considered separate from any offset computations performed by the VF
unit, and are therefore described separately here.

The VF generates InstancelD, VertexID, and PrimitivelD values as part of the InputAssembly process.

VertexID and InstancelD are only allowed to be inserted into the input vertex data as it is gathered and
written into the URB as a VUE.

The definition/use of PrimitivelD is more complicated than the other auto-generated IDs. PrimitivelD is
associated with an “object” and not a particular vertex.

It is only available to the GS and HS as a special non-vertex input and the PS as a constant-interpolated
attribute. It is not seen by the VS or DS at all.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 109

intel

The PrimitivelD therefore is kept separate from the vertex data. Take for example a TRILIST primitive
topology: It should be possible to share vertices between triangles in the list (i.e., reuse the VS output of
a vertex), even though each triangle has a different PrimitivelD associated with it.

The optional insertion of VertexID and/or InstancelD into the input vertex data occurs as a separate step
after the processing of VERTEX_ELEMENT structures and is controlled via the 3DSTATE_VF_SGVS
command.

PrimitivelD is generated by hardware, plumbed down into the HS, GS and SF stages. It is passed along in
HS/GS thread payloads. Software can also select PrimitivelD to be swizzled into vertex attribute data in
the SF stage, though only if neither the HS nor GS stages are enabled.

3D Primitive Processing

Index Buffer Access

The following figure illustrates how the Index Buffer is accessed.

FitchlnBytes
(function of IBState.IndexFormat)

>
[BState.StartingBufferaddress r
SOFRIM.StartingwvertexlLocation
% PitchInBytes
| [BInstanceRestartaddress I ¥ L.
{restart here each instance Index[v':']
Index[v,]
-
:
SDPRIM . WertexCountPerinstance
Index[v. 1]
B&525-01

Vertex Element Data Path

The following diagram shows the path by which a vertex element within the destination VUE is generated
and how the fields of the VERTEX_ELEMENT_STATE structure is used to control the generation.

110 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Vertex Buffer Index

intel

VB VB; VB
VB State g ' i
Wertexlndex e E \ L]
'n
.rll \\

Instancelndex F—» ==~

¥ ™

-I'r! \\\
J'j \‘\
\
& -
/ ~
4 Structure from VB >,
Sy
L 1] | L2 1] }
Source Element Offset f
Source Element Format Farmat Conversion
Component O Component 1 Component 2 Component 3
0
Oxl > S
1.0f 4+ »
YertexlD > *
InstancelD +
PrimitivelD T T
Component Select0...3 — /\
l |
Write Enables
R 5 ".?J' .E. 'I,IE'; LL L]
F 3

Dastination YUE Handle

Destination Element Offset

Doc Ref # IHD-OS-LKF-Vol 9-4.21

B6840-01

111

intel

FormatConversion

Once the VE source data has been fetched, it is subjected to format conversion. The output of format
conversion is up to 4 32-bit components, each either integer or floating-point (as specified by the
Source Element Format). See Sampler for conversion algorithms.

The following table lists the valid Source Element Format selections, along with the format and
availability of the converted components (if a component is listed as -, it cannot be used as the source of
a VUE component). Note: This table is a subset of the list of supported surface formats defined in the
Sampler chapter. Please refer to that table as the "master list”. This table is here only to identify the
components available (per format) and their format.

Source Element Formats Supported in VF Unit

Source Element Converted Component
Surface Format Name Format 0 1 2 3
R32G32B32A32_FLOAT FLOAT R G B A
R32G32B32A32_SINT SINT R G B A
R32G32B32A32_UINT UINT R G B A
R32G32B32A32_UNORM FLOAT R G B A
R32G32B32A32_SNORM FLOAT R G B A
R64G64_FLOAT FLOAT R G - -
R32G32B32A32_SSCALED FLOAT R G B A
R32G32B32A32_USCALED FLOAT R G B A
R32G32B32A32_SFIXED FLOAT R G B A
R64G64_PASSTHRU NONE R G - -
R32G32B32_FLOAT FLOAT R G B -
R32G32B32_SINT SINT R G B -
R32G32B32_UINT UINT R G B -
R32G32B32_UNORM FLOAT R G B -
R32G32B32_SNORM FLOAT R G B -
R32G32B32_SSCALED FLOAT R G B -
R32G32B32_USCALED FLOAT R G B -
R32G32B32_SFIXED FLOAT R G B -
R16G16B16A16_UNORM FLOAT R G B A
R16G16B16A16_SNORM FLOAT R G B A
R16G16B16A16_SINT SINT R G B A
R16G16B16AT6_UINT UINT R G B A
R16G16B16A16_FLOAT FLOAT R G B A
R32G32_FLOAT FLOAT R G - -
R32G32_SINT SINT R G - -

112 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Source Element Converted Component

R32G32_UINT UINT R G - -
R32G32_UNORM FLOAT R G - -
R32G32_SNORM FLOAT R G - -
R64_FLOAT FLOAT R - - -
R16G16B16A16_SSCALED FLOAT R G B A
R16G16B16A16_USCALED FLOAT R G B A
R32G32_SSCALED FLOAT R G - -
R32G32_USCALED FLOAT R G - -
R32G32_SFIXED FLOAT R G - -
R64_PASSTHRU NONE R - - -
B8G8RBA8_UNORM FLOAT B G R A
R10G10B10A2_UNORM FLOAT R G B A
R10G10B10A2_UINT UINT R G B A
R10G10B10_SNORM_A2_UNORM FLOAT R G B A
R8G8B8A8_UNORM FLOAT R G B A
R8G8B8A8_SNORM FLOAT R G B A
R8G8BBAS8_SINT SINT R G B A
R8G8BBA8_UINT UINT R G B A
R16G16_UNORM FLOAT R G - -
R16G16_SNORM FLOAT R G - -
R16G16_SINT SINT R G - -
R16G16_UINT UINT R G - -
R16G16_FLOAT FLOAT R G - -
B10G10R10A2_UNORM FLOAT R G B A
R11G11B10_FLOAT FLOAT R G B -
R32_SINT SINT R - - -
R32_UINT UINT R - -
R32_FLOAT FLOAT R - - -
R32_UNORM FLOAT R - - -
R32_SNORM FLOAT R - - -
R10G10B10X2_USCALED FLOAT R G B -
R8G8B8A8_SSCALED FLOAT R G B A
R8G8BBA8_USCALED FLOAT R G B A
R16G16_SSCALED FLOAT R G - -
R16G16_USCALED FLOAT R G - -
R32_SSCALED FLOAT R - -

R32_USCALED FLOAT R - -

Doc Ref # IHD-OS-LKF-Vol 9-4.21 113

intel

Source Element

Converted Component

R8G8_UNORM FLOAT R G - -
R8G8_SNORM FLOAT R G - -
R8G8_SINT SINT R G - -
R8G8_UINT UINT R G - -
R16_UNORM FLOAT R - - -
R16_SNORM FLOAT R - -
R16_SINT SINT R - - -
R16_UINT UINT R - -
R16_FLOAT FLOAT R - - -
R8G8_SSCALED FLOAT R G - -
R8G8_USCALED FLOAT R G - -
R16_SSCALED FLOAT R - - -
R16_USCALED FLOAT R - - -
R8_UNORM FLOAT R - - -
R8_SNORM FLOAT R - - -
R8_SINT SINT R - - -
R8_UINT UINT R - -
R8_SSCALED FLOAT R - -
R8_USCALED FLOAT R - - -
R8G8B8_UNORM FLOAT R G B -
R8G8B8_SNORM FLOAT R G B -
R8G8B8_SSCALED FLOAT R G B -
R8G8B8_USCALED FLOAT R G B -
R8G8B8_SINT SINT R G B -
R8G8B8_UINT UINT R G B -
R8G8B8_UINT UINT R G B -
R64G64B64A64_FLOAT FLOAT R G B A
R64G64B64_FLOAT FLOAT R G B A
R16G16B16_FLOAT FLOAT R G B -
R16G16B16_UNORM FLOAT R G B -
R16G16B16_SNORM FLOAT R G B -
R16G16B16_SSCALED FLOAT R G B -
R16G16B16_USCALED FLOAT R G B -
R16G16B16_UINT UINT R G B -
R16G16B16_SINT SINT R G B -
R32_SFIXED FLOAT R - - -
R10G10B10A2_SNORM FLOAT R G B A

114

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Source Element Converted Component
R10G10B10A2_USCALED FLOAT R G B A
R10G10B10A2_SSCALED FLOAT R G B A
R10G10B10A2_SINT SINT R G B A
B10G10R10A2_SNORM FLOAT R G B A
B10G10R10A2_USCALED FLOAT R G B A
B10G10R10A2_SSCALED FLOAT R G B A
B10G10R10A2_UINT UINT R G B A
B10G10RT0A2_SINT SINT R G B A
R64G64B64A64 PASSTHRU NONE R G B A
R64G64B64_PASSTHRU NONE R G B -

DestinationFormatSelection

The Component Select 0..3 bits are then used to select, on a per-component basis, which destination
components will be written and with which value. The supported selections are the converted source
component, VertexID, InstancelD, PrimitivelD, the constants 0 or 1.0f, or nothing (VFCOMP_NO_STORE). If
a converted component is listed as '~ (not available) in the "Source Element Formats" table (above). It
must not be selected (via VFCOMP_STORE_SRC), or an UNPREDICTABLE value will be stored in the
destination component.

The selection process sequences from component 0 to 3. Once a Component Select of
VFCOMP_NO_STORE is encountered, all higher-numbered Component Select settings must also be
programmed as VFCOMP_NO_STORE. It is therefore not permitted to have ‘holes’ in the destination VE.

Dangling Vertex Removal

The last functional stage of processing of the 3DPRIMITIVE command is the removal of “dangling”
vertices. This stage includes the discarding of primitive topologies without enough vertices for a single
object (e.g., a TRISTRIP with only two vertices), as well as the discarding of trailing vertices that do not
form a complete primitive (e.g., the last two vertices of a 5-vertex TRILIST). 3D APIs typically require these
vertices to be (effectively) discarded before the VS stage.

Statistics Gathering

This function is best described as a filter operating on the vertex stream emitted from the processing of
the 3DPRIMITIVE. The filter inputs the PrimType, PrimStart, and PrimEnd values associated with the
generated vertices. The filter only outputs primitive topologies without dangling vertices. This requires
the filter to (a) be able to buffer some number of vertices, and (b) be able to remove dangling vertices
from the pipeline and dereference the associated VUE handles.

3DSTATE_VF_STATISTICS

Doc Ref # IHD-OS-LKF-Vol 9-4.21 115

intel

Vertices Generated

VF will increment the IA_VERTICES_COUNT Register (see Memory Interface Registers in Volume la, GPU)
for each vertex it fetches, even if that vertex comes from a cache rather than directly from a vertex buffer
in memory. Any “dangling” vertices (fetched vertices that are part of an incomplete object) will not be
included.

Objects Generated

VF will increment the IA_PRIMITIVES_COUNT Register (see Memory Interface Registers in vol1a System
Overview) for each object (point, line, triangle, or quadrilateral) that it forwards down the pipeline.

For LINELOORP, the last (closing) line object is counted.

Vertex Shader (VS) Stage

The Vertex Shader (VS) stage of the 3D Pipeline is used to perform processing (“shading”) of vertices
after they are assembled and written to the URB by the VF function. The primary function of the VS stage
is to pass vertices that miss in the VS Cache to VS threads, and then pass the VS thread-generated
vertices down the pipeline. Vertices that hit in the VS Cache have already been shaded and are therefore
passed down the pipeline unmodified.

When the VS stage is disabled, vertices flow through the unit unmodified (i.e., as written by the VF unit).

State

Register

3DSTATE_VS

3DSTATE_CONSTANT_VS

3DSTATE_PUSH_CONSTANT_ALLOC_VS

3DSTATE_BINDING_TABLE_POINTERS_VS

3DSTATE_SAMPLER _STATE_POINTERS_VS

3DSTATE_URB_VS

Functions

Vertex Shader Cache (VS$)

Note: The VS$ should not be confused with input data caches used by the VF stage when fetching data
from index or vertex buffers in memory.

The 3D Pipeline employs a Vertex Shader Cache (VS$) that is shared between the VF and VS stages. (See
Vertex Fetch chapter for additional information). The vertex index generated by the VF stage is used as
the cache tag. The cached data contains the URB handle of a VUE, which in turn typically contains the
vertex data output from a previously-executed VS shader, though if the VS function is disabled the VUE
will contain the input vertex data generated by the VF stage.

116 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

When the VF stage processes a vertex, it will first perform a lookup in the VS$. If the vertex hits in the
VS$, the VS stage will return the hit VUE handle to the VF stage, and the VF stage will subsequently pass
the returned VUE handle back down the FF pipeline to VS. If the vertex misses in the VS$ (or always, if the
VS$ is disabled), the VS stage will allocate a VUE handle for the miss vertex and return this to the VF
stage. The VF stage will then proceed to fetch/generate the input vertex data, store the results into the
VUE, and then pass the VUE down to the VS stage. If the VS function is enabled, the VUE handle/data will
be used as input to a VS shader thread, and that thread will overwrite the VUE with the shader results.

The VS$ may be explicitly DISABLED via the Vertex Cache Disable bit in 3DSTATE_VS. Even when explicitly
ENABLED, the VS stage will (by default) implicitly disable the VS$ whenever it detects one of the
following conditions:

Sequential indices are used in the 3DPRIMITIVE command (though this is effectively a don't care as there
would not be any VS$ hits).

The implicit disable persists as long as one of these conditions persist, after which the VS$ is invalidated.

The VS$ is implicitly invalidated between 3DPRIMITIVE commands and between instances within a
3DPRIMITIVE command — therefore use of InstancelD in a Vertex Element is not a condition under which
the cache is implicitly disabled.

The following table summarizes the modes of operation of the VS$.

VS
Function
VS$ Enable Mode of Operation
(.DIS?E.%tLlED DISABLED The VS$ is not used. VF stage assembles all vertices and writes them into the VUE
'mp :‘Cl't?/ of supplied by the VS stage. VS stage subsequently passes references to these VUEs
explicitly) down the pipeline without spawning any VS threads.
Usage Model: This is an exceptional condition, only required for (when the VF-
generated vertices contain PrimitivelD. Otherwise the VS$ should be enabled.
ENABLED

The VS$ is not used. VF stage assembles all vertices and writes them into the VUE
supplied by the VS stage. VS stage subsequently spawns VS threads to process all
vertices, overwriting the input data with the results. The VS stage pass references to
these VUEs down the pipeline.

Usage Model: This mode is only used when the VS function is required, but either (a)
the VS kernel produces a side effect (e.g., writes to a memory buffer) which in turn
requires every vertex to be processed by a VS thread, or (b) the input vertex contains
PrimitivelD.

ENABLED DISABLED The VS$ is used to provide reuse of VF-generated vertices. The VF stage checks the

cache and only processes (assembles/writes) vertices that miss in the VS$. In either
case, the VS stage passes references to vertices (that hit or miss) down the pipeline
without spawning any VS threads.

Usage Model: Normal operation when the VS function is not required (e.g., SW has
detected a VS shader that simply copies outputs to inputs).

Doc Ref # IHD-OS-LKF-Vol 9-4.21 117

intel

VS
Function
VS$ Enable Mode of Operation

ENABLED The VS$ is used to provide reuse of VS-processed vertices. The VF stage checks the

cache and only processes (assembles/writes) vertices that miss in the VS$. The VS
stage only processes (shades) the vertices that missed in the VS$. The VS stage sends
references to hit or missed vertices down the pipeline in the correct order.

Usage Model: Normal operation when the VS function is required and use of the VS$
is permissible.

VS Thread Dispatch Masks

The VS stage controls the initial value loaded into the EU's Dispatch Mask state register as part of thread
dispatch.

SIMD8 Dispatch Mask

In SIMD8 dispatch mode, the EU Dispatch Mask is initialized as a function of the number of vertices included in the
thread dispatch, as follows:

o 1 vertex: 0x00000001

e 2vertices: 0x00000003

e 3vertices: 0x00000007

e 4vertices: 0x0000000F

e 5Svertices: 0x0000001F

e 6 vertices: 0x0000003F

e 7 vertices: 0x0000007F

8 vertices: OxO00000FF
Vertex Output

VS threads must always write the destination URB entries whose handles are passed in the thread
payload. Refer to Vertex Data Overview for details on any required contents/formats.

Thread Termination

VS threads must signal thread termination, in all likelihood on the last message output to the URB shared
function. Refer to the ISA doc for details on End-Of-Thread indication.

Primitive Output

The VS unit will produce an output vertex reference for every input vertex reference received from the VF
unit, in the order received. The VS unit simply copies the PrimitiveType, StartPrim, and EndPrim
information associated with input vertices to the output vertices and does not use this information in any
way. Neither does the VS unit perform any readback of URB data.

118 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Statistics Gathering

The VS stage tracks a single pipeline statistic, the number of times a vertex shader is executed. A vertex
shader is executed for each vertex that is fetched on behalf of a 3DPRIMITIVE command, unless the
shaded results for that vertex are already available in the vertex cache. If the Statistics Enable bit in
VS_STATE is set, the VS_INVOCATION_COUNT Register (see Memory Interface Registers in Volume la,
GPU) will be incremented for each vertex that is dispatched to a VS thread.

When VS Function Enable is DISABLED and Statistics Enable is ENABLED, VS_INVOCATION_COUNT
increments by one for every vertex that passes through the VS stage, even though no VS threads are

spawned.

Payloads

SIMD8 Payload

The following table describes the payload delivered to VS threads.

SIMDS8 VS Thread Payload

DWord | Bits Description
RO.7 31
30:0 |Reserved
RO.6 |31:24|Reserved
230 Thread ID. This field uniquely identifies this thread within the threads spawned by this FF unit,
over some period of time.
Format: Reserved for HW Implementation Use.
RO.5 ([31:10 Description
Scratch Space Offset. Specifies the offset of the scratch space allocated to the thread, specified
as a 1KB-granular offset from the General State Base Address. See Scratch Space Base Offset
description in VS_STATE.
(See 3D Pipeline for further description on scratch space allocation).
Format = GeneralStateOffset[31:10]
RO.5 9:0

Description

FFTID: This ID is assigned by the FF unit and used to identify the thread within the set of
outstanding threads spawned by the FF unit.

Reserved for HW Implementation Use.
Format: U10
Range: 0-727

Doc Ref # IHD-OS-LKF-Vol 9-4.21 119

intel

DWord | Bits Description
R0.4 315 | o e . o
Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table. It is specified
as an offset from the Surface State Base Address.
Format = SurfaceStateOffset[31:5]
40 Reserved
RO.3 315 . o . .
Sampler State Pointer. Specifies the location of the Sampler State Table to be used by this
thread, specified as a 32-byte granular offset from the General State Base Address or Dynamic
State Base Address.
Format = DynamicStateOffset[31:5]
4 Description
Single Instance. If set, all valid vertices included in the thread payload come from the same
instance of a 3DPRIMITIVE command. Otherwise the vertices come from more than one
instance. When SIMD8SinglelnstanceDispatchEnable is ENABLED, this bit will (by definition)
always be set.
3:0 Description
Per Thread Scratch Space. Specifies the amount of scratch space allowed to be used by this
thread. The value specifies the power that two is raised to (over determine the amount of
scratch space).
(See 3D Pipeline for further description.)
Format = U4 power of two (in excess of 10)
Range = [0,11] indicating [1K Bytes, 2M Bytes]
RO.2 : 31:0 |Reserved: MBZ
RO.0
R1.7 31:0 | Vertex 7 URB Return Handle (see R1.0)
R1.6 31:0 | Vertex 6 URB Return Handle (see R1.0)
R1.5 31:0 | Vertex 5 URB Return Handle (see R1.0)
R1.4 31:0 | Vertex 4 URB Return Handle (see R1.0)
R1.3 31:0 | Vertex 3 URB Return Handle (see R1.0)
R1.2 31:0 | Vertex 2 URB Return Handle (see R1.0)
R1.1 31:0 | Vertex 1 URB Return Handle (see R1.0)
R1.0 [31:16|Reserved
15:0

Vertex 0 URB Return Handle. This is the offset within the URB where Vertex 0 is to be stored.

Format: 64B-granular offset into the URB

120

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

DWord | Bits Description
[Va.rles] 2550 Constant Data (optional):
optional
Please refer to the Push Constants chapter in the General Programming of Thread-Generating
Stages section for more details on size and source of constant data.
Vertex Data:
Input data for the 8 input vertices is located here. Vertex0 data is passed in DWO of these GRFs,
and Vertex 7 data is passed in DW7. The first GRF contains Element 0 Component O for all 8
vertices, followed by components 1-3 in the three subsequent GRFs. This is followed by GRFs
containing Element 1, and so on, up to the number of elements specified by Vertex URB Read
Length. Note that the maximum limit is 30 elements per vertex, though the practical limiit
imposed by the compiler is likely lower.
Rv.7 31:0 | Vertex 7 Element 0 Component 0
Rv.6 31:0 | Vertex 6 Element 0 Component 0
Rv.5 31:0 | Vertex 5 Element 0 Component 0
Rv.4 31:0 | Vertex 4 Element 0 Component 0
Rv.3 31:0 |Vertex 3 Element 0 Component 0
Rv.2 31:0 |Vertex 2 Element 0 Component 0
Rv.1 31:0 | Vertex 1 Element 0 Component 0
Rv.0 31:0 | Vertex 0 Element 0 Component 0
Rv+1.7 | 31:.0 |Vertex 7 Element 0 Component 1
Rv+1.6 | 31:0 |Vertex 6 Element 0 Component 1
Rv+1.5 | 31:0 |Vertex 5 Element 0 Component 1
Rv+14 | 31:0 |Vertex 4 Element 0 Component 1
Rv+1.3 | 31:0 |Vertex 3 Element 0 Component 1
Rv+1.2 | 31:0 |Vertex 2 Element 0 Component 1
Rv+1.1 | 31:0 |Vertex 1 Element 0 Component 1
Rv+1.0 | 31:0 |Vertex 0 Element 0 Component 1

Vertex 0-7 Element 0 Component 2,3

Vertex 0-7 Element 1 Component 0-3

Vertex 0-7 Element 2-N Component 0-3

Hull Shader (HS) Stage

The Hull Shader (HS) stage of the pipeline is used to process patchlist (PATCHLIST_n) topologies in
support of higher-order surface (HOS) tessellaton. If the HS stage is enabled, each incoming patch object
is processed by a possible series of HS threads. The combined output of these threads is a Patch URB
Entry (“patch record”) written to the URB. This patch record is used by subsequent stages (TE, DS) to
complete the HOS tessellation operations.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 121

intel

The vertices associated with patchlist primitives are also referred to as “Input Control Points” (ICPs) to
contrast them with any “Output Control Points” the HS threads may write to the patch record. (The
definition and use of OCPs are outside the scope of this document).

The HS stage also performs statistics counting. Incomplete topologies do not reach the HS stage.

The HS, TE, and DS stages must be enabled and disabled together. When these stages are disabled, all
topologies (including patchlist topologies) simply pass through to the GS stage. When these stages are
enabled, only patchlist topologies should be issued to the pipeline, otherwise behavior is UNDEFINED.

State

This section contains the state registers for the Hull Shader

Register

3DSTATE_HS

3DSTATE_PUSH_CONSTANT_ALLOC_HS

3DSTATE_CONSTANT_HS

3DSTATE_CONSTANT(Body)

3DSTATE_BINDING_TABLE_POINTERS_HS

3DSTATE_SAMPLER_STATE_POINTERS_HS

3DSTATE_URB_HS

Functions

Patch Object Staging

The HS unit accepts patchlist topologies as a stream of incoming vertices. Depending on the number of
vertices per patch object (as specified by the PATCHLIST_n topology), the HS thread assembles each
complete patch object and passes it (its vertices, PrimitivelD, etc.) to HS thread(s) as described below.

HS Thread Execution
Input to HS threads is comprised of:
¢ Input Control Points (incoming patch vertices), pushed into the payload and/or passed indirectly
via URB handles.
e Push Constants (common to all threads)
e Patch Data handle

e Resources available via binding table entries (accessed through shared functions)

¢ Miscellaneous payload fields (Instance Number, etc.)
Typically, the only output of the HS threads is the Patch URB Entry (patch record). All thread instances for
an input patch are passed the same patch record handle. As the (possibly concurrent) threads can both

read and write the patch record, it is up to the kernels to ensure deterministic results. One approach
would be to use the thread’s Instance Number as an index for URB write destinations.

122 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

HS Thread Dispatch Mask

The HS stage controls the initial value loaded into the EU's Dispatch Mask state register as part of thread
dispatch.

SINGLE_PATCH Dispatch Mask

In SINGLE_PATCH mode, the EU Dispatch Mask is initialized at thread dispatch to 0x000000FF.

8_PATCH Dispatch Mask

In 8_PATCH mode, the EU Dispatch Mask is initialized as a function of the number of patches included in
the thread dispatch, as follows:

e 1 patch: 0x00000001

e 2 patches 0x00000003

e 3 patches: 0x00000007

e 4 patches: 0x0000000F

e 5 patches: 0x0000001F

e 6 patches: 0x0000003F

e 7 patches: 0x0000007F

8 patches: 0x000000FF
Patch URB Entry (Patch Record) Output

For each patch, the HS thread(s) generate a single patch record, starting with a fixed 32B Patch Header.

When the final thread instance terminates, the patch record handle is passed down the pipeline to the
Tessellation Engine (TE).

Doc Ref # IHD-OS-LKF-Vol 9-4.21 123

intel

Patch Header DWO0-7

The first 8 DWords of the patch record is defined as a "Patch Header”. The Patch Header is written by an
HS thread and read by the TE stage. It normally contains up to six Tessellation Factors (TFs) that
determine how finely the TE stage needs to tessellate a domain (if at all).

The following tables show the fixed layouts of the Patch Header DW0-7, depending on DomainType.

Patch Header (QUAD Domain)

DWord | Bits Description

7 31:0 | UEQO Tessellation Factor
Format: FLOAT32

6 31:0| VEQO Tessellation Factor
Format: FLOAT32

5 31:0| UEQ1 Tessellation Factor
Format: FLOAT32

4 31:0| VEQ1 Tessellation Factor
Format: FLOAT32

3 31:0 | Inside U Tessellation Factor
Format: FLOAT32

2 31:0| Inside V Tessellation Factor
Format: FLOAT32

1 31:0| Reserved : MBZ

0 31:1|Reserved : MBZ

0 Description
Reserved: MBZ

124 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Patch Header (TRl Domain)

DWord | Bits Description
7 31:0 | UEQO Tessellation Factor
Format: FLOAT32
6 31:0| VEQO Tessellation Factor
Format: FLOAT32
5 31:0 | WEQO Tessellation Factor
Format: FLOAT32
4 31:0 | Inside Tessellation Factor
Format: FLOAT32
3-1 31:0| Reserved : MBZ
0 31:1|Reserved : MBZ

0

Description
Reserved: MBZ

Patch Header (ISOLINE Domain)

DWord | Bits Description
7 31:0 | Line Detail Tessellation Factor
Format: FLOAT32
6 31:0 | Line Density Tessellation Factor
Format: FLOAT32
5-0 |[31:0|Reserved : MBZ

Statistics Gathering

HS Invocations

intel

The HS unit controls the HS_INVOCATIONS counter, which counts the number of patches processed by

the HS stage.

Payloads

SINGLE_PATCH Payload

The following table shows the layout of the payload delivered to HS threads. Refer to 3D Pipeline Stage
Overview (3D Pipeline) for details on those fields that are common amongst the various pipeline stages.

Patch object vertex (ICP) data can be passed by value (data pushed in the payload) and/or by reference
(URB handle pushed in the payload).

Doc Ref # IHD-OS-LKF-Vol 9-4.21

125

intel

SINGLE_PATCH HS Thread Payload

GRF
DWord Bits Description
RO.7 31
30:0 |Reserved.

RO6 3 Dereference Thread
This bit is defined to send back the Handle ID back to HS to dereference the input handles for
this thread.

30:24 [Reserved.

230 Thread ID. This field uniquely identifies this thread within the threads spawned by this FF unit,
over some period of time.
Format: Reserved for HW Implementation Use.

R0O.5 31:10 : o . .

Scratch Space Pointer. Specifies the location of the scratch space allocated to this thread,
specified as a 1KB-aligned offset from the General State Base Address.
Format = GeneralStateOffset[31:10]

%0 FFTID. This ID is assigned by the fixed function unit and is relative identifier for the thread. It is
used to free up resources used by the thread upon thread completion.
Format: Reserved for HW Implementation Use.

RO.4 31:5 I . e . . - . o
Binding Table Pointer: Specifies the 32-byte aligned pointer to the Binding Table. It is specified
as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]
4:0 Reserved.

RO.3 31:5 . e . .
Sampler State Pointer. Specifies the location of the Sampler State Table to be used by this
thread, specified as a 32-byte granular offset from the General State Base Address or Dynamic
State Base Address.

Format = DynamicStateOffset[31:5]
4 Reserved.
3:0

Per Thread Scratch Space. Specifies the amount of scratch space allowed to be used by this
thread. The value specifies the power that two will be raised to (over determine the amount of
scratch space).

Programming Notes:

This amount is available to the kernel for information only. It is passed verbatim (if not altered
by the kernel) to the Data Port in any scratch space access messages, but the Data Port ignores
it.

126

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

GRF
DWord Bits Description
Format = U4 power of two (in excess of 10)
Range = [0,11] indicating [1K Bytes, 2M Bytes]
RO.2 31 Reserved: MBZ.
30:24 |BarrierID. This field identifies which barrier was allocated for this thread.
Format: U7
Range = [0,63]
23 Reserved.
22:16 |Instance Number. A patch-relative instance number between 0 and InstanceCount-1.
Format = U7
15:0 |Reserved.
RO.1 31.0 - - . o . .
Primitive ID. This field contains the Primitive ID associated with the patch.
Format: U32
RO.0 31:16 | Reserved.
15:0

Patch Data Record URB Return Handle.

Format:

Format

U14 64B-aligned URB offset.

R1 is only included

for dispatches that have Include Vertex Handles enabled.

R1.7 31:16 |Reserved.
15:0 |ICP 7 Handle
Format:
Format
U14 64B-aligned URB offset.
R1.6 31:16|Reserved.
15:0 |ICP 6 Handle
R1.5 31:16 |Reserved.
15:0 |ICP 5 Handle
R1.4 31:16|Reserved.
15:.0 |ICP 4 Handle
R1.3 31:16|Reserved.
15:0 |ICP 3 Handle

Doc Ref # IHD-OS-LKF-Vol 9-4.21 127

intel

GRF
DWord Bits Description
R1.2 31:16|Reserved.
15:0 |ICP 2 Handle
R1.1 31:16|Reserved.
15:0 |ICP 1 Handle
R1.0 31:16|Reserved.
15:0 |ICP 0 Handle
R2 is only included for dispatches that have Include Vertex Handles enabled and when ICP Count >7
R2.7 31:16 |Reserved.
15:0 |ICP 15 Handle
R2.6 31:16 |Reserved.
15:0 |ICP 14 Handle
R2.5 31:16|Reserved.
15:0 |ICP 13 Handle
R2.4 31:16|Reserved.
15:0 |ICP 12 Handle
R2.3 31:16|Reserved.
15:0 |ICP 11 Handle
R2.2 31:16 |Reserved.
15:0 |ICP 10 Handle
R2.1 31:16|Reserved.
15:0 |ICP 9 Handle
R2.0 31:16|Reserved.
15:0 |ICP 8 Handle
R3 is only included for dispatches that have Include Vertex Handles enabled and when ICP Count >15
R3.7 31:16|Reserved.
15:0 |ICP 23 Handle
R3.6 31:16|Reserved.
15:0 |ICP 22 Handle
R3.5 31:16 |Reserved.
15:0 |ICP 21 Handle
R34 31:16 |Reserved.
15:0 |ICP 20 Handle
R3.3 31:16|Reserved.
128 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

GRF
DWord Bits Description
15:0 |ICP 19 Handle
R3.2 31:16|Reserved.
15:0 |ICP 18 Handle
R3.1 31:16|Reserved.
15:0 |ICP 17 Handle
R3.0 31:16|Reserved.
15:0 |ICP 16 Handle
R4 is only included for dispatches that have Include Vertex Handles enabled and when ICP Count >23
R4.7 31:16 |Reserved.
15:0 |ICP 31 Handle
R4.6 31:16|Reserved.
15:0 |ICP 30 Handle
R4.5 31:16|Reserved.
15:0 |ICP 29 Handle
R4.4 31:16|Reserved.
15:0 |ICP 28 Handle
R4.3 31:16|Reserved.
15:0 |ICP 27 Handle
R4.2 31:16 |Reserved.
15:0 |ICP 26 Handle
R4.1 31:16|Reserved.
15:0 |ICP 25 Handle
R4.0 31:16|Reserved.
15:0 |ICP 24 Handle
E:Sc?i)es]al 2550 Constant Data (optional):
Please refer to the Push Constants chapter in the General Programming of Thread-
Generating Stages section for more details on size and source of constant data.
E;S?Ler?]al 2550 ICP Vertex Data (optional):

There can be up to 32 vertices supplied, each with a size defined by the Vertex URB Entry Read
Length state.

Vertex 0 DWord 0 is located at Rn.0, Vertex 0 DWord 1 is located at Rn.1, etc. Vertex 1 DWord
0 immediately follows the last DWord of Vertex 0, and so on.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 129

intel

8_PATCH Payload

The following table shows the layout of the payload delivered to HS threads. Refer to 3D Pipeline Stage
Overview (3D Pipeline) for details on those fields that are common amongst the various pipeline stages.

Patch object vertex (ICP) data can be passed by value (data pushed in the payload) and/or by reference
(URB handle pushed in the payload).

8_PATCH HS Thread Payload

GRF
DWord | Bits Description
RO.7 31 Reserved
30:0 |Reserved
RO.6 31:24 | Reserved
230 Thread ID. This field uniquely identifies this thread within the threads spawned by this FF unit,
over some period of time.
Format: Reserved for HW Implementation Use.
R0O.5 31:10 . e . .
Scratch Space Pointer. Specifies the location of the scratch space allocated to this thread,
specified as a 1KB-aligned offset from the General State Base Address.
Format = GeneralStateOffset[31:10]
Reserved
8.0 FFTID. This ID is assigned by the fixed function unit and is a relative identifier for the thread. It is
used to free up resources used by the thread upon thread completion.
Format: Reserved for Implementation Use
RO.4 315 | giys . e o
Binding Table Pointer: Specifies the 32-byte aligned pointer to the Binding Table. It is specified
as an offset from the Surface State Base Address.
Format = SurfaceStateOffset[31:5]
4.0 |Reserved
RO.3 31:5 . e : .
Sampler State Pointer. Specifies the location of the Sampler State Table to be used by this
thread, specified as a 32-byte granular offset from the Dynamic State Base Address.
Format = DynamicStateOffset[31:5]
4 Reserved
3:0

Per Thread Scratch Space.

Specifies the amount of scratch space allowed to be used by this thread. The value specifies the
power that two will be raised to (over determine the amount of scratch space).

Programming Notes:This amount is available to the kernel for information only. It will be passed
verbatim (if not altered by the kernel) to the Data Port in any scratch space access messages, but

130

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

GRF
DWord | Bits Description
the Data Port will ignore it.
Format = U4 power of two (in excess of 10) Range = [0,11] indicating [1K Bytes, 2M Bytes]
RO.2 31 Reserved: MBZ.

30:24 | BarrierlID. This field identifies which barrier was allocated for this thread.
Format: U7
Range = [0,63]

23 Reserved

22:16 | Instance Number. A patch-relative instance number between 0 and InstanceCount-1.

Format = U7

15:0 |Reserved

R0O.1-R0.0 [31:0 |Reserved

R1.7 31:0 [URB Return Handle for Patch 7 (See R1.0)
R1.6 31:0 [URB Return Handle for Patch 6 (See R1.0)
R1.5 31:0 [URB Return Handle for Patch 5 (See R1.0)
R1.4 31:0 [URB Return Handle for Patch 4 (See R1.0)
R1.3 31:0 [URB Return Handle for Patch 3 (See R1.0)
R1.2 31:0 [URB Return Handle for Patch 2 (See R1.0)
R1.1 31:0 [URB Return Handle for Patch 1 (See R1.0)
R1.0 31:16 | Reserved
15:0

URB Return Handle 0: This is the offset of the Patch 0's URB entry, where shading results are to
be written.

Format: U16 64B-aligned URB Offset

The following register is included only if Include PrimitivelD is enabled.

R2.7 31:0 Primitive ID 7. This field contains the Primitive ID associated with Patch 7

Format: U32

R2.6 31:0 Primitive ID 6. This field contains the Primitive ID associated with Patch 6

Format: U32

R2.5 31:0 Primitive ID 5. This field contains the Primitive ID associated with Patch 5

Format: U32

R24 31:0 Primitive ID 4. This field contains the Primitive ID associated with Patch 4

Doc Ref # IHD-OS-LKF-Vol 9-4.21 131

intel

GRF
DWord | Bits Description

Format: U32

R2.3 31:0 e el s . o) .
Primitive ID 3. This field contains the Primitive ID associated with Patch 3
Format: U32

R2.2 31:0 .. -
Primitive ID 2. This field contains the Primitive ID associated with Patch 2
Format: U32

R2.1 31:0 . el o . o . .
Primitive ID 1. This field contains the Primitive ID associated with Patch 1
Format: U32

R2.0 31:0

Primitive ID 0. This field contains the Primitive ID associated with Patch O

Format: U32

The following reg

isters are included only if Include Vertex Handles is enabled

Rn.7 31:16 | Reserved

15:0 |Patch 7 ICP 0 Handle
Rn.6 31:16 | Reserved

15:0 |Patch 6 ICP 0 Handle
Rn.5 31:16 | Reserved

15:0 |Patch 5 ICP 0 Handle
Rn.4 31:16 | Reserved

15:0 |Patch 4 ICP 0 Handle
Rn.3 31:16 | Reserved

15:0 |Patch 3 ICP 0 Handle
Rn.2 31:16 | Reserved

15:0 |Patch 2 ICP 0 Handle
Rn.1 31:16 | Reserved

15:0 |Patch 1 ICP 0 Handle
Rn.0 31:16 | Reserved

15:0 |Patch 0 ICP 0 Handle
[Rn+1] 255:0|ICP 1 Handle for Patches 0-7
[Rn+2] 255:0|ICP 2 Handle for Patches 0-7
[Rn+31] [255:0|ICP 31 Handle for Patches 0-7
Ej\i)é:c:)er?]al 255:0 Constant Data (optional):

Please refer to the Push Constants chapter in the General Programming of Thread-Generating

132 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

GRF
DWord | Bits Description

Stages section for more details on size and source of constant data.

Varies Pushed Vertex Data (optional)
Input data for the 8 patches is located here. Patch 0 (starting with Vertex 0 of Patch 0) data is
passed in DWO of these GRFs, and Patch 7 data is passed in DW7. The first GRF contains Vertex 0
Element 0 Component O for all 8 patches, followed by components 1-3 in the three subsequent
GRFs. This is followed by GRFs containing Vertex 0 Element 1 (if it exists), and so on, up to the
number of Vertex 0 elements specified by Vertex URB Read Length. This is followed by the data
for Vertex 1 for all patches (if it exists), and so on until all relevant vertices are passed.

Programming Note
Context: 8_PATCH Payload - Pushed Vertex Data
The amount of data passed is limited by the number of GRFs supported by EUs. Software is
responsible for comprehending this limit and resorting to the pull model as required.

Rv.7 31:.0 |Patch 7 Vertex 0 Element 0 Component 0

Rv.6 31:.0 |Patch 6 Vertex 0 Element 0 Component 0

Rv.5 31:.0 |Patch 5 Vertex 0 Element 0 Component 0

Rv.4 31:.0 |Patch 4 Vertex 0 Element 0 Component 0

Rv.3 31:.0 |Patch 3 Vertex 0 Element 0 Component 0

Rv.2 31:0 |Patch 2 Vertex 0 Element 0 Component 0

Rv.1 31:0 |Patch 1 Vertex 0 Element 0 Component 0

Rv.0 31:0 |Patch 0 Vertex 0 Element 0 Component 0

Rv+1 31:0 |Patch 0-7 Vertex 0 Element 0 Component 1
and so on...

Tessellation Engine (TE) Stage

When enabled, the Tessellation Engine (TE) stage performs tessellation of incoming patches
(decomposition of patches into a set of smaller geometric objects, such as triangles or points). Patches
are also subjected to a Patch Cull test prior to tessellation. Culled patches are immediately discarded. The
TE stage is entirely fixed-function and does not spawn threads.

Patches are specified via URB handles output by the preceding Hull Shader stage. These handles
reference Patch URB Entry data written into the URB by HS shaders. The tessellation process is
controlled by TE state and Tessellation Factors (TFs) read from the Patch URB Entries.

The fixed-function tessellation algorithm is considered an implementation detail and is therefore beyond
the scope of this document. That detail includes both the order of output topologies as well as the order
of vertices (domain points) within the output topologies. Only a high-level overview is provided to
describe how the (few) state variables can be used to control aspects of tessellation behavior. The

Doc Ref # IHD-OS-LKF-Vol 9-4.21 133

intel

implementation will generate deterministic results (given the same exact inputs it will produce exactly the
same outputs).

Several domain types (QUAD, TRI, and ISOLINE) are supported. Depending on the domain type, the TE
stage outputs the required point/line/triangle topologies including a domain point per vertex. These
topologies will be output to the DS stage, where the domain points will be converted to 3D object
vertices, resulting in 3D objects as typically input to the 3D pipeline when HOS tessellation is not used.

When tessellation is disabled, all topologies (including patchlist topologies) simply pass through to the
GS stage. When tessellation is enabled, only patchlist topologies should be issued to the pipeline, else
behavior is UNDEFINED. The MI_TOPOLOGY_FILTER command can be used to ensure this happens, i.e., it
can be used to have the Command Stream ignore 3DPRIMITIVE commands that do not match a specific

topology type.

Enabling tessellation is accomplished by enabling the HS/TE/DS stages in specific combinations. Those
valid combinations are described in the table below.

Valid Tessellation Enabled Configurations

To enable tessellation, the HS, TE, and DS stages must be enabled and disabled together. Other configurations will
result in behavior that is UNDEFINED.

State
This section contains the state registers for the Tessellation Engine.
3DSTATE_TE

Functions

Patch Culling

Normally, if any “outside” TF is <= 0.0 or NaN, the entire patch is culled at the TE stage.

Inside TFs are not used to cull patches.

Tessellation Factor Limits

After the Patch Culling test is performed, the TessFactors undergo a min() clamp to either the
MaxTessFactorOdd (for FRACTIONAL_ODD partitioning) or MaxTessFactorNotOdd (for
FRACTIONAL_EVEN or INTEGER partitioning). Exception: If the ISOLINE domain is specified, the
LineDensity TessFactor will be clamped to the MaxFactorNotOdd value even if FRACTIONAL_ODD
partitioning is specified).

134 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Partitioning

intel

The Partitioning state controls how the TFs are used to divide their corresponding edges.

Partitioning
Mode

Definition

INTEGER

The edge is divided into an integral number of equal segments (given some fixed-point
tolerance).

After clamping, the TF is rounded up to an integer value. The edge is divided into that many
equal segments.

EVEN_FRACTIONAL

The edge is divided into an even number of possibly unequal segments. The total number of
segments is determined by rounding up the post-clamped TF to an even number.

More specifically, the edge is divided exactly in half. Like the endpoints of the edge, the
midpoint of the edge is by definition a tessellation point. Each half contains some number of
equal segments and possibly one smaller segment. The size of the smaller segment is
determined by the position of the TF value within the range defined by the TF rounded down
and up to even numbers. The closer the TF is to the smaller value, the smaller the segment size
is. When the TF reaches the smaller even value, the smaller segment disappears. The closer the
TF gets to the larger even value, the closer the smaller segment size approaches the size of the
other segments. When the TF reaches the larger even value, all segments are equal. The
position of the smaller segment along the half edge varies as a function of the TF value.

ODD_FRACTIONAL

The edge is divided into an odd number of possibly unequal segments.

The tessellation scheme is very similar to EVEN_FRACTIONAL partitioning, except that the edge
midpoint is not included as a tessellation point. This, and the fact that the tessellation points
are mirrored about the edge midpoint, causes an "odd” segment (which may or may not be
the "smaller” segment) to straddle the edge midpoint, therefore resulting in the number of
segments for the edge always being odd.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 135

intel

Domain Types and Output Topologies

The major (if only) task of the TE stage is to tessellate a 2D (u,v) domain region, as selected by the
Domain state, into some number of 2D object topologies. (If the patch is culled, that number may be
zero). The options for Domain state are:

e QUAD: A square 2D region within a u,v Cartesian (rectangular) space. The region extends from the
origin to u=1 and v="1. Within the region, tessellation domain locations are determined. The
possible output topologies include points, clockwise triangles, and counter-clockwise triangles.

e TRI: A triangular 2D region with u,v,w barycentric (areal) coordinates. The three edges correspond
to u=0, v=0, and w=0 boundaries. In barycentric coordinates, w = 1 — u — v, therefore points within
the region are fully defined as 2D (u,v) coordinates. Within the region, tessellation domain
locations are determined. The possible output topologies include points, clockwise triangles, and
counter-clockwise triangles.

e ISOLINE: A series of points within a QUAD domain, where the points lie on lines parallel to the u
axis and extending from [0,1) in the v direction. Either the segmented lines (linestrips) or individual
point topologies can be output.

QUAD Domain Tessellation

The four “outside” TFs (TF.UEQO, TF.VEQO, TF.UEQ1, TF.VEQ1) are used to specify the level of tessellation
along the four corresponding edges of the 2D quad domain. The two “inside” TFs (TF.InsideU, TF.InsideV)
are used to determine the level of tessellation within a 2D "interior” region. Typically the interior region
appears as a "regularly-tessellated 2D grid”, however under certain conditions the interior region may
collapse in which case only the outside TFs are relevant.

In general, a transition region exists between each edge of the interior region and the corresponding
outside edge. The topologies generated for these regions effectively “stitch together” locations along the
outside and inside edges, as each of these edges can contain a different number of tessellated segments.
In the case where all TFs in a given direction (e.g., TF.VEQO, TF.InsideU, and TF.VEQ1) are the same value,
it appears as if the regularly-tessellated interior region extends all the way to the outside edges. If this
condition simultaneously exists for both u and v directions, the entire domain will appear to be
tessellated into a regular grid, with no noticeable transition regions.

136 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

QUAD Domain
o
O
L
=
L
A .,
(0,0) ~ N
VEQOD Transition Region) U
= 'Q, -
3 | B
i = :
0 interior 8 | &
= nerior -5 5
TF.UEQO< | 2 Region 2 |z >TF.UEQ1
2 w | S
= = py
g } TF.InsideV | &
i =
= =
VEQ1 Transition Region
T (1)
\J
\'

TF.VEQ1 <

TRI Domain Tessellation

Tessellation of the TRI domain is similar to the QUAD domain, except only three outside edges/TFs are
used, and the tessellation of the interior region is controlled by a single TF.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 137

intel

TRI Domain

uv=1,0

Interior
Region

TF Inside

N

UEQD Transitionh Region

“d,"u‘ =01

U,U=l]:ﬁh

TF UEQD <

ISOLINE Domain Tessellation

Tessellation of the ISOLINE domain is different but much simpler than QUAD and TRI domains. The
TF.LineDetail TF controls how finely the U direction is tessellated, while the TF.LineDensity TF controls
how finely the V direction is tessellated. When LINE output topology is selected, a series of segmented
lines parallel to the U axis (constant V) are output. When POINT output topology is selected, only the line
segment endpoints are output (as point objects). In either case there is no topology output for the V=1
edge, which avoids overlapping lines for adjacent patches.

138 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

ISOLINE Domain

TF.LineDetail determines #

) segmeilts 10
e e,y ||

(o, S

S e

(e e v, Yol ey] ey’

TF.LineDensity J R

determines # 0 !t e ! Y

lines e e e e S R

(et St e e e Dl el e =

(e Y

(e e

S e

1.0 Line at V=1.0 not drawn
LY

Domain Shader (DS) Stage

The DS stage is very similar to the VS stage in that it is responsible for dispatching EU threads to shade
vertices and maintaining a cache (with reference counts) of the shaded vertex outputs of these threads.
Major differences are as follows:

e The DS receives topologies with “domain points” instead of vertices. The only data specific to a
domain point are its U,V coordinates. These coordinates (plus a default or computed W
coordinate) are passed directly in the DS thread payload. There is no other vertex-specific “input
vertex data”.

e The concatenation of the domain point U,V coordinates (vs. a vertex index) is used as the cache
tag.
e The cache is invalidated between patches.

The DS stage accepts state information via the inline 3DSTATE_DS command.

State

This section contains the state registers for the Domain Shader.

Register

3DSTATE_DS

3DSTATE_PUSH_CONSTANT_ALLOC_DS

3DSTATE_CONSTANT_DS

3DSTATE_CONSTANT (Body)

3DSTATE_BINDING_TABLE_POINTERS_DS

Doc Ref # IHD-OS-LKF-Vol 9-4.21 139

intel

Register

3DSTATE_SAMPLER_STATE_POINTERS_DS

3DSTATE_URB_DS

Functions

DUAL PATCH Thread Execution

When Dispatch Mode is set to SIMD8_SINGLE_OR_DUAL_PATCH mode, both the KSP and DUAL_PATCH
KSP kernels are enabled. The DS stage decides whether to spawn a SINGLE_PATCH (KSP) or DUAL_PATCH
thread dynamically, based on the number of domain points associated with patches. (See
Implementation Note below).

e The KSP kernel operates exactly like when SIMD8_SINGLE_PATCH mode is set. Up to 8 domain
points for a single patch are processed by the DS thread, which operates in SIMD8 fashion.

e The DUAL KSP kernel uses a hybrid SIMD8 execution mode. The 8 execution channels are divided
into 4 upper channels associated with Patch 1, and 4 lower channels associated with Patch 0. Patch
data is passed in SIMD4x2 layout, with Patch 1 data (Primitive ID, pushed URB data) in the upper 4
channels, and Patch 0 data in the lower 4 channels. The kernel operates much like
SIMD8_SINGLE_PATCH mode, though it needs to access the appropriate SIMD4 patch data.

Implementation Note: Kernel selection is as follows: If a patch requires more than 4 domain points to
be shaded, SIMD8_SINGLE_PATCH threads are spawned until 4 or fewer domain points remain. These
domain points (if any exist) are held pending until the next patch is received. Likewise, if a patch requires
4 or fewer total domain points, those domain points are held pending. In either case, if the subsequent
patch requires 4 or fewer domain points to be shaded, a SIMD8_DUAL_PATCH thread is spawned to
shade both sets of 4 or fewer domain points. If the subsequent patch requires more than 4 domain
points, the (4 or fewer) buffered domain points of the previous patch are shaded via a
SIMD8_SINGLE_PATCH thread, and the cycle continues.

Statistics Gathering

The DS stage maintains the DS_INVOCATIONS statistics counter, which counts the number of incoming
domain points, irrespective of cache hit/miss. Note that this is different than VS_INVOCATIONS, which
counts shader invocations and therefore doesn’t count cache hits.

Payloads

SIMD8 Payload

The following table describes the payload delivered to DS threads.

140 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

DS Thread Payload (SIMDS8)

DWord Bits Description
RO.7 31 Reserved
30:0 |Reserved
RO.6 31:24 | Reserved
230 Thread ID. This field uniquely identifies this thread within the threads spawned by this FF
unit, over some period of time.
Format: Reserved for HW Implementation Use.

RO.5 31:10 e
Scratch Space Offset. Specifies the offset of the scratch space allocated to the thread,
specified as a 1KB-granular offset from the General State Base Address. See Scratch Space
Base Offset description in VS_STATE.

(See 3D Pipeline for further description on scratch space allocation).
Format = GeneralStateOffset[31:10]
%0 FFTID. This ID is assigned by the FF unit and used to identify the thread within the set of
outstanding threads spawned by the FF unit.
Format: Reserved for HW Implementation Use.

R0.4 315 | 5. 4. . e . . - .
Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table. It is
specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]
4.0 |Reserved

RO.3 31:5 . g . .
Sampler State Pointer. Specifies the location of the Sampler State Table to be used by this
thread, specified as a 32-byte granular offset from the General State Base Address or Dynamic
State Base Address.

Format = DynamicStateOffset[31:5]
4 Reserved
30 Per Thread Scratch Space. Specifies the amount of scratch space allowed to be used by this
thread. The value specifies the power that two will be raised to (over determine the amount of
scratch space).
Format = U4 power of two (in excess of 10)
Range = [0,11] indicating [1K Bytes, 2M Bytes]
RO.2 31:0 |Reserved: delivered as zeros (reserved for message header fields)
RO.1 31:0

PrimitivelD. This is the 32-bit PrimitivelD value associated with the patch. It is common to all
output domain points resulting from the tessellation of the patch.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 141

intel

DWord Bits Description
Format: U32
RO.0 31:27 | Reserved
26:16 || Description
Reserved
150 Patch URB Offset. This is the offset within the URB where the patch data is stored.
Format: U14 64B-granular offset into the URB
R1.7 31:0 |Domain Point 7 U Coordinate. (See Domain Point 0 U Coordinate.)
R1.6 31:0 |Domain Point 6 U Coordinate. (See Domain Point 0 U Coordinate.)
R1.5 31:0 |Domain Point 5 U Coordinate. (See Domain Point 0 U Coordinate.)
R1.4 31:0 |Domain Point 4 U Coordinate. (See Domain Point 0 U Coordinate.)
R1.3 31:0 | Domain Point 3 U Coordinate. (See Domain Point 0 U Coordinate.)
R1.2 31:0 | Domain Point 2 U Coordinate. (See Domain Point 0 U Coordinate.)
R1.1 31:0 | Domain Point 1 U Coordinate. (See Domain Point 0 U Coordinate.)
R1.0 310 Domain Point 0 U Coordinate. U coordinate associated with Domain Point 0.
Format: FLOAT32
R2.7 31:0 |Domain Point 7 V Coordinate. (See Domain Point 0 V Coordinate.)
R2.6 31:0 |Domain Point 6 V Coordinate. (See Domain Point 0 V Coordinate.)
R2.5 31:0 |Domain Point 5 V Coordinate. (See Domain Point 0 V Coordinate.)
R2.4 31:0 |Domain Point 4 V Coordinate. (See Domain Point 0 V Coordinate.)
R2.3 31:0 |Domain Point 3 V Coordinate. (See Domain Point 0 V Coordinate.)
R2.2 31:0 |Domain Point 2 V Coordinate. (See Domain Point 0 V Coordinate.)
R2.1 31:0 |Domain Point 1 V Coordinate. (See Domain Point 0 V Coordinate.)
R2.0 310 Domain Point 0 V Coordinate. V coordinate associated with Domain Point 0.
Format: FLOAT32
R3.7 31:0 |Domain Point 7 W Coordinate. (See Domain Point 0 W Coordinate.)
R3.6 31:0 |Domain Point 6 W Coordinate. (See Domain Point 0 W Coordinate.)
R3.5 31:0 |Domain Point 5 W Coordinate. (See Domain Point 0 W Coordinate.)
R34 31:0 |Domain Point 4 W Coordinate. (See Domain Point 0 W Coordinate.)
R3.3 31:0 |Domain Point 3 W Coordinate. (See Domain Point 0 W Coordinate.)
R3.2 31:0 |Domain Point 2 W Coordinate. (See Domain Point 0 W Coordinate.)
R3.1 31:0 |Domain Point 1 W Coordinate. (See Domain Point 0 W Coordinate.)
R3.0 310 Domain Point 0 W Coordinate. If Compute W Coordinate Enable is set, this field will receive
the computed value (1 - U — V) for Domain Point 0. Otherwise it is passed as 0.0.

142 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

DWord Bits Description
Format: FLOAT32
R4.7 31:0 |Domain Point 7 URB Return Handle. (See R4.0.)
R4.6 31:0 |Domain Point 6 URB Return Handle. (See R4.0.)
R4.5 31:0 [Domain Point 5 URB Return Handle. (See R4.0.)
R4.4 31:0 [Domain Point 4 URB Return Handle. (See R4.0.)
R4.3 31:0 |Domain Point 3 URB Return Handle. (See R4.0.)
R4.2 31:0 [Domain Point 2 URB Return Handle. (See R4.0.)
R4.1 31:0 |Domain Point 1 URB Return Handle. (See R4.0.)
R4.0 31:16 | Reserved
150 Domain Point 0 URB Return Handle. This is the offset within the URB where domain point 0
is to be stored.
Format: U14 64B-granular offset into the URB
E;S?fjll 2550 Constant Data (optional):
Please refer to the Push Constants chapter in the General Programming of Thread-
Generating Stages section for more details on size and source of constant data.
Varies 255:0 Patch URB Data (optional).
[Optional] Some amount of Patch Data (possible none) can be extracted from the URB and passed to the

thread in this location in the payload. The amount of data provided is defined by the Patch
URB Entry Read Length state (3DSTATE_DS).

Doc Ref # IHD-OS-LKF-Vol 9-4.21 143

intel

DUAL_PATCH Payload

The following table describes the payload delivered to DS threads.

DUAL_PATCH DS Thread Payload (SIMD8)

DWord

Bits

Description

RO.7

31:0

Reserved

RO.6

31:24

Reserved

23:.0

Thread ID. This field uniquely identifies this thread within the threads spawned by this FF unit,
over some period of time.

Format: Reserved for HW Implementation Use.

RO.5

31:10

Scratch Space Offset. Specifies the offset of the scratch space allocated to the thread,
specified as a 1KB-granular offset from the General State Base Address. See Scratch Space
Base Offset description in VS_STATE.

(See 3D Pipeline for further description on scratch space allocation).

Format = GeneralStateOffset[31:10]

9:0

FFTID. This ID is assigned by the FF unit and used to identify the thread within the set of
outstanding threads spawned by the FF unit.

Format: Reserved for HW Implementation Use.

R0.4

31:5

Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table. It is
specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

4:0

Reserved

RO.3

31:5

Sampler State Pointer. Specifies the location of the Sampler State Table to be used by this
thread, specified as a 32-byte granular offset from the General State Base Address or Dynamic
State Base Address.

Format = DynamicStateOffset[31:5]

Reserved

3:0

Per Thread Scratch Space. Specifies the amount of scratch space allowed to be used by this
thread. The value specifies the power that two will be raised to (over determine the amount of
scratch space).

Format = U4 power of two (in excess of 10)

Range = [0,11] indicating [1K Bytes, 2M Bytes]

RO.2

31:0

Reserved: delivered as zeros (reserved for message header fields)

144

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

DWord Bits Description
RO.1 31:27 |Reserved
26:16 || Description
Reserved
150 Patch 1 URB Offset. This is the offset within the URB where the Patch 1 data is stored.
Format: U16 64B-granular offset into the URB
RO.0 31:27 |Reserved
26:16 || Description
Reserved
150 Patch 0 URB Offset. This is the offset within the URB where the Patch 0 data is stored.
Format: U16 64B-granular offset into the URB
R1.5-7 31:0 |[Reserved
R1.4 310 Patch 1 PrimitivelD. This is the 32-bit PrimitivelD value associated with Patch 1.
Format: U32
R1.1-3 31:0 |Reserved
R10 310 Patch 0 PrimitivelD. This is the 32-bit PrimitivelD value associated with Patch 0.
Format: U32
R2.7 31:0 |Patch 1 Domain Point 3 U Coordinate. (See R2.0.)
R2.6 31:0 |Patch 1 Domain Point 2 U Coordinate. (See R2.0.)
R2.5 31:0 |Patch 1 Domain Point 1 U Coordinate. (See R2.0.)
R2.4 31:0 |Patch 1 Domain Point 0 U Coordinate. (See R2.0))
R2.3 31:0 |Patch 0 Domain Point 3 U Coordinate. (See R2.0.)
R2.2 31:0 |Patch 0 Domain Point 2 U Coordinate. (See R2.0))
R2.1 31:0 |Patch 0 Domain Point 1 U Coordinate. (See R2.0.)
R2.0 310 Patch 0 Domain Point 0 U Coordinate. U coordinate associated with Domain Point O of Patch
0.
Format: FLOAT32
R3.7 31:0 |[Patch 1 Domain Point 3 V Coordinate. (See R3.0.)
R3.6 31:0 |[Patch 1 Domain Point 2 V Coordinate. (See R3.0.)
R3.5 31:0 |[Patch 1 Domain Point 1 V Coordinate. (See R3.0.)
R34 31:0 |Patch 1 Domain Point 0 V Coordinate. (See R3.0.)
R3.3 31:0 |[Patch 0 Domain Point 3 V Coordinate. (See R3.0.)
R3.2 31:0 |[Patch 0 Domain Point 2 V Coordinate. (See R3.0.)

Doc Ref # IHD-OS-LKF-Vol 9-4.21 145

intel

DWord Bits Description

R3.1 31:0 |Patch 0 Domain Point 1 V Coordinate. (See R3.0.)

R3.0 310 Patch 0 Domain Point 0 V Coordinate. V coordinate associated with Domain Point 0.
Format: FLOAT32

R4.7 31:0 [Patch 1 Domain Point 3 W Coordinate. (See R4.0.)

R4.6 31:.0 |Patch 1 Domain Point 2 W Coordinate. (See R4.0.)

R4.5 31:.0 |Patch 1 Domain Point 1 W Coordinate. (See R4.0.)

R4.4 31:.0 |Patch 1 Domain Point 0 W Coordinate. (See R4.0.)

R4.3 31:.0 |Patch 0 Domain Point 3 W Coordinate. (See R4.0.)

R4.2 31:0 |Patch 0 Domain Point 2 W Coordinate. (See R4.0.)

R4.1 31:.0 |Patch 0 Domain Point 1 W Coordinate. (See R4.0.)

R4.0 310 Patch 0 Domain Point 0 W Coordinate. If Compute W Coordinate Enable is set, this field will
receive the computed value (1 — U - V) for Domain Point 0. Otherwise it is passed as 0.0.
Format: FLOAT32

R5.7 31:0 |Patch 1 Domain Point 3 URB Return Handle. (See R5.0.)

R5.6 31:0 |Patch 1 Domain Point 2 URB Return Handle. (See R5.0.)

R5.5 31:0 |[Patch 1 Domain Point 1 URB Return Handle. (See R5.0.)

R5.4 31:0 |[Patch 1 Domain Point 0 URB Return Handle. (See R5.0.)

R5.3 31:0 |[Patch 0 Domain Point 3 URB Return Handle. (See R5.0.)

R5.2 31:0 |[Patch 0 Domain Point 2 URB Return Handle. (See R5.0.)

R5.1 31:0 |[Patch 0 Domain Point 1 URB Return Handle. (See R5.0.)

R5.0 31:16 |Reserved

150 Patch 0 Domain Point 0 URB Return Handle. This is the offset within the URB where Patch 0
Domain Point 0 is to be stored.
Format: U16 64B-granular offset into the URB
(E\éz:irci)isjl 2550 Constant Data (optional):
Please refer to the Push Constants chapter in the General Programming of Thread-
Generating Stages section for more details on size and source of constant data.
Patch 0,1 URB Data follows (optional).
This data is read from the URB and pushed in the payload. The amount of data provided for
each patch (which may be 0) is defined by the Patch URB Entry Read Length state
(3DSTATE_DS). The data is read from the URB starting at the Patch URB Entry Read Offset into
each patch, so leading data with the Patch URB entries can be skipped over.
Patch 1 data is passed in the upper 128 bits, while Patch 0 data is passed in the lower 128 bits.
This is similar to how URB data is pushed into SIMD4x2 kernels (VS, GS, etc.).
146 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

DWord Bits Description

[Varies] |255:128 [Patch 1 URB Data.

optional | 127.0 |Patch 0 URB Data.

Geometry Shader (GS) Stage
GS Stage Overview

The GS stage of the 3D Pipeline converts objects within incoming primitives into new primitives through
use of a spawned thread. When enabled, the GS unit buffers incoming vertices, assembles the vertices of
each individual object within the primitives, and passes those object vertices (along with other data) to
the graphics subsystem for processing by a GS thread.

When the GS stage is disabled, vertices flow through the unit unmodified.

Refer to the Common 3D FF Unit Functions subsection in the 3D Pipeline chapter for a general
description of a 3D Pipeline stage, as much of the GS stage operation and control falls under these
“common” functions. l.e.,, most stage state variables and GS thread payload parameters are described in
3D Pipeline, and although they are listed here for completeness, that chapter provides the detailed
description of the associated functions.

Refer to this chapter for an overall description of the GS stage, and any exceptions the GS stage exhibits
with respect to common FF unit functions.

State

This section contains the state registers for the Geometry Shader.

Registers

3DSTATE_GS (The state used by GS is defined with this inline state packet.)

3DSTATE_CONSTANT_GS

3DSTATE_CONSTANT(Body)

3DSTATE_PUSH_CONSTANT_ALLOC_GS

3DSTATE_BINDING_TABLE_POINTERS_GS

3DSTATE_SAMPLER_STATE_POINTERS_GS

3DSTATE_URB_GS

Functions

Object Staging

The GS unit's Object Staging Buffer (OSB) accepts primitive topologies as a stream of incoming vertices,
and spawns a thread for each individual object within the topology.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 147

intel

Thread Request Generation

Object Vertex Ordering

The following table defines the number and order of object vertices passed in the Vertex Data portion of
the GS thread payload, assuming an input topology with N vertices. The ObjectType passed to the thread
is, by default, the incoming PrimTopologyType. Exceptions to this rule (for the TRISTRIP variants) are

called out.

The following table also shows which vertex is selected to provide PrimitivelD (bold, underlined vertex
number). In general, the vertex selected is the last vertex for non-adjacent prims, and the next-to-last
vertex for adjacent prims. Note, however, that there are exceptions:

e reorder-enabled TRISTRIP[_REV], TRISTRIP_AD)

e "odd-numbered” objects in TRISTRIP_AD)

PrimTopologyType

Order of Vertices in
Payload

<PRIMITIVE_TOPOLOGY >

[<object#>] =
(<vert#>,...); [{modified
PrimType passed to

(N = # of vertices) thread}] GS Notes
POINTLIST
(0] = (@
(11=Q); ...
[N-2] = (N-2);
POINTLIST_BF N/A
LINELIST

(N is multiple of 2)

[0] = (0,1);
[11=@23); ..
[(N/2)-1] = (N-2,N-1)

LINELIST_ADJ
(N is multiple of 4)

(0] = (0,1.2.3);
[11=4567); ...

[(N/4)-1)] = (N-4,N-3,N-
2N-1)

LINESTRIP
(N>=2)

[0] = (0,1);
[11=(12); ..,
[N-2] = (N-2,N-1)

LINESTRIP_AD),
LINESTRIP_ADJ_CONT
(N >= 4)

(0] = (0.1.23);
[11=0,234); ...

LINESTRIP_ADJ_CONT is added. LINESTRIP_ADJ_CONT is
generated by the Vertex Fetch unit on a restore of a mid-
draw pre-empted 3DPRIMITIVE.

148

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

PrimTopologyType

Order of Vertices in
Payload

<PRIMITIVE_TOPOLOGY >
(N = # of vertices)

[<object#>] =
(<vert#>,...); [{modified
PrimType passed to
thread}]

GS Notes

[N-4] = (N-4,N-3,N-2,N-1)

LINESTRIP_BF N/A
LINESTRIP_CONT Same as LINESTRIP Handled same as LINESTRIP
LINESTRIP_CONT_BF N/A
LINELE)OP 0] = (0,1); Not supported after GS.
(N>=2)
[11=(1.2);
[N] = (N-1,0);
TRILIST
0] = (0,1,2);
(N is multiple of 3) [01=012
[11=(B45); ..

[(N/3)-1] = (N-3,N-2,N-1)

RECTLIST,
RECTLIST_SUBPIXEL

Same as TRILIST

Handled same as TRILIST

TRILIST_ADJ
(N is multiple of 6)

[0] = (0,1,2,3,4,5);
(11 =(6,7.891011); ...

[(N/6)-1] = (N-6,N-5,N-
4,N-3,N-2,N-1)

TRISTRIP (Reorder Leading)
(N>=3)

[0] = (0,1,2); {TRISTRIP}

[1]=0132)
(TRISTRIP_REV}

[k even] = (k.k+1,k+2)
{TRISTRIP}

[k odd] = (k,k+2k+1)
(TRISTRIP_REV}

[N-3] = (see above)

"Odd" triangles have vertices reordered and identified as
TRISTRIP to inform the thread.

TRISTRIP (Reorder Trailing)
(N>=3)

[0] = (0,1,2) {TRISTRIP}

=13
{TRISTRIP_REV}; ...

[k even] = (kk+1k+2)
{TRISTRIP}

"Odd" triangles have vertices reordered and identified as
TRISTRIP_REV to inform the thread.

Doc Ref # IHD-OS-LKF-Vol 9-4.21

149

intel

PrimTopologyType

Order of Vertices in
Payload

<PRIMITIVE_TOPOLOGY >

(N = # of vertices)

[<object#>] =

(<vert#>,...); [{modified

PrimType passed to
thread}]

GS Notes

[k odd] = (k+1,kk+2)
{TRISTRIP_REV}

[N-3] = (see above)

TRISTRIP_REV (Reorder
Leading)

(N >=3)

[0] = (0.2,1)
{TRISTRIP_REV};

[1] = (1,2,3) {TRISTRIP}; ...;

[k even] = (kk+2,k+1)
{TRISTRIP_REV}

[k odd] = (kk+1,k+2)
{TRISTRIP}

[N-3] = (see above)

“Even” triangles have vertices reordered and identified as
TRISTRIP to inform the thread.

TRISTRIP_REV (Reorder
Trailing)
(N >=13)

[0] = (1,0,2)
(TRISTRIP_REV}

[11 = (1,2,3) {TRISTRIP}; ...;

[k even] = (k+1,kk+2)
{TRISTRIP_REV}

[k odd] = (kk+1,k+2)
{TRISTRIP}

[N-3] = (see above)

“Even” triangles have vertices reordered and identified as
TRISTRIP_REV to inform the thread.

Objects have vertices reordered.

TRISTRIP_AD)J (Reorder N=6or7:
Leading [0] = (0,1,2,5,43)
(N >=6) N=8or9:
[0] = (0,1,2,6,4,3);
[11=(56,74)0); ..,
N >=10:
[0] = (0,1,2,6,43);
[1] = (2,56,84,0); ..;
[k>1, even] = (2k,2k-2,
2k+2, 2k+6,2k+4, 2k+3);
[k>2, odd] = (2k, 2k+3,
150 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

PrimTopologyType

Order of Vertices in
Payload

<PRIMITIVE_TOPOLOGY >
(N = # of vertices)

[<object#>] =
(<vert#>,...); [{modified
PrimType passed to
thread}]

GS Notes

2k+4, 2k+6, 2k+2, 2k-
2

Trailing object:

[(N/2)-3, even] = (N-6,N-
8,N-4,N-1,N-2,N-3);

[(N/2)-3, odd] = (N-6,N-
3,N-2,N-1,N-4,N-8);

TRISTRIP_ADJ (Reorder
Trailing)
(N>=6)

N=6or7:

[0] = (0,1,2,54.3)
N=8or9:

[0] = (0,1,2,6,4,3);
[11=40,2567); ...
N >=10:

[0] = (0,1,2,6,4,3);
[11 =(4,02568) ..;

[k>1, even] = (2k,2k-2,
2k+2, 2k+6,2k+4, 2k+3);

[k>2, odd] = (2k+2, 2k-2,
2k, 2k+3, 2k+4, 2k+6);...;

Trailing object:

[(N/2)-3, even] = (N-6,N-
81N_41N_17N__21N_3);

[(N/2)-3, odd] = (N-4,N-
8,N'6,N—3,N_—2,N_‘]);

OpenGL ordering rules (last non-adjacent vertex is the
last — aka provoking — vertex of the triangle). Even
triangles have the same ordering as Leading Vertex, odd
triangle ordering is different (rotated 2 vertices).

TRIFAN
(N > 2)

[0] = (0,1,2);
(11=1(0.23); ...
[N-3] = (0, N-2, N-1);

TRIFAN_NOSTIPPLE

Same as TRIFAN

POLYGON, POLYGON_CONT

Same as TRIFAN

POLYGON_CONT is added, POLYGON_CONT is
generated by the Vertex Fetch unit on a restore of a mid-
draw pre-empted 3DPRIMITIVE.

Doc Ref # IHD-OS-LKF-Vol 9-4.21

151

intel

Order of Vertices in
PrimTopologyType Payload
[<objecti#>] =
(<vert#>,...); [{modified
(N = # of vertices) thread}] GS Notes
QUADLIST 0] = (0,1,2,3) Not supported after GS.
e QUADLIST primitives are converted into POLYGONS in
(11 =4567); .. VF, and therefore never reach the GS.
[(N/4)-1] = (N-4,N-3,N-
2,N-1);
QUADSTRIP 0] = (0,1,3,2): Not supported after GS.
e QUADSTRIP primitives are converted into POLYGONS in
[11=Q2354;..; VF, and therefore never reach the GS.
[(N/2)-2] = (N-4,N-3,N-
1.N-2);

PrimTopologyType | Order of Vertices in Payload

PATCHLIST_1 [0] = (0
PATCHLIST_2 [11=Q;..;
PATCHLIST_3..32 [N-2] = (N-2);

[0] = (0,1);
(11=(23); ...
[(N/2)-1] = (N-2,N-1)

similar to above

152 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Thread Execution

A GS thread is capable of performing arbitrary algorithms given the thread payload (especially vertex)
data and associated data structures (binding tables, sampler state, etc.) as input. Output can take the
form of vertices output to the FF pipeline (at the GS unit) and/or data written to memory buffers via the
DataPort.

The primary usage models for GS threads include (possible combinations of):

e Compiled application-provided “GS shader” programs, specifying an algorithm to convert the
vertices of an input object into some output primitives. For example, a GS shader may convert lines
of a line strip into polygons representing a corresponding segment of a blade of grass centered on
the line. Or it could use adjacency information to detect silhouette edges of triangles and output
polygons extruding out from the those edges. Or it could output absolutely nothing, effectively
terminating the pipeline at the GS stage.

e Driver-generated instructions used to write pre-clipped vertices into memory buffers (see Stream
Output below). This may be required whether or not an app-provided GS shader is enabled.

e Driver-generated instructions used to emulate API functions not supported by specialized
hardware. These functions might include (but are not limited to):

e Conversion of API-defined topologies into topologies that can be rendered (e.g.,
LINELOOP—=LINESTRIP, POLYGON=-TRIFAN, QUADs=TRIFAN, etc.)

e Emulation of "Polygon Fill Mode”, where incoming polygons can be converted to points,
lines (wireframe), or solid objects.

e Emulation of wide/sprite points.

When rendering is required, concurrent GS threads must use the FF_SYNC message (URB shared
function) to request an initial VUE handle and synchronize output of VUEs to the pipeline (see URB in
Shared Functions). Only one GS thread can be outputting VUEs to the pipeline at a time. To achieve
parallelism, GS threads should perform the GS shader algorithm (along with any other required
functions) and buffer results (either in the GRF or scratch memory) before issuing the FF_SYNC message.
The issuing GS thread is stalled on the FF_SYNC writeback until it is that thread'’s turn to output VUEs. As
only one GS thread at a time can output VUEs, the post-FF_SYNC output portion of the kernel should be
optimized as much as possible to maximize parallelism.

Thread Execution

GS URB Entry

All outputs of a GS thread are stored in the single GS thread output URB entry. Cut (1 bit/vertex) or
StreamlID (2 bits/vertex) bits are packed into an optional 1-8 32B header. The Control Data Format and
Control Data Header Size states specify the size and contents of the header data (if any).

Doc Ref # IHD-OS-LKF-Vol 9-4.21 153

intel

Header (Cut bits) Header (Stream|D bits)
245 0 255 254 10
Clityss .- Cut, 51Dy .. S0,
- . 128B . | 256B
I max - (max
Cutyes Clitzes 51Dz “es 510k

Following the optional header is a variable number of 16B or 32B-aligned/granular vertices:

e When rendering is DISABLED, typically output vertices are 32B-aligned, with the exception of 16B-
alignment for vertices <= 16B in length.

e The absolute worst case size comes from three DW scalars output per vertex. If these are,
say, three “.x" outputs, you need to store each DW in a 128b (16B) element, plus another pad
16B to keep the 32B alignment. So you require 4*16B = 64B/vertex. You have to have room
for 1024 scalars / 3 scalar/vtx = 341 vertices. 341*64B = 21,824B. Then add 96B to hold

2b/vtx streamID and you get 21,920B entries.

e When rendering is ENABLED, each output vertex is 32B-aligned. Here the vertex header and vertex
‘position’ are required and therefore the minimum size vertex is 32B.

e Here the worst case size isn't as bad as render-disabled, as you have to have a 4DW position
output, plus any additional output. So, say you output 5 DW per vertex. You need 64B/vertex
(16B vtx header, 16B position, 16B for the 2nd element, and 16B of pad). You have to have
room for 1024 scalars / 5 = 204 vertices. 204*64 = 13,056B. Then add 64B to hold 2b/vtx
streamID and you get 13,120B entries.

The size of the URB entry should be based on the declared maximum # of output vertices and the
declared output vertex size (the union of per-stream vertex structures, if required).

GS URB Entry - Output Vertex Count

The GS URB entry is the same as in the two previous generations with the following exception: If Static
Output (3DSTATE_GS) is clear, the URB entry starts with a 32B OUTPUT_VERTEX_COUNT structure as
defined below. The control header (if present) immediately follows this structure. If Static Output is set,
the control header (if present) appears at the very start of the URB entry (as described above).

154 Doc Ref # IHD-OS-LKF-Vol 9-4.21

GS OUTPUT_VERTEX_COUNT

intel

DWord| Bit Description
7:6 31:0 |Reserved
0 31:16 | Reserved
15:0

Output Vertex Count. Indicates the number of vertices output from this GS shader invocation.

Format = U16
Range: [0:1024]

This structure (if present) increases the maximum URB entry sizes (described above) by 32B.

The following diagram illustrates the possible layouts of a GS URB Entry:

DW 7 DW o
Output ﬁ'.;r 2B,
Vix Cnt), Optional
Control Data Header w_ l-i 3.23
[1,1024) Cut bits or [1,1024] 2-bit StreamiDs j g;tir;;?l
32B
Vertex Data } entries
DW7T DWW 4 DW 3 DWW O
Vix 1 Vix 0 w
Vix 3 Vix 2 . 16B/
: - Vertex
| Vix N-1 | Vix N-2 |
OR
DWW 7 DWW O
Vix 0 {1-18#
aze)/
Vix 1 Vertex
Vix M-1

GS Output Topologies

The following table lists which primitive topology types are valid for output by a GS thread.

Doc Ref # IHD-OS-LKF-Vol 9-4.21

155

intel

PrimTopologyType | Supported for GS Thread Output?
LINELIST Yes
LINELIST_AD) No
LINESTRIP Yes
LINESTRIP_AD) No
LINESTRIP_BF No
LINESTRIP_CONT Yes
LINESTRIP_CONT_BF | No
LINELOOP No
POINTLIST Yes
POINTLIST_BF No
POLYGON Yes
QUADLIST No
QUADSTRIP No
RECTLIST Yes
TRIFAN Yes
TRIFAN_NOSTIPPLE |Yes
TRILIST Yes
TRILIST_ADJ No
TRISTRIP Yes
TRISTRIP_ADJ No
TRISTRIP_REV Yes
PATCHLIST _xxx Yes

GS Output StreamiID

When the GS Enable is DISABLED, output vertices are assigned a StreamID = 0;

When the GS Enable is ENABLED, output vertices are assigned a StreamID = Default StreamID under
the following conditions:

e Control Data Header Size = 0, or
e Control Data Header Size > 0 and Control Data Format = GSCTL_CUT

When the GS is enabled, Control Data Header Size > 0 and Control Data Format = GSCTL_SID, output
vertices are assigned a StreamID as programmed in the Control Data output by the thread.

Primitive Output

(This section refers to output from the GS unit to the pipeline, not output from the GS thread)

The GS unit will output primitives (either passed-through or generated by a GS thread) in the proper
order. This includes the buffering of a concurrent GS thread’s output until the preceding GS thread

156 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

terminates. Note that the requirement to buffer subsequent GS thread output until the preceding GS
thread terminates has ramifications on determining the number of VUEs allocated to the GS unit and the
number of concurrent GS threads allowed.

Statistics Gathering

There are a number of GS/StreamOutput pipeline statistics counters associated with the GS stage and GS
threads. This subsection describes these counters and controls depending on device, even in the cases
where functions outside of the GS stage (e.g., DataPort) are involved in the statistics gathering.

Refer to the Statistics Gathering summary provided earlier in this specification. Refer to the Memory
Interface Registers chapter for details on these MMIO pipeline statistics counter registers, as well as the
chapters corresponding to the other functions involved (e.g., DataPort, URB shared functions).

Payloads

Thread Payload High-Level Layout

Thread Payload High-Level Layoutshows the high-level layout of the payload delivered to GS threads.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 157

intel

GS Dispatch Layouts

SINGLE, DUAL _INSTANCE G S Payload

RO Paoad

PrimlC

ICPY..0Pull Handles

ICP15..8 Pull Handles

[CP235. 16 Pull Handles

[CP31..24 Pull Handles

Push Constant Daa

TP O Push Daa

ICP 1 Push Daa

ICP 31 Push Dida

DUAL_OBJECT G5 Payload

RO Paoad

Cihaj 1 PritmlCr

Cihaj O Pritm L

Chj 1 [CP3..0 Pull Handles

Cihj O [CP3..0 Pull Handles

Chj 1 [CP7..4 Pull Handles

Cihj O ICPT..4 Pull Handles

Ck 1 ICP11..8 Pull Handles

Qi 0 ICP11..8 Pull Handles

Chj 1 12P13..12 Pull Handles

Qb D I2P13..12 Pull Handles

FPush Congtant Daa

Chj 1 1CP O Puzh Data

Chi O ICP OF uzh Data

Chaj 1 1CP 1 Push Data

Chj O 1CP 1 P ush Data

Cbj 1 1CF 15 Push Data

Chj O 1P 15 Push Data

O ptional

O ational

-

Subsequent sections provide detailed layouts for different processor generations.

158

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

SIMD8 Thread Payload

The table below shows the layout of the payload delivered to GS threads.

Refer to the for details on those fields that are common among the various pipeline stages.

GRF
DWord | Bits Description
RO.7 31 Reserved
30:0 |Reserved.

RO.6 31:24 | Reserved.

230 | Thread ID. This field uniquely identifies this thread within the threads spawned by this FF unit,
over some period of time.
Format: Reserved for HW Implementation Use.

RO.5 31:10 . e . .

Scratch Space Pointer. Specifies the location of the scratch space allocated to this thread,
specified as a 1KB-aligned offset from the General State Base Address.
Format = GeneralStateOffset[31:10]

%0 FFTID. This ID is assigned by the fixed function unit and is relative identifier for the thread. It is
used to free up resources used by the thread upon thread completion.
Format: Reserved for Implementation Use

RO.4 315 | giys . e . . o . o
Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table. It is specified
as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]
4.0 |Reserved.

R0O.3 31:5 . e . .
Sampler State Pointer. Specifies the location of the Sampler State Table to be used by this
thread, specified as a 32-byte granular offset from the Dynamic State Base Address.

Format = DynamicStateOffset[31:5]
4 Reserved.
3:0

Per Thread Scratch Space.

Specifies the amount of scratch space allowed to be used by this thread. The value specifies the
power that two is raised to (over determine the amount of scratch space).

(See Generic Pipeline Stage for further description).

Programming Notes: This amount is available to the kernel for information only. It is passed
verbatim (if not altered by the kernel) to the Data Port in any scratch space access messages, but
the Data Port ignores it.

Format = U4 power of two (in excess of 10)

Doc Ref # IHD-OS-LKF-Vol 9-4.21 159

intel

GRF
DWord | Bits Description
Range = [0,11] indicating [1K Bytes, 2M Bytes]
RO.2 31:23 | Reserved.
22 Hint: This is a copy of the corresponding 3DSTATE_GS bit.
Format: U1
2116 Primitive Topology Type. This field identifies the Primitive Topology Type associated with the
primitive containing this object. It indirectly specifies the number of input vertices included in the
thread payload. Note that the GS unit may toggle this value between TRISTRIP and TRISTRIP_REV.
If the Discard Adjacency bit is set, the topology type passed in the payload is UNDEFINED.
Format: See 3D Pipeline
15:0 |Reserved.
RO.1-R0.0 [31:0 |Reserved.
R1.7 31:0 |GS Instance ID / URB Return Handle for Object 7 (See R1.0)
R1.6 31:0 |GS Instance ID / URB Return Handle for Object 6 (See R1.0)
R1.5 31:0 |GS Instance ID / URB Return Handle for Object 5 (See R1.0)
R1.4 31:0 |GS Instance ID / URB Return Handle for Object 4 (See R1.0)
R1.3 31:0 |GS Instance ID / URB Return Handle for Object 3 (See R1.0)
R1.2 31:0 |GS Instance ID / URB Return Handle for Object 2 (See R1.0)
R1.1 31:0 |GS Instance ID / URB Return Handle for Object 1 (See R1.0)
R1.0 3127 GS Instance ID 0. For each input object, the GS unit can spawn multiple threads (instances). This
field starts at zero for the first instance of an object and increments for subsequent instances.
Format: U5
26:16 | Reserved.
15:0

URB Return Handle 0. This is the URB offset where the EU’s lower channels (DWords 3:0) results
are to be stored.

Format: U16 64B-aligned URB Offset

The following reg

ister is included only if Include PrimitivelD is enabled.

R2.7 310 Primitive ID 7. This field contains the Primitive ID associated with input object 7 (or the single
input object if InstanceCount>1)
Format: U32

R2.6 31:.0 s - . — . L . .
Primitive ID 6. This field contains the Primitive ID associated with input object 6 (or the single
input object if InstanceCount>1)
Format: U32

160 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

GRF
DWord | Bits Description

R2.5 31:0 N - . Lo . oy : .
Primitive ID 5. This field contains the Primitive ID associated with input object 5 (or the single
input object if InstanceCount>1)
Format: U32

R2.4 31:0 L I . Lo . oy : .
Primitive ID 4. This field contains the Primitive ID associated with input object 4 (or the single
input object if InstanceCount>1)
Format: U32

R2.3 31:0 N - . N . oy : .
Primitive ID 3. This field contains the Primitive ID associated with input object 3 (or the single
input object if InstanceCount>1)
Format: U32

R2.2 31:0 s g . oo . oy . .
Primitive ID 2. This field contains the Primitive ID associated with input object 2 (or the single
input object if InstanceCount>1)
Format: U32

R2.1 31:0 s g . oo . oy . :
Primitive ID 1. This field contains the Primitive ID associated with input object 1 (or the single
input object if InstanceCount>1)
Format: U32

R2.0 31:0

Primitive ID 0. This field contains the Primitive ID associated with input object O (or the single
input object if InstanceCount>1)

Format: U32

The following reg

isters are included only if Include Vertex Handles is enabled and InstanceCount == 1.

Rn.7 31:16 | Reserved.

15:0 |Object 7 ICP 0 Handle
Rn.6 31:16 | Reserved.

15:0 |Object 6 ICP 0 Handle
Rn.5 31:16 | Reserved.

15:0 |Object 5 ICP 0 Handle
Rn.4 31:16 | Reserved.

15:0 |Object 4 ICP 0 Handle
Rn.3 31:16 | Reserved.

15:0 |Object 3 ICP 0 Handle
Rn.2 31:16 | Reserved.

15:0 |Object 2 ICP 0 Handle
Rn.1 31:16 | Reserved.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 161

intel

GRF
DWord | Bits Description
15:0 |Object 1 ICP 0 Handle
Rn.0 31:16 | Reserved.
15:0 |Object 0 ICP 0 Handle
[Rn+1] 255:0|1CP 1 Handle for Objects 0-7
[Rn+2] 255:0|1CP 2 Handle for Objects 0-7
[Rn+32] |[255:0(ICP 32 Handle for Objects 0-7
The following registers are included only if Include Vertex Handles is enabled and InstanceCount > 1.
Rn.7 31:16 | Reserved.
15:0 |ICP 7 Handle (if required)
Rn.6 31:16 | Reserved.
15:0 |ICP 6 Handle (if required)
Rn.5 31:16 | Reserved.
15:0 |ICP 5 Handle (if required)
Rn.4 31:16 | Reserved.
15:0 |ICP 4 Handle (if required)
Rn.3 31:16 | Reserved.
15:0 |ICP 3 Handle (if required)
Rn.2 31:16 | Reserved.
15:0 |ICP 2 Handle (if required)
Rn.1 31:16 | Reserved.
15:0 |ICP 1 Handle (if required)
Rn.0 31:16 | Reserved.
15:0 |[ICP 0 Handle
[Rn+1] 255:0|ICP 8-15 Handle
[Rn+2] 255:0|1CP 16-23 Handle
[Rn+3] 255:0|1CP 24-31 Handle
ED\S?C?;L 2550 Constant Data (optional):
Please refer to the Push Constants chapter in the General Programming of Thread-Generating
Stages section for more details on size and source of constant data.
Varies

Pushed Vertex Data (InstanceCount == 1 Case): (optional)

Input data for the 8 input objects is located here. Object O (starting with Vertex 0 of Object 0)
data is passed in DWO of these GRFs, and Object 7 data is passed in DW?7. The first GRF contains
Vertex 0 Element 0 Component O for all 8 objects, followed by components 1-3 in the three
subsequent GRFs. This is followed by GRFs containing Vertex 0 Element 1 (if it exists), and so on,

up to the number of Vertex 0 elements specified by Vertex URB Read Length. This is followed

162

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

GRF
DWord | Bits Description

by the data for Vertex 1 for all objects (if it exists), and so on until all relevant vertices are passed.
Note that the amount of data passed is limited by the number of GRFs supported by EUs.
Software is responsible for comprehending this limit and resorting to the pull model as required.

Rv.7 31:0 |Object 7 Vertex 0 Element 0 Component 0

Rv.6 31:0 |Object 6 Vertex 0 Element 0 Component 0

Rv.5 31:0 |Object 5 Vertex 0 Element 0 Component 0

Rv.4 31:0 |Object 4 Vertex 0 Element 0 Component 0

Rv.3 31:0 |Object 3 Vertex 0 Element 0 Component 0

Rv.2 31:0 |Object 2 Vertex 0 Element 0 Component 0

Rv.1 31:.0 |Object 1 Vertex 0 Element 0 Component 0

Rv.0 31:.0 |Object 0 Vertex 0 Element 0 Component 0

Rv+1 31:.0 |Object 0-7 Vertex 0 Element 0 Component 1
and so on...

Varies

Pushed Vertex Data (InstanceCount > 1 Case): (optional)
Input data for the single input object (shared across all instances) is located here.

The pushed data for Vertex 0 immediately follows any pushed constant data. The pushed data for
Vertex 1 immediately follows Vertex 0, and so on. There is no upper/lower swizzling of data.

Stream Output Logic (SOL) Stage

The Stream Output Logic (SOL) stage receives 3D topologies originating in the VF, DS or GS stage. If
enabled, the SOL stage uses programmed state information to copy portions of the vertex data
associated with the incoming topologies across one or more Stream Output (SO) Buffers.

State

This section contains state commands and structures pertaining to the StreamOut Logic (SOL) stage of

the 3D pipeline.

3DSTATE_STREAMOUT

The 3DSTATE_STREAMOUT command specifies control information for the SOL stage. Included are
enables and sizes for input streams and enables for output buffers.

The SOL unit incorrectly double buffers MMIO/NP registers and only moves them into the design for
usage when control topology is received with the SOL unit dirty state.

If the state does not change, need to resend the same state.

There is no need to send a pipeline state update to the SOL unit after SOL unit MMIO registers or non-
pipeline state are written.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 163

intel

3DSTATE_STREAMOUT
3DSTATE_SO DECL LIST Command

The 3DSTATE_SO_DECL_LIST instruction defines a list of Stream Output (SO) declaration entries
(SO_DECLs) and associated information for all specific SO streams in parallel.

3DSTATE_SO_DECL_LIST

SO_DECL

3DSTATE_SO_BUFFER

The 3DSTATE_SO_BUFFER command specifies the location and characteristics of an SO buffer in memory.
3DSTATE_SO_BUFFER

The SOL Unit also receives 3DSTATE_INT which is transparent to SW. 3DSTATE_INT provides 3DSTATE_WM,
3DSTATE_PS_EXTRA, and 3DSTATE_DEPTH_STENCIL_STATE fields.

Signal Description Formula
SOL_INT::Render_Enable | If clear, the SO stage will not forward =((3DSTATE_STREAMOUT: : Force_Rending == Force On) ||
any tOpOlOgieS down the plpehne (3DSTATE_STREAMOUT: :Force Rending != Force Off) &&
! (3DSTATE_GS: :Enable && 3DSTATE_GS::Output Vertex
If set, the SO stage will forward Size == 0) s&&

. . . ! 3DSTATE_STREAMOUT: :API_Render_ Disable &&
topologies associated with Render (

. . 3DSTATE DEPTH STENCIL STATE::St il TestEnabl
Stream Select down the pipeline. . = - creni_TEemnaRe

3DSTATE_DEPTH_STENCIL STATE::Depth TestEnable ||

This bit is used even if SO Function 3DSTATE_DEPTH_STENCTIL_STATE::Depth WriteEnable ||
. 3DSTATE_PS EXTRA::PS Valid ||
Enable is DISABLED. 3DSTATE:WMT:Legacy DgpthiBuffericlear |

3DSTATE _WM: :Legacy Depth Buffer Resolve Enable ||
3DSTATE WM: :Legacy
Hierarchical Depth Buffer Resolve Enable
)
)

164 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

DW1[21] DW1[20] Stream Offset Action

Full legacy mode. HW doesn’t LOAD or STORE, it simply updates the MMIO register during stream out. SW can can
the LOAD/STORE using MI_LOAD_REG/ MI_STORE_REG.

0 0 not equal to OxFFFFFFFF SO_WRITE_OFFSET[x] = no action
0 0 equal to OxFFFFFFFF SO_WRITE_OFFSET[x] = no action
SW can cause the LOAD of the SO_OFFSET using MI_LOAD_REG, and HW performs the STORE.
0 1 not equal to OxFFFFFFFF SO_WRITE_OFFSET[x] = No action,
write SO_WRITE_OFFSET[x] to memory
0 1 equal to OxFFFFFFFF SO_WRITE_OFFSET[x] = No action,

write SO_WRITE_OFFSET[x] to memory

HW performs the LOAD, and SW can cause the STOREs using MI_STORE_REG_MEM.

1 0 not equal to OxFFFFFFFF SO_WRITE_OFFSET[x] = stream offset
1 0 equal to OxFFFFFFFF SO_WRITE_OFFSET[x] = load from memory
HW performs both the LOAD and STORE.
1 1 not equal to OxFFFFFFFF SO_WRITE_OFFSET[x] = stream offset,
write SO_WRITE_OFFSET[x] to memory
1 1 equal to OxFFFFFFFF SO_WRITE_OFFSET[x] = load from memory,

write SO_WRITE_OFFSET[x] to memory

“"SO_WRITE_OFFSET[x] =" occurs before the execution of the primitive, while write SO_WRITE_OFFSET[x] to memory
occurs after the execution of the primitive.

Functions

Input Buffering

For the purposes of stream output, the SOL stage breaks incoming topologies into independent objects
without adjacency information. In the process, any adjacent-only vertices are ignored. For example, it
converts TRISTRIP_ADJ into independent 3-vertex triangles. However, if rendering is enabled, incoming
topologies are passed to the Clip stage unmodified and therefore the Clip unit must be enabled if there
is any possibility of “ADJ" topologies reaching it.

Note that the SOL unit will not see incomplete objects: the VF will remove incomplete input objects, the
GS will remove GS-generated incomplete objects, and the DS does not output incomplete objects as only
complete topologies are generated by the TE stage.

The OSB (Object Staging Buffer) reorders the vertices of odd-numbered triangles in TRISTRIP topologies
to match API requirements.

Incoming topologies are tagged with a 2-bit StreamID. The StreamID is 0 for topologies originating from
the VF stage (i.e., 3DPRIMITIVE_xxx). For topologies output from the GS stage, the StreamlID is set by the
GS shader. A Stream n Vertex Length is associated with each stream and defines how much data is read
from the URB for vertices in that stream.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 165

intel

The following table specifies how the SOL stage streams out object vertices for each incoming topology
type.

Order of Vertices

PrimTopologyType Streamed Out

<PRIMITIVE_TOPOLOGY>
(N = # of vertices)

[<object#>] =

(<vert#>,..)); Any SOL Notes

POINTLIST [0] = (0);

POINTLIST_BF [11=0y; ..
[N-2] = (N-2);

LINELIST [0] = (0,1);

(N is multiple of 2) [11=@23); ..

[(N/2)-1] = (N-2,N-
D)

LINELIST_AD)J [0] = (1,2);

(N is multiple of 4) [11 = (5.6); ...;
[(N/4)-1)] = (N-
3,N-2)

LINESTRIP [0] = (0,1);

LINESTRIP_BF [11=012);..;

LINESTRIP_CONT
LINESTRIP_CONT_BF
(N >=2)

[N-2] = (N-2,N-1)

LINESTRIP_ADJ,
LINESTRIP_ADJ_CONT
(N >=4)

[0] = (1,2);
[11=(23); ...
[N-4] = (N-3,N-2)

LINESTRIP_ADJ_CONT is added, LINESTRIP_ADJ_CONT is
generated by the Vertex Fetch unit on a restore of a mid-
draw pre-empted 3DPRIMITIVE.

LINELOOP N/A Not supported after VF.
TRILIST [0] = (0.1.2);
(N is multiple of 3) [11 = 3.4,5); ...;

[(N/3)-1] = (N-3,N-
2,N-1)

RECTLIST, RECTLIST_SUBPIXEL

Same as TRILIST

Handled same as TRILIST.

TRILIST_ADJ
(N is multiple of 6)

[0] = (0.2,4);

[1] = (6,8,10); ...;
[(N/6)-1] = (N-6,N-
4,N-2)

TRISTRIP [0] = (0,1,2); "Odd" triangles have vertices reordered to yield increasing
(N >=3) [11=(01,32); leading vertices starting with vO.
REORDER_LEADING [k even] =
(k,k+1,k+2)
[k odd] =
(k,k+2,k+1)
[N-3] = (see above)
TRISTRIP [0] = (0,1,2); “Odd" triangles have vertices reordered to yield increasing

166

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

PrimTopologyType

Order of Vertices
Streamed Out

<PRIMITIVE_TOPOLOGY >
(N = # of vertices)

[<object#>] =
(<vert#>,..));

Any SOL Notes

(N >=3)
REORDER_TRAILING

(11 =@1.3);

[k even] =
(k,k+1,k+2)

[k odd] =
(k+1,kk+2)

[N-3] = (see above)

trailing vertices starting with v2.

TRISTRIP_REV
(N >= 3)
REORDER_LEADING

[0] = (0,2,7)

[11 = (1,2,3);...

[k even] =
(k,k+2,k+1)

[k odd] =
(k,k+1,k+2)

[N-3] = (see above)

“Even” triangles have vertices reordered to yield increasing
leading vertices starting with vO.

TRISTRIP_REV
(N >=3)
REORDER_TRAILING

[0] = (1,0,2)
[11=0,273)..;

[k even] =

(k+1,k k+2)

[k odd] =
(k,k+1,k+2)

[N-3] = (see above)

“Even” triangles have vertices reordered to yield increasing
trailing vertices starting with v2.

TRISTRIP_AD)
(N even, N >= 6)
REORDER_LEADING

N=6or7:

[0] = (0,2,4)
N=8or9:

[0] = (0,2,4);
[11=(2,6,4); ..;
N > 10:;

[0] = (0,2,4);

[11 = (2,6,4); ...
[k>1, even] = (2k,
2k+2, 2k+4);
[k>2, odd] = (2k,
2k+4, 2k+2);...;
Trailing object:
[(N/2)-3, even] =
(N-6,N-4,N-2);
[(N/2)-3, odd] =
(N-6,N-2,N-4);

"Odd” objects have vertices reordered to yield increasing-by-
2 leading vertices starting with vO.

TRISTRIP_ADJ
(N even, N >= 6)
REORDER_TRAILING

N=6or7:

[0] = (0,2,4)
N=8or9:

[0] = (0,2,4);
[11=(4,26); ..
N > 10:

"Odd" objects have vertices reordered to yield increasing-by-
2 trailing vertices starting with v4.

Doc Ref # IHD-OS-LKF-Vol 9-4.21

167

intel

Order of Vertices
PrimTopologyType Streamed Out

<PRIMITIVE_TOPOLOGY > [<object#>] =
(N = # of vertices) (<vert#>,...); Any SOL Notes

[0] = (0,2,4);

[11 = (4,2,6); ...;
[k>1, even] = (2k,
2k+2, 2k+4);
[k>2, odd] =
(2k+2,2k, 2k+4,);...;
Trailing object:
[(N/2)-3, even] =

(N-6,N-4,N-2);
[(N/2)-3, odd] =
(N-4,N-6,N-2);
TRIFAN [0] = (0,1,2);
(N > 2) [1] = (0,2,3); ...

[N-3] = (0, N-2, N-
1);

TRIFAN_NOSTIPPLE Same as TRIFAN

POLYGON, POLYGON_CONT |Same as TRIFAN POLYGON_CONT is added, POLYGON_CONT is generated by
the Vertex Fetch unit on a restore of a mid-draw pre-empted

3DPRIMITIVE.

QUADLIST N/A Not supported after VF.
QUADSTRIP
PATCHLIST_1 [0] = (0);

(1=0); ...

[N-2] = (N-2);
PATCHLIST_2 [0] = (O,1);

[11=(23); ...

[(N/2)-1] = (N-2,N-

1)
PATCHLIST_3..32 similar to above

168 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Stream Output Function

As previously mentioned, incoming 3D topologies are targeted at one of the four streams. The SOL stage
contains state information specific to each of the four streams.

A stream'’s list of SO declarations (SO_DECL structures) is used to perform the SO function for objects
targeted to that particular stream. The 3DSTATE_SO_DECL_LIST command is used to specify the list of
SO_DECL structures for all four streams in parallel. Software is required to scan the SO_DECL lists of
streams to determine which SO buffers are targeted. The Stream To Buffer Selects bits in
3DSTATE_SO_DECL_LIST must be programmed accordingly (if the buffer is targeted, the select bit must
set, else it must be cleared).

If a stream has no SO_DECL state defined (NumEntries is 0), incoming objects targeting that stream are
effectively ignored. As there is no attempt to perform stream output, overflow detection is neither
required nor performed.

Otherwise, an overflow check is performed. First any attempt to output to a disabled buffer is detected.
This occurs when the stream has a Stream To Buffer Selects bit set but the corresponding SO Buffer
Enable is clear. Assuming all targeted buffers are enabled, an additional check is made to ensure that
there is enough room in each targeted buffer to hold the number of vertices which be output to it (for
the input object). Here the buffer's current end address is compared to what the write offset would be if
the output was performed. The latter value is computed as (write_offset + vertex_count * buffer_pitch). If
this value is greater than the end address, an overflow is signaled. This check is performed for each
buffer included in Stream To Buffer Selects.

If an overflow is not signaled, the SO function is performed. The SO_DECL list for the targeted stream is
traversed independently for each object vertex, and the operation specified by the SO_DECL structure is
performed (typically causing data to be appended to an SO buffer). In the process, SO buffer Write
Offsets are incremented.

Stream Output Buffers

Up to four SO buffers are supported. The SO buffer parameters (start/end address, etc.) are specified by
the 3DSTATE_SO _BUFFER command.

The 3DSTATE_STREAMOUT command specifies a SO Buffer Enable bit for each of the buffers. If a buffer is
disabled, its state is ignored and no output will be attempted for that buffer. Any attempt to output to
that buffer will immediately signal an overflow condition.

The SOL stage maintains a current Write Offset register value for each SO buffer. These registers can be
written via MI_LOAD_REGISTER_MEM or MI_LOAD_REGISTER_IMM commands. The SOL stage will
increment the Write Offsets as a part of the SO function. Software can cause a Write Offset register to be
written to memory via an MI_STORE_REGISTER_MEM command, though a preceding flush operation may
be required to ensure that any previous SO functions have completed.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 169

intel

Surface Format Name

R32G32B32A32_FLOAT

R32G32B32A32_SINT

R32G32B32A32_UINT

R32G32B32_FLOAT

R32G32B32_SINT

R32G32B32_UINT

R32G32_FLOAT

R32G32_SINT

R32G32_UINT

R32_SINT

R32_UINT

R32_FLOAT

Rendering Disable

Independent of SOL function enable, if rendering (i.e, 3D pipeline functions past the SOL stage) is
enabled (via clearing the Rendering Disable bit), the SOL stage will pass topologies for a specific input
stream (as selected by Render Stream Select) down the pipeline, with the exception of PATCHLIST_n
topologies which are never passed downstream. Software must ensure that the vertices exiting the SOL
stage include a vertex header and position value so that the topologies can be correctly processed by
subsequent pipeline stages. Specifically, rendering must be disabled whenever 128-bit vertices are
output from a GS thread.

If Rendering Disable is set, the SOL stage will prevent any topologies from exiting the SOL stage.

Statistics

The SOL stage controls the incrementing of two 64-bit statistics counter registers for each of the four
output buffer slots, SO_NUM_PRIMS_WRITTEN[] and SO_PRIM_STORAGE_NEEDED[].

170 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

3D Pipeline Rasterization

Common Rasterization State

This section contains rasterization state pointers.

Pointers

3DSTATE_VIEWPORT_STATE_POINTERS_CC

3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP

3DSTATE_SCISSOR_STATE_POINTERS

3DSTATE_RASTER

3D Pipeline - CLIP Stage Overview

The CLIP stage of the 3D Pipeline is similar to the GS stage in that it can be used to perform general
processing on incoming 3D objects via spawned threads. However, the CLIP stage also includes
specialized logic to perform a ClipTest function on incoming objects. These two usage models of the CLIP
stage are outlined below.

Refer to the Common 3D FF Unit Functions subsection in the 3D Overview chapter for a general
description of a 3D Pipeline stage, as much of the CLIP stage operation and control falls under these
“common” functions. l.e.,, many of the CLIP stage state variables and CLIP thread payload parameters are
described in 3D Overview, and although they are listed here for completeness, that chapter provides the
detailed description of the associated functions.

Refer to this chapter for an overall description of the CLIP stage, details on the ClipTest function, and any
exceptions the CLIP stage exhibits with respect to common FF unit functions.

Clip Stage - 3D Clipping

The ClipTest fixed function is provided to optimize the CLIP stage for support of generalized 3D Clipping.
The CLIP FF unit examines the position of incoming vertices, performs a fixed function VertexClipTest on
these positions, and then examines the results for the vertices of each independent object in
ClipDetermination.

The results of ClipDetermination indicate whether an object is to be clipped (MustClip), discarded
(TrivialReject) or passed down the pipeline unmodified (TrivialAccept). In the MustClip case, the fixed
function clipping hardware is responsible for performing the actual 3D Clipping algorithm. The

CLIP hardware is passed the source object vertex data and is able to output a new, arbitrary 3D primitive
(e.g., the clipped primitive), or no output at all. Note that the output primitive is comprised of newly-
generated vertex positions, barycentric attributes and shares vertices with the source primitive for rest of
the attributes.The CLIP unit maintains the proper ordering of CLIP-generated primitives and any
surrounding trivially-accepted primitives and processes all the primitives in order.

The outgoing primitive stream is sent down the pipeline to the Strip/Fan (SF) FF stage (now including the
read-back VUE Vertex Header data such as Vertex Position (NDC or screen space), RTAIndex, VPIndex,

Doc Ref # IHD-OS-LKF-Vol 9-4.21 171

intel

PointWidth) and control information (PrimType, PrimStart, PrimEnd) while the remainder of the vertex
data remains in the VUE in the URB.

Fixed Function Clipper

The GPU supports Fixed Function Clipping.

Note: In an earlier generation, clipping was done in the EU. However, the clipper thread latency was high
and caused a bottleneck in the pipeline. Hence the motivation for a fixed function clipper.

Concepts

This section provides an overview of 3D clip-testing and clipping concepts, as defined by the Direct3D*
and OpenGL* APIs. It is provided as background material. Some of the concepts impact HW functionality
while others impact CLIP kernel functionality.

* Other names and brands may be claimed as the property of others.

CLIP Stage Input

As a stage of the 3D pipeline, the CLIP stage receives inputs from the previous (GS) stage. Refer to 3D
Overview for an overview of the various types of input to a 3D Pipeline stage. The remainder of this
subsection describes the inputs specific to the CLIP stage.

State

This section contains state clips for the Clip Stage. For each processor generation, the state used by the
clip stage is defined by the appropriate inline state packet, linked below.

3DSTATE_CLIP

3D_STATE_CLIP

The Clip unit will unconditionally reject incoming PATCHLIST topologies, if not already discarded by SOL. So there is
no need for SW to explicitly set the CLIP_mode to reject PATCHLIST topologies.

172 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Clip Unit also receives 3DSTATE_RASTER. It also receives 3DSTATE_INT which is transparent to SW.
3DSTATE_INT provides 3DSTATE_VS, 3DSTATE_DS and 3DSTATE_GS fields.

Signal

Description

Formula

CLIP_INT::Front_Winding

Determines whether a triangle object is considered
“front facing” if the screen space vertex positions,
when traversed in the order, result in a clockwise (CW)
or counter-clockwise (CCW) winding order. Does not
apply to points or lines.

= 3DSTATE_RASTER::FrontWinding

CLIP_INT::CullMode

Controls removal (culling) of triangle objects based on
orientation. The cull mode only applies to triangle
objects and does not apply to lines, points, or
rectangles.

= 3DSTATE_RASTER:CullMode

CLIP_INT::Viewport Z ClipTest
Enable

This field is used to control whether the Viewport Z
extents (near, far) are considered in VertexClipTest.

= 3DSTATE_RASTER::Viewport Z ClipTest
Enable

CLIP_INT::User Clip Distance
Cull Test Enable Bitmask

This 8-bit mask field selects which of the 8 user clip
distances against which trivial reject/trivial accept
determination needs to be made (does not cause a
must clip).

DX10 allows simultaneous use of ClipDistance and
Cull Distance test of up to 8 distances.

This mask must be mutually exclusive to final
CLIP_INT::User Clip Distance Clip Test Enable Bitmask.
Same mask bit can't be set for both.

= (3DSTATE CLIP::ForceUser Clip
Distance Cull Test Enable Bitmask
== Force) ?

3DSTATE_CLIP::User Clip Distance
Cull Test Enable Bitmask :

3DSTATE_GS::GS_Enable ?
3DSTATE GS:: GS User Clip
Distance Cull Test Enable Bitmask

3DSTATE7DS :DS Enable ?
3DSTATE DS:: DS User Clip
Distance Cull Test Enable Bitmask

3DSTATE_INT:VS Enable ?
3DSTATE VS:: VS User Clip
Distance Cull Test Enable Bitmask

CLIP_INT::User Clip Distance
Clip Test Enable Bitmask

This 8-bit mask field selects which of the 8 user clip
distances against which trivial reject/trivial accept
determination needs to be made (does not cause a
must clip).

DX10 allows simultaneous use of ClipDistance and
Clip Distance test of up to 8 distances.

This mask must be mutually exclusive to final
CLIP_INT::User Clip Distance Cull Test Enable Bitmask.
Same mask bit can't be set for both.

= (3DSTATE CLIP::ForceUser Clip
Distance Clip Test Enable Bitmask
== Force) ?

3DSTATE CLIP::User Clip Distance
Clip Test Enable Bitmask :

3DSTATE_GS:GS_Enable ?
3DSTATE_GS::GS User Clip

Distance Clip Test Enable Bitmask

3DSTATE_DS::DS_Enable ?
3DSTATE DS::DS User Clip

Distance Clip Test Enable Bitmask

3DSTATE_VS::VS_Enable ?
3DSTATE VS::VS User Clip

Distance Clip Test Enable Bitmask

Doc Ref # IHD-OS-LKF-Vol 9-4.21

173

intel

VUE Readback

Starting with the CLIP stage, the 3D pipeline requires vertex information in addition to the VUE handle.
For example, the CLIP unit's VertexClipTest function needs the vertex position, as does the SF unit's
functions. This information is obtained by the 3D pipeline reading a portion of each vertex's VUE data
directly from the URB. This readback (effectively) occurs immediately before the CLIP VertexClipTest
function, and immediately after a CLIP thread completes the output of a destination VUE.

The Vertex Header (first 256 bits) of the VUE data is read back. (See the previous VUE Formats subsection
(above) for details on the content and format of the Vertex Header.) Additional Clip/Cull data (located
immediately past the Vertex Header) may be read prior to clipping.

This readback occurs automatically and is not under software control. The only software implication is
that the Vertex Header must be valid at the readback points, and therefore must have been previously
loaded or written by a thread.

VertexClipTest Function

The VertexClipTest function compares each incoming vertex position (x,y,z,w) with various viewport and
guardband parameters (either hard-coded values or specified by state variables).

The RHW component of the incoming vertex position is tested for NaN value, and if a NaN is detected,
the vertex is marked as “BAD" by setting the outcode[BAD]. If a NaN is detected in any vertex
homogeneous x,y,zw component or an enabled ClipDistance value, the vertex is marked as "BAD" by
setting the outcode[BAD].

In general, any object containing a BAD vertex will be discarded, as how to clip/render such objects is
undefined.

However, in the case of CLIP_ALL mode, a CLIP thread will be spawned even for objects with "BAD”
vertices. The CLIP kernel is required to handle this case, and can examine the Object Outcode [BAD]
payload bit to detect the condition. (Note that the VP and GB Object Outcodes are UNDEFINED when
BAD is set))

If the incoming RHW coordinate is negative (including negative 0) the NEGW outcode is set. Also, this
condition is used to select the proper comparison functions for the VP and GB outcode tests (below).

Next, the VPXY and GB outcodes are computed, depending on the corresponding enable SV bits. If one
of VPXY or GB is disabled, the enabled set of outcodes are copied to the disabled set of outcodes. This
effectively defines the disabled boundaries to coincide with the enabled boundaries (i.e., disabling the GB
is just like setting it to the VPXY values, and vice versa).

The VPZ outcode is computed as required by the API mode SV.
Separate VP Z Near (ZMin) and Z Far (ZMax) ClipTest Enable state bits are provided in 3DSTATE_RASTER.
Finally, the incoming UserClipFlags are masked and copied to corresponding outcodes.

The following algorithm is used by VertexClipTest:

174 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

// Vertex ClipTest

// On input:
// if (CLIP.PreMapped)

// X,y are viewport mapped

// z is NDC ([0,1] is visible)

// else

// x,y,2z are NDC (post-perspective divide)
// w is always 1/w

//

// Initialize outCodes to “inside”

//

outCode[*] = 0

//

// Check if w is NaN
// Any object containing one of these “bad” vertices will likely be discarded

//

if (ISNAN (homogeneous x,y,z,w or enabled ClipDistance value)

outCode [BAD] = 1
// If 1/w is negative, w is negative and therefore outside of the w=0 plane
rhw neg = ISNEG (rhw)

if (rhw_negq)

outCode [NEGW] = 1

// View Volume Clip Test
// If Premapped, the 2D viewport is defined in screen space
// otherwise the canonical NDC viewvolume applies ([-1,11])

if (CLIP_STATE.PreMapped)

vp_XMIN = CLIP STATE.VP XMIN
vp_XMAX = CLIP STATE.VP_ XMAX
vp_YMIN = CLIP STATE.VP_ YMIN
vp_YMAX = CLIP_STATE.VP_YMAX

} else {
vp XMIN = -1.0f
vp XMAX = +1.0f
vp YMIN = -1.0f

vp_YMAX = +1.0f

if (CLIP STATE.ViewportXYClipTestEnable) {

outCode [VP_XMIN] = (x < vp XMIN)
outCode [VP_XMAX] = (x > vp_ XMAX)
outCode [VP_YMIN] = (y < vp_ YMIN)
outCode [VP_YMAX] = (y > vp_ YMAX)
#ifdef (BW-EO)
if (rhw_neg) {
outCode [VP_XMIN] = (x >= vp_ XMIN)
outCode [VP_XMAX] = (x <= vp_XMAX)
outCode [VP_YMIN] = (y >= vp_ XMIN)
outCode [VP_YMAX] = (y <= vp_XMAX)

}
#endif
if (rhw neg) {

Doc Ref # IHD-OS-LKF-Vol 9-4.21 175

intel

outCode [VP_XMIN] = (x > vp XMIN)
outCode [VP_XMAX] = (x < vp_ XMAX)
outCode [VP_YMIN] = (y > vp XMIN)
outCode [VP_YMAX] = (y < vp_ XMAX)

}

if (CLIP STATE.ViewportZClipTestEnable) {
if (CLIP_STATE.APIMode == APIMODE_D3D) {
vp ZMIN = 0.0f
vp ZMAX = 1.0f
} else { // OGL
vp ZMIN = -1.0f
vp ZMAX = 1.0f
}

outCode [VP ZMIN] = (z < vp_ ZMIN)
outCode [VP_ZMAX] = (z > vp ZMAX)
#ifdef (BW-EO)
if (rhw_neg) {
outCode [VP_ZMIN] = (z >= vp_ ZMIN)
outCode [VP ZMAX] = (z <= vp_ZMAX)
}
#endif
if (rhw _negqg) {
outCode [VP ZMIN] = (z > vp ZMIN)
outCode [VP_ZMAX] = (z < vp_ZMAX)
}
}
//
// Guardband Clip Test
//

if {CLIP STATE.GuardbandClipTestEnable) {
gb XMIN = CLIP STATE.Viewport[vpindex].GB XMIN

gb XMAX = CLIP STATE.Viewport[vpindex].GB XMAX
gb YMIN = CLIP STATE.Viewport[vpindex].GB YMIN
gb YMAX = CLIP STATE.Viewport[vpindex].GB YMAX
outCode [GB XMIN] = (x < gb XMIN)
outCode [GB XMAX] = (x > gb XMAX)
outCode [GB_YMIN] = (y < gb YMIN)
outCode [GB YMAX] = (y > gb YMAX)

#ifdef (BW-EO)

if (rhw_neqg) {
outCode [GB_XMIN
outCode [GB_ XMAX
outCode [GB_YMIN
outCode [GB_YMAX

X >= gb XMIN
x <= gb XMAX
y >= gb YMIN
y <= gb_YMAX

)
)
)
)

}
#endif
if (rhw_neg) {

outCode [GB_ XMIN] (x > gb XMIN)
outCode [GB XMAX] = (x < gb XMAX)
outCode [GB_YMIN] = (y > gb_ YMIN)
outCode [GB_YMAX] (y < gb_YMAX)

// Handle case where either VP or GB disabled (but not both)
// In this case, the disabled set take on the outcodes of the enabled set

if (CLIP_ STATE.ViewportXYClipTestEnable && !CLIP STATE.GuardbandClipTestEnable) {

outCode [GB_XMIN] = outCode[VP XMIN]
outCode [GB XMAX] = outCode[VP XMAX]

176 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

outCode [GB_YMIN] outCode [VP_YMIN]
outCode [GB YMAX] outCode [VP YMAX]
} else if (!CLIP STATE.ViewportXYClipTestEnable && CLIP STATE.GuardbandClipTestEnable) {
outCode [VP XMIN] outCode [GB XMIN]
[
[
[

outCode [VP_XMAX] outCode [GB XMAX]
outCode [VP_ YMIN] outCode [GB YMIN]
outCode [VP_YMAX] outCode [GB_ YMAX]

}

//

// X/Y/Z NaN Handling

//

xyorgben = (CLIP STATE.ViewportXYClipTestEnable || CLIP_ STATE.GuardbandClipTestEnable)

if (isNAN(x)) {
outCode [GB_XMIN] = xyorgben
outCode [GB XMAX] = xyorgben
outCode [VP_XMIN] = xyorgben
outCode [VP_XMAX] = xyorgben

}

if (isNAN(y)) {
outCode [GB_YMIN] = xyorgben
outCode [GB_YMAX] = xyorgben
outCode [VP_YMIN] = xyorgben
outCode [VP YMAX] = xyorgben

if (isNaN) {
outCode [VP_ZMIN]
outCode [VP ZMAX]

CLIP_ STATE.ViewportZClipTestEnable
CLIP STATE.ViewportZClipTestEnable

}

//

// UserClipFlags

//

ExamineUCFs

for (i=0; i<7; i++)
{

outCode [UCO+1] = userClipFlag[i] & CLIP STATE.UserClipFlagsClipTestEnableBitmask[i]
}
outCode[UC7] = userClipFlag[i] & CLIP STATE.UserClipFlagsClipTestEnableBitmask[7]
Object Staging

The CLIP unit's Object Staging Buffer (OSB) accepts streams of input vertex information packets, along
with each vertex’s VertexClipTest result (outCode). This information is buffered until a complete object or
the last vertex of the primitive topology is received. The OSB then performs the ClipDetermination
function on the object vertices, and takes the actions required by the results of that function.

Partial Object Removal

The OSB is responsible for removing incomplete LINESTRIP and TRISTRIP objects that it may receive from
the preceding stage (GS). Partial object removal is not supported for other primitive types due to either
(a) the GS is not permitted to output those primitive types (e.g., primitives with adjacency info), and the
VF unit will have removed the partial objects as part of 3DPRIMITIVE processing, or (b) although the GS
thread is allowed to output the primitive type (e.g., LINELIST), it is assumed that the GS kernel will be
correctly implemented to avoid outputting partial objects (or pipeline behavior is UNDEFINED).

An object is considered 'partial’ if the last vertex of the primitive topology is encountered (i.e., PrimEnd is
set) before a complete set of vertices for that object have been received. Given that only LINESTRIP and

Doc Ref # IHD-OS-LKF-Vol 9-4.21 177

intel

TRISTRIP primitive types are subject to CLIP unit partial object removal, the only supported cases of
partial objects are 1-vertex LINESTRIPs and 1 or 2-vertex TRISTRIPs.

ClipDetermination Function

In ClipDetermination, the vertex outcodes of the primitive are combined in order to determine the clip
status of the object (TR: trivially reject; TA: trivial accept; MC: must clip; BAD: invalid coordinate). Only
those vertices included in the object are examined (3 vertices for a triangle, 2 for a line, and 1 for a point).
The outcode bit arrays for the vertices are separately ANDed (intersection) and ORed (union) together
(across vertices, not within the array) to yield objANDCode and objORCode bit arrays.

TR/TA against interesting boundary subsets are then computed. The TR status is computed as the logical
OR of the appropriate objJANDCode bits, as the vertices need only be outside of one common boundary
to be trivially rejected. The TA status is computed as the logical NOR of the appropriate objORCode bits,
as any vertex being outside of any of the boundaries prevents the object from being trivially accepted.

If any vertex contains a BAD coordinate, the object is considered BAD and any computed TR/TA results
will effectively be ignored in the final action determination.

Next, the boundary subset TR/TA results are combined to determine an overall status of the object. If the
object is TR against any viewport or enabled UC plane, the object is considered TR. Note that, by
definition, being TR against a VPXY boundary implies that the vertices will be TR agains the
corresponding GB boundary, so computing TR_GB is unnecessary.

The treatment of the UCF outcodes is conditional on the UserClipFlags MustClip Enable state. If
DISABLED, an object that is not TR against the UCFs is considered TA against them. Put another way,
objects will only be culled (not clipped) with respect to the UCFs. If ENABLED, the UCF outcodes are
treated like the other outcodes, in that they are used to determine TR, TA or MC status, and an object
can be passed to a CLIP thread simply based on it straddling a UCF.

Finally, the object is considered MC if it is neither TR or TA.

The following logic is used to compute the final TR, TA, and MC status.
//

// ClipDetermination
//
// Compute objANDCode and objORCode
//
switch (object type) {
case POINT:
{

objANDCode[...] = v0.outCodel...]
objORCode[...] = v0.outCode[...]
} break
case LINE:
{
objANDCode[...] = v0.outCode[...] & vl.outCode[...]
objORCode[...] = v0.outCode[...] | vl.outCode[...]
} break
case TRIANGLE:
{
objANDCode[...] = v0.outCode[...] & vl.outCode[...] & v2.outCode[...]
objORCode[...] = v0.outCode[...] | vl.outCode[...] | v2.outCode[...]
} break

178 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

}

//

// Determine TR/TA against interesting boundary subsets

//

TR_VPXY = (objANDCode[VP_L] | objANDCOde[VP_R] | objANDCOde[VP_T] | objANDCOde[VP_B])
TR GB = (objANDCode [GB L] | objANDCode[GB R] | objANDCode[GB T] | objANDCode[GB B])
TA GB = ! (objORCode [GB L] | objORCode[GB R] | objORCode [GB T] | objORCode [GB B])
TA VPZ = ! (objORCode[VP N] | objORCode[VP Z])

TR VPZ = (objANDCOde[VP_N] | objANDCode[VP_Z])

TA UC = ! (objORCode [UCO] | objORCode [UC1] | ... | objORCode[UC7])

TR _UC = (objANDCode [UCO] | objANDCode [UCL1] | ... | objANDCode[UC7])

BAD = 0objORCode [BAD]

TA NEGW = !objORCode [NEGW]
TR NEGW = objANDCode [NEGW]

//

// Trivial Reject

//

// An object is considered TR if all vertices are TR against any common boundary
// Note that this allows the case of the VPXY being outside the GB

//

TR = TR GB || TR VPXY || TR VPZ || TR UC || TR NEGW

#else

TR = TR GB || TR VPXY || TR VPZ || TR UC

// Trivial Accept

// For an object to be TA, it must be TA against the VPZ and GB, not TR,

// and considered TA against the UC planes and NEGW

// If the UCMC mode is disabled, an object is considered TA against the UC

// as long as it isn’t TR against the UC.

// If the UCMC mode is enabled, then the object really has to be TA against the UC
// to be considered TA

// In this way, enabling the UCMC mode will force clipping if the object is neither
// TA or TR against the UC

//

TA = ITR && TA GB && TA VPZ && TA NEGW

UCMC = CLIP STATE.UserClipFlagsMustClipEnable

TA = TA && ((UCMC && TA UC) || (!UCMC && !TR UC))
//

// MustClip

// This is simply defined as not TA or TR

// Note that exactly one of TA, TR and MC will be set
//

MC = ! (TA || TR)

Doc Ref # IHD-OS-LKF-Vol 9-4.21 179

intel

ClipMode State

The ClipMode state determines what action the CLIP unit takes given the results of ClipDetermination.
The possible actions are:

e PASSTHRU: Pass the object directly down the pipeline. A CLIP thread is not spawned.

e DISCARD: Remove the object from the pipeline and dereference object vertices as required (that
is, dereferencing will not occur if the vertices are shared with other objects).

e SPAWN: Pass the object to a CLIP thread. In the process of initiating the thread, the object vertices
may be dereferenced.

The following logic is used to determine what to do with the object (PASSTHRU or DISCARD or SPAWN).

//
// Use the ClipMode to determine the action to take
//
switch (CLIP_STATE.ClipMode) {
case NORMAL:
{
PASSTHRU = TA && !BAD
DISCARD TR || BAD
SPAWN MC && !BAD
}
case CLIP ALL:
{
PASSTHRU
DISCARD
SPAWN
}
case CLIP NOT REJECT:
{
PASSTHRU
DISCARD
SPAWN
}
case REJECT ALL:
{
PASSTHRU
DISCARD
SPAWN
}
case ACCEPT ALL:
{
PASSTHRU
DISCARD
SPAWN
}

} endswitch

0
0
1

0
TR || BAD
! (TR || BAD)

o
—

!BAD
BAD

NORMAL ClipMode

In NORMAL mode, objects will be discarded if TR or BAD, passed through if TA, and passed to a CLIP
thread if MC. Those mode is typically used when the CLIP kernel is only used to perform 3D Clipping (the
expected usage model).

180 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

CLIP_ALL ClipMode

In CLIP_ALL mode, all objects (regardless of classification) will be passed to CLIP threads. Note that this
includes BAD objects. This mode can be used to perform arbitrary processing in the CLIP thread, or as a
backup if for some reason the CLIP unit fixed functions (VertexClipTest, ClipDetermination) are not
sufficient for controlling 3D Clipping.

CLIP_NON_REJECT ClipMode

This mode is similar to CLIP_ALL mode, but TR and BAD objects are discarded an all other (TA, MC)
objects are passed to CLIP threads. Usage of this mode assumes that the CLIP unit fixed functions
(VertexClipTest, ClipDetermination) are sufficient at least in respect to determining trivial reject.

REJECT_ALL ClipMode

In REJECT_ALL mode, all objects (regardless of classification) are discarded. This mode effectively clips
out all objects.

ACCEPT_ALL ClipMode

In ACCEPT_ALL mode, all non-BAD objects are passed directly down the pipeline. This mode partially
disables the CLIP stage. BAD objects will still be discarded, and incomplete primitives (generated by a GS
thread) will be discarded.

Primitive topologies with adjacency are also handled, in that the adjacent-only vertices are dereferenced
and only non-adjacent objects are passed down the pipeline. This condition can arise when primitive
topologies with adjacency are generated but the GS stage is disabled. If this condition is allowed, the
CLIP stage must not be completely disabled — as this would allow adjacent vertices to pass through the
CLIP stage and lead to unpredictable results as the rest of the pipeline does not comprehend adjacency.

Object Pass-Through

Depending on ClipMode, objects may be passed directly down the pipeline. The PrimTopologyType
associated with the output objects may differ from the input PrimTopologyType, as shown in the table
below.

Programming Note: The CLIP unit does not tolerate primitives with adjacency that have “dangling
vertices”. This should not be an issue under normal conditions, as the VF unit does not generate these
sorts of primitives and the GS thread is restricted (though by specification only) to not output these sorts
of primitives.

Pass-Through
Input Output
PrimTopologyType PrimTopologyType Notes
POINTLIST POINTLIST
POINTLIST_BF POINTLIST_BF
LINELIST LINELIST

Doc Ref # IHD-OS-LKF-Vol 9-4.21 181

intel

Pass-Through

Input Output
PrimTopologyType PrimTopologyType Notes

LINELIST_ADJ LINELIST Adjacent vertices removed.

LINESTRIP LINESTRIP

LINESTRIP_AD), LINESTRIP . .
Adjacent vertices removed.

LINESTRIP_ADJ_CONT
LINESTRIP_ADJ_CONT is added. LINESTRIP_ADJ_CONT is
generated by the Vertex Fetch unit on a restore of a mid-draw
pre-empted 3DPRIMITIVE.

LINESTRIP_BF LINESTRIP_BF

LINESTRIP_CONT

LINESTRIP_CONT

LINESTRIP_CONT_BF

LINESTRIP_CONT_BF

LINELOOP N/A Not supported after GS.
TRILIST TRILIST
RECTLIST RECTLIST
TRILIST_ADJ TRILIST Adjacent vertices removed.
TRISTRIP TRISTRIP or Depends on where the incoming strip is broken (if at all) by
TRISTRIP_REV . . .
discarded or clipped objects
See Tristrip Clipping subsection.
TRISTRIP_REV TRISTRIP or Depends on where the incoming strip is broken (if at all) by
TRISTRIP_REV . . .
discarded or clipped objects.
See Tristrip Clipping subsection.
TRISTRIP_AD) TRISTRIP or Depends on where the incoming strip is broken (if at all) by
TRISTRIP_REV . . .
discarded or clipped objects.
Adjacent vertices removed.
See Tristrip Clipping subsection.
TRIFAN TRIFAN
TRIFAN_NOSTIPPLE TRIFAN_NOSTIPPLE
POLYGON, POLYGON POLYGON_CONT is added. POLYGON_CONT is generated by
POLYGON_CONT the Vertex Fetch unit on a restore of a mid-draw pre-empted
3DPRIMITIVE.
QUADLIST N/A Not supported after GS.
QUADSTRIP N/A Not supported after GS.

Primitive Output

(This section refers to output from the CLIP unit to the pipeline, not output from the CLIP thread)

182

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

The CLIP unit will output primitives (either passed-through or generated by a CLIP thread) in the proper
order. This includes the buffering of a concurrent CLIP thread’s output until the preceding CLIP thread
terminates. Note that the requirement to buffer subsequent CLIP thread output until the preceding CLIP
thread terminates has ramifications on determining the number of VUEs allocated to the CLIP unit and
the number of concurrent CLIP threads allowed.

Other Functionality

Statistics Gathering

Software is responsible for controlling (enabling) these counters in order to provide the required
statistics at the DDI level. For example, software might need to disable statistics gathering before
submitting non-API-visible objects (e.g., RECTLISTs) for processing.

The CLIP unit must be ENABLED (via the CLIP Enable bit of PIPELINED _STATE_POINTERS) for it to affect
the statistics counters. This might lead to a pathological case where the CLIP unit needs to be ENABLED
simply to provide statistics gathering. If no clipping functionality is desired, Clip Mode can be set to
ACCEPT_ALL to effectively inhibit clipping while leaving the CLIP stage ENABLED.

The statistic the CLIP unit affects (if enabled) is CL_INVOCATION_COUNT, incremented for every object
received from the GS stage.

CL_INVOCATION_COUNT

If the Statistics Enable bit (CLIP_STATE) is set, the CLIP unit increments the CL_INVOCATION_COUNT
register for every complete object received from the GS stage.

To maintain a count of application-generated objects, software must clear the CLIP unit’s Statistic
Enable whenever driver-generated objects are rendered.

3D Pipeline - Strips and Fans (SF) Stage

The Strips and Fan (SF) stage of the 3D pipeline is responsible for performing “setup” operations required
to rasterize 3D objects.

This functionality is handled completely in hardware, and the SF unit no longer has the ability to spawn
threads.

Attribute Setup/Interpolation Process

The following sections describe the Attribute Setup/Interpolation Process.

Attribute Setup/Interpolation Process

Hardware computes all needed parameters, as there is no setup thread.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 183

intel

Primitive Assembly

The first subfunction within the SF unit is Primitive Assembly. Here 3D primitive vertex information is
buffered and, when a sufficient number of vertices are received, converted into basic 3D objects which
are then passed to the Viewport Transformation subfunction.

The number of vertices passed with each primitive is constrained by the primitive type. Primitive
Assembly. Passing any other number of vertices results in UNDEFINED behavior. Note that this restriction
only applies to primitive output by GS threads (which is under control of the GS kernel). See the Vertex
Fetch chapter for details on how the VF unit automatically removes incomplete objects resulting from
processing a 3DPRIMITIVE command.

SF-Supported Primitive Types & Vertex Count Restrictions

primType VertexCount Restriction
3DPRIM_TRILIST nonzero multiple of 3
3DPRIM_TRISTRIP >=3
3DPRIM_TRISTRIP_REVERSE
3DPRIM_TRIFAN >=3
3DPRIM_TRIFAN_NOSTIPPLE
3DPRIM_POLYGON
3DPRIM_LINELIST nonzero multiple of 2
3DPRIM_LINESTRIP >=2
3DPRIM_LINESTRIP_CONT
3DPRIM_LINESTRIP_BF
3DPRIM_LINESTRIP_CONT_BF
3DPRIM_RECTLIST nonzero multiple of 3
3DPRIM_POINTLIST nonzero
3DPRIM_POINTLIST_BF

Primitive Assembly for a list of the 3D object types.

184 Doc Ref # IHD-OS-LKF-Vol 9-4.21

3D Object Types
objectType generated by primType Vertices/Object
3DOBJ_POINT 3DPRIM_POINTLIST 1
3DPRIM_POINTLIST_BF
3DOBJ_LINE 3DPRIM_LINELIST 2
3DPRIM_LINESTRIP
3DPRIM_LINESTRIP_CONT
3DPRIM_LINESTRIP_BF
3DPRIM_LINESTRIP_CONT_BF
3DOBJ_TRIANGLE 3

3DPRIM_TRILIST
3DPRIM_TRISTRIP
3DPRIM_TRISTRIP_REVERSE
3DPRIM_TRIFAN
3DPRIM_TRIFAN_NOSTIPPLE
3DPRIM_POLYGON

3DOBJ_RECTANGLE

3DPRIM_RECTLIST

3 (expanded to 4 in RectangleCompletion)

Primitive Assembly for the outputs of Primitive Decomposition.

Primitive Decomposition Outputs

intel

Variable Type Description

objectType enum Type of object. Primitive Assembly

nVv uint The number of object vertices passed to Object Setup. Primitive Assembly

v[0..nV-1]* various | Data arrays associated with object vertices. Data in the array consists of X, Y, Z, invW
and a pointer to the other vertex attributes. These additional attributes are not used
by directly by the 3D fixed functions but are made available to the SF thread. The
number of valid vertices depends on the object type. Primitive Assembly

invertOrientation |enum Indicates whether the orientation (CW or CCW winding order) of the vertices of a
triangle object should be inverted. Ignored for non-triangle objects.

backFacing enum [Valid only for points and line objects, indicates a back facing object. This is used later
for culling.

provokingVix uint Specifies the index (into the v[] arrays) of the vertex considered the “provoking” vertex
(for flat shading). The selection of the provoking vertex is programmable via SF_STATE
(xxx Provoking Vertex Select state variables.)

polyStippleEnable |boolean | TRUE if Polygon Stippling is enabled. FALSE for TRIFAN_NOSTIPPLE. Ignored for non-
triangle objects.

continueStipple boolean | Only applies to line objects. TRUE if Line Stippling should be continued (i.e., not reset)

Doc Ref # IHD-OS-LKF-Vol 9-4.21

185

intel

Variable Type Description

from where the previous line left off. If FALSE, Line Stippling is reset for each line
object.

renderTargetindex | uint

Index of the render target (array element or 3D slice), clamped to 0 by the GS unit if
the max value was exceeded. This value is simply passed in SF thread payloads and
not used within the SF unit.

viewPortIndex uint Index of a viewport transform matrix within the SF_VIEWPORT structure used to
perform Viewport Transformation on object vertices and scissor operations on an
object.

pointSize unit For point objects, this value specifies the screen space size (width,height) of the

square point to be rasterized about the vertex position. Otherwise the value is
ignored.

The following table defines, for each primitive topology type, which vertex’s VPIndex/RTAIndex applies to
the objects within the topology.

VPIndex/RTAIndex Selection

PrimTopologyType

Viewport Index Usage

POINTLIST Each vertex supplies the VPIndex for the corresponding point object
POINTLIST_BF
LINELIST . . . S .
The leading vertex of each line supplies the VPIndex for the corresponding line object.
VO0.VPIndex— Line(VO,V1)
V2.VPIndex— Line(V2,V3)
LINESTRIP The leading vertex of each line segment supplies the VPIndex for the corresponding line
LINESTRIP_BF object.

LINESTRIP_CONT
LINESTRIP_CONT_BF

V0.VPIndex— Line(VO,V1)
V1.VPIndex— Line(V1,V2)

NOTE: If the VPIndex changes within the topology, shared vertices will be processed
(mapped) multiple times.

TRILIST
RECTLIST

The leading vertex of each triangle/rect supplies the VPIndex for the corresponding
triangle/rect objects.

V0.VPIndex— Tri(VO,V1,V2)
V3.VPIndex— Tri(V3,V4,V5)

NOTE: For Autostrips multiple viewport index is not supported. APIs defines the multiple
viewport index to be

186

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

PrimTopologyType Viewport Index Usage

output from Geometry shader that only generates Tristrips. If any other shader outputing
multiple viewport indices

for other topologies either autostrip needs to be disable or clipper guardband test needs
to be disabled.

TRISTRIP

TRISTRIP_REVERSE The leading vertex of each triangle supplies the VPIndex for the corresponding triangle

object.
V0.VPIndex— Tri(VO,V1,V2)
V1.VPIndex— Tri(V1,V2,V3)

NOTE: If the VPIndex changes within the primitive, shared vertices will be processed
(mapped) multiple times.

TRIFAN The first vertex (V0) supplies the VPIndex for all triangle objects.

TRIFAN_NOSTIPPLE
POLYGON

Point List Decomposition

The 3DPRIM_POINTLIST and 3DPRIM_POINTLIST_BACKFACING primitives specify a list of independent
points.

3DPRIM_POINTLIST Primitive

.vO .v3

v1

.v2

The decomposition process divides the list into a series of basic 3DOBJ_POINT objects that are then
passed individually and in order to the Object Setup subfunction. The provokingVertex of each object is,
by definition, v[0].

Points have no winding order, so the primitive command is used to explicitly state whether they are
back-facing or front-facing points. Primitives of type 3DPRIM_POINTLIST_BACKFACING are decomposed

Doc Ref # IHD-OS-LKF-Vol 9-4.21 187

intel

exactly the same way as 3DPRIM_POINTLIST primitives, but the backFacing variable is set for resulting
point objects being passed on to object setup.

PointListDecomposition ()

{
objectType = 3DOBJ POINT

nv = 1
provokingVtx = 0
if (primType == 3DPRIM POINTLIST)

{
backFacing = FALSE
}
else // primType
{

= 3DPRIM POINTLIST BACKFACING

backFacing = TRUE
}

for each (vertex in [0..vertexCount-11])
{
v[0] « vIn[i] // copy all arrays
// (for example, v[]X, v[]Y, and so on)
ObjectSetup ()

Line List Decomposition
The 3DPRIM_LINELIST primitive specifies a list of independent lines.

3DPRIM_LINELIST Primitive

v0 v3

\v1

v2

The decomposition process divides the list into a series of basic 3DOBJ_LINE objects that are then passed
individually and in order to the Object Setup stage. The lines are generated with the following object
vertex order: vO, v1; v2, v3; and so on. The provokingVertex of each object is taken from the Line
List/Strip Provoking Vertex Select state variable, as programmed via SF_STATE.

LineListDecomposition ()
{
objectType = 3DOBJ LINE
nv = 2
provokingVtx = Line List/Strip Provoking Vertex Select continueStipple = FALSE

188 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

for each (vertex I in [0..vertexCount-2] by 2)

{
v[0] arrays < vIn[i] arrays
v[1l] arrays « vIn[i+l] arrays
ObjectSetup ()

}

Line Strip Decomposition

The 3DPRIM_LINESTRIP, 3DPRIM_LINESTRIP_CONT, 3DPRIM_LINESTRIP_BF, and
3DPRIM_LINESTRIP_CONT_BF primitives specify a list of connected lines.

3DPRIM_LINESTRIP_xxx Primitive

v0 v3
v1

V2

The decomposition process divides the strip into a series of basic 3DOBJ_LINE objects that are then
passed individually and in order to the Object Setup stage. The lines are generated with the following
object vertex order: vO,v1; v1,v2; and so on. The provokingVertex of each object is taken from the Line
List/Strip Provoking Vertex Select state variable, as programmed via SF_STATE.

Lines have no winding order, so the primitive command is used to explicitly state whether they are back-
facing or front-facing lines. Primitives of type 3DPRIM_LINESTRIP[_CONT]_BF are decomposed exactly the
same way as 3DPRIM_LINESTRIP[_CONT] primitives, but the backFacing variable is set for the resulting
line objects being passed on to object setup. Likewise 3DPRIM_LINESTRIP_CONT[_BF] primitives are
decomposed identically to basic line strips, but the continueStipple variable is set to true so that the line
stipple pattern will pick up from where it left off with the last line primitive, rather than being reset.

LineStripDecomposition ()

{
objectType = 3DOBJ LINE

nv = 2
provokingVtx = Line List/Strip Provoking Vertex Select
if (primType == 3DPRIM LINESTRIP)

{
backFacing = FALSE
continueStipple = FALSE
} else if (primType == 3DPRIM LINESTRIP BF)

Doc Ref # IHD-OS-LKF-Vol 9-4.21 189

intel

backFacing = TRUE
continueStipple = FALSE
} else if (primType == 3DPRIM LINESTRIP CONT)
{
backFacing = FALSE
continueStipple = TRUE
} else if (primType == 3DPRIM LINESTRIP CONT BF)
{
backFacing = TRUE
continueStipple = TRUE
}

for each (vertex I in [0..vertexCount-117)
{
v[0] arrays < vIn[i] arrays
v[1l] arrays « vIn[i+l] arrays
ObjectSetup ()
continueStipple = TRUE

Triangle List Decomposition
The 3DPRIM_TRILIST primitive specifies a list of independent triangles.

3DPRIM_TRILIST Primitive

v0 v4
v

Vv vH v3

The decomposition process divides the list into a series of basic 3DOBJ_TRIANGLE objects that are then

passed individually and in order to the Object Setup stage. The triangles are generated with the

following object vertex order: vO,v1,v2; v3,v4,v5; and so on. The provokingVertex of each object is taken

from the Triangle List/Strip Provoking Vertex Select state variable, as programmed via SF_STATE.

TriangleListDecomposition() {
objectType = 3DOBJ TRIANGLE
nv = 3

invertOrientation = FALSE

provokingVtx = Triangle List/Strip Provoking Vertex Select
polyStippleEnable = TRUE

for each (vertex I in [0..vertexCount-3] by 3)

{

190 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

v[0] arrays < vIn[i] arrays
v[l] arrays ¢ vIn[i+l] arrays

v[2] arrays € vIn[i+2] arrays

ObjectSetup ()

}

Triangle Strip Decomposition

The 3DPRIM_TRISTRIP and 3DPRIM_TRISTRIP_REVERSE primitives specify a series of triangles arranged in
a strip, as illustrated below.

3DPRIM_TRISTRIP[_REVERSE] Primitive

vO v4
v2

v1 v3 vH

The decomposition process divides the strip into a series of basic 3DOBJ_TRIANGLE objects that are then
passed individually and in order to the Object Setup stage. The triangles are generated with the
following object vertex order: vO,v1,v2; v1,v2,v3; v2,v3,v4; and so on. Note that the winding order of the
vertices alternates between CW (clockwise), CCW (counter-clockwise), CW, etc. The provokingVertex of
each object is taken from the Triangle List/Strip Provoking Vertex Select state variable, as
programmed via SF_STATE.

The 3D pipeline uses the winding order of the vertices to distinguish between front-facing and back-
facing triangles (Triangle Orientation (Face) Culling below). Therefore, the 3D pipeline must account for
the alternation of winding order in strip triangles. The invertOrientation variable is generated and used
for this purpose.

To accommodate the situation where the driver is forced to break an input strip primitive into multiple
tristrip primitive commands (for example, due to ring or batch buffer size restrictions), two tristrip
primitive types are supported. 3DPRIM_TRISTRIP is used for the initial section of a strip, and wherever a

Doc Ref # IHD-OS-LKF-Vol 9-4.21 191

intel

continuation of a strip starts with a triangle with a CW winding order. 3DPRIM_TRISTRIP_REVERSE is used
for a continuation of a strip that starts with a triangle with a CCW winding order.

TriangleStripDecomposition ()
{
objectType = 3DOBJ TRIANGLE
nv = 3
provokingVtx = Triangle List/Strip Provoking Vertex Select
if (primType == 3DPRIM TRISTRIP)
invertOrientation = FALSE
else // primType == 3DPRIM TRISTRIP REVERSE
invertOrientation = TRUE
polyStippleEnable = TRUE
for each (vertex I in [0..vertexCount-3])
{
v[0] arrays < vIn[i] arrays
v([1l] arrays < vIn[i+l] arrays
v([2] arrays < vIn[i+2] arrays
ObjectSetup ()
invertOrientation = ! invertOrientation

Triangle Fan Decomposition

The 3DPRIM_TRIFAN and 3DPRIM_TRIFAN_NOSTIPPLE primitives specify a series of triangles arranged in
a fan, as illustrated below.

3DPRIM_TRIFAN Primitive

vH v1
vO

va v3 v2

The decomposition process divides the fan into a series of basic 3DOBJ_TRIANGLE objects that are then
passed individually and in order to the Object Setup stage. The triangles are generated with the
following object vertex order: vO,v1,v2; vO,v2,v3; vO,v3,v4; and so on. As there is no alternation in the
vertex winding order, the invertOrientation variable is output as FALSE unconditionally. The
provokingVertex of each object is taken from the Triangle Fan Provoking Vertex state variable, as
programmed via SF_STATE.

192 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Primitives of type 3DPRIM_TRIFAN_NOSTIPPLE are decomposed exactly the same way, except the
polyStippleEnable variable is FALSE for the resulting objects being passed on to object setup. This will
inhibit polygon stipple for these triangle objects.

TriangleFanDecomposition ()

{
objectType = 3DOBJ TRIANGLE

nv = 3
invertOrientation = FALSE
provokingVtx = Triangle Fan Provoking Vertex Select
if (primType == 3DPRIM TRIFAN)
polyStippleEnable = TRUE
else // primType == 3DPRIM TRIFAN NOSTIPPLE

polyStippleEnable = FALSE

v[0] arrays « vIn[0] arrays
// the 1st vertex is common

for each (vertex I in [1l..vertexCount-21])
{
v[l] arrays « vIn[i] arrays
v([2] arrays < vIn[i+l] arrays
ObjectSetup ()

Polygon Decomposition

The 3DPRIM_POLYGON primitive is identical to the 3DPRIM_TRIFAN primitive with the exception that the
provokingVtx is overridden with 0. This support has been added specifically for OpenGL support, avoiding
the need for the driver to change the provoking vertex selection when switching between trifan and
polygon primitives.

Rectangle List Decomposition

The 3DPRIM_RECTLIST primitive command specifies a list of independent, axis-aligned rectangles. Only
the lower right, lower left, and upper left vertices (in that order) are included in the command - the
upper right vertex is derived from the other vertices (in Object Setup).

3DPRIM_RECTLIST Primitive

V2 Implied Vertices

vH

v Y0 v4 v3

Doc Ref # IHD-OS-LKF-Vol 9-4.21 193

intel

The decomposition of the 3DPRIM_RECTLIST primitive is identical to the 3DPRIM_TRILIST decomposition,
with the exception of the objectType variable.

RectanglelListDecomposition ()
{

objectType = 3DOBJ RECTANGLE

nvV = 3

invertOrientation = FALSE

provokingVtx = 0

for each (vertex I in [0..vertexCount-3] by 3)

{

v[0] arrays <« vIn[i] arrays
v[1l] arrays « vIn[i+l] arrays
v([2] arrays <« vIn[i+2] arrays
ObjectSetup ()

Object Setup

The Object Setup subfunction of the SF stage takes the post-viewport-transform data associated with
each vertex of a basic object and computes various parameters required for scan conversion. This
includes generation of implied vertices, translations and adjustments on vertex positions, and culling
(removal) of certain classes of objects. The final object information is passed to the Windower/Masker
(WM) stage where the object is rasterized into pixels.

Invalid Position Culling (Pre/Post-Transform)

Invalid Position Culling (Pre/Post-Transform)

At input the the SF stage, any objects containing a floating-point NaN value for Position X, Y, Z, or RHW
will be unconditionally discarded. Note that this occurs on an object (not primitive) basis.

If Viewport Transformation is enabled, any objects containing a floating-point NaN value for post-
transform Position X, Y or Z will be unconditionally discarded.

Viewport Transformation
If the Viewport Transform Enable bit of SF_STATE is ENABLED, a viewport transformation is applied to

each vertex of the object.

The VPIndex associated with the leading vertex of the object is used to obtain the Viewport Matrix
Element data from the corresponding element of the SF_VIEWPORT structure in memory. For each
object vertex, the following scale and translate transformation is applied to the position coordinates:

X' =m00 * x + m30

y'=m11*y + m31
Z =m22*z + m32

Software is responsible for computing the matrix elements from the viewport information provided to it
from the API.

194 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Destination Origin Bias

The positioning of the pixel sampling grid is programmable and is controlled by the Destination Origin
Horizontal/Vertical Bias state variables (set via SF_STATE). If these bias values are both 0, pixels are
sampled on an integer grid. Pixel (0,0) will be considered inside the object if the sample point at XY
coordinate (0,0) falls within the primitive.

If the bias values are both 0.5, pixels are sampled on a "half” integer grid (i.e., X.5, Y.5). Pixel (0,0) will be
considered inside the object if the sample point at XY coordinate (0.5,0.5) falls within the primitive. This
positioning of the sample grid corresponds with the OpenGL rasterization rules, where “fragment
centers” lay on a half-integer grid. It also corresponds with the Intel740 rasterizer (though that device did
not employ “top left” rules).

Note that subsequent descriptions of rasterization rules for the various objects will be with reference to
the pixel sampling grid.

Destination Origin Bias
Origin Bias (0.0, 0.0) Origin Bias (0.9, 0.5)
00 X 0w ——
_ > y .
%, Sample Point :1.-'5.n.25:/- l \ {1750.25) /
h o/
\\' / \%\\ Sample Point

*,
s N S
11.0,1.25) v (1.0,1.25)

Point Rasterization Rule Adjustment

POINT objects are rasterized as square RECTANGLEs, with one exception: The Point Rasterization Rule
state variable (in SF_STATE) controls the rendering of point object edges that fall directly on pixel sample
points, as the treatment of these edge pixels varies between APlIs.

RASTRULE_UPPER_LEFT

Doc Ref # IHD-OS-LKF-Vol 9-4.21 195

intel

a 1 2 3 4
O ot . ot ot
Sample Point
for Pixel 0,0
DDt
1,1 Lit 2,1 Lt
DX7

Mode 2&;—%@}\ | 3

Point width = 2.0

I

Tl
L
L.

BE24E-01

Drawing Rectangle Offset Application

The Drawing Rectangle Offset subfunction offsets the object’s vertex X,Y positions by the pixel-exact,
unclipped drawing rectangle origin (as programmed via the Drawing Rectangle Origin X,Y values in the
3DSTATE_DRAWING_RECTANGLE command). The Drawing Rectangle Offset subfunction (at least with
respect to Color Buffer access) is unconditional, and therefore to (effectively) turn off the offset function
the origin would need to be set to (0,0). A non-zero offset is typically specified when window-relative or
viewport-relative screen coordinates are input to the device. Here the drawing rectangle origin would be
loaded with the absolute screen coordinates of the window's or viewport's upper-left corner.

Clipping of objects which extend outside of the Drawing Rectangle occurs later in the pipeline. Note that
this clipping is based on the “clipped” draw rectangle (as programmed via the Clipped Drawing
Rectangle values in the 3DSTATE_DRAWING_RECTANGLE command), which must be clamped by
software to the rendertarget boundaries. The unclipped drawing rectangle origin, however, can extend
outside the screen limits in order to support windows whose origins are moved off-screen. This is
illustrated in the following diagrams.

196 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Onscreen Draw Rectangle

DrawRectOrigin

\

Color Buffer

DrawRectClipped

"

Partially-offscreen Draw Rectangle

DrawRectOrigin

Color Buffer

DrawRectClipped

- —— - —
—— - - o]

3DSTATE_DRAWING_RECTANGLE

Point Width Application

This stage of the pipeline applies only to 3DOBJ_POINT objects. Here the point object is converted from
a single vertex to four vertices located at the corners of a square centered at the point’s X,Y position. The
width and height of the square are specified by a point width parameter. The Point Width Source value
in SF_STATE determines the source of the point width parameter: the point width is either taken from the
Point Width value programmed in SF_STATE or the PointWidth specified with the vertex (as read back
from the vertex VUE earlier in the pipeline).

Doc Ref # IHD-OS-LKF-Vol 9-4.21 197

intel.

The corner vertices are computed by adding and subtracting one half of the point width. Point Width
Application.

Point Width Application

Z and W vertex attributes are copied from the single point center vertex to each of the four corner
vertices.

Rectangle Completion

This stage of the pipeline applies only to 3DOBJ_RECTANGLE objects. Here the X,Y coordinates of the 4t
(upper right) vertex of the rectangle object is computed from the first 3 vertices as shown in the
following diagram. The other vertex attributes assigned to the implied vertex (v[3]) are UNDEFINED as
they are not used. The Object Setup subfunction will use the values at only the first 3 vertices to compute
attribute interpolants used across the entire rectangle.

Rectangle Completion

Implied Vertex

v2 =v2 +v0 — v1

v1 vO

198 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Vertex XY Clamping and Quantization

At this stage of the pipeline, vertex X and Y positions are in continuous screen (pixel) coordinates. These
positions are quantized to subpixel precision by rounding the incoming values to the nearest subpixel
(using round-to-nearest-or-even rules matching the DirectX reference device). The device supports
rasterization with either 4 or 8 fractional (subpixel) position bits, as specified by the Vertex SubPixel
Precision Select bit of SF_STATE.

The vertex X and Y screenspace coordinates are also clamped to the fixed-point “"guardband” range
supported by the rasterization hardware, as listed in the following table:

Per-Device Guardband Extents

Maximum Post-Clamp Delta
Supported X,Y ScreenSpace “Guardband” Extent (X orY)

[-32K,32K-1] N/A

Note that this clamping occurs after the Drawing Rectangle Origin has been applied and objects have
been expanded (i.e., points have been expanded to squares, etc.). In almost all circumstances, if an
object’s vertices are actually modified by this clamping (i.e., had X or Y coordinates outside of the
guardband extent the rendered object will not match the intended result. Therefore software should take
steps to ensure that this does not happen - e.g., by clipping objects such that they do not exceed these
limits after the Drawing Rectangle is applied.

In addition, in order to be correctly rendered, objects must have a screenspace bounding box not
exceeding 8K in the X or Y direction. This additional restriction must also be comprehended by software,
i.e., enforced by use of clipping.

Degenerate Object Culling

At this stage of the pipeline, “degenerate” objects are discarded. This operation is automatic and cannot
be disabled. (The object rasterization rules would by definition cause these objects to be “invisible” — this
culling operation is mentioned here to reinforce that the device implementation optimizes these
degeneracies as early as possible).

Degenerate Object Culling for definitions of degenerate objects.

Degenerate Objects

objType Degenerate Object Definition
3DOBJ_POINT Two or more corner vertices are coincident (i.e., the radius quantized to zero)
3DOBJ_LINE The endpoints are coincident
3DOBJ_TRIANGLE | All three vertices are collinear or any two vertices are coincident and SOLID fill mode applies to
the triangle
3DOBJ_RECTANGLE | Two or more corner vertices are coincident

Doc Ref # IHD-OS-LKF-Vol 9-4.21 199

intel

Triangle Orientation (Face) Culling

At this stage of the pipeline, 3DOBJ_TRIANGLE objects can be optionally discarded based on the “face
orientation” of the object. This culling operation does not apply to the other object types.

This operation is typically called “back face culling”, though front facing objects (or all 3DOBJ_TRIANGLE
objects) can be selected to be discarded as well. Face culling is typically used to eliminate triangles facing
away from the viewer, thus reducing rendering time.

The "winding order” of a triangle is defined by the the triangle vertex's 2D (X,Y) screen space position
when traversed from vO to v1 to v2. That traversal proceeds in either a clockwise (CW) or counter-
clockwise (CCW) direction. The "winding order” of a triangle is defined by the the triangle vertex's 2D
(X,Y) screen space position when traversed from v0 to v1 to v2. That traversal will proceed in either a
clockwise (CW) or counter-clockwise (CCW) direction. A degenerate triangle is considered “backfacing”,
regardless of the FrontWinding state.

Triangle Winding Order
cw V1 ccw V2

VO VO

V2

V1

The Front Winding state variable in SF_STATE controls whether CW or CCW triangles are considered as
having a “front-facing” orientation (at which point non-front-facing triangles are considered “back-
facing”). The internal variable invertOrientation associated with the triangle object is then used to
determine whether the orientation of a that triangle should be inverted. Recall that this variable is set in
the Primitive Decomposition stage to account for the alternating orientations of triangles in strip
primitives resulting form the ordering of the vertices used to process them.

The Cull Mode state variable in SF_STATE specifies how triangles are discarded according to their
resultant orientation. See Degenerate Objects.

Cull Mode

CullMode Definition

CULLMODE_NONE | The face culling operation is disabled.

CULLMODE_FRONT | Triangles with “front facing” orientation are discarded.

CULLMODE_BACK | Triangles with “back facing” orientation are discarded.

CULLMODE_BOTH | All triangles are discarded.

200 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Scissor Rectangle Clipping

A scissor operation can be used to restrict the extent of rendered pixels to a screen-space aligned
rectangle. If the scissor operation is enabled, portions of objects falling outside of the intersection of the
scissor rectangle and the clipped draw rectangle are clipped (pixels discarded).

The scissor operation is enabled by the Scissor Rectangle Enable state variable in SF_STATE. If enabled,
the VPIndex associated with the leading vertex of the object is used to select the corresponding
SF_VIEWPORT structure. Up to 16 structures are supported. The Scissor Rectangle X,Y Min,Max fields of
the SF_VIEWPORT structure defines a scissor rectangle as a rectangle in integer pixel coordinates relative
to the (unclipped) origin of the Drawing Rectangle. The scissor rectangle is defined relative to the
Drawing Rectangle to better support the OpenGL API. (OpenGL specifies the “Scissor Box” in window-
relative coordinates). This allows instruction buffers with embedded Scissor Rectangle definitions to
remain valid even after the destination window (drawing rectangle) moves.

Color BUK

Scissor Rectangle

Drawing / /,V’

Rectangle e

Discarded 4
Pixels

Specifying either scissor rectangle xmin > xmax or ymin > ymax will cause all polygons to be discarded
for a given viewport (effectively a null scissor rectangle).

Viewport Extents Test

Viewport extents test can be used to restrict the extent of rendered pixels to the viewport extents. If this
operation is enabled, portion of the objects falling outside of the intersection of the scissor rectangle (if
enabled) and the clipped draw rectangle and viewport extents are clipped (pixels discarded). This
operation similar to the scissor test except both have different enables and the viewport extents can be
programmed to the fractional float values.

This operation is enabled by the View Transform Enable state variable in SF_STATE. If enabled, the
VPIndex associated with the leading vertex of the object is used to select the corresponding
SF_CLIP_VIEWPORT structure. Up to 16 structures are supported. The X/Y Min/Max ViewPort fields of
the SF_CLIP_VIEWPORT structure defines viewport extents as a rectangle in float screen pixel
coordinates relative to the (unclipped) origin of the Drawing Rectangle. Please note that these co-
ordinates can be fractional values and hardware will do appropriate rounding and convert it to integer
pixel co-ordinates (floor rouding used). This View Transform Enable state also controls the viewport
transform so appropriate the viewport transform coefficients need to be populated in the
SF_CLIP_VIEPWORT structure along with the viewport extents.

Final clip rectangle used to define the rendering area will now depend on three rectangles namely
drawing rectangle, Scissor rectangle, Viewport Extents. If both Scissor Rectangle Enable and View

Doc Ref # IHD-OS-LKF-Vol 9-4.21 201

intel

transform enable are set then intersection of all rectangles (Viewport extents, Scissor rectangle, Draw
rectangle) becomes final clip rectangle, while If only Scissor Rectangle Enable is enabled then the
intersection of (Scissor rectangle, Draw rectangle) becomes final clip rectangle. If only View transform
enable is enabled then intersection of (Viewport extents, Draw rectangle) become the final clip rectangle,
while If none is enabled then (Draw rectangle) is the final clip rectangle.

Specifying either viewport extents xmin > xmax or ymin > ymax will cause all polygons to be discarded
for a given viewport (effectively a null viewport).

Line Rasterization

The device supports three styles of line rendering: zero-width (cosmetic) lines, non-antialiased lines, and
antialiased lines.

Non-antialiased lines are rendered as a polygon having a specified width as measured parallel to the
major axis of the line. Antialiased lines are rendered as a rectangle having a specified width measured
perpendicular to the line connecting the vertices.

The functions required to render lines are split between the SF and WM units. The SF unit is responsible
for computing the overall geometry of the object to be rendered, including the pixel-exact bounding
box, edge equations, etc., and therefore is provided with the screen-geometry-related state variables.
The WM unit performs the actual scan conversion, determining the exact pixels included/excluded and
coverage values for anti-aliased lines.

Zero-Width (Cosmetic) Line Rasterization

Note: The specification of zero-width line rasterization would be more correctly included in the WM Unit
chapter, though is being included here to keep it with the rasterization details of the other line types.

When the Line Width is set to zero, the device will use special rules to rasterize zero-width (“cosmetic”)
lines. The Anti-Aliasing Enable state variable is ignored when Line Width is zero.

When the LineWidth is set to zero, the device will use special rules to rasterize “cosmetic” lines.

The rasterization rules also comply with the OpenGL conformance requirements (for 1-pixel wide non-
smooth lines). Refer to the appropriate API specifications for details on these requirements.

The GIQ rules basically intersect the directed, ideal line connecting two endpoints with an array of
diamond-shaped areas surrounding pixel sample points. Wherever the line exits a diamond (including
passing through a diamond), the corresponding pixel is lit. Special rules are used to define the subpixel
locations that are considered interior to the diamonds, as a function of the slope of the line. When a line
ends in a diamond (and therefore does not exit that diamond), the corresponding pixel is not drawn.
When a line starts in a diamond and exits that diamond, the corresponding pixel is drawn.

GIQ (Diamond) Sampling Rules - Legacy Mode

When the Legacy Line Rasterization Enable bit in WM_STATE is ENABLED, zero-width lines are
rasterized according to the algorithm presented in this subsection. Also note that the Last Pixel Enable

202 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

bit of SF_STATE controls whether the last pixel of the last line in a LINESTRIP_xxx primitive or the last pixel
of each line in a LINELIST_xxx primitive is rendered.

Refer to the following figure, which shows the neighborhood of subpixels around a given pixel sample
point. Note that the device divides a pixel into a 16x16 array of subpixels, referenced by their upper left

corners.
Interior subpixels
always inclusive
0 0.5 1
0 =T
Left corner s

inclusive S
if slope =1 inclusive
if slope # |
-2

Right corner

0.5 71
\© .
1 SR G \
Bottom left cdge T Bottom right cdge
inclusive %ncluswc
ifslopc=1 Bottom corner if slope = -1

always inclusive

The solid-colored subpixels are considered “interior” to the diamond centered on the pixel sample point.
Here the Manhattan distance to the pixel sample point (center) is less than "-.

The subpixels falling on the edges of the diamond (Manhattan distance = ') are exclusive, with the
following exceptions:

1.

The bottom corner subpixel is always inclusive. This is to ensure that lines with slopes in the
open range (-1,1) touch a diamond even when they cross exactly between pixel diamonds.

The right corner subpixel is inclusive as long as the line slope is not exactly one, in which
case the left corner subpixel is inclusive. Including the right corner subpixel ensures that lines
with slopes in the range (1, +infinity] or [-infinity, -1) touch a diamond even when they cross
exactly between pixel diamonds. Including the left corner on slope=1 lines is required for proper
handling of slope=1 lines (see (3) below) — where if the right corner was inclusive, a slope=1 line
falling exactly between pixel centers would wind up lighting pixel on both sides of the line (not
desired).

The subpixels along the bottom left edge are inclusive only if the line slope = 1. This is to
correctly handle the case where a slope=1 line falls enters the diamond through a left or bottom
corner and ends on the bottom left edge. One does not consider this “passing through” the
diamond (where the normal rules would have us light the pixel). This is to avoid the following
case: One slope=1 line segment enters through one corner and ends on the edge, and another
(continuation) line segments starts at that point on the edge and exits through the other corner. If
simply passing through a corner caused the pixel to be lit, this case would case the pixel to be lit
twice — breaking the rule that connected line segments should not cause double-hits or missing
pixels. So, by considering the entire bottom left edge as "inside” for slope=1 lines, we will only
light the pixel when a line passes through the entire edge, or starts on the edge (or the left or
bottom corner) and exits the diamond.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 203

intel

4. The subpixels along the bottom right edge are inclusive only if the line slope = -1. Similar
case as (3), except slope=-1 lines require the bottom right edge to be considered inclusive.

The following equation determines whether a point (point.x, point.y) is inside the diamond of the pixel
sample point (sample.x, sample.y), given additional information about the slope (slopePosOne,
slopeNegOne).

delta x = point.x - sample.x

delta y = point.y - sample.y

distance = abs(delta x) + abs(delta y)

interior = (distance < 0.5)

bottom corner = (delta x == 0.0) && (delta y == 0.5)

left corner = (delta x == -0.5) && (delta y == 0.0)

right corner = (delta x == 0.5) && (delta y == 0.0)

bottom left edge = (distance == 0.5) && (delta x < 0) && (delta y > 0)

bottom right edge = (distance == 0.5) && (delta x > 0) && (delta y > 0)

inside = interior || bottom corner || (slopePosOne ? left corner : right corner) ||
(slopePosOne && left edge) || (slopeNegOne && right edge)

GIQ (Diamond) Sampling Rules - DX10 Mode

When the Legacy Line Rasterization Enable bit in WM_STATE is DISABLED, zero-width lines are
rasterized according to the algorithm presented in this subsection. Also note that the Last Pixel Enable
bit of SF_STATE controls whether the last pixel of the last line in a LINESTRIP_xxx primitive or the last pixel
of each line in a LINELIST_xxx primitive is rendered.

Refer to the following figure, which shows the neighborhood of subpixels around a given pixel sample
point. Note that the device divides a pixel into a 16x16 array of subpixels, referenced by their upper left
corners.

Interior Subpixels
always Indusive

o 0.5 1
I I I
0— —
Fi
Left Comer is Right Corner
Never Indusive Inclusive if v
= ; !
) Major Line
0.5 Nfg ¥
N s
. p il
kY ifd
T
A A
o 1
& 2
1 —
Bottorn Left Edge _/ “__ Bottom Right Edge
Always Indusive Bottorn Cormer Always Inclusive

Always Inclusive

B &549-01

204 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

The solid-colored subpixels are considered “interior” to the diamond centered on the pixel sample point.
Here the Manhattan distance to the pixel sample point (center) is less than .

The subpixels falling on the edges of the diamond (Manhattan distance = %) are exclusive, with the
following exceptions:

1. The bottom corner subpixel is always inclusive. This is to ensure that lines with slopes in the
open range (-1,1) touch a diamond even when they cross exactly between pixel diamonds.

2. The right corner subpixel is inclusive as long as the line is not X Major (X Major is defined as
-1 <= slope <= 1). Including the right corner subpixel ensures that lines with slopes in the range
(>1, +infinity] or [-infinity, <-1) touch a diamond even when they cross exactly between pixel
diamonds.

3. The left corner subpixel is never inclusive. For Y Major lines, having the right corner subpixel as
always inclusive requires that the left corner subpixel should never be inclusive, since a line falling
exactly between pixel centers would wind up lighting pixel on both sides of the line (not desired).

4. The subpixels along the bottom left edge are always inclusive. This is to correctly handle the
case where a line enters the diamond through a left or bottom corner and ends on the bottom left
edge. One does not consider this “passing through” the diamond (where the normal rules would
have us light the pixel). This is to avoid the following case: One line segment enters through one
corner and ends on the edge, and another (continuation) line segments starts at that point on the
edge and exits through the other corner. If simply passing through a corner caused the pixel to be
lit, this case would cause the pixel to be lit twice — breaking the rule that connected line segments
should not cause double-hits or missing pixels. So, by considering the entire bottom left edge as
“inside”, the pixel is only lit when a line passes through the entire edge, or starts on the edge (or
the left or bottom corner) and exits the diamond.

5. The subpixels along the bottom right edge are always inclusive. Same as case as (4), except
slope=-1 lines require the bottom right edge to be considered inclusive.

The following equation determines whether a point (point.x, point.y) is inside the diamond of the pixel
sample point (sample.x, sample.y), given additional information about the slope (XMajor).

delta x = point.x - sample.x

delta y = point.y - sample.y

distance = abs(delta x) + abs(delta y)

interior = (distance < 0.5)

bottom corner = (delta x == 0.0) && (delta y == 0.5)
left corner delta x == -0.5) && (delta y == 0.0)

right corner delta x == 0.5) && (delta y == 0.0)

bottom left edge
bottom right edge

(

(
distance == 0.5) && (delta x < 0) && (delta y > 0)
distance == 0.5) && (delta x > 0) && (delta_ y > 0)

inside = interior || bottom corner || (!XMajor && right corner) || (bottom left edge)
[l (bottom right edge)

Non-Antialiased Wide Line Rasterization

Non-anti-aliased, non-zero-width lines are rendered as parallelograms that are centered on, and aligned
to, the line joining the endpoint vertices. Pixels sampled interior to the parallelogram are rendered; pixels
sampled exactly on the parallelogram edges are rendered according to the polygon “top left” rules.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 205

intel

The parallelogram is formed by first determining the major axis of the line (diagonal lines are considered
x-major). The corners of the parallelogram are computed by translating the line endpoints by +/-(Line
Width / 2) in the direction of the minor axis, as shown in the following diagram.

Non-Antialiased Line Rasterization

Y Major

X Major

ez ¥
LineWidth/2

Anti-Aliased Line Rasterization

Anti-aliased lines are rendered as rectangles that are centered on, and aligned to, the line joining the
endpoint vertices. For each pixel in the rectangle, a fractional coverage value (referred to as Antialias
Alpha) is computed — this coverage value is normally used to attenuate the pixel's alpha in the pixel
shader thread. The resultant alpha value is therefore available for use in those downstream pixel pipeline
stages to generate the desired effect (e.g., use the attenuated alpha value to modulate the pixel’s color,
and add the result to the destination color, etc.). Note that software is required to explicitly program the
pixel shader and pixel pipeline to obtain the desired anti-aliasing effect — the device simply makes the
coverage-attenuated pixel alpha values available for use in the pixel shader.

The dimensions of the rendered rectangle, and the parameters controlling the coverage value
computation, are programmed via the Line Width, Line AA Region, and Line Cap AA Region state
variables, as shown below. The edges parallel to the line are located at the distance (LineWidth/2) from
the line (measured in screen pixel units perpendicular to the line). The end-cap edges are perpendicular
to the line and located at the distance (LineCapAARegion) from the endpoints.

206 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Anti-aliased Line Rasterization

LineCapAARegion

Line Endpoint
LineWidth/2

LineAARegion/2

Coverage=1

Coverage=0 LineWidthi2

LineAARegioni2

LineCapAARegion
Coverage=1

Coverage=0

Along the parallel edges, the coverage values ramp from the value 0 at the very edges of the rectangle to
the value 1 at the perpendicular distance (LineAARegion/2) from a given edge (in the direction of the
line). A pixel's coverage value is computed with respect to the closest edge. In the cases where
(LineAARegion/2) < (LineWidth/2), this results in a region of fractional coverage values near the edges of
the rectangle, and a region of “fully-covered” coverage values (i.e., the value 1) at the interior of the line.
When (LineAARegion/2) == (LineWidth/2), only pixel sample points falling exactly on the line can
generate fully-covered coverage values. If (LineAARegion/2) > (LineWidth/2), no pixels can be fully-
covered (it is expected that this case is not typically desired).

Along the end cap edges, the coverage values ramp from the value 1 at the line endpoint to the value 0
at the cap edge - itself at a perpendicular distance (LineCapAARegion) from the endpoint. Note that,
unlike the line-parallel edges, there is only a single parameter (LineCapAARegion) controlling the
extension of the line at the end caps and the associated coverage ramp.

The regions near the corners of the rectangle have coverage values influenced by distances from both
the line-parallel and end cap edges — here the two coverage values are multiplied together to provide a
composite coverage value.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 207

intel

The computed coverage value for each pixel is passed through the Windower Thread Dispatch payload.
The Pixel Shader kernel should be passed (unmodified) by the shader to the Render Cache as part of it's

output message.

SF Pipeline State Summary

3DSTATE_RASTER

3DSTATE_RASTER

Signal SF_INT::Multisample Rasterization Mode
This field determines whether multisample rasterization is enabled and how pixel sample points are
Description | defined.
See Table: WM_INT::Multisample Rasterization Mode in 3D Pipeline Windower > Windower Pipelined
State > 3DSTATE_WM > 3DSTATE_WM
Formula
Signal |SF_INT:Global Depth Offset Enable Solid
Description | This field determines when Global Depth bias gets enabled.
Formula | _ 3557ATE RASTER: Global Depth Offset Enable Solid?
(
(3DSTATE_RASTER::Global Depth Offset Constant != IEEE_FP_ZERO) || (3DSTATE_RASTER::Global Depth Offset
Scale != IEEE_FP_ZERO)
):
Disable
Signal |SF_INT:: Global Depth Offset Enable Wireframe
Description | This field determines when Global Depth bias gets enabled.
Formula |= (3DSTATE_RASTER: Global Depth Offset Enable Wireframe? ((3DSTATE_RASTER::Global Depth Offset Constant
= |EEE_FP_ZERO) || (3DSTATE_RASTER::Global Depth Offset Scale != IEEE_FP_ZERO)): Disable
Signal | SF_INT:: Global Depth Offset Enable Point
Description | This field determines when Global Depth bias gets enabled.
Formula |= (3DSTATE_RASTER: Global Depth Offset Enable Point? ((3DSTATE_RASTER::Global Depth Offset Constant !=
IEEE_FP_ZERO) || (3DSTATE_RASTER::Global Depth Offset Scale != |IEEE_FP_ZERO)): Disable
3DSTATE_SF

The state used by the SF stage is defined by this inline state packet.

3DSTATE_SF

208

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

The SF Unit also receives 3DSTATE_RASTER. It also receives 3DSTATE_INT which is transparent to SW. 3DSTATE_INT
provides 3DSTATE_WM, 3DSTATE_WM_HZ_OP, 3DSTATE_DETPH_BUFFER, and 3DSTATE_MULTISAMPLE fields.

Signal SF_INT::Number of Multisamples
Description Set the number of multisamples.
Formula

= (WM_INT:WM_HZ_OP) ?
3DSTATE_ WM_HZ_OP:Number of Multisamples :
3DSTATE_MULTISAMPLE::Number of Multisamples

Signal SF_INT::Pixel Position Offset Enable
Description [Enables the device to offset pixel positions by 0.5 both in horizontal and vertical directions.
Formula | _ \ym_INT:WM_HZ_OP) 2
3DSTATE_ WM_HZ_OP:: Pixel Position Offset Enable:
3DSTATE_MULTISAMPLE:: Pixel Position Offset Enable
Signal |SF_INT:Pixel Position Offset
Description Causes the device to offset pixel positions by 0.5 both in horizontal and vertical directions.
It is to be noted this is done to adjust the pixel co-ordinate system to DX9 like, so any screen space
rectangles (eg: HiZ Clear, Resolve etc) generated internally by driver in this mode needs to be aware
of this offset adjustment and send the rectangles according to alignment restriction taking this offset
adjustment into consideration.
Formula

= (SF_INT:Number of Multisamples >1) &&
(3DSTATE_MULTISAMPLE:: Pixel Location == PIXLOC_UL_CORNER) &&
SF_INT::Pixel Position Offset Enable

Doc Ref # IHD-OS-LKF-Vol 9-4.21 209

intel

Signal | SF_INT: Global Depth Offset Enable Solid
Description | Set the number of multisamples
Formula | _ 3psTATE_RASTER:: Global Depth Offset Enable Solid ?
(
(3DSTATE_RASTER::Global Depth Offset Constant != IEEE_FP_ZERO) || (3DSTATE_RASTER::Global Depth Offset
Scale !'= IEEE_FP_ZERO)
):
Disable
Signal | SF_INT: Global Depth Offset Enable Wireframe
Description | Set the number of multisamples
Fromula | _ 3057ATE RASTER: Global Depth Offset Enable Wireframe ?
(
(3DSTATE_RASTER::Global Depth Offset Constant != IEEE_FP_ZERO) || (3DSTATE_RASTER:Global Depth Offset
Scale != I[EEE_FP_ZERO)
):
Disable
Signal SF_INT: Global Depth Offset Enable Point
Description Set the number of multisamples.
Formula = (3DSTATE_RASTER:: Global Depth Offset Enable Point ?
(
(3DSTATE_RASTER::Global Depth Offset Constant != IEEE_FP_ZERO) ||
(3DSTATE_RASTER::Global Depth Offset Scale != IEEE_FP_ZERO)
):
Disable
210 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Signal SF_INT::FrontFace Fill Mode
Description |This state controls how front-facing triangle and rectangle objects are rendered.
Formula | _ 3psTATE INT:WM_HZ_OP 2
SOLID :
3DSTATE_RASTER:: FrontFace Fill Mode
Signal SF_INT::BackFace Fill Mode
Description | This state controls how Back-facing triangle and rectangle objects are rendered.
Formula | _ 3p5rATE INT:WM_HZ_OP ?
SOLID :
3DSTATE_RASTER:: BackFace Fill Mode
Signal SF_INT::FrontWinding
Description | Determines whether a triangle object is considered “front facing” if the screen space vertex positions,
when traversed in the order, result in a clockwise (CW) or counter-clockwise (CCW) winding order.
Does not apply to points or lines.
Formula | _ 3psTATE INT:WM_HZ_OP ?
FRONTWINDING_CW :
3DSTATE_RASTER:FrontWinding
Signal |SF_INT::Cull Mode
Description | Controls removal (culling) of triangle objects based on orientation. The cull mode only applies to
triangle objects and does not apply to lines, points or rectangles.
Formula

= SF_INT:WM_HZ_OP ?
CULLMODE_BACK :
3DSTATE_RASTER:: Cull Mode

Doc Ref # IHD-OS-LKF-Vol 9-4.21 211

intel

Signal SF_INT::Scissor Rectangle Enable

Description | This field is used to control whether the Viewport Z extents (near, far) are considered in

VertexClipTest.

Formula

= SF_INT:WM_HZ OP?
3DSTATE_WM_HZ_OP:: Scissor Rectangle Enable :
3DSTATE_RASTER::Scissor Rectangle Enable

Signal SF_INT::Anti-aliasing Enable
Description This field enables “alpha-based” line antialiasing.
Formula = = SF_INT:WM_HZ_OP ?
3DSTATE_WM_HZ_OP:: Scissor Rectangle Enable :
3DSTATE_RASTER::Anti-aliasing Enable
Signal SF_INT::Global Depth Offset Constant
Description Specifies the constant term in the Global Depth Offset function.
Formula = 3DSTATE_RASTER:Global Depth Offset Constant
Signal SF_INT::Global Depth Offset Scale
Description Specifies the constant term in the Global Depth Offset function.
Formula = 3DSTATE_RASTER:Global Depth Offset Scale
Signal SF_INT::Global Depth Offset Clamp
Description Specifies the clamp term used in the Global Depth Offset function.
Formula = 3DSTATE_RASTER:Global Depth Offset Clamp
Signal SF_INT::Line Stipple Enable
Description Specifies the clamp term used in the Global Depth Offset function.
Formula = 3DSTATE_WM::Line Stipple Enable

212

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Signal SF_INT::RT Independent Rasterization Enable
Description Enables RT Independent Rasterization.
Formula = 3DSTATE_INT:WM_HZ_OP ?
Disable :
3DSTATE_RASTER::ForcedSampleCount !|= NUMRASTSAMPLES_0
Signal SF_INT:WM_HZ_OP
Description Enables WM_HZ_OP.

Formula = (3DSTATE_WM_HZ_OP:DepthBufferClear ||
3DSTATE_WM_HZ_OP::DepthBufferResolve ||
3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
3DSTATE_WM_HZ_OP::StencilBufferClear ||
3DSTATE_WM_HZ_OP::StencilBufferResolve) ?
Enable :

Disable
Signal SF_INT:: View Transform Enable
Description Enables View Transform
Formula = SF_INT:WM_HZ_OP ?
Disable :
3DSTATE_SF::View Transform Enable
Signal SF_INT::Render Target Array index
Description Render Target Array index being render to
Formula

= 3DSTATE_INT:WM_HZ_OP ?
0:
Render Target Array index pipelined from clipper

Doc Ref # IHD-OS-LKF-Vol 9-4.21

213

intel

Signal SF_INT::Depth Buffer Surface Format
Description Depth format being used
Formula = 3DSTATE_INT:: Depth Buffer Surface Format
Signal SF_INT::Viewport index
Description Viewport being used.
Formula

= SF_INT:WM_HZ OP ?
0:

Viewport index pipelined from clipper

SF_CLIP_VIEWPORT

The viewport-specific state used by both the SF and CL units (SF_CLIP_VIEWPORT) is stored as an array of
up to 16 elements, each of which contains the DWords described below. The start of each element is
spaced 16 DWords apart. The location of the first element of the array, as specified by both Pointer to
SF_VIEWPORT and Pointer to CLIP_VIEWPORT, is aligned to a 64-byte boundary.

SCISSOR_RECT

Attribute Interpolation Setup

With the attribute interpolation setup function being implemented in hardware for a number of state
fields in 3DSTATE_SF are utilized to control interpolation setup.

Number of SF Output Attributes sets the number of attributes that will be output from the SF stage,
not including position. This can be used to specify up to 32, and may differ from the number of input
attributes. The number of input attributes is derived from the Vertex URB Entry Read Length field. Note
that this field is also used to specify whether swizzling is to be performed on Attributes 0-15 or Attributes
16-32. See the state field definition for details.

Attribute Swizzling

The first or last set of 16 attributes can be swizzled according to certain state fields. Attribute Swizzle
Enable enables the swizzling for all 16 of these attributes, and each of the attributes has a 2-bit Swizzle
Select field that controls swizzling with the following settings:

e INPUTATTR - This attribute is sourced from AttrinputReg[SourceAttribute].

e INPUTATTR_FACING - This attribute is sourced from AttrinputReg[SourceAttribute] if the object is
front-facing, otherwise it is sourced from AttrinputReg[SourceAttribute+1].

e INPUTATTR_W - This attribute is sourced from AttrinputReg[SourceAttribute]. WYZW (the W
component of the source is copied to the X component of the destination).

e INPUTATTR_FACING - If the object is front-facing, this attribute is sourced from
AttrinputReg[SourceAttribute]. WYZW (the W component of the source is copied to the X

214 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

component of the destination). If the object is front-facing, this attribute is sourced from
AttrinputReg[SourceAttribute+1]. WYZW.

Each of the first or last set of 16 attributes also has a 5-bit Source Attribute field which specify, per
output attribute (not component), which input attribute sources the output attribute when INPUTATTR is
selected for Swizzle Select. A Source Attribute value of 0 corresponds to the 128-bit attribute
immediately following the vertex 4D position. If INPUTATTR_FACING is selected, this specifies the first of
two consecutive (front,back) input attributes, where the SourceAttribute value can be an odd or even
number (just not 31, as that would place the back-face input attribute past the end of the input max
complement of input attributes).

Constant overriding is also available for the first or last set of 16 attributes. Each attribute has a Constant
Source field which specifies the constant values per swizzled attribute, with the following settings
available:

e XYZW = 0000
e XYZW = 0001
o XYZW = 1111

Each channel of each attribute has a Component Override field to control whether the corresponding
channel is overridden with the constant value defined in Constant Source.

Interpolation Modes

All 32 attributes have a Constant Interpolation Enable state field bit to specify whether all components
of the post-swizzled attribute are to be interpolated as constant values (not varying over the pixels of the
object). If set, the attribute at the provoking vertex is copied to a0, and a1 and a2 are set to zero — this
results in a constant interpolation of the provoking vertex value. If clear, the attribute is linearly
interpolated. Attributes 0-15 are further subjected to Wrap Shortest processing on a per-component
basis, via the Attribute WrapShortest Enables state bitfields. WrapShortest processing modifies the a1
and/or a2 values depending on attribute deltas. All

The table below indicates the output values of a0, a1, and a2 depending on interpolation mode settings.

a0 al a2
Constant A0|0.0 0.0
Linear A0 |A1-A0 A2-A0
A0

(A1-A0)+1 (A1-A0) <= -0.5[(A2-A0)+1 (A2-A0) <= -0.5
(A1-A0)-1 (A1-A0) >= 0.5 |(A2-A0)-1T (A2-A0) >=0.5
(A1-A0) otherwise (A2-A0) otherwise

Wrap Shortest

Point Sprites

Normally all vertex attributes (including texture coordinates) other than position are simply replicated
from the incoming point center vertex to the generated point object (corner) vertices. However, both

Doc Ref # IHD-OS-LKF-Vol 9-4.21 215

intel

DX9 and OGL support “sprite points”, where some/all texture coordinates are replaced with full-scale 2D
texture coordinates.

A 32-bit PointSprite TextureCoordinate Enable bit mask controls whether the corresponding vertex
attribute is to be replaced by a sprite point texture coordinate. The global (not per-attribute) Point
Sprite TextureCoordinate Origin field controls how the point object vertex (top/bottom, left/right)
texture coordinates are generated:

UPPERLEFT| Left Right

Top (0,0,0,1){(1,0,0,1)

Bottom |(0,1,0,1)|(1,1,0,1)

LOWERLEFT| Left Right

Top (01,01((1,1,0,1)

Bottom {(0,0,0,1)|(1,0,0,1)

The state used by “setup backend” is defined by the following inline state packet.
3DSTATE_SBE

The state used by “setup backend” is defined by the following inline state packet.
3DSTATE_SBE_SWIZ

SBE Unit also receives 3DSTATE_INT which is transparent to SW. 3DSTATE_INT provides 3DSTATE_VS,
3DSTATE_DS, and 3DSTATE_GS fields.

Signal SBD_INT::Vertex URB Entry Read Lenth

Description | Specifies the amount of URB data read for each Vertex URB entry, in 256-bit register increments.

Formula | _ 3pSTATE_SBE:Force Vertex URB Entry Read Length == Force) ?

3DSTATE_SBE::Vertex URB Entry Read Length :
3DSTATE_GS::GS_Enable ? 3DSTATE_GS::Vertex URB Entry Output Length :
3DSTATE_DS::DS_Enable ? 3DSTATE_DS::Vertex URB Entry Output Length :
3DSTATE_VS:Vertex URB Entry Output Length

216 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Signal | cpE |NT-Vertex URB Entry Read Offset
Description |Specifies the offset (in 256-bit units) at which Vertex URB data is to be read from the URB
Formula = (3DSTATE_SBE::Force Vertex URB entry Offset == Force) ?

3DSTATE_SBE::Vertex URB Entry Read Offset:

3DSTATE_GS::GS_Enable ? 3DSTATE_GS:: Vertex URB Entry Output Read Offset:
3DSTATE_DS:DS_Enable ? 3DSTATE_DS:: Vertex URB Entry Output Read Offset :
3DSTATE_VS:: Vertex URB Entry Output Read Offset

Signal SBE_INT::Primld_override

Description When true indicates that SBE provides the Primitive ID.

Formula = 3DSTATE_GS:GS_Enable ? false :

3DSTATE_SBE::Primitive ID Override Component Select !=0

Barycentric Attribute Interpolation

Given hardware clipper and setup, some of the previous flexibility in the algorithm used to interpolate

attributes is no longer available. Hardware uses barycentric parameters to aid in attribute interpolation,
and these parameters are computed in hardware per-pixel (or per-sample) and delivered in the thread

payload to the pixel shader. Also delivered in the payload are a set of vertex deltas (a0, a1, and a2) per
channel of each attribute.

There are six different barycentric parameters that can be enabled for delivery in the pixel shader
payload. These are enabled via the Barycentric Interpolation Mode bits in 3DSTATE_WM.

In the pixel shader kernel, the following computation is done for each attribute channel of each
pixel/sample given the corresponding attribute channel a0/a1/a2 and the pixel/sample’s b1/b2
barycentric parameters, where A is the value of the attribute channel at that pixel/sample:

A=a0 + (a1l *b1) + (a2 * b2)

Depth Offset

The state for depth offset in 3DSTATE_SF controls the depth offset function. Since this function was
previously contained in the Windower stage, refer to the “Depth Offset” section in the Windower chapter
for more details on this function.

Other SF Functions

The only other SF-related function is statistics gathering.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 217

intel

Statistics Gathering

The SF stage itself does not have any associated pipeline statistics; however, it counts the number of
objects being output by the clipper on the clipper’s behalf, since it is less feasible to have the CLIP unit
figure out how many objects have been output by a clip thread. It is easy for the SF unit to count the
number of objects it receives from the CLIP stage since it is decomposing the output primitive topologies
into objects anyway.

If the Statistics Enable bit is set in SF_STATE, then SF will increment the CL_PRIMITIVES_COUNT Register
(see Memory Interface Registers in Volume la, GPU) once for each object in each primitive topology it
receives from the CLIP stage. This bit should always be set if clipping is enabled and pipeline statistics are
desired.

Software should always clear the Statistics Enable bit in SF_STATE if the clipper is disabled since objects
SF receives are not considered “primitives output by the clipper” unless the clipper is enabled. Note that
the clipper can be disabled either using bypass mode via a PIPELINE_STATE_POINTERS command with
Clip Enable clear or by setting Clip Mode in CLIP_STATE to CLIPMODE_ACCEPT_ALL.

Windower (WM) Stage

Overview

As mentioned in the SF Unit chapter, the SF stage prepares an object for scan conversion by the
Window/Masker (WM) unit Refer to the SF Unit chapter for details on the screen-space geometry of
objects to be rendered The WM unit uses the parameters provided by the SF unit in the object-specific
rasterization algorithms.

The WM stage of the 3D pipeline performs the following operations (at a high level)
e Pre-scan-conversion modification of some primitive attributes, including
o Application of Depth Offset to the position Z attribute
e Scan-conversion of the various primitive types, including
o 2D clipping to the scissor/draw rectangle intersection
e Spawning of Pixel Shader (PS) threads to process the pixels resulting from scan-conversion
The spawned Pixel Shader (PS) threads are responsible for the following (high-level) operations

e interpolation of vertex attributes (other than X,Y,Z) to the pixel location
e performing any “Pixel Shader” operations dictated by the API PS program

o Using the Sampler shared function to sample data from “texture” surfaces
o Using the DataPort to perform general memory I/0

e Submitting the shaded pixel results to the DataPort for any subsequent “blending” (aka Output
Merger) operation and write to the RenderCache.

218 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

The WM unit keeps a scoreboard of pixels being processed in outstanding PS threads in order to
guarantee in-order rasterization results This allows the WM unit to overlap processing of several objects.

Windower Pipelined State

3DSTATE_ WM

The following inline state packets define the state used by the windower stage for different generations.

State Packets

3DSTATE_-WM

Programming Note

Context: Windower Pipelined State

Note: WM Unit also receives 3DSTATE_WM_HZ_OP, 3DSTATE_RASTER, 3DSTATE_MULTISAMPLE,
3DSTATE_WM_CHROMAKEY, 3DSTATE_PS_BLEND, and 3DSTATE_PS_EXTRA

Signal WML_INT:: Pixel Shader Computed Stencil
Description | This field specifies the computed stencil mode for the pixel shader.
Formula = (WM_INT:WM_HZ_OP) ?
0:
3DSTATE_PS_EXTRA::Computed Stencil
Signal WM_INT::ThreadDispatchEnable

Description |This bit, if set, indicates that it is possible for a PS thread to modify a render target.

Formula | _ 3pSTATE WM:ForceThreadDispatch == ON) ||

(
(3DSTATE_WM::ForceThreadDispatch != OFF) &&
F'WM_INT:WM_HZ_OP &&
3DSTATE_PS_EXTRA::PixelShaderValid &&

(
('3DSTATE_PS_EXTRA::PixelShaderDoesNotWriteRT &&
3DSTATE_PS_BLEND::HasWriteableRT

)

(3DSTATE_PS_EXTRA::PixelShaderHasUAV)

I
WM_INT:: Pixel Shader Kill Pixel ||

Doc Ref # IHD-OS-LKF-Vol 9-4.21 219

intel

(WM_INT::Pixel Shader Computed Depth Mode != PSCDEPTH_OFF &&
(WM_INT::Depth Test Enable || WM_INT::Depth Write Enable)

) || BDSTATE_PS_EXTRA::Computed Stencil &8 WM_INT::Stencil Test
Enable) ||

(3DSTATE_WM::EDSC_Mode == 1 &&

(WM_INT::Depth Test Enable ||

WM_INT::Depth Write Enable ||

WM_INT::Stencil Test Enable)

)

(WM_INT:RT Independent Rasterization Enable

)
)
)

Signal WM_INT::Pixel Shader Computed Depth Mode

Description | This field specifies the computed depth mode for the pixel shader.

Formula 1_ 3psTATE PS_EXTRA:ForceComputedDepth == Force) ?

3DSTATE_PS_EXTRA::Pixel Shader Computed Depth Mode :
(WM_INT:WM_HZ_OP || WM_INT::RT Independent Rasterization Enable) ?
PSCDEPTH_OFF:

3DSTATE_PS_EXTRA::Pixel Shader Computed Depth Mode

Signal |WM_INT::Pixel Shader Uses Source Depth

Description | This bit, if ENABLED, indicates that the PS kernel requires the source depth value (vPos.z) to be passed
in the payload.

Formula |= 3DSTATE_PS_EXTRA:Pixel Shader Uses Source Depth

220 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Signal WM_INT::Pixel Shader Uses Source W

Description | This bit, if ENABLED, indicates that the PS kernel requires the interpolated source W value (vPos.w) to
be passed in the payload

Formula |= 3DSTATE_PS_EXTRA::Pixel Shader Uses Source W

Signal WM_INT::Pixel Shader Uses Input Coverage Mask

Description | This bit, if ENABLED, indicates that the PS kernel requires the input coverage mask to be passed in the
payload.

Formula |= 3DSTATE_PS_EXTRA:Pixel Shader Uses Input Coverage Mask

Signal | WM_INT::Multisample Rasterization Mode

Description | This field determines whether multisample rasterization is enabled and how pixel sample points are
defined.

See Table below: WM_INT::Multisample Rasterization Mode
Formula

WM_INT::Multisample Rasterization Mode

3DSTATE_RASTER:: Force Force Force Force Normal Normal Normal

Force Multisampling

3DSTATE_RASTER: | MSRASTMODE | MSRASTMODE | MSRASTMODE | MSRASTMODE * * *
DX Multisamol _ OFF_PIXEL _ _ON_PIXEL | _ON_PATTERN
ultisample OFF_PATTERN

Rasterization Mode

WM_INT:WM_HZ_OP * * * * True True False
3DSTATE_WM_HZ_OP: * * * * > NUMSAMPLES_ *
: NUMSAMPLES_ 1
1
Number of

Multisamples

WM_INT::Multisample OFF_PIXEL OFF_PATTERN ON_PIXEL ON_PATTERN ON_PATTERN ON_PIXEL Determined
Rasterization Mode from Table 1
in 3D Pipeline
Windower >
Multisamplin
g >
Multisample
Modes/State)

Note: OFF_PIXEL, OFF_PATTERN, ON_PIXEL, ON_PATTERN modes are described in 3D Pipeline Windower
> Multisampling > Multisample Modes/State.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 221

intel

Signal WM_INT::Multisample Dispatch Mode
Description This bit, determines how PS threads are dispatched
Formula = (WM_INT::RT Independent Rasterization Enable)?
PerPixel:
(3DSTATE_PS_EXTRA::PixelShaderlsPerSample) ?
PerSample :
PerPixel
Signal WM_INT::Pixel Shader Kill Pixel

Description

This bit, if ENABLED, indicates that the PS kernel or color calculator has the ability to kill (discard)

pixels or samples, other than due to depth or stencil testing.

Formula

= (3DSTATE_WM::ForceKillPixel == ON) ||
(
(3DSTATE_WM::ForceKillPixel 1= Off) &&
' WM_INT:WM_HZ_OP &&
I 3ADSTATE_WM:EDSC_Mode == 2 &&
(WM_INT::Depth Write Enable ||
WM_INT::Stencil Write Enable) &&
(
3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
3DSTATE_PS_EXTRA:: oMask Present to RenderTarget ||
3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
3DSTATE_PS_BLEND::AlphaTestEnable ||
3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable
)
)

222

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Signal WM_INT::Early Depth/Stencil Control
Description This field specifies the behavior of early depth/stencil test.
Formula = (WM_INT:WM_HZ_OP) ?
EDSC_NORMAL :
WM_INT::RT Independent Rasterization Enable ?
EDSC_PSEXEC:
3DSTATE_WM::Early Depth/Stencil Control
Signal WM_INT::RT Independent Rasterization Enable
Description Enables Render Target Independent Rasterization.
Formula _
(WM_INT:WM_HZ_OP ?
Disable :
(3DSTATE_RASTER::ForceSampleCount != NUMRASTSAMPLES_0) ?
Enable:
Disable
Signal WM_INT::Statistics Enable
Description Enables Statistics
Formula = (WM_INT:WM_HZ_OP) ?
Disable :
3DSTATE_WM:: Statistics Enable
Signal WM_INT::Polygon Stipple Enable
Description Enables Poly Stipple
Formula

= (WM_INT:WM_HZ OP) ?
Disable :
3DSTATE_WM::Polygon Stipple Enable

Doc Ref # IHD-OS-LKF-Vol 9-4.21 223

intel

Signal WM_INT:WM_HZ_OP
Description Enables WM_HZ_OP
Formula

= (3DSTATE_WM_HZ_OP::DepthBufferClear ||
3DSTATE_WM_HZ_OP::DepthBufferResolve ||
3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
3DSTATE_WM_HZ_OP::StencilBufferResolve ||
3DSTATE_WM_HZ_OP::StencilBufferClear ||
3DSTATE_WM_HZ_OP::DepthBufferPartialResolve) ?

Enable :

Disable

Signal | WM_INT:: Pixel Location

Description | Sets the input pixel location to Center if UL and doing multisampling

Formula |(3DSTATE_MULTISAMPLE::Pixel Location && 3DSTATE_MULTISAMPLE::Pixel Position Offset Enable &&
WM_MULTISAMPLE_INT::Number of Multisamples > 0) ? 0 : 3DSTATE_MULTISAMPLE::Pixel Location

3DSTATE_SAMPLE_MASK

The following inline state packets define the sample mask state used by the windower stage for different
generations.

State Packets

3DSTATE_SAMPLE_MASK

224 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Signal WM_INT:: Sample Mask Enable
Description |Sets Sample Mask used in rasterization
Formula ¢ itch(WM_MULTISAMPLE_INT-Number of Multisamples
{
Case NUMSAMPLES_1: WM_INT:: Sample Mask Enable = 0x0001; break;
Case NUMSAMPLES_2: WM_INT:: Sample Mask Enable = 0x0003; break;
Case NUMSAMPLES_4: WM_INT:: Sample Mask Enable = 0x000F; break;
Case NUMSAMPLES_8: WM_INT:: Sample Mask Enable = Ox00FF; break;
Add this additional case:
Case NUMSAMPLES_16: WM_INT:: Sample Mask Enable = OxFFFF; break;
}
Signal WM_INT:: Sample Mask
Description |Sets Sample Mask used in rasterization
Formula

= WM_INT:: Sample Mask Enable &
(WM_INT:WM_HZ_OP) ?
3DSTATE_WM_HZ_OP::Sample Mask:
3DSTATE_SAMPLE_MASK::Sample Mask
)

3DSTATE_WM_CHROMAKEY
3DSTATE_WM_HZ_OP

Doc Ref # IHD-OS-LKF-Vol 9-4.21

225

intel

State Restrictions

State

Restriction

3DSTATE_PS::Render Target Fast Clear Enable

Must be disabled

3DSTATE_PS:: Render Target Resolve Enable

Must be disabled

3DSTATE_WM:: Legacy Depth Buffer Clear

Must be disabled

3DSTATE_WM:: Legacy Depth Buffer Resolve

Must be disabled

3DSTATE_WM:: Legacy Hierarchical Depth Buffer

Resolve Enable

Must be disabled

3DSTATE_MULTISAMPLE::Pixel Location

Must be set according to the API being used.

3DSTATE_CLEAR_PARAMS ::Depth Clear Value

Must be programmed according to the APl when
3DSTATE_WM_HZ_OP::Depth Buffer Clear is set

3DSTATE_CLEAR_PARAMS :Depth Clear Value

Valid

is set

Must be enabled when 3DSTATE_WM_HZ_OP::Depth Buffer Clear

State Overrides

Depth Buffer Resolve
Enable (full or

Hierarchical Depth
Buffer Resolve

State Stencil buffer Clear | Depth buffer clear partial) Enable
SF_INT:: Statistics | Disable Disable Disable Disable
Enable
SF_INT:: View Disable Disable Disable Disable

Transform Enable

SF_INT::Multisamp
le Rasterization
Mode

(3DSTATE_WM_HZ_OP
:NumberOfSamples >
17

ON_PATTERN :
ON_PIXEL

(3DSTATE_WM_HZ_OP
:NumberOfSamples >
17

ON_PATTERN :
ON_PIXEL

(3DSTATE_WM_HZ_OP
NumberOfSamples >
17

ON_PATTERN :
ON_PIXEL

(3DSTATE_WM_HZ_OP
:NumberOfSamples >
17

ON_PATTERN :
ON_PIXEL

SF_INT::Cull Mode

CULLMODE_BACK

CULLMODE_BACK

CULLMODE_BACK

CULLMODE_BACK

SF_INT::Scissor
Rectangle Enable

3DSTATE_WM_HZ_OP::
Scissor Rectangle
Enable

3DSTATE_WM_HZ_OP::
Scissor Rectangle
Enable

3DSTATE_WM_HZ_OP::
Scissor Rectangle
Enable

3DSTATE_WM_HZ_OP::
Scissor Rectangle
Enable

SF_INT:RT
Independent
Rasterization
Enable

Disable

Disable

Disable

Disable

SF_INT::FrontFace
Fill Mode

SOLID

SOLID

SOLID

SOLID

SF_INT::FrontWind
ing

FRONTWINDING_CW

FRONTWINDING_CW

FRONTWINDING_CW

FRONTWINDING_CW

SF_INT::Render

0

226

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Depth Buffer Resolve
Enable (full or

Hierarchical Depth
Buffer Resolve

State Stencil buffer Clear Depth buffer clear partial) Enable

Target Array index
SF_INT::Viewport |0 0 0 0
index
SF_INT:: Geometry | Disable Disable Disable Disable
Hashing Disable
WM_INT::StencilT |Enable Stencil buffer Clear ? Disable Disable
estEnable

Enable :

Disable
WM_INT::StenC|IW Enable Stencil buffer Clear ? Disable Disable
riteEnable

Enable :

Disable
WM_INT::DepthTe | Disable Disable Enable Disable
stEnable
WM_INT::DepthW Depth buffer Clear ? Enable Enable Enable
riteEnable

Enable :
Disable

WM_INT::DepthTe | NEVER NEVER NEVER NEVER
stFunction
WM_INT.::StenaIT ALWAYS Stencil buffer Clear ? No Override No Override
estFunction

ALWAYS:

No Override
WM_INT:StencilP | REPLACE Stencil buffer Clear ? No Override No Override
assDepthPassOp

REPLACE:

No Override
WM_INT:: Disable Disable Disable Disable
Statistics Enable
WM_INT:ThreadD | Disable Disable Disable Disable
ispatchEnable
WM_INT:: Pixel Disable Disable Disable Disable
Shader Kill Pixel
WM_INT:: Pixel PSCDEPTH_OFF PSCDEPTH_OFF PSCDEPTH_OFF PSCDEPTH_OFF
Shader Computed

Doc Ref # IHD-OS-LKF-Vol 9-4.21

227

intel

State

Stencil buffer Clear

Depth buffer clear

Depth Buffer Resolve
Enable (full or
partial)

Hierarchical Depth
Buffer Resolve
Enable

Depth Mode

: WML_INT:
Computed Stencil
Enable

Disable

Disable

Disable

Disable

WM_INT:RT
Independent
Rasterization
Enable

Disable

Disable

Disable

Disable

WM_INT::Polygon
Stipple Enable

Disable

Disable

Disable

Disable

WM_INT::Multisa

NumberOfSamples >

NumberOfSamples >

NumberOfSamples >

NumberOfSamples >

mple 0 ? ON_PATTERN : 0 ? ON_PATTERN : 0 ? ON_PATTERN : 0 ? ON_PATTERN :
Rasterization ON_PIXEL) ON_PIXEL) ON_PIXEL) ON_PIXEL)

Mode

MULTISAMPLE_IN |3DSTATE_WM_HZ_OP:: | 3DSTATE_WM_HZ_OP:: | 3ADSTATE_WM_HZ_OP:: | 3DSTATE_WM_HZ_OP::
T::Number of Number of Number of Number of Number of

Multisamples

Multisamples

Multisamples

Multisamples

Multisamples

WM_INT::Sample
Mask

3DSTATE_WM_HZ_OP::

Sample Mask

3DSTATE_WM_HZ_OP::

Sample Mask

3DSTATE_WM_HZ_OP::
Sample Mask

3DSTATE_WM_HZ_OP::
Sample Mask

WM_INT::Early EDSC_NORMAL EDSC_NORMAL EDSC_NORMAL EDSC_NORMAL
Depth/Stencil
Control
WM_INT:: Full Depth buffer clear ? WM_HZ_OP:: Full Disable Disable
Surface Depth WM_HZ_OP:: Full Surface Depth Clear
Clear Surface Depth Clear :
Disable
WM_INT:: Full Depth buffer clear ? WM_HZ_OP:: Full Disable Disable

Surface Depth
Clear

WM_HZ_OP:: Full
Surface Depth Clear :
Disable

Surface Depth Clear

3DSTATE_WM_DEPTH_STENCIL

228

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Signal WM_INT::StencilWriteEnable
Description Enables writes to the Stencil Buffer
Formula = 3DSTATE_STENCIL_BUFFER:STENCIL_BUFFER_ENABLE &&
3DSTATE_DEPTH_BUFFER:STENCIL_WRITE_ENABLE &&
(
(WM_INT:WM_HZ_OP ?
Use the WM_INT::StencilWriteEnable from WM_HZ_OP table :
WM_INT::StencilTestEnable &&
3DSTATE_WM_DEPTH_STENCIL::StencilBufferWriteEnable
)
)
Signal WM_INT::StencilTestEnable
Description Enables Stencil Test
Formula

= 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE &&
(
WM_INT:WM_HZ_OP ?

Use the WM_INT::StencilTestEnable from WM_HZ_OP table :
(3DSTATE_WM_DEPTH_STENCIL::StencilTestEnable &&
IWM_INT::RT Independent Rasterization Enable)

)

Doc Ref # IHD-OS-LKF-Vol 9-4.21 229

intel

Signal WM_INT::DepthTestEnable
Description Enables Depth Test
Formula = (3DSTATE_DEPTH_BUFFER:SURFACE_TYPE != NULL) &&
(
WM_INT:WM_HZ_OP ?
Use the WM_INT::DepthTestEnable from WM_HZ_OP table :
(3DSTATE_WM_DEPTH_STENCIL::DepthTestEnable &&
! WM_INT::RT Independent Rasterization Enable)
)
Signal WM_INT::DepthTestFunction
Description Depth Test Function
Formula WM_INT:WM_HZ_OP ?
Use the WM_INT::DepthTestFunction from WM_HZ_OP table :
3DSTATE_WM_DEPTH_STENCIL::DepthTestFunction
Signal WM_INT::DepthWriteEnable
Description Enables Depth Write
Formula

= (3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL) &&
3DSTATE_DEPTH_BUFFER:DEPTH_WRITE_ENABLE &&

(
WM_INT:WM_HZ_OP ?

Use the WM_INT::DepthWriteEnable from WM_HZ_OP table :
3DSTATE_WM_DEPTH_STENCIL::DepthWriteEnable

)

230

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Signal WM_INT::StencilTestFunction
Description Stencil Test Function
Formula

WM_INT:WM_HZ OP ?
Use the WM_INT::StencilTestFunction from WM_HZ_OP table :
3DSTATE_WM_DEPTH_STENCIL::StencilTestFunction

Signal WM_INT::StencilPassDepthPassOp
Description StencilPassDepthPassOp
Formula WM_INT:WM_HZ_OP ?
Use the WM_INT::StencilPassDepthPassOp from WM_HZ_OP table :
3DSTATE_WM_DEPTH_STENCIL::StencilPassDepthPassOp
Signal WM_INT::Stencil Test Mask
Description Stencil test Mask
Formula - 3DSTATE_WM_HZ_OP:StencilClear ?
OxFF :
3DSTATE_WM_DEPTH_STENCIL::Stencil Test Mask
Signal WM_INT::Stencil Write Mask
Description Stencil Write Mask
Formula

= 3DSTATE_WM_HZ_OP::StencilClear ?
OxFF :

3DSTATE_WM_DEPTH_STENCIL::Stencil Write Mask

Doc Ref # IHD-OS-LKF-Vol 9-4.21 231

intel

Signal WM_INT::BackFace Stencil Test Mask
Description Stencil test Mask
Formula = 3DSTATE_WM_HZ_OP:StencilClear ?
OxFF :
3DSTATE_WM_DEPTH_STENCIL:: Backface Stencil Test Mask
Signal WM_INT:: BackFace Stencil Write Mask
Description Stencil Write Mask
Formula | _ 3pSTATE WM_HZ_OP:StencilClear ?
OxFF :
3DSTATE_WM_DEPTH_STENCIL::Backface Stencil Write Mask
Rasterization

The WM unit uses the setup computations performed by the SF unit to rasterize objects into the
corresponding set of pixels Most of the controls regarding the screen-space geometry of rendered
objects are programmed via the SF unit.

The rasterization process generates pixels in 2x2 groups of pixels called subspans (see Pixels with a
SubSpan below) which, after being subjected to various inclusion/discard tests, are grouped and passed
to spawned Pixel Shader (PS) threads for subsequent processing Once these PS threads are spawned, the
WM unit provides only bookkeeping functions on the pixels Note that the WM unit can proceed on to
rasterize subsequent objects while PS threads from previous objects are still executing.

Pixels with a SubSpan

Pixel Pixel
[1
Pixel Pixel
2 3

232

Be230-01

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Drawing Rectangle Clipping

The Drawing Rectangle defines the maximum extent of pixels which can be rendered Portions of objects
falling outside the Drawing Rectangle will be clipped (pixels discarded) Implementations will typically
discard objects falling completely outside of the Drawing Rectangle as early in the pipeline as possible
There is no control to turn off Drawing Rectangle clipping — it is unconditional.

For the purposes of clipping, the Drawing Rectangle must itself be clipped to the destination buffer
extents (The Drawing Rectangle Origin, used to offset relative X,Y coordinates earlier in the pipeline, is
permitted to lie offscreen). The Clipped Drawing Rectangle X,Y Min,Max state variables (programmed
via 3DSTATE_DRAWING_RECTANGLE - See SF Unit) defines the intersection of the Drawing Rectangle
and the Color Buffer It is specified with non-negative integer pixel coordinates relative to the Destination
Buffer upper-left origin.

Pixels with coordinates outside of the Drawing Rectangle cannot be rendered (i.e., the rectangle is
inclusive) For example, to render to a full-screen 1280x1024 buffer, the following values would be
required: Xmin=0, Ymin=0, Xmax=1279 and Ymax=1023

For “full screen” rendering, the Drawing Rectangle coincides with the screen-sized buffer For “front-

buffer windowed" rendering it coincides with the destination "window".

Line Rasterization

See SF Unit chapter for details on the screen-space geometry of the various line types.

Coverage Values for Anti-Aliased Lines

The WM unit is provided with both the Line Anti-Aliasing Region Width and Line End Cap Anti-
aliasing Region Width state variables (in WM_STATE) in order to compute the coverage values for anti-
aliased lines.

3DSTATE_AA_LINE_PARAMS
3DSTATE_AA_LINE_PARAMETERS

The slope and bias values should be computed to closely match the reference rasterizer results Based on
empirical data, the following recommendations are offered:

The final alpha for the center of the line needs to be 148 to match the reference rasterizer In this case,
the Lo to edge 0 and edge 3 will be the same Since the alpha for each edge is multiplied together, we
get:

edgelalpha * edgelalpha = 148/255 = 0.580392157

Since edgeOalpha = edge3alpha we get:

(edgelalpha)? = 0.580392157

edgelalpha = sqrt(0.580392157) = 0.761834731 at the center pixel
The desired alpha for pixel 1 = 54/255 = 0.211764706

Doc Ref # IHD-OS-LKF-Vol 9-4.21 233

intel

The slope is (0.761834731 - 0.211764706) = 0.550070025

Since we are using 8 bit precision, the slope becomes

AA Coverage [EndCap] Slope = 0.55078125

The alpha value for Lo = 0 (second pixel from center) determines the bias term and is equal to
(0.211764706 - 0.550070025) = -0.338305319

With 8 bits of precision the programmed bias value

Line Stipple

Line stipple, controlled via the Line Stipple Enable state variable in WM_STATE, discards certain pixels
that are produced by non-AA line rasterization.

The line stipple rule is specified via the following state variables programmed via 3DSTATE_LINE_STIPPLE:
the 16-bit Line Stipple Pattern (p), Line Stipple Repeat Count |, and Line Stipple Inverse Repeat
Count. Software must compute Line Stipple Inverse Repeat Count as 1.0f / Line Stipple Repeat Count
and then converted from float to the required fixed-point encoding (see 3STATE_LINE_STIPPLE).

The WM unit maintains an internal Line Stipple Counter state variable (s) The initial value of s is zero; s is
incremented after production of each pixel of a line segment (pixels are produced in order, beginning at
the starting point and working towards the ending point). S is reset to 0 whenever a new primitive is
processed (unless the primitive type is LINESTRIP_CONT or LINESTRIP_CONT_BF), and before every line
segment in a group of independent segments (LINELIST primitive).

During the rasterization of lines, the WM unit computes:
b=|s/r| mod 16,
A pixel is rendered if the bth bit of p is 1, otherwise it is discarded. The bits of p are numbered with 0
being the least significant and 15 being the most significant.
3DSTATE_LINE_STIPPLE

Polygon (Triangle and Rectangle) Rasterization

The rasterization of LINE, TRIANGLE, and RECTANGLE objects into pixels requires a “pixel sampling grid”
to be defined This grid is defined as an axis-aligned array of pixel sample points spaced exactly 1 pixel

unit apart If a sample point falls within one of these objects, the pixel associated with the sample point is
considered “inside” the object, and information for that pixel is generated and passed down the pipeline

For TRIANGLE and RECTANGLE objects, if a sample point intersects an edge of the object, the associated
pixel is considered “inside” the object if the intersecting edge is a “left” or “top” edge (or, more exactly,
the intersected edge is not a “right” or "bottom” edge) Note that “top” and “bottom” edges are by
definition exactly horizontal. See TRIANGLE and RECTANGLE Edge Types below for the edge types for
representative TRIANGLE and RECTANGLE objects (solid edges are inclusive, dashed edges are exclusive).

TRIANGLE and RECTANGLE Edge Types

234 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Top Edge
Left Edge j’
F }r’ Right Edge
Left Edge Right Edge o —_

Bottorn Edge
Left Edge _ Right Edge
‘\nght Edge Left Edge
Left Edge wermt =" Right Edge
Top Edge
Left Edge Right Edage
Bottorn Edage

Be251-01

Polygon Stipple

The Polygon Stipple function, controlled via the Polygon Stipple Enable state variable in WM_STATE,
allows only selected pixels of a repeated 32x32 pixel pattern to be rendered Polygon stipple is applied
only to the following primitive types:

3DPRIM_POLYGON

3DPRIM_TRIFAN

3DPRIM_TRILIST

3DPRIM_TRISTRIP

3DPRIM_TRISTRIP_REVERSE

Note that the 3DPRIM_TRIFAN_NOSTIPPLE object is never subject to polygon stipple.

The stipple pattern is defined as a 32x32 bit pixel mask via the 3DSTATE_POLY_STIPPLE_PATTERN
command. This is a non-pipelined command which incurs an implicit pipeline flush when executed.

The origin of the pattern is specified via Polygon Stipple X,Y Offset state variables programmed via the
3DSTATE_POLY_STIPPLE_OFFSET command The offsets are pixel offsets from the Color Buffer origin to
the upper left corner of the stipple pattern. This is a non-pipelined command which incurs an implicit
pipeline flush when executed.

3DSTATE_POLY_STIPPLE_OFFSET
3DSTATE_POLY_STIPPLE_PATTERN

Doc Ref # IHD-OS-LKF-Vol 9-4.21 235

intel

Multisampling

The multisampling function has two components:

e Multisample Rasterization: multisample rasterization occurs at a subpixel level, wherein each
pixel consists of a number of “samples” at state-defined positions within the pixel footprint.
Coverage of the primitive as well as color calculator operations (stencil test, depth test, color buffer
blending, etc.) are done at the sample level. In addition, the pixel shader itself can optionally run at
the sample level depending on a separate state field.

e Multisample Render Targets (MSRT): The render targets, as well as the depth and stencil buffers,
now have the ability to store per-sample values. When combined with multisample rasterization,
color calculator operations such as stencil test, depth test, and color buffer blending are done with
the destination surface containing potentially different values per sample.

3DSTATE_MULTISAMPLE

Signal WM_MULTISAMPLE_INT::Number of Multisamples
Description Set the number of multisamples
Formula

= (WM_INT:WM_HZ_OP) ?

3DSTATE_ WM_HZ_OP::Number of Multisamples :
3DSTATE_MULTISAMPLE::Number of Multisamples

3DSTATE_SAMPLE_PATTERN

Multisample ModesState

A number of state variables control the operation of the multisampling function. The following table
indicates the states and their location. Refer to the state definition for more details.

State Element

Source

Description

Multisample
Rasterization
Mode

WM_INT::Multisample Rasterization
Mode

Controls whether rasterization of non-lines is
performed on a pixel or sample basis (PIXEL vs.
PATTERN), and whether multisample rasterization of
lines is enabled (OFF vs. ON). From this generation
forward, this state element becomes an internal signal
computed by other state variables (also listed here)
unless certain modes are set, which can be seen in the
WML_INT equation for the signal.

Multisample
Dispatch Mode

WM_INT::Multisample Dispatch Mode

Controls whether the pixel shader is executed per pixel
or per sample.

Number of
Multisamples

3DSTATE_MULTISAMPLE and
SURFACE_STATE

Indicates the number of samples per pixel contained
on the surface. This field in 3DSTATE_MULTISAMPLE
must match the corresponding field in
SURFACE_STATE for each render target. The depth,
hierarchical depth, and stencil buffers inherit this field

236

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

State Element

Source

Description

from 3DSTATE_MULTISAMPLE.

RTIR Enabled

3DSTATE_RASTER:ForcedSampleCount
I= NUMRASTSAMPLES_O

Enable Render Target Independent Rasterization.

Pixel Location

3DSTATE_MULTISAMPLE

Indicates the subpixel location where values specified
as "pixel” are sampled. This is either the upper left
corner or the center.

MSAA Sample |3DSTATE_SAMPLE_PATTERN For each of the N samples, specifies the subpixel

Offsets location of each sample.

RTIR Sample 3DSTATE_SAMPLE_PATTERN For each of the N samples, specifies the subpixel

Offsets location of each sample.

APl Mode 3DSTATE_RASTER One of the deciding factors of what the Multisample
Rasterization Mode should be according to
WM_INT::Multisample Rasterization Mode. Software
sets this field according to the API's version.

DX 3DSTATE_RASTER Controls ON/OFF part of Multisample Rasterization

Multisample
Rasterization
Enable

Mode, depending on the APl Mode according to
WM_INT::Multisample Rasterization Mode.

This table does not apply if (3DSTATE_RASTER::ForceMultisampleRasterMode == Force) or (WM_INT:WM_HZ_OP

== true).

Table 1: Multisample Rasterization Modes

> >
Number of
Multisample | NUMSAMPLES_ | NUMSAMPLES_ | NUMSAMPLES_ | NUMSAMPLES _
s 1 1 1 1 Any Any Any Any
DX 0 1 0 1 0 1 0 1
Multisample
Rasterization
Enable
Rast Number | Disabled Disabled Disabled Disabled NUMRAST | NUMRAST > >
of Samples NUMRAST NUMRAST
SAMPLES_ | SAMPLES_ | SAMPLES_1 | SAMPLES_1
1 1
APl Mode == | OFF_PIXEL OFF_PIXEL OFF_PIXEL ON_PATTERN Invalid Invalid Invalid Invalid
DX9.0/0GL
AP| Mode == | OFF_PIXEL ON_PIXEL OFF_PIXEL ON_PATTERN OFF_PIXEL | Invalid Invalid Invalid
DX10.0
APl Mode == [OFF_PIXEL ON_PIXEL OFF_PATTERN ON_PATTERN OFF_PIXEL | ON_PIXEL [OFF_PATTER |[ON_PATTER
DX10.1+ N N

Definitions for lines terms used in Table 2 through Table 4:

e Legacy Lines: Way of drawing lines that allows Diamond Lines (SF_STATE::Line Width == 0.0), Non-anti-
aliased Wide Lines (SF_STATE:Line Width != 0.0), and Line Stippling (3DSTATE_WM:: Line Stipple Enable ==

1).

Doc Ref # IHD-OS-LKF-Vol 9-4.21

237

intel

e AA Lines: Way of drawing lines that allows Anti-aliased line. These are lines rendered as rectangles that are

centered on, and aligned to, the line joining the endpoint vertices with coverage value (referred to as Anti-
alias Alpha) computed per pixel.

AA Line Support
Requirement

SF_INT::Anti-aliasing Enable ==

e MSAA Lines: Way of drawing lines that allows Multisample Anti-aliased lines. These are lines rendered as

rectangles that are centered on, and aligned to, the line joining the endpoint vertices, but no Anti alias alpha

coverage is computed.

Table 2: Type of Line Algorithm Given an Arrangement of State Variables

Multisample
Rasterization

Mode Anti-Aliasing Enable

SF_STATE::Line Width

Line Algorithm

OFF_* 0 Non-Zero Non-Anti-aliased Wide Lines
OFF_* 0 0.0 Diamond Lines

OFF_* 1 Non-Zero See Note A below.

OFF_* 1 0.0 Diamond Lines

ON_* * * MSAA Lines

Note A: Anti-Aliasing Details for Table 2

Anti-Aliasing Details

Anti-Aliased Lines with Alpha Coverage

Table 3: Multisample Modes with RTIR Disabled

Number of Multisamples | MS RAST MODE

MS DISP MODE

HW Mode

NUMSAMPLES_1

OFF_PIXEL

PERSAMPLE

Legacy Non-MSAA Mode

1X rasterization, using Pixel Location
Legacy lines or AA-line rasterization
1X PS, sample at Pixel Location

1X output merge, eval Depth at Pixel Location

ON_PIXEL

PERSAMPLE

1X Multisampling Mode

1X rasterization, using Pixel Location
MSAA lines only, using Pixel Location
1X PS, sample at Pixel Location

1X output merge, eval Depth at Pixel Location

PERPIXEL

Treated the same as PERSAMPLE

238

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Number of Multisamples | MS RAST MODE | MS DISP MODE HW Mode

ON_PATTERN - Invalid

OFF_PATTERN - Invalid

OFF_PIXEL PERPIXEL
n where n >

MSRT Only, PerPixel PS
NUMSAMPLES _1 1X rasterization, using Pixel Location
See Note B below.

1X PS, sample at Pixel Location

4X output merge, eval Depth at Pixel Location

PERSAMPLE | MSRT only, Persample PS

1X rasterization, using Pixel Location
See Note B below.
nX PS, all samples at Pixel Location

nX output merge, eval Depth at Pixel Location

ON_PIXEL PERPIXEL Multibuffering MSAA, PerPixel PS

1X rasterization, using Pixel Location
MSAA lines only
1X PS, sample at Pixel Location

4X output merge, eval Depth at Pixel Location

PERSAMPLE Multibuffering MSAA, PerSample PS

1X rasterization, using Pixel Location
MSAA lines only
nX PS, all samples at Pixel Location

nX output merge, eval Depth at Pixel Location

OFF_PATTERN PERPIXEL Mixed Mode, PerPixel PS

See Note B below.
Non-Lines: nX rasterization, using Sample Offsets
1X PS, sample at Pixel Location

nX output merge, eval depth at Sample Offsets

PERSAMPLE | \ixed Mode, PerSample PS

See Note B below.

Non-Lines: nX rasterization, using Sample Offsets

Doc Ref # IHD-OS-LKF-Vol 9-4.21 239

intel

Number of Multisamples | MS RAST MODE | MS DISP MODE HW Mode

nX PS, sample at Pixel Location or Sample Offsets

nX output merge, eval depth at Sample Offsets

ON_PATTERN PERPIXEL Pattern MSAA, PerPixel PS
nX rasterization, using Sample Offsets
MSAA lines only
1X PS, sample at Pixel Location
nX output merge, eval depth at Sample Offsets
PERSAMPLE

Pattern MSAA, PerSample PS

nX rasterization, using Sample Offsets

MSAA lines only

nX PS, sample at Pixel Location or Sample Offsets

nX output merge, eval depth at Sample Offsets

Note B: Line Details for Table 3 and Table 4

Line Details

Legacy lines or AA-line rasterization. For PERPIXEL or PERSAMPLE in Table 3 use pixel location. For OFF_PATTERN in
Table 4 use pixel location.

Table 4: Multisample Modes with RTIR Enabled

Rast Number of
Samples MS RAST MODE HW Mode

NUMRASTSAMPLES _1 OFF_PIXEL Legacy Non-MSAA Mode

1X rasterization, using Pixel Location
Legacy lines or AA-line rasterization
1X PS, sample at Pixel Location

1X output merge, eval Depth at Pixel Location

ON_PIXEL 1X Multisampling Mode

1X rasterization, using Pixel Location
MSAA lines only, using Pixel Location
1X PS, sample at Pixel Location

1X output merge, eval Depth at Pixel Location

240 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Rast Number of
Samples MS RAST MODE HW Mode

ON_PATTERN Invalid

OFF_PATTERN Invalid

OFF_PIXEL Invalid
n where n >

ON_PIXEL Invalid

NUMRASTSAMPLES_T

OFF_PATTERN Mixed Mode, PerPixel PS

See Note B above.
Non-Lines: nX rasterization, using Sample Offsets
1X PS, sample at Pixel Location

1X output merge, eval depth atPixel Location

ON_PATTERN Pattern RTIR, PerPixel PS

nX rasterization, using Sample Offsets
MSAA lines only
1X PS, sample at Pixel Location

1X output merge, eval Depth at Pixel Location

Note: Multisample Dispatch Mode is not taken into account in Table 4 given that with RTIR:

Details

The value of PERSAMPLE is converted to PERPIXEL internally.

Other WM Functions

The only other WM function is Statistics Gathering.

Statistics Gathering

If Statistics Enable is set in WM_STATE or 3DSTATE_WM, the Windower increments the
PS_INVOCATIONS_COUNT register once for each unmasked pixel (or sample) that is dispatched to a Pixel
Shader thread.

If Early Depth Test Enable is set it is possible for pixels or samples to be discarded before reaching the
Pixel Shader due to failing the depth or stencil test. PS_INVOCATIONS_COUNT will still be incremented
for these pixels or samples since the depth test occurs after the pixel shader from the point of view of
SW.

Pixel

This section contains the following subsections:

¢ Depth and Stencil, which covers the Depth and Stencil test functions

Doc Ref # IHD-OS-LKF-Vol 9-4.21 241

intel

e Pixel Dispatch, which covers pixel shader state, pixel grouping, multisampling effects on pixel
shader dispatch, and pixel shader thread payload

¢ Pixel Backend, which covers backend processing

Pixel Hashing

A block of pixel is hashed to slice and subslice based on screenspace X,Y. Cross Slice Hashing Mode and
Subslice Hashing Mode indicate the size and shape of the pixel block used for the hash. Subslice
hashing is calculated independently from slice hashing, but together determine how pixel workload is
distributed to all the subslices.

3DSTATE_3D_MODE

XY shown below is the pixel block address.

DualSubSlice Hashing

Changed from direct mapping pixels to subslices to mapping pixels to a pair of subslices called
DualSubSlices. Wherever hashing to subslice is mentioned, it now refers to hashing to DualSubSlice. For
example, instead of doing 4-way subslice hashing, does 2-way DualSubSlice hashing using the same
algorithm as prior for 2-way subslice hashing. There are two levels of direct mapping of pixels: first level
is Slice, second level is DualSubSlice.

PixelPipe Hashing

Combines the subslices from two slices into a single purpose built slice. This configuration contains two
pixelpipes (Z&PBE) in the same fashion to two slice configuration, so 2way PixelPipe hashing is required.
Wherever hashing to slice is mentioned, it now refers to PixelPipe. For example, instead of doing 2-way
slice hashing, does 2-way PixelPipe hashing using the controls from 2-way slice hashing, and subslice
hashing will use which PixelPipe the pair of DualSubSlices is within to select which HashCtrl. There are
two levels of direct mapping of pixels: first level is PixelPipe, second level is DualSubSlice.

SubSlice Hashing
2-way Hashing
subslice_id = X[0] A Y[0]
3-way Hashing
If X+Y is divisible by 3, then subslice_id=0, else subslice_id = 1 + X[2]*Y[0]

242 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel.

9= = R N = Y L " T =

Programmable DualSubSlice Hashing

In addition to the above calculated dualsubslice_id, when enabled via Subslice Hashing Table Enable,
dualsubslice_id is indicated by the entry in the dualsubslice_id hashing tables. X,Y address used to index the table is
either 8x8 or 16x16 pixel block.

DUALSUBSLICE_HASH_TABLE_8x8
DUALSUBSLICE_HASH_TABLE_16x8

Slice Hashing

Table based Hashing

Slice_id hash is a lookup into a 256 entry slice_hash_table. The lowest 4 bits of the pixel block XY is used to index
into the 16x16 table.

slice_id = slice_hash_table[Y[3:0] 1[X[3:0]]
Default ROM Table

When Slice Hashing Table Enable is set to false, slice_hash_table defaults to ROM tables based on the current
number of active slices, and the following effective slice_id.

slice_id = (X[3:0] + Y[3:0]) % active_number_slices
Programmable Hashing

When Slice Hashing Table Enable is set to true, slice_hash_table is fetched via indirect state. An array of
slice_hash_tables is stored at memory pointed to by Slice Hash Table State Pointer. First entry in the array is
slices==2. No slice_hash_table is fetched when there is only one active slice.

3DSTATE_SLICE_TABLE_STATE_POINTERS

Doc Ref # IHD-OS-LKF-Vol 9-4.21 243

intel.

SLICE_HASH_TABLE - SLICE_HASH_TABLE

Coarse Pixel Shading

In Prior products, Pixel Shader can be invoked at either pixel frequency or at sample frequency. In
general, finer grain shading creates more BW and compute demands in the graphics sub-system. In
certain use cases, it is possible to do coarser grain shading than pixel without noticeable change to the
image quality. This observation leads to HW support for coarser than pixel grain shading rate. It is called
Coarse Pixel Shading (CPS).

Coarse Pixels

Similar to how pixels consist of multiple samples under MSAA, a coarse pixel consists of several pixels.
Coarse pixel size is defined in terms of pixels by an ordered pair, e.g. (2,4) means CP has 2 pixels in X-axis
and 4 pixels in Y-axis. Allowable CP sizes are from the set {1,2,4} X {1,2,4}. When CPS is enabled, HW
computes CPsizes and gathers visible pixels to form CPs.

Coarse Pizel Size

CP=izeX
1 2 4
CP=ize¥
1] 0 + 1 1] 3
0 0 1] =)
2 - &
1 2 3 2 7
2 7
4
a 13
& 7 10 11 14 15

244 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

CPS Modes

Coarse Pixel Shading requires per primitive CP sizes to be determined. CPsize is fixed for a block of 8X8
aligned pixel block. There are two modes for determining the CPsize:

Constant: Entire RTV has the flat CPsizes as defined by the 3DSTATE_CPS. This mode can be used to
under-shade uniformly.

Radial: Since camera focal plane tends to carry more detailed information in the rendered image, this
mode provides increasing CPsizes as distance from the focal point (defined in 3DSTATE_PS) increases.
Therefore shading rate decreases as pixels fall farther from the focal point. In this mode, CPsize is a
function of the fragment's position.XY. Detailed computation with respect to parameters from
3DSTATE_CPS is described below:

First define the following variables:

e Let (Px, Py) be the (x,y) pixel position of the pixel for which the requested coarse pixel size is being
computed, in pixel coordinates

e Let (Cx, Cy) be the center position, in pixel coordinates, specified as CoarsePixelSizeState.CenterX
and CoarsePixelSizeState.CenterY. These values must be in [0.0f,
MAX_RENDER_TARGET_LINEAR_RESOLUTION].

{Smin Smin]
o let'™* 'YV be the maximum coarse pixel size specified as (CoarsePixelSizeState.MinSizeX,
CoarsePixelSizeState.MinSizeY). These values must be in [1.0f, 4.0f] (the minimum and maximum
allowed coarse pixel sizes).

(S, S - o - . .

o Let'™x 7Y be the minimum coarse pixel size specified as (CoarsePixelSizeState.MaxSizeX,
CoarsePixelSizeState.MaxSizeY). These values must be in [1.0f, 4.0f] (the minimum and maximum
allowed coarse pixel sizes).

e Let R.in be the minimum radius specified as CoarsePixelSizeState.RadiusMinSize. These values must
be in [0.0f, MAX_RENDER_TARGET_LINEAR_RESOLUTION * sqrt(2.0f)] (the minimum and maximum
radii in pixel coordinates).

e Let Rma be the maximum radius specified as CoarsePixelSizeState.RadiusMaxSize. These values
must be in [0.0f, MAX_RENDER_TARGET_LINEAR_RESOLUTION * sqrt(2.0ff)] (the minimum and
maximum radii in pixel coordinates).

E{_n:u‘_ S,?“n gmax _ 5;‘3‘11?!)

R R_. "R R

max~ Smin max~ “min

o Let (M,M,) be (

e Let A.io be the radial function aspect ratio defined as the length in pixels of the ellipse X axis over
the Y axis.

Then determine SV_CoarsePixelSize as follows:
DeltaX = (C,- P,)

DeltaY = (C,- P,)

If (Aratic< 1) DeltaY = Awio* DeltaY

Doc Ref # IHD-OS-LKF-Vol 9-4.21 245

intel

Else DeltaX = (1/A i) *DeltaX
D= Distance(DeltaX,DeltaY)

Sm in
CoarsePixelSize,= M,* (D - Ri) + =X

Smin
CoarsePixelSize,= M_y*(D- Ryin)+ ~ ¥

min max
sin gmax

min Smﬂ_x
CoarsePixelSize,= clamp(CoarsePixelSize, =¥ ¥)

RequestedCoarsePixelSize = (CoarsePixelSize,, Coars, ePixelSize,)

CoarsePixelSize,= clamp(CoarsePixelSize,,

Where Distance() is the Pythagorean distance function between two points defined by the
following function:

Distance(DeltaX, DeltaY) = y/ DeltaX? + DeltaY?

Distance(DeltaX, DeltaY) = \r'DEImXE + DeltaY?

However, because this function may be expensive to compute exactly, the distance function may be
approximated by HW.

Early Depth/Stencil Processing

The Windower/IZ unit provides the Early Depth Test function, a major performance-optimization feature
where an attempt is made to remove pixels that fail the Depth and Stencil Tests prior to pixel shading.
This requires the WM unit to perform the interpolation of pixel (“source”) depth values, read the current
(“destination”) depth values from the cached depth buffer, and perform the Depth and Stencil Tests As
the WM unit has per-pixel source and destination Z values, these values are passed in the PS thread
payload, if required.

Depth Offset

Note: The depth offset function is contained in SF unit, thus the state to control it is also contained in SF
unit.

There are occasions where the Z position of some objects need to be slightly offset to reduce artifacts
due to coplanar or near-coplanar primitives. A typical example is drawing the edges of triangles as
wireframes — the lines need to be drawn slightly closer to the viewer to ensure they will not be occluded
by the underlying polygon. Another example is drawing objects on a wall — without a bias on the z
positions, they might be fully or partially occluded by the wall.

The device supports global depth offset, applied only to triangles, that bases the offset on the object’s z
slope Note that there is no clamping applied at this stage after the Z position is offset — clamping to [0,1]
can be performed later after the Z position is interpolated to the pixel. This is preferable to clamping
prior to interpolation, as the clamping would change the Z slope of the entire object.

246 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

The Global Depth Offset function is controlled by the Global Depth Offset Enable state variable in
WM_STATE Global Depth Offset is only applied to 3DOBJ_TRIANGLE objects.

When Global Depth Offset Enable is ENABLED, the pipeline will compute:

MaxDepthSlope = max (abs(dz/dX),abs(dz/dy)) // approximation of max depth slope for
polygon

When UNORM Depth Buffer is at Output Merger (or no Depth Buffer):

Bias = GlobalDepthOffsetConstant * r + GlobalDepthOffsetScale * MaxDepthSlope

Where r is the minimum representable value > 0 in the depth buffer format, converted to float32 (note: If
state bit Legacy Global Depth Bias Enable is set, the r term will be forced to 1.0)

When Floating Point Depth Buffer at Output Merger:

Bias = GlobalDepthOffsetConstant * 2" (exponent (max z in primitive) - r) +
GlobalDepthOffsetScale * MaxDepthSlope
Where r is the # of mantissa bits in the floating point representation (excluding the hidden bit), e.g. 23
for float32 (note: If state bit Legacy Global Depth Bias Enable is set, no scaling is applied to the
GobalDepthOffsetConstant).

Adding Bias to z:

if (GlobalDepthOffsetClamp > 0)
Bias = min (DepthBiasClamp, Bias)
else if (GlobalDepthOffsetClamp < 0)
Bias = max (DepthBiasClamp, Bias)
// else if GlobalDepthOffsetClamp == 0, no clamping occurs
z = z + Bias
Biasing is constant for a given primitive. The biasing formulas are performed with float32 arithmetic

Global Depth Bias is not applied to any point or line primitives.

Early Depth Test/Stencil Test/Write

When Early Depth Test Enable is ENABLED, the WM unit will attempt to discard depth-occluded pixels
during scan conversion (before processing them in the Pixel Shader). Pixels are only discarded when the
WM unit can ensure that they would have no impact to the ColorBuffer or DepthBuffer. This function is
therefore only a performance feature.

Note: The Early Depth Test Enable bit is no longer present. This function is always enabled.

If some pixels within a subspan are discarded, only the pixel mask is affected indicating that the
discarded pixels are not active. If all pixels within a subspan are discarded, that subspan will not even be
dispatched.

Software-Provided PS Kernel Info

For the WM unit to properly perform Early Depth Test and supply the proper information in the PS
thread payload (and even determine if a PS thread needs to be dispatched), it requires information
regarding the PS kernel operation This information is provided by a number of state bits in WM_STATE,
as summarized in the following table.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 247

intel

State Bit Description

Pixel Shader | This must be set when there is a chance that valid pixels passed to a PS thread may be discarded.
Kill Pixel This includes the discard of pixels by the PS thread resulting from a “killpixel” or “alphatest”
function or as dictated by the results of the sampling of a “chroma-keyed" texture The WM unit
needs this information to prevent early depth/stencil writes for pixels which might be killed by the
PS thread, etc.

See WM_STATE/3DSTATE_WM for more information.

Pixel Shader | This must be set when the PS thread computes the “source” depth value (i.e., from the API POV,
Computed writes to the "oDepth” output) In this case the WM unit can’t make any decisions based on the
Depth WM-interpolated depth value.

See WM_STATE/3DSTATE_WM for more information.

Pixel Shader |Must be set if the PS thread requires the WM-interpolated source depth value. This forces the
Uses Source source depth to be passed in the thread payload where otherwise the WM unit would not have
Depth seen it as required.

See WM_STATE/3DSTATE_WM for more information.

Hierarchical Depth Buffer

A hierarchical depth buffer is supported to reduce memory traffic due to depth buffer accesses. This
buffer is supported only in Tile Y memory.

The Surface Type, Height, Width, Depth, Minimum Array Element, Render Target View Extent, and
Depth Coordinate Offset X/Y of the hierarchical depth buffer are inherited from the depth buffer. The
height and width of the hierarchical depth buffer that must be allocated are computed by the following
formulas, where HZ is the hierarchical depth buffer and Z is the depth buffer. The Z_Height, Z_Width, and
Z_Depth values given in these formulas are those present in 3SDSTATE_DEPTH_BUFFER incremented by
one.

The Z_Height and Z_Width values must equal those present in 3DSTATE_DEPTH_BUFFER incremented by
one.

Surface Type HZ_Width (Bytes) HZ_Height (Rows) HZ_Qpitch (Rows)

SURFTYPE_1D |ceiling(Z_Width / 16) * 16| ceiling((HZ_QPitch/2)/8) *8 * Z_Depth see below

SURFTYPE_2D |ceiling(Z_Width / 16) * 16| ceiling((HZ_QPitch/2)/8) *8 * Z_Depth see below

SURFTYPE_3D not applicable

SURFTYPE_CUBE | ceiling(Z_Width / 16) * 16 | ceiling((HZ_QPitch/2)/8) *8 * 6 * Z_Depth | see below

To compute the minimum QPitch for the HZ surface, the height of each LOD in pixels is determined using the
equations for hL in the GPU Overview volume, using a vertical alignment j=8. The following equation gives the
minimum HZ_QPitch based on largest LOD m defined in the surface:

HZ_QPitch = hy + max (hl’z hi)

i=2

If mis less than 2, treat all h. with L > m as zero and use the above equation.

248 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

The minimum HZ_Height required for a 3D surface must be computed based on h. parameters documented in the
GPU Overview volume, and the maximum LOD m:

The format of the data in the hierarchical depth buffer is not documented here, as this surface needs
only to be allocated by software. Hardware will read and write this surface during operation and its
contents are discarded once the last primitive is rendered that uses the hierarchical depth buffer.

The hierarchical depth buffer can be enabled whenever a depth buffer is defined, with its effect being
invisible other than generally higher performance. The only exception is the hierarchical depth buffer
must be disabled when using software tiled rendering.

If HiZ is enabled, you must initialize the clear value by either:

1. Perform a depth clear pass to initialize the clear value.
2. Send a 3dstate_clear_params packet with valid = 1.

Without one of these events, context switching will fail, as it will try to save off a clear value even though
no valid clear value has been set. When context restore happens, HW will restore an uninitialized clear
value.

Depth Buffer Clear

With the hierarchical depth buffer enabled, performance is generally improved by using the special clear
mechanism described here to clear the hierarchical depth buffer and the depth buffer. This is enabled
though the Depth Buffer Clear field in WM_STATE or 3DSTATE_WM or using the 3DSTATE_WM_HZ_OP.
This bit can be used to clear the depth buffer in the following situations:

e Complete depth buffer clear.
e Partial depth buffer clear with the clear value the same as the one used on the previous clear.
o Partial depth buffer clear with the clear value different than the one used on the previous clear can

use this mechanism if a depth buffer resolve is performed first.

The following is required when performing a depth buffer clear using any of the above clearing methods
(WM_STATE, 3DSTATE_WM or 3DSTATE_WM_HZ_OP).

e The hierarchical depth buffer enable must be set in the 3DSTATE_DEPTH_BUFFER.

e The fields in 3DSTATE_CLEAR_PARAMS are set to indicate the source of the clear value and (if
source is in this command) the clear value itself.

e The clear value must be between the min and max depth values (inclusive) defined in the
CC_VIEWPORT. If the depth buffer.

¢ The following alignment restrictions need to be met while doing the fast-clear:

Alignment Restriction

The minimum granularity of clear is one pixel, but all samples of the pixel must be cleared. Clearing partial
samples of a pixel is not supported. If a newly allocated depth buffer is not padded to an integer multiple of
8x4 pixels, and if the first operation on the depth buffer does not clear the entire width and height of the
surface, then first a HiZ ambiguate must be done on the portions of the depth buffer that are not cleared. If
the depth buffer clear operation does clear the entire width and height of the surface, then the “full surface

Doc Ref # IHD-OS-LKF-Vol 9-4.21 249

intel

Alignment Restriction

clear” bit in 3DSTATE_WM_OP must be set to 1.

The following is required when performing a depth buffer clear with using the WM_STATE or
3DSTATE_WM:

e If other rendering operations have preceded this clear, a PIPE_CONTROL with depth cache flush
enabled, Depth Stall bit enabled must be issued before the rectangle primitive used for the depth
buffer clear operation.

e Depth Test Enable must be disabled and Depth Buffer Write Enable must be enabled (if depth is
being cleared).

e Stencil buffer clear can be performed at the same time by enabling Stencil Buffer Write Enable.
Stencil Test Enable must be enabled and Stencil Pass Depth Pass Op set to REPLACE, and the clear
value that is placed in the stencil buffer is the Stencil Reference Value from COLOR_CALC_STATE.

e Note also that stencil buffer clear can be performed without depth buffer clear. For stencil only
clear, Depth Test Enable and Depth Buffer Write Enable must be disabled.

In some cases, Depth Buffer Clear cannot be enabled and the legacy method of clearing must be used:

e If the depth buffer format is D32_FLOAT_S8X24_UINT or D24_UNORM_S8_UINT.
e |[f stencil test is enabled but the separate stencil buffer is disabled.

Depth buffer clear pass using any of the methods (WM_STATE, 3DSTATE_WM or 3DSTATE_WM_HZ_OP)
must be followed by a PIPE_CONTROL command with DEPTH_STALL bit and Depth FLUSH bits “set”
before starting to render.

Note: If using the optimized depth buffer clear, this pipecontrol should be done after the resetting of the
clear/resolve bits in the 3DSTATE_WM_HZ_OP (step #8).

Depth Buffer Resolve

If the hierarchical depth buffer is enabled, the depth buffer may contain incorrect results after rendering
is complete If the depth buffer is retained and used for another purpose (i.e as input to the sampling
engine as a shadow map), it must first be “resolved” This is done by setting the Depth Buffer Resolve
Enable field in WM_STATE or 3DSTATE_WM and rendering a full render target sized rectangle. Once this
is complete, the depth buffer will contain the same contents as it would have had the rendering been
performed with the hierarchical depth buffer disabled. In a typical usage model, depth buffer needs to be
resolved after rendering on it and before using a depth buffer as a source for any consecutive operation.
Depth buffer can be used as a source in three different cases: using it as a texture for the nest rendering
sequence, honoring a lock on the depth buffer to the host OR using the depth buffer as a blit source.

The following is required when performing a depth buffer resolve:

e The surface must have been initialized with a Depth Buffer Clear after its allocation to initialize the
Depth Clear Value.

250 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

e A rectangle primitive of the same size as the previous depth buffer clear operation must be
delivered, and depth buffer state cannot have changed since the previous depth buffer clear
operation.

e Depth Test Enable must be enabled with the Depth Test Function set to NEVER. Depth Buffer
Write Enable must be enabled. Stencil Test Enable and Stencil Buffer Write Enable must be
disabled.

e Pixel Shader Dispatch, Alpha Test, Pixel Shader Kill Pixel and Pixel Shader Computed Depth
must all be disabled.

Programming Note

Context: HTML

HW uses the clear value from the 3DSTATE_CLEAR_PARAM. If you change the value in the
3DSTATE_CLEAR_PARAMS before resolve, it will flush the depth caches and have the new-clear value in its register.
When doing the resolve pass, it is driver's responsibility to make sure that the clear-value for the depth buffer is the
same one as the clear-pass.

Hierarchical Depth Buffer Resolve

If the hierarchical depth buffer is enabled, the hierarchical depth buffer may contain incorrect results if
the depth buffer is written to outside of the 3D rendering operation If this occurs, the hierarchical depth
buffer must be resolved to avoid incorrect device behavior. This is done by setting the Hierarchical Depth
Buffer Resolve Enable field in WM_STATE or 3DSTATE_WM and rendering a full render target sized
rectangle. Once this is complete, the hierarchical depth buffer will contain contents such that rendering
will give the same results as it would have had the rendering been performed with the hierarchical depth
buffer disabled.

The following is required when performing a hierarchical depth buffer resolve:

e Arectangle primitive covering the full render target must be delivered.

e Depth Test Enable must be disabled. Depth Buffer Write Enable must be enabled. Stencil Test
Enable and Stencil Buffer Write Enable must be disabled.

¢ Pixel Shader Dispatch, Alpha Test, Pixel Shader Kill Pixel, and Pixel Shader Computed Depth
must all be disabled.

Optimized Depth Buffer Clear and/or Stencil Buffer Clear

With the hierarchical depth buffer enabled, performance is generally improved by using the special clear
mechanism described here to clear the hierarchical depth buffer and the depth buffer This is enabled
though the Depth Buffer Clear field in 3DSTATE_WM_HZ_OP This bit can be used to clear the depth
buffer in the following situations:

e All 3D units before SF will be bypassed by WM_HZ_OP and states for those units need not be
set/restored for these rectangles.
e Complete depth buffer clear

e Partial depth buffer clear with the clear value the same as the one used on the previous clear

Doc Ref # IHD-OS-LKF-Vol 9-4.21 251

intel

e Partial depth buffer clear with the clear value different than the one used on the previous clear can
use this mechanism if a depth buffer resolve is performed first.

e The minimum granularity of clear is one pixel, but all samples of the pixel must be cleared. Clearing
partial samples of a pixel is not supported

Stencil Buffer Clears can be alone or at the same time as depth buffer clears by using the Stencil Buffer
Clear bit in 3DSTATE_WM_HZ_OP.

Note for SURFACE_TYPE CUBE : To clear / resolve a CUBE_SURFACE using WM_HZ_OP, the
surface_type must be changed to 2D and the depth is calculated for that.

As there are 6 faces of the cube, the depth is multiplied by 6 to get the number of slices in the cube. The
min_array_index is one of the slices.

Hence, in order to clear / resolve, go through each slice & multiply depth by 6 and then using the min-
array-index, point to the respective slice for clear/resolve.

The proper sequence of commands is as follows:

1. Setup 3DSTATE_DEPTH_BUFFER (as needed). Render Target Array index will be internally force to
zero. SW must set 3DSTATE_DEPTH_BUFFER::MinimumArrayElement to render to the array to be
cleared.

Setup 3DSTATE_HIER_DEPTH_BUFFER (as needed)
Setup 3DSTATE_STENCIL_BUFFER (as needed)

vk W

Setup 3DSTATE_DRAWING_RECTANGLE (as needed and only if it is different from already existing
drawing rectangle)

6. 3DSTATE_WM_HZ_OP w/ 1 of the clear/resolve bits set
// This overrides existing state and forces them to what is needed for the clear
// This also carries the vertex info for doing the clear

7. PIPE_CONTROL wy/ all bits clear except for “Post-Sync Operation” must set to “Write Immediate
Data” enabled.

// This causes 3DSTATE_WM_HZ_OP state to be committed to SF and WM as a pipeline state.
Once state is committed to SF, causes to spawn a rectangle to be drawn

8. 3DSTATE_WM_HZ_OP w/ none of the clear/resolve bits set
// This clears the overrides
9. Restore 3DSTATE_DEPTH_BUFFER (as needed).
10. Restore 3DSTATE_HIER_DEPTH_BUFFER (as needed)
11. Restore 3DSTATE_STENCIL_BUFFER (as needed)

Arbitrary size rectangles are supported using the Top Left X, Top Left Y, Bottom Right X, Bottom Right Y
fields in the 3DSTATE_WM_HZ_OP.

252 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Optimized Depth Buffer Resolve

If the hierarchical depth buffer is enabled, the depth buffer may contain incorrect results after rendering
is complete If the depth buffer is retained and used for another purpose (i.e locked by the app), it must
first be "resolved” This is done by setting the Depth Buffer Resolve Enable field in
3DSTATE_WM_HZ_OP. The depth buffer resolve uses the same sequence as the optimized Depth buffer
clear (see above) except the Depth Buffer Resolve Enable bit is set. Once this is complete, the depth
buffer will contain the same contents as it would have had the rendering been performed with the
hierarchical depth buffer disabled. In a typical usage model, depth buffer needs to be resolved after
rendering on it and before using a depth buffer as a source for any consecutive operation. Depth buffer
can be used as a source in three different cases: using it as a texture for the nest rendering sequence,
honoring a lock on the depth buffer to the host OR using the depth buffer as a blit source.

Doing a resolve operation requires that a preceding Depth Buffer Clear operation is required to have
initialized the Depth Clear Value.

Optimized Hierarchical Depth Buffer Resolve

If the hierarchical depth buffer is enabled, the hierarchical depth buffer may contain incorrect results if
the depth buffer is written to outside of the 3D rendering operation. If this occurs, the hierarchical depth
buffer must be “resolved” to avoid incorrect device behavior. This is done by setting the Hierarchical
Depth Buffer Resolve Enable field in 3DSTATE_WM_HZ_OP and specifying a full render target sized
rectangle. The depth buffer resolve uses the same sequence as the optimized Depth buffer clear (see
above) except the Hierarchical Depth Buffer Resolve Enable bit is set. Once this is complete, the
hierarchical depth buffer will contain contents such that rendering will give the same results as it would
have had the rendering been performed with the hierarchical depth buffer disabled.

The following is required when performing a hierarchical depth buffer resolve:

e A rectangle primitive covering the full render target must be programmed on Xmin, Ymin, Xmax,
and Ymax in the 3DSTATE_ WM_HZ_OP command.

e The rectangle primitive size must be aligned to 8x4 pixels.

Separate Stencil Buffer

The following tables describe the separate stencil buffer for different generations.

The separate stencil buffer is always enabled, thus the field in 3DSTATE_DEPTH_BUFFER to explicitly enable the
separate stencil buffer has been removed. Surface formats with interleaved depth and stencil are no longer
supported.

The stencil buffer has a format of R8_UNIT, and shares Surface Type, Height, Width, and Depth, Minimum
Array Element, Render Target View Extent, Depth Coordinate Offset X/Y, LOD, and Depth Buffer Object
Control State fields of the depth buffer.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 253

intel

DepthStencil Buffer State

This section contains the state registers for the Depth/Stencil Buffers.

Register

3DSTATE_DEPTH_BUFFER

3DSTATE_STENCIL_BUFFER

3DSTATE_HIER_DEPTH_BUFFER

3DSTATE_CLEAR_PARAMS

Pixel Shader Thread Generation

After a group of object fragments have been rasterized, the Pixel Shader (PSD) function is invoked to
further compute output information and cause results to be written to output surfaces (like color, depth,
stencil, UAvs etc). Fragments can be P or S.

Fragments can also be CP.

For each fragment, the Pixel Shader calculates the values of the various vertex attributes that are to be
interpolated across the object using the interpolation coefficients. It then executes an API-supplied Pixel
Shader Program. Instructions in this program permit the accessing of texture map data, where Texture
Samplers are employed to sample and filter texture maps (see the Shared Functions chapter). Arithmetic
operations can be performed on the texture data, input fragment information, and Pixel Shader
Constants to compute the resultant fragment's output. The Pixel Shader program also allows the pixel to
be discarded from further processing.

3DSTATE_PS
This command is used to set state used by the pixel shader dispatch stage.
Command
3DSTATE_PS
Programming Note
Context: Pixel Shader Thread Generation

Note: The PS Unit also receives 3DSTATE_PS_BLEND, 3DSTATE_SAMPLEMASK, 3DSTATE_MULTISAMPLE, and
3DSTATE_PS_EXTRA.

254 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Signal PS_INT::oMask Present to RenderTarget

Description | This bit is inserted in the PS payload header and made available to the DataPort (either via the
message header or via header bypass) to indicate that oMask data (one or two phases) is included in
Render Target Write messages. If present, the oMask data is used to mask off samples.

Formula |= 3DSTATE_PS_EXTRA:oMask Present to RenderTarget

Signal PS_INT::Dual Source Blend Enable

Description | This field is set if dual source blend is enabled. If this bit is disabled, the data port dual source
message reverts to a single source message using source 0.

Formula | _ 356rATE PS_BLEND:ColorBufferBlendEnable &&

(PS_INT::UsesSrc1BlendFactor ||
(PS_INT::IndependentAlphaUsesSrc1BlendFactors &&
3DSTATE_PS_BLEND::Independent Alpha Blend Enable)

)

Signal PS_INT::UsesSrc1BlendFactor

Description

Formula

(3DSTATE_PS_BLEND::SourceBlendFactor == BLENDFACTOR_SRC1_COLOR) ||
(3DSTATE_PS_BLEND::SourceBlendFactor == BLENDFACTOR_SRC1_ALPHA) ||
(3DSTATE_PS_BLEND::SourceBlendFactor == BLENDFACTOR_INV_SRC1_COLOR) ||
(3DSTATE_PS_BLEND::SourceBlendFactor == BLENDFACTOR_INV_SRC1_ALPHA) ||
(3DSTATE_PS_BLEND::DestinationBlendFactor == BLENDFACTOR_SRC1_COLOR) ||
(3DSTATE_PS_BLEND::DestinationBlendFactor == BLENDFACTOR_SRC1_ALPHA) ||
(3DSTATE_PS_BLEND::DestinationBlendFactor == BLENDFACTOR_INV_SRC1_COLOR) ||
(3DSTATE_PS_BLEND::DestinationBlendFactor == BLENDFACTOR_INV_SRC1_ALPHA)

Doc Ref # IHD-OS-LKF-Vol 9-4.21 255

intel

Signal PS_INT::IndependentAlphaUsesSrc1BlendFactors

Description

Formula

(3DSTATE_PS_BLEND::SourceAlphaBlendFactor == BLENDFACTOR_SRC1_COLOR) ||
(3DSTATE_PS_BLEND::SourceAlphaBlendFactor == BLENDFACTOR_SRC1_ALPHA) ||
(3DSTATE_PS_BLEND::SourceAlphaBlendFactor == BLENDFACTOR_INV_SRC1_COLOR) ||
(3DSTATE_PS_BLEND:SourceAlphaBlendFactor == BLENDFACTOR_INV_SRC1_ALPHA) ||
(3DSTATE_PS_BLEND::DestinationAlphaBlendFactor == BLENDFACTOR_SRC1_COLOR) ||
(3DSTATE_PS_BLEND::DestinationAlphaBlendFactor == BLENDFACTOR_SRC1_ALPHA) ||
(3DSTATE_PS_BLEND::DestinationAlphaBlendFactor == BLENDFACTOR_INV_SRC1_COLOR) ||
(3DSTATE_PS_BLEND::DestinationAlphaBlendFactor == BLENDFACTOR_INV_SRC1_ALPHA)

Signal PS_INT::PS UAV-only

Description | Pixel Shader UAV-only render target

Formula |= 3DSTATE_PS_EXTRA::Pixel Shader Has UAV && !3DSTATE_PS_EXTRA:: Pixel Shader Does not write to
RT

Command

3DSTATE_PS_EXTRA
This command is used to set state used by the pixel shader dispatch stage

3DSTATE_PS_BLEND
This command is used to set state used by the pixel shader dispatch stage

3DSTATE_CONSTANT_PS

3DSTATE_BINDING_TABLE_POINTERS_PS

3DSTATE_PUSH_CONSTANT_ALLOC_PS

3DSTATE_SAMPLER _STATE_POINTERS_PS

Pixel Grouping (Dispatch Size) Control

The WM unit can pass a grouping of 2 subspans (8 pixels), 4 subspans (16 pixels), or 8 subspans (32
pixels) to a Pixel Shader thread. Software should take into account the following considerations when
determining which groupings to support/enable during operation. This determination involves a tradeoff
of these likely conflicting issues. Note that the size of the dispatch has significant impact on the kernel
program. (It is certainly not transparent to the kernel.) Also note that there is no implied spatial
relationship between the subspans passed to a PS thread, other than the fact that they come from the
same object.

256 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Thread Efficiency: In general, there is some amount of overhead involved with PS thread dispatch,
and if this can be amortized over a larger number of pixels, efficiency will likely increase. This is
especially true for very short PS kernels, as may be used for desktop composition, etc.

GRF Consumption: Processing more pixels per thread requires a larger thread payload and likely
more temporary register usage, both of which translate into a requirement for a larger GRF register
allocation for the threads. This increased GRF usage could lead to increased use of scratch space
(for spill/fill, etc.) and possibly less efficient use of the EUs (as it would be less likely to find an EU
with enough free physical GRF registers to service the thread).

Object Size: If the number of very small objects (e.g., covering 2 subspans or fewer) is expected to
comprise a significant portion of the workload, supporting the 8-pixel dispatch mode may be
advantageous. Otherwise there could be a large number of 16-pixel dispatches with only 1 or 2
valid subspans, resulting in low efficiency for those threads.

Intangibles: Kernel footprint & Instruction Cache impact; Complexity;

The groupings of subspans that the WM unit is allowed to include in a PS thread payload is controlled by
the 32,16,8 Pixel Dispatch Enable state variables programmed in WM_STATE. Using these state
variables, the WM unit attempts to dispatch the largest allowed grouping of subspans. The following
table lists the possible combinations of these state variables.

Please note that, the valid column in the table indicates which products supports the combination
dispatch. Combinations that are not listed in the table are not available on any product.

The letter codes A, B, D, and E used in the Variable Pixel Dispatch table below are valid for all projects
with some specific mode restrictions for specific projects for B, D, and E as indicated in the next few
tables.

D is like B with an added general restriction, that it cannot be used in non-1x PERSAMPLE mode.

E cannot be used in PERSAMPLE mode with number of multisamples >= 2.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 257

intel

Variable Pixel Dispatch

IP for n-pixel Dispatch
Contiguous | Contiguous IP for n-pixel (KSP offsets are in
64 Pixel 32 Pixel 32 Pixel | 16 Pixel | 8 Pixel Contiguous 128-bit irrstruction
Dispatch Dispatch | Dispatch | Dispatch | Dispatch Dispatch =)
Enable Enable Enable Enable Enable |Valid| n=64 | n=32 | n=32 | n=16 | n=8
0 0 0 0 1 A KSP[0]
0 0 0 1 0 B KSP[0]
0 0 0 1 1 D KSP[2] | KSP[0]
0 0 1 0 0 B KSP[0]
0 0 1 1 0 E KSP[1] | KSP[2]
0 0 1 1 1 D KSP[1] | KSP[2] | KSP[0]
0 0 1 0 1 F KSP[1] KSP[0]
0 1 1 1 0 D KSP[2] | KSP[1] | KSP[O]
1 0 1 1 0 D | KSP[2] KSP[1] | KSP[O]

Each of the three KSP values is separately specified. In addition, each kernel has a separately-specified
GRF register count.

Depending on the subspan grouping selected, the WM unit will modify the starting PS Instruction
Pointer (derived from the Kernel Start Pointer in WM_STATE) as a means to inform the PS kernel of the
number of subspans included in the payload. The modified IP is a function of the enabled modes and the
dispatch size, as shown in the table below.

HW will pick the right Kernel start pointer according to the dispatch size. (Note that the pointer from
WM_STATE is 64-byte aligned which corresponds to four 128-bit instructions.)

If only one dispatch mode is enabled, the Jitter should not include any jump table entries at the
beginning of the PS kernel. If multiple dispatch modes are enabled, a two entry jump table should always
be inserted, regardless of which modes are enabled (jump table entry for 8 pixel dispatch, followed by
jump table entry for 32 pixel dispatch).

Note that for SIMD32 dispatch, pixel shader dispatch function increments GRF Start Register for URB
Data state by 2 to account for the additional SIMD16 payload. The Pixel Shader kernel needs to

comprehend this modification for SIMD32.
if (32PixelDispatchEnable && n > 7)
Dispatch 32 Pixels
else if (l6PixelDispatchEnable && (
Dispatch 16 Pixels
else
Dispatch 8 Pixels
end 1if

n > 2 || ! 8PixelDispatchEnable))

258 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Multisampling Effects on Pixel Shader Dispatch

The pixel shader payloads are defined in terms of subspans and pixels. The slots in the pixel shader
thread previously mapped 1:1 with pixels. With multisampling, a slot could contain a pixel or may just
contain a single sample, depending on the mode. Payload definitions now refer to slot to make the
definition independent of multisampling mode.

MSDISPMODE_PERPIXEL Thread Dispatch

In PERPIXEL mode, the pixel shader kernel still works on 2/4/8 separate subspans, depending on dispatch
mode. The fact that rasterization and the depth/stencil tests are being performed on a per-sample (not
per-pixel) basis is transparent to the pixel shader kernel.

Programming Note

Context: MSDISPMODE_PERPIXEL Thread Dispatch

When NUM_MULTISAMPLES == 16 (i.e. 16x MSAA) and PS_DISPATCH_MODE is PER_PIXEL, SIMD32 pixel shader is
not supported.

MSDISPMODE_PERSAMPLE Thread Dispatch

In PERSAMPLE mode, the pixel shader needs to operate on a sample vs. pixel basis (although this
collapses in NUMSAMPLES_1 mode) Instead of processing strictly different subspans in parallel , the PS
kernel processes different sample indices of one or more subspans in parallel For example, a SIMD16
dispatch in PERSAMPLE/NUMSAMPLES_4 mode would operate on a single subspan, with the usual "4
Subspan0 pixel slots” used for the "4 Sample0 locations of the (single) subspan” Subspan1 slots would be
used for the Sample1 locations, and so on This layout allows the pixel shader to compute
derivatives/LOD based on deltas between corresponding sample locations in the subspan in the same
fashion as LEGACY pixel shader execution, and as required by DX10.1.

Depending on the dispatch mode (8/16/32 pixels) and multisampling mode (1X/4X), there are different
mappings of subspans/samples onto dispatches and slots-within-dispatch In some cases, more than one
subspan may be included in a dispatch, while in other cases multiple dispatches are be required to
process all samples for a single subspan In the latter case, the StartingSamplePairlndex value is
included in the payload header so the Render Target Write message will access the correct samples with
each message.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 259

intel

R endered
Subspan

//Slmms\
Dispatch

IR i I
a o

EE NG
]]

"Subspan 0" "Subspan 1" "Subspan 2" "Eubspan 3

PERSAMPLE SIMD16 4X Dispatch

Fendered
Subspan
Y o

& &
i[=? o

o =]
L] L

G Q & ®
i i}
"Subspan 0 "Subspan 1" "Subspan 0 "Subapan 1"
Starting=ampleP sirlndex =0 Starting=ampleP sidndex = 1

260

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

PERSAMPLE Dispatch
The following table provides the complete dispatch/slot mappings for all the MS/Dispatch combinations.

Slot Mapping
Dispatch Size Num Samples (SSPI = Starting Sample Pair Index)

SIMD32 X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]

Slot[11:8] = Subspan(2].Pixel[3:0].Sample[0]
Slot[15:12] = Subspan(3].Pixel[3:0].Sample[0]
Slot[19:16] = Subspan[4].Pixel[3:0].Sample[0]
Slot[23:20] = Subspan[5].Pixel[3:0].Sample[0]
Slot[27:24] = Subspan[6].Pixel[3:0].Sample[0]
Slot[31:28] = Subspan[7].Pixel[3:0].Sample[0]

X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan(1].Pixel[3:0].Sample[0]
Slot[15:12] = Subspan[1].Pixel[3:0].Sample[1]
Slot[19:16] = Subspan[2].Pixel[3:0].Sample[0]
Slot[23:20] = Subspan[2].Pixel[3:0].Sample[T]
Slot[27:24] = Subspan[3].Pixel[3:0].Sample[0]
Slot[31:28] = Subspan[3].Pixel[3:0].Sample[T]

X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan(0].Pixel[3:0].Sample[2]
Slot[15:12] = Subspan[0].Pixel[3:0].Sample[3]
Slot[19:16] = Subspan([1].Pixel[3:0].Sample[0]
Slot[23:20] = Subspan([1].Pixel[3:0].Sample[T]
Slot[27:24] = Subspan([1].Pixel[3:0].Sample[2]
Slot[31:28] = Subspan([1].Pixel[3:0].Sample[3]

8X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]
Slot[11:8] = Subspan(0].Pixel[3:0].Sample[2]

Doc Ref # IHD-OS-LKF-Vol 9-4.21 261

intel

Slot Mapping
Dispatch Size Num Samples (SSPI = Starting Sample Pair Index)

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[3]
Slot[19:16] = Subspan[0].Pixel[3:0].Sample[4]
Slot[23:20] = Subspan[0].Pixel[3:0].Sample[5]
Slot[27:24] = Subspan[0].Pixel[3:0].Sample[6]
Slot[31:28] = Subspan[0].Pixel[3:0].Sample[7]

16x Dispatchfil: (i=0, 4)

SSPI =i

Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]
Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]
Slot[11:8] = Subspan(0].Pixel[3:0].Sample[SSPI*2+2]
Slot[15:12] = Subspan[0].Pixel[3:0].Sample[SSPI*2+3]
Slot[19:16] = Subspan[0].Pixel[3:0].Sample[SSPI*2+4]
Slot[23:20] = Subspan[0].Pixel[3:0].Sample[SSPI*2+5]
Slot[27:24] = Subspan[0].Pixel[3:0].Sample[SSPI*2+6]
Slot[31:28] = Subspan[0].Pixel[3:0].Sample[SSPI*2+7]

SIMDT6 X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]
Slot[11:8] = Subspan(2].Pixel[3:0].Sample[0]
Slot[15:12] = Subspan[3].Pixel[3:0].Sample[0]

X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]
Slot[11:8] = Subspan(1].Pixel[3:0].Sample[0]
Slot[15:12] = Subspan[1].Pixel[3:0].Sample[T]

X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]
Slot[11:8] = Subspan(0].Pixel[3:0].Sample[2]
Slot[15:12] = Subspan[0].Pixel[3:0].Sample[3]

8X Dispatchfil: (i=0, 2)

SSPI =i

262 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Dispatch Size

Num Samples

Slot Mapping
(SSPI = Starting Sample Pair Index)

Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]
Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]
Slot[11:8] = Subspan(0].Pixel[3:0].Sample[SSPI*2+2]
Slot[15:12] = Subspan[0].Pixel[3:0].Sample[SSPI*2+3]

16x Dispatch(i]: (i=0, 2, 4, 6)
SSPI =i
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]
Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]
Slot[11:8] = Subspan(0].Pixel[3:0].Sample[SSPI*2+2]
Slot[15:12] = Subspan[0].Pixel[3:0].Sample[SSPI*2+3]
SIMDS8 X Slot[3:0] = Subspan(0].Pixel[3:0].Sample[0]
Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]
X Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]
Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]
ax Dispatchli]: (i=0.1)
SSPI =i
Slot[3:0] = Subspan|[0].Pixel[3:0].Sample[SSPI*2+0]
Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]
8X Dispatch[i]: (i=0, 1,2, 3)
SSPI =i
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]
Slot[7:4] = Subspan|[0].Pixel[3:0].Sample[SSPI*2+1]
16x

Dispatch[i]: (i=0,1,2,3,4,5,6,7)

SSPI =i

Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]
Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]

Doc Ref # IHD-OS-LKF-Vol 9-4.21

263

intel

PS Thread Payload for Normal Dispatch

The following table lists all possible contents included in a PS thread payload, in the order they are
provided. Certain portions of the payload are optional, in which case the corresponding phase is skipped.

This payload does not apply to the contiguous dispatch modes. The payload for these modes is
documented in the section titled PS Thread Payload for Contiguous Dispatch.

PS Thread Payload for Normal Dispatch

All registers are numbered starting at 0, but many registers are skipped depending on configuration. This
causes all registers below to be renumbered to fill in the skipped locations. The only case where actual
registers may be skipped is immediately before the constant data and again before the setup data.

PS Thread Payload for Normal Dispatch

DWord | Bits Description
RO7 31 Reserved.
30:24 | Reserved
230 Primitive Thread ID: This field contains the primitive thread count passed to the Windower from
the Strips Fans Unit.
Format: Reserved for HW Implementation Use.
R0.6 [31:24 |Reserved
230 Thread ID: This field contains the thread count which is incremented by the Windower for every
thread that is dispatched.
Format: Reserved for HW Implementation Use.

RO.5 [31:10 . o . . .

Scratch Space Pointer: Specifies the 1K-byte aligned pointer to the scratch space available for
this PS thread. This is specified as an offset to the General State Base Address.
Format = GeneralStateOffset[31:10]

9:8 [Reserved

70 FFTID: This ID is assigned by the WM unit and is an identifier for the thread. It is used to free up
resources used by the thread upon thread completion.
Format: Reserved for HW Implementation Use.

RO.4 315 | i ys . g . . o . o
Binding Table Pointer: Specifies the 32-byte aligned pointer to the Binding Table. It is specified
as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]
4:0 |Reserved
RO.3 31:5

Sampler State Pointer: Specifies the 32-byte aligned pointer to the Sampler State table. It is

264

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

DWord | Bits Description
specified as an offset from the Dynamic State Base Address.
Format = DynamicStateOffset[31:5]
4 |Reserved
30 Per Thread Scratch Space: Specifies the amount of scratch space allowed to be used by this
thread.
Programming Notes: This amount is available to the kernel for information only. It will be
passed verbatim (if not altered by the kernel) to the Data Port in any scratch space access
messages, but the Data Port will ignore it.
Format = U4
Range = [0,11] indicating [1k bytes, 2M bytes] in powers of two
RO.2 31:0 | Reserved: Delivered as zeros (reserved for message header fields).
RO1 316 Color Calculator State Pointer: Specifies the 64-byte aligned pointer to the Color Calculator
state (COLOR_CALC_STATE structure in memory). It is specified as an offset from the Dynamic
State Base Address. This value is eventually passed to the ColorCalc function in the DataPort and
is used to fetch the corresponding CC_STATE data.
Format = DynamicStateOffset[31:5]
5:0 |Reserved
RO.0 31 |Reserved
30:27 | y,. g . . .
Viewport Index: Specifies the index of the viewport currently being used.
Format = U4
Range = [0,15]
26:16

Render Target Array Index: Specifies the array index to be used for the following surface types:
SURFTYPE_1D: specifies the array index Range = [0,2047]

SURFTYPE_2D: specifies the array index Range = [0,2047]

SURFTYPE_3D: specifies the “r" coordinate Range = [0,2047]

SURFTYPE_CUBE: specifies the face identifier Range = [0,5]

Face | Render Target Array Index

+X

-X

0

1

+y |2
-y |3
4

5

+Z

-Z

Doc Ref # IHD-OS-LKF-Vol 9-4.21 265

intel

DWord | Bits Description

Format = U11

15 Front/Back Facing Polygon: Determines whether the polygon is front or back facing. Used by
the render cache to determine which stencil test state to use.
0: Front Facing

1: Back Facing

13 Source Depth to Render Target: Indicates that source depth will be sent to the render target.

12 oMask to Render Target: Indicates that oMask will be sent to the render target.

11:9 |Reserved

8 |Reserved for expansion of Starting Sample Pair Index.

76 Starting Sample Pair Index: Indicates the index of the first sample pair of the dispatch.

Format = U2
Range = [0,3]

5 [Reserved

40 Primitive Topology Type: This field identifies the Primitive Topology Type associated with the

primitive spawning this object. The WM unit does not modify this value (e.g., objects within
POINTLIST topologies see POINTLIST).

Format: (See 3DPRIMITIVE command in 3D Pipeline.)

R1.7 31:16 Pixel/Sample Mask (SubSpan[3:0]): Indicates which pixels within the four subspans are lit. If 32

pixel dispatch is enabled, this field contains the pixel mask for the first four subspans.

Note: This is not a duplicate of the Dispatch Mask that is delivered to the thread. The dispatch
mask has all pixels within a subspan as active if any of them are lit to enable LOD calculations to
occur correctly.

This field must not be modified by the Pixel Shader kernel.

150 Pixel/Sample Mask Copy (SubSpan[3:0]): This is a duplicate copy of the pixel mask. This copy
can be modified as the pixel shader thread executes in order to turn off pixels based on kill
instructions.

R1.6 31:0
YStart coordinate (screen space) for upper-left vertex of a triangle being rasterized.
Format = float32

R15 |31:16

Y3:Y coordinate (screen space) for upper-left pixel of subspan 3 (slot 12).

Format = U16

266 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

DWord | Bits Description
150 X3: X coordinate (screen space) for upper-left pixel of subspan 3 (slot 12).
Format = U16
R14 13116 Y2: Y coordinate (screen space) for upper-left pixel of subspan 2 (slot 8).
Format = U16
1>:0 X2: X coordinate (screen space) for upper-left pixel of subspan 2 (slot 8).
Format = U16
R1.3 13116 Y1:Y coordinate (screen space) for upper-left pixel of subspan 1 (slot 4).
Format = U16
10 X1: X coordinate (screen space) for upper-left pixel of subspan 1 (slot 4).
Format = U16
R1.2. 13116 YO0: Y coordinate (screen space) for upper-left pixel of subspan 0 (slot 0).
Format = U16
1>:0 XO0: X coordinate (screen space) for upper-left pixel of subspan 0 (slot 0).
Format = U16
R11 310 XStart coordinate (screen space) for upper-left vertex of a triangle being rasterized.
Format = float32
R1.0 |31:20|Reserved
1916 MSAA rate (multisample count)
Format: U4 [1..16]
This field specifies MSAA sampling rate (required for PS+S monolithic shader).
158 ActualCoarsePixelShadingSize.Y if coarse pixel dispatch
Format: U8
This field specifies size (in pixels) of coarse pixel shading rate in Y dimension. Valid values are 1, 2,
and 4.
Note: coarse shading rate is constant for all coarse pixels in same thread dispatch.
15:12

Slot 3 SamplelD (if pixel or sample dispatch)
Format = U4

Doc Ref # IHD-OS-LKF-Vol 9-4.21 267

intel

DWord | Bits Description

1X MSAA range: [0]

2X MSAA range [0,1]
4X MSAA range [0..3]
8X MSAA range [0..7]

118 Slot 2 SamplelD (if pixel or sample dispatch)

Format = U4

1X MSAA range: [0]
2X MSAA range [0,1]
4X MSAA range [0..3]
8X MSAA range [0..7]

70 ActualCoarsePixelShadingSize.X if coarse pixel dispatch

Format: U8

This field specifies size (in pixels) of coarse pixel shading rate in X dimension. Valid values are 1, 2,
and 4.

Note: coarse shading rate is constant for all coarse pixels in same thread dispatch.

74 Slot 1 SamplelD (if pixel or sample dispatch)

Format = U4

1X MSAA range: [0]
2X MSAA range [0,1]
4X MSAA range [0..3]
8X MSAA range [0..7]

30 Slot 0 SamplelD (if pixel or sample dispatch)

Format = U4

1X MSAA range: [0]
2X MSAA range [0,1]
4X MSAA range [0..3]
8X MSAA range [0..7]

R2: Delivered only if this is a 32-pixel dispatch.

Re.7|31:16 Pixel/Sample Mask (SubSpan([7:4]): Indicates which pixels within the upper four subspans are

lit. This field is valid only when the 32 pixel dispatch state is enabled. This field must not be

268 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

DWord

Bits

Description

modified by the pixel shader thread.

Note: This is not a duplicate of the dispatch mask that is delivered to the thread. The dispatch
mask has all pixels within a subspan as active if any of them are lit to enable LOD calculations to
occur correctly.

This field must not be modified by the Pixel Shader kernel.

15:0

Pixel/Sample Mask Copy (SubSpan[7:4]): This is a duplicate copy of pixel mask for the upper
16 pixels. This copy will be modified as the pixel shader thread executes to turn off pixels based
on kill instructions.

R2.6

31:0

Reserved

R2.5

31:16

Y7:Y coordinate (screen space) for upper-left pixel of subspan 7 (slot 28)

Format = U16

15:0

X7: X coordinate (screen space) for upper-left pixel of subspan 7 (slot 28)

Format = U16

R2.4

31:16

Y6

15:0

X6

R2.3

31:16

Y5

15:0

X5

R2.2

31:16

Y4

15:0

X4

R2.1

31:0

Reserved

R2.0

31:16

Reserved

15:12

Slot 7 SamplelD
Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]
4X MSAA range [0..3]
8X MSAA range [0..7]
16X MSAA range [0..15]

11:8

Slot 6 SamplelD
Format = U4

1X MSAA range: [0]
2X MSAA range [0,1]

Doc Ref # IHD-OS-LKF-Vol 9-4.21 269

intel

DWord

Bits

Description

4X MSAA range [0..3]
8X MSAA range [0..7]
16X MSAA range [0..15]

74

Slot 5 SamplelD
Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]
4X MSAA range [0..3]
8X MSAA range [0..7]
16X MSAA range [0..15]

3:0

Slot 4 SamplelD
Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]
4X MSAA range [0..3]
8X MSAA range [0..7]
16X MSAA range [0..15]

R3-R26: Delivered only if the corresponding Barycentric Interpolation Mode bit is set. Register
phases containing Slot 8-15 data are not delivered in 8-pixel dispatch mode.

R3.7

31:0

Perspective Pixel Location Barycentric[1] for Slot 7

This and the next register phase is only included if the corresponding enable bit in Barycentric

Interpolation Mode is set.

Format = |IEEE_Float

R3.6

31:0

Perspective Pixel Location Barycentric[1] for Slot 6

R3.5

31:0

Perspective Pixel Location Barycentric[1] for Slot 5

R3.4

31:0

Perspective Pixel Location Barycentric[1] for Slot 4

R3.3

31:0

Perspective Pixel Location Barycentric[1] for Slot 3

R3.2

31:0

Perspective Pixel Location Barycentric[1] for Slot 2

R3.1

31:0

Perspective Pixel Location Barycentric[1] for Slot 1

R3.0

31:0

Perspective Pixel Location Barycentric[1] for Slot 0

R4

Perspective Pixel Location Barycentric[2] for Slots 7:0

R5.7

31:0

Perspective Pixel Location Barycentric[1] for Slot 15

270

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

DWord | Bits Description

R5.6 31:0 |Perspective Pixel Location Barycentric[1] for Slot 14

R5.5 31:0 | Perspective Pixel Location Barycentric[1] for Slot 13

R5.4 31:0 | Perspective Pixel Location Barycentric[1] for Slot 12

R5.3 31:0 | Perspective Pixel Location Barycentric[1] for Slot 11

R5.2 31:0 | Perspective Pixel Location Barycentric[1] for Slot 10

R5.1 31:0 | Perspective Pixel Location Barycentric[1] for Slot 9

R5.0 31:0 | Perspective Pixel Location Barycentric[1] for Slot 8

R6 Perspective Pixel Location Barycentric[2] for Slots 15:8
R7:10 Perspective Centroid Barycentric
R11:14 Perspective Sample Barycentric
R15:18 Linear Pixel Location Barycentric
R19:22 Linear Centroid Barycentric
R23:26 Linear Sample Barycentric

R27: Delivered only if Pixel Shader Uses Source Depth is set.

R27.7 | 31:0 Interpolated Depth for Slot 7

Format = IEEE_Float

This and the next register phase is only included if Pixel Shader Uses Source Depth (WM_STATE)
is set.

R27.6 | 31:0 |Interpolated Depth for Slot 6

R27.5 | 31:0 |Interpolated Depth for Slot 5

R27.4 | 31:0 |Interpolated Depth for Slot 4

R27.3 | 31:0 |Interpolated Depth for Slot 3

R27.2 | 31:0 |Interpolated Depth for Slot 2

R27.1 31:0 | Interpolated Depth for Slot 1

R27.0 | 31:0 |Interpolated Depth for Slot 0

R28: Delivered only if Pixel Shader Uses Source Depth is set and this is not an 8-pixel dispatch.

R28.7 | 31:0 |Interpolated Depth for Slot 15

R28.6 | 31:0 |Interpolated Depth for Slot 14

R28.5 | 31:0 |Interpolated Depth for Slot 13

R28.4 | 31:0 |Interpolated Depth for Slot 12

R28.3 | 31:0 |Interpolated Depth for Slot 11

R28.2 | 31:0 |Interpolated Depth for Slot 10

R28.1 31:0 |Interpolated Depth for Slot 9

R28.0 | 31:0 |Interpolated Depth for Slot 8

Doc Ref # IHD-OS-LKF-Vol 9-4.21 271

intel

DWord | Bits Description
R29: Delivered only if Pixel Shader Uses Source W is set.
R23.7 1 310 Interpolated W for Slot 7
Format = IEEE_Float
This and the next register phase are only included if Pixel Shader Uses Source W (WM_STATE) is
set.
R29.6 | 31:0 |Interpolated W for Slot 6
R29.5 | 31:0 |Interpolated W for Slot 5
R29.4 | 31:0 |Interpolated W for Slot 4
R29.3 | 31:0 |Interpolated W for Slot 3
R29.2 | 31:0 |Interpolated W for Slot 2
R29.1 31:0 |Interpolated W for Slot 1
R29.0 | 31:0 |Interpolated W for Slot 0
R30: Delivered only if Pixel Shader Uses Source W is set and this is not an 8-pixel dispatch.
R30.7 | 31:0 |Interpolated W for Slot 15
R30.6 | 31:0 |Interpolated W for Slot 14
R30.5 | 31:0 |Interpolated W for Slot 13
R304 | 31:0 |Interpolated W for Slot 12
R30.3 | 31:0 |Interpolated W for Slot 11
R30.2 | 31:0 |Interpolated W for Slot 10
R30.1 31:0 | Interpolated W for Slot 9
R30.0 | 31:0 |Interpolated W for Slot 8
R31: Delivered only if Position XY Offset Select is either POSOFFSET_CENTROID or
POSOFFSET_SAMPLE.
R31.7|31:24 Position Offset Y for Slot 15
This field contains either the CENTROID or SAMPLE position offset for Y, depending on the state
of Position XY Offset Select.
Format = U4.4
For non-CP rate dispatch: Range = [0.0,1.0)
For CP rate dispatch: Range = [0.0,4.0)
2316 Position Offset X for Slot 15
This field contains either the CENTROID or SAMPLE position offset for X, depending on the state
of Position XY Offset Select.
272 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

DWord

Bits

Description

Format = U44
For non-CP rate dispatch: Range = [0.0,1.0)
For CP rate dispatch: Range = [0.0,4.0)

15:8

Position Offset Y for Slot 14

7:0

Position Offset X for Slot 14

R31.6

31:24

Position Offset Y for Slot 13

23:16

Position Offset X for Slot 13

15:8

Position Offset Y for Slot 12

70

Position Offset X for Slot 12

R31.5:4

Position Offset X/Y for Slot[11:8]

R31.3:2

Position Offset X/Y for Slot[7:4]

R31.1:0

Position Offset X/Y for Slot[3:0]

R32: Delivered only if Pixel Shader Uses Input Coverage Mask is set.

R32.7

31:0

Input Coverage Mask for Slot 7
Format = U32

This and the next register phase is only included if Pixel Shader Uses Input Coverage Mask
(3DSTATE_PS) is set.

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask
for kernels dispatched at coarse-rate.

R32.6

31:0

Input Coverage Mask for Slot 6

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask
for kernels dispatched at coarse-rate.

R32.5

31:0

Input Coverage Mask for Slot 5

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask
for kernels dispatched at coarse-rate.

R32.4

31:0

Input Coverage Mask for Slot 4

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask
for kernels dispatched at coarse-rate.

R32.3

31:0

Input Coverage Mask for Slot 3

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask
for kernels dispatched at coarse-rate.

R32.2

31:0

Input Coverage Mask for Slot 2

Doc Ref # IHD-OS-LKF-Vol 9-4.21 273

intel

DWord

Bits

Description

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask
for kernels dispatched at coarse-rate.

R32.1

31:0

Input Coverage Mask for Slot 1

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask
for kernels dispatched at coarse-rate.

R32.0

31:0

Input Coverage Mask for Slot 0

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask
for kernels dispatched at coarse-rate.

R33: Delivered only if Pixel Shader Uses Input Coverage Mask is set and this is not an 8-pixel
dispatch.

R33.7

31:0

Input Coverage Mask for Slot 15

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask
for kernels dispatched at coarse-rate.

R33.6

31:0

Input Coverage Mask for Slot 14

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask
for kernels dispatched at coarse-rate.

R33.5

31:0

Input Coverage Mask for Slot 13

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask
for kernels dispatched at coarse-rate.

R33.4

31:0

Input Coverage Mask for Slot 12

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask
for kernels dispatched at coarse-rate.

R33.3

31:0

Input Coverage Mask for Slot 11

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask
for kernels dispatched at coarse-rate.

R33.2

31:0

Input Coverage Mask for Slot 10

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask
for kernels dispatched at coarse-rate.

R33.1

31:0

Input Coverage Mask for Slot 9

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask
for kernels dispatched at coarse-rate.

274

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

DWord | Bits Description
R330 1310 Input Coverage Mask for Slot 8
Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask
for kernels dispatched at coarse-rate.
R34-R57: Delivered only if the corresponding Barycentric Interpolation Mode bit is set and this
is a 32-pixel dispatch.
R34.7 1310 Perspective Pixel Location Barycentric[1] for Slot 23
This and the next register phase is only included if the corresponding enable bit in Barycentric
Interpolation Mode is set.
Format = IEEE_Float
R34.6 31:0 | Perspective Pixel Location Barycentric[1] for Slot 22
R34.5 31:0 | Perspective Pixel Location Barycentric[1] for Slot 21
R34.4 31:0 | Perspective Pixel Location Barycentric[1] for Slot 20
R34.3 31:0 | Perspective Pixel Location Barycentric[1] for Slot 19
R34.2 31:0 | Perspective Pixel Location Barycentric[1] for Slot 18
R34.1 31:0 | Perspective Pixel Location Barycentric[1] for Slot 17
R34.0 31:0 |Perspective Pixel Location Barycentric[1] for Slot 16
R35 Perspective Pixel Location Barycentric[2] for Slots 23:16
R36.7 | 31:0 |Perspective Pixel Location Barycentric[1] for Slot 31
R36.6 | 31:0 |Perspective Pixel Location Barycentric[1] for Slot 30
R36.5 31:0 | Perspective Pixel Location Barycentric[1] for Slot 29
R36.4 | 31:0 |Perspective Pixel Location Barycentric[1] for Slot 28
R36.3 31:0 | Perspective Pixel Location Barycentric[1] for Slot 27
R36.2 | 31:0 |Perspective Pixel Location Barycentric[1] for Slot 26
R36.1 31:0 | Perspective Pixel Location Barycentric[1] for Slot 25
R36.0 31:0 | Perspective Pixel Location Barycentric[1] for Slot 24
R37 Perspective Pixel Location Barycentric[2] for Slots 31:24
R38:41 Perspective Centroid Barycentric
R42:45 Perspective Sample Barycentric
R46:49 Linear Pixel Location Barycentric
R50:53 Linear Centroid Barycentric
R54:57 Linear Sample Barycentric
R58-R59: Delivered only if Pixel Shader Uses Source Depth is set and this is a 32-pixel dispatch.
R58.7 | 310

Interpolated Depth for Slot 23

Doc Ref # IHD-OS-LKF-Vol 9-4.21 275

intel

DWord | Bits Description

Format = |IEEE_Float

This and the next register phase is only included if Pixel Shader Uses Source Depth (WM_STATE)
bit is set.

R58.6 | 31:0 |Interpolated Depth for Slot 22

R58.5 | 31:0 |Interpolated Depth for Slot 21

R58.4 | 31:0 |Interpolated Depth for Slot 20

R58.3 | 31:0 |Interpolated Depth for Slot 19

R58.2 | 31:0 |Interpolated Depth for Slot 18

R58.1 31:0 | Interpolated Depth for Slot 17

R58.0 | 31:0 |Interpolated Depth for Slot 16

R59.7 | 31:0 |Interpolated Depth for Slot 31

R59.6 | 31:0 |Interpolated Depth for Slot 30

R59.5 | 31:0 |Interpolated Depth for Slot 29

R59.4 | 31:0 |Interpolated Depth for Slot 28

R59.3 | 31:0 |Interpolated Depth for Slot 27

R59.2 | 31:0 |Interpolated Depth for Slot 26

R59.1 31:0 | Interpolated Depth for Slot 25

R59.0 | 31:0 |Interpolated Depth for Slot 24

R60-R61:Delivered only if Pixel Shader Uses Source W is set and this is a 32-pixel dispatch.

R60.7 | 310 Interpolated W for Slot 23

Format = IEEE_Float

This and the next register phase are only included if Pixel Shader Uses Source W (WM_STATE)
bit is set.

R60.6 | 31:0 |Interpolated W for Slot 22

R60.5 | 31:0 |Interpolated W for Slot 21

R60.4 | 31:0 |Interpolated W for Slot 20

R60.3 | 31:0 |Interpolated W for Slot 19

R60.2 | 31:0 |Interpolated W for Slot 18

R60.1 31:0 |Interpolated W for Slot 17

R60.0 | 31:0 |Interpolated W for Slot 16

R61.7 | 31:0 |Interpolated W for Slot 31

R61.6 | 31:0 |Interpolated W for Slot 30

R61.5 | 31:0 |Interpolated W for Slot 29

R61.4 | 31:0 |Interpolated W for Slot 28

R61.3 | 31:0 |Interpolated W for Slot 27

R61.2 | 31:0 |Interpolated W for Slot 26

276 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

DWord | Bits Description
R61.1 31:0 | Interpolated W for Slot 25
R61.0 | 31:0 |Interpolated W for Slot 24
R62: Delivered only if Position XY Offset Select is either POSOFFSET_CENTROID or
POSOFFSET_SAMPLE and this is a 32-pixel dispatch.
R62.7 (3124 Position Offset Y for Slot 31
This field contains either the CENTROID or SAMPLE position offset for Y, depending on the state
of Position XY Offset Select.
Format = U4.4
Range = [0.0,1.0)
2316 Position Offset X for Slot 31
This field contains either the CENTROID or SAMPLE position offset for X, depending on the state
of Position XY Offset Select.
Format = U4.4
Range = [0.0,1.0)
15:8 | Position Offset Y for Slot 30
7:0 | Position Offset X for Slot 30
R62.6 |31:24|Position Offset Y for Slot 29
23:16 | Position Offset X for Slot 29
15:8 |Position Offset Y for Slot 28
7:0 [Position Offset X for Slot 28
R62.5:4 Position Offset X/Y for Slot[27:24]
R62.3:2 Position Offset X/Y for Slot[23:20]
R62.1:0 Position Offset X/Y for Slot[19:16]
R63-R64: Delivered only if Pixel Shader Uses Input Coverage Mask is set and this is a 32-pixel
dispatch.
R637 | 310 Input Coverage Mask for Slot 23
Format = U32
This and the next register phase are only included if Pixel Shader Uses Input Coverage Mask
(3DSTATE_PS) is set.
R63.6 | 31:0 |Input Coverage Mask for Slot 22
R63.5 | 31:0 |Input Coverage Mask for Slot 21
R63.4 | 31:0 |Input Coverage Mask for Slot 20
R63.3 31:0 |Input Coverage Mask for Slot 19
R63.2 | 31:0 |Input Coverage Mask for Slot 18

Doc Ref # IHD-OS-LKF-Vol 9-4.21 277

intel

DWord | Bits Description

R63.1 31:0 |Input Coverage Mask for Slot 17

R63.0 | 31:0 |Input Coverage Mask for Slot 16

R64.7 | 31:0 |Input Coverage Mask for Slot 31

R64.6 | 31:0 |Input Coverage Mask for Slot 30

R64.5 | 31:0 |Input Coverage Mask for Slot 29

R64.4 | 31:0 |Input Coverage Mask for Slot 28

R64.3 | 31:0 |Input Coverage Mask for Slot 27

R64.2 | 31:0 |Input Coverage Mask for Slot 26

R64.1 31:0 | Input Coverage Mask for Slot 25

R64.0 | 31:0 |Input Coverage Mask for Slot 24
R65 delivered ONLY if Pixel Shader Requires RequiredCoarsePixelShadingSize is set.

R65.7 | 310 RequestedCoarsePixelShadingRate.Y for subspan 3 (slot 12)
This is post-clamp value, expected range [1.0f,4.0f] or inner range if min/max configured.
Format: IEEE_Float

R656 | 310 RequestedCoarsePixelShadingRate.Y for subspan 2 (slot 8)
Format: IEEE_Float

R6>.5 | 310 RequestedCoarsePixelShadingRate.Y for subspan 1 (slot 4)
Format: IEEE_Float

R654 1310 RequestedCoarsePixelShadingRate.Y for subspan 0 (slot 0)
Format: IEEE_Float

R653 | 310 RequestedCoarsePixelShadingRate.X for subspan 3 (slot 12)
Format: IEEE_Float

R65.2 | 310 RequestedCoarsePixelShadingRate.X for subspan 2 (slot 8)
Format: IEEE_Float

R65.1 310 RequestedCoarsePixelShadingRate.X for subspan 1 (slot 4)
Format: IEEE_Float

R65.0 | 31:0

RequestedCoarsePixelShadingRate.X for subspan 0 (slot 0)

Format: IEEE_Float

R66: delivered only if Pixel Shader Requires Source Depth and/or W Attribute Vertex Deltas is set.

278

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

DWord | Bits Description

R66.7 | 310 | w0 - Co for 1/w plane
Format = IEEE_Float

R66.6 | 31:0 |Reserved - MBZ

Re6.5 | 31:0 rhw_cx - Cx for 1/w plane
Format = |IEEE_Float

R66.4 31:0 rhw_cy - Cy for 1/w plane
Format = IEEE_Float

R66.3 | 31:0 z_¢0 - Co for z plane
Format = |IEEE_Float

R66.2 | 31:0 |Reserved — MBZ

R66.1 | 310 z_cx - Cx for z plane
Format = IEEE_Float

R66.0 | 31:0 z_cy - Cy for z plane
Format = |IEEE_Float

R68: delivered only if Pixel Shader Requires Perspective Bary Planes is set.

R68.7 | 31:0 bary2_c0 - Co for bary2/w plane
Format = IEEE_Float

R68.6 | 31:0 |Reserved — MBZ

R68.5 | 31:.0 bary2_cx — Cx for bary2/w plane
Format = |EEE_Float

R68.4 | 31:0 bary2_cy - Cy for bary2/w plane
Format = IEEE_Float

R68.3 | 310 | bary1_c0 - Co for bary1/w plane
Format = |IEEE_Float

R68.2 | 31:0 |Reserved — MBZ

R68.1 31:0

bary1_cx — Cx for bary1/w plane
Format = IEEE_Float

Doc Ref # IHD-OS-LKF-Vol 9-4.21

279

intel

DWord

Bits

Description

R68.0

31:0

bary1_cy - Cy for bary1/w plane
Format = IEEE_Float

R70: delivered only if Pixel Shader Requires Non-Perspective Bary Planes is set.

R70.7

31:0

npc_bary2_c0 - Co for npc_bary2 plane
Format = |IEEE_Float

R70.6

31:0

Reserved — MBZ

R70.5

31:0

npc_bary2_cx — Cx for npc_bary2 plane
Format = IEEE_Float

R70.4

31:0

npc_bary2_cy - Cy for npc_bary2 plane
Format = |IEEE_Float

R70.3

31:0

npc_bary1_c0 - Co for npc_bary1 plane
Format = IEEE_Float

R70.2

31:0

Reserved — MBZ

R70.1

31:0

npc_bary1_cx — Cx for npc_bary1 plane
Format = |IEEE_Float

R70.0

31:0

npc_bary1_cy - Cy for npc_bary1 plane
Format = IEEE_Float

R72: delivered only if Pixel Shader Requires sample offsets is set.

R72.7

31:28

Reserved — MBZ

27:24

Sub-sample Y offset for sample 15

Format: U0.4

Subpixel Y offset of Sample 15 relative to the UL pixel origin
Range: [0,0.9375]

23:20

Reserved — MBZ

19:16

Sub-sample Y offset for sample 14

15:12

Reserved — MBZ

11:8

Sub-sample Y offset for sample 13

74

Reserved — MBZ

3.0

Sub-sample Y offset for sample 12

R72.6

31:28

Reserved — MBZ

280

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

DWord | Bits

Description

27:24

Sub-sample Y offset for sample 11

23:20

Reserved — MBZ

19:16

Sub-sample Y offset for sample 10

15:12

Reserved — MBZ

11:8

Sub-sample Y offset for sample 9

74

Reserved — MBZ

3.0

Sub-sample Y offset for sample 8

R72.5 |31:28

Reserved — MBZ

27:24

Sub-sample Y offset for sample 7

23:20

Reserved — MBZ

19:16

Sub-sample Y offset for sample 6

15:12

Reserved — MBZ

11:8

Sub-sample Y offset for sample 5

74

Reserved — MBZ

3:0

Sub-sample Y offset for sample 4

R724 |31:28

Reserved — MBZ

27:24

Sub-sample Y offset for sample 3

23:20

Reserved — MBZ

19:16

Sub-sample Y offset for sample 2

15:12

Reserved — MBZ

11:8

Sub-sample Y offset for sample 1

74

Reserved — MBZ

3:0

Sub-sample Y offset for sample 0

R72.3 |31:28

Reserved — MBZ

27:24

Sub-sample X offset for sample 15

Format: U0.4

Subpixel X offset of Sample 15 relative to the UL pixel origin
Range: [0,0.9375]

23:20

Reserved — MBZ

19:16

Sub-sample X offset for sample 14

15:12

Reserved — MBZ

11:8

Sub-sample X offset for sample 13

74

Reserved — MBZ

3:0

Sub-sample X offset for sample 12

R72.2 |31:28

Reserved — MBZ

27:24

Sub-sample X offset for sample 11

Doc Ref # IHD-OS-LKF-Vol 9-4.21

281

intel

DWord | Bits Description

23:20 | Reserved - MBZ

19:16 | Sub-sample X offset for sample 10

15:12 | Reserved — MBZ

11:8 |Sub-sample X offset for sample 9

74 |Reserved - MBZ

3:0 |Sub-sample X offset for sample 8

R72.1 31:28 | Reserved — MBZ

27:24 | Sub-sample X offset for sample 7

23:20 | Reserved — MBZ

19:16 | Sub-sample X offset for sample 6

15:12 | Reserved — MBZ

11:8 [Sub-sample X offset for sample 5

74 |Reserved - MBZ

3:0 |Sub-sample X offset for sample 4

R72.0 |31:28|Reserved - MBZ

27:24 | Sub-sample X offset for sample 3

23:20 | Reserved — MBZ

19:16 | Sub-sample X offset for sample 2

15:12 | Reserved — MBZ

11:8 [Sub-sample X offset for sample 1

74 |Reserved - MBZ

3:0 |Sub-sample X offset for sample 0

[Varies] 255:0

) Constant Data (optional):
optional

For more details about the size and source of constant data, please refer to General
Programming of Thread-Generating Stages in the Push Constants chapter.

Pixel Backend

This section contains the following subsections:

e MCS Buffer for Render Target(s)
e Render Target Fast Clear
e Render TargetResolve

282 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Color Calculator (Output Merger)

Overview

Note: The Color Calculator logic resides in the Render Cache backing Data Port (DAP) shared
function. It is described in this chapter as the Color Calc functions are naturally an extension of the 3D
pipeline past the WM stage. See the DataPort chapter for details on the messages used by the Pixel
Shader to invoke Color Calculator functionality.

The Color Calculator (referred to as "Output Merger in the DX Spec) function within the Data Port shared
function completes the processing of rasterized pixels after the pixel color and depth have been
computed by the Pixel Shader. This processing is initiated when the pixel shader thread sends a Render
Target Write message (see Shared Functions) to the Render Cache. (Note that a single pixel shader thread
may send multiple Render Target Write messages, with the result that multiple render targets get
updated.) The pixel variables pass through a pipeline of fixed (yet programmable) functions, and the
results are conditionally written into the appropriate buffers.

The word “pixel” used in this section is effectively replaced with the word “sample” if multisample
rasterization is enabled.

Pipeline Stage Description
Alpha Coverage |It generates coverage masks using AlphaToCoverage AND/OR AlphaToOne functions based on
src0.alpha.
Alpha Test Compare pixel alpha with reference alpha and conditionally discard pixel.
Stencil Test Compare pixel stencil value with reference and forward result to Buffer Update stage.
Depth Test Compare pix.Z with corresponding Z value in the Depth Buffer and forward result to Buffer

Update stage.

Color Blending Combine pixel color with corresponding color in color buffer according to programmable

function.
Gamma Adjust pixel's color according to gamma function for SRGB destination surfaces.
Correction
Color Convert “full precision” pixel color values to fixed precision of the color buffer format.
Quantization
Logic Ops Combine pixel color logically with existing color buffer color (mutually exclusive with Color
Blending).
Buffer Update Write final pixel values to color and depth buffers or discard pixel without update.

The following logic describes the high-level operation of the Pixel Processing pipeline:

PixelProcessing () {
AlphaCoverage ()
AlphaTest ()
DepthBufferCoordinateOffsetDisable
StencilTest ()
DepthTest ()
ColorBufferBlending ()
GammaCorrection ()
ColorQuantization ()
LogicalOps ()
BufferUpdate ()

Doc Ref # IHD-OS-LKF-Vol 9-4.21 283

intel

Alpha Coverage
Alpha coverage logic is supported and can be controlled using three state variables:

e AlphaToCoverage Enable, when enabled Color Calculator modifies the sample mask. This
function (along with AlphaToOne) come at the top of the pixel pipeline. The sample’s
Source0.Alpha value (possibly being replicated from the pixel’s Source0.Alpha) is used to compute
a (optionally dithered) 1/2/4-bit mask (depending on NumSamples).

e The AlphaToCoverage Dither Enable SV is used to control the dithering of the AlphaToCoverage
mask. The bit corresponding to the sample# is then ANDed with the sample’s incoming mask bits
—allowing the sample to be masked off depending on alpha.

e AlphaToOne Enable, when enabled, Color Calculator must replace Source0.Alpha (if present) with
1.0f.

e If AlphaToCoverage is disabled, AlphaToCoverage Dither does not have any impact.

e If Pixel Shader outputs oMask, AlphaToCoverage is disabled in hardware, regardless of the state
setting for this feature.

Notes:

e Src0.alpha needs to be first multiplied with AA alpha before applying AlphaToCoverage and
AlphaToOne functions.

¢ An alpha value of NaN results in a no coverage (zero) mask.

e Alpha values from the pixel shader are treated as FLOAT32 format for computing the
AlphaToCoverage Mask.

Alpha Test

The Alpha Test function can be used to discard pixels based on a comparison between the incoming
pixel's alpha value and the Alpha Test Reference state variable in COLOR_CALC_STATE. This operation
can be used to remove transparent or nearly-transparent pixels, though other uses for the alpha channel
and alpha test are certainly possible.

This function is enabled by the Alpha Test Enable state variable in COLOR_CALC_STATE. If ENABLED, this
function compares the incoming pixel’s alpha value (pixColor.Alpha) and the reference alpha value
specified by via the Alpha Test Reference state variable in COLOR_CALC_STATE. The comparison
performed is specified by the Alpha Test Function state variable in COLOR_CALC_STATE.

The Alpha Test Format state variable is used to specify whether Alpha Test is performed using fixed-
point (UNORMBS) or FLOAT32 values. Accordingly, it determines whether the Alpha Reference Value is
passed in a UNORMBS or FLOAT32 format. If UNORMS is selected, the pixel’s alpha value will be
converted from floating-point to UNORMS before the comparison.

Pixels that pass the Alpha Test proceed for further processing. Those that fail are discarded at this point
in the pipeline.

284 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

If Alpha Test Enable is DISABLED, this pipeline stage has no effect.

The Alpha Test function is supported in conjunction with Multiple Render Targets (MRTs). If delivered in
the incoming render target write message, source 0 alpha is used to perform the alpha test. If source 0
alpha is not delivered, the normal alpha value is used to perform the alpha test.

Depth Coordinate Offset

The Depth Coordinate Offset function applies a programmable constant offset to the RenderTarget X,Y
screen space coordinates in order to generate DepthBuffer coordinates.

The function has been specifically added to allow the OpenGL driver to deal with a RenderTarget and
DepthBuffer of differing sizes.

This condition is not an issue for the D3D driver, as D3D defines an upper-left screen coordinate origin
which matches the HW rasterizer; as long as the application limits rendering to the smaller of the
RT/DepthBuffer extents, no special logic is required.

OpenGL defines a lower-left screen coordinate origin. This requires the driver to incorporate a Y
coordinate flipping” transformation into the viewport mapping function. The Y extent of the RT is used in
this flipping transformation. If the DepthBuffer extent is different, the wrong pixel Y locations within the
DepthBuffer will be accessed.

The least expensive solution is to provide a translation offset to be applied to the post-viewport-mapped
DepthBuffer Y pixel coordinate, effectively allowing the alignment of the lower-left origins of the RT and
DepthBuffer. [Note that the previous DBCOD feature performed an optional translation of post-viewport-
mapping RT pixel (screen) coordinates to generate DepthBuffer pixel (window) coordinates. Specifically,
the Draw Rect Origin XY state could be subtracted from the RT pixel coordinates.]

This function uses Depth Coordinate Offset X,Y state (signed 16-bit values in
3DSTATE_DEPTH_RECTANGLE) that is unconditionally added to the RT pixel coordinates to generate
DepthBuffer pixel coordinates.

The previous DBCOB feature can be supported by having the driver program Depth Coordinate X,Y
Offset to the two’s complement of the the Draw Rect Origin. By programming Depth Coordinate X,Y
Offset to zeros, the current “normal” operation (DBCOD disabled) can be achieved.

Programming Note

Context: Depth Coordinate Offset

e Only simple 2D RTs are supported (no mipmaps).
e Software must ensure that the resultant DepthBuffer Coordinate X,Y values are non-negative.

e There are alignment restrictions — see 3DSTATE_DEPTH_BUFFER command.on SFID_DP_DC2) are |A
coherent.

Stencil Test

The Stencil Test function can be used to discard pixels based on a comparison between the [Backface]
Stencil Test Reference state variable and the pixel’s stencil value. This is a general purpose function

Doc Ref # IHD-OS-LKF-Vol 9-4.21 285

intel

used for such effects as shadow volumes, per-pixel clipping, etc. The result of this comparison is used in
the Stencil Buffer Update function later in the pipeline.

This function is enabled by the Stencil Test Enable state variable. If ENABLED, the current stencil buffer
value for this pixel is read.

Programming Note

Context: Color Calculator - Stencil Test

If the Depth Buffer is either undefined or does not have a surface format of D32_FLOAT_S8X24_UINT or
D24_UNORM_S8_UINT and separate stencil buffer is disabled, Stencil Test Enable must be DISABLED.

A 20 set of the stencil test state variables is provided so that pixels from back-facing objects, assuming
they are not culled, can have a stencil test performed on them separate from the test for normal front-
facing objects. The separate stencil test for back-facing objects can be enabled via the Double Sided
Stencil Enable state variable. Otherwise, non-culled back-facing objects will use the same test function,
mask and reference value as front-facing objects. The 2 stencil state for back-facing objects is most
commonly used to improve the performance of rendering shadow volumes which require a different
stencil buffer operation depending on whether pixels rendered are from a front-facing or back-facing
object. The backface stencil state removes the requirement to render the shadow volumes in 2 passes or
sort the objects into front-facing and back-facing lists.

The remainder of this subsection describes the function in term of [Backface] <state variable name>.
The Backface set of state variables are only used if Double Sided Stencil Enable is ENABLED and the
object is considered back-facing. Otherwise the normal (front-facing) state variables are used.

This function then compares the [Backface] Stencil Test Reference value and the pixel’s stencil value
value after logically ANDing both values by [Backface] Stencil Test Mask. The comparison performed is
specified by the [Backface] Stencil Test Function state variable. The result of the comparison is passed
down the pipeline for use in the Stencil Buffer Update function. The Stencil Test function does not in
itself discard pixels.

If Stencil Test Enable is DISABLED, a result of “stencil test passed” is propagated down the pipeline.

Depth Test

The Depth Test function can be used to discard pixels based on a comparison between the incoming
pixel's depth value and the current depth buffer value associated with the pixel. This function is typically
used to perform the "Z Buffer” hidden surface removal. The result of this pipeline function is used in the
Stencil Buffer Update function later in the pipeline.

This function is enabled by the Depth Test Enable state variable. If enabled, the pixel’s (“source”) depth
value is first computed. After computation the pixel's depth value is clamped to the range defined by
Minimum Depth and Maximum Depth in the selected CC_VIEWPORT state. Then the current
("destination”) depth buffer value for this pixel is read.

This function then compares the source and destination depth values. The comparison performed is
specified by the Depth Test Function state variable.

286 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

The result of the comparison is propogated down the pipeline for use in the subsequent Depth Buffer
Update function. The Depth Test function does not in itself discard pixels.

If Depth Test Enable is DISABLED, a result of “depth test passed” is propagated down the pipeline.

Programming Note:

e Enabling the Depth Test function without defining a Depth Buffer is UNDEFINED.

Pre-Blend Color Clamping

Pre-Blend Color Clamping, controlled via Pre-Blend Color Clamp Enable OR Pre-Blend Source Only
Clamp Enable and Color Clamp Range states in COLOR_CALC_STATE, is affected by the enabling of
Color Buffer Blend as described below.

The following table summarizes the requirements involved with Pre-/Post-Blend Color Clamping.

Programming Note

Context: Negative Values

Errata - Negative values on Unsigned Float channels are always clamped to 0 if blending is enabled, regardless of
how pre-blend clamping is programmed.

Blending Pre-Blend Color Clamp Clamp Range

Off Disabled: clamp to RT range (1) Must set range = RT range

(except if Pre Blend Source Only
Clamp Enable is set)

Enabled: clamp to RT range (1) Must set range = RT range

On (if Disabled: clamp to internal format (1) for float RTs and to RT | Must set range = RT range
permitted) range for UNORM/SNORM RTs

Enabled: clamp to RT range (1) Must set range = RT range

1) If Pre Blend Source Only Clamp Enable is set in BLEND STATE, SourceColor is clamped to COLORCLAMP_UNORM

Values written to a render target are always clamped to the RT range.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 287

intel

Pre-Blend Color Clamping When Blending is Disabled

The clamping of source color components is controlled by Pre-Blend Color Clamp Enable. If ENABLED,
all source color components are clamped to the range specified by Color Clamp Range. If DISABLED, no
clamping is performed.

Programming Note

Context: Pre-Blend Color Clamping When Blending is Disabled

e Given the possibility of writing UNPREDICTABLE values to the Color Buffer, it is expected and highly
recommended that, when blending is disabled, software set Pre-Blend Color Clamp Enable to ENABLED
and select an appropriate Color Clamp Range.

e When using SINT or UINT rendertarget surface formats, Blending must be DISABLED. The Pre-Blend Color
Clamp Enable and Color Clamp Range fields are ignored, and an implied clamp to the rendertarget surface
format is performed.

Pre-Blend Color Clamping When Blending is Enabled

The clamping of source, destination and constant color components is controlled by Pre-Blend Color
Clamp Enable. If ENABLED, all these color components are clamped to the range specified by Color
Clamp Range. If DISABLED, no clamping is performed on these color components prior to blending.

Color Buffer Blending

The Color Buffer Blending function is used to combine one or two incoming “source” pixel color+alpha
values with the “destination” color+alpha read from the corresponding location in a RenderTarget.

Blending is enabled on a global basis by the Color Buffer Blend Enable state variable (in
COLOR_CALC_STATE). If DISABLED, Blending and Post-Blend Clamp functions are disabled for all
RenderTargets, and the pixel values (possibly subject to Pre-Blend Clamp) are passed through
unchanged.

The Color Buffer Blend Enable is in the per-render-target BLEND_STATE, and the field in SURFACE_STATE
is no longer supported.

Programming Note

Context: Color Buffer Blending, Logic Ops, DataPort, surface formats, render targets

e Color Buffer Blending and Logic Ops must not be enabled simultaneously, or behavior is UNDEFINED.
e Dual source blending: The DataPort only supports dual source blending with a SIMD8-style message.

e Only certain surface formats support Color Buffer Blending. Refer to the Surface Format tables in Sampling
Engine. Blending must be disabled on a RenderTarget if blending is not supported.

The incoming “source” pixel values are modulated by a selected “source” blend factor, and the possibly
gamma-decorrected “destination” values are modulated by a “destination” blend factor. These terms are
then combined with a “blend function”. In general:

src_term = src_blend_factor * src_color

288 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

dst_term = dst_blend_factor * dst_color
color output = blend_function(src_term, dst_term)

If there is no alpha value contained in the Color Buffer, a default value of 1.0 is used and,
correspondingly, there is no alpha component computed by this function.

Dual Source Blending: When using “Dual Source” Render Target Write messages, the Source1 pixel
color+alpha passed in the message can be selected as a src/dst blend factor (see "Color Buffer Blend
Color Factors"). In single-source mode, those blend factor selections are invalid. If SRC1 is included in a
src/dst blend factor and a DualSource RT Write message is not used, results are UNDEFINED. (This
reflects the same restriction in DX APIs, where undefined results are produced if “01” is not written by a
PS — there are no default values defined). If SRC1 is not included in a src/dst blend factor, dual source
blending must be disabled.

The blending of the color and alpha components is controlled with two separate (color and alpha) sets of
state variables. However, if the Independent Alpha Blend Enable state variable in COLOR_CALC_STATE
is DISABLED, then the “color” (rather than “alpha”) set of state variables is used for both color and alpha.
Note that this is the only use of the Independent Alpha Blend Enable state — it does not control
whether Blending occurs, only how.

Per Render Target Blend State: Blend state is selected based on Render Target Index contained in the
message header, and appropriate blend state is applied to Render Target Write messages.

The following table describes the color source and destination blend factors controlled by the Source
[Alpha] Blend Factor and Destination [Alpha] Blend Factor state variables in COLOR_CALC_STATE.
Note that the blend factors applied to the R,G,B channels are always controlled by the
Source/Destination Blend Factor, while the blend factor applied to the alpha channel is controlled
either by Source/Destination Blend Factor or Source/Destination Alpha Blend Factor.

Color Buffer Blend Color Factors

Blend Factor Applied for R,G,B,A channels
(oN = output from PS to RT#N)
(o1 = 2™ output from PS in Dual-Souce mode only)
(rtN = destination color from RT#N)
Blend Factor Selection (CC = Constant Color)
BLENDFACTOR_ZERO 0.0,0.0,0.0,0.0
BLENDFACTOR_ONE 1.0,1.0,1.0,1.0
BLENDFACTOR_SRC_COLOR oN.r, oN.g, oN.b, oN.a
BLENDFACTOR_INV_SRC_COLOR 1.0-oN.r, 1.0-oN.g, 1.0-oN.b, 1.0-oN.a
BLENDFACTOR_SRC_ALPHA oN.a, oN.a, oN.a, oN.a
BLENDFACTOR_INV_SRC_ALPHA 1.0-oN.a, 1.0-oN.a, 1.0-oN.a, 1.0-oN.a
BLENDFACTOR_SRC1_COLOR olr,o0l.g,0lb, 0l.a
BLENDFACTOR_INV_SRC1_COLOR 1.0-o1.r, 1.0-01.g, 1.0-01.b, 1.0-01.a
BLENDFACTOR_SRC1_ALPHA ol.a,0l.a,01.3,01.a

Doc Ref # IHD-OS-LKF-Vol 9-4.21 289

intel

Blend Factor Selection

Blend Factor Applied for R,G,B,A channels
(oN = output from PS to RT#N)
(o1 = 2" output from PS in Dual-Souce mode only)
(rtN = destination color from RT#N)
(CC = Constant Color)

BLENDFACTOR_INV_SRC1_ALPHA

1.0-o01.a, 1.0-01.a3, 1.0-01.3, 1.0-01.a

BLENDFACTOR_DST_COLOR

rtN.r, rtN.g, rtN.b, rtN.a

BLENDFACTOR_INV_DST_COLOR

1.0-rtN.r, 1.0-rtN.g, 1.0-rtN.b, 1.0-rtN.a

BLENDFACTOR_DST_ALPHA

rtN.a, rtN.a, rtN.a, rtN.a

BLENDFACTOR_INV_DST_ALPHA

1.0-rtN.a, 1.0-rtN.a, 1.0-rtN.a, 1.0-rtN.a

BLENDFACTOR_CONST_COLOR

CCr, CC.g,CCb, CCa

BLENDFACTOR_INV_CONST_COLOR

1.0-CC.r, 1.0-CC.g, 1.0-CC.b, 1.0-CC.a

BLENDFACTOR_CONST_ALPHA

CC.a,CCa,CCa CCa

BLENDFACTOR_INV_CONST_ALPHA

1.0-CC.a, 1.0-CC.a, 1.0-CC.a, 1.0-CC.a

BLENDFACTOR_SRC_ALPHA_SATURATE f,f£,1.0 where f = min(1.0 — rtN.a, oN.a)

The following table lists the supported blending operations defined by the Color Blend Function state
variable and the Alpha Blend Function state variable (when in independent alpha blend mode).

Color Buffer Blend Functions

Blend Function Operation (for each color component)

BLENDFUNCTION_ADD SrcColor*SrcFactor + DstColor*DstFactor

BLENDFUNCTION_SUBTRACT SrcColor*SrcFactor - DstColor*DstFactor

BLENDFUNCTION_REVERSE_SUBTRACT | DstColor*DstFactor - SrcColor*SrcFactor

BLENDFUNCTION_MIN min (SrcColor*SrcFactor, DstColor*DstFactor)

Programming Note: This is a superset of the OpenGL "min” function.

BLENDFUNCTION_MAX max (SrcColor*SrcFactor, DstColor*DstFactor)

Programming Note: This is a superset of the OpenGL "max” function.

Post-Blend Color Clamping

(See Pre-Blend Color Clamping above for a summary table regarding clamping)
Post-Blend Color clamping is available only if Blending is enabled.

If Blending is enabled, the clamping of blending output color components is controlled by Post-Blend
Color Clamp Enable. If ENABLED, the color components output from blending are clamped to the range
specified by Color Clamp Range. If DISABLED, no clamping is performed at this point.

290 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Regardless of the setting of Post-Blend Color Clamp Enable, when Blending is enabled color
components will be automatically clamped to (at least) the render target surface format range at this
stage of the pipeline.

Dithering

Dithering is used to give the illusion of a higher resolution when using low-bpp channels in color buffers
(e.g., with 16bpp color buffer). By carefully choosing an arrangement of lower resolution colors, colors
otherwise not representable can be approximated, especially when seen at a distance where the viewer's
eyes will average adjacent pixel colors. Color dithering tends to diffuse the sharp color bands seen on
smooth-shaded objects.

A four-bit dither value is obtained from a 4x4 Dither Constant matrix depending on the pixel's X and Y
screen coordinate. The pixel's X and Y screen coordinates are first offset by the Dither Offset X and
Dither Offset Y state variables (these offsets are used to provide window-relative dithering). Then the
two LSBs of the pixel's screen X coordinate are used to address a column in the dither matrix, and the
two LSBs of the pixel's screen Y coordinate are used to address a row. This way, the matrix repeats every
four pixels in both directions.

The value obtained is appropriately shifted to align with (what would be otherwise) truncated bits of the
component being dithered. It is then added with the component and the result is truncated to the bit
depth of the component given the color buffer format.

Significant Bits | Bits for Dithering

55555 |DDDD Component Being Dithered (e.q., RGBEA)

+ FFFT Value From Dither Matrix

Pixel ® Mod 4
TTTTT [X®xx o1z 3
Oithered Walue Truncated ol o a z | 10

(ether 35555 Bits
ar S5555+1)

1 (12| 4 (14| &

Pixel ¥ Mod 4
z (11| 1 a

33| 7 [13] 5

Dither Matrix
Address by Z LSEs
of Pixel 1 and ¥

Be232-01

Dithering Process (5-Bit Example)

Doc Ref # IHD-OS-LKF-Vol 9-4.21 291

intel

Logic Ops

The Logic Ops function is used to combine the incoming “source” pixel color/alpha values with the
corresponding “destination” color/alpha contained in the ColorBuffer, using a logic function.

The Logic Op function is enabled by the LogicOp Enable state variable. If DISABLED, this function is
ignored and the incoming pixel values are passed through unchanged.

Programming Notes

Programming Note

Color Buffer Blending and Logic Ops must not be enabled simultaneously, or behavior is UNDEFINED.

Logic Ops are supported on all blendable render targets and render targets with *INT formats.

The following table lists the supported logic ops. The logic op is selected using the Logic Op Function
field in COLOR_CALC_STATE.

Logic Ops

LogicOp Function Definition (S=Source, D=Destination)
LOGICOP_CLEAR all0's
LOGICOP_NOR NOT (S OR D)
LOGICOP_AND_INVERTED |[(NOT S) AND D
LOGICOP_COPY_INVERTED [NOT S
LOGICOP_AND_REVERSE |S AND NOT D
LOGICOP_INVERT NOTD
LOGICOP_XOR SXORD
LOGICOP_NAND NOT (S AND D)
LOGICOP_AND SANDD
LOGICOP_EQUIV NOT (S XOR D)
LOGICOP_NOOP D
LOGICOP_OR_INVERTED [(NOTS)ORD
LOGICOP_COPY S
LOGICOP_OR_REVERSE SORNOTD
LOGICOP_OR SORD
LOGICOP_SET all 1's

Buffer Update

The Buffer Update function is responsible for updating the pixel’s Stencil, Depth and Color Buffer
contents based upon the results of the Stencil and Depth Test functions. Note that Kill Pixel and/or Alpha
Test functions may have already discarded the pixel by this point.

292 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Stencil Buffer Updates

If and only if stencil testing is enabled, the Stencil Buffer is updated according to the Stencil Fail Op,
Stencil Pass Depth Fail Op, and Stencil Pass Depth Pass Op state (or their backface counterparts if
Double Sided Stencil Enable is ENABLED and the pixel is from a back-facing object) and the results of
the Stencil Test and Depth Test functions.

Stencil Fail Op and Backface Stencil Fail Op specify how/if the stencil buffer is modified if the stencil
test fails. Stencil Pass Depth Fail Op and Backface Stencil Pass Depth Fail Op specify how/if the stencil
buffer is modified if the stencil test passes but the depth test fails. Stencil Pass Depth Pass Op and
Backface Stencil Pass Depth Pass Op specify how/if the stencil buffer is modified if both the stencil and
depth tests pass. The operations (on the stencil buffer) that are to be performed under one of these
(mutually exclusive) conditions is summarized in the following table.

Stencil Buffer Operations

Stencil Operation Description

STENCILOP_KEEP Do not modify the stencil buffer

STENCILOP_ZERO Storea 0

STENCILOP_REPLACE Store the StencilTestReference reference value

STENCILOP_INCRSAT | Saturating increment (clamp to max value)

STENCILOP_DECRSAT | Saturating decrement (clamp to 0)

STENCILOP_INCR Increment (possible wrap around to 0)

STENCILOP_DECR Decrement (possible wrap to max value)

STENCILOP_INVERT | Logically invert the stencil value

Any and all writes to the stencil portion of the depth buffer are enabled by the Stencil Buffer Write
Enable state variable.

When writes are enabled, the Stencil Buffer Write Mask and Backface Stencil Buffer Write Mask state
variables provide an 8-bit mask that selects which bits of the stencil write value are modified. Masked-off
bits (i.e., mask bit == 0) are left unmodified in the Stencil Buffer.

Programming Note

Context: | Stencil Buffer Updates

The Stencil Buffer can be written even if depth buffer writes are disabled via Depth Buffer Write Enable

Depth Buffer Updates

Any and all writes to the Depth Buffer are enabled by the Depth Buffer Write Enable state variable. If
there is no Depth Buffer, writes must be explicitly disabled with this state variable, or operation is
UNDEFINED.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 293

intel

If depth testing is disabled or the depth test passed, the incoming pixel’s depth value is written to the
Depth Buffer. If depth testing is enabled and the depth test failed, the pixel is discarded — with no
modification to the Depth or Color Buffers (though the Stencil Buffer may have been modified).

Color Gamma Correction

Computed RGB (not A) channels can be gamma-corrected prior to update of the Color Buffer.

This function is automatically invoked whenever the destination surface (render target) has an SRGB
format (see surface formats in Sampling Engine). For these surfaces, the computed RGB values are
converted from gamma=1.0 space to gamma=2.4 space by applying a *(2.4) exponential function.

Color Buffer Updates

Finally, if the pixel has not been discarded by this point, the incoming pixel color is written into the Color
Buffer. The Surface Format of the color buffer indicates which channel(s) are written (e.g.,, RBG8_UNORM
are written with the Red and Green channels only). The Color Buffer Component Write Disables from
the Color Buffer's SURFACE_STATE provide an independent write disable for each channel of the Color
Buffer.

Pixel Pipeline State Summary
COLOR_CALC_STATE
3DSTATE_BLEND_STATE_POINTERS
3DSTATE_BLEND_STATE_POINTERS
3DSTATE_DEPTH_STENCIL_STATE_POINTERS

3DSTATE_DEPTH_STENCIL_STATE_POINTERS been replaced by 3DSTATE_WM_DEPTH_STENCIL. (See 3D
Pipeline — Windower for details.)

COLOR_CALC_STATE

COLOR_CALC_STATE
DEPTH_STENCIL_STATE

DEPTH_STENCIL_STATE has been replaced by 3DSTATE_WM_DEPTH_STENCIL. (See 3D Pipeline —
Windower for details).

294 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

BLEND_STATE

BLEND_STATE

Signal CC_INT::AlphaTestEnable
Description AlphaTestEnable
Formula

= BLEND_STATE:AlphaTestEnable &&
13DSTATE_WM_HZ_OP::DepthBufferResolveEnable &&
13DSTATE_WM_HZ_OP::DepthBufferClear &&
13DSTATE_WM_HZ_OP::StencilBufferClear

Signal CC_INT::AlphaToCoverageEnable

Description AlphaToCoverageEnable

Formula = BLEND_STATE:AlphaToCoverageEnable &8

I3DSTATE_PS_EXTRA::PixelShaderDisableAlphaToCoverage

CC_VIEWPORT

CC_VIEWPORT

Other Pixel Pipeline Functions

Statistics Gathering

If Statistics Enable is set in 3DSTATE_WM, the PS_DEPTH_COUNT register (see Memory Interface
Registers in Volume 1a, GPU Overview) is incremented once for each pixel (or sample) that passes the
depth, stencil and alpha tests. Note that each of these tests is treated as passing if disabled. This count is
accurate regardless of whether Early Depth Test Enable is set. To obtain the value from this register at a
deterministic place in the primitive stream without flushing the pipeline, however, the PIPE_CONTROL
command must be used. See Volume 2a, 3D Pipeline, for details on PIPE_CONTROL.

GPGPU Compute Pipeline

This section of the BSpec discusses the programming the General Purpose GPU Pipeline, including:

e how GPGPU and Media threads are dispatched,
e thread resource management,

e how thread groups are tracked, and

e preemption and context switching.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 295

intel

General Purpose Compute Model

The General Purpose (GP) compute model consists of a host connected to one or more compute devices.
Each compute device consists of several Processing Elements (PEs), also known as Execution Units (EUs).
Applications are then architected as a combination of host software (per the host framework), and
kernels that are submitted by the host to run on the PEs with a pre-defined decoupling point.

Slices I /
EEEEE N N I B
I HOST

E—

auE B B
I\ pute Devices

(GPU)

Processing Element /Execution Unit {EU)
Figure: General Purpose Compute Model

The GP compute architecture contains two distinct units of execution: a host program and a set of
kernels that execute within the context set by the host. The host interacts with these kernels through a
command queue. Each device may have its own command queue. When a command is submitted into
the command queue, the command is checked for dependencies and then executed on a PE inside the
compute unit clusters. Once the command has finished executing, the kernel communicates an end of
life cycle through “end of thread” message.

The GP execution model determines how to schedule and execute the kernels. When a kernel-enqueue
command submits a kernel for execution, the command defines an index space or N-dimensional range.
A kernel-instance consists of the kernel, the argument values associated with the kernel, and the
parameters that define the index space. When a compute device executes a kernel-instance, the kernel
function executes for each point in the defined index space or N-dimensional range.

An executing kernel function is called a work-item, and a collection of these work-items is called a work-
group. A compute device manages work-items using work-groups. Individual work-items are identified
by either a global ID, or a combination of the work-group ID and a local ID inside the work-group.

296 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

The work-group concept, which essentially runs the same kernel on several unit items in a group,
captures the essence of data parallel computing. The PEs can organize work-items in vector format and
run the same kernel on the vector, hence speeding up the compute for all such applications.

A device can compute each work-group in any arbitrary order. Also, the work-items within a single work-
group execute concurrently, with no guarantee on the order of progress. A high level work-group
function, like Barriers, applies to each work-item in a work-group, to facilitate the required
synchronization points. Such a work-group function must be defined so that all work-items in the work-
group encounter precisely the same work-group function.

Synchronization can also occur at the command level, where the synchronization can happen between
commands in host command-queues. In this mode, one command can depend on execution points in
another command or multiple commands.

Other types of synchronization based on memory-order constraints inside a program include Atomics
and Fences. These synchronization types control how a memory operation of any particular work-item is
made visible to another, which offers micro-level synchronization points in the data-parallel compute
model.

The memory model for a general-purpose engine is partitioned into host-side memory and device-side
memory, using Shared Virtual Memory (SVM) to move objects between the two sides. The device-side
memory is further divided into four distinct disjoint regions as defined below:

e Global Memory: Memory region accessible to all work-items within a context.
e Constant Memory: Memory region that remains constant during kernel execution.
e Local Memory: Memory region local and exclusive to a work-group (also called SLM).

e Private memory: Memory region private to a work-item.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 297

Compute Device{K)
|Compute Device{0)
Compute Unit{0] Computz Unit{M]
Memony{0] MemorglD) Memory{M]
: PEU) PEO) PEg
Shared Local Shared Local
Memory(0] Mermory (M
Cache
A A
| Y
Global Memory Constant Memory
A
L
HOST MEMIORY

298

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

GPGPU Context in GPU Hardware

The following block diagram provides an overview of the GPU Hardware. The media pipeline and the 3D
fixed function pipeline are positioned in parallel. Concurrency of the media pipeline and the 3D pipeline
is not supported. At any given time, only one of the two pipelines can be activated. A programmer can
switch between the two pipelines within a single context by using the MI_PIPELINE_SELECT command.

Yertes Merm ary Source
Buffers Objects Surfaces

mp| 3D
Command F

Streamer

Array of
Cores

=

[

Cache

Subsystem

S

Destination
* Inter-thread Cornrnunication Surfaces

BESTE-01

The media pipeline provides media functions and has media-specific fixed function capability. These
fixed functions are able to control shared functions and resources, feed generic threads to the Execution
Units (EUs), and interact with generic threads during runtime. Since a programmer can use the media
pipeline for non-media applications, the media pipeline can also be called the general purpose pipeline.
Henceforth, we refer to this fixed function pipeline as either the media or GPGPU pipeline, keeping in
mind its general-purpose capability.

The GPU subsystem consists of an array of EUs (also called an array of cores) and a set of shared
functions outside the EUs. The EUs leverage these shared functions for I/O and dedicated computations.
Programmers access the GPU subsystem via the 3D or media pipelines.

EUs are general-purpose programmable cores that support a rich instruction set. This instruction set has
been optimized to support various 3D API shader languages, media functions processing, and compute
kernels.

Shared functions are dedicated hardware accelerator units that provide specialized supplemental
functionality for the EUs, to run filtered load, scatter, gather, and filter/blended store operations.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 299

intel

GPGPU PIPE Overview

This section describes conceptual details of the GPGPU PIPE hardware.

When running a GPGPU application, a host-side application on the IA core controls the workflow for
GPGPU Pipe. The host-side application loads the code and data to be run on the GPU into memory, and
sets up the context to ensure that there are no faults or that any faults are handled correctly. Then the
host-side application submits the workloads to run in a command buffer in the command streamer.

The command streamer workloads can run independently on the GPU, which acts as a hardware
accelerator. When a workload or context is in the command streamer, the CS reads commands from the
current context out of the command buffer and forwards those commands to either the 3D pipe or
Media/GPGPU pipe.

The Media/GPGPU pipe executes those commands, sets up the GPGPU Pipe contexts and parameters,
and prepares for thread dispatch. The pipe sends the per-thread payload, cross-thread payload, and
interface descriptor from memory to the URB for a temporary holding buffer.

Threads are dispatched by the thread spawner (TS). For each thread, TS checks if there is a thread slot
available in any of the EUs. For a media thread in particular, the TS checks whether there is a dependency
for the thread indicated by the thread scoreboard. This scoreboard helps to order the threads, and then
dispatches them to the dispatch pipe. If there is no space in the dispatch pipe, then TS backs up and
holds the thread dispatch. Hence in the GPGPU, most threads are synchronized using a thread slot
barrier, while media threads are synchronized based on the scoreboard.

Once a thread is in the dispatch queue, it traverses through the Global, Slice, and Local distribution
queues. The Local queue pushes into suitable rows, EUs, and even to a particular thread in an EU. The EU
then executes the kernel for a thread independently from the instruction cache.

Normally all threads run independently in an EU, but a thread can stall under two conditions:

1. There is a barrier, which is a mechanism to synchronize multiple threads; or
2. One thread is dependent on another thread.
Eventually all threads must exit after executing the laid-down kernel, at which point the EU issues an EOT

message indicating the exit has occurred. The EOT message is returned to TS, indicating the exit of an
earlier dispatched thread, plus availability of a new slot for a new thread dispatch.

Programming the GPGPU Pipeline

The commands for either Programmable Media or GPGPU contexts uses mostly the same commands,
with a few sequence differences as described in this section.

The Programmable Media Pipeline is programmed using command sequences. Media hardware threads
are created through the parameterized media walker. Dispatch of a thread is controlled by a scoreboard
mechanism.

The media pipeline can now use pipelined state changes, via the added MEDIA_STATE_FLUSH command.
The MEDIA_STATE_FLUSH serves as a fence for state change by flushing the VFE/TS front ends without
waiting for threads to retire.

300 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Note that media pipeline is the main user of the CURBE command. Media state commands deliver the
interface descriptors directly, instead of loading them through indirect state.

Thread Lifecycle
Once a dispatcher selects a thread, the thread lifecycle is as follows:

e TS forwards the interface descriptor pointer to the L1 interface descriptor cache — a small fully
associated cache containing up to four interface descriptors. If the interface descriptor is not
found in the L1 interface descriptor cache, a corresponding request is forwarded to the L2
cache. Interface descriptors return back to TS in requested order.

e Once TS receives an interface descriptor, it checks whether the maximum concurrent thread
number has been reached to determine whether to make a thread dispatch request or to stall
the request until another thread retires. If the thread requests the use of scratch memory, TS
also generates a pointer into the scratch space.

e TS then builds the transparent header and the RO header, and TS makes a thread request to
the thread dispatcher.

e TS keeps track of each dispatched thread, and monitors messages from each thread, including
resource dereference and/or thread termination. When TS receives a thread termination
message, it can recover the scratch space and thread slot allocated to the specified thread.
The URB handle for a terminated thread may also be dereferenced for future reuse. Note that
URB handle dereference may occur before a thread terminates. For more details, see the
Media Message section.

The following flowchart outlines the thread lifecycle process.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 301

intel.

5 Command Buffer

Single commiand

L Next Command FIFD

.,J

Copy Infine data to RS from C5.
opy idiredt dotaio URE Memory

!

Imdirect data

Commands with na inlin

E
=

':j" ‘Waker : Generate multiple Threads
" | Objedt: Generate single theead

Thiread Dneeue

Interfae Desriphor bolap -+ Catw @

.

Thread Dispach
THROH

Figure: Thread Lifecycle Process

302 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Command Sequence

The Command Sequence programming model requires the following steps. Some of the steps listed are
optional, but the order shown must be strictly followed. Some usage restrictions are emphasized for
descriptive purposes. For more details, refer to the definitions of each command.

Step 1: MI_FLUSH/PIPE_CONTROL

This step is mandatory.
Each command in this step can be used multiple times, but that is not recommended for performance
reasons.

Step 2: State command PIPELINE_SELECT

This step is optional if it is known that, within the same context, the media pipeline was selected before
Step 1.

The command in this step can be used multiple time, but that is not recommended for performance
reasons.

Step 3: State commands configuring pipeline states

STATE_BASE_ADDRESS:

This command is mandatory for this step.

Multiple instances of this command are allowed. The last instance overwrites previous ones.

This command must precede any other state commands mentioned below.

The fields Indirect Object Base Address and Indirect Object Access Upper Bound are used to control

indirect Media object load. The fields Dynamics Base Address and Dynamics Base Access Upper Bound
are used to control indirect CURBE and interface descriptor object load.

On receiving the STATE_BASE_ADDRESS command, the Media/GPGPU pipe (VFE) stores the 48-bit
Dynamics Base Address, Dynamics Base Access Upper Bound, Indirect Object Base Address, and Indirect
Object Access Upper Bound in state registers. These values are used to calculate the fetch addresses for
CURBE, Interface Descriptor, and Indirect Data respectively.

¢ Note that the STATE_BASE_ADDRESS command may be inserted before and after any
commands listed in Steps 1 and 2 above. For example, STATE_BASE_ADDRESS may be placed
in the ring buffer while other commands are put in a batch buffer.

STATE_SIP:
This command is optional for this step, unless the kernels use SIP.
MEDIA_VFE_STATE:

This command is mandatory for this step.

This command destroys all outstanding URB handles in the system, then generates a new set of URB
handles based on state parameters, number of URBs, and URB length from the VFE FF state.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 303

intel

On receiving a MEDIA_VFE_STATE command, VFE allocates the number of handles specified by Number
of URB Entries, with each handle size as specified in URB Entry Allocation Size, starting at CURBE
Allocation Size + 64.

MEDIA_VFE_STATE also stores other state information, including Scratch Space, Gateway, Scoreboard,
and Max Thread limit

Multiple instances of the MEDIA_VFE_STATE command are allowed. The last instance overwrites previous
ones.

MEDIA_CURBE_LOAD:

This command is optional for this step.
Multiple instances of this command are allowed. The last instance overwrites previous ones.

On receiving a MEDIA_CURBE_LOAD command, VFE fetches the CURBE data from CURBE Data Start
Address by reading CURBE Total Data Length bytes. The Address is defined relative to the Dynamics Base
Address programmed through STATE_BASE_ADDRESS command.

VFE breaks the CURBE Total Data Length into 64-byte chunks, and sends request through GAFS. The
fetched data is written directly into URB at the address specified in the tag of the request. This address is
set at 64. VFE tracks this fetch through its local up/down counter.

MEDIA_INTERFACE_DESCRIPTOR_LOAD:

This command is mandatory for this step.

Multiple instances of this command are allowed. The last instance overwrites previous ones.

On receiving a MEDIA_INTERFACE_DESCRIPTOR_LOAD command, VFE fetches the Interface Descriptors
from the Interface Descriptor Data Start Address by reading Interface Descriptor Total Length bytes. The

Address is defined relative to the Dynamics Base Address, programmed through the
STATE_BASE_ADDRESS command.

VFE breaks the Interface Descriptor Total Length into 64 byte chunks and sends a request to GAFS. The
fetched data is directly written into URB at the address specified in the tag of the request. That address is
set as zero. VFE tracks this fetch through its local up/down counter.

Step 4: Primitive commands

This step must follow previous steps, which prepare the Media/GPU pipeline for the execution of
primitive commands.

MEDIA_OBJECT/ MEDIA_OBJECT_GRPIP:
You can issue this command multiple times, to continue processing media primitives.

On receiving a MEDIA_OBJECT/MEDIA_OBJECT_GRPID command, VFE fetches indirect data from Indirect
Data Start Address by reading Indirect Data Length bytes. The Address is defined relative to the Indirect
Object Base Address, programmed through the STATE_BASE_ADDRESS command.

VFE breaks the Indirect Data Length into 64-byte chunks and sends the request to GPU memory interface
unit. The fetched data is written directly into URB at the address specified in the request tag. This address

304 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

is set as the handle address + inline data length (found from csdwlengthr [] - cmd_length), rounded up
to the next 32-byte boundary. VFE tracks this fetch through its local up/down counter.

e Ifinline or indirect data is present in the command, the URB handle is allocated from UEM.

Upon receiving this command, VFE stores the Media Object information to pass to the TSG unit,
including the Interface Descriptor Offset, Child Present, Thread Synchronization, Scoreboard, and GRPID
(for MEDIA_OBJECT_GRPID command).

The command writes inline data at the starting URB handle address through the GAFS interface. If the
inline data in not a multiple of 32-bytes, padding is added to the next 32-byte boundary.

When the transfer of inline and indirect data is complete, VFE sends a thread dispatch signal to the
thread dispatcher.

GPGPU Pipeline Notes

e Set up the interface descriptor with the number of threads in barrier. The barrier ID is not specified
here, because hardware can automatically assign barriers to available thread groups. The amount
of CURBE data to deliver per thread dispatch is set in the interface descriptor.

e Set up CURBE with thread IDs and common data for all thread dispatches in the thread group.

e Set up a GPGPU_WALKER command with the thread group IDs to dispatch the threads. Each
thread dispatch in the thread group sends CURBE data in sections; a new thread group starts
sending the CURBE data from the beginning of the buffer.

e Place a MEDIA_STATE_FLUSH right before the MI_BATCH_BUFFER_END of any batch buffer that
uses MEDIA_OBJECT.

e The kernel should handle barriers as follows:

o The BarrierMsg contains the barrier ID and a way to reprogram the barrier count.

o The barrier count reprogram is not normally used for GPGPU workloads.

o When all threads in the group have reached the barrier, the gateway returns a notification bit 0.
o The kernel must wait for the barrier to finish with a WAIT NO.

CURBE/Indirect Payload Dispatch

Example of a CURBE command sequence:

e MEDIA_STATE_FLUSH // Make sure dispatch is not accessing CURBE
e MEDIA_CURBE_LOAD
e GPGPU _WALKER

The GPGPU commands extend to allow indirect input as an alternative to CURBE using the exact same
mechanism: the same offset specifies what data is delivered to all threads, and a count specifies how
much data is delivered per thread. A single indirect pointer points to both the Cross-Thread and Per-
Thread Constant Data, which are stored in the URB. The positions of the cross-thread and per-thread
constants are swapped in the EU GRF.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 305

intel

To use indirect payload storage, the product (URB entry allocation size * number of URB entries) must be
enough to cover the sum of the cross-thread and per-thread indirect data to be loaded. The
MEDIA_VFE_STATE command sets these state variables. The URB entry allocation must be equal to or
greater than the indirect data length in GPGPU_WALKER. Use the maximum number of URB entries that
fills the URB space, to avoid a shortage of handles that could cause a performance problem.

Indirect input is defined as follows:
Indirect uses a 32-bit memory pointer for the start address (compared to 64 bit for CURBE).

Indirect does not use the constant URB entry read offset.

Indirect multiplies the cross-thread constant data read length and constant entry read length by 32 to
convert them into bytes.

The X/Y/Z payload in the EU GRF comes before the cross-thread constant data.

Media GPGPU Payload Limitations

The Media/GPGPU instructions can have three types of payloads, but not all combinations are allowed.
The following table lists the legal combinations.

Table: Media GPGPU Payload Limitations

Workload Commands Data Stored

GPGPU GPGPU_WALKER CURBE
GPGPU_WALKER INDIRECT

Media (Legacy) Media_Object CURBE
Media_Object INDIRECT
Media_Object INLINE
Media_Object CURBE+INLINE
Media_Object CURBE+INDIRECT
Media_Object INLINE+INDIRECT
Media_Object CURBE+ INLINE+INDIRECT
Media_Object_Walker CURBE
Media_Object_Walker INLINE

306 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Media_Object_Walker CURBE+INLINE
Media_Object_Walker INDIRECT
Media using Barrier/SLM | Media_Object_GRPID CURBE
Media_Object_GRPID INDIRECT
Media_Object_GRPID INLINE

Media_Object_Walker (with group id) | CURBE

Media_Object_Walker (with group id) | INLINE

Media_Object_Walker (with group id) [INDIRECT

The Dynamic State MOCS, specified in STATE_BASE_ADDRESS, fetch indirect and CURBE payloads from
memory during thread dispatch.

Media State Model

The media state model is based on an in-line state load mechanism. State commands load VFE state,
URB configuration, and Interface Descriptors to VFE hardware.

All Interface Descriptors have the same size and are organized as a contiguous array in memory. The
Interface Descriptor Index can select these descriptors for a given kernel, which allows different kinds of
kernels to coexist in the system.

The state-command-related headers are as follows.

Pipeline Opcode Sub Opcode [Command

(Media) Bits[26:24] | Bits[23:16]

Bits[28:27]

2h Oh 00h MEDIA_VFE_STATE

2h Oh 01h MEDIA_CURBE_LOAD

2h Oh 02h MEDIA_INTERFACE_DESCRIPTOR_LOAD

Doc Ref # IHD-OS-LKF-Vol 9-4.21 307

intel

Commands for GPGPU Pipe

This section lists and explains the various commands that VFE executes for media and GPGPU context on
render pipe, including several commands that are shared with media mode. There are three types of VFE
commands:

e Null command — may write URB, but does not place any request to the TSG unit.

e Object command — may write URB, and then place a single request to the TSG unit.

e Walker command — may write URB, and then trigger VFE_WALKER to generate multiple
requests to the TSG unit.

Table: VFE Commands

CmdID | Command Command type
1 MEDIA_CURBE_LOAD null command

2 MEDIA_INTERFACE_DESCRIPTOR_LOAD | null command

3 MEDIA_VFE_STATE null command

3 MEDIA_STATE_FLUSH? object command
4 MEDIA_OBJECT object command
5 MEDIA_OBJECT_GRPID object command
7 MEDIA_WALKER walker command
9 GPGPU_WALKER walker command

' The MEDIA_STATE_FLUSH command is also an object command, to ensure that it reaches the top of the
root FIFO in TSG unit only when all previous requests are dispatched.

308 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

MEDIA_VFE_STATE

MEDIA_VFE_STATE is the primary state command for GPGPU pipe, and sets up context for GPGPU pipe
usage as follows:

VFE allocates URB handles (1-128) and specifies the size for each URB entry.
Defines Scratch Space allocation per thread and CURBE allocation size.

Sets up and controls the hardware scoreboard in the media pipeline. Sets up the type, mask and relative
vertical and horizontal distance of the dependent instant for each of the eight possible scoreboards.

Sets up the gateway usage model, especially if the gateway protocol needs to be bypassed and
timestamp reset.

Defines the maximum number of simultaneous active threads possible in the system and in the thread
dispatch policy, chooses the best subslice for a thread, and selects a field to specify which slices or
subslices the dispatch can disable.

Defines SLM bank selection policy, determined by a bit that allows selection between the least loaded
SLM bank or a bank that is paired with the thread's subslice.

Note that a stalled PIPE_CONTROL (a top-end synchronization command) is required before the
MEDIA_VFE_STATE command, unless the only bits changed are scoreboard-related. If bit changes are
scoreboard-related, a MEDIA_STATE_FLUSH command is sufficient.

For more details, see the MEDIA_VFE_STATE definition.

MEDIA_STATE_FLUSH

The MEDIA_STATE_FLUSH command flushes the media/GPGPU parser. In general this command is the
same as an MI_FLUSH, except MI_FLUSH clears the entire 3D/render pipeline.

A key function of the MEDIA_STATE_FLUSH command is to stall the Command Streamer (CS) in one of
two ways based on a watermark:

(1) Stalls the CS until there is programmed amount of room in a subslice, or enough SLM, or a free
barrier.

(2) Stalls the CS until the last-level thread dispatch unit is able to dispatch the last thread to the EU.

The MEDIA_STATE_FLUSH command also indexes the resource needed to support the above watermark.
A bit in this command indicates whether the write data out of the current thread group needs to be
flushed beyond the visibility of following commands.

Note: You should program the MEDIA_STATE_FLUSH command for any of the following:
(a) prior to new media state, CURBE, or interface descriptor commands;
(b) while programming for a new state in the same context; or

(c) while switching to a new context.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 309

intel

Also note that the interface descriptor offset field updates the MEDIA_STATE_FLUSH command to specify
all resources required for the next thread group. If the resources are not available, the next thread group
cannot start.

For more details, see the MEDIA_STATE_FLUSH definition.

MEDIA_VFE_STATE

MEDIA_VFE_STATE is the primary state command for GPGPU pipe, and sets up context for GPGPU pipe
usage as follows:

e VFE allocates URB handles (1-128) and specifies the size for each URB entry.
e Defines Scratch Space allocation per thread and CURBE allocation size.

e Sets up and controls the hardware scoreboard in the media pipeline. Sets up the type, mask and
relative vertical and horizontal distance of the dependent instant for each of the eight possible
scoreboards.

e Sets up the gateway usage model, especially if the gateway protocol needs to be bypassed and
timestamp reset.

e Defines the maximum number of simultaneous active threads possible in the system and in the
thread dispatch policy, chooses the best subslice for a thread, and selects a field to specify which
slices or subslices the dispatch can disable.

e Defines SLM bank selection policy, determined by a bit that allows selection between the least
loaded SLM bank or a bank that is paired with the thread'’s subslice.

Note that a stalled PIPE_CONTROL (a top-end synchronization command) is required before the
MEDIA_VFE_STATE command, unless the only bits changed are scoreboard-related. If bit changes are
scoreboard-related, a MEDIA_VFE_STATE command is sufficient.

For more details, see the MEDIA_VFE_STATE definition.

MEDIA_STATE_FLUSH
The MEDIA_STATE_FLUSH command flushes the media/GPGPU parser. In general this command is the
same as an MI_FLUSH, except MI_FLUSH clears the entire 3D/render pipeline.

A key function of the MEDIA_STATE_FLUSH command is to stall the Command Streamer (CS) in one of
two ways based on a watermark:

(1) Stalls the CS until there is programmed amount of room in a subslice, or enough SLM, or a free
barrier.

(2) Stalls the CS until the last-level thread dispatch unit is able to dispatch the last thread to the EU.

The MEDIA_STATE_FLUSH command also indexes the resource needed to support the above watermark.
A bit in this command indicates whether the write data out of the current thread group needs to be
flushed beyond the visibility of following commands.

Note: You should program the MEDIA_STATE_FLUSH command for any of the following:

310 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

(a) prior to new media state, CURBE, or interface descriptor commands;
(b) while programming for a new state in the same context; or
(c) while switching to a new context.

Also note that the interface descriptor offset field updates the MEDIA_STATE_FLUSH command to specify
all resources required for the next thread group. If the resources are not available, the next thread group
cannot start.

For more details, see the MEDIA_STATE_FLUSH definition.

MEDIA_CURBE_LOAD

The MEDIA_CURBE_LOAD command establishes the Constant URB Entry (CURBE) mode for Payloads by
defining:

Total CURBE data length provides an address range up to 2'7 bytes for the CURBE payload data. This field
is 64-byte aligned.

CURBE start address specifies the 64-byte aligned address where CURBE data must start to reside. This is
a relative address to the address established by the STATE_BASE_ADDRESS command.

For more details, see the MEDIA_CURBE_LOAD definition.

MEDIA_INTERFACE_DESCRIPTOR_LOAD

The MEDIA_INTERFACE_DESCRIPTOR_LOAD command sets up the VFE by defining where to fetch the
Interface descriptor and how many Bytes to fetch:

Loads the descriptor total length in bytes and the 64-byte aligned pointer to the interface descriptor
data. This interface descriptor pointer is relative to the Dynamic Base Address programmed through the
STATE_BASE_ADDRESS command.

VFE fetches the data based on the pointer and loads the data into URB.

Note: Use a MEDIA_STATE_FLUSH (without watermark) before this command to ensure that the
temporary interface descriptor storage is cleared.

For more details, see the MEDIA_INTERFACE_DESCRIPTOR_LOAD definition.

MEDIA_OBJECT

The MEDIA_OBJECT command is the basic media primitive command for the media pipeline, defined as
follows:

Supports loading of inline, CURBE, and indirect data.

Can be used in the following three VFE modes: Generic mode, IS mode, and VLD mode.

Specifies the length of inline data in all of the above three modes and all the associated
rules.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 311

intel

For indirect data, defines the rules for determining the length and start address for the same
three modes.

Cannot be used in AVC-IT, AVC-MC and VC1-IT modes.

Note: If neither SLM nor a barrier is used, MEDIA_OBJECT must be used instead of the
MEDIA_OBJECT_GRPID command.

For more details, see the MEDIA_OBJECT definition.

MEDIA_OBJECT_GRPID

The MEDIA_OBJECT_GRPID command is a variation of the MEDIA_OBJECT command and includes a 32-
bit group ID, which is a unique identifying number describing threads that share the same barriers
and/or SLMs.

e The interface descriptor command specifies how much SLM is needed and how many threads
report to a barrier. This command tracks and executes such groups.

e All MEDIA_OBJECT_GRPIDs with the same group ID need to have the same interface descriptor.
They must also be dispatched to the same Subslice, which is ensured by the hardware dispatcher
if Force Destination = 0, or by software if Force Destination = 1.

e Slice/SS destination select parameters can ensure where the dispatch happens for the group.
Software can also ensure that all threads needed for the Barrier fit into a subslice, or the Barrier
would never be satisfied due to insufficient condition.

e Hardware only dispatches a single group at a time, and that must be enforced by the
programmer for MEDIA_OBJECT_GRPID commands — unlike the MEDIA_OBJECT_WALKER
command.

e A bitfield defines whether threads associated with MEDIA_OBJECT_GRPID need to use the
scoreboard, and whether there are supporting fields to provide the X, Y, and color terms for the
scoreboard.

Note: MEDIA_OBJECT_GRPID supports the GPGPU version of payload delivery using the following:

e Per-thread payload containing a split of either indirect or CURBE between the threads, and

e Cross-thread payload sent to all threads.
For indirect payload splitting to work properly, you must send the same pointer with all the commands
associated with the thread group. A kernel does not split inline data, but sends the payload attached to

each command with the corresponding thread. Only one of inline, indirect, or CURBE is allowed, and you
must send at least one form of payload.

Also note that you must place MEDIA_STATE_FLUSH, with the watermark bit, between groups created by
MEDIA_OBJECT_GRPID. The Interface Descriptor associated with the watermark must match the Interface
Descriptor used for the subsequent group.

There are two walker commands: MEDIA_OBJECT _WALKER and GPGPU_WALKER.
For more details, see the MEDIA_OBJECT_GRPID definition.

312 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

MEDIA_OBJECT_WALKER

The MEDIA_OBJECT_WALKER command can create multiple threads with various patterns, per the walker
parameters provided in the command. Thread generation for “parameterized media walker” works as
follows:

The MEDIA_OBJECT_WALKER command uses the VFE hardware walker to generate threads associated
with a rectangular-shaped object. You can use this command only in generic mode. This command can
generate one or more threads.

MEDIA_OBJECT_WALKER supports loading only of inline data or CURBE, but not indirect data. You must
send at least one form of payload.

When inline data is present, MEDIA_OBJECT_WALKER repeats that data for all dispatched threads, so
pipeline flushes are not required. When commands are issued without a pipeline flush in between,
changes to the ‘global’ (shared) data are supported. (Unlike CURBE, which requires pipeline flushes for
such changes.)

Note: You must place a MEDIA_STATE_FLUSH command after each MEDIA_OBJECT_WALKER with inline
data.

For more details, see the MEDIA_OBJECT_WALKER definition.

GPGPU_WALKER

GPGPU_WALKER has counters in each of the X, Y, and Z dimensions to generate thread group IDs in
sequence, and to generate a thread dispatch request per thread for each thread group.
e GPGPU_WALKER does not support inline data.

e When dispatching threads through the GPGPU walker, use either direct mode parameter passing
or indirect passing through the GPGPU_XXX_MMIO registers.

e In direct mode parameter passing, take the X, Y, and Z dimension parameters from the command
itself.
Some notes on GPGPU_WALKER:
e |If all three dimensions (X, Y, and Z) of the GPGPU_WALKER command are programmed to one,
then all three starting X, Y, and Z values must be zero.

e If any of the three dimensions X, Y, or Z are greater than one, then the starting X, Y, and Z values
correctly wrap at the dimension limit.

e Send at least one form of payload (either indirect or CURBE) with the GPGPU_WALKER.

For more details, see the GPGPU_WALKER definition.

Synchronization of the Media-GPGPU Pipeline

The PIPE_CONTROL command synchronizes the Media/GPGPU Pipeline in the same way as for the 3D
pipeline. PIPE_CONTROL for the Media pipe case stalls at the top of the pipe until the Media FFs finish
processing commands parsed before PIPE_CONTROL. Post-synchronization operations, flushing of

Doc Ref # IHD-OS-LKF-Vol 9-4.21 313

intel

caches, and interrupts then occur per the enabled PIPE_CONTROL parameter fields. Due to the stalling
behavior at the top, only one PIPE_CONTROL command can be outstanding at a time on the Media Pipe.

The top of the pipe synchronization enforces the read-only cache invalidation. This synchronization
guarantees that primitives rendered after a synchronization event fetch the latest read-only data from
memory.

For more details, see the PIPE_CONTROL command definition.

Supporting Commands for MEDIA-GPGPU Pipe

PIPE_CONTROL

Use the PIPE_CONTROL command to implement synchronization in the render pipe. For Media and
GPPIPE, this causes a synchronization that stalls at the top of the pipe until the Media FFs finish
processing commands parsed before PIPE_CONTROL.

PIPE_CONTROL with flush replaces MI_FLUSH. Prior, use the MI_FLUSH command to perform an internal
flush operation. The parser pauses on an internal flush until all drawing engines on the render pipe have
completed any pending operations, and the read caches are invalidated - including the texture cache
accessed via the Sampler or data port.

PIPELINE_SELECT

Use the PIPELINE_SELECT command to select the currently active pipe in the render engine. Only one of
either the 3D pipeline or the GPGPU pipeline can be selected at a time; selection of these pipelines is
mutually exclusive.

STATE_BASE_ADDRESS

The STATE_BASE_ADDRESS command sets the base pointers for subsequent state, instruction, and
media indirect object accesses by the GPPIPE.

3DSTATE_BINDING_TABLE_POOL_ALLOC

The 3DSTATE_BINDING_TABLE_POOL_ALLOC command when enables Binding Table Pool sets the base
pointer for susbequent Binding Table Pointer access by the GPPIPE.

314 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Thread Spawner (TS)

Thread spawning is fundamental to the functionality of GPGPU and programmable media. The VFE can
create sets of threads using the GPGPU_WALKER, or the VFE can assemble general-purpose threads
using MEDIA_OBJECT_WALKER in generic media mode.

A command streamer interprets and forwards VFE-decodable commands to the VFE unit. The VFE first
runs one set of commands to set up the GP pipe, then runs WALKER commands to do automatic thread
generation. A single GPGPU WALKER command can create a whole list of threads by walking either a
one-dimensional range (X-pattern), a two-dimensional range (X-Y pattern), or a three-dimensional range
(X-Y-Z pattern). Similarly, a media WALKER command can create a list of threads through a walking
pattern of left, right, diagonal, forward, or backward.

The thread request queue stores thread requests, and is in arbitration only if the number of outstanding
threads does not exceed the maximum thread state variable. Otherwise, the thread request queue stalls
until some other threads retire or terminate. TS keeps everything needed to get the threads ready for
dispatch, and then tracks dispatched threads until their retirement.

The Thread Spawner (TS) unit is responsible for requesting threads from the thread dispatcher, managing
scratch memory, maintaining outstanding thread counts, and monitoring the termination of threads.

Memory Resources for Threads

The GPGPU memory model uses URB, SLM, scratch space, and GRF. URB, SLM, and scratch space are
physically in the L3 Cache and logically segregated; GRF is exclusively inside the EUs. The following
section covers these items and their usage model in more detail.

URB

The Unified Return Buffer (URB) is as a temporary holding area that handles the process of thread
creation and dispatch. VFE manages the URB in both GPGPU and generic media modes, and allocates
one URB handle for each thread. The URB handle delivers the payload into the thread. The TS signals VFE
to de-reference the URB handle immediately after receiving acknowledgement from TD that the thread
has been dispatched.

The first 64 URB entries are reserved for the interface description, and CURBE data is placed after the IDs.
URB handles are required for indirect data. When the VFE starts, it creates up to 128 handles by
partitioning the remaining URB space into evenly-spaced addresses, and saving the resulting handles to
a buffer. The resulting handles are removed from the buffer on use and returned to the buffer when they
retire.

MEDIA_VFE_STATE specifies the amount of CURBE space, the URB handle size, and the number of URB
handles.

The driver must ensure that:

((URB_handle_size * URB_num_handle) - CURBE - 64) <= URB_allocation_in_L3.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 315

intel

Shared Local Memory (SLM)

The Shared Local Memory is a 64KB block per L3 half-slice that must be shared between all thread
groups on that half-slice. An SLM memory manager, similar to the scratch space memory manager,
allocates the SLM space.

At a given time, a single interface descriptor dispatches most threads. For a new interface descriptor
request, the GP pipe is drained and all shared memory recovered before allocating new shared memory.
Hence only a single size of shared memory needs to be supported at one time.

For simplicity, only power-of-2 shared memory sizes from 4KB to 64KB are allowed. A thread request
specifies what size is needed. The first thread of a Thread Group is marked whether it requires new
shared local memory. If not, the old SLM offset is sent with the dispatch.

A simple set of 16 bits allocates 4KB shared memory, with more bits used for larger sizes. A priority
encoder finds the first unused bit and the offset associated with a particular barrier ID. The barrier ID
then tracks the thread group. When thread group tracking indicates that a thread group is completely
retired, that section of SLM can be reclaimed.

Local Memory/Scratch Space

Local memory is allocated per thread dispatched to the EU. The scratch space manager provides between
1KB and 2MB memory per thread.

GRF

A General Register File (GRF) inside the EU represents the per-thread private memory of the general
purpose compute framework memory model. The GRFs are register files dedicated to read/write
operations of the threads. There are 128 GRFs of 32 bytes each per thread.

GPGPU Walker

A single GPGPU job may require thousands or even millions of threads. Creating these threads
individually would be inefficient, so the GPGPU_WALKER command generates the threads algorithmically
(rather than modifying the Media Walker).

316 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Thread Counter Width (B-kbit)

Thresd Group £
Counter [32-bit)

Thread Counter Height (6-4it)

Thresad
Thread Group Thread Counter Degith (B-bit
Counter (32-bit) Grip i B8
0=FFFFFFFF) w\
Thread Grnup_}-{ Exvecution Mazk
Counter (Jz-hit) for left edge —— ™
Execution Maszk

for bottom edge

Lett AMD Bothom ——e
Mazk

Figure: GPGPU Thread Group Walker

The X, Y, and Z counters for a thread group each have an initial and maximum value. Combining the
three counter values forms the thread group ID sent with each dispatch. Each counter contains 32 bits;
there is no limit on the size of the thread ID.

The GPGPU requires that 1024 SIMD channels be available for a maximum-size thread group. Thread
groups that do not need access to a barrier or SLM are not limited to 1024 SIMD channels.

In general, the formula for “number of Threads” = "number of Channels” / SIMD size.

The thread groups can be expanded over a pair of subslices, e.g. with eight EUs per subslice and seven
threads per EU. Also, threads per subslice = ((Thread Count (per EU)) * (EU count/Subslice)).

For example, in a system with ten EUs per subslice, each with seven hardware threads, a maximum-size
thread group fits in a subslice if SIMD16 instructions are used, but not if SIMD8 instructions are used.

See the Configurations section for an exact determination of what SIMD option is required to fit in the
subslice of the targeted configuration.

The three thread counters count the number of dispatches in a single thread group: up to 32 dispatches
for SIMD32 or 64 dispatches for SIMD16/8. There are three thread counters to select the execution masks
correctly — see the Execution Masks section.

Each thread counter is six bits to allow flexibility for any dimension going to 64, while the rest do not
increment. A thread is generated each time one of the thread counters increment. When the thread
group X counter reaches the maximum it is reset to 0, and the Y counter is incremented. When the
thread group Y counter reaches the maximum it is reset to 0, and the Z counter is incremented. When all
the counters reach their maximum values, the thread group is done and the thread group counter can
increment to start a new thread group.

The compiler determines how many SIMD channels are needed per thread group, and then decides how
these are split among EU threads. The number of threads is programmed in the thread counter, and the
SIMD mode (SIMD8/SIMD16/SIMD32) is specified in the GPGPU_WALKER command.

The maximum thread group size must fit into a single subslice (or DSS) and run in parallel, so the number
of EU threads must be less than the number specified in Configurations for threads per subslice (DSS).

Doc Ref # IHD-OS-LKF-Vol 9-4.21 317

intel

Thread Payload

The payload for each thread dispatched is as follows:

A thread group ID that identifies the group to which the threads belong. This consists of three 32-bit
X/Y/Z values.

The set of X/Y/Z counters that form the thread ID for each channel. If the Z counter is not used, then only
X and Y are needed.

The execution mask that indicates what channels are active.

Thread IDs form a 2D or 3D surface that is mapped into SIMD32, SIMD16, or SIMD8 dispatches. The
compiler supplies the mapping, rather than having the hardware force a particular mapping of thread IDs
to channels.

The VFE receives a simple count of the number of threads per thread group, which counts the number of
dispatches. A constant buffer in the MEDIA_CURBE_LOAD command contains the thread IDs for all
threads in a thread group. You can use a single set of thread IDs repeatedly for all thread groups, since
the thread IDs are the same for each thread group ID output by the GPGPU_WALKER.

The following figure is an example set of payloads fora2 Zx 2 Y x 12 X and a SIMD16 dispatch. This
thread group requires three dispatches:

221011109 276542210 Thead id ¥ for dspatch 0
1111 0 000000000 DOD Thead id " for dispatch 0
0000 0 0000000 O0O0ODDOD Thead id for dispatch 0
765422101110 98 7654 Thead id ¥ for cispatch 1
00000000 1 1111111 Thesd id ¥ for dispatch 1
11111111 0 0000000 Thesd id T for dispatch 1
11 10 9 87 6 54 32 10 11 10 9 & Thead id X for dispatch 2
1 11111111111 0 000 Thesd id ¥ for dispatch 2
1 11111111111 1 111 Thesd id T for dispatoh 2

Figure: Dispatch Arrangement

In this case the thread counter width is programmed with a maximum value of three. Since the execution
masks are all F, it doesn’t matter how the thread counters are programmed, as long as they count to
three before finishing the thread group.

The first dispatch would tell the TS that the payload starts at the beginning of the constant buffer and
has a length of three. The next dispatch would have a payload starting at Constant_Buffer_Start + 3. The
final dispatch payload starts at Constant_Buffer_Start + 6. If there are more thread groups in the
command they would each get exactly the same payload, except for a different thread group ID, barrier,
and shared local memory space.

318 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Execution Masks

The number of channels required by a GPGPU job may not fit evenly into the number of SIMD channels,
which can leave some channels idle. The execution mask tells the hardware what channels are actively
used.

The payload for a general-purpose thread must include the execution mask. The execution mask has one
bit set per channel for up to 32 channels. SIMD16 and SIMDS8 use the LSB bits of the execution mask. The
5-bit number transferred from VFE expands to produce the 32-bit mask. This mask uses the Dmask from
the pixel shader dispatch in the transparent header.

A thread group is modeled as a 3D solid, with each channel acting as one X/Y/Z point in the solid. This
group can have the following forms:

A line with 1024 X channels from 0 to 1023, and constant Y/Z;
A square with X ranging from 0 to 32 and Y ranging from 0 to32;
A cube with X ranging from 0 to 9, Y ranging from 0 to 9, and Z ranging from 0 to 9.

Software needs to determine how to map these shapes onto the 32 SIMD32 channels per dispatch, or 16
SIMD16, or 8 SIMD8. The mapping per thread is a 2D square of channels such as 8x4, 16x2, or 32x1.
Below is a diagram of a 22x6 thread group that is mapped onto a set of 8x4 SIMD32 channels:

S S S

G Sxd G

o
oY
o
B
o
oY

Figure: Mapping onto a Set of SIMD32 Channels

Note that the dispatches in the upper left have execution masks of all-F, while all the right edge
dispatches have the same execution mask; likewise all the bottom edge dispatches have the same
execution mask. The bottom right is the logical-AND of the right and bottom edge dispatches.

A 32-bit right and bottom mask is sent with the GPGPU_WALKER command, and the thread width, height
and depth counters determine when the masks are used. Width, height and depth are used instead of
X/Y/Z, since it is not required that width = X; width and height are the two variables that are changing in
a single SIMD dispatch even if they are Y and Z.

For each dispatch, the width counter increments until it reaches the maximum. The dispatch with
width=max uses the right execution mask. The height counter is then incremented and the process
repeated. If at any time the height counter = max then the execution mask is the bottom execution mask.
When the height and width counters are both max then the dispatch is the AND of the right and bottom
masks, and the depth counter increments.

The same 2Z x 2Y x 12X thread group described above dispatched as SIMD32 with each dispatch
delivering a 16X x 2Y shape requires two dispatches with empty bits in the right execution mask and all F
in the bottom.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 319

intel

& Hxxx 11 1092 876543210) i
Thead id ¥ for digpatch 0
Dispatch 0 uses xxxx 11 1092 8 7 6 54 3210
the right execution xxxx 0 00000O00O0O0O0O0] i
mask of Thead id % for dispatch 0
xxxx 0 00 0O0O0CO0OCO0ODO0CO0CDODOD
Thead id £ for dispach O
¥ xxxx 0 000000000 ODOD
& xxxx 11 102 8 7 6 54 3 210
Thesad id ¥ for dispatch 1
Dispatch 0 uses xxxx 11 1092 8 7 6 54 3210
the right execution xxxx 0 00000000000) .
mask of Thead id % for dispatch 1
00FF FO xxxx 1 11111111111
*xxxx 1 11111111111) i
Thead id Z for dizpatch 1
| | xxxx 1 11111111111

The width and height counter would have a maximum of one, and the depth counter would have a
maximum of two. The two dispatches use the AND of the two masks, but since the bottom mask is F it

would be the same as just the right mask.

The execution masks can also be used when the software wants to pack the channels rather than lay
them out in a regular pattern:

21011109 8 76

6§54 3210 11 10

111 0 000D D

oo0oo0DoDoOoOQd 1 1

LI — I I S

11111111 0 0

11 10 2 87T 6 54 3210

210

Thead id ¥ for disggpatch 0
& 5 4
000] _

Thead id Y for diggpatch 0
111
000

Thead id Z for dispstch 0
ooao
i 9 8

Thead id ¥ far dispatch 1

1 11111111111 0 0ooa0o0

Thead id % for dispstoh 1

i1 11111111111 1 111

Thead id £ for dispatch 1

In this case the width counter can have a maximum of two, and the height and depth counters have a
maximum of one. The first dispatch uses the bottom mask only (all F), and the second uses the right AND
bottom mask to remove unused channels.

Media and GPGPU Indirect Thread Dispatch

Indirect thread dispatch allows one thread group to control the group size of a following thread group.
To enable GPGPU indirect thread dispatch, use the following sequence of commands in the ring buffer:

GPGPU_OBJECT/WALKER

// Either a set of objects or a walker to dispatch a thread group to write the next
group's properties to memory.

320

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

MI_FLUSH // Make sure the thread group has finished executing.

MEDIA_CURBE_LOAD // Load the thread ids for new group.

MI_LOAD_REGISTER_MEMORY | // Load the indirect MMIO GPGPU registers from the mem written by the previous
group.

GPGPU_WALKER (indirect) // A walker with the indirect bit set.

The first thread group writes the following data to memory:

The thread IDs delivered in the CURBE, written where the following MEDIA_CURBE_LOAD reads them.
The GPGPU_WALKER parameters, written where the MI_LOAD_REGISTER_MEMORY reads them:

a. GPGPU_DISPATCHDIMX - the X dimension of the number of thread groups in which to dispatch;
DW offset 7

b. GPGPU_DISPATCHDIMY - the Y dimension of the number of thread groups in which to dispatch;
DW offset 10

¢. GPGPU_DISPATCHDIMZ - the Z dimension of the number of thread groups in which to dispatch;
DW offset 12

Use CURBE (rather than indirect) for the payload when using indirect dispatch.

Parameterized Media Walker

The Parameterized Media Walker is a hardware thread-generation mechanism to create threads
associated with units in a generalized two-dimensional space (e.g. blocks in a 2D image). With a small
number of unit step vectors, the walker can implement a large number of walking patterns. This walker
may provide functions that are normally handled by the host software, thus simplifying the host software
to GPU interface.

The walker described here is doubly nested, meaning a “local” walker can perform a variety of two-
dimensional walking patterns while a “global” walker performs similar two-dimensional patterns upon
many local walkers. The local walker has three levels (outer, middle, and inner) while the global walker
has two levels (outer and inner). Hence the walker algorithm has five-nested loops that modify local state
based on user-defined unit step vectors.

The parameterized media walker’s programmability is derived from the following.
The walker traverses a unit-normalized surface. Some example unit sizes:

o 1x1: Walking pixels,

o 4x4: Walking sub-blocks,

o 16x16: Walking macro-blocks, and
o 32x16: Walking macro-block-pairs.

Unit step vectors to describe the motion at each of level of nesting.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 321

intel

Starting locations for the local and global walkers.
Block sizes of the local and global walker.

A small number of special mode controls for the inner-most loop, designed to efficiently divide an image
into two balanced workloads for dual-slice designs.

Walker Parameter Description
The global and local loops are both described by the same four parameters:

Resolution,
Starting location,
Outer unit vector, and

Inner unit vector.

The local inner loop has some special modes that are described later. A table of the user inputs and
some example values are shown below:

GLOBAL LOOP PARAMETERS

Global Resolution Global Start Inner Loop Unit Vector
X Y X Y X Y X Y
120 68 0 0 32 0 0 32

LOCAL LOOP PARAMETERS

Block Resolution Local Start Quter Loop Unit Vector | Inner Loop Unit Vector
X Y X Y X Y X Y
32 32 0 0 1 0 -2 2

LOCAL INNER LOOP SPECIAL MODE SELECTS

Dual Mode Repel Attract X Y
TRUE FALSE FALSE 1 0 1

A programmer implicitly defines what a “unit” represents, which means the walker traverses a “unit
normalized space” that is not inherently bound to pixel walking.

If the smallest unit of work to be walked is a 4x3 block of pixels, you can program the inner loop to step
(4,3) or (1,1) as follows:

In the (4,3) case, the user is walking units of pixels.
In the (1,1) case, the user is walking units of 4x3 blocks of pixels.

Note that hardware doesn’t contain enough bits for pixel walking for resolutions like 1920x1088 pixels.
The intended usage of the walker is for block walking where the block size is not relevant to the walker
parameters.

322 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Basic Parameters for the Local Loop

Basic Parameters for the Local Loop The local inner and outer loop xy-pair parameters alone can describe
a large variety of primitive walking patterns. Below are nine primitive walking patterns generated by
varying only the inner and outer unit step vectors of the local loop:

[

{

{

b
=

o4
2 I VI S VI
‘ B = T o | 1]

v

.

Figure: Local Loop Walking Patterns

The top row of the figure above shows the outer unit vector pointing down (+Y) and the inner unit vector
pointing right (+X). Skip rows and columns by increasing the unit step vectors beyond one.

The middle row of the figure shows the outer unit vector pointing right (+X) and the inner unit vector
pointing down (+Y). Skip rows and columns by increasing the unit step vectors beyond one.

The last row of the figure shows the option to walk patterns not aligned to the edges. The left option
yields a 45° walking pattern by setting the inner unit vector to (-1,1). The middle option yields a
checkerboard pattern by skipping every other outer loop and retaining the inner unit vector of (-1,1). The
right option yields a 26.5° walking pattern by setting the inner unit vector to (-2,1).

Doc Ref # IHD-OS-LKF-Vol 9-4.21 323

intel

The block resolution, shown as [8,8], and the starting location, shown as [0,0], can be varied and the
walking patterns can be stretched and rotated in many ways. The diagram below shows an example of
where the start position and unit step vectors can be set to achieve a full rotation of the same pattern:

Start x| 0 . 0 Sta.rt X | B . 0

\\\

Etart 0 . B8 Start X | B .

Wl

HoEAag o
e =
|- I =]
0 =390
e [
+—a
] =

= -

@

o AR KIV
L 0 | -1 Ll 1| 0

T T

E E

I iy "

1 1 AR

H B N]

N N

q‘ E

R \ =

Figure: More Local Loop Walking Patterns

Walker Algorithm Description

The walker algorithm has been tested and optimized in software. A high-level pseudo-code description is
given below:

Walker(){ //C-Style Pseudo-Code of Walker Algorithm
Load_Inputs_And_lInitialize();
While (Global_Outer_Loop_In_Bounds()){

Global_Inner_Loop_lIntialization();

324 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

While (Global_Inner_Loop_In_Bounds()){
Local_Block_Boundary_Adjustment();
Local_Outer_Loop_lInitialization();

While (Local_Outer_Loop_In_Bounds()){
Local_Middle_Loop_Initialization();
While (Local_Middle_Steps_Remaining()){

Local_Inner_Loop_lInitialization();

While (Local_Inner_Loop_Is_Shrinking()){
Execute();
Calculate_Next_Local_Inner_X_Y();

} //End Local Inner Loop

Calculate_Next_Local_Middle_X_Y();

} //End Local Middle Loop
Calculate_Next_Local_Outer_X_Y();
Calculate_Next_Local_Inverse_Outer_X_Y();
} //End Local Outer Loop
Calculate_Next_Global_Inner_X_Y();
} //End Global Inner Loop
Calculate_Next_Global_Outer_X_Y();
} //End Global Outer Loop
} //End Walker
The above pseudo-code has the following characteristics:

There are five levels of iteration.

The highest two levels are called “global” and the lowest three levels are called “local”:

o The global loop contains an outer and an inner loop;

o The local loop contains an outer, middle, and inner loop;

o The user defines a bounding box for the global and local resolution;

o The user also specifies the starting location within each bounding box.

Each of the five loops has its own persistence:

o Current position (x,y),
o Unit step vector (x,y).

The final output (x,y) is a summation of the global x,y and the local x,y.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 325

intel

e The next (x,y) for a given level can be calculated while the next lower level is still executing. The (x,y)
calculation result tests whether the current level needs to execute again once control is returned.

The flow of the global outer and inner loops is as follows:

1. Check a bound condition;

2. Initialize the next level loop;
3. Execute the next level loop;
4

When the next level loop fails its bound condition, calculate the next position for the current loop
level and repeat.

Walker Algorithm Flowchart for the Global Loop

Load Inputs and
Initialize

Global Quter Loop
In Bounds?

Calculate Next Global Inner Loop
Global Outer [X.Y) Initialize

Local Block
Boundary
Adjustment

Global Inner Loop
In Bounds?

Calculate Next Local Outer Loop
Global Inner (X,Y) Initialize

Execute
Local Loops

326 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Figure: Walker Algorithm Flowchart for the Global Loop

Note the grey box above labeled, “Local Block Boundary Adjustment.” Use this logic to adjust the local
block size, when the distance between the current global position and the edge of the image is less than
the local resolution. Local starting positions may also be modified by the same logic, if the defined
starting position is larger than the new local block size.

The flow of the three local loops does not vary much from the two global loops. The differences are as
follows:

e The local middle loop, in addition to a boundary check, also ensures the number of middle steps is
less than or equal to the user-defined “number of extra steps.”

e The local inner loop only checks to see whether the prior distance between the x,y starting and
ending points is greater than their current distance. If this comparison is true, that implies the two
inner loops are converging towards each other.

e When the middle loop check fails, both the starting points (local outer) and ending points (local
inner) are updated.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 327

intel.

Walker Algorithm Flowchart for the Local Loop

From Global
Loops

Return to Local Outer Loop Calculate Next Local
Global Loops In Bounds? Inverse Outer (X,Y)

Yes

v
Local Middle
Loop Initialization

Local Middle Steps Calculate Next
Remaining? Local Quter (X.Y)

Yes

Calculate Next
Local Inner Loop

Initialization

Local Middle (X,Y)

No Local Inner Loop Calculate Next
Shrinking? Local Inner (X,Y)

Yes

Figure: Walker Algorithm Flowchart for the Local Loop

Flexible Dispatch of Local Loop

A local loop automatically splits between available subslices with adjacent blocks kept next to each other,
to improve cache and execution efficiency. A single iteration of the local loop splits into equal segments,
one for each currently powered-up subslice. The dispatches for the local loop are done so that one

328 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

thread from each segment is dispatched before repeating the process. For example: segment 0, thread 0
is followed by segment 1, thread 0 rather than segment 0, thread 1.

Figure: Splitting a Wavefront Between Six Segments

Each color in the figure above indicates a separate segment dispatched to a specific subslice. In this
example, each local loop walks a diagonal line from the lower left to the upper right, while the global
loop steps between the lines. Dependencies are to the left and above, which is a typical usage model.

The first few iterations are in the upper right corner and have few blocks dispatched per local loop.
Farther down, the length of the local loop gets large enough that the six available subslices are full of
threads from each segment running in parallel, and being dispatched in an even manner.

Masked Dispatch

Masked dispatch adds a dispatch mask to the Media_Object_Walker command, which provides a bit per
dispatch to determine whether to drop the dispatch. This allows use of Media_Object_Walker with

Doc Ref # IHD-OS-LKF-Vol 9-4.21 329

intel

irregularly shaped areas. When using the masked dispatch mode, program the walker to walk the surface
as a simple rectangle, with X changing in the innermost loop.

CURBE contains the dispatch mask, so a Media_Object_Walker command that uses the dispatch mask
cannot use CURBE in the dispatch payload. CURBE contains a bitmask for which each bit corresponds to
the X/Y blockID (not the pixel X/Y). The byte address of each bit is defined as follows:

Byte_address = (Y * pitch + X) » 8

Pitch is the number of horizontal blocks in the surface, rounded up to the next power of two bits (e.g.
128, 256, or 512).

Width in Blocks
* - ==
E
R
i
T
Multiple of 128 bits »‘
il

The Media_Object_Walker command allows X and Y to have a maximum of nine bits, which corresponds
to a 512 pixels x 512 pixels surface in CURBE. For 16 pixel by 16 pixel blocks, this would represent a total
of 8KB x 8KB pixels. Note that in this mode, the walker dispatches in sequence, rather than splitting the
local loop into segments that dispatch to individual subslices (as described in “Flexible Dispatch of Local
Loop” above).

330 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Thread Dispatch

The following sections cover the thread dispatch process in the GPGPU pipe.

Thread Dispatch Format

The thread dispatch for GPPIPE consists of a series of headers and payloads, routed through the dispatch
pipeline from the thread spawner unit up until the EU. The thread dispatch consists of transparent and RO
headers and an associated payload that may consist of per-thread and cross-thread data. The
transparent header part gets translated as part of the EU state surrounding the threads, becomes the
context for a thread while the rest of the payload (including RO and any optional payload) gets copied to
the GRF, and acts as parameters for the thread. Both the transparent and RO headers are crafted
dynamically by hardware based on the interface descriptor.

All threads begin with a transparent header, followed by an RO header. The format of RO is different for
GPGPU and media threads, as well as for other 3D fixed functions. While the thread spawner generates
the headers, the payload is fetched from URB and attached by the dispatch pipeline before dispatch to
the EU.

Table: Dispatch Combinations and Associated TSG Phases

Dispatch Type Dispatch Parameters TSG Phases (2 or 3 clocks /
thread)

GPGPU CURBE Cross Payload | Ph- | Ph- Ph-3
Mode Length Length Length 1 2

Media Thread no CURBE 0 0 0 0 TH |RO

no Payload

Media Thread no CURBE 0 0 0 >0 TH |RO |Root Handle (DWO0)

with Payload

Media Thread with CURBE |0 >0 0 0 TH |RO

no Payload

Media Thread with CURBE |0 >0 0 >0 TH |RO |Root Handle (DWO0)

with Payload

GPGPU Thread no Thread |1 0 0 0 TH |RO

ID no CURBE

GPGPU Thread with Thread |1 >0 0 0 TH |RO

ID no CURBE

GPGPU Thread with Thread |1 >0 >0 0 TH |RO |Cross Thread CURBE

Doc Ref # IHD-OS-LKF-Vol 9-4.21 331

intel

ID with CURBE Handle (DWO)

The interface descriptor of a given thread determines whether the CURBE data field is present.

INTERFACE_DESCRIPTOR_DATA

Interface descriptor data is the data structure fetched from the URB, using the interface descriptor data
start address. The interface descriptor data serves as the key parameter file to set up the modes of
execution, formation, and usage model of threads and thread groups.

Some of the key parameters controlled by the interface descriptor are as follows:

Basic thread execution attributes such as the kernel start pointer, floating point mode selection,
thread priority definition, handling of de-normalized numbers, and whether the thread can be pre-
empted if a mid-thread pre-emption request comes through.

Number of threads in a GPGPU thread group. This parameter needs to be accurate because it is
used in the pre-emption sequence to ensure proper pre-emption. The minimum value is one and
the maximum is the number of threads in two subslices for local barrier. For global barrier it may
be higher.

SLM size for a thread group, which is specified in powers of two and minimum increments of 4K
blocks up to 64K per subslice.

Barrier enable and global barrier enable/disable. These parameters define whether there is a
barrier associated with a thread group and, if so, can it be local within a subslice or cross-subslice
as a global barrier (or both). Setting a global barrier affects performance.

Constant URB Entry (CURBE) data is a combination of fields. First is the address offset where the
constant URB data can be found, followed by a combination of “constant/indirect URB entry read
length” and “cross-thread constant data read length.” The latter two items define whether there is
any payload — and, if so, whether that is per-thread only payload, CURBE only, or both.

The binding table pointer, and the number of binding table entries that the kernel uses. Also, the
sampler state table pointer and sampler count for kernels in use.

Some exception enables that get loaded directly into the EU CRO registers.

For more details, see the INTERFACE_DESCRIPTOR_DATA definition.

RO Headers

GPGPU and Media RO headers differ in their organization. Even for Media threads, those with groups
attached have a different RO header than the generic mode RO header.

332

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

RO Header ROHeader
Cross Thiead Constants URE constants {optional)
GPGPU theead ids URB Payload data
GPGPU Payload format Media Payload format

GPGPU RO Header

The thread dispatch payload for a GPGPU thread consists of:
An RO header;
If present, cross-thread CURBE data in R1 and subsequent registers; and

Per-thread payload (e.g. X/Y/Z thread IDs) in the next available registers of the thread - starting in R1 if
there is no CURBE data.

DWord | Bits Description

R0O.7 | 31:0 | Thread Group ID Z: This field identifies the Z component of the thread group that this thread
belongs to.

R0.6 | 31:0 |[Thread Group ID Y: This field identifies the Y component of the thread group that this thread
belongs to.

RO.5 [31:10 . g . .
Scratch Space Pointer. Specifies the 1K-byte aligned pointer to the scratch space (used for the
GPGPU local memory space).
Format = GeneralStateOffset[31:10]

RO.5 | 9:0 o . .
FFTID. This ID is assigned by TS and is a unique identifier for the thread in comparison to other
concurrent threads (of any thread group). It is used to free up resources used by the thread upon
thread completion.
Format = U9

R0O.4 | 315

Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table. It is specified as
an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

R0.4 4 | Reserved: MBZ

RO4 | 30 Indicates the stack memory size.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 333

intel

DWord | Bits Description

Range = [0,11] indicating [1K bytes, 2M bytes]
Programming Note: Exception handling on stack overflow is not supported when GPGPU mid-
thread pre-emption is desired.

RO.3 | 315 . o . .
Sampler State Pointer. Specifies the 32-byte aligned pointer to the sampler state table.
Format = GeneralStateOffset[31:5]

RO.3 4 |Reserved: MBZ

RO.3 30 Per Thread Scratch Space. Specifies the amount of scratch space, in 16-byte quantities, allowed to
be used by this thread. The value specifies the power that two is raised to, to determine the amount
of scratch space.
Format = U4
Range = [0,11] indicating [1K bytes, 2M bytes] in powers of two.

RO.2 31 |Barrier Enable. This field indicates that a barrier has been allocated for this kernel.

RO.2 |30:24 |BarrierID. This field indicates the barrier that this kernel is associated with.
Format: U7
Range = [0,63]

RO.2 |14:11|Reserved: MBZ

RO.2 10 |GPGPU Dispatch - This field indicates that the dispatch is from GPGPU_WALKER rather than the
various media dispatch instructions.

RO.2 3:1 |Reserved: MBZ

RO.1 | 31:0 | Thread Group ID X: This field identifies the X component of the thread group that this thread
belongs to.

RO.0 [31:24 g . .
SLM ID. This field encodes whether SLM was allocated for this thread, and if so, the SLM base offset
used with SLM operations.
Format: U8

RO.0 |23:17 |Reserved: MBZ

RO.0 16 | FFSID: Fixed Function Stack ID. This field indicates which stack the thread belongs to.

R0O.0 | 15:0 [URB Handle: This is the URB handle indicating the URB space for use by the thread.

Cross-thread CURBE if present is in R1 and above, followed by the X/Y/Z thread id values for each
channel in the thread.

MEDIA RO Header

The thread payload messages for generic mode and for MEDIA_OBJECT_WALKER are in the same format.
The RO header is the same in both cases, then there are constants from CURBE when CURBE is enabled,

334

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

followed by inline data when inline is enabled. The inline data block field is the same as in the
MEDIA_OBJECT command, with zero-filled partial GRF, and there is no indirect data block field.

The RO header of the MEDIA_OBJECT_GRPID and MEDIA_OBJECT_WALKER payload with groups enabled
is different from the generic mode and MEDIA_OBJECT* payload without groups enabled. This header
payload difference is shown in the table below.

Table: Media RO Header Payload

DWord | Bits Description
RO.7 31:0 |Group ID LSB. This is the LSBs of the Group ID. For MEDIA_OBJECT_GRPID threads this is the entire
group id. For MEDIA_OBJECT_WALKER threads the interpretation depends on the Group ID Loop
Select:
0: No groups, field is 0.
1: cat(InnerGlobalCnt[6:0], OuterLocalCnt[9:0], MidLocalCnt[4:0], InnerLocalCnt[9:0]); rest of group
id is in RO.2.
2: cat(OuterGlobalCnt[6:0], InnerGlobalCnt[9:0], OuterLocalCnt[9:0], MidLocalCnt[4:0]); rest of group
id is in RO.2.
3: cat(2'b0, OuterGlobalCnt[9:0], InnerGlobalCnt[9:0], OuterLocalCnt[9:0]).
4: cat(12'b0, OuterGlobalCnt[9:0], InnerGlobalCnt[9:0]).
5: cat(22'b0, OuterGlobalCnt[9:0]).
RO.5 31:10 | Scratch Space Pointer. Specifies the 1k-byte aligned pointer to the scratch space. This field is only
valid when Scratch Space is enabled.
Format = GeneralStateOffset[31:10]
RO.5 9:0 |FFTID. This ID is assigned by TS and is a unique identifier for the thread in comparison to other
concurrent root threads. It is used to free up resources used by the thread upon thread completion.
RO.4 31:5 |Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table. It is specified as
an offset from the Surface State Base Address.
Format = SurfaceStateOffset[31:5]
R0.4 4.0 |Reserved: MBZ
RO.3 31:5 |Sampler State Pointer. Specifies the 32-byte aligned pointer to the sampler state table.
Format = GeneralStateOffset[31:5]
RO.3 4 Reserved: MBZ
RO.3 3:0 |Per Thread Scratch Space. Specifies the amount of scratch space, in 1K-byte quantities, allowed to
be used by this thread. The value specifies the power to which two is raised to determine the
amount of scratch space.
Format = U4
Range = [0,11] indicating [1K bytes, 2M bytes] in powers of two
RO.2 31 Barrier Enable. This field indicates that a barrier has been allocated for this kernel.
RO.2 30:24 | BarrierlD. This field indicates the barrier that this kernel is associated with.
Format: U7
Range = [0,63]
RO.2 23:11| Group ID MSB. This field is the MSBs of the Group ID. These bits are 0 for MEDIA_OBJECT_GRPID.

For MEDIA_OBJECT_WALKER threads the interpretation depends on the Group ID Loop Select:
0: No groups, field is 0.
1: cat(OuterGlobalCnt[9:0], InnerGlobalCnt[9:7]).

Doc Ref # IHD-OS-LKF-Vol 9-4.21 335

intel

DWord | Bits Description
2: cat(10'b0, OuterGlobalCnt[9:7]).
3-5: All zero.

RO.2 10 Reserved: MBZ

RO.2 9:4 |Interface Descriptor Offset. This field specifies the offset from the interface descriptor base
pointer to the interface descriptor that is applied to this object. It is specified in units of interface
descriptors.
Format = U6

RO.2 3:0 |Reserved: MBZ

RO.1 31:24 | Block Color. This field is the 8-bit Media block Color value. It specifies which dependency color the
current thread belongs to
Format = U8

RO.1 23 Reserved: MBZ

RO.1 22:12|Block Y. This field provides the Y media block coordinate of current thread.
Format = U11

RO.1 11 Reserved: MBZ

RO.1 10:0 |Block X. This field provides the X media block coordinate of current thread.
Format = U11

RO.0 31:24 |SLM ID. This field encodes whether SLM was allocated for this thread, and if so, the SLM base offset
used with SLM operations.

RO.0 23:17 | Reserved: MBZ

RO.0 16 FFSID: Fixed Function Stack ID. This field indicates which stack the thread belongs to.

RO.0 15:0 |URB Handle. This is the URB handle where indicating the URB space for use by the root thread and
its children.

336 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Thread Tracking and Synchronization

You must track a dispatched thread for the End Of Thread (EOT) lifecycle. The tracking process in

TS creates renewable capacity in the EU farms, and renews thread resources by releasing them once the
thread lifecycle finishes. For GPGPU, the synchronization between threads is done through barrier; in
Media, the synchronization is done through the scoreboard.

Thread Synchronization Monitors

Thread Synchronization Monitors (TSM) are a hardware feature used for inter-thread communication. It
can be used to implement a software scoreboard or other synchronization method with a higher
performance than using polling. Unlike barriers, TSM allows communication across all thread in the entire
machine, rather than just the threads in a thread group.

TSM uses messages to the Message Gateway to monitor and signal events. The messages used are:

1) MonitorEvent — this message indicates to the Gateway that a particular Event ID is of interest to the
sending thread and should be monitored. When the corresponding event occurs it is recorded in the
Gateway but no message is sent until a WaitForEvent message is sent.

2) WaitForEvent — this message tells the Gateway that the thread is ready to go to sleep until the event
or a timeout occurs. After sending this message the thread should read the writeback register to allow
the EU to switch to other threads until the event occurs and the dependency is cleared. The message
payload specifies how long the Gateway should wait before signaling a timeout, and the writeback
register specified gets a value of 0 if a timeout occurs or 1 if the event occurs. Note that a pre-emption
will always cause a timeout.

3) SignalEvent — this message is broadcast to every Gateway (including the source Gateway). The event
is recorded for each thread that has a MonitorEvent with a matching event ID, while a message is sent to
each thread which has a WaitForEvent outstanding. If the WaitForEvent occurs after the SignalEvent then
the message will go out immediately upon receiving the WaitForEvent. After the message goes out
thread will still be monitoring that event, so it can be reused as long as care is taken that every thread
gets the same number of events — if an event happens twice while a thread is merely monitoring before
WaitForEvent it will only see the event once.

4) MonitorNoEvent — this message disables the monitoring of events for this thread. This is also done
when the thread exits with the EOT (End of Thread) message.

See the Message Gateway section of the Bspec for more details of these messages.

Here is an example of using TSM for a software scoreboard which is used to determine if macroblocks
that the current thread is dependent on have completed:

For (all dependencies for this macroblock) {

MonitorEvent (scoreboard[dx] [dy]) ; // Start monitor before checking dependency
bit
While (!atomic_ read(scoreboard[dx] [dy])) {
WaitForEvent (EventID (dx,dy), timeout); // EventID determined from dx & dy

Doc Ref # IHD-OS-LKF-Vol 9-4.21 337

A S A

intel

}

// MonitorNoEvent is not needed here

DoBlock () ; // All normal processing of block
Atomic write (scoreboard[x][y]l, 1); // Set the dependency bit for following
blocks

SignalEvent (EventID(x,Vy))

Barriers and Shared Local Memory

Barriers and Shared Local Memory (SLM) offer advantages for both general purpose and media
applications. Barriers can synchronize between GPGPU and media threads more efficiently than atomics
can do, while SLM can be used to share data between tightly associated threads.

Barriers and SLM can also be used with a more generalized walker, to add the ability to use the
scoreboard at the same time. Implementation requires an identifying number similar to the thread group
ID that can be used to track and free resources. The MEDIA_OBJECT_WALKER can use various loop
counts to define the group ID.

For flexibility, you can specify which loop counts form the group ID, and which ones count the threads
inside each group. If cross-slice barriers are disabled, the walker must ensure that all threads in a group
are dispatched to a single subslice so that the barrier and SLM are available to all group members. Make
sure that the number of threads generated per group is no larger than the number of threads available in
a subslice.

MEDIA_OBJECT_WALKER adds the X/Y values for the various loops together to produce a single X/Y
point. Since some walking patterns have overlapping X/Y values, the combined X/Y point cannot be used
for the global ID; instead, execution counts are concatenated together to produce an ID number. (An
execution count is a tally of how many times each loop is executed.) The GPGPU thread group ID is a 96-
bit number, so it easily contains the 49 bits created by all the execution counts.

The media walker has five nested loops for producing the X/Y point. In addition, there is an innermost
color loop defined as follows:

Color loop — 4 bits

Inner local loop execution count — 10 bits

Mid local loop execution count — 5 bits

Outer local loop execution count — 10 bits

Inner global loop execution count — 10 bits

Outer global loop execution count — 10 bits

A media walker parameter specifies the global ID bits by identifying at what point to switch between the
group ID and per-thread ID. Unused loops always have execution counts of zero. The media walker forms

group IDs by concatenating execution counts that are enabled in the Group ID Loop Select to create the
LSBs of the IDs, and sets any unused MSBs to zero.

338 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Barriers and SLM Example:

If a MEDIA_OBJECT_WALKER specifies that the outer local loop count and above form the group ID, then
every iteration of the color, inner local, and mid local dispatches a thread with the same group ID.

TS allocates a shared barrier and SLM (as specified in the interface descriptor), and ensures that all
threads go to the same subslice. If no global barriers are used, the number of threads must fit on a single
subslice; if global barriers are used, the number of threads must fit on the system.

The group ID for this example is formed by concatenating the outer global exec count, inner global exec
count, and outer local exec count. When the group ID increments, the TS allocates a new barrier and SLM
and pick an available subslice.

Media-GPGPU Thread EOT Message

The thread EOT message is issued to the Gateway unit by a GPGPU or Media thread running on an EU.
This message contains only one 8-DWord register which is intended to be a direct copy of RO in the
thread payload. It indicates that the thread is terminating and the thread spawner should dereference the
barrier and SLM resources that were optionally allocated with the thread when it was dispatched.

Message Descriptor

Thread EOT Message Descriptor

Message Payload

DWord | Bits Description

MO0.5 [31:10]|Ignored.

MO.5 | 9:0 |Ignored.

MO0.4 | 31:0 |Ignored.

MO0.3 | 31:0 |Ignored.

MO0.2 31 |Barrier Enable. This field indicates whether a barrier was allocated for this thread.
Format: Enable

MO0.2 |30:24 | BarrierlD. When Barrier Enable is set, this field identifies which barrier was allocated for this thread.
Format: U7

MO0.2 | 23:0 |Ignored.

MO0.1 | 31:0 |Ignored.

MO0.0 [31:24|SLM ID. This field encodes whether SLM was allocated for this thread, and if so, the SLM base offset
used with SLM operations.
Format: U8

MO0.0 | 23:0 |Ignored

Doc Ref # IHD-OS-LKF-Vol 9-4.21 339

intel

Context Switch for GPGPU and Media

In the ExeclList scheduling mode, software triggers preemption by submitting a new pending execlist to
the ExecList Submit Port (ELSP). On detecting the availability of the new pending execlist, hardware
triggers preemption on a preemptable command. Following successful preemption, the newly submitted
execlist undergoes a context switch. As part of the context switch, the Logical Ring Context Address
(LRCA) saves the preempted context state. The context state contains details for hardware to resume
execution of a resubmitted context from the point where the context was preempted.

The GPGPU Pipe supports several types of preemption boundaries:

GPGPU Pipe Preemption Boundaries

Preemption

Boundary Description
Command The context is preempted after the current command is completed. The GPGPU Pipe is flushed,
(coarsest and the current context state is saved so that the next command in the command buffer will be
granularity) executed when the context is resumed.

Threadgroup The context is preempted in the middle of a GPGPU Walker or Media Walker command. After all
previously dispatched threadgroups have completed, the current walker position is saved along
with the current context state. The current walker command will be executed when the context is
resumed and then re-start at the next theadgroup dispatch in the walker.

Mid-Thread The context is preempted in the middle of a GPGPU Walker command. After all previously
(finest dispatched threadgroups have started running in an EU, each running thread is preempted at
granularity) the next interruptible EU instruction, all per-thread data is saved, the current walker position is

saved along with the current context state. When the context is resumed, all the per-thread data
is restored, the threads are re-started, and the current walker command is executed to re-start at
the next threadgroup dispatch in the walker.

Programming Note

Context: Mid-Thread Preemption

Usually software selects either command or threadgroup preemption because they save less data as part of the
context image and are responsive enough for the applications. Mid-thread preemption has a lot more overhead but
sometimes guarantees a shorter preemption time when threadgroups run a long time.

Programming Note

Context: Per-Context vs Global Selection of Preemption Boundary

The GPGPU Pipe preemption boundary is set by software by the Media GPGPU Preemption Control.

If preemption is signaled and the Preemption Control specifies a boundary not supported the currently
running command or command streamer, then the preemption will occur on the boundary supported by
that command and command streamer.

If a particular sequence of commands within a context needs to be protected from preemption, then it
must be explicitly put between the MI_ARB_OFF/MI_ARB_ON command pair.

340 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Preemption Boundaries supported by GPGPU Pipe Commands and Command Streamers

Recognized Preemption
Boundaries

Current GPGPU Pipe Command

Which Render Engine Command
Streamer is running the Command

e Mid-thread GPGPU_WALKER

e Threadgroup
e Command

RCS

« Threadgroup MEDIA_OBJECT_WALKER

¢ Command

RCS

e Command All other GPGPU Pipe Commands, including:

MEDIA_VFE_STATE,
MEDIA_STATE_FLUSH,
MEDIA_LOAD_INTERFACE_DESCRIPTOR
MEDIA_CURBE_LOAD

Any MI_ Command when MI_ARB_ON,
including:

PIPE_CONTROL
PIPELINE_SELECT
MI_ARB_CHECK
MI_WAIT_FOR_EVENT
MI_SEMAPHORE_WAIT

RCS

Doc Ref # IHD-OS-LKF-Vol 9-4.21

341

intel

3D and GPGPU Programs

Overview of kernel execution with EU instructions and Shared Function messages.

EU Overview

The instruction set is a general-purpose data-parallel instruction set optimized for graphics and media
computations. Support for 3D graphics APl (Application Programming Interface) Shader instructions is
mostly native, meaning that efficiently executes Shader programs. Depending on Shader program
operation modes (for example, a Vertex Shader may be executed on a base of a vertex pair, while a Pixel
Shader may be executed on a base of a 16-pixel group), translation from 3D graphics API Shader
instruction streams into native instructions may be required. In addition, there are many specific
capabilities that accelerate media applications. The following feature list summarizes the instruction set
architecture:

SIMD (single instruction multiple data) instructions. The maximum number of data elements per
instruction depends on the data type.

SIMD parallel arithmetic, vector arithmetic, logical, and SIMD control/branch instructions.
Instruction level variable-width SIMD execution.

Conditional SIMD execution via destination mask, predication, and execution mask.
Instruction compaction.

An instruction may be executed in multiple cycles over a SIMD execution pipeline.

Most instructions have three operands. Some instructions have additional implied source or
destination operands. Some instructions have explicit dual destinations.

Region-based register addressing.

Direct or indirect (indexed) register addressing.

Scalar or vector immediate source operand.

Higher precision accumulator registers are architecturally visible.

Self-modifying code is not allowed (instruction streams, including instruction caches, are read-
only).

Colssue/Dual Issue:

Restrictions:

342

Opcodes: All opcodes except DX11 special opcodes.
Datatype: All datatypes except bytes.
Accessmode:

o Align1:

» No Scattering or Gathering data. This means data in source and destination registers are
aligned and packed (data is contiguous in a register) i.e. when VertStride = Width * HorizStride.

//Example:

// allowed, data is contiguous and source and destination regioning map one
to one.

mov (8) r10.0:f 1r11.0<8;8,1>:f

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

// not allowed, data from source is strided and requires gathering to write
to destination
mov (8) rl0.0:f 1rl11.0<4;4,2>:f

// not allowed, data from source is contiguous but not aligned with
destination.

//Destination register requires scattering

mov (8) rl0.0<2>:w r11.0<8;8,1>:w

//not allowed, data from source is contiguous but destination is not aligned
to source
mov (8) rl0.1:f rl1l1.0<4;4,1>:f

// allowed. Source and destination have stride but are aligned
mov (4) rl10.1:f rll.1<4;4,1>:f

» A scalar on 32b/64b datatype is allowed.
o Align16
e Addressmode: Direct Addressing

Register File: GRF/NULL/Immediates. No access to Accumulator.

Thread scheduling:

Threads are scheduled with the "oldest first" policy: a thread runs as long as no dependency is
encountered. When a switch is required, the oldest thread i.e., the thread which has been spawned the
first is the next to execute. After scheduling the next instruction from the currently executing thread, if
any of the four units are free, the EU tries to fill them from instructions from other threads (processed in
oldest to newest order).

An additional thread scheduling policy was introduced. This new policy issues the thread in a round
robin fashion as opposed to oldest first. It is a global selection policy meaning that all the EUs are selected
to run one policy or the other in an any given time.

Primary Usage Models

In describing the usage models of the instruction set, the following sections forward reference
terminology, syntax, and instructions described later in this specification. For clarity reasons, not all
forward references are explained at the point of reference. See the Instruction Set Summary chapter for
information about instruction fields and syntax.

AOS and SOA Data Structures

With the Align1 and Align16 access modes, the instruction set provides effective SIMD computation
whether data is arranged in array of structures (AOS) form or in structure of arrays (SOA) form. The AOS
and SOA data structures are illustrated by the examples in AOS and SOA Data Structures. The example
shows two different ways of storing four vectors in four SIMD registers. For simplicity, the data vector
and the SIMD register both have four data elements. The four data elements in a vector are denoted by
X, Y, Z, and W just as for a vertex in 3D geometry. The AOS structure stores one vector in a register and
the next vector in another register. The SOA structure stores one data element of each vector in a

Doc Ref # IHD-OS-LKF-Vol 9-4.21 343

intel

register and the next element of each vector in the next register and so on. The two structures can be
related by a matrix transpose operation.

AOS and SOA Data Structures

AOS — Array of Structure SOA — Structure of Array
LfectorD|W|Z|‘r’|K| Register 0 |I:-i| |}i| |K| |>i|
Lfeca‘or1|W|Z|‘r’|>C| RegisterlE|Y|E|Y|E|Y|E|‘r’|

_ = " i o
Lfeca‘or2|W|Z|Y|x| Reglsterz;|z|;|z|;|z|;|z|
Iector 3 |W | 7 | Y | " | Register 3 |W| |W| |W| |W|
Transpose
BESI0-01

3D and media applications take advantage of such broad architecture support and use both AOS and
SOA data arrangements.

e Vertices in 3D Geometry (Vertex Shader and Geometry Shader) are arranged in AOS form and use
SIMD4x2 and SIMD4 modes, respectively, as detailed below.

e Pixels in 3D Rasterization (Pixel Shader) are arranged in SOA form and use SIMD8 and SIMD16
modes as detailed below.

e Pixels in media are primarily arranged in SOA form, and occasionally in AOS form with possibly
mixed modes of operation that uses region-based addressing extensively.

These are preferred methods; alternative arrangements may also be possible. Shared function resources
provide data transpose capability to support both modes of operations: The sampler has a transpose for
sample reads, the data port has a transpose for render cache writes, and the URB unit has a transpose for
URB writes.

The following 3D graphics API Shader instruction is used in the following sections to illustrate various
operation modes:

add dst.xyz srcO.yxzw srcl.zwxy

This example is a SIMD instruction that takes two source operands srcO and src1, adds them, and stores
the result to the destination operand dst. Each operand contains four floating-point data elements. The
data type is determined by the instruction opcode. This instruction also uses source swizzles (.yxzw for
srcO and .zwxy for src1) and a destination mask (.xyz). Please refer to the programming specifications of
3D graphics API Shader instructions for more details.

A general register has 256 bits, which can store 8 floating point data elements. For 3D graphics, the
mode of operation is (loosely) termed after the data structure as SIMDmxn, where m is the size of the
vector and n is the number of concurrent program flows executed in SIMD.

Execution with AOS data structures:

344 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

e SIMD4 (short for SIMD4x1) indicates that a SIMD instruction operates on 4-element vectors
storedin registers. There is one program flow.

e SIMDA4x2 indicates that a SIMD instruction operates on a pair of 4-element vectors in registers.
There are effectively two programs running side by side with one vector per program.

Execution with SOA data structures, also referred to as “channel serial” execution, mostly uses:

e SIMDS8 (short for SIMD1x8) indicates a SIMD instruction based on the SOA data structure where
one register contains one data element (the same one) for each of 8 vectors. Effectively, there are 8
concurrent program flows.

e SIMD16 (short for SIMD1x16) indicates that a SIMD instruction operates on a pair of registers that
contain one data element (the same one) for each of 16 vectors. SIMD16 has 16 concurrent
program flows.

SIMD16 Mode of Operation

With 16 concurrent program flows, one element of a vector would take two GRF registers. In this mode,
two corresponding vectors from the two program flows fill a register.

With the following register mappings,

src0:r2-r9 (with 16 X data elements in r2-r3, Y in r4-5, Z in r6-7 and W in r8-9),

srcl.r10-ri7,

dst:ri8-r25,

the example 3D graphics API Shader instruction can be translated into the following three instructions:
add (16) r18<1>:f r4<88,1>:f r14<8:8,1>:f// dstx = srcO.y + srcl.z

add (16) r20<1>:f r6<8381>f r16<8:38,1>:f// dsty = src0.z + srcl.w

add (16) r22<1>:f r8<88,1>:f r10<88,1>:f // dstz = srcO.w + srcl.x

The three instructions correspond to the three enabled destination masks As there is no output for the W
elements of dst, no instruction is needed for that element. The first instruction inputs the Y elements of
srcO and the Z elements of src1 and outputs the X elements of dst. The operation of this instruction is
shown in SIMD 16 Mode of Operation.

With more than one program flow, the above instructions are also subject to the execution mask. The 16-
bit dispatch mask is partitioned into four groups with four bits each. For Pixel Shader generated by the
Windower, each 4-bit group corresponds to a 2x2 pixel subspan. If a subspan is not valid for a Pixel
Shader instance, the corresponding 4-bit group in the dispatch mask is not set. Therefore, the same
instructions can be used independent of the number of available subspans without creating bogus data
in the subspans that are not valid.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 345

intel

A SIMD16 Example

L vy [y Iy Qv v Yy fes [Y]Y]

r
O I O R O O I - A = [9 £ ElE s [xR K| K [r19

fdd (18] rid«<l=:Ff m=88,1=F rld=58;8,1=:F {Compr} /Fdst.x=srol.v+srcl.z
BE294-01

Similar to SIMD4x2 mode, a constant may also be shared for the 16 program flows. For example, the first
source operand could be a 4-element vector (e.g. a constant) stored in doublewords 0-3 in r2 (AOS
format). The example 3D graphics API Shader instruction can then be translated into the following
instruction:

add (16) r18<1>:;f r2.1<0;1,0>:f r14<8:8,1>:f {Compr}// dstx = srcO.y + srcl.z
add (16) r20<1>:;f r2.2<0;1,0>:f r16<8:8,1>:f {Compr}// dsty = src0.z + srcl.w
add (16) r22<1>:;f r2.3<0;1,0>:f r10<88,1>:f {Compr}// dstz = srcO.w + src1.x

The register region of the first source operand represents a replicated scalar. The operation of the first
instruction is illustrated in SIMD16 Mode of Operation.

Another SIMD16 Example with an AOS Shared Constant

LI 1] Ii’“*flzl‘fl?'ilf2 Ll 1] IWIEI‘fIxIﬂ

25 255

EAEAEARZ 77/ N Izlzlzw’z’ﬁl’lﬁlzlrw

Fe9 FETegEes

L I O A 4 & [r18 O = O O ri9

fdd (16) rig=1=:F r2.1=0;1,0=: f rld=58;81=:F {Compr} /F dst.x=srcl.y+srcl.z
B&395-01

346 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

SIMD8 Mode of Operation

Each compressed instruction has two corresponding native instructions. Taking the example instruction
shown in SIMD 16 Mode of Operation, it is equivalent to the following two instructions.

add (8) r18<1>:;f r4<88,1>:;f r14<8;8,1>:f // dstx[7:0] = srcO.y + srcl.z
add (8) r19<1>:f r5<88,1>f r15<88,1>:;f {SecHalf}
/7 dstx[15:8] = srcO.y + srcl.z

Therefore, SIMD8 can be viewed as a special case for SIMD16.

There are other reasons that SIMD8 instructions may be used. Within a program with 16 concurrent
program flows, some time SIMD8 instruction must be used due to architecture restrictions. For example,
the address register a0 only have 8 elements, if an indirect GRF addressing is used, SIMD16 instructions
are not allowed.

Messages

Communication between the EUs and the shared functions and between the fixed function pipelines
(which are not considered part of the “Subsystem”) and the EUs is accomplished via packets of
information called messages. Message transmission is requested via the send instruction. Refer to the
send instruction definition in the ISA Reference chapter for details.

The information transmitted in a message falls into two categories:

¢ Message Payload.
e Associated (“sideband”) information provided by:

o Message Descriptor. Specified with the send instruction. Included in the message
descriptor is control and routing information such as the target function ID, message
payload length, response length, etc.

o Additional information provided by the send instruction, e.g., the starting destination
register number, the execution mask (EMASK), etc.

o A small subset of Thread State, such as the Thread ID, EUID, etc.

The software view of messages is shown in Data Flow Associated With Messages. There are four basic
phases to a message’s lifetime as illustrated below:

Creation.

2. Delivery. The thread issues the message for delivery via the send instruction. The send instruction
also specifies the destination shared function ID (SFID), and where in the GRF any response is to be
directed. The messaging subsystem enqueues the message for delivery and eventually routes the
message to the specified shared function.

3. Processing. The shared function receives the message and services it accordingly, as defined by
the shared function definition.

4. Writeback. If called for, the shared function delivers an integral number of registers of data to the
thread’s GRF in response to the message.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 347

intel

Data Flow Associated With Messages

4. Write-back Response

Thread

Instruction

Thread-State &”E Shared Func ¥

» GRF Cperands E}C_ED_I_tiI:ll'l]
—» | Pipeline Shared Func ¥
" 1. Message Creation
MRF h
Z. Message Delivery —~————| Shared Func Z

3. Message Processing

B&ETE-01

Message Payload Containing a Header

For most shared functions, the first register of the message payload contains the header payload of the
message (or simply the message header).

Consequently, the rest of the message payload is referred to as the data payload.

Messages to Gateway combine the header and data payloads in a single message register.

Writebacks

Some messages generate return data as dictated by the ‘function-control’ (opcode) field of the ‘send’
instruction (part of the <desc> field). The Gen4 execution unit and message passing infrastructure do not
interpret this field in any way to determine if writeback data is to be expected. Instead explicit fields in
the ‘send’ instruction to the execution unit the starting GRF register and count of returning data. The
execution unit uses this information to set in-flight bits on those registers to prevent execution of any
instruction which uses them as an operand until the register(s) is(are) eventually written in response to
the message. If a message is not expected to return data, the ‘send’ instruction’s writeback destination
specifier (<post_dest>) must be set to 'null” and the response length field of <desc> must be 0 (see
‘send’ instruction for more details).

The writeback data, if called for, arrives as a series of register writes to the GRF at the location specified
by the starting GRF register and length as specified in the ‘send’ instruction. As each register is written
back to the GREF, its in-flight flag is cleared and it becomes available for use as an instruction operand. If
a thread was suspended pending return of that register, the dependency is lifted and the thread is
allowed to continue execution (assuming no other dependency for that thread remains outstanding).

348 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Message Delivery Ordering Rules

All messages between a thread and an individual shared function are delivered in the ordered they were
sent. Messages to different shared functions originating from a single thread may arrive at their
respective shared functions out of order.

The writebacks of various messages from the shared functions may return in any order. Further individual
destination registers resulting from a single message may return out of order, potentially allowing
execution to continue before the entire response has returned (depending on the dependency chain
inherent in the thread).

Execution Mask and Messages

The Gen4 Architecture defines an Execution Mask (EMask) for each instruction issued. This 16b bit-field
identifies which SIMD computation channels are enabled for that instruction. Since the ‘send’ instruction
is inherently scalar, the EMask is ignored as far as instruction dispatch is concerned. Further the execution
size has no impact on the size of the ‘send’ instruction’s implicit move (it is always 1 register regardless of
specified execution size).

The 16b EMask is forwarded with the message to the destination shared function to indicate which SIMD
channels were enabled at the time of the ‘send’. A shared function may interpret or ignore this field as
dictated by the functionality it exposes.

The DataPort writes to the render cache ignore this field completely, instead using the pixel mask
included in-band in the message payload to indicate which channels carry valid data.

End-Of-Thread (EOT) Message

The final instruction of all threads must be a send instruction that signals 'End-Of-Thread’ (EOT). An EOT
message is one in which the EOT bit is set in the send instruction’s 32b <desc> field. When issuing
instructions, the EU looks for an EOT message, and when issued, shuts down the thread from further
execution and considers the thread completed.

Only a subset of the shared functions can be specified as the target function of an EOT message, as
shown in the table below.

Target Shared Functions Target Shared Functions
supporting EOT messages |not supporting EOT messages

PixelPort, URB, ThreadSpawner DataPort, Sampler

Both the fixed-functions and the thread dispatcher require EOT notification at the completion of each
thread. The thread dispatcher and fixed functions in the 3D pipeline obtain EOT notification via the target
shared functions.

The thread dispatcher, upon detecting an end-of-thread message, updates its accounting of resource
usage by that thread, and is free to issue a new thread to take the place of the ended thread. Fixed
functions require end-of-thread notification to maintain accounting as to which threads it issued have
completed and which remain outstanding, and their associated resources such as URB handles.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 349

intel

Unlike the thread dispatcher, fixed-functions discriminate end-of-thread messages, only acting upon
those from threads which they originated, as indicated by the 4b fixed-function ID present in RO of end-
of-thread message payload. This 4b field is attached to the thread at new-thread dispatch time and is
placed in its designated field in the RO contents delivered to the GRF. Thus to satisfy the inclusion of the
fixed-function ID, the typical end-of-thread message generally supplies RO from the GRF as the first
register of an end-of-thread message.

As an optimization, an end-of-thread message may be overload upon another “productive” message,
saving the cost in execution and bandwidth of a dedicated end-of-thread message. Outside of the end-
of-thread message, most threads issue a message just prior to their termination (for instance, a Pixel Port
write to the framebuffer) so the overloaded end-of-thread is the common case. The requirement is that
the message contains RO from the GRF (to supply the fixed-function ID), and that destination shared
function be either (a) the URB; (b) the Pixel Port; or, (c) the Thread Spawner, as these functions reside on
the O-Bus. In the case where the last real message of a thread is to some other shared function, the
thread must issue a separate message for the purposes of signaling end-of-thread.

Performance

The Gen4 Architecture imposes no requirement as to a shared function'’s latency or throughput. Due to
this as well as factors such as message queuing, shared bus arbitration, implementation choices in bus
bandwidth, and instantaneous demand for that function, the latency in delivering and obtaining a
response to a message is non-deterministic. It is expected that a Gen4 implementation has some notion
of fairness in transmission and servicing of messages so as to keep latency outliers to a minimum.

Other factors to consider with regard to performance:

Software prefetching techniques may be beneficial for long latency data fetches (i.e. issue a load early in
the thread for data that is required late in the thread).

Message Description Syntax

All message formats are defined in terms of DWords (32 bits). The message registers in all cases are 256
bits wide, or 8 DWords. The registers and DWords within the registers are named as follows, where n is
the register number, and d is the DWord number from 0 to 7, from the least significant DWord at bits
[31:0] within the 256-bit register to the most significant DWord at bits [255:224], respectively. For
writeback messages, the register number indicates the offset from the specified starting destination
register.

Dispatch Messages: Rn.d

Dispatch messages are sent by the fixed functions to dispatch threads. See the fixed function chapters in
the 3D and Media volume.

SEND Instruction Messages: Mn.d

These are the messages initiated by the thread via the SEND instruction to access shared functions. See
the chapters on the shared functions later in this volume.

Writeback Messages: Wn.d

350 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

These messages return data from the shared function to the GRF where it can be accessed by thread that
initiated the message.

The bits within each DWord are given in the second column in each table.

Message Errors

Messages are constructed via software, and not all possible bit encodings are legal, thus there is the
possibility that a message may be sent containing one or more errors in its descriptor or payload
contents. There are two points of error detection in the message passing system: (a) the message
delivery subsystem is capable of detecting bad FunctionIDs and some cases of bad message lengths; (b)
the shared functions contain various error detection mechanisms which identify bad sub-function codes,
bad message lengths, and other misc errors. The error detection capabilities are specific to each shared
function. The execution unit hardware itself does not perform message validation prior to transmission.

In both cases, information regarding the erroneous message is captured and made visible through
MMIO registers, and the driver notified via an interrupt mechanism.

The set of possible errors is listed in Error Cases with the associated outcome.

Error Cases

Error Outcome

Bad Shared Function ID |The message is discarded before reaching any shared function. If the message specified a
destination, those registers will be marked as in-flight, and any future usage by the
thread of those registers will cause a dependency which will never clear, resulting in a
hung thread and eventual time-out.

The destination shared function detects unknown opcodes (as specified in the ‘send’
instructions <desc> field), and known opcodes where the message payload is either too
Incorrect message long or too short, and threats these cases as errors. When detected, the shared function
length latches and makes available via MMIO registers the following information: the EU and
thread ID which sent the message, the length of the message and expected response,
and any relevant portions of the first register (RO) of the message payload. The shared
function alerts the driver of an erroneous message through and interrupt mechanism
then continues normal operation with the subsequent message.

Unknown opcode

Bad message contents | Detection of bad data is an implementation decision of the shared function. Not all fields
in payload may be checked by the shared function, so an erroneous payload may return bogus data
or no data at all. If an erroneous value is detected by the shared function, it is free to
discard the message and continue with the subsequent message. If the thread was
expecting a response, the destination registers specified in the associated ‘send’
instruction are never cleared potentially resulting in a hung thread and time-out.

Incorrect response

lenath Case: too few registers specified — the thread may proceed with execution prior to all the
eng

data returning from the shared function, resulting in the thread operating on bad data in
the GRF.

Case: too many registers specified — the message response does not clear all the registers
of the destination. In this case, if the thread references any of the residual registers, it
may hand and result in an eventual time-out.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 351

intel

Error

Outcome

Improper use of End-Of-
Thread (EOT)

Any ‘send’ instruction which specifies EOT must have a ‘null’ destination register. The EU
enforces this and, if detected, will not issue the ‘send’ instruction, resulting in a hung
thread and an eventual time-out.

The 'send’ instruction specifies that EOT is only recognized if the <desc> field of the
instruction is an immediate. Should a thread attempt to end a thread using a <desc>
sourced from a register, the EOT bit will not be recognized. In this case, the thread will
continue to execute beyond the intended end of thread, resulting in a wide range of error
conditions.

Two outstanding
messages using
overlapping GRF
destinations ranges

This is not checked by HW. Due to varying latencies between two messages, and out-of-
order, non-contiguous writeback cycles, the outcome in the GRF is indeterminate; may be
the result from the first message, or the result from the second message, or a
combination of both.

Registers and Register Regions

Register Files

Registers are grouped into different name spaces called register files. There are two register files, the
General Register File and the Architecture Register File. A third encoding of some register file instruction
fields indicates immediate operands within instructions rather than a register file.

e General Register File (GRF): The GRF contains general-purpose read-write registers.

e Architecture Register File (ARF): The ARF contains all architectural registers defined for specific
purposes, including address registers (a#), accumulators (acc#), flags (f#), notification count (n#),
instruction pointer (ip), null register (null), etc.

e Immediate: Certain instructions can take immediate source operands. A distinct register file field
encoding indicates an immediate operand.

Each thread executed in an EU has its own thread context, a dedicated register space that is not shared
between threads, whether executing on a common EU or on a different EU. In the rest of the chapters in
this volume, register access is relative to a given thread.

GRF Registers

Number of Registers:
Default Value:
Normal Access:
Elements:

Element Size:
Element Type:

Access Granularity:

352

Various
None
RW
Various
Various
Various

Byte

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Write Mask Granularity: Byte

Indexable? Yes

Registers in the General Register File are the most commonly used read-write registers. During the
execution of a thread, GRF registers are used to store the temporary data, and serve as the destination to
receive data from shared function units (and sometimes from a fixed function unit). They are also used to
store the input (initialization) data when a thread is created. By allowing fixed function hardware to
initialize some portion of GRF registers during thread dispatch time, architecture can achieve better
parallelism. A thread's execution efficiency can also be improved as some data are already in the register
to be executed upon. Besides these registers containing thread’s payload, the rest of GRF registers of a
thread are not initialized.

Summary of GRF Registers

Register File Register Name Description

General Register File (GRF) | r# General purpose read write registers

Each execution unit has a fixed size physical GRF register RAM. The GRF register RAM is shared by all
threads on the EU. Each thread has a dedicated space of 128 register, rO through r127.

GRF registers can be accessed using region-based addressing at byte granularity (both read and write). A
source operand must be contained within two adjacent registers. A destination operand must be
contained within one register. GRF registers support direct addressing and register-indirect addressing.
Register-indirect addressing uses the address registers (ARF registers a#) and an immediate address
offset value.

When accessing (read and/or write) outside the GRF register range allocated for a given thread either
through direct or indirect addressing, the result is unpredictable.

Register Size Allocation Granularity Number per Thread

256 bits Fixed allocation of 128 registers 128 registers

ARF Registers

ARF Registers Overview

Besides registers that are directly indicated by a unique register file coding, all other registers belong to
the Architecture Register File (ARF). Encodings of architecture register types are based on the MSBs of
the register number field, RegNum, in the instruction word. The RegNum field has 8 bits. The 4 MSBs,
RegNum(7:4], represent the architecture register type. This is summarized in the Summary of Architecture
Registers table below.

Description

GREF registers are directly indicated by a unique register file encoding.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 353

intel

Summary of Architecture Registers

Register Type

(RegNum [7:4]) Register Name Register Count Description
0000b null 1 Null register
0001b a0.# 1 Address register
0010b acc# 10 Accumulator register
0011b fH# 2 Flag register
0100b ce# 1 Channel Enable register
0101b msg# 32 Message Control Register
0110b sp 1 Stack Pointer Register
0111b srO.# 2 State register
1000b crO.# 1 Control register
1001b n# 2 Notification Count register
1010b ip 1 Instruction Pointer register
1011b tdr 1 Thread Dependency register
1100b tmO 2 Pause register
1101b fc#.# 39 Flow Control register
1110b Reserved Reserved

Programming Note

Context: ARF Registers Overview

The remaining register number field RegNum([3:0] is used to identify the register number of a given architecture
register type. Therefore, the maximum number of registers for a given architecture register type is limited to 16. The
subregister number field, SubRegNum, in the instruction word has 5 bits. It is used to address subregister regions
for an architecture register supporting register subdivision.

The SubRegNum field is in units of bytes. Therefore, the maximum number of bytes of an architecture register is
limited to 32. Depending on the alignment restriction of a register type, only certain encodings of SubRegNum field
apply for an architecture register. The detailed definitions are provided in subsequent sections.

Programming Note

Context: ARF Registers Overview

In general an ARF register can be dst (destination) or srcO (source 0, first source operand) for an instruction.
Depending on the register and the instruction, other restrictions may apply.

Access Granularity

ARF registers may be accessed with subregister granularity according to the descriptions below and
following the same rule of region-based addressing for GRF.

354 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

The machine code for register number and subregister number of ARF follows the same rule as for other
register files with byte granularity. For an ARF as a source operand, the region-based address controls
the source swizzle mux. The destination subregister number and destination horizontal stride can be
used to generate the destination write mask at byte level.

Subregister fields of an ARF register may not all be populated (indicated by the subregister being
indicated as reserved). Writes to unpopulated subregisters are dropped; there are no side effect. Reads
from unpopulated subregisters, if not specified, return unpredictable data.

Some ARF registers are read-only. Writes to read-only ARF registers are dropped and there are no side
effects.

Null Register

Null Register Summary

Attribute Value
ARF Register Type Encoding (RegNum([7:4]): | 0000b
Number of Registers: 1
Default Value: N/A
Normal Access: N/A
Elements: N/A
Element Size: N/A
Element Type: N/A
Access Granularity: N/A
Write Mask Granularity: N/A
SecHalf Control? N/A
Indexable? No

The null register is a special encoding for an operand that does not have a physical mapping. It is
primarily used in instructions to indicate non-existent operands. Writing to the null register has no side
effect. Reading from the null register returns an undefined result.

The null register can be used where a source operand is absent. For example, for a single source operand
instruction such as MOV or NOT, the second source operand src1 must be a null register.

When the null register is used as the destination operand of an instruction, it indicates the computed
results are not stored in any registers. However, implied writes to the accumulator register, if applicable,
may still occur for the instruction. When the conditional modifier is present, updates to the selected flag
register also occur. In this case, the register region fields of the 'null’ operand are valid.

Another example use is to use the null register as the posted destination of a send instruction for data
write to indicate that no write completion acknowledgement is required. In this case, however, the
register region fields are still valid. The null register can also be the first source operand for a send
instruction indicating the absent of the implied move. See the send instruction for details.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 355

intel

Address Register

Address Register Summary

Attribute Value
ARF Register Type Encoding (RegNum([7:4]): 0001b
Number of Registers: 1
Default Value: None
Normal Access: RW
Elements: 16
Element Size: 16 bits
Element Type: UW or UD
Access Granularity: Word
Write Mask Granularity: Word
SecHalf Control? N/A
Indexable? No

Description

There are sixteen address subregisters forming a 16-element vector. Each address subregister contains 16 bits.
Address subregisters can be used as regular source and destination operands, as the indexing addresses for
register-indirect-addressed access of GRF registers, and also as the source of the message descriptor for the send
instruction.

Register and Subregister Numbers for Address Register

RegNum([3:0] SubRegNum[4:0]

0000b = a0 When register a0 or subregisters in a0 are used as the address register for register-indirect
addressing, the address subregisters must be accessed as unsigned word integers. Therefore,
the subregister number field must also be word-aligned.

00000b = a0.0:uw

All other encodings
are reserved.

00010b = a0.1:uw
00100b = a0.2:uw
00110b = a0.3:uw
01000b = a0.4:uw
01010b = a0.5:uw
01100b = a0.6:uw
01110b = a0.7:uw
10000b = a0.8:uw
10010b = a0.9:uw

356 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

RegNum|[3:0] SubRegNum[4:0]

10100b = a0.10:uw
10110b = a0.11:uw
11000b = a0.12:uw
11010b = a0.13:uw
11100b = a0.14:uw
11110b = a0.15:uw
All other encodings are reserved.

However, when register a0 or subregisters in a0 are explicit source and/or destination
registers, other data types are allowed as long as the register region falls in the 128-bit range.

Address Register Fields

DWord | Bits Description

7 31:16 | Address subregister a0.15:uw. Follows the same format as a0.3.
15:0 | Address subregister a0.14:uw. Follows the same format as a0.2.

6 31:16 | Address subregister a0.13:uw. Follows the same format as a0.3.
15:0 | Address subregister a0.12:uw. Follows the same format as a0.2.

5 31:16 | Address subregister a0.11:uw. Follows the same format as a0.3.
15:0 | Address subregister a0.10:uw. Follows the same format as a0.2.

4 31:16 | Address subregister a0.9:uw. Follows the same format as a0.3.
15:0 | Address subregister a0.8:uw. Follows the same format as a0.2.

3 31:16 | Address subregister a0.7:uw. Follows the same format as a0.3.
15:0 | Address subregister a0.6:uw. Follows the same format as a0.2.

2 3116 Address subregister a0.5:uw. Follows the same format as a0.3.
150 Address subregister a0.4:uw. Follows the same format as a0.2.

! 3116 Address subregister a0.3:uw. This field can be used for register-indirect register addressing or
serve as extended descriptor for a send instruction. When used for register-indirect register
addressing, it is a 12-bit unsigned integer. For a send instruction, it provides the higher 16 bits of
<exdesc>.

Format: U12 or U16
15:0

Address subregister a0.2:uw. This field can be used for register-indirect register addressing or
serve as extended descriptor for a send instruction. When used for register-indirect register
addressing, it is a 12-bit unsigned integer. For a send instruction, it provides the lower 16 bits of
<exdesc>.

Format: U12 or U16

Doc Ref # IHD-OS-LKF-Vol 9-4.21 357

intel

DWord | Bits Description

0 3116 Address subregister a0.1:uw. This field can be used for register-indirect register addressing or

serve as message descriptor or extended descriptor for a send instruction. When used for register-
indirect register addressing, it is a 12-bit unsigned integer. For a send instruction, it provides the
higher 16 bits of <desc> or <exdesc>.

Format: U12 or U16.

1>:0 Address subregister a0.0:uw. This field can be used for register-indirect register addressing or

serve as message descriptor or extended descriptor for a send instruction. When used for register-
indirect register addressing, it is a 12-bit unsigned integer. For a send instruction, it provides the
lower 16 bits of <desc> or <exdesc>.

Format: U12 or U16.

When used as a source or destination operand, the address subregisters can be accessed individually or
as a group. In the following example, the first instruction moves 8 address subregisters to the first half of
GRF register r1, the second instruction replicates a0.4:uw as an unsigned word to the second half of r1,
the third instruction moves the first 4 words in r1 into the first 4 address subregisters, and the fourth
instruction replicates r1.4 as a unsigned word to the next 4 address subregisters.

mov (8) rl.0<1>:uw a0.0<8;8,1>:uw // rl.n = a0.n for n = 0 to 7 in words
mov (8) rl.8<1>:uw a0.4<0;1,0>:uw // rl.m = a0.4 for m = 8 to 15 in words
mov (4) a0.0<1>:uw rl1.0<4;4,1>:uw // a0.n = rl.n for n = 0 to 3 in words
mov (4) a0.4<1>:uw r1.4<0;1,0>:uw // a0.m = rl.4 for m = 4 to 7 in words

When used as the register-indirect addressing for GRF registers, the address subregisters can be
accessed individually or as a group. When accessed as a group, the address subregisters must be group-
aligned. For example, when two address subregisters are used for register indirect addressing, they must
be aligned to even address subregisters. In the following example, the first instruction is legal. However,
the second one is not. As ExecSize = 8 and the width of src0 is 4, two address subregisters are used as
row indices, each pointing to 4 data elements spaced by HorzStride = 1 dword. For the first instruction,
the two address subregisters are a0.2:uw and a0.3:uw. The two align to a DWord group in the address
register. However, the two address subregisters for the second instruction are a0.3:uw and a0.4:uw. They
are not DWord-aligned in the address register and therefore violate the above mentioned alignment
rule.

mov (8) rl.0<1>:d r[a0.2]<4,1>:d // a0.2 and a0.3 are used for srcl
mov (8) rl.0<1>:d r[a0.3]<4,1>:d // ILLEGAL use of register indirect

Programming Note

Context: ARF Registers

Implementation restriction: When used as the source operand <desc> for the send instruction, only the first
dword subregister of a0 register is allowed (i.e. a0.0:ud, which can be viewed as the combination of a0.0:uw and
a0.1:uw). In addition, it must be of UD type and in the following form <desc> = a0.0<0;1,0>:ud.

358 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Programming Note

Context: ARF Registers

Performance Note: There is only one scoreboard for the whole address register. When a write to some
subregisters is in flight, hardware stalls any instruction writing to other subregisters. Software may use the
destination dependency control {NoDDChk, NoDDClIr} to improve performance in this case. Similarly, when a write
to some subregisters is in flight, hardware stalls any instruction sourcing other subregisters until the write retires.

Accumulator Registers

Accumulator Registers Summary

Attribute Value
ARF Register Type Encoding (RegNum([7:4]): 0010b
Number of Registers: 10
Default Value: None
Normal Access: RW

Accumulator registers can be accessed either as explicit or implied source and/or destination registers.
To a programmer, each accumulator register may contain either 8 DWords or 16 Words of data elements.
However, as described in the Implementation Precision Restriction notes below, each data element may
have higher precision with added guard bits not indicated by the numeric data type.

Accumulator capabilities vary by data type, not just data size, as described in the Accumulator Channel
Precision table below. For example, D and F are both 32-bit data types, but differ in accumulator support.

See the Accumulator Restrictions section for information about additional general accumulator
restrictions and also accumulator restrictions for specific instructions.

Register and Subregister Numbers for Accumulator Registers

RegNum([3:0] SubRegNum[4] SubRegNum([3:0]
0000b-1001b = acc0-acc9 0 : Lower half Reserved: MBZ
All other encodings are reserved. 1: Upper half

e Accumulators are updated implicitly only if the AccWrCtrl bit is set in the instruction. The
Accumulator Disable bit in control register cr0.0 allows software to disable the use of AccWrCtrl for
implicit accumulator updates. The write enable in word granularity for the instruction is used to
update the accumulator. Data in disabled channels is not updated.

¢ When an accumulator register is an implicit source or destination operand, hardware always uses
accO by default and also uses acc1 if the execution size exceeds the number of elements in accO.
When implicit access to acc1 is required, QtrCtrl is used. Note that QtrCtrl can be used only if acc1
is accessible for a given data type. If acc1 is not accessible for a given data type, QtrCtrl defaults to
accO.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 359

intel

Description

acc0 and acc1 are supported for half-precision (HF, Half Float) and single-precision (F, Float). Use QtrCtrl of Q2 or
Q4 to access acc1 for Float. use QtrCtrl of H2 to access acc1 for Half Float.

Examples:

// Updates accO and accl because it is SIMD16:

add (16) rl0:f rll:f rl2:f {AccWrEn}

// Updates accO because it is SIMDS8:

add (8) rl0:f rll:f rl12:f {AccWrEn}

// Updates accl. Implicit access to accl using QtrCtrl:
add (8) rl0:f rll:f rl1l2:f {AccWrEn, Q2}

// Updates accl for Half Floats using QtrCtrl:

add (16) rl0:hf rll:hf rl2:hf {AccWrEn, H2}

e ltisillegal to specify different accumulator registers for source and destination operands in an
instruction (e.g. "add (8) acc1:f accO:f"). The result of such an instruction is unpredictable.

e Accumulator registers may be accessed explicitly as srcO operands only.

e Swizzling is not allowed when an accumulator is used as an implicit source or an explicit source in
an instruction.

e Reading accumulator content with a datatype different from the previous write will result in
undeterministic values.

e Word datatype write to accumulator is not allowed when destination is odd offset strided by 2.

e For any DWord operation, including DWord multiply, accumulator can store up to 8 channels of
data, with only accO supported.

e When an accumulator register is an explicit destination, it follows the rules of a destination

register. If an accumulator is an explicit source operand, its register region must match that of the
destination register with the exception(s) described below.

Exceptions

When OWords of accumulators are accessed, the source and destination OWords may be different. For example,
the following instructions are allowed:

mov (4) rl10.4<1>:f acc0.0<1>:f
add (4) rl10.0<1>:f acc0.4<1>:f r11.0<1>:f
mov (8) rl0.8<1>:uw acc0.0<1l>:uw

add (8) rl1l0.0<1>:uw acc0.8<1>:uw rll.0<1l>:uw

The source and destination datatypes MUST be the same for such access of accumulator.

If destination is contained within one register, source must also be contained within one accumulator register.

Implementation Precision Restriction: As there are only 64 bits per channel in DWord mode (D and
UD), it is sufficient to store the multiplication result of two DWord operands as long as the post source
modified sources are still within 32 bits. If any one source is type UD and is negated, the negated result
becomes 33 bits. The DWord multiplication result is then 65 bits, bigger than the storage capacity of
accumulators. Consequently, the results are unpredictable.

360 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Implementation Precision Restriction: As there are only 33 bits per channel in Word mode (W and
UW), it is sufficient to store the multiplication result of two Word operands with and without source
modifier as the result is up to 33 bits. Integers are stored in accumulator in 2's complement form with bit
32 as the sign bit. As there is no guard bit left, the accumulator can only be sourced once before running
into a risk of overflowing. When overflow occurs, only modular addition can generate a correct result. But
in this case, conditional flags may be incorrect. When saturation is used, the output is unpredictable. This
is also true for other operations that may result in more than 33 bits of data. For example, adding UD
(FFFFFFFFh) with D (FFFFFFFFh) results in TFFFFFFFEh. The sign bit is now at bit 34 and is lost when stored
in the accumulator. When it is read out later from the accumulator, it becomes a negative number as bit
32 now becomes the sign bit.

Accumulator Channel Precision

Number
of Bits Per
Data | Accumulator

Type Number | Channels | Channel Description
DF acc0 4 64 When accumulator is used for Double Float, it has the exact same precision as any
GREF register.
F 8 32 When accumulator is used for Float, it has the exact same precision as any GRF
acc0/accl .
register.
HF 16 16 When accumulator is used for Half Float, it has the exact same precision as any GRF
acc0/acc1 .
register.
Q N/A N/A N/A [Not supported data type.
D acc0 8 33/64

When the internal execution data type is doubleword integer, each accumulator
register contains 8 channels of (extended) doubleword integer values. The data are
always stored in accumulator in 2's complement form with 64 bits total regardless
of the source data type. This is sufficient to construct the 64-bit D or UD
multiplication results using an instruction macro sequence consisting of mul, mach,
and shr (or mov).

(UD)

Writing to acc1 may corrupt this result.

w accO 16 33
When the internal execution data type is word integer, each accumulator register

contains 16 channels of (extended) word integer values. The data are always stored
in accumulator in 2's complement form with 33 bits total. This supports single
instruction multiplication of two word sources in W and/or UW format.

Writing to acc1 may corrupt this result.

B (UB) N/A N/A N/A | Not supported data type.

Math Macro Extended Accumulators

Special Accumulators acc2-acc9

These are accumulator registers defined for a special purpose. They are used to emulate IEEE-compliant
fdiv and sqrt macro operations. The access is different from accO and acc1, which are defined as full 256-

Doc Ref # IHD-OS-LKF-Vol 9-4.21 361

intel

bit registers having 8 DWords and may be accessed explicitly or implicitly. Conversely, these math macro
extended accumulators consist of just a few bits and have very restricted access.

Example:

These registers may be accessed explicitly by a mov operation, with no source modifiers, condition modifiers, or
saturation. When accessed explicitly, the datatype must be D. On reads, the low 2 bits of each DWord are valid data.
The other bits are undefined. On writes, the low two bits are updated and other bits are dropped.

// Move 256 bits from acc8 to r10. Just low two bits of each DWord are valid:
mov (8) r10:ud acc8:ud

// Move 256 bits from r10 to acc8. Just low two bits of each DWord are updated:
mov (8) acc8:ud r10:ud

e These registers are accessed directly by math macro opcodes only. Note: These macro operations
are madm and some others defined under the math opcode section. The macro descriptions also
define the restrictive implicit uses of these registers.

Description

Implicit access across accumulator registers is required for each source operand for these macro instructions. The
SubRegNum bits in the instruction are used to implicitly address the different accumulators. The noacc value is
specified when no write to accumulator is required; think of it as a null.

SpecialAcc[3:0] Encoding | Accumulator Register
0000b acc2

0001b acc3

0010b acc4

0011b acch

0100b acch

0101b acc7

0110b acc8

0111b acc9

1000b noacc

The MSB bits [4:1] of the source SubRegNum are used to specify the SpecialAcc[3:0], similarly the destination
SubRegNum bits are used to specify SpecialAcc[3:2] with the lower bits SpecialAcc[1:0] directly specified in the
instruction.

Flag Register

Flag Register Summary

Attribute Value
ARF Register Type Encoding (RegNum([7:4]): |0011b
Number of Registers: 2

362 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Attribute Value
Default Value: None
Normal Access: RW
Elements: 2
Element Size: 32 bits
Element Type: ub
Access Granularity: Word
Write Mask Granularity: Word
SecHalf Control? Yes
Indexable? No

There are two flag registers, f0 and f1.

Each flag register contains two 16-bit subregisters. Each flag bit corresponds to a data channel.
Predication uses flag values to enable or disable channels. Conditional modifiers assign flag values. If an
instruction uses both predication and conditional modifiers, both features use the same flag register or
subregisters.

Flags can be split to halfs, quarters, or eighths using the QtrCtrl and NibCtrl instruction fields. Those
fields affect the selection of flags for predication and conditional modifiers, but do not affect reading or
writing flags as explicit instruction operands.

The values held in the individual bits of a flag register are the result of the most recent instruction with a
conditional modifier and specifying that flag register. For example:

add.nz.£f0.0 ...

Updates flag subregister f0.0 with the per-channel results of the not zero condition.

The flag register has per-bit write enables. When being updated as the secondary destination associated
with a conditional modifier, only the bits corresponding to the enabled channels in EMask are updated.
Other bits in the flag subregister are unchanged.

Flag registers and subregisters can also be explicit source or destination operands.

The sel instruction does not update flags.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 363

intel

Register and Subregister Numbers for Flag Register

RegNum([3:0]

SubRegNum[4:0]

0000b = fO:ud
0001b = f1:ud

Other encodings are reserved.

00000b = fn.0:uw
00010b = fn.1:uw

Other encodings are reserved.

Reference an entire flag register as f0:ud or f1:ud. Reference the flag subregisters as f0.0:uw, f0.1:uw,

f1.0:uw, and f1.1:uw.
Channel Enable Register

Channel Enable Register Summary

Attribute Value
ARF Register Type Encoding (RegNum[7:4]): 0100b
Number of Registers: 1
Default Value: N/A
Normal Access: RO
Elements: 1
Element Size: 32 bits
Element Type: ub
Access Granularity: DWord
Write Mask Granularity: N/A
SecHalf Control? No
Indexable? No

Register and Subregister Numbers for Channel Enable Register

RegNum([3:0]

SubRegNum[4:0]

0000b = ce

All other encodings are reserved.

00000b = ce:ud.

All other encodings are reserved.

Channel Enable Register Fields

DWord Bits

Description

0 31:0 Channel Enable Register ce:ud

Format: U32

This field contains 32 bits of Channel Enables for the current instruction.

364

Doc Ref # IHD-OS-LKF-Vol 9-4.21

Message Control Registers

Message Control Register Summary

Attribute Value
ARF Register Type Encoding (RegNum[7:4]):{0101b
Number of Registers: 8
Default Value: None
Normal Access: RW
Elements: 2
Element Size: 32 bits
Element Type: ub
Access Granularity: Word
Write Mask Granularity: Word

Register and SubRegister Numbers for Message Control Registers

RegNum[3:0] SubRegNum[4:0]

0000b - 0111 = msg0 - msg7 MBZ

All other encodings are reserved.

intel

These are specific control registers used to track messaging. These may be saved and restored by the
kernel only when a thread is in the context save/restore mode. Access of these registers otherwise, will

result in undeterministic behaviour.

Each thread has 8 registers. The granularity of access is always one full register, i.e., 256b. These registers
must be accessed with a MOV with no predication, src modifiers or conditional modifiers. They MUST be
accessed in direct addressing more only. Access mode is ignored when reading/writing these registers.

These registers must be accessed in order, i.e., reads/writes are in order from msg0 to msg7.

Programming Note

Context: Message Control Registers

Message Control Registers must never be saved or restored

Stack Pointer Register

Stack Pointer Register Summary

Attribute

Value

ARF Register Type Encoding (RegNum[7:4]):

0110b

Number of Registers:

1

Default Value:

Provided by the Dispatcher

Doc Ref # IHD-OS-LKF-Vol 9-4.21

365

intel

Attribute Value

Normal Access: RW

Elements: 2

Element Size: 64 bits

Element Type: ub

Access Granularity: DWord

Write Mask Granularity: DWord

SecHalf Control No

Indexable No

The stack pointer register can be accessed as a unsigned DWord integer (or as a QWord. It consists of a
read-write register, containing the current stack pointer (sp.0), which is relative to the Generate State
Base Address, and a read-only stack limit register (sp.1). The stack pointer is inserted into the message
header when data is stored into scratch space as a stack. The stack pointer is managed by software. If the
stack pointer exceeds the limit or the space allocated, an exception is triggered. See the Stack Pointer
Exception in the Exceptions Section. Writes to the stack pointer must use the {Switch} ThreadCtrl option.

Register and Subregister Numbers for SP Register

RegNum(3:0] SubRegNum[4:0]

0000b = sp 00000b = sp.0:uq.
All other encodings are reserved.|01000b = sp.1:uq

All other encodings are reserved.

366 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

SP Register Fields

DWord | Bits Description
0.1 |63:48|Reserved. MBZ.
470 sp.0. Specifies the current stack pointer. This pointer is relative to the General State Base Address.
This register is initialized at thread load to the top of the per thread Scratch Space. The register is
R/W.
sp = [scratch space pointer] + [scratch space] - 1
Alternatively, this register may be updated by Software to any flat address space. In such cases, the
stack is NOT relative to the General State Base Address. Software must ensure that the address is
exclusive for the thread.
2.3 |63:48|Reserved. MBZ.
47:0

sp.1. Specifies the upper limit for the stack pointer. This pointer is relative to the General State Base
Address. This register is initialized at thread load to the limit allocated for stack in the state. See the
GPGPU Thread Payload description for details. The register is R/W.

sp_limit = [scratch space pointer] + [stack space limit]

Alternatively, this register may be updated by software, similar to the sp register. In such cases,
software is responsible for allocating the right thread stack pointer limit.

State Register

State Register Summary

Attribute Value
ARF Register Type Encoding (RegNum([7:4]):(0111b
Number of Registers: 2
Default Value: Provided by the Dispatcher
Normal Access: RW
Elements: 4
Element Size: 32 bits
Element Type: ub
Access Granularity: Byte
Write Mask Granularity: N/A
SecHalf Control? No
Indexable? No

Doc Ref # IHD-OS-LKF-Vol 9-4.21 367

intel

Register and Subregister Numbers for State Register

RegNum|[3:0] SubRegNum[4:0]

0000b = sr0

All other encodings are reserved. | 00000b — 01100b

Valid encoding range:

All other encodings are reserved.

0001b = sr1

All other encodings are reserved. | 00000b

Valid encoding range:

All other encodings are reserved.

State Register Fields

DWord

Bits

Description

0
(sr0.0:ud)

31:28

Reserved. MBZ.

27:24

FFID (Fixed Function Identifier). Specifies which fixed function unit generates the current thread.
This field is set at thread dispatch and is forwarded on the message bus for all out-going
messages from this thread.

23

Priority Class. This field, when set, indicates the thread belongs to the high priority class, which
has higher scheduling priority over any thread with this field cleared. The priority field below
determines the relative priority within the same priority class. This field is initialized by the thread
dispatcher at thread dispatch time and stays unchanged throughout the life span of the thread.

This field is forwarded on the message bus to the message bus arbiter for all out-going messages.
It serves as a priority hint for the target shared function. See the Shared Function chapters for
whether and how a shared function uses this priority hint.

0 = Low priority class.

1 = High priority class.

22:20

Priority. This field is the relative aging priority of the thread. This field indicates the ‘age’ of this
thread relative to other threads within the EU. No two threads in the same EU can have the same
priority number (independent of the priority class value). Within the same priority class, an older
thread (with a larger priority number) has higher schedule priority over a younger thread.

This field is set to zero at a thread's dispatch.

During a thread'’s run time, this field may or may not be incremented when a new thread is
dispatched to the same EU. It is only incremented when another thread’s priority number is
incremented and reaches the same value. For example, if currently there is a thread with priority 0
on an EU, then dispatching a new thread to that EU causes the old thread'’s priority number to
increment to 1. However, if the active thread (assuming for simplicity that there is only one) on an
EU has a priority number 1 (or 2 or 3), then dispatching a new thread to this EU does not change
the old thread'’s priority number. As threads on an EU may terminate in arbitrary order, the exact
number for a thread depends on the dynamic execution of threads.

368

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

DWord | Bits Description
When thread context is saved and restored after pre-emption, the Priority is not restored to the
original state. Instead the priority is initiated as if new threads were loaded.
19:15 | Reserved. MBZ.
1441 11412] Slice ID.
[11:9] Dual-SubSlice ID
[8] SubsSlice ID.
[7:4] EUID.
3 [Reserved. MBZ.
2:0 [TID (The thread identifier). Specifies the thread slot that the current thread is assigned to. This
field is set at thread dispatch.
1 31:22 | FFTID (Fixed Function Thread ID). There is no connection between this thread ID, assigned in fixed
functions, and the TID assigned in the EUs.
(sr0-T:ud) 21 |Reserved.
20 Page Fault Status. This bit speficies if the thread has hit a page fault on a memory read, memory
write or instruction fetch operation.
The bit is cleared when the thread is restarted after a fault.
18:16 | Page Fault Code. The fault code indicates the type of fault encountered.
15:7 | Hardware Defined State. The byte is defined for hardware use only. The content is saved and
restored in the event of mid thread preemption.
6:0

IEEE Exception. The exception bits are sticky bits set by the opcode when one of the exception is
triggered. These bits are defined per thread and all channels update one sticky bit. These bits may
be cleared by software or on a thread load. Updates to these bits may be turned OFF by the IEEE
Exception trap enable in the CR register. When these bits are required as source of an operation,
the previous instruction must use a {Switch}. This ensures all asynchronous flag updates are
complete before using as source operand. The following table describes these bits:

Workaround: These bits will have undefined value if a previously saved GPGPU context is
restored for execution. All new contexts will have these bits initialized to zero.

Bits Definition
[6:5] Reserved
4 Inexact Exception
3 Overflow
2 Underflow
1 Divide by Zero
0 Invalid Operation

Doc Ref # IHD-OS-LKF-Vol 9-4.21 369

intel

DWord | Bits Description

2 310 Dispatch Mask (DMask). This 32-bit field specifies which channels are active at Dispatch time. This

(sr0.2:ud) field is used by hardware to initialize the mask register.

Format: U32

3 310 | vector Mask (VMask). This 32-bit field contains, for each 4-bit group, the OR of the

(sr0.3:ud) corresponding 4-bit group in the dispatch mask. This field is used by hardware to initialize the
o mask register.

Format: U32

31:0 | Hardware Defined State Register. The contents of these register are hardware defined and are
required only for handling page-fault. These bits are saved and restored by SIP when threads are
(sr1.0:ud) pre-empted. Writes to these registers must follow the sequence described in ‘send’ instruction for
the correct behavior of hardware.

0

1 31:0 | Hardware Defined State Register. Same as sr1.0

(sr1.1:ud)

5 31:0 |Hardware Defined State Register. Same as sr1.0

(sr1.2:ud)

3 31:0 | Hardware Defined State Register. Same as sr1.0

(sr1.3:ud)

Implementation Restriction on Register Access: When the state register is used as a source and/or
destination, hardware does not ensure execution pipeline coherency. Software must set the thread
control field to ‘switch’ for an instruction that uses state register as an explicit operand. This is important
as the state register is an implicit source or destination for many instructions. For example, fields like IEEE
Exception may be an implicit destination updated by multiple back to back instructions. Therefore, if the
instructions updating the state register doesn't set ‘switch’, subsequent instructions may have undefined
results.

Control Register

Control Register Summary

Attribute Value
ARF Register Type Encoding (RegNum[7:4]): | 1000b
Number of Registers: 1
Default Value: Provided by the Dispatcher
Normal Access: RW
Elements: 4
Element Size: 32 bits

370 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Attribute Value
Element Type: ub
Access Granularity: DWord
Write Mask Granularity: DWord
SecHalf Control? No
Indexable? No

The Control register is a read-write register. It contains four 32-bit subregisters that can be accessed
individually.

Subregister cr0.0:ud contains normal operation control fields such as the floating-point mode and the
accumulator disable. It also contains the master exception status/control field that allows software to
switch back to the application thread from the System Routine.

Subregister cr0.1:ud contains the mask and status/control fields for all exceptions. The exception fields
are arranged in significance-decreasing order from MSB to LSB. This arrangement allows the System
Routine to use the [zd instruction to find the high priority exceptions and handle them first. As each
exception is mapped to a single bit, another exception priority order may be implemented by software.
The System Routine may choose to handle one exception at a time, by handling the exception detected
by an [zdinstruction and returning to the application thread. Or it may choose to handle all the
concurrent exceptions, by looping through the exception fields until all outstanding exceptions are
handled before returning back to the application thread.

Exception enable bits (bits 15:0 in cr0.1:ud) control whether an exception causes hardware to jump to the
System Routine or not. Exception status and control bits (bits 31:16 in cr0.7:ud) indicate which exceptions
have occurred, and are used by the system routine to clear the exception. Even if a given exception is
disabled, the corresponding exception status and control bit still reflects its status, whether an exception
event has occurred or not.

cr0.2:ud contains the Application IP (AIP) indicating the current thread IP when an exception occurs.

cr0.3:ud is reserved. Values written to this subregister are dropped; the result of reading from this
subregister is unpredictable.

Fields in Control registers also reference a virtual register called System IP (SIP). SIP is the virtual register
holding the global System IP, which is the initial instruction pointer for the System Routine. The SIP is a
GraphicsAddress. There is only one SIP for the whole system. It is virtual only from a thread’s point of
view, as it is not visible (i.e. not readable and not writeable) to the thread software executed on a EU. It
can only be accessed indirectly by the hardware to respond to exception events. Upon an exception,
hardware performs some bookkeeping (e.g. saving the current IP into AIP) and then jumps to SIP. Upon
finishing exception handling, the System Routine may return back to the application by clearing the
Master Exception Status and Control field in cr0, which causes the hardware to load AIP to IP register.
See the STATE_SIP command for how to set SIP.

Although the SIP may be more than 32 bits wide, the EU still only uses the low 32 bits.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 371

intel

Register and Subregister Numbers for Control Register

RegNum([3:0] SubRegNum[4:0]

0000b = cr0

00000b = cr0.0:ud. It contains general thread control fields.

All other encodings are reserved. 00100b = cr0.1:ud. It contains exception status and control.

01000b = cr0.2:ud. It contains AlP.

All other encodings are reserved.

Control Register Fields

DWord | Bits Description
0 31 Master Exception State and Control. This bit is the master state and control for all exceptions.
Reading a 0 indicates that the thread is in normal operation state and a 1 means the thread is in
exception handle state. Upon an exception event, hardware sets this bit to 1 and switches to SIP.
Writing 1 to this bit has no effect. Writing 0 to this bit also has no effect if the previous value is 0.
In both cases, the bit keeps the previous value. If the previous value of this bit is 1, software
writing a 0 causes the thread to return to AIP. This transition is automatic — software does not
have to move AIP to IP. The value of this bit then stays as 0. This bit is initialized to 0.
0 = The thread is in normal state.
1 = The thread is in exception state.
30:16 | Reserved. MBZ.

14 | Thread preemption disable: This field specifies whether the thread is allowed to stop in middle
on receiving mid-thread preemption request.
0 = Thread is preempted on receiving preemption indication.
1 = Thread is preempted only in case of page-fault.

13 |Reserved. MBZ.

12 IEEE Float to Integer Rounding Mode. This bit determines how rounding modes are handled in
float to integer conversion operation. This bit is initialized to 0 during Thread Dispatch.
This bit must be set for IEEE compliant float to integer conversion operation.
0= The result of float to integer conversion operation is with RTZ rounding mode.
1= The result of float to integer conversion operation is with rounding mode programmed in
cr0.0[5:4].

11

IEEE MinMax. This bit determines how SNAN is handled in min/max operations. This bit is
initialized to 0 during Thread Dispatch.

This bit must be set for IEEE compliant min/max operation.
0 = The result of min/max is a non-SNAN source.

1 = The result of min/max is the SNAN source.

372

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

DWord | Bits Description

10 Half Precision Denorm Mode. This bit determines how denormal numbers are handled for the
HF (Half Float) type. This bit is initialized to 0 during Thread Dispatch.

0 = Flush denorms to zero when reading source operands and flush denorm calculation results to
zero. Denorm flushing preserves sign.
1 = Allow denorm source values and denorm results.

9 IEEE Exception Trap Enable. This bit enables trapping IEEE exception flags. This control bit may
updated by software. It is initially zero on thread load. If enabled, IEEE floating-point exceptions
set sticky bits in the IEEE Exceptions field of sr0.1. Note that IEEE floating-point exceptions do not
transfer control to any handler.

0 = IEEE Exception flags are NOT trapped.
1 = IEEE Exception flags are trapped.

! Single Precision Denorm Mode. This bit determines how denormal numbers are handled for the
F (Float) type when using the IEEE floating-point mode. It is ignored in the ALT floating-point
mode, which always flushs denorms. This bit is initialized by Thread Dispatch.

0 = Flush denorms to zero when reading source operands and flush denorm calculation results to
zero. Denorm flushing preserves sign.
1 = Allow denorm source values and denorm results.

6 Double Precision Denorm Mode. This bit determines how denormal numbers are handled for

the DF (Double Float) type. It is initialized by Thread Dispatch.
0 = Flush denorms to zero when reading source operands and flush denorm calculation results to
zero. Denorm flushing preserves sign.
1 = Allow denorm source values and denorm results.
>4 Rounding Mode. This field specifies the FPU rounding mode. It is initialized by Thread Dispatch.
00b = Round to Nearest or Even (RTNE)
01b = Round Up, toward +inf (RU)
10b = Round Down, toward -inf (RD)
11b = Round Toward Zero (RTZ)

3 Vector Mask Enable (VME). This bit indicates DMask or Vmask should be used by EU for
execution. This bit is set by the Thread Dispatch.
0: Use Dispatch Mask (DMASK)

1: Use Vector Mask (VMASK)
2

Single Program Flow (SPF). Specifies whether the thread has a single program flow (SIMDnxm
with m = 1) or multiple program flows (SIMDnxm with m > 1). This bit affects the operation of all

Doc Ref # IHD-OS-LKF-Vol 9-4.21 373

intel

DWord

Bits

Description

branch instructions. In Single Program Flow mode, all execution channels branch and/or loop
identically. This bit is initialized by the Thread Dispatch.

0: Multiple Program Flows

1: Single Program Flow

Programming Restrictions:

Only H1/Q1/N1 are allowed in SPF mode.

Power Optimization: If an entire shader does not do SIMD branching, the driver can set the SPF bit
to 1 to save power in HW.

Accumulator Disable. This bit controls the update of the accumulator by the instruction field
AccWrCtrl. If this bit is cleared, the accumulator is updated for all instructions with AccWrCtrl
enabled. If set, the accumulator is disabled for all update operations, maintaining its value prior to
being disabled. Setting this bit has no effect if the accumulator is the explicit destination operand
for an instruction. This bit is initialized to 0.

0: Enable accumulator update.
1: Disable accumulator update.
Usage Notes:

This control bit is primarily designed for the System Routine. That routine is not expected to use
the accumulator, though it may need to use instructions that implicitly update the accumulator. To
use such instructions in the System Routine, but still preserve the accumulator contents on
returning to the application kernel, the System Routine would either (a) save and restore the
accumulator, or (b) prevent the accumulator from being unintentionally modified. This control bit
has been added for the latter method.

Software has the option to limit the setting of this control bit to strictly within the System Routine.
If, by convention, this bit is clear within application kernels, the System Routine can simply set the
bit upon entry and clear it before returning control to the application kernel. This usage model
would not necessarily require cr0.0 to be saved/restored in the System Routine. However, if by
convention application kernels are permitted to set this bit, then the System Routine is required to
preserve the content of this bit.

Single Precision Floating Point Mode (FP Mode). This bit specifies whether the current single-
precision floating-point operation mode is IEEE mode (IEEE Standard 754) or the ALT (alternative
mode). This bit does not affect the floating-point mode used for other floating-point data types.
This bit is also forwarded on the message sideband for all out-going messages, for example, to
control the floating-point mode of the Sampler. Software may modify this bit to dynamically
switch between the two floating-point modes. This bit is initialized by Thread Dispatch.

0 = IEEE floating-point mode for the F (Float) type.
1 = ALT (alternative) floating-point mode for the F (Float) type.

30

External Halt Exception Status and Control. This bit indicates the External Halt exception. It is
set by EU hardware on receiving the broadcast External Halt signal. The System Routine should

374

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

DWord | Bits Description
reset this bit before returning to an application routine to avoid infinite loops.
This bit may be set or cleared by software. This bit is initialized to 0.

29 Software Exception Control. This bit is the control bit for software exceptions. Setting this bit to
1 in an application routine causes an exception. Clearing this bit in an application routine has no
effect. Upon entering the system routine, the hardware maintains this bit as 1 to signify a software
exception. The System Routine should reset this bit before returning to an application routine.
This bit may be set or cleared by software. This bit is initialized to 0.

28 lllegal Opcode Exception Status. This bit, when set, indicates an illegal opcode exception. The
exception handler routine normally does not return back to the application thread upon an illegal
opcode exception. Leaving this bit set has no effect on hardware; if system software adversely
returns to an application routine leaving this bit set, it doesn’t cause any exception. This bit should
not be set by software or left set by the system routine to avoid confusion.

This bit is initialized to 0.

27 Stack Overflow Exception Status. This bit when set, indicates a stack overflow exception. The
exception handler routine normally does not return back to the application thread upon a stack
overflow exception. Leaving this bit set has no effect on hardware; if system software adversely
returns to an application routine leaving this bit set, it doesn’t cause any exception. This bit should
not be set by software or left set by the system routine to avoid confusion.

This bit is initialized to 0.

25 |Context Save Status. This bit when set, indicates a Context Save process has been initiated. The
system routine must reset this bit after saving the context to terminate the thread.

24 |Context Restore Status. This bit when set, indicates a Context Restore process has been initiated.
The system routine must reset this bit after restoring the context. The reset of this bit is required
before invoking application routine.

23:16 | Reserved. MBZ.

13 Software Exception Enable. This bit enables or disables the software exception. Enabling or
disabling this bit may allow host software to turn on/off certain features (such as profiling) without
changing the kernel program.

This bit is initialized by the Thread Dispatcher.
Format = ENABLED:
0: Disabled
1: Enabled
12

lllegal Opcode Exception Enable. This bit specifies whether the illegal opcode exception is
enabled or not. The lllegal opcode exception includes illegal opcodes and undefined opcodes,
caused by bad programs or run-time data corruption.

This bit is initialized by the Thread Dispatcher.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 375

intel

DWord | Bits Description
Software should normally assign this bit in the interface descriptor. Even though this mechanism is
provided to disable the illegal opcode exception, it should be used with extreme caution.
Format = ENABLED:
0: Disabled
1: Enabled
1 Stack Overflow Exception Enable. This bit specifies whether the stack overflow exception is
enabled or not. The stack overflow exception includes an overflow or an underflow in the stack
space allocated for the thread.
This bit is initialized by the Thread Dispatcher.
Software should normally assign this bit in the interface descriptor.
Format = ENABLED:
0: Disabled
1: Enabled
10:0 [Reserved. MBZ.
2 313 Application IP (AIP). This is the register storing the instruction pointer before an exception is
(cr0.2:ud) handled. Upon an exception, hardware automatically saves the current IP into the AIP register, and
o then sets the Master Exception State and Control field to 1, which forces a switch to the System
IP (SIP). The AIP register may contain either the pointer to the instruction that causes the
exception (such as breakpoint) or the one after (such as masked stack overflow/underflow
exceptions). This is shown in the following table, where IP is the instruction that generated the
exception.
Exception Type AIP Value
External Halt N/A ™
Software Exception P+ 1
lllegal Opcode IP
(1) External Halt exception is asynchronous and not associated with an instruction.
When the System Routine changes the Master Exception State and Control field from 1 to 0,
hardware restores IP from this register. This field is writable allowing the returning IP to be altered
after an exception is handled.
2:0 |Reserved. MBZ.

Programming Note

Implementation Restriction on Register Access: When the control register is used as an explicit source and/or
destination, hardware does not ensure execution pipeline coherency. Software must set the thread control field to
‘switch’ for an instruction that uses control register as an explicit operand. This is important as the control register is

376

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Programming Note

an implicit source for most instructions. For example, fields like FPMode and Accumulator Disable control the
arithmetic and/or logic instructions. Therefore, if the instruction updating the control register doesn't set ‘switch’,
subsequent instructions may have undefined results.

Notification Registers

Notification Registers Summary

Attribute Value
ARF Register Type Encoding (RegNum([7:4]): [1001b
Number of Registers: 1
Default Value: No

Normal Access:

RO (RW — Context save/restore only)

Elements: 2
Element Size: 32 bits
Element Type: ub
Access Granularity: DWord
Write Mask Granularity: DWord
SecHalf Control? No
Indexable? No

There are three notification registers (n0.0:ud, n0.1:ud, and n0.2:ud) used by the wait instruction. These
registers are read-only, except under context restore, and can be accessed in 32-bit granularity. Write
access to this register is allowed only when context is restored.

Programming Note

Context: Notification Registers - Workaround

The sub-register numbers for n0.0 and n0.2 are swapped on a write, i.e., a destination of n0.0 is required to update

n0.2 and n0.2 is required to update n0.0.

It should be noted that in the extreme case, it is possible to have more notifications to a thread than the
maximum allowed number of concurrent threads in the system. Therefore, the range of the thread-to-
thread notification count in n0, is larger than the maximum number of threads computed by EUID * TID.

There is only one bit for the host-to-thread notification count in n0.1.

When directly accessed, this register is read-only. If the value is non zero, the only way to alter the value
is to use the wait instruction to decrement the value until zero is reached. A wait instruction on a zero

notification subregister causes the thread to stall, waiting for a notification signal from outside targeting
the same subregister. See the wait instruction for details.

Implementation Restriction: The notification registers are initialized to 0 after hardware/software reset.
However, these registers are not reset at thread dispatch time.

Doc Ref # IHD-OS-LKF-Vol 9-4.21

377

intel

Register and Subregister Numbers for Notification Registers

RegNum([3:0] SubRegNum[4:0]

0000b = n0 00000b = n0.0:ud
All other encodings are reserved.|00100b = n0.1:ud
01000b = n0.2:ud

All other encodings are reserved.

Notification Register 0 Fields

DWord | Bits Description

0 31:1| Reserved. MBZ.

0

WAIT instruction for details.
Format: U1

Thread to Thread Notification Count. This register is used by the WAIT instruction for thread-to-
thread synchronization. The value read from this register specifies the outstanding notifications
received from other threads. It can be changed indirectly by using the WAIT instruction. See the

Notification Register 1 Fields

DWord | Bits Description

0 31:1| Reserved. MBZ.

0
synchronization via MMIO registers.

Format: U1

Host to Thread Notification. This register is used by the WAIT instruction for host-to-thread

Format of the Notification Register

==l &4 63 32 31 u}
nd.2 nd.1 nd.0
o5 g0 79 e P 33 231 16 15 04
0's nd.z 0's nd.1 0's na.n
B&E98-01

IP Register

IP Register Summary

Attribute Value
ARF Register Type Encoding (RegNum([7:4]): [1010b
Number of Registers: 1

378

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Attribute Value
Default Value: Provided by the Dispatcher
Normal Access: RW
Elements: 1
Element Size: 32 bits
Element Type: ub
Access Granularity: DWord
Write Mask Granularity: DWord
SecHalf Control? No
Indexable? No

The ip register can be accessed as a 32-bit quantity. It is a read-write register, containing the current
instruction pointer, which is relative to the Generate State Base Address. Reading this register returns
the instruction pointer of the current instruction. The 3 LSBs are always read as zero. Writing this register
causes program flow to jump to the new address. Writes to this register should use the Switch ThreadCtrl
option. When it is written, the 3 LSBs are dropped by hardware.

Register and Subregister Numbers for IP Register

RegNum(3:0]

SubRegNum[4:0]

0000b =

All other encodings are reserved.

ip

00000b = ip:ud

All other encodings are reserved.

IP Register Fields

DWord | Bits Subfield Description
0 31:3 | Ip. Specifies the current instruction pointer. This pointer is relative to the General State Base
Address.
2:0 |Reserved. MBZ.

Doc Ref # IHD-OS-LKF-Vol 9-4.21

379

intel

TDR Registers

TDR Registers Summary

Attribute Value
ARF Register Type Encoding (RegNum([7:4]): [1011b
Number of Registers: 1
Default Value: No
Normal Access: RO/CW
Elements: 8
Element Size: 16 bits
Element Type: uw
Access Granularity: Word
Write Mask Granularity: Word
SecHalf Control? No
Indexable? No

There are 8 thread dependency registers (tdr0.0:uw to tdr0.7:uw) used by HW for the sendc instruction.
These registers are read-only and can be accessed in 16-bit granularity.

When accessed explicitly, each thread dependency register has FFTID in the lower 10 bits, bits 10 to 14
are forced to zero by HW. Bit 15 is the valid bit, which indicate whether the current thread has a
dependency on the dependency thread stored in this thread dependency register.

The thread dependency registers are read only, the valids can only be set with a thread dispatch, and are
reset by broadcasting end of thread messages after a thread retired. The FFTID’s can only be changed
with a thread dispatch. Any write into any of the TDR registers will clear the valid bit for the particular
TDR if the write enable is true, the FFTID portion is strictly read only.

380 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Register and Subregister Numbers for TDR Registers

RegNum([3:0] SubRegNum[4:0]

1011b = tdr0 00000b = tdr0.0:uw
All other encodings are reserved.|00010b = tdr0.1:uw
00100b = tdr0.2:uw
00110b = tdr0.3:uw
01000b = tdr0.4:uw
01010b = tdr0.5:uw
01100b = tdr0.6:uw
01110b = tdr0.7:uw

All other encodings are reserved.

TDR Registers Fields

DWord | Bits Description

3 31 |Valid?7. This field indicates whether the thread specified by FFTID7 is still in-flight.

30:26 | Reserved. MBZ

2>:16 FFTID7. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U10

15 |Validé. This field indicates whether the thread specified by FFTID6 is still in-flight.

14:10 | Reserved. MBZ

90 FFTIDG. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U10

2 31 |Valid5. This field indicates whether the thread specified by FFTID5 is still in-flight.

30:26 | Reserved. MBZ

2>:16 FFTIDS5. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U10

15 |Valid4. This field indicates whether the thread specified by FFTID4 is still in-flight.

14:10 | Reserved. MBZ

%0 FFTIDA4. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 381

intel

DWord | Bits Description
Format: U10
1 31 |Valid3. This field indicates whether the thread specified by FFTID3 is still in-flight.
30:26 | Reserved. MBZ
25:16

FFTID3. This field is the FFTID of the third thread that the current thread depends on. It can be
changed by the end of thread broadcasting messages.

Format: U10

15 |Valid2. This field indicates whether the thread specified by FFTID2 is still in-flight.

14:10 | Reserved. MBZ

%0 FFTID2. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U10

0 31 |Valid1. This field indicates whether the thread specified by FFTID1 is still in-flight.

30:26 | Reserved. MBZ

2>:16 FFTID1. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U10

15 | Valid0. This field indicates whether the thread specified by FFTIDO is still in-flight.

14:10 | Reserved. MBZ

%0 FFTIDO. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U10

382 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Performance Registers

Performance Registers Summary

Attribute Value
ARF Register Type Encoding (RegNum([7:4]): | 1100b
Number of Registers: 1
Default Value: Oh
Normal Access: RO/RW
Elements: 4
Elements: 5
Element Size: 32 bits
Element Type: ub

Timestamp Register

This register is a low latency timestamp source, "TM”, available as part of a thread's Architectural Register
File (ARF). This is a is free running counter, 64b in size, and exposed to the ISA as individual 32b high
‘TmHigh’ and low ‘TmLow’ unsigned integer source operands. As part of the EU's register space, access
to the timestamp has a low and deterministic latency and therefore can be used for intra-kernel high
resolution performance profiling.

The TM features provides a 1-bit indicator ‘TmEvent’ which identifies the occurrence of a time-impacting
event such as context switch or frequency change since the last time any portion of the Timestamp
register value was read by that thread. Software that uses the Timestamp capability should check this bit
to identify when a relative time calculation may be suspect. To properly use this additional information,
the instrumentation code should operate on the Timestamp register value as a whole (i.e. as an 8 dword
register) so that the 64b time and this 1b value are captured simultaneously, as opposed to 32b portions,
to eliminate the chance of missing a TmEvent that might occur between accesses to 32b portions of this
register.

Programming Note

Context: Performance Registers

The Timestamp register is saved as part of thread state on context-save, but only ‘TmEvent’ is restored (and
technically always restored to 1" as a context switch had occurred).

Performance Counter Register

This is a counter intended to provide finer grained visibility into the EUs performance inside kernels. This
counter is a 32-bit free-running counter that increments if the EU flexible performance event selected for
OA counter A7 is true (please refer to OA documentation for details on how to count various EU flexible
events on OA counter A7). The pmO count continues to increment during a thread's active/standby state
transitions as well as context switches. It is read-only and not pre- or resettable under any software
control, either kernel or driver, other than a full gfx reset.

Pause Register

Doc Ref # IHD-OS-LKF-Vol 9-4.21 383

intel

This register provides the mechanism for a thread to pause itself from further execution for a short amount of time.
This may be useful in situations where a periodic polling operation on an external resource is required, but polling
loop time needs to be controlled to prevent excessive consumption of execution slots and resource bandwidth. To
mitigate excessive polling rates, this ‘pause’ operation can be placed in the polling loop to cap the periodic polling
at some maximum rate.

The ‘pause’ operation is invoked by the kernel itself through the writing of the Pause Register with an unsigned-
word value. The register over the course of many clocks will count down from the written value to zero, in steps of
32 decrements every 32 EU clocks (first decrement event has an uncertainty between 1 to 32 clocks). Upon reaching
0x0, the decrement stops. During the time the Pause Register is non-zero, no new instruction issue occurs; upon
reaching a 0-count, the thread once again becomes a candidate for execution. Note that any instruction or
message issued prior to the invocation of the ‘pause’ continues to execute and retire. Actual resumption of
instruction issues after the pause duration may further be delayed through normal operational policies such as
thread priority and/or outstanding register dependencies.

The value written for ‘pause’ should be considered a number of instruction issue slots (divide by 2 for SIMD-8
instruction slots, or 4 for SIMD-16 instruction slots), as opposed to some fixed time duration.

The Pause Register is reset to 0x0 when a new thread is loaded. It is also reset to 0x0 upon invocation of the System
Thread IP (SIP) and at the commencement of a context save or context restore event. The value of the register is not
saved/restored as part of context save/restore.

The actual duration of the pause is considered approximate; generally, the duration will be somewhat
longer than the value written, as the counting does don't commence until the write to the ‘Pause’
register actually retires.

Programming Note

Context: Pause Register - Workaround

When writing to the Pause Register, Switch should be used in the instruction, to ensure that pause register is
written before trying to execute the next instruction.

Register and Subregister Numbers for Performance Register

RegNum([3:0] SubRegNum[4:0]

0000b = tm0 00000b = tm0.0:ud.
All other encodings are reserved.|00100b = tm0.1:ud.
01000b = tm0.2:ud
01100b = tm0.3:ud
10000b = tm0.4:ud

All other encodings are reserved.

384 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Performance Register Fields

DWord | Bits Description
0 31:0 TmLow. The lower 32b of the 64b timestamp value sourced from Cr clock. Read-only.
(tm0.0:ud) Format: U32
1 31:0 TmHigh. The upper 32b of the 64b timestamp value sourced from Cr clock. Read-only.
tm0.7:ud Format: U32
> 31:1 | Reserved
‘ 0 |TmEvent. Indicates a discontinuous time-impacting event (e.g. context switch, frequency change)
tm0.2:ud occurred since any portion of the Timestamp register was last read, thus making any relative
duration calculation based on this counter suspect. This bit is reset at the time a new thread is
loaded, and on each read of any portion of the ‘Timestamp’ register.
3 310 pmO. Increments based on the EU flexible performance event currently selected being true.
tm0.3 Format: U32
(pm0)
4 31:16 | Reserved
tmo0.4:ud 150 Pause Counter. The pause duration. A non-zero value written to this register causes execution of
(t00) the thread to halt for the corresponding number of clocks. Lower 5 bits are always zero and
p

therefore, writing value less than 64 may not result in a pause.
[15:10] — Reserved, must be written as zero; when read, returns zero.
[9:5] - Count value.

[4:0] — Reserved, must be zero.

Format: U16

Flow Control Registers

Summary

Attribute Value
ARF Register Type Encoding (RegNum([7:4]): [1101b
Number of Registers: 34
Default Value: None
Normal Access: RW*

Doc Ref # IHD-OS-LKF-Vol 9-4.21 385

intel

Register and Subregister Numbers for Flow Control Registers

RegNum|[3:0] SubRegNum[4:0]

0000b = fcO | 00000b-11111b = fc0.0-fc0.31.

0001b = fc1 |00000b = fc1.0.
All other encodings are reserved.

0010b = fc2 | 00000b = fc2.0.
All other encodings are reserved.

These are special hardware registers used in handling flow control operations. These registers may be
accessed ONLY in context save/restore operation using the SIP. These registers are accessed with the
'MOV’ opcode. Use of any other opcode or access of these registers in non-context save/restore modes
may result in undeterministic behaviour of hardware.

These registers are accessed as 256b registers. Parts of the 256b register may be redundant, depending
on the hardware implementation of each register. The fields “RegNum” and “SubRegNum"” are used
together to address these registers.

Immediate

Two forms of immediate are provided as a source operand: scalar and vector.

The immediate field may be 64 bits or 32 bits. For a word, unsigned word, or half-float immediate data,
software must replicate the same 16-bit immediate value to both the lower word and the high word of
the 32-bit immediate field in an instruction. The 64-bit immediate takes up two DWords of the
instruction bit field. Hence a 64-bit immediate is supported ONLY for a MOV operation. The field is
denoted by imm32:type for 32-bit immediates and immé64:type for 64-bit immediates.

For a scalar immediate, the numeric data types supported are :uw, :w, :ud, :d, :uq, :q for integers AND :hf,
:f, «df for floats. Refer to the Instruction Machine format topics for the encoding of these immediates.

The immediate form of vector allows a constant vector to be in-lined in the instruction stream. Both
integer and float immediate vectors are supported.

An immediate integer vector is denoted by type v or uv as imm32:v or inm32:uv, where the 32-bit
immediate field is partitioned into 8 4-bit subfields. Refer to the Numeric DataType topic for description
of the packing of vector integers to a DWord.

An immediate float vector is denoted by type vf as imm32:vf, where the 32-bit immediate field is
partitioned into 4 8-bit subfields. Refer to the Numeric DataType topic for the description of the packing
of vector floats to a DWord.

When an immediate vector is used in an instruction, the destination must be 128-bit aligned with
destination horizontal stride equivalent to a word for an immediate integer vector (v) and equivalent to a
DWord for an immediate float vector (vf).

386 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Region Parameters

Unlike conventional SIMD architectures where an N-bit wide SIMD instruction can only operate on N-bit
aligned SIMD data registers, a region-based register addressing scheme is employed in architecture. The
region-based register addressing capability significantly improves the SIMD computation efficiency by
providing per-instruction-based multiple data gathering from register file. This avoids instruction
overhead to perform data pack, unpack, and shuffling, which has been observed on other SIMD
architectures. One benefit of such capability is allowing various kinds of 3D Graphics APl Shader compute
models to run efficiently. Another benefit is allowing high throughput of media applications, which tend
to operate on byte or word data elements.

This can be illustrated by the example shown in Conventional SIMD Instruction Sequence and SIMD
Instruction Sequence for the Same Program. As shown in Conventional SIMD Instruction Sequence, a
sequence of SIMD instruction is executed on a conventional load/store based superscalar machine with
SIMD instruction extension. The data parallelism can be achieved by first level of loop unrolling. As
shown, there is a second level of loop for the task. Before a given SIMD compute instruction, Process (),
can proceed, there might be a load, a data rearrange, and a data unpack (and conversion) instruction to
load and prepare the input data. After the compute instruction is complete, it might also require pack,
re-arrange and store instructions, to format and save the same to memory. At the loop, other scalar
computations such as loop count and address generation may be needed. For the same program, when
the data can fit in the large GRF register file, the outer loop may be unrolled. Here one or a few block
loads (using send instruction) may be sufficient to move the working set into GRF. Then the data shuffle
can be combined with the processing operation with region-based addressing capability. Per operand
float type and mixed data type operation may also allow to combine data conditioning operations with
computing operations. These techniques in architecture help to achieve high compute efficiency and
throughput for graphics and media applications.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 387

Conventional SIMD Instruction Sequence

v

Load (i}

¥

Rearrange {i)

¥

Unpack (i}
¥
Process (i) Loop and
¥ Addr Gen
- I=1.HM
Pack (i)

v

Rearrange {i)

¥

Store (i)
I

Begas-01

SIMD Instruction Sequence for the Same Program

Block Load {(1...M)

!

Process (1)
with pack /unpack

Process (N}
with pack /unpack

'

Block Store {(1...N)

Bes00-0

In an instruction, each operand defines a region in the register file. A region may contain multiple data
elements. Each data element is assigned to an execution channel in the EU. The total number of data

388 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

elements of a region is called the size of the region, or the size of the operand. The number of execution
channels is called the execution size (ExecSize), which is specified in the instruction word. ExecSize
determines the size of region for source and destination operands in an instruction.

e For an instruction with two source operands, the sizes of the two source operands must be the
same.

e The size of a destination operand generally matches the execution size, therefore equals to the
number of source operand(s) in the same instruction.

o Exception of this rule is present for the integer reduction instructions (such as sad2 and
sada?2) where the destination area is smaller than the source area.

Regions are generalized 2-dimensional (2D) arrays in row-major order. The first dimension is named
the horizontal dimension (data elements within a row) and the second dimension is termed the vertical
dimension (data elements in a column). Here, horizontal/vertical and row/column are just symbolic
notations.

When the GRF registers are viewed as a row-major 2D array of memory, such a notation normally matches well with
the geometric locations of the data elements of an operand.

However, as the register region is fully described by the parameters discussed below, the data elements
of a register region may not form a regular rectangular shape. For example, Vertical Stride parameter is
allowed to be smaller than Horizontal Stride, making the rows of a register region interleave with each
other. It should also note that the meanings of horizontal/vertical here is different than that used for the
flag control in Section Flag Register.

An example of a register region (r4.7<16;8,2>:w) with 16 elements

Criging vl
Fegtum=rd
SubRegMum=1
o l 1 Ofbytes
256 bits [T T 1] v
LI N B 3 ri
HorzStride=2
| | LY re
7 6 5 4 31" “:?J 1 iﬂ rj
L r
'-.-'er'tSm-:Ie—IE-{ 15 14 13 12 11 10) 8 =]
e, I: [l # Ll j;.—"’-"""“--wll e
o e Rq\ |~ 'Y
o Y f’,:" 1] ra
Type=Ward
I idmh =2
I I e

RefFile RegMum.SubRegMum < ¥erts tride ;Wid th HorzStride > :type=rd.1 < 16:8,.2 > 1w

Bes01-01

A 16-element register region with interleaved rows (r5.0<1;8,2>:w) shows another example where the
rows are interleaved. The region, having word data elements, starts at location r5.0:w. HorzStride, the
distance within a row, is 2 words. So the second element (channel number 1) is at location 5.2:w. And
there are 8 elements per row. VertStride, the distance between two rows, is only 1 word, which is less

Doc Ref # IHD-OS-LKF-Vol 9-4.21 389

intel

than HorzStride. Therefore, the first element of the second row (channel number 8) is at r5.1:w, just next
to channel number 0. It is clear from the picture that the two rows are interleaved.

By varying the region parameters, reader may construct other configurations. The next section provides
more details on the region-based register addressing. However, there are restrictions imposed by
hardware implementation, which can be found in the later sections of this chapter.

A 16-element register region with interleaved rows (r5.0<17,;8,2>:w)

31 1 0f bytes
256 bits ¥
ri
re
[gc]
rd

rG
rT
ra

RefFile Reglum.SubRegMum < ¥YertStride;Width HorzStrvide > :type=r5.0< 18,2 > 1w
Be302-01

Without considering the source channel swizzle and destination register region description, the above
row-major-order region description provides the data assignment to each execution channel. The
following pseudo code computes the addresses of data elements assigned to execution channels for a
special case when the destination register is aligned to 256-bit register boundary.

// Input: Type: ub | b |uw |w|ud|d|f|v
//RegNum: In unit of 256-bit register
//SubRegNum: In unit of data element size
//ExecSize, Width, VertStride, HorzStride: In unit of data elements
// Output: Address[0:ExecSize-1] for execution channels
int ElementSize = (Type=="b"||Type=="ub") ? 1: (Type=="w"|Type=="uw") ? 2 : 4,
int Height = ExecSize / Width;
int Channel = 0;
int RowBase = RegNum«5 + SubRegNum * ElementSize;
for (int y=0; y<Height; y++) {
int Offset = RowBase;
for (int x=0; x<Width; x++) {
Address [Channel++] = Offset;

390 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Offset += HorzStride*ElementSize;
}

RowBase += VertStride * ElementSize;

}

As HorzStride and VertStride are specified independently (note that VertStride might be smaller than or
equal to HorzStride), the region may take various shapes from a replicated scalar, a replicated vector, a
vector of replicated scalars, a sliding window, to a non-overlapped 2D array.

A region-based description of a destination operand can take the following simplified format
RegFile RegNum.SubRegNum<HorzStride >:type

The destination operand is only allowed to have a 1 dimensional region. The Register Region Origin and
Type are the same as for a source operand. The total number of elements is given by ExecSize. However,
only HorzStride is required to describe the 1D region, not VertStride and Width.

As a source register region may cross multiple physical GRF registers, an instruction with such source
operands may take more than two execution cycles to gather source data elements for execution. The
destination register region of a non-compressed instruction is restricted to be within a physical GRF
register. In other words, destination scatter writes over multiple registers are not supported.

Region Addressing Modes

There are two different register addressing modes: Direct register addressing and register-indirect
register addressing. Depending on the register region description, the register-indirect register
addressing mode can be further divided into three usages: 1x1 index region where only the origin of
register region is provided by the address register, Vx1 index region where the offset of each row of the
register region is provided by an address register, VxH index region where the offset of each data
element is provided by an address register.

Direct Register Addressing

In this mode, all register region parameters are specified for an operand using fields in the instruction
word.

Direct Register Addressing and Direct Register Addressing are two examples of direct register addressing.

For the example in Direct Register Addressing, all operands are 2D rectangular regions having the same
size of 16 data elements. The two source operands, SrcO and Src1, have 16 bytes. The destination
operand, Dst, has 16 words. There are 8 elements in a row for SrcO and SrcT. The vertical stride of 16
bytes for SrcO and SrcT indicates that the first element and the 9'th element are 16 bytes apart in the
register file. Note that SrcO falls into the 256-bit physical GRF register starting at r1.0, but Src1 crosses the
256-bit physical GRF register boundary between r2 and r3. The numbers in the shaded regions are the
values of the data elements. Observing the upper right corners of the source/destination regions (first
data element), we have C = 3+9.

A region description example in direct register addressing

Doc Ref # IHD-OS-LKF-Vol 9-4.21 391

intel.

15 1 0F bytes
256 bits ¥

rl

rz

r3

Srcl

r4

]
R T S R T S A
rT

=

Add (16 6. 0<1>mw rl.7<16;8,1>:h rZ2.1<16;8,1>h
B&202-01

For the example in Direct Register Addressing, the sizes of areas of SrcO and SrcT are the same, but SrcO
contains a vector of replicated scalars. With HorzStride = 0 and Width = 8, the first row of 8 elements in
Src0 is a replication of the byte at r1.14. Comparing ExecSize of 16 to Width of 8 indicates that there is a
second row of 8 elements in SrcO. With VertStride = 16, the second row in Src0 is a replication of the byte
at r1.20 (20 = 14+16). Effectively, the 16 data elements of Src0 are {1,1,1,1,1,1,1,1, 4,4,4,4,4,4,4 4}.

A region description example in direct register addressing with src0 as a vector of replicated
scalars

15 08 bytes
256 bits I ¥

E

Srch

rl

rZ

A ERHIE R HHE A

Srcl

rd

]
e e
Fr

ra

Add {16)m6.0<1=w rl.1d4=<16;8,0>:bh r2.17<16;8,1=:h

Bes04-01

392 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Register-Indirect Register Addressing with a 1x1 Index Region

In the register-indirect register addressing mode with 1x1 index region, the region origin is provided by
the content of the address register, the rest of region parameters are provided by the fields in the
instruction word.

Register-Indirect Register Addressing with a 1x1 Index Region depicts an example for this addressing
mode. For example, the presence of a full region description <16;8,1> for Src0 indicates that only the
origin of the region is provided by the address register a0.0.

An example illustrating register-indirect register addressing mode with a 1x1 index region

128 bits | [[[[[[7.0 | 22 |a0

15 / / 0

256 bitz { {

¥

rl

rz

r3

", (=]

rE

Fr

ra

Add {16){a0.1]<1>:w r[aD.0]<16;8,1=:h r4.8<16;4,1=:b

Be203-01

Register-Indirect Register Addressing with a Vx1 Index Region

In the register-indirect register addressing mode with Vx1 index region, the horizontal dimension is
described by the fields in the instruction word and the vertical dimension is described by an address
register region. Specifically, the origin of each row of the data region is provided by the contents of an
address register region. The rows are described by the width and the horizontal stride. The first address
register is provided and the following contiguous address registers are for the following rows. The total
number of address registers used is inferred from the parameters ExecSize and Width.

Within the 16-bit address register, bits 15:5 determine RegNum and bits 4:0 determine SubRegNum.

An example is provided in Register-Indirect Register Addressing with a Vx1 Index Region. The assembly
syntax notion of a register region without vertical stride, <4,1>, corresponding to the special encoding of
vertical stride of OxF in the instruction word, indicates the VxH or Vx1 mode of indirect register
addressing. In this case, the origin for each row of src0 is provided by the address register. As

Doc Ref # IHD-OS-LKF-Vol 9-4.21 393

intel.

ExecSize/Width = 2, there are two address registers a0.0 and a0.1, each pointing to a row of 4 data
elements.

An example illustrating register-indirect-register addressing mode with a Vx1 index region (src0)

128 bits | [[[[[[28 | 40 |aD
15 (/]
i]
[ri
" |
§Src0 § Src0 § Src0 3 Src0 ¥ z
i
h N3
R T P R
ra
ré
KT
e
Add (8)rB.0<1=:Ff Had.0]<4,1=:w m.0<4;4,1:F
Boo0s-01

Register-Indirect Register Addressing with a VxH Index Region

In the register-indirect register addressing mode with VxH index region, the position of each data
element is provided by the contexts in an address register region. This mode has the identical syntax as
the Vx1 index region mode, and in fact, can be viewed as a special case of the Vx1 mode. When Width of
the region is 1, the number of address registers used equals ExecSize.

An example is provided in Register-Indirect Register Addressing with a VxH Index Region. The absent of
vertical stride in the region description <1,0> with width = 1 indicates that the origin for each row of 1
data element of Src0 is provided by the address register. As ExecSize/Width = 8, there are 8 address
registers from a0.0 to a0.7, each pointing to a single data elements.

394 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel.

An example illustrating register-indirect register addressing mode with a VxH index region (Src0).

128 bit= [212 | 6,12 | 18 | 58 | 4% | 14 | 50 0| a0

o Ny | R T
EEE-I:-itg{ \i\l 3 I O

i ! '
!

rl

rz

r3

rd

]

ré

¥T

=

=]

r1lQ

Add(8)9.0<1=:f Ha0.0]<1,0=:f r8.0<4;4,1=:F

B&207T-01

Access Modes

There are two basic register access modes controlled by a single bit instruction subfield called Access
Mode.

e 16-byte Aligned Access Mode (align16): In this mode, the origins of all operands (sources and
destination), whether it is by direct addressing or register-indirect addressing, are 16-byte aligned.
For example a row in the region description starts at 16-bype aligned and the width the row must
be 4 and the 4 data elements within a row must span 16-bytes. In this access mode (and with other
restrictions put forward later), full-channel swizzle for both source operands and per-channel mask
for destination operand are supported on a 4-component basis. In other words, the control and
setting of full source swizzle and destination mask are repeated for every 4 components up to total
of ExecSize channels.

o The align16 access mode can be used for AOS operations. See examples provided in the Primary
Usage Model section for SIMD4x2 and SIMD4x1 modes of operation to support 3D API Vertex
Shader and Geometric Shader execution.

e 1-byte Aligned Access Mode (align1): In this mode, the origins of all operands may be aligned to
their data type and could be 1-byte if the operand is of byte type. In this access mode, full region

Doc Ref # IHD-OS-LKF-Vol 9-4.21 395

intel

register descriptions are supported, however, source swizzle or destination mask are not
supported.

o The align1 access mode can be used for SOA operations. See examples provided in the Primary
Usage Model section for SIMD8 and SIMD16 modes of operation to support 3D API Pixel Shader.
Many media applications also operate well in align1 access mode.

o Align16 accessmode is restricted to IEEE macro instructions only. All other non-IEEE macro
instructions must use Align1 accessmode.

Execution Data Type

The architecture carries out arithmetic and logical operations using a smaller set of data types than the
variety supported as source or destination operands. These are the execution data types. A particular
arithmetic or logical instruction has one execution data type, from those listed in the table.

Execution Data Types

Type Description

W | Word. 16-bit signed integer.

D |Doubleword. 32-bit signed integer.

Q |Quadword. 64-bit signed integer.

F |Float. 32-bit single precision floating-point number.

DF |Double Float. 64-bit double precision floating-point number.

HF | Half Float. 16-bit half precision floating-point number.

The following rules explain the conversion of multiple source operand types, possibly a mix of different
types, to one common execution type:

e For floating-point sources, all source operands must have the same floating-point type, with the
exceptions below:

e A two-source floating-point instruction can have Float as the srcO type and VF (Packed
Restricted Float Vector) as the immediate src1 type.

¢ Mixing floating-point and integer source types is not allowed. Either all source types must be one
floating-point type or all source types must be integer types.

e Unsigned integers are converted to signed integers.
e Byte (B) or Unsigned Byte (UB) values are converted to a Word or wider integer execution type.

e If source operands have different integer widths, use the widest width specified to choose the
signed integer execution type.

Note that when the execution data type is an integer type, it is always a signed integer type. For integer
execution types, extra precision is provided within the hardware, including the accumulators, so that
conversions from unsigned to signed do not affect instruction correctness.

396 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Register Region Restrictions

A register region is described as packed if its elements are adjacent in memory, with no intervening
space, no overlap, and no replicated values. If there is more than one element in a row, elements must be
adjacent. If there is more than one row, rows must be adjacent. When two registers are used, the
registers must be adjacent and both must exist.

The following register region rules apply to the implementation.

1. General Restrictions Based on Operand Types

There are these general restrictions based on operand types:

1.

Where n is the largest element size in bytes for any source or destination operand type,
ExecSize * n must be <= 64.

When the Execution Data Type is wider than the destination data type, the destination must
be aligned as required by the wider execution data type and specify a HorzStride equal to
the ratio in sizes of the two data types. For example, a mov with a D source and B destination
must use a 4-byte aligned destination and a Dst.HorzStride of 4.

2. General Restrictions on Regioning Parameters

The mapping of data elements within the region of a source operand is in row-major order and is
determined by the region description of the source operand, the destination operand, and the
ExecSize, with these restrictions:

© N ok wN =

ExecSize must be greater than or equal to Width.

If ExecSize = Width and HorzStride # 0, VertStride must be set to Width * HorzStride.
If ExecSize = Width and HorzStride = 0, there is no restriction on VertStride.

If Width = 1, HorzStride must be 0 regardless of the values of ExecSize and VertStride.
If ExecSize = Width = 1, both VertStride and HorzStride must be 0.

If VertStride = HorzStride = 0, Width must be 1 regardless of the value of ExecSize.
Dst.HorzStride must not be 0.

VertStride must be used to cross GRF register boundaries. This rule implies that elements
within a 'Width' cannot cross GRF boundaries.

3. Region Alignment Rules for Direct Register Addressing

1.
2.
3.

In Direct Addressing mode, a source cannot span more than 2 adjacent GRF registers.
A destination cannot span more than 2 adjacent GRF registers.

When a source or destination spans two registers, there are restrictions that vary by project,
described in the following table. If you are viewing a version of the BSpec limited to other
particular projects, the table may appear with no data rows.

4. Special Cases for Byte Operations

1.

When the destination type is byte (UB or B) only a ‘raw move' using the mov instruction
supports a packed byte destination register region: Dst.HorzStride = 1 and Dst.DstType = (UB
or B). This packed byte destination register region is not allowed for any other instructions,

Doc Ref # IHD-OS-LKF-Vol 9-4.21 397

intel

including a ‘'raw move' using the selinstruction, because the sel instruction is based on Word
or DWord wide execution channels.

2. There is a relaxed alignment rule for byte destinations. When the destination type is byte (UB
or B), destination data types can be aligned to either the lowest byte or the second lowest
byte of the execution channel. For example, if one of the source operands is in word mode (a
signed or unsigned word integer), the execution data type will be signed word integer. In
this case the destination data bytes can be either all in the even byte locations or all in the
odd byte locations.

This rule has two implications illustrated by this example:

// Example:
mov (8) rl1l0.0<2>:b r11.0<8;8,1>:w
mov (8) rl0.1<2>:b rl11.0<8;8,1>:w

// Dst.HorzStride must be 2 in the above example so that the destination
// subregisters are aligned to the execution data type, which is :w.

// However, the offset may be .0 or .1.

// This special handling applies to byte destinations ONLY.

5. Special Cases for Word Operations

There are some special cases for word operations for specific projects, described in the following
table. If you are viewing a version of the BSpec limited to other particular projects, the table may
not show and there are no special cases in this category.

There is a relaxed alignment rule for word destinations. When the destination type is word (UW, W,
HF), destination data types can be aligned to either the lowest word or the second lowest word of
the execution channel. This means the destination data words can be either all in the even word
locations or all in the odd word locations.

// Example:
add (8) r10.0<2>:hfr11.0<8;8,1>:fr12.0<8;8,1>:hf
add (8) r10.1<2>:hfr11.0<8;8,1>:f r12.0<8;8,1>:hf

// Note: The destination offset may be .0 or .1 although the destination subregister
// is required to be aligned to execution datatype.

6. Special Requirements for Handling Double Precision Data Types

There are special requirements for handling double precision data types that vary by project,
described in the following table. If you are viewing a version of the BSpec limited to other
particular projects, the table may appear with no data rows.

Special Requirements for Handling Double Precision Data Types

Requirement

In Align16 mode, all regioning parameters must use the syntax of a pair of packed floats, including channel selects
and channel enables.

// Example:

398 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Requirement

mov (8) rl0.0.xyzw:df rll.0.xyzw:df
// The above instruction moves four double floats. The .x picks the
// low 32 bits and the .y picks the high 32 bits of the double float.

In Align1 mode, all regioning parameters like stride, execution size, and width are in units of element size. However
in Align16 mode, the channel selects and channel enables must always be used in pairs of packed floats, because
these parameters are defined for DWord elements ONLY.

// Example:

mov (4) rl10.0<1>:df rl11.0<4;4,1>:df
// The above instruction moves four double floats.

AREF registers must never be used with 64b datatype or when operation is integer DWord multiply.

When source or destination datatype is 64b or operation is integer DWord multiply, DepCtrl must not be used.

7. Special Requirements for Handling Mixed Mode Float Operations

There are some special requirements for handling mixed mode float operations for specific
projects, described in the following table. If you are viewing a version of the BSpec limited to other
particular projects, the table may appear with no data rows.

Requirement

In Align16 mode, when half float and float data types are mixed between source operands OR between source and
destination operands, the register content are assumed to be packed. In such cases the execution size reflects the

number of float elements. Since a stride of 1 is assumed, source is selected in packed form and 16 bit packed data
is updated on the destination operand, if the datatype is half-float.

For Align16 mixed mode, both input and output packed f16 data must be oword aligned, no oword crossing in
packed f16.

Examples:

Case (a)

mad (8) rl0.0.xy:hf rll.0.xxxx:f rl2.xyzw:hf rl3.yyyy:hf

// The 16b of each word (rl2.0, rl2.1, rl2.2, rl2.3.. and so on) forms the source operand.
// rl3.1 and r13.5 is replicated for source operand.

// The lower 16b of a Dword is updated for destination. With channel enables .xy , rl0.0,
rl0.1, rl1l0.4 and rl0.5 are updated.

Case (b)
mad (8) rl0.0.xy:f rll.0.xxxx:f rl2.xyzw:hf rl13.yyyy:hf
// The example is similar to Case(a), except that entire DWord is updated on the destination.

In Align16 mode, replicate is supported and is coissueable.

mad (8) r20.xyzw:hf r3.0.r:f r6.0.xyzw:hf r6.0.xyzw:hf {Ql}

No SIMD16 in mixed mode when destination is packed 16 for both Align1 and Align16.

mad (8) r3.xyzw:hf rd.xyzw:f ré.xyzw:hf r7.xyzw:hf
add (8) r20.0<1>:hf r3<8;8,1>:f r6.0<8;8,1>:hf {Ql}

Doc Ref # IHD-OS-LKF-Vol 9-4.21 399

intel

Requirement

No accumulator read access for Align16 mixed float.

When source is float or half float from accumulator register and destination is half float with a stride of 1, the
source must register aligned. i.e., source must have offset zero.

No swizzle is allowed when an accumulator is used as an implicit source or an explicit source in an instruction. i.e.
when destination is half float with an implicit accumulator source, destination stride needs to be 2.

mac (8) r3<2>:hf r4.0<8;8,1>:f r6.0<8;4,2>:hf

mov (8) r3<l>:f acc0.0<8;4,2>:hf

In Align16, vertical stride can never be zero for f16

add(8) r3.xyzw:hf r4.0<4>xyzw:f r6.0<0>.xyzw:hf

Math operations for mixed mode:

- In Align16, only packed format is supported
math (8) r3.xyzw:hf r4.0.<4>xyzw:f r6.0<0>.xyzw:hf 0x09

- In Align1, f16 inputs need to be strided
math (8) r3<1>:hf r4.0<8;8,1>:f r6.0<8;4,2>:hf

In Align1, destination stride can be smaller than execution type. When destination is stride of 1, 16 bit packed data
is updated on the destination. However, output packed f16 data must be oword aligned, no oword crossing in
packed f16.

add (8) r3<1l>:hf r4.0<8;8,1>:f r6.0<8;4,2>:hf

For mixed float operations, f16 datatype write to accumulator cannot be packed destination.

8. Regioning Rules for Register Indirect Addressing

Regioning rules for register indirect addressing vary for specific projects, described in the following
table. If you are viewing a version of the BSpec limited to other particular projects, the table may
appear with no data rows.

400 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Rules

1. When the execution size and destination regioning parameters require two adjacent registers, these registers
are accessed using one index register ONLY.

// Example:

mov (16) r[a0.0]:f rlO:f

// The above instruction behaves the same as the following two instructions:
mov (8) r[a0.0]:f rl0:f

mov (8) r[a0.0, 8*4]:f rll:f

2. When the destination requires two registers and the sources are 1x1 indirect mode, the sources must be
assembled from two GRF registers accessed by a single index register. The data for each destination GRF
register is entirely derived from one source register. This is ensured by appropriate use of regioning
parameters. The exception to this is the use of indirect scalar sources, where the same element is used across
the execution size.

// Example:

// Case (a)

add (16) r[a0.0]:f r[a0.2]:f r[a0.4]:f

// The above instruction behaves the same as the following two instructions:
add (8) r[a0.0]:f r[a0.2]:f r[a0.4]:f

add (8) rf[a0.0, 8*4]:f r[a0.2, 8*4]:f r[a0.4, 8*4]:f

// Note that the immediate for the second instruction is based on regioning.
// In this case, it is 8 DWs.

// Case (b)

add (16) r[a0.0]:ud r[a0.2]<4;8,1>:w r1l0<8;8,1>:ud

// The above instruction behaves the same as the following two instructions:
add (8) r[a0.0]:f r[a0.2]<4;8,1>:w rl10<8;8,1>:ud

add (8) r[a0.0, 8*4]:f r[a0.2, 4*%2]<4;8,1>:w rl1ll<8;8,1>:ud

// Note that the immediate for the second instruction is based on regioning.
// VertStride of 4 with data type of word.

// Case (c):

add (16) r[a0.0]:f r[a0.2]:f r[a0.4]<0;1,0>:f

// The above instruction behaves the same as the following two instructions:
add (8) r[a0.0]:f r[a0.2]:f r[a0.4]1<0;1,0>:f

add (8) r[a0.0, 8*4]:f r[a0.2, 8*4]:f r[a0.4]1<0;1,0>:f

// Note that the srcl indirect address does not change.

3. Indirect addressing on src1 must be a 1x1 indexed region mode.

4. When a Vx1 or a VxH addressing mode is used on src0, the destination may use one or two registers.

// Example:

// Case (a)

add (16) r[a0.0]<1>:d r[a0.0]<4,1>:ud rl1l6.0<8;8,1>:ud

// The above instruction behaves the same as the following two instructions:
add (8) r[a0.0]<1>:d r[a0.0]<4,1>:ud rl6.0<8;8,1>:ud

add (8) r[a0.0, 8*4]<1>:d r[a0.2]<4,1>:ud rl17.0<8;8,1>:ud

// Since the pointer (index register) is incremented every 4 elements

// (width), the second instruction moves from a0.0 to al0.2.

// Case (b)

add (106) r10.0<2>:uw r[a0.0, 0]<1,0>:uw rl1l6.0<8;8,1>:uw

// The above instruction behaves the same as the following two instructions:
add (8) r10.0<2>:uw r[a0.0, 0]<1,0>:uw rl6.0<8;8,1>:uw

add (8) r1l1.0<2>:uw r[a0.8, 01<1,0>:uw rl7.0<8;8,1>:uw

// Since the pointer (index register) is incremented every 1 element

// (width), the second instruction moves from a0.0 to a0l0.8.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 401

intel

Rules

5. Indirect addressing on the destination must be a 1x1 indexed region mode.

Execution size of 32 is NOT supported in Vx1 or VxH modes.

1. Special Restrictions

There are some special restrictions on register region access for specific projects, described
in the following table. If you are viewing a version of the BSpec limited to other particular
projects, the table may appear with no data rows.

Restriction

All flow control (branching) instructions must use the Align1 access mode.

When using Align16 mode for conversion of data elements of different sizes, both source and destination must be
one register each.

In Align16 mode, each destination register gets all data from one source register. This means, the data for one
destination register is never scattered across two source registers.
// Example:

// Allowed - all sources are contained within one register.
mul (8) r10.0:f r11.0:f 1rl12.4<0>:f

// NOT Allowed - srcl (rld) is scattered across two registers.
mad (8) rl1l0.0:f rl12.0<0>:f rl1l4.4:f rle.0:f

Conversion between Integer and HF (Half Float) must be DWord-aligned and strided by a DWord on the
destination.

// Example:

add (8) r10.0<2>:hf r11.0<8;8,1>:w r12.0<8;8,1>:w
// Destination stride must be 2.

mov (8) rl10.0<2>:w r11.0<8;8,1>:hf

// Destination stride must be 2.

The src, dst overlapping behavior with the second half src and the first half destination to the same register must
not be used with any compressed instruction.

Regioning Rules for Align1 Ternary Operations
Width is an implied regioning parameter.

1. Width is 1 when Vertical and Horizontal Strides are both zero (broadcast access).
2. Width is equal to Vertical Stride when Horizontal Stride is zero.

3. Width is equal to Vertical Stride/Horizontal Stride when both Strides are non-zero.
4

Vertical Stride must not be zero if Horizontal Stride is non-zero. This implies Vertical Stride is always greater
than Horizontal Stride.

5. For Source 2, if Horizontal Stride is non-zero, then Width is the a register's width of elements (e.g. 8 for a 32-

bit data type). Otherwise, if Horizontal Stride is 0, then so is the Vertical (and rule 1 applies). This means
Vertical Stride is always ‘Width' * "Horizontal Stride'.

402 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Restriction

6. The Source 2 operand must be 64-bit aligned.

src2 regioning removal

1. Byte datatype is not supported
2. Broadcast is supported (<0>)
3. When source 2 is not a scalar, regioning must follow these rules:

e Source 2 offset and destination offset must be aligned to the same word e.g. mad(4) e.g. r10.2<1>:hf
r20:f r21:hf r22.2<1>:hf

e Source 2 and destination strides in bytes must be same.

¢ In mixed mode cases, source2 stride needs to be aligned to the maximum datatype e.g. mad(4)
r10.2<1>:f r20:f r21:hf r22.2<2>:hf

Byte data type is not supported for src1 register regioning. This includes byte broadcast as well.

Destination Operand Description

Destination Region Parameters

Based on the above restrictions, a subset of register region parameters are sufficient to describe the
destination operand:

e Destination Register Origin

o Destination Register Number and Destination Subregister Number for direct register addressing
mode

o A Scalar Destination Register Index for register-indirect-register addressing mode

e Destination Register ‘Region’ — Note that destination register region does not have full region
description parameters

o Destination Horizontal Stride

SIMD Execution Control

This section of the PRM discusses SIMD execution, both with and without predication. See the subtopics
for more details.

Predication

Predication is the conditional SIMD channel selection for execution on a per instruction basis. It is an
efficient way of dynamic SIMD channel enabling without paying branch instruction overhead. When
predication is enabled for an instruction, a Predicate Mask (PMask), which contains 16-bit channel
enables, is generated internally in EU. Note that PMask is not a software visible register. It is provided
here to explain how SIMD execution control works. PMask generation is based on the Predication

Doc Ref # IHD-OS-LKF-Vol 9-4.21 403

intel

Control (PredCtrl) field, Predication Inversion (Predinv) field and the flag source register in the instruction

word. See Instruction Summary chapter for definition of these fields.

Predicationshows the block diagram of the hardware logic to generate PMask. PMask is generated based
on combinatory logic operation of the bits in the flag register. Instruction field PredCtrl controls the
horizontal evaluation unit and vertical evaluation unit. MUX A in the figure selects whether horizontally-
evaluated results or vertically-evaluated results are sent to the Predication Invertion unit. The Predinv
field controls the Prediction Inversion unit. Either one 16-bit flag subregister or the whole flag register
may be selected to generate the PMask depending on the predication control modes. MUX B indicates
that predication can be enabled and disabled. Predication can be grouped into the following three
categories. Predication functionality also depends on the Access Mode of the instruction.

e No predication: Of course, predication can be disabled. This is the most commonly used case.

e Predication with horizontal combination: the predicate mask is generated based on combinatory

logic operation of bits within a selected flag subregister.
e Predication with vertical combination: the predicate mask is generated based on combinatory logic

operation of bits across flag multiple subregisters.

Generation of predication mask

.
16

L 2

7iE

¥

¥Yertical
Evaluation
Unit

Hag Register
ch1s 0.0 chi
oTlo] - [=]:]¢]
ch1s fo.0 chio
|1||:|||:|| ||:||1|1|

i -1 1 1 11 1
¥ v ¥ ¥ ¥ ¥
e — Horizontal Evaluation Unit
| I
16 [i6
L L

PredHW=el A
16

Predic ation
0xFF Inversion
[ie J16
L 3 L J
Pred Enable B
16
P ask

404

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

No Predication

When PredCtrl field of a given instruction is set to 0 (“no predication”), it indicates that no predication is
applied to this instruction. Effectively, the resulting PMask is all 1's. This is shown by the 2:1 multiplexer B
controlled by the Pred Enable signal in Predication. Where predication is not enabled for an instruction,
multiplex B is selected to output OxFF to PMask.

Predication with Horizontal Combination

Predication with horizontal combination inputs the 16 bits of a single flag subregister (f0.0:uw or f0.1:uw)
and passes them through combinatory logic of the Horizontal Evaluation unit to create PMask.

The simplest combination is ‘'no combination' — the same 16 bits from selected flag subregister are
output to MUX A. In this case, a bit in the selected flag subregister controls the conditional execution of
the corresponding execution channel. Let the selected flag subregister be denoted as f0.#, the following
pseudo code describes the predicate mask generation for predication with sequential flag channel

mapping.

If (PredCtrl == “Sequential flag channel mapping”) {
For (ch=0; ch<16; ch++)
PMask([ch] = (PredInv == TRUE) ? ~f0.#[ch] : f£0.#[ch];

}

More complex horizontal evaluation is based on channel grouping. A group of adjacent channels (bits
from flag subregister) are evaluated together and a single bit is replicated to the group. The size of
groups is in power of 2. The supported combination depends on the Access Mode of an instruction.

In Align16 access mode, horizontal combination is based on 4-channel groups.

e Channel replication: PredCtrl of '.x', ".y', ".z" and ".w' select a single channel from each 4-channel
group and replicate it as the output for the group. For example, PredCtrl = 'x' means that channel
0 in each group is replicated.

e OR combination: PredCtrl of '.any4h' means that if any of the channel in a group is enabled,
outputs for the 4 channels in the group are all enabled.

e AND combination: PredCtrl of ".all4h' means that only when all of the channels in a group are
enabled, the output for the group is enabled.

These combinations in Align16 mode can be described by the following pseudo-code.

If (Access Mode == Alignlo6) {
For (ch = 0; ch < 16; ch += 4)
Switch (PredCtrl) {

Case 'ox': bTmp = f0.#[ch]; break;
Case YLyt bTmp = fO0.#[ch+1]; break;
Case vz bTmp = f0.#[ch+2]; break;
Case tow': bTmp = f0.#[ch+3]; break;
Case any4h': bTmp = f0.#[ch] | fO.#[ch+1] | fO0.#[ch+2] | fO0.#[ch+3]; break;
Case '.all4dh': bTmp = f0.#[ch] & fO.#[ch+1l] & fO.#[ch+2] & f0.#[ch+3]; break;
}
bTmp = (PredInv == TRUE) ? ~bTmp : bTmp;
PMask[ch] = PMask[ch+l] = PMask[cht2] = PMask[ch+3] = bTmp;

Doc Ref # IHD-OS-LKF-Vol 9-4.21 405

intel

In Align1 access mode, horizontal combination is based on AND combination ".any#h' and OR
combination ".all#h' on channel groups with various sizes, where # is the number of channels in a group
ranging from 2 to 16. This is described by the following pseudo-code.

If (Access Mode == Alignl) {
Switch (PredCtrl) {

Case '.any2h': groupSize = 2; <op> = '|',; break; Case '.all2h':
groupSize = 2; <op> = '&'; break;

Case '.any4h': groupSize = 4; <op> = '|'; break; Case '.allédh':
groupSize = 4; <op> = '&'; break;

Case '.any8h': groupSize = 8; <op> = '|'; break; Case '.all8h':
groupSize = 8; <op> = '&'; break;

Case '.anylé6h': groupSize = 16; <op> = '|'; break; Case '.allléh':
groupSize = 16; <op> = '&'; break; }

For (ch = 0; ch < 16; ch += groupSize) {
For (inc = 0, bTmp = FALSE; inc < groupSize; inc ++)
bTmp = bTmp <op> fO0.#[ch+inc];
For (inc = 0; inc < groupSize; inc ++)
PMask[ch+inc] = bTmp;

Predication with Vertical Combination

Predication with vertical combination uses both flag subregister as inputs. The AND or OR combination is
across the subregisters on a channel by channel basis. This is shown by the following pseudo-code.

If (Access Mode == Alignl) {
For (ch = 0; ch < 16; ch ++) {
If (PredCtrl == ‘any2v’)
PMask([ch] = £0.0[ch] | £0.1[ch]
Else If (PredCtrl == ‘all2v’)
PMask([ch] = £f0.0[ch] & f0.1[ch]

Predication with Vertical Combination

Predication with vertical combination uses both flag register as inputs. The AND or OR combination is
across the registers on a channel by channel basis. This is shown by the following pseudo-code.

If (Access Mode == Alignl) {
For (ch = 0; ch < 32; ch ++) {
If (PredCtrl == ‘anyv’)
PMask([ch] = £f0.0[ch] | f£1.0([ch]
Else If (PredCtrl == ‘allv’)
PMask([ch] = £f0.0[ch] & f1.0([ch]

End of Thread

There is no special instruction opcode (such as an END instruction) to cause the thread to terminate
execution. Instead, the end of thread is signified by a send instruction with the end-of-thread (EOT)
sideband bit set. Upon executing a send instruction with EOT set, the EU stops on the thread. Upon
observing an EOT signal on the output message bus, the Thread Dispatcher makes the thread’s resource
available. If a thread uses pre-allocated resource managed by a fixed function, such as URB handles and

406 Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

scratch memory, some fixed function protocol also requires the thread to terminate with the message
header phase to carry the information in order for the fixed function to release the pre-allocated
resource.

EU hardware guarantees that if a terminated thread has in-flight read messages or loads at the time of
‘end’ that their writebacks will not interfere with either other threads in the system or new threads loaded
in the system in the future.

More details can be found in the send instruction description in Instruction Reference chapter.

Assigning Conditional Flags

Instructions can output two sets of conditional signals, one set from before the outputs clamping/re-
normalizing/format conversion logic, we call this the pre conditional signals. The second set is generated
from the final results after clamping and re-normalizing/format conversion logic, and we call this the
post conditional signals. The post conditional signals are used for fusing the DirectX compare instruction.
Note: The flags generated from the post conditional signals should be equivalent to the flags generated
by a separate cmp instruction after the current arithmetic instruction.

The pre conditional signals are used to generated flags for cmp/cmpn instructions only, this logically
does the compare of the two input sources. The post conditional signals are used to generated flags for
all the other arithmetic instructions, this logically does the compare of the result with zero.

cmpn with both sources as NaNs is a don't care case as this doesn't impact the MIN/MAX operations.

The pre conditional signals include the following:

e pre_sign bit: This bit reflects the sign of the computed result before going through any kind of
clamping, normalizing, or format conversion logic.

e pre_zero bit: This bit reflects whether the computed result is zero before any kind of clamping,
normalizing, or format conversion logic.

The post conditional signals include the following:

e post_sign bit: This bit reflects the sign of the final result after all the clamping, normalizing, or
format conversion logic.

e post_zero bit: This bit reflects whether the final result is zero after all the clamping, normalizing, or
format conversion logic.

e OF bit: This bit reflects whether an overflow occured in any of the computation of the current
instruction, including clamping, re-normalizing, and format conversion.

e NC bit: The NaN computed bit indicates whether the computed result is not a number. It carries
valid information for instructions operating on floating point values. For an operation on integer
operands, this bit is always 0.

e NSO bit: The NaN Source 0 bit indicates whether srcO of an execution channel is not a number. It
carries valid information for instructions operating on floating point values. For an operation on
integer operands, this bit is always 0.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 407

intel

e NS1 bit: The NaN Source 1 bit indicates whether src1 of an execution channel is not a number. It
carries valid information for instructions operating on floating point values. For an operation on
integer operands, this bit is always 0. For an operation with one source operand, this bit is also set
to 0. This bit is only used for the comparison instruction cmpn, which is specifically provided to
emulate MIN/MAX operations. For any other instructions, this bit is undefined.

e Note that the bits generated at the output of a compute are before the .sat.

Flag Generation for cmp Instructions (The Supported Conditional Modifiers are .e, .ne, .g, .ge, .|,

and .le.)
Conditional
Modifier Meaning Resulting Flag Value (for an execution channel)
€ Equal-to (pre_zero & ! (NSO | NS1)). This conditional modifier tests whether the two
sources are equal.
If either source is NaN (i.e. NC is true), the flag is forced to false.
-ne Not-Equal-to ! (pre_zero & ! (NSO | NS1)). This conditional modifier test whether the two
sources are equal. It takes exactly the reverse polarity as the modifier .e.
9 Greater-than (! pre_sign & ! pre_zero & ! (NSO | NS1)). This conditional modifier tests
whether src0 is greater than src1.
If either source is a NaN (i.e. NC is true), the flag is forced to false.
-ge Greater-than-or- ((! pre_sign | pre_zero) & ! (NSO | NS1)). This conditional modifier tests
equal-to .
whether src0 is greater than or equal to src1.
If either source is a NaN (i.e. NC is true), the flag is forced to false.
. Less-than (pre_sign & !pre_zero & ! (NSO | NS1)). This conditional modifier tests
whether src0 is less than src1.
If either source is a NaN (i.e. NC is true), the flag is forced to false.
Jde Less-than-or-

equal-to

((pre_sign | pre_zero) & ! (NSO | NS1)). This conditional modifier tests
whether src0 is less than or equal to src1.

If either source is a NaN (i.e. NC is true), the flag is forced to false.

408

Doc Ref # IHD-OS-LKF-Vol 9-4.21

intel

Flag Generation for All Instructions Other than cmp/cmpn Instructions (The Supported Conditional
Modifiers are .e, .ne, .g, .ge, ., .le, .0, and .u.)

Conditional
Modifier Meaning Resulting Flag Value (for an execution channel)
€ Equal-to (post_zero & ! NC). This conditional modifier tests whether the result is equal to
zero.
If either source is NaN (i.e. NC is true), the flag is forced to false.
-he Not-Equal-to ! (post_zero & ! NC). This conditional modifier test whether the result is not
equal to zero.
It takes exactly the reverse polarity as modifier .e.
9 Greater-than (! post_sign & ! post_zero & ! NC). This conditional modifier tests whether
result is greater than zero.
If either source is a NaN (i.e. NC is true), the flag is forced to false.
-ge Greater-tlhin- ((! post_sign | post_zero) & ! NC). This conditional modifier tests whether result
Or-€qual=to s greater than or equal to zero.
If either source is a NaN (i.e. NC is true), the flag is forced to false.
. Less-than (post_sign & ! post_zero & ! NC). This conditional modifier tests whether result
is equal to zero.
If either source is a NaN (i.e. NC is true), the flag is forced to false.
e Less—thzlarl—or— ((post_sign | post_zero) & ! NC). This conditional modifier tests whether result
equalto is equal to or less than zero.
If either source is a NaN (i.e. NC is true), the flag is forced to false.
© Overflow OF. This conditional modifier tests whether the computed result causes overflow
—the computed result is outside the range of the destination data type.
Note: The legacy condition modifier behavior is different from IEEE exception
Overflow flag. For inf float to int conversion, .o will set the legacy Overflow flag,
but IEEE exception Overflow flag won't be set.
All other internal conditional signals are ignored.
