

Intel® UHD Graphics Open Source

Programmer's Reference Manual

For the 2020 Intel Core™ Processors with Intel Hybrid Technology

based on the "Lakefield" Platform

Volume 9: Render Engine

April 2021 Revision 1.0

ii Doc Ref # IHD-OS-LKF-Vol 9-4.21

Notices and Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Code names are used by Intel to identify products, technologies, or services that are in development and

not publicly available. These are not "commercial" names and not intended to function as trademarks.

Customer is responsible for safety of the overall system, including compliance with applicable safety-

related requirements or standards.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by

this document.

The products described may contain design defects or errors known as errata which may cause the

product to deviate from published specifications. Current characterized errata are available on request.

You may not use or facilitate the use of this document in connection with any infringement or other legal

analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free

license to any patent claim thereafter drafted which includes subject matter disclosed herein.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of

merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising

from course of performance, course of dealing, or usage in trade.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers

must not rely on the absence or characteristics of any features or instructions marked "reserved" or

"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for

conflicts or incompatibilities arising from future changes to them. The information here is subject to

change without notice. Do not finalize a design with this information.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its

subsidiaries. Other names and brands may be claimed as the property of others.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 iii

Table of Contents

Render Engine .. 1

Workload Submission .. 1

Context Submission Overview .. 1

Render-3D-GPGPU Command Streamer ... 3

MI Commands Supported by POCS ... 12

Engine State ... 32

3D Pipeline Stages ... 58

3D Pipeline-Level State ... 59

3D Pipeline Geometry .. 60

Patch Header DW0-7 ... 124

3D Pipeline Rasterization ... 171

Pixel .. 241

COLOR_CALC_STATE ... 294

3DSTATE_BLEND_STATE_POINTERS .. 294

3DSTATE_DEPTH_STENCIL_STATE_POINTERS ... 294

DEPTH_STENCIL_STATE .. 294

BLEND_STATE ... 295

CC_VIEWPORT .. 295

Statistics Gathering .. 295

GPGPU Compute Pipeline .. 295

General Purpose Compute Model ... 296

GPGPU Context in GPU Hardware ... 299

GPGPU PIPE Overview .. 300

Programming the GPGPU Pipeline .. 300

Commands for GPGPU Pipe ... 308

MEDIA_VFE_STATE ... 309

MEDIA_STATE_FLUSH ... 309

Thread Spawner (TS) ... 315

Thread Dispatch .. 331

Thread Tracking and Synchronization .. 337

Context Switch for GPGPU and Media ... 340

3D and GPGPU Programs .. 342

iv Doc Ref # IHD-OS-LKF-Vol 9-4.21

EU Overview .. 342

Integer Numeric Data Types .. 425

Floating-Point Numeric Data Types .. 427

Packed Signed Half-Byte Integer Vector ... 429

Packed UnSigned Half-Byte Integer Vector ... 430

Packed Restricted Float Vector ... 431

IEEE Floating Point Mode .. 434

Alternative Floating Point Mode .. 437

IEEE Floating-Point Exceptions .. 445

Floating-Point Compare Operations... 450

Float to Integer .. 454

Integer to Integer with Same or Higher Precision ... 454

Integer to Integer with Lower Precision .. 455

Integer to Float .. 455

Double Precision Float to Single Precision Float ... 455

Single Precision Float to Double Precision Float ... 455

Invoking the System Routine ... 458

Returning to the Application Thread .. 459

System IP (SIP) ... 459

System Routine Register Space .. 459

System Scratch Memory Space ... 460

Conditional Instructions Within the System Routine ... 461

Use of NoDDClr ... 461

Illegal Opcode .. 462

Undefined Opcodes... 462

Software Exception .. 462

Context Save and Restore ... 463

Illegal Instruction Format .. 463

Malformed Message ... 463

GRF Register Out of Bounds .. 464

Hung Thread ... 464

Instruction Fetch Out of Bounds .. 464

FPU Math Errors .. 464

Computational Overflow ... 464

Doc Ref # IHD-OS-LKF-Vol 9-4.21 v

SIMD Instructions and SIMD Width .. 468

Instruction Operands and Register Regions .. 468

Instruction Execution ... 469

Instruction Fields ... 473

Native Instruction Layouts .. 489

Move and Logic Instructions .. 504

Flow Control Instructions .. 505

Miscellaneous Instructions.. 506

Parallel Arithmetic Instructions ... 506

Vector Arithmetic Instructions... 507

Special Instructions .. 507

Instruction Groups ... 508

Destination Register .. 510

Source Register ... 511

Address Registers ... 512

Register Files and Register Numbers .. 512

Relative Location and Stack Control ... 513

Regions ... 514

Types ... 514

Write Mask .. 514

Swizzle Control .. 514

Immediate Values ... 515

Predication and Modifiers ... 515

Instruction Options .. 516

Grammar .. 524

IGA Grammar .. 524

Load-Store Pseudo Instructions ... 533

Syntax... 533

Loads ... 533

Stores ... 533

Operand Syntax ... 534

Examples .. 535

Supported Messages ... 535

Split-Sends and Conditional Sends .. 544

vi Doc Ref # IHD-OS-LKF-Vol 9-4.21

Operand Mapping .. 544

Load Pseudo-Instructions .. 544

Block Messages ... 544

Vector Messages with a Header ... 545

Headerless Vector Messages ... 545

Store Pseudo-Instructions ... 545

Block Messages ... 546

Vector Messages with a Header ... 547

Headerless Vector Messages ... 548

Round Instructions .. 552

INV - Inverse ... 556

LOG – Logarithm ... 556

EXP - Exponent .. 556

SQRT - Square Root... 557

RSQ - Reciprocal Square Root ... 557

POW - Power Function ... 558

SIN - SINE .. 559

COS - COSINE .. 559

INT DIV - Integer Divide .. 560

INVM/RSQRTM .. 560

EU Instructions ... 570

SEND Instructions ... 572

Control Flow Instructions .. 573

Shared Functions .. 574

TEXCOORDMODE_MIRROR_101 .. 600

3D Sampler Message Types ... 623

gather4 Message Types ... 635

Definitions .. 635

Supported Variants: .. 635

Restrictions and Programming Notes for gather4:.. 636

Restrictions and Programming Notes for gather4_c: ... 636

Restrictions and Programming Notes for gather4_po: .. 637

Restrictions and Programming Notes for gather4_po_c: .. 637

sampleinfo Message Type .. 637

Doc Ref # IHD-OS-LKF-Vol 9-4.21 vii

Supported Variants: .. 638

Restrictions and Programming Notes for sampleinfo: ... 638

LOD Message Type .. 638

LOD Message Definition .. 638

Supported Variants: .. 638

Restrictions and Programming Notes for LOD: .. 639

resinfo Message Type ... 639

Supported Variants: .. 640

Restrictions and Programming Notes for resinfo: ... 640

cache_flush Message Type .. 640

cache_flush Message Definition .. 640

Supported Variants: .. 640

Media Message Types .. 641

sample_unorm Message Types ... 641

Supported Variants: .. 642

Restrictions and Programming Notes for sample_unorm, sample_unorm_RG, sample_unorm_killpix,

sample_unorm_RG_killpix: ... 642

sample_8x8 Message Type ... 643

Supported Variants: .. 643

Restrictions and Programming Notes for sample_8x8: .. 643

HWord Aligned Block Read/Write Messages .. 700

DWord URB Read/Write Messages ... 722

Message-Specific Descriptors .. 748

Render Target Write Message ... 748

Replicate Data .. 754

Single Source .. 754

Dual Source ... 755

Message Data Payloads .. 756

Render Target Data Payloads .. 756

Shape Decision .. 775

BINDING_TABLE_STATE .. 777

SURFACE_STATE .. 777

VME_STATE ... 777

SIMD32_64 Message Descriptor ... 786

viii Doc Ref # IHD-OS-LKF-Vol 9-4.21

SIMD32_64 Message Header .. 786

SIMD32_64 Payload Parameter Definition ... 790

SIMD32_64 Message Types ... 790

Doc Ref # IHD-OS-LKF-Vol 9-4.21 1

Render Engine

The Render Engine supports command streams used both for 3D and Compute (GPGPU) workloads.

These command streams fetch the data, and dispatch individual work items to many threads that operate

in parallel. The threads run small software programs (also called kernels or shaders) on the GPU

processors (called Execution Units).

The command streamers control the programmable pipelines in the Render Engine so that the individual

programs run in parallel but are synchronized to start only when their required data is available, and

complete when all the work is done.

Each pipeline in the Render Engine shares common state with all the threads running in the pipeline. The

command streamer manages that state.

Workload Submission

This section describes work submission to the Rendering engine which can run 3D, Compute and

Programmable Media workloads

Context Submission Overview

Work into the Render/GPGPU engine is fed using the Render Command Streamer.

The Render engine runs in one of the following modes (that is specified using the PIPE_SELECT

command):

• 3D

• Media/GPGPU

When Software submits multiple elements(contexts) into the execution list, the hardware executes the

elements serially.

2 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Doc Ref # IHD-OS-LKF-Vol 9-4.21 3

Render-3D-GPGPU Command Streamer

This section describes the infrastructure provided by the Command Streamer of the Render engine which

supports 3D, Compute and Programmable Media.

Render Engine Command Streamer (RCS)

The RCS (Render Command Streamer) unit primarily serves as the software programming interface

between the O/S driver and the Render Engine. It is responsible for fetching, decoding, and dispatching

of data packets (3D/Media Commands with the header DWord removed) to the front end interface

module of Render Engine.

Logic Functions Included

• MMIO register programming interface.

• DMA action for fetching of ring data from memory.

• Management of the Head pointer for the Ring Buffer.

• Decode of ring data and sending it to the appropriate destination: 3D (Vertex Fetch Unit) & GPGPU.

• Handling of user interrupts.

• Flushing the 3D and GPGPU Engine.

• Handle NOP.

• DMA action for fetching of execlists from memory.

• Handling of ring context switch interrupt.

The register programming bus is a DWord interface bus that is driven by the configuration master. The

RCS unit only claims memory mapped I/O cycles that are targeted to its range of 0x2000 to 0x27FF. The

Gx and MFX Engines use semaphore to synchronize their operations.

RCS operates completely independent of the MFx CS.

The simple sequence of events is as follows: a ring (say PRB0) is programmed by a memory-mapped

register write cycle. The DMA inside RCS is kicked off. The DMA fetches commands from memory based

on the starting address and head pointer. The DMA requests cache lines from memory (one cacheline CL

at a time). There is guaranteed space in the DMA FIFO (8 CL deep) for data coming back from memory.

The DMA control logic has copies of the head pointer and the tail pointer. The DMA increments the head

pointer after making requests for ring commands. Once the DMA copy of the head pointer becomes

equal to the tail pointer, the DMA stops requesting.

The parser starts executing once the DMA FIFO has valid commands. All the commands have a header

DWord packet. Based on the encoding in the header packet, the command may be targeted towards

Vertex Fetch Unit or GPPGU engine or the command parser. After execution of every command, the

actual head pointer is updated. The ring is considered empty when the head pointer becomes equal to

the tail pointer.

Batch Buffer Privilege Register

FORCE_TO_NONPRIV - FORCE_TO_NONPRIV

4 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Mode Registers

The following are the Mode Registers:

Register

INSTPM - Instruction Parser Mode Register

EXCC - Execute Condition Code Register

NOPID - NOP Identification Register

CSPREEMPT - CSPREEMPT

IDLEDLY - Idle Switch Delay

SEMA_WAIT_POLL - Semaphore Polling Interval on Wait

HWS_PGA - Hardware Status Page Address Register

Hardware Status Page Layout

Logical Context Support

The following are the Logical Context Support Registers:

Register

BB_ADDR - Batch Buffer Head Pointer Register

BB_ADDR_UDW - Batch Buffer Upper Head Pointer Register

CXT_SIZE - Context Sizes

CXT_EL_OFFSET - Exec-List Context Offset

SYNC_FLIP_STATUS - Wait For Event and Display Flip Flags Register

SYNC_FLIP_STATUS_1 - Wait For Event and Display Flip Flags Register 1

SYNC_FLIP_STATUS_2 - Wait For Event and Display Flip Flags Register 2

WAIT_FOR_RC6_EXIT - Control Register for Power Management

SBB_ADDR - Second Level Batch Buffer Head Pointer Register

SBB_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Register

SBB_STATE - Second Level Batch Buffer State Register

PS_INVOCATION_COUNT_SLICE0 - PS Invocation Count for Slice0

PS_INVOCATION_COUNT_SLICE1 - PS Invocation Count for Slice1

PS_INVOCATION_COUNT_SLICE2 - PS Invocation Count for Slice2

PS_DEPTH_COUNT_SLICE0 - PS Depth Count for Slice0

PS_DEPTH_COUNT_SLICE1 - PS Depth Count for Slice1

PS_DEPTH_COUNT_SLICE2 - PS Depth Count for Slice2

DISPLAY_MESSAGE_FORWARD_STATUS - Display Message Forward Status Register

R_PWR_CLK_STATE - Render Power Clock State Register

Doc Ref # IHD-OS-LKF-Vol 9-4.21 5

Context Save Registers

The following are the Context Save Registers:

Register

BB_PREEMPT_ADDR - Batch Buffer Head Pointer Preemption Register

BB_PREEMPT_ADDR_UDW - Batch Buffer Upper Head Pointer Preemption Register

RING_BUFFER_HEAD_PREEMPT_REG - RING_BUFFER_HEAD_PREEMPT_REG

BB_START_ADDR - Batch Buffer Start Head Pointer Register

BB_START_ADDR_UDW - Batch Buffer Start Upper Head Pointer Register

BB_ADDR_DIFF - Batch Address Difference Register

BB_OFFSET - Batch Offset Register

SBB_PREEMPT_ADDR - Second Level Batch Buffer Head Pointer Preemption Register

SBB_PREEMPT_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Preemption Register

BB_PER_CTX_PTR - Batch Buffer Per Context Pointer

MI Commands for Render Engine

This chapter describes the formats of the “Memory Interface” commands, including brief descriptions of

their use. The functions performed by these commands are discussed fully in the Memory Interface

Functions Device Programming Environment chapter.

This chapter describes MI Commands for the original graphics processing engine. The term “for

Rendering Engine” in the title has been added to differentiate this chapter from a similar one describing

the MI commands for the Media Decode Engine.

The commands detailed in this chapter are used across product families. However, slight changes may be

present in some commands (i.e., for features added or removed), or some commands may be removed

entirely. Refer to the Preface chapter for product specific summary.

Commands

MI_NOOP

MI_ARB_CHECK

MI_ARB_ON_OFF

MI_BATCH_BUFFER_START

MI_BATCH_BUFFER_END

MI_CONDITIONAL_BATCH_BUFFER_END

MI_DISPLAY_FLIP

MI_LOAD_SCAN_LINES_EXCL

MI_LOAD_SCAN_LINES_INCL

MI_CLFLUSH

MI_MATH

MI_REPORT_HEAD

MI_STORE_DATA_IMM

6 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Commands

MI_ATOMIC

MI_COPY_MEM_MEM

MI_LOAD_REGISTER_REG

MI_LOAD_REGISTER_MEM

MI_STORE_REGISTER_MEM

MI_SUSPEND_FLUSH

MI_USER_INTERRUPT

MI_WAIT_FOR_EVENT

MI_SEMAPHORE_SIGNAL

MI_SEMAPHORE_WAIT

MI_FORCE_WAKEUP

Watchdog Timer Registers

These registers together implement a watchdog timer. Writing ones to the control register enables the

counter, and writing zeros disables the counter. The second register is programmed with a threshold

value which, when reached, signals an interrupt that then resets the counter to 0. Program the threshold

value before enabling the counter or extremely frequent interrupts may result.

Note: The counter itself is not observable. It increments with the main render clock.

Programming Notes: When watch dog timer is enabled, HW does not trigger any kind of idle

sequences. SW must enable and disable watch dog timer for any given workload within the same

command buffer dispatch. SW must disable watch dog timer around semaphore waits and wait for

events commands so that HW can trigger appropriate idle sequence for power savings.

Position Only Shader Command Streamer (POCS)

Position only shader (POSH) is a new geometry pipeline that has the optional ability to execute the

position only vertex shaders and perform the visibility test on these vertices before the actual vertex

shader is executed. POSH pipe can run ahead of the original geometry pipe by executing position only

vertex shaders and doing visibility test on these vertices and recording this information. Geometry pipe

when processing the vertices will use this visibility information outputted by POSH pipe to skip the vertex

fetch and shading for vertices that are already marked as culled.

POSH pipe has its own command streamer called Position only command streamer (POCS). A context

running on render pipe can exercise POSH capabilities through Render Command Streamer (RCS). RCS

manages the POSH pipe through POCS for POSH enabled contexts. Render command streamer loads the

context to execute on POCS when a POSH enable context execution begins in render pipe, similarly

preempts context executing in POCS when the POSH enabled context switches out of render pipe. Once

POCS is loaded with context it starts executing the ring buffer similar to RCS, refer Programming Model

section for more details.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 7

Position Only Command Streamer (POCS)

The POCS (Position Only Shader Command Streamer) unit primarily serves as the programming interface

between the render command streamer and the POSH pipe. It is responsible for fetching, decoding, and

dispatching of data packets (3D Commands with the header DWord removed) for the POSH pipe.

Logic Functions Included

• MMIO register programming interface.

• DMA action for fetching of ring buffer and batch buffer data from memory.

• Management of the Head pointer for the Ring Buffer.

• Decode and execution of command programmed in ring buffer and batch buffers.

• Flushing the POSH pipe.

Handle NOOP.

The register programming bus is a DWord interface bus that is driven by the configuration master. The

POCS unit only claims memory mapped I/O cycles that are targeted to its range of 0x1_8000 to 0x1_9FFF.

The POCS and RCS use semaphore to synchronize their operations.

POSH Programming Model

The POSH + Render pipeline will appear as a monolithic engine from SW perspective. Render Command

Streamer (RCS) is hardware front end interface to the SW for the modified Render + POSH pipeline. SW

will use a single context (and associated LRCA) to submit work to the modified Render + POSH pipeline

through its associated ring buffer.

Context submission model should be visualized as context submitted to RCS. RCS will set up the context

definition in HW and triggers POSH pipe to execute the same context, resulting in execution of the same

ring buffer by render pipe and POSH pipe in parallel. POSH pipe has its own command streamer called

POCS (POSH Command Streamer). Similarly, when the context is switched out on the render pipe due to

whatever reasons (Wait For Event, Semaphore Wait or Preemption due to pending execlist), RCS will

ensure POSH pipe is preempted and its corresponding logic state is saved through POCS.

POCS and RCS get to see the same ring buffer, however the execution of the same ring buffer by POCS

and RCS are asynchronous to each other and its SW responsibility to ensure POCS and RCS are

synchronized through semaphores as and when required. SW will provide independent command buffers

(batch buffers) to be executed by RCS and POCS. Marking of batch buffers for POCS and RCS and

execution of ring buffer are detailed in the latter subsections.

This model of execution has the following implications:

• POCS and RCS have to run on the same context definition. RCS sets up context with GAM and

POCS runs within this address space.

• Even though the currently running context may not be utilizing the POSH pipe, a waiting context

with POSH enabled has to wait for the current context to be evicted. (waiting context cannot take

advantage of the idle POSH pipe ahead of getting scheduled on the render engine)

8 Doc Ref # IHD-OS-LKF-Vol 9-4.21

POSH Enabled Context

A context submitted to render engine exercising POSH functionality is called “POSH Enabled” context.

Application (UMD) decides if a context is POSH Enabled at the time of context creation. A context is

indicated as POSH enabled to HW by setting “POSH Enable” bit in CTX_SR_CTL register of RCS. SW

allocates additional separate memory space (POSH LRCA) for the POSH Enabled contexts. POSH pipe

uses the POSH LRCA for its context state management.

Context Submission and LRCA for POSH

SW will continue to submit POSH enabled contexts to ELSP in RCS. There is no change in the pending

execlist submission or context switch status report mechanism to/from RCS.

Listed below are the SW changes required for submission of the POSH enabled context:

• “POSH Enable” bit in CTX_SR_CTL of RCS must be set to indicate POSH enabled context to HW.

Refer POSH functionality control section for the bit definition and programming.

• POSH LRCA is provided to RCS through register programming in the ring context of RCS. Refer

RCS ring context details below.

• POSH LRCA format is similar to that of RCS, i.e PPHWSP followed by ring context followed by the

engine context. However POSH ring context will only have the ring buffer and batch buffer details.

POSH ring context will not have the page directory pointers details as the PPGTT is setup by RCS.

• SW does not control POCS context ID independently. The context ID for POCS will be supplied

from RCS, and thus will be the same.

• SW must update the ring context of POSH with ring buffer details on the very first submission and

whenever the ring buffer start address, control and head pointer details are updated. POSH pipe

(POCS) will sample the tail pointer from RCS. Note that the POCS and RCS share the same ring

buffer.

RCS Ring Context

The table below highlights the POSH LRCA details in RCS ring context. Ring context listed below is for

illustration of the change, “Register State Context” in “Render Logical Context Data” should be referred as

the final format for implementation.

Description Unit # of DW

NOOP CSEL 1

MI_LOAD_REGISTER_IMM CSEL 1

Ring Buffer Head CSEL 2

Ring Tail Pointer Register CSEL 2

RING_BUFFER_START CSEL 2

RING_BUFFER_CONTROL CSEL 2

Batch Buffer Current Head Register (UDW) CSEL 2

Batch Buffer Current Head Register CSEL 2

Doc Ref # IHD-OS-LKF-Vol 9-4.21 9

Description Unit # of DW

Batch Buffer State Register CSEL 2

SECOND_BB_ADDR_UDW CSEL 2

SECOND_BB_ADDR CSEL 2

SECOND_BB_STATE CSEL 2

BB_PER_CTX_PTR CSEL 2

RCS_INDIRECT_CTX CSEL 2

RCS_INDIRECT_CTX_OFFSET CSEL 2

NOOP CSEL 2

NOOP CSEL 1

MI_LOAD_REGISTER_IMM CSEL 1

CTX_TIMESTAMP CSEL 2

PDP3_UDW CSEL 2

PDP3_LDW CSEL 2

PDP2_UDW CSEL 2

PDP2_LDW CSEL 2

PDP1_UDW CSEL 2

PDP1_LDW CSEL 2

PDP0_UDW CSEL 2

PDP0_LDW CSEL 2

MI_LOAD_REGISTER_IMM CSEL 1

POSH_LRCA CSEL 2

NOOP CSEL 9

NOOP CSEL 1

MI_LOAD_REGISTER_IMM CSEL 1

R_PWR_CLK_STATE CSEL 2

GPGPU_CSR_BASE_ADDRESS CSEL 3

NOOP CSEL 9

10 Doc Ref # IHD-OS-LKF-Vol 9-4.21

POCS Ring Context

Table below details the POSH ring context. Ring context listed below is for illustration of the change,

“Register State Context” in “Render Logical Context Data” should be referred as the final format for

implementation.

Description Unit # of DW

NOOP CSEL 1

MI_LOAD_REGISTER_IMM CSEL 1

Ring Buffer Head CSEL 2

Ring Tail Pointer Register CSEL 2

RING_BUFFER_START CSEL 2

RING_BUFFER_CONTROL CSEL 2

Batch Buffer Current Head Register (UDW) CSEL 2

Batch Buffer Current Head Register CSEL 2

Batch Buffer State Register CSEL 2

SECOND_BB_ADDR_UDW CSEL 2

SECOND_BB_ADDR CSEL 2

SECOND_BB_STATE CSEL 2

BB_PER_CTX_PTR CSEL 2

RCS_INDIRECT_CTX(Always Invalid) CSEL 2

RCS_INDIRECT_CTX_OFFSET CSEL 2

NOOP CSEL 2

NOOP CSEL 48

Doc Ref # IHD-OS-LKF-Vol 9-4.21 11

POSH Command Transport

This following subtopics describe the command transport mechanism from SW to POCS.

"POSH Start" Batch Buffers

Batch buffers dedicated to be executed by POSH pipe are indicated by setting the field “POSH Start” in

the MI_BATCH_BUFFER_START command header. Once “POSH Start” is set in a batch buffer all the

following chained batch buffers and next level batch buffers will implicitly inherit the “POSH Start” field

value. Once “POSH Start” is set in a batch buffer all the following command sequences are to be

executed by POCS until the corresponding batch buffer sequencing is terminated through

MI_BATCH_BUFFER_END/MI_CONDITIONAL_BATCH_BUFFER_END command.

Example:

• Once “POSH Start” is encountered in a first level batch buffer by HW, it will get reset only when the

first level batch buffer execution is terminated through batch buffer end and the command

execution sequence goes back to the ring buffer,

• Similarly, once “POSH Start” is encountered in a second level batch buffer by HW, it will get reset

only when the second level batch buffer execution is terminated through batch buffer end and the

command execution sequence goes back to the first level buffer,

• Similarly, once when “POSH Start” is encountered in a third level batch buffer by HW, it will get

reset only when the third level batch buffer execution is terminated through batch buffer end and

the command execution sequence goes back to the second level batch buffer.

Command sequences executed from the “POSH Start” batch buffer may lead to chained batch buffers or

next level batch buffers. Batch buffers executed by POCS may have MI Commands, 3DSATE commands

and 3DPRIMTIVE commands for POSH pipe, however these will be a subset of the commands that are

supported by render pipe. RCS on parsing MI_BATCH_BUFFER_START command with “POSH Start”

enabled NOOPS the command and moves on the following command.

12 Doc Ref # IHD-OS-LKF-Vol 9-4.21

MI Commands Supported by POCS

POCS supports all the MI commands supported by RCS except for the below exceptions.

POCS doesn’t support below commands and SW must not program them as part of the POSH command

sequence.

Commands not supported in POSH executed command buffers:

Column Title1

MI_DISPLAY_FLIP

MI_LOAD_SCANLINES_INCL/EXCL

MI_WAIT_FOR_EVENT

MI_USER_INTERRUPT

MI_REPORT_PERF_COUNT

MI_SET_CONTEXT

MI_ARB_ON_OFF

POCS can semaphore signal RCS and vice-versa.

3D State Commands Supported by POCS

The table below lists the 3DSTATE Commands Supported by POSH Pipe. State commands programmed

for POSH which are not listed in the table below will be gracefully discarded (NOOP’d) by POCS.

3D State Commands

• 3DSTATE_VF

• 3DSTATE_INDEX_BUFFER

• 3DSTATE_VERTEX_BUFFER

• 3DSTATE_VERTEX_ELEMENTS

• 3DSTATE_VF_COMPONENT_PACKING

• 3DSTATE_VF_INSTANCING

• 3DSTATE_VF_SGVS

• 3DSTATE_VF_TOPOLOGY

• 3DSTATE_VF_STATISTICS

• 3DPRIMTIVE

• 3DSTATE_VS

• 3DSTATE_PUSH_CONSTANT_ALLOC_VS

• 3DSTATE_CONSTANT_VS

• 3DSTATE_BINDING_TABLE_POOL_ALLOC

• 3DSTATE_BINDING_TABLE_POINTERS_VS

• 3DSTATE_SAMPLER_STATE_POINTERS_VS

• 3DSTATE_URB_VS

Doc Ref # IHD-OS-LKF-Vol 9-4.21 13

3D State Commands

• 3DSTATE_CLIP

• 3DSTATE_SFFE

• 3DSTATE_VIEWPORT_STATE_POINTERS_SF_C

LIP

• 3DSTATE_SCISSOR_STATE_POINTERS

• 3DSTATE_MULTISAMPLE

• 3DSTATE_RASTER

• 3DSTATE_DRAWING_RECTANGLE

• 3DSTATE_INT

• PIPECONTROL Command

• 3DSTATE_SBE (for PID computation)

• 3DSTATE_SAMPLE_PATTERN

• 3DSTATE_PTBR_PAGE_POOL_BASE_ADDRESS

• 3DSTATE_PTBR_FREE_LIST_BASE_ADDRESS

• 3DSTATE_PTBR_RENDER_LIST_BASE_ADDRES

S

• 3DSTATE_PTBR_TILE_PASS_INFO

Common Non-Pipeline Sate Commands

• STATE_BASE_ADDRESS

"POSH Enable" Batch Buffers

POCS parses/traverses (doesn’t execute) the ring buffer to look for batch buffers programmed with

“POSH Start” field set. “POSH Enable” field in the MI_BATCH_BUFFER_START command is a hint to POCS

to traverse (parse, don’t execute) the batch buffer to look for “POSH Start” batch buffers. “POSH Enable”

field is only inherited to the chained batch buffer and doesn’t get inherit to the next level batch buffers

unlike “POSH Start” field. “POSH Enable” field must be explicitly set in the MI_BATCH_BUFFER_START

command which calls the next level batch buffers in order for the POCS to parse them to look for “POSH

Start” batch buffers. POCS ends the “POSH Enable” batch buffer on executing MI_BATCH_BUFFER_END or

on MI_CONDITIONAL_BATCH_BUFFER_END meeting the required condition. “POSH Start” field takes

precedence over the “POSH Enable” field in POCS.

Example:

• Once “POSH Enable” is encountered in a first level batch buffer, POCS will traverse the whole of the

first level batch buffers (including chained first level) to check for “POSH Start” field in

MI_BATCH_BUFFER_START command. POCS by default will not traverse the second level batch

buffers. SW must explicitly set the “POSH Enable” field for the second level batch buffer called

from first level batch buffer if the second level batch buffer have to be traversed by POCS.

14 Doc Ref # IHD-OS-LKF-Vol 9-4.21

• Similarly, Once “POSH Enable” is encountered in a second level batch buffer, POCS will traverse the

whole of the second level batch buffers (including chained second level) to check for “POSH Start”

field in MI_BATCH_BUFFER_START command. POCS by default will not traverse the third level batch

buffers. SW must explicitly set the “POSH Enable” field for the third level batch buffer called from

second level batch buffer if the third level batch buffer have to be traversed by POCS.

• Similarly, Once “POSH Enable” is encountered in a third level batch buffer, POCS will traverse the

whole of the third level batch buffers (including chained second level) to check for “POSH Start”

field in MI_BATCH_BUFFER_START command.

RCS ignores “POSH Enable” field and has no implications due to the “POSH Enable” field set in the

MI_BATCH_BUFFER_START command.

POSH Ring Buffer

POCS and RCS share the same ring buffer. POCS parses the ring buffer to look for batch buffers start

commands with “POSH Enable” or “POSH Start” fields set, it doesn’t execute any commands

programmed in the ring buffer. POCS and RCS executing the same ring buffer results in two different

command sequences based on the “POSH Start” and “POSH Enable” fields programmed in various batch

buffers.

POSH Preemption

Once the context is loaded to POCS, only way it can be switched out is through explicit preemption from

RCS, POCS doesn’t switch out an context on encountering un-successful Wait for Events or Semaphore

Wait or running out of commands on head equal to tail pointer. RCS on switching out the context either

due to synchronous context switch or preemption, it also preempts POCS if the context is POSH enabled.

POCS receives preemption from RCS and triggers the preemption flow for POSH pipe. POSH pipe

supports 3D object level preemption. Preemption from RCS can happen when POCS is in one of the

below states:

• POCSFE has executed the context and have Head Equals Tail.

• POCSFE is busy executing commands.

POCS and RCS Synchronization

Once POCS is triggered, it executes parallel to RCS, it only stops (doesn’t switch out) when it runs out of

command (head equals to tail) or on encountering unsuccessful semaphore wait. Command sequence

execution of POCS is completely asynchronous to RCS command sequence execution. SW is responsible

to explicitly synchronize POCS and RCS command sequence execution whenever required based on the

various produce consume model using MI_SEMAPHORE_WAIT command.

GPGPU/Media

POSH pipe is dedicated for 3D workloads and doesn’t support execution of GPGPU or Media workloads.

SW must ensure POSH pipe is flushed and stalled while render pipe is executing GPGPU or Media

workloads for POSH enabled contexts. This must be achieved using explicit MI_SEMAPHORE_WAIT

Doc Ref # IHD-OS-LKF-Vol 9-4.21 15

commands. This is necessary to ensure the Execution Units only sees either 3D workloads or

GPGPU/Media workloads, current architecture doesn’t support executing both 3D and GPGPU workloads

concurrently.

HW Binding Table with RS Disabled

RCS sets up the HW Binding Table functionality when 3DSTATE_BTP_POOL_ALLOC is programmed with

RS disabled. POSH pipe uses the mode set by RCS. SW will explicitly synchronize POCS and RCS to

ensure they always work in the same mode of operation wither HW BTP Enabled or Disabled. Note that

both POCS and RCS will maintain their own copies of 3DSTATE_BTP_POOL_ALLOC.

Protection-On/Off Mode

RenderCS controlls the Protection-On/Off mode at all times for both POSH and Render pipes.

Protection-on/off mode set by RenderCS applies to memory clients form both render pipe and POSH

pipe. based on the protection on signal from RCS. SW must explicitly ensure both POSH and Render

pipes are synchronized around Protection and ProtectionOff zones during the command sequencing.

POSH MMIO

POSH pipe implements its own set of MMIO registers similar to render pipe, however POSH pipe

implements the registers relevant to the functionality supported in POSH pipeline. Listed below are the

only registers that are accessible in POSH pipeline.

egisters in POCSFE

MMIO SYMBOL Suffix

DMA_FADD POCS

ACTHD POCS

ACTHD_UDW POCS

CS_ALU_ACCU POCS

CS_ALU_CF POCS

CS_ALU_SRCA POCS

CS_ALU_SRCB POCS

CS_ALU_ZF POCS

BB_ADDR POCS

BB_ADDR_DIFF POCS

BB_ADDR_UDW POCS

BB_OFFSET POCS

BB_PER_CTX_PTR POCS

BB_PREEMPT_ADDR POCS

BB_PREEMPT_ADDR_UDW POCS

BB_START_ADDR POCS

16 Doc Ref # IHD-OS-LKF-Vol 9-4.21

MMIO SYMBOL Suffix

BB_START_ADDR_UDW POCS

BB_STATE POCS

CCID POCS

CTXT_PREMP_DBG POCS

CTXT_SR_CTL POCS

CXT_EL_OFFSET POCS

CMD_CCTL_0 POCS

RCS_CTXID_PREEMPTION_HINT POCS

CTX_TIMESTAMP POCS

CTX_WA_BB_ADDR POCS

EXCC POCS

FORCE_TO_NONPRIV_0 POCS

FORCE_TO_NONPRIV_1 POCS

FORCE_TO_NONPRIV_2 POCS

FORCE_TO_NONPRIV_3 POCS

FORCE_TO_NONPRIV_4 POCS

FORCE_TO_NONPRIV_5 POCS

FORCE_TO_NONPRIV_6 POCS

FORCE_TO_NONPRIV_7 POCS

FORCE_TO_NONPRIV_8 POCS

FORCE_TO_NONPRIV_9 POCS

FORCE_TO_NONPRIV_10 POCS

FORCE_TO_NONPRIV_11 POCS

CS_GPR_R_0 POCS

CS_GPR_R_1 POCS

CS_GPR_R_2 POCS

CS_GPR_R_3 POCS

CS_GPR_R_4 POCS

CS_GPR_R_5 POCS

CS_GPR_R_6 POCS

CS_GPR_R_7 POCS

CS_GPR_R_8 POCS

CS_GPR_R_9 POCS

CS_GPR_R_10 POCS

CS_GPR_R_11 POCS

CS_GPR_R_12 POCS

CS_GPR_R_13 POCS

Doc Ref # IHD-OS-LKF-Vol 9-4.21 17

MMIO SYMBOL Suffix

CS_GPR_R_14 POCS

CS_GPR_R_15 POCS

GFX_MODE POCS

HWS_PGA POCS

PWRCTX_MAXCNT POCS

IPEHR POCS

IDLEDLY POCS

CSCMDOP POCS

CSCMDVLD POCS

INSTPM POCS

INSTPS POCS

MI_PREDICATE_RESULT_1 POCS

MI_PREDICATE_RESULT_2 POCS

MI_MODE POCS

NOPID POCS

PDP0 POCS

PDP1 POCS

PDP2 POCS

PDP3 POCS

PR_CTR_THRSH POCS

PREEMPTDLY POCS

PREEMPTION_HINT POCS

PREEMPTION_HINT_UDW POCS

DMA_FADD_P_UDW POCS

RING_BUFFER_CTL POCS

RING_BUFFER_HEAD POCS

RING_BUFFER_HEAD_PREEMPT_REG POCS

RING_BUFFER_START POCS

RING_BUFFER_TAIL POCS

TIMESTAMP POCS

RESET_CTRL POCS

SBB_ADDR POCS

SBB_ADDR_UDW POCS

SBB_PREEMPT_ADDR POCS

SBB_PREEMPT_ADDR_UDW POCS

SBB_STATE POCS

SEMA_WAIT_POLL POCS

18 Doc Ref # IHD-OS-LKF-Vol 9-4.21

MMIO SYMBOL Suffix

RC_PSMI_CTRL POCS

CURRENT_LRCA POCS

Registers in POCSBE

MMIO SYMBOL Suffix

3DPRIM_BASE_VERTEX POCS

3DPRIM_END_OFFSET POCS

3DPIM_INSTANCE_COUNT POCS

3DPRIM_START_INSTANCE POCS

3DPRIM_START_VERTEX POCS

3DPRIM_VERTEX_COUNT POCS

3DPRIM_XP0 POCS

3DPRIM_XP1 POCS

3DPRIM_XP2 POCS

IA_PRIMITIVES_COUNT POCS

IA_VERTICES_COUNT POCS

VS_INVOCATION_COUNT POCS

CL_INVOCATION_COUNT POCS

CL_PRIMITIVES_COUNT POCS

MI_PREDICATE_DATA POCS

MI_PREDICATE_RESULT POCS

MI_PREDICATE_SRC0 POCS

MI_PREDICATE_SRC1 POCS

CSBEFSM POCS

CSFLFLAG POCS

CSFLFSM POCS

CSFLTRK POCS

CS_CONTEXT_STATUS1 POCS

CTX_RESTORE_ACK_0 POCS

CTX_RESTORE_ACK_1 POCS

FF_MODE POCS

STATE_ACK POCS

STATE_ACK_SLICE1 POCS

STATE_ACK_SLICE2 POCS

STATE_ACK_SLICE3 POCS

State_ACK_Register_Slice_5 POCS

State_Ack_Register_Slice4 POCS

Doc Ref # IHD-OS-LKF-Vol 9-4.21 19

POSH Functionality Controls

POSH functionality enabling and disabling is hierarchically controlled at various levels in the context

execution flow.

• Context Granularity

• Batch Buffer Granularity

• 3DPRIMTIVE Granularity

POSH Control Description

Context

Granularity

POSH feature can be enabled or disabled at context level by programming the “POSH Enable”

field in CTX_SR_CTL register of the RCS. When POSH is disabled in CTX_SR_CTL register, RCS will

not engage POSH.

Usage model is one-time programming of “POSH Enable” field at context creation time.

Dynamic enabling or disabling of POSH during context execution should be achieved through

Batch Buffer and 3DPRIMTIVE granularity controls.

Batch Buffer

Granularity

POSH Enable:

“POSH Enable” field in MI_BATCH_BUFFER_START command indicates the possibility of

encountering “POSH Start” batch buffer from the corresponding command sequence.

POSH Start:

Commands to be executed by the POCS must be programmed in a dedicated batch buffer and

this batch buffer is indicated with a bit “POSH Start” in the MI_BATCH_BUFFER_START command.

Once POCS encounters the batch buffer with “POSH Start” it executes all the command in the

corresponding batch buffer and also the chained batch buffers from the corresponding buffer.

RCS skips the MI_BATCH_BUFFER_START command with “POSH Start” set and goes on the

following command.

Programming Notes:

POCS executes only the MI_BATCH_BUFER_START commands programmed in the ring buffer

with “POSH Enable” set and NOOPS (predicates) all the other commands in the ring buffer. POCS

only parses/traverses the batch buffer with “POSH Enable” to check for any batch buffer

programmed with “POSH Start” set.

SW must set “POSH Enable” field in the MI_BATCH_BUFFER_START command programmed in

ring buffer if the commands in the corresponding batch buffer or the chained batch buffers

(includes Second Level and third level) has at least one batch buffer start command with “POSH

Start” set (also implies 3DPRIMITIVE command for which POSH is enabled).

3DPRIMTIVE

Granularity

“POSH Enable” field in the 3DPRIMTIVE command indicates the POSH pipe to create the visibility

recording data and indicates Render pipe to use visibility recording data for the corresponding

3DPRIMTIVE command.

20 Doc Ref # IHD-OS-LKF-Vol 9-4.21

POSH Interrupts

There are no interrupts generated by POSH pipe.

Software Interface

This chapter describes the memory-mapped registers associated with the Memory Interface, including

brief descriptions of their use. Refer to each registers description and related feature for more

information on each individual bit. Unless noted otherwise within the description of the bit, any mode bit

must only be updated following a flush to ensure the pipeline is idle.

The registers detailed in this chapter are extensions to previous projects. However, slight changes may be

present in some registers (i.e., for features added or removed), or some registers may be removed

entirely. These changes are clearly marked within this chapter.

Synchronization of the 3D Pipeline

Two types of synchronizations are supported for the 3D pipe: top of the pipe and end of the pipe. Top of

the pipe synchronization really enforces the read-only cache invalidation. This synchronization

guarantees that primitives rendered after such synchronization event fetches the latest read-only data

from memory. End of the pipe synchronization enforces that the read and/or read-write buffers do not

have outstanding hardware accesses. These are used to implement read and write fences as well as to

write out certain statistics deterministically with respect to progress of primitives through the pipeline

(and without requiring the pipeline to be flushed.) The PIPE_CONTROL command (see details below) is

used to perform all of above synchronizations.

Top-of-Pipe Synchronization

Top-of-pipe synchronization refers to SW actions to prepare HW for new state-binding at the beginning

of the rendering sequence in a given context. HW may have residual states cached in the state-caches

and read-only surfaces in various caches. With new rendering sequence, read-only surfaces may go

through change in the binding. Hence read-only invalidation is required before such new rendering

sequence. Read-only cache invalidation is top-of-pipe synchronization. Upon parsing this specific pipe-

control command, HW invalidates all caches in GT domain that have read-only surfaces but does not

guarantee invalidation beyond GT caches

Upon parsing this specific pipe-control command, HW invalidates all caches in GT domain that have

read-only surfaces but does not guarantee invalidation beyond GT caches (i.e. LLC).

Further, HW does not guarantee that all prior accesses to those read-only surfaces have completed.

Therefore SW must guarantee that there are no pending accesses to those read-only surfaces before

initializing the top-of-pipe synchronization. PIPE-CONTROL command described below allows for

invalidating individual read-only stream type. It is recommended that driver invalidates only the required

caches on the need basis so that cache warm-up overhead can be reduced.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 21

End-of-Pipe Synchronization

The driver can use end-of-pipe synchronization to know that rendering is complete (although not

necessarily in memory) so that it can deallocate in-memory rendering state, read-only surfaces,

instructions, and constant buffers. An end-of-pipe synchronization point is also sufficient to guarantee

that all pending depth tests have completed so that the visible pixel count is complete prior to storing it

to memory. End-of-pipe completion is sufficient (although not necessary) to guarantee that read events

are complete (a “read fence” completion). Read events are still pending if work in the pipeline requires

any type of read except a render target read (blend) to complete.

Write synchronization is a special case of end-of-pipe synchronization that requires that the render cache

and/or depth related caches are flushed to memory, where the data will become globally visible. This

type of synchronization is required prior to SW (CPU) actually reading the result data from memory, or

initiating an operation that will use as a read surface (such as a texture surface) a previous render target

and/or depth/stencil buffer. Exercising the write cache flush bits (Render Target Cache Flush Enable,

Depth Cache Flush Enable, DC Flush) in PIPE_CONTROL only ensures the write caches are flushed and

doesn’t guarantee the data is globally visible.

SW can track the completion of the end-of-pipe-synchronization by using “Notify Enable” and “Post-

Sync Operation - Write Immediate Data” in the PIPE_CONTROL command. “Notify Enable” and “Post-

Sync Operation - Write Immediate Data” generate a fence cycle on achieving end-of-pipe-

synchronization for the corresponding PIPE_CONTROL command. Fence cycle ensures all the write cycles

in front of it are to global visible point before they themselves get processed. It is guaranteed the data

flushed out by the PIPE_CONTROL is updated in memory by the time SW receives the corresponding

Pipe Control Notify interrupt.

In case the data flushed out by the render engine is to be read back in to the render engine in coherent

manner, then the render engine has to wait for the fence completion before accessing the flushed data.

This can be achieved by following means on various products:

PIPE_CONTROL command with CS Stall and the required write caches flushed with Post-Sync-Operation

as Write Immediate Data.

Example:

• WorkLoad-1 (3D/GPGPU/MEDIA)

• PIPE_CONTROL (CS Stall, Post-Sync-Operation Write Immediate Data, Required Write Cache Flush

bits set)

 WorkLoad-2 (Can use the data produced or output by Workload-1)

Synchronization Actions

In order for the driver to act based on a synchronization point (usually the whole point), the reaching of

the synchronization point must be communicated to the driver. This section describes the actions that

may be taken upon completion of a synchronization point which can achieve this communication.

22 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Writing a Value to Memory

The most common action to perform upon reaching a synchronization point is to write a value out to

memory. An immediate value (included with the synchronization command) may be written. In lieu of an

immediate value, the 64-bit value of the PS_DEPTH_COUNT (visible pixel count) or TIMESTAMP register

may be written out to memory. The captured value will be the value at the moment all primitives parsed

prior to the synchronization commands have been completely rendered, and optionally after all said

primitives have been pushed to memory. It is not required that a value be written to memory by the

synchronization command.

Visible pixel or TIMESTAMP information is only useful as a delta between 2 values, because these

counters are free-running and are not to be reset except at initialization. To obtain the delta, two

PIPE_CONTROL commands should be initiated with the command sequence to be measured between

them. The resulting pair of values in memory can then be subtracted to obtain a meaningful statistic

about the command sequence.

PS_DEPTH_COUNT

If the selected operation is to write the visible pixel count (PS_DEPTH_COUNT register), the

synchronization command should include the Depth Stall Enable parameter. There is more than one

point at which the global visible pixel count can be affected by the pipeline; once the synchronization

command reaches the first point at which the count can be affected, any primitives following it are

stalled at that point in the pipeline. This prevents the subsequent primitives from affecting the visible

pixel count until all primitives preceding the synchronization point reach the end of the pipeline, the

visible pixel count is accurate and the synchronization is completed. This stall has a minor effect on

performance and should only be used in order to obtain accurate “visible pixel” counts for a sequence of

primitives.

The PS_DEPTH_COUNT count can be used to implement an (API/DDI) “Occlusion Query” function.

Generating an Interrupt

The synchronization command may indicate that a “Sync Completion” interrupt is to be generated (if

enabled by the MI Interrupt Control Registers – see Memory Interface Registers) once the rendering of all

prior primitives is complete. Again, the completion of rendering can be considered to be when the

internal render cache has been updated, or when the cache contents are visible in memory, as selected

by the command options.

Invalidating of Caches

If software wishes to use the notification that a synchronization point has been reached in order to reuse

referenced structures (surfaces, state, or instructions), it is not sufficient just to make sure rendering is

complete. If additional primitives are initiated after new data is laid over the top of old in memory

following a synchronization point, it is possible that stale cached data will be referenced for the

subsequent rendering operation. In order to avoid this, the PIPE_CONTROL command must be used. (See

PIPE_CONTROL Command description).

Doc Ref # IHD-OS-LKF-Vol 9-4.21 23

PIPE_CONTROL Command

The PIPE_CONTROL command provides mechanism to achieve the synchronization of the 3D pipeline

and to execute post-synchronization operations as described in the section “Synchronization of the 3D

pipeline”. Parsing a PIPE_CONTROL command stalls the 3D pipe only if the stall enable bit is set.

Commands after PIPE_CONTROL will continue to be parsed and processed in the 3D pipeline. This may

include additional PIPE_CONTROL commands. The implementation does enforce a practical upper limit

(8) on the number of PIPE_CONTROL commands that may be outstanding at once. Parsing a

PIPE_CONTROL command that causes this limit to be reached will stall the parsing of new commands

until the first of the outstanding PIPE_CONTROL commands reaches the end of the pipe and retires.

Although PIPE_CONTROL is intended for use with the 3D pipe, it is legal to issue PIPE_CONTROL when

the Media pipe is selected. In this case PIPE_CONTROL will stall at the top of the pipe until the Media FFs

finish processing commands parsed before PIPE_CONTROL. Post-synchronization operations, flushing of

caches and interrupts will then occur if enabled via PIPE_CONTROL parameters. Due to this stalling

behavior, only one PIPE_CONTROL command can be outstanding at a time on the Media pipe.

For the invalidate operation of the pipe control, the following pointers are affected. The invalidate

operation affects the context restore of these packets. If the pipe control invalidate operation is

completed before the context save, the indirect pointers will not be context restored from memory on a

context switch.

• Pipeline State Pointer

• Media State Pointer

• Constant Buffer Packet

Programming Note

• SW must ensure to invalidate the Media State and Constant Buffers using “Generic Media State Clear” prior

to the releasing the associated resources (memory).

• SW must ensure to invalidate the Push Constants using “Indirect State Pointers Disable” prior to the

releasing the associated resources (memory).

It is up to software to program the appropriate read-only cache invalidation such as the sampler and

constant read caches or the instruction and state caches. Once notification is observed, new data may

then be loaded (potentially “on top of” the old data) without fear of stale cache data being referenced

for subsequent rendering.

If software wishes to access the rendered data in memory (for analysis by the application or to copy it to

a new location to use as a texture, for example), it must also ensure that the write cache (render cache) is

flushed after the synchronization point is reached so that memory will be updated. This can be done by

setting the Write Cache Flush Enable bit. Note that the Depth Stall Enable bit must be clear in order

for the flush of the render cache to occur. Depth Stall Enable is intended only for accurate reporting of

the PS_DEPTH counter; the render cache cannot be flushed nor can the read caches be invalidated

(except for the instruction/state cache) in conjunction with this operation.

Vertex caches are only invalidated when the VF invalidate bit is set in PIPE_CONTROL (i.e. decision is

done in software, not hardware) Note that the index-based vertex cache is always flushed between

24 Doc Ref # IHD-OS-LKF-Vol 9-4.21

primitive topologies and of course PIPE_CONTROL can only be issued between primitive topologies.

Therefore only the VF (“address-based”) cache is uniquely affected by PIPE_CONTROL.

PIPE_CONTROL

PIPE_CONTROL

Hardware supports up to 32 pending PIPE_CONTROL flushes.

The table below explains all the different flush/invalidation scenarios.

Caches Invalidated/Flushed by PIPE_CONTROL Bit Settings

Write

Cache

Flush

Notification

Enabled

Non-VF RO

Cache

Invalidate

VF RO Cache

Invalidate

Marker

Sent

Pipeline

Marker

Enable

Completion

Requested

Top of Pipe

Invalidate Pulse

from CS

0 0 0 0 N/A N/A N/A N/A

0 0 0 1 Yes No N/A No

0 0 1 0 No N/A N/A Yes

0 0 1 1 Yes No No Yes

X 1 0 X Yes Yes Yes No

X 1 1 X Yes Yes Yes Yes

1 X 0 X Yes Yes Yes No

1 X 1 X Yes Yes Yes Yes

Programming Restrictions for PIPE_CONTROL

PIPE_CONTROL arguments can be split up into three categories:

• Post-sync operations

• Flush Types

• Stall

Post-sync operation is only indirectly affected by the flush type category via the stall bit. The stall

category depends on the both flush type and post-sync operation arguments. A PIPE_CONTROL with no

arguments set is Invalid.

Post-Sync Operation

These arguments relate to events that occur after the marker initiated by the PIPE_CONTROL command is

completed. The table below shows the restrictions:

Argument Bits Restriction

LRI Post Sync

Operation

23 Post Sync Operation ([15:14] of DW1) must be set to 0x0.

Global Snapshot Count

Reset

19 This bit must not be exercised on any product.

 Requires stall bit ([20] of DW1) set.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 25

Argument Bits Restriction

Generic Media State

Clear

16 Requires stall bit ([20] of DW1) set.

Generic Media State

Clear

16 Must not be set in PIPECONTROL command programmed for POCS.

Indirect State Pointers

Disable

9 Requires stall bit ([20] of DW1) set.

Store Data Index 21 Post-Sync Operation ([15:14] of DW1) must be set to something other than '0'.

Sync GFDT 17 Post-Sync Operation ([15:14] of DW1) must be set to something other than '0' or

0x2520[13] must be set.

TLB inv 18 Requires stall bit ([20] of DW1) set.

TLB inv (POCS Only) 18 Post-Sync Operation ([15:14] of DW1) must be set to something other than '0'.

Post Sync Op 15:14 LRI Post Sync Operation ([23] of DW1) must be set to '0'.

Post Sync Op 15:14 Post Sync Operations must not be set to "Write PS Depth Count" in PIPECONTROL

command programmed for POCS.

Notify En 8 Must not be set in PIPECONTROL command programmed for POCS.

Flush Types

These are arguments related to the type of read only invalidation or write cache flushing is being

requested. Note that there is only intra-dependency. That is, it is not affected by the post-sync operation

or the stall bit. The table below shows the restrictions:

Arguments Bit Restrictions

Tile Cache Flush 28

• SW must always set CS Stall bit when Tile Cache Flush Enable bit is set in the

PIPECONTROL command.

• SW must ensure level1 depth and color caches are flushed prior to flushing the tile

cache. This can be achieved by following means:

• Single PIPECONTROL command to flush level1 caches and the tile cache.

Attributes listed below must be set. OR

• Tile Cache Flush Enable

• Render Target Cache Flush Enable

• DC Flush Enable

• Depth Cache Flush Enable

• Flushing of L1 caches followed by flushing of tile cache through two different

PIEPCONTROL commands. SW must ensure not to issue any rendering

commands between the two PIPECONTROL commands.

Depth Stall
 Must not set in PIPECONTROL command programmed for POCS.

Render Target

Cache Flush

 Must not be set in PIPECONTROL command programmed for POCS.

26 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Arguments Bit Restrictions

Depth Cache

Flush

 Must not be set in PIPECONTROL command programmed for POCS.

Stall Pixel

Scoreboard

1 No Restriction.

Stall Pixel

Scoreboard

 Must not be set in PIPECONTROL command programmed for POCS.

DC Flush Enable Must not be set in PIPECONTROL command programmed for POCS.

Inst invalidate 11 No Restriction.

Tex invalidate 10 Requires stall bit ([20] of DW) set for all GPGPU Workloads.

Constant

invalidate

3 No Restriction.

State Invalidate 2 No Restriction.

Stall

If the stall bit is set, the command streamer waits until the pipe is completely flushed.

Arguments Bit Restrictions

Stall Bit 20 No Restrictions.

3D Registers

Context Save Registers

VF Instance Count Registers

VF Instance Count Register Set

Register

Type:

MMIO_VF

Address: 08300h - 08384h

Default

Value:

0000 0000h

Access: RO

Size: 1088 bits

Description: Set of Registers for storing the index count values. In case of preempted drawcalls, these register

store index count/number per element. For the non-preempted drawcalls, the values stored are

ignored upon restore.

 These are saved as part of render context.

DWord Bits Description

0 31:0 Index Count 0. Index Count value for Element 0.

 Format: U32

1 31:0 Index Count 1. Index Count value for Element 1.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 27

VF Instance Count Register Set

 Format: U32

... 31:0 ...

33 31:0 Index Count 33. Index Count value for Element 33.

 Format: U32

Mode and Misc Ctrl Registers

This section contains various registers for controls and modes

Controls/Modes

MI_MODE - Mode Register for Software Interface

FF_MODE - Thread Mode Register

GFX_MODE - Graphics Mode Register

GT_MODE - GT Mode Register

SAMPLER_MODE - SAMPLER Mode Register

CACHE_MODE_1 - Cache Mode Register 1

GAFS_MODE - Mode Register for GAFS

FBC_RT_BASE_ADDR_REGISTER - FBC_RT_BASE_ADDR_REGISTER

FBC_RT_BASE_ADDR_REGISTER_UPPER - FBC_RT_BASE_ADDR_REGISTER_UPPER

L3CNTLREG - L3 Control Register

B/D/F/Type:

Address Offset: 0x7034

Default Value: 60000060h

Access: RW; RO;

Size: 32 bit

Below Register provides GT2 based L3 sizes.

For GT1 – all sizes need to be multiplied by 0.5.

For GT3 – all sizes need to be multiplied by 2.

For GT4 – all sizes need to be multiplied by 3.

All L3 ways have to be included in the programming to ensure that no ways are left out.

L3CNTLREG - L3 Control Register

CACHE_MODE_SS - Cache Mode Subslice Register

28 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Pipelines Statistics Counter Registers

These registers keep continuous count of statistics regarding the 3D pipeline. They are saved and

restored with context but should not be changed by software except to reset them to 0 at context

creation time. Write access to the statistics counter in this section must be done through

MI_LOAD_REGISTER_IMM, MI_LOAD_REGISTER_MEM, or MI_LOAD_REGISTER_REG commands in ring

buffer or batch buffer. These registers may be read at any time; however, to obtain a meaningful result, a

pipeline flush just prior to reading the registers is necessary to synchronize the counts with the primitive

stream.

Registers

IA_VERTICES_COUNT - IA Vertices Count

IA_PRIMITIVES_COUNT - Primitives Generated By VF

VS_INVOCATION_COUNT - VS Invocation Counter

HS_INVOCATION_COUNT - HS Invocation Counter

DS_INVOCATION_COUNT - DS Invocation Counter

GS_INVOCATION_COUNT - GS Invocation Counter

GS_PRIMITIVES_COUNT - GS Primitives Counter

CL_INVOCATION_COUNT - Clipper Invocation Counter

PS_INVOCATION_COUNT - PS Invocation Count

PS_INVOCATION_COUNT_SLICE0 - PS Invocation Count for Slice0

PS_INVOCATION_COUNT_SLICE1 - PS Invocation Count for Slice1

PS_INVOCATION_COUNT_SLICE2 - PS Invocation Count for Slice2

PS_INVOCATION_COUNT_SLICE4 - PS Invocation Count for Slice4

PS_INVOCATION_COUNT_SLICE5 - PS Invocation Count for Slice5

CPS_INVOCATION_COUNT - CPS Invocation Counter

PS_DEPTH_COUNT

PS_DEPTH_COUNT_SLICE0 - PS Depth Count for Slice0

PS_DEPTH_COUNT_SLICE1 - PS Depth Count for Slice1

PS_DEPTH_COUNT_SLICE2 - PS Depth Count for Slice2

PS_DEPTH_COUNT_SLICE3 - PS Depth Count for Slice3

PS_DEPTH_COUNT_SLICE4 - PS Depth Count for Slice4

PS_DEPTH_COUNT_SLICE5 - PS Depth Count for Slice5

TIMESTAMP - Reported Timestamp Count

Stream Output 0 Write Offset

Stream Output 1 Write Offset

Stream Output 2 Write Offset

Stream Output 3 Write Offset

Window Hardware Generated Clear Value

Doc Ref # IHD-OS-LKF-Vol 9-4.21 29

CS_CTX_TIMESTAMP- CS Context Timestamp Count:

This register provides a mechanism to obtain cumulative run time of a GPU context on HW.

CS_CTX_TIMESTAMP - CS Context Timestamp Count

Diagram below details on when CS_CTX_TIMESTAMP run time, save/restored during a GPGPU context

switch flow.

AUTO_DRAW Registers

3DPRIM_END_OFFSET - Auto Draw End Offset

3DPRIM_START_VERTEX - Load Indirect Start Vertex

3DPRIM_VERTEX_COUNT - Load Indirect Vertex Count

3DPRIM_INSTANCE_COUNT - Load Indirect Instance Count

3DPRIM_START_INSTANCE - Load Indirect Start Instance

3DPRIM_BASE_VERTEX - Load Indirect Base Vertex

3DPRIM_XP0 - Load Indirect Extended Parameter 0

3DPRIM_XP1 - Load Indirect Extended Parameter 1

3DPRIM_XP2 - Load Indirect Extended Parameter 2

MMIO Registers for GPGPU Indirect Dispatch

These registers are normally written with the MI_LOAD_REGISTER_MEMORY command rather than from

the CPU.

GPGPU_DISPATCHDIMX - GPGPU Dispatch Dimension X

GPGPU_DISPATCHDIMY - GPGPU Dispatch Dimension Y

30 Doc Ref # IHD-OS-LKF-Vol 9-4.21

GPGPU_DISPATCHDIMZ - GPGPU Dispatch Dimension Z

TS_GPGPU_THREADS_DISPATCHED - Count Active Channels Dispatched

Commands

This section describes the commands specific to 3D-Compute engine

State Commands

This section covers the following commands:

• STATE_PREFETCH command. The STATE_PREFETCH command is provided strictly as an optional

mechanism to possibly enhance pipeline performance by prefetching data into the GPE’s

Instruction and State Cache (ISC).

• STATE_SIP command

Command

STATE_SIP

3DSTATE_URB_CLEAR

STATE_BASE_ADDRESS

The STATE_BASE_ADDRESS command sets the base pointers for subsequent state, instruction, and media

indirect object accesses by the GPE. (See Memory Access Indirection for details.)

The following commands must be reissued following any change to the base addresses:

• 3DSTATE_PIPELINE_POINTERS

• 3DSTATE_BINDING_TABLE_POINTERS

• MEDIA_STATE_POINTERS

Execution of this command causes a full pipeline flush; thus its use should be minimized for higher

performance.

Command

STATE_BASE_ADDRESS

PIPELINE_SELECT

The Pipeline Select state is contained within the logical context.

Memory Interface Commands for Rendering Engine

Command

MI_SET_CONTEXT

MI_TOPOLOGY_FILTER

Doc Ref # IHD-OS-LKF-Vol 9-4.21 31

Command Ordering Rules

There are several restrictions regarding the ordering of commands issued to the GPE. This subsection

describes these restrictions along with some explanation of why they exist. Refer to the various

command descriptions for additional information.

PIPELINE_SELECT

The previously active pipeline needs to be flushed immediately before switching to a different pipeline

via use of the PIPELINE_SELECT command.

Refer to for details on the PIPELINE_SELECT command.

PIPELINE_SELECT

PIPE_CONTROL

The PIPE_CONTROL command does not require URB fencing/allocation to have been performed, nor

does it rely on any other pipeline state. It is intended to be used on both the 3D pipe and the Media

pipe. It has special optimizations to support the pipelining capability in the 3D pipe which do not apply

to the Media pipe.

Common Pipeline State-Setting Commands

The following commands are used to set state common to both the 3D and Media pipelines. This state is

comprised of CS FF unit state, non-pipelined global state (EU, etc.), and Sampler shared-function state.

• STATE_BASE_ADDRESS

• STATE_SIP

• 3DSTATE_CHROMA_KEY

• 3DSTATE_BINDING_TABLE_POOL_ALLOC

The state variables associated with these commands must be set appropriately prior to initiating activity

within a pipeline (i.e., 3DPRIMITIVE or MEDIA_OBJECT).

3D Pipeline-Specific State-Setting Commands

The following commands are used to set state specific to the 3D Pipeline.

• 3DSTATE_PIPELINED_POINTERS

• 3DSTATE_BINDING_TABLE_POINTERS

• 3DSTATE_VERTEX_BUFFERS

• 3DSTATE_VERTEX_ELEMENTS

• 3DSTATE_INDEX_BUFFERS

• 3DSTATE_VF_STATISTICS

• 3DSTATE_DRAWING_RECTANGLE

• 3DSTATE_CONSTANT_COLOR

32 Doc Ref # IHD-OS-LKF-Vol 9-4.21

• 3DSTATE_DEPTH_BUFFER

• 3DSTATE_POLY_STIPPLE_OFFSET

• 3DSTATE_POLY_STIPPLE_PATTERN

• 3DSTATE_LINE_STIPPLE

• 3DSTATE_GLOBAL_DEPTH_OFFSET

The state variables associated with these commands must be set appropriately prior to issuing

3DPRIMITIVE.

Media Pipeline-Specific State-Setting Commands

The following command is used to set state specific to the Media pipeline:

• MEDIA_STATE_POINTERS

The state variables associated with this command must be set appropriately prior to issuing

MEDIA_OBJECT.

3DPRIMITIVE

Before issuing a 3DPRIMITIVE command, all state (with the exception of MEDIA_STATE_POINTERS) needs

to be valid. Thus, the commands used to assigned that state must be issued before issuing 3DPRIMITIVE.

MEDIA_OBJECT

Before issuing a MEDIA_OBJECT command, all state (with the exception of 3D-pipeline-specific state)

needs to be valid. Therefore, the commands used to set this state need to have been issued at some

point prior to the issue of MEDIA_OBJECT.

Engine State

This section describes the state specific to the 3D-Compute Engine

Memory Access Indirection

The GPE supports the indirection of certain graphics (GTT-mapped) memory accesses. This support

comes in the form of two base address state variables used in certain memory address computations with

the GPE.

The intent of this functionality is to support the dynamic relocation of certain driver-generated memory

structures after command buffers have been generated but prior to their submittal for execution. For

example, as the driver builds the command stream it could append pipeline state descriptors, kernel

binaries, etc. to a general state buffer. References to the individual items would be inserted in the

command buffers as offsets from the base address of the state buffer. The state buffer could then be

freely relocated prior to command buffer execution, with the driver only needing to specify the final base

address of the state buffer. Two base addresses are provided to permit surface-related state (binding

tables, surface state tables) to be maintained in a state buffer separate from the general state buffer.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 33

While the use of these base addresses is unconditional, the indirection can be effectively disabled by

setting the base addresses to zero. The following table lists the various GPE memory access paths and

which base address (if any) is relevant.

Base Address Utilization

Base Address

Used Memory Accesses

General State

Base Address

DataPort Read/Write DataPort memory accesses resulting from ‘stateless’ DataPort

Read/Write requests. See DataPort for a definition of the ‘stateless’ form of requests.

Dynamic State

Base Address

Sampler reads of SAMPLER_STATE data and associated SAMPLER_BORDER_COLOR_STATE.

Viewport states used by CLIP, SF, and WM/CC

COLOR_CALC_STATE, DEPTH_STENCIL_STATE, and BLEND_STATE

Push Constants (depending on state of INSTPM<CONSTANT_BUFFER Address Offset

Disable>)

Instruction Base

Address

Normal EU instruction stream (non-system routine)

System routine EU instruction stream (starting address = SIP)

Surface State

Base Address

Sampler and DataPort reads of BINDING_TABLE_STATE, as referenced by BT pointers passed via

3DSTATE_BINDING_TABLE_POINTERS

Sampler and DataPort reads of SURFACE_STATE data

Indirect Object

Base Address

MEDIA_OBJECT Indirect Data accessed by the CS unit.

None CS unit reads from Ring Buffers, Batch Buffers

CS writes resulting from PIPE_CONTROL command

All VF unit memory accesses (Index Buffers, Vertex Buffers)

All Sampler Surface Memory Data accesses (texture fetch, etc.)

All DataPort memory accessesexcept ‘stateless’ DataPort Read/Write requests (e.g., RT

accesses.) See DataPort for a definition of the ‘stateless’ form of requests.

Memory reads resulting from STATE_PREFETCH commands

Any physical memory access by the device

GTT-mapped accesses not included above (i.e., default)

Push Constants (depeding on state of INSTPM<CONSTANT_BUFFER Address Offset Disable>

)

The following notation is used in the PRM to distinguish between addresses and offsets:

Notation Definition

PhysicalAddress[n:m] Corresponding bits of a physical graphics memory byte address (not mapped by a GTT)

GraphicsAddress[n:m] Corresponding bits of an absolute, virtual graphics memory byte address (mapped by a

GTT)

GeneralStateOffset[n:m] Corresponding bits of a relative byte offset added to the General State Base Address

value, the result of which is interpreted as a virtual graphics memory byte address

(mapped by a GTT)

34 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Notation Definition

DynamicStateOffset[n:m] Corresponding bits of a relative byte offset added to the Dynamic State Base Address

value, the result of which is interpreted as a virtual graphics memory byte address

(mapped by a GTT)

InstructionBaseOffset[n:m] Corresponding bits of a relative byte offset added to the Instruction Base Address value,

the result of which is interpreted as a virtual graphics memory byte address (mapped by

a GTT)

SurfaceStateOffset[n:m] Corresponding bits of a relative byte offset added to the Surface State Base Address

value, the result of which is interpreted as a virtual graphics memory byte address

(mapped by a GTT)

Context Image

Logical Contexts are memory images used to store copies of the device’s rendering and ring context.

Logical Contexts are aligned to 256-byte boundaries.

Logical contexts are referenced by their memory address. The format and contents of rendering contexts

are considered device-dependent and software must not access the memory contents directly. The

definition of the logical rendering and power context memory formats is included here primarily for

internal documentation purposes.

Power Context Image

Render Engine Power Context

The table below captures the data from CS power context save/restored by PM. Address offsets in this

table are relative to the starting location of CS in the overall power context image managed by PM.

RCS Power Context Image

Description Offset Unit

of

DW

Address Offset

(PWR) CSFE/CSBE

NOOP CS 1 0 CSFE

Load_Register_Immediate header 0x1100_10DB CS 1 001 CSFE

Load_Register_Immediate header 0x1100_10BF CS 1 0001 CSFE

GFX_MODE 0x229C CS 2 0002 CSFE

GHWSP 0x2080 CS 2 0004 CSFE

RING_BUFFER_CONTROL (Ring Always

Disabled)

0x203C CS 2 0006 CSFE

Ring Head Pointer Register 0x2034 CS 2 0008 CSFE

Ring Tail Pointer Register 0x2030 CS 2 000A CSFE

RING_BUFFER_START 0x2038 CS 2 000C CSFE

RING_BUFFER_CONTROL (Original status) 0x203C CS 2 000E CSFE

Batch Buffer Current Head Register (UDW) 0x2168 CS 2 0010 CSFE

Doc Ref # IHD-OS-LKF-Vol 9-4.21 35

Description Offset Unit

of

DW

Address Offset

(PWR) CSFE/CSBE

Batch Buffer Current Head Register 0x2140 CS 2 0012 CSFE

Batch Buffer State Register 0x2110 CS 2 0014 CSFE

SECOND_BB_ADDR_UDW 0x211C CS 2 0016 CSFE

SECOND_BB_ADDR 0x2114 CS 2 0018 CSFE

SECOND_BB_STATE 0x2118 CS 2 001A CSFE

RC_PSMI_CONTROL 0x2050 CS 2 001C CSFE

RC_PWRCTX_MAXCNT 0x2054 CS 2 001E CSFE

CTX_WA_PTR 0x2058 CS 2 0020 CSFE

NOPID 0x2094 CS 2 0022 CSFE

HWSTAM 0x2098 CS 2 0024 CSFE

IMR 0x20A8 CS 2 0026 CSFE

EIR 0x20B0 CS 2 0028 CSFE

EMR 0x20B4 CS 2 002A CSFE

CMD_CCTL_0 0x20C4 CS 2 002C CSFE

UHPTR 0x2134 CS 2 002E CSFE

BB_PREEMPT_ADDR_UDW 0x216C CS 2 0030 CSFE

BB_PREEMPT_ADDR 0x2148 CS 2 0032 CSFE

RING_BUFFER_HEAD_PREEMPT_REG 0x214C CS 2 0034 CSFE

PREEMPT_DLY 0x2214 CS 2 0036 CSFE

CTXT_PREMP_DBG 0x2248 CS 2 0038 CSFE

SYNC_FLIP_STATUS 0x22D0 CS 2 003A CSFE

SYNC_FLIP_STATUS_1 0x22D4 CS 2 003C CSFE

SYNC_FLIP_STATUS_2 0x22EC CS 2 003E CSFE

WAIT_FOR_RC6_EXIT 0x20CC CS 2 0040 CSFE

RCS_CTXID_PREEMPTION_HINT 0x24CC CS 2 0042 CSFE

CS_PREEMPTION_HINT_UDW 0x24C8 CS 2 0044 CSFE

CS_PREEMPTION_HINT 0x24BC CS 2 0046 CSFE

CCID Register 0x2180 CS 2 0048 CSFE

SBB_PREEMPT_ADDRESS_UDW 0x2138 CS 2 004A CSFE

SBB_PREEMPT_ADDRESS 0x213C CS 2 004C CSFE

MI_PREDICATE_RESULT_2 0x23BC CS 2 004E CSFE

CTXT_ST_PTR 0x23A0 CS 2 0050 CSFE

CTXT_ST_BUF 0x2370 CS 24 0052 CSFE

SEMA_WAIT_POLL 0x224C CS 2 0082 CSFE

IDLEDELAY 0x223C CS 2 0084 CSFE

DISPLAY MESSAGE FORWARD STATUS 0x22E8 CS 2 0086 CSFE

36 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Description Offset Unit

of

DW

Address Offset

(PWR) CSFE/CSBE

RCS_FORCE_TO_NONPRIV 0x24D0 CS 24 0088 CSFE

EXECLIST_STATUS_REGISTER 0x2234 CS 2 00A0 CSFE

CXT_OFFSET 0x21AC CS 2 00A4 CSBE

STOP_PARSER_CONTROL 0x2424 CS 2 00A6 CSBE

STOP_PARSER_HINT_ADDR 0x2428 Cs 4 00A8 CSBE

SYNC_FLIP_STATUS_3 0x22B8 CS 2 00AC CSFE

SYNC_FLIP_STATUS_4 0x22C0 CS 2 00AE CSFE

SYNC_FLIP_STATUS_5 0x22C4 CS 2 00B0 CSFE

SYNC_FLIP_STATUS_6 0x21F8 CS 2 00B2 CSFE

DISPLAY MESSAGE FORWARD STATUS_2 0x2188 CS 2 00B4 CSFE

DISPLAY MESSAGE FORWARD STATUS_3 0x218C CS 2 00B6 CSFE

EXECLIST_SQ_CONTENTS 0x2510-

0x254F

CS 32 00B8 CSFE

CSB_INTERRUPT_MASK 0x2218 CS 2 00D8 CSFE

Reserved 0x25A4 CS 2 00DC CSFE

NOOP CS 2 00DE CSFE

NOOP CS 1 00E0 CSBE

Load_Register_Immediate header 0x1100_1019 CS 1 00E1 CSBE

FF_THREAD_MODE 0x20A0 CS 2 00E6 CSBE

GAFS_Mode 0x212C CS 2 00EC CSBE

RS_PREEMPTION_HINT_UDW 0x24C4 CS 2 00F2 CSBE

RS_PREEMPTION_HINT 0x24C0 CS 2 00F4 CSBE

VF PREMPTION VERTEX HINT 0x83B0 VF 2 00F8 CSBE

VF PREEMPTION INSTANCE HINT 0x83B4 VF 2 00FA CSBE

NOOP CS 3 00FC CSBE

MI_BATCH_BUFFER_END CS 1 00FF CSBE

Doc Ref # IHD-OS-LKF-Vol 9-4.21 37

POSH Power Context

The table below captures the data from CS power context save/restored by PM. Address offsets in this

table are relative to the starting location of CS in the overall power context image managed by PM.

POCS Power Context Image

Description Offset Unit # of DW Address Offset (PWR) CSFE/CSBE

NOOP POCS 1 0 CSFE

Load_Register_Immediate header 0x1100_1045 POCS 1 001 CSFE

GFX_MODE 0x1829C POCS 2 0002 CSFE

GHWSP 0x18080 POCS 2 0004 CSFE

RC_PSMI_CONTROL 0x18050 POCS 2 0006 CSFE

RC_PWRCTX_MAXCNT 0x18054 POCS 2 0008 CSFE

CTX_WA_PTR 0x18058 POCS 2 000A CSFE

NOPID 0x18094 POCS 2 000C CSFE

CMD_CCTL_0 0x180C4 POCS 2 000E CSFE

PREEMPT_DLY 0x18214 POCS 2 0010 CSFE

CTXT_PREMP_DBG 0x18248 POCS 2 0012 CSFE

WAIT_FOR_RC6_EXIT 0x180CC POCS 2 0014 CSFE

RCS_CTXID_PREEMPTION_HINT 0x184CC POCS 2 0016 CSFE

CS_PREEMPTION_HINT_UDW 0x184C8 POCS 2 0018 CSFE

CS_PREEMPTION_HINT 0x184BC POCS 2 001A CSFE

MI_PREDICATE_RESULT_2 0x183BC POCS 2 001C CSFE

SEMA_WAIT_POLL 0x1824C POCS 2 001E CSFE

IDLEDELAY 0x1823C POCS 2 0020 CSFE

RCS_FORCE_TO_NONPRIV 0x184D0 POCS 24 0022 CSFE

EXECLIST_STATUS_REGISTER 0x18234 POCS 2 003A CSFE

CXT_OFFSET 0x181AC POCS 2 003E CSFE

STOP_PARSER_CONTROL 0x18424 POCS 2 0040 CSFE

STOP_PARSER_HINT_ADDR 0x18428 POCS 4 0042 CSFE

Reserved 0x185A4 POCS 2 0046 CSFE

NOOP POCS 8 0048 CSFE

NOOP POCS 1 0050 CSBE

Load_Register_Immediate header 0x1100_1011 POCS 1 0051 CSBE

FF_THREAD_MODE 0x180A0 POCS 2 0056 CSBE

VF PREMPTION VERTEX HINT 0x16EB0 VFR 2 0060 CSBE

VF PREEMPTION INSTANCE HINT 0x16EB4 VFR 2 0062 CSBE

NOOP POCS 10 0064 CSBE

38 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Description Offset Unit # of DW Address Offset (PWR) CSFE/CSBE

NOOP POCS 1 006E

MI_BATCH_BUFFER_END POCS 1 006F CSBE

Engine Register and State Context

This section describes programming requirements for the Register State Context.

Programming Note

Context: Register State Context

• All the MMIO registers part of the “Engine Register and State Context Image” are context specific and gets

context save/restored upon a context switch. MMIO register values belonging to a context can be exercised

through HOST/IA MMIO interface only when the context is active in HW. Exercising context specific MMIO

registers through HOST/IA MMIO is completely asynchronous to the context execution in HW and can’t

guarantee a desired sampling point during execution. In execlist mode of scheduling there is no active

context when HW is Idle.

• All the write access to MMIO registers listed in the “Engine Register and State Context image” subsections

below must be done through MI commands (MI_LOAD_REGISTER_IMM, MI_LOAD_REG_MEM,

MI_LOAD_REGISTER_REG) in the command sequence.

• MMIO reads or writes to any of the registers listed in the “Engine Register and State Context image”

subsections through HOST/IA MMIO interface must follow the steps below:

• SW should set the Force Wakeup bit to prevent GT from entering C6.

• Write 0x2050[31:0] = 0x00010001 (disable sequence).

• Disable IDLE messaging in CS (Write 0x2050[31:0] = 0x00010001).

• Poll/Wait for register bits of 0x22A4[6:0] turn to 0x30 value.

• Read/Write to desired MMIO registers.

• Enable IDLE messaging in CS (Write 0x2050[31:0] = 0x00010000).

• Force Wakeup bit should be reset to enable C6 entry.

EXECLIST CONTEXT(Ring)

EXECLIST CONTEXT (PPGTT Base)

ENGINE CONTEXT(CSFE)

ENGINE CONTEXT(CSBE)

ENGINE CONTEXT(SOL)

ENGINE CONTEXT(VF)

ENGINE CONTEXT(GAMWC)

ENGINE CONTEXT(GAMT)

ENGINE CONTEXT(LNCF)

ENGINE CONTEXT(SVG)

ENGINE CONTEXT(SVL)

Doc Ref # IHD-OS-LKF-Vol 9-4.21 39

ENGINE CONTEXT(TDL)

ENGINE CONTEXT(WM)

ENGINE CONTEXT(SC)

ENGINE CONTEXT(DM)

ENGINE CONTEXT(VFE)

ENGINE CONTEXT(CS - Footer)

POSH Context Image

EXECLIST CONTEXT(Ring)

EXECLIST CONTEXT (PPGTT Base)

ENGINE CONTEXT(CSFE)

ENGINE CONTEXT(CSBE)

ENGINE CONTEXT(VFR)

ENGINE CONTEXT(OVR)

ENGINE CONTEXT(SVGR)

ENGINE CONTEXT(CS - Footer)

Register State Context

Color Coding

EXECLIST CONTEXT

EXECLIST CONTEXT(PPGTT Base)

ENGINE CONTEXT

EXTENDED ENGINE CONTEXT

Description MMIO Offset/Command Unit # of DW

NOOP CSEL 1

MI_LOAD_REGISTER_IMM 0x1100_101D CSEL 1

Ring Buffer Head 0x2034 CSEL 2

Ring Tail Pointer Register 0x2030 CSEL 2

RING_BUFFER_START 0x2038 CSEL 2

RING_BUFFER_CONTROL 0x203C CSEL 2

Batch Buffer Current Head Register (UDW) 0x2168 CSEL 2

Batch Buffer Current Head Register 0x2140 CSEL 2

Batch Buffer State Register 0x2110 CSEL 2

SECOND_BB_ADDR_UDW 0x211C CSEL 2

SECOND_BB_ADDR 0x2114 CSEL 2

SECOND_BB_STATE 0x2118 CSEL 2

40 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Description MMIO Offset/Command Unit # of DW

BB_PER_CTX_PTR 0x21C0 CSEL 2

RCS_INDIRECT_CTX 0x21C4 CSEL 2

RCS_INDIRECT_CTX_OFFSET 0x21C8 CSEL 2

CCID 0x2180 CSEL 2

NOOP CSEL 1

MI_LOAD_REGISTER_IMM 0x1100_1011 CSEL 1

CTX_TIMESTAMP 0x23A8 CSEL 2

PDP3_UDW 0x228C CSEL 2

PDP3_LDW 0x2288 CSEL 2

PDP2_UDW 0x2284 CSEL 2

PDP2_LDW 0x2280 CSEL 2

PDP1_UDW 0x227C CSEL 2

PDP1_LDW 0x2278 CSEL 2

PDP0_UDW 0x2274 CSEL 2

PDP0_LDW 0x2270 CSEL 2

MI_LOAD_REGISTER_IMM 0x1100_1001 CSEL 1

POSH_LRCA 0x21B0 CSEL 2

NOOP CSEL 9

NOOP CSEL 1

MI_LOAD_REGISTER_IMM 0x1100_0001 CSEL 1

R_PWR_CLK_STATE 0x20C8 CSEL 2

GPGPU_CSR_BASE_ADDRESS CSEL 3

NOOP CSEL 9

NOOP CSFE 1

MI_LOAD_REGISTER_IMM 0x1100_1057 CSFE 1

EXCC 0x2028 CSFE 2

MI_MODE 0x209C CSFE 2

INSTPM 0x20C0 CSFE 2

PR_CTR_CTL 0x2178 CSFE 2

PR_CTR_THRSH 0x217C CSFE 2

TIMESTAMP Register (LSB) 0x2358 CSFE 2

BB_START_ADDR_UDW 0x2170 CSFE 2

BB_START_ADDR 0x2150 CSFE 2

BB_ADD_DIFF 0x2154 CSFE 2

BB_OFFSET 0x2158 CSFE 2

MI_PREDICATE_RESULT_1 0x241C CSFE 2

CS_GPR (1-16) 0x2600 CSFE 64

Doc Ref # IHD-OS-LKF-Vol 9-4.21 41

Description MMIO Offset/Command Unit # of DW

IPEHR 0x2068 CSFE 2

NOOP CSFE 6

NOOP CSBE 1

MI_LOAD_REGISTER_IMM 0x1100_10AD CSBE 1

CS_CONTEXT_STATUS1 0x2184 CSBE 2

IA_VERTICES_COUNT 0x2310 CSBE 4

IA_PRIMITIVES_COUNT 0x2318 CSBE 4

VS_INVOCATION_COUNT 0x2320 CSBE 4

HS_INVOCATION_COUNT 0x2300 CSBE 4

DS_INVOCATION_COUNT 0x2308 CSBE 4

GS_INVOCATION_COUNT 0x2328 CSBE 4

GS_PRIMITIVES_COUNT 0x2330 CSBE 4

CL_INVOCATION_COUNT 0x2338 CSBE 4

CL_PRIMITIVES_COUNT 0x2340 CSBE 4

PS_INVOCATION_COUNT_0 0x22C8 CSBE 4

PS_DEPTH_COUNT _0 0x22D8 CSBE 4

GPUGPU_DISPATCHDIMX 0x2500 CSBE 2

GPUGPU_DISPATCHDIMY 0x2504 CSBE 2

GPUGPU_DISPATCHDIMZ 0x2508 CSBE 2

MI_PREDICATE_SRC0 0x2400 CSBE 2

MI_PREDICATE_SRC0 0x2404 CSBE 2

MI_PREDICATE_SRC1 0x2408 CSBE 2

MI_PREDICATE_SRC1 0x240C CSBE 2

MI_PREDICATE_DATA 0x2410 CSBE 2

MI_PREDICATE_DATA 0x2414 CSBE 2

MI_PRED_RESULT 0x2418 CSBE 2

3DPRIM_END_OFFSET 0x2420 CSBE 2

3DPRIM_START_VERTEX 0x2430 CSBE 2

3DPRIM_VERTEX_COUNT 0x2434 CSBE 2

3DPRIM_INSTANCE_COUNT 0x2438 CSBE 2

3DPRIM_START_INSTANCE 0x243C CSBE 2

3DPRIM_BASE_VERTEX 0x2440 CSBE 2

Load Indirect Extended Parameter 0 0x2690 CSBE 2

Load Indirect Extended Parameter 1 0x2694 CSBE 2

Load Indirect Extended Parameter 2 0x2698 CSBE 2

GPGPU_THREADS_DISPATCHED 0x2290 CSBE 4

PS_INVOCATION_COUNT_1 0x22F0 CSBE 4

42 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Description MMIO Offset/Command Unit # of DW

PS_DEPTH_COUNT _1 0x22F8 CSBE 4

DUMMY_REG 0x215C CSBE 2

DUMMY_REG 0x2480 CSBE 2

DUMMY_REG 0x2484 CSBE 2

DUMMY_REG 0x2490 CSBE 2

DUMMY_REG 0x2494 CSBE 2

Reserved 0x2194 CSBE 4

OA_CTX_CONTROL 0x2360 CSBE 2

OACTXID 0x2364 CSBE 2

PS_INVOCATION_COUNT_2 0x2448 CSBE 4

PS_DEPTH_COUNT_2 0x2450 CSBE 4

DUMMY_REG 0x2174 CSBE 2

CPS_INVOCATION_COUNT 0x2478 CSBE 4

PS_INVOCATION_COUNT_3 0x2458 CSBE 4

PS_DEPTH_COUNT_3 0x2460 CSBE 4

PS_INVOCATION_COUNT_4 0x2468 CSBE 4

PS_DEPTH_COUNT_4 0x2470 CSBE 4

PS_INVOCATION_COUNT_5 0x24A0 CSBE 4

PS_DEPTH_COUNT_5 0x24A8 CSBE 4

PS_INVOCATION_COUNT_6 0x25D0 CSBE 4

PS_DEPTH_COUNT_6 0x25B0 CSBE 4

PS_INVOCATION_COUNT_7 0x25D8 CSBE 4

PS_DEPTH_COUNT_7 0x25B8 CSBE 4

NOOP CSBE

6

MI_TOPOLOGY_FILTER CSBE 1

NOOP CSBE 2

PIPELINE_SELECT CSBE 1

STATE_BASE_ADDRESS CSBE 22

3DSTATE_PUSH_CONSTANT_ALLOC_VS CSBE 2

3DSTATE_PUSH_CONSTANT_ALLOC_HS CSBE 2

3DSTATE_PUSH_CONSTANT_ALLOC_DS CSBE 2

3DSTATE_PUSH_CONSTANT_ALLOC_GS CSBE 2

3DSTATE_PUSH_CONSTANT_ALLOC_PS CSBE 2

3DSTATE_BINDING_TABLE_POOL_ALLOC CSBE 4

DUMMY_CMD 0x791A0002 CSBE 4

DUMMY_CMD 0x791B0002 CSBE 4

Doc Ref # IHD-OS-LKF-Vol 9-4.21 43

Description MMIO Offset/Command Unit # of DW

DUMMY_CMD 0x30000001 CSBE 1

3DSTATE_PTBR_TILE_PASS_INFO CSBE 4

NOOP CSBE 5

NOOP SOL 1

MI_LOAD_REGISTER_IMM 0x1100_1027 SOL 1

SO_NUM_PRIMS_WRITTEN0 0x5200 SOL 4

SO_NUM_PRIMS_WRITTEN1 0x5208 SOL 4

SO_NUM_PRIMS_WRITTEN2 0x5210 SOL 4

SO_NUM_PRIMS_WRITTEN3 0x5218 SOL 4

SO_PRIM_STORAGE_NEEDED0 0x5240 SOL 4

SO_PRIM_STORAGE_NEEDED1 0x5248 SOL 4

SO_PRIM_STORAGE_NEEDED2 0x5250 SOL 4

SO_PRIM_STORAGE_NEEDED3 0x5258 SOL 4

SO_WRITE_OFFSET0 0x5280 SOL 2

SO_WRITE_OFFSET1 0x5284 SOL 2

SO_WRITE_OFFSET2 0x5288 SOL 2

SO_WRITE_OFFSET3 0x528C SOL 2

3DSTATE_SO_BUFFER SOL 32

NOOP SOL 3

3DSTATE_SO_DECL_LIST SOL 259

NOOP SOL 0

3DSTATE_INDEX_BUFFER VF 5

3DSTATE_VERTEX_BUFFERS VF 133

3DSTATE_VERTEX_ELEMENTS VF 69

3DSTATE_VF_STATISTICS VF 1

3DSTATE_VF VF 2

3DSTATE_SGVS VF 2

3DSTATE_VF_INSTANCING VF 69

3DSTATE_VF_TOPOLOGY VF 2

NOOP VF 5

MI_LOAD_REGISTER_IMM 0x1100_10C7 VF 1

INSTANCE CNT 08300 - 08384h VF 68

INSTANCE INDX 08400 - 08484h VF 68

COMMITTED VERTEX NUMBER 08390h VF 2

COMMITTED INSTANCE ID 08394h VF 2

COMMITTED PRIMITIVE ID 08398h VF 2

STATUS 0839Ch VF 2

44 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Description MMIO Offset/Command Unit # of DW

COMMON VERTEX 083A0h VF 2

VF_GUARDBAND 083A4h VF 2

INDEX_OPCODE_DATA00 08490h VF 2

INDEX_OPCODE_DATA01 08494h VF 2

INDEX_OPCODE_DATA10 08498h VF 2

INDEX_OPCODE_DATA11 0849Ch VF 2

TOKPROC_CULL_COUNT0 084A0h VF 2

TOKPROC_CULL_COUNT1 084A4h VF 2

TOKPROC_PID_COUNT0 084A8h VF 2

TOKPROC_PID_COUNT1 084ACh VF 2

TOKPROC_CULL_VERTEX 084B0h VF 2

TOKPROC_PID_OBJECT 084B4h VF 2

TOKPROC_DUMMY_OBJECT 084B8h VF 2

TOKPROC_CL_PTR 084BCh VF 2

TOKPROC_CL_MISC 084C0h VF 2

TOKPROC_STG1_DATA 084C4h VF 2

TOKPROC_STG1_VERTEX_COUNT 084C8h VF 2

TOKPROC_STG1_OBJECT_COUNT 084CCh VF 2

TOKPROC_STG1_VALID 084D0h VF 2

TOKPROC_STG0_INSTANCE_COUNT 084D4h VF 2

TOKPROC_STG0_VERTEX_COUNT 084D8h VF 2

TOKPROC_STG0_COUNT 084DCh VF 2

TOKPROC_STG0_VALID 084E0h VF 2

TOKIN_DATA0 084F0h VF 2

TOKIN_DATA1 084F4h VF 2

TOKIN_DATA2 084F8h VF 2

TOKIN_DATA3 084FCh VF 2

NOOP VF 7

3DSTATE_VF_COMPONENT_PACKING VF 5

3DSTATE_VF_SGVS_2 VF 3

3DSTATE_PTBR_TILE_SELECT VF 2

NOOP VF 6

NOOP GAMWC 1

MI_LOAD_REGISTER_IMM 0x1100_107F GAMWC 1

GFX_MOCS_0 C800 GAMWC 2

GFX_MOCS_1 C804 GAMWC 2

Doc Ref # IHD-OS-LKF-Vol 9-4.21 45

Description MMIO Offset/Command Unit # of DW

GFX_MOCS_2 C808 GAMWC 2

GFX_MOCS_3 C80C GAMWC 2

GFX_MOCS_4 C810 GAMWC 2

GFX_MOCS_5 C814 GAMWC 2

GFX_MOCS_6 C818 GAMWC 2

GFX_MOCS_7 C81C GAMWC 2

GFX_MOCS_8 C820 GAMWC 2

GFX_MOCS_9 C824 GAMWC 2

GFX_MOCS_10 C828 GAMWC 2

GFX_MOCS_11 C82C GAMWC 2

GFX_MOCS_12 C830 GAMWC 2

GFX_MOCS_13 C834 GAMWC 2

GFX_MOCS_14 C838 GAMWC 2

GFX_MOCS_15 C83C GAMWC 2

GFX_MOCS_16 C840 GAMWC 2

GFX_MOCS_17 C844 GAMWC 2

GFX_MOCS_18 C848 GAMWC 2

GFX_MOCS_19 C84C GAMWC 2

GFX_MOCS_20 C850 GAMWC 2

GFX_MOCS_21 C854 GAMWC 2

GFX_MOCS_22 C858 GAMWC 2

GFX_MOCS_23 C85C GAMWC 2

GFX_MOCS_24 C860 GAMWC 2

GFX_MOCS_25 C864 GAMWC 2

GFX_MOCS_26 C868 GAMWC 2

GFX_MOCS_27 C86C GAMWC 2

GFX_MOCS_28 C870 GAMWC 2

GFX_MOCS_29 C874 GAMWC 2

GFX_MOCS_30 C878 GAMWC 2

GFX_MOCS_31 C87C GAMWC 2

GFX_MOCS_32 C880 GAMWC 2

GFX_MOCS_33 C884 GAMWC 2

GFX_MOCS_34 C888 GAMWC 2

GFX_MOCS_35 C88C GAMWC 2

GFX_MOCS_36 C890 GAMWC 2

GFX_MOCS_37 C894 GAMWC 2

GFX_MOCS_38 C898 GAMWC 2

46 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Description MMIO Offset/Command Unit # of DW

GFX_MOCS_39 C89C GAMWC 2

GFX_MOCS_40 C8A0 GAMWC 2

GFX_MOCS_41 C8A4 GAMWC 2

GFX_MOCS_42 C8A8 GAMWC 2

GFX_MOCS_43 C8AC GAMWC 2

GFX_MOCS_44 C8B0 GAMWC 2

GFX_MOCS_45 C8B4 GAMWC 2

GFX_MOCS_46 C8B8 GAMWC 2

GFX_MOCS_47 C8BC GAMWC 2

GFX_MOCS_48 C8C0 GAMWC 2

GFX_MOCS_49 C8C4 GAMWC 2

GFX_MOCS_50 C8C8 GAMWC 2

GFX_MOCS_51 C8CC GAMWC 2

GFX_MOCS_52 C8D0 GAMWC 2

GFX_MOCS_53 C8D4 GAMWC 2

GFX_MOCS_54 C8D8 GAMWC 2

GFX_MOCS_55 C8DC GAMWC 2

GFX_MOCS_56 C8E0 GAMWC 2

GFX_MOCS_57 C8E4 GAMWC 2

GFX_MOCS_58 C8E8 GAMWC 2

GFX_MOCS_59 C8EC GAMWC 2

GFX_MOCS_60 C8F0 GAMWC 2

GFX_MOCS_61 C8F4 GAMWC 2

GFX_MOCS_62 C8F8 GAMWC 2

GFX_MOCS_63 C8FC GAMWC 2

NOOP GAMWC 14

NOOP GAMT 1

MI_LOAD_REGISTER_IMM 0x1100_100B GAMT 1

TR_VATT_L3 4DE0 GAMT 2

Tiled Resources VA Translation Table L3 ptr - DW1 4DE4 GAMT 2

TRNULLDETCT 4DE8 GAMT 2

TiledResources Invalid Tile Detection Register 4DEC GAMT 2

TiledResources Invalid Tile Detection Register 4DF0 GAMT 2

NOOP GAMT 2

NOOP LNCF 1

MI_LOAD_REGISTER_IMM 0x1100_1001 LNCF 1

L3CNTLREG 7034 LNCF 2

Doc Ref # IHD-OS-LKF-Vol 9-4.21 47

Description MMIO Offset/Command Unit # of DW

NOOP LNCF 1

MI_LOAD_REGISTER_IMM 0x1100_1041 LNCF 1

LNCFCMOCS0 B020 LNCF 2

LNCFCMOCS1 B024 LNCF 2

LNCFCMOCS2 B028 LNCF 2

LNCFCMOCS3 B02C LNCF 2

LNCFCMOCS4 B030 LNCF 2

LNCFCMOCS5 B034 LNCF 2

LNCFCMOCS6 B038 LNCF 2

LNCFCMOCS7 B03C LNCF 2

LNCFCMOCS8 B040 LNCF 2

LNCFCMOCS9 B044 LNCF 2

LNCFCMOCS10 B048 LNCF 2

LNCFCMOCS11 B04C LNCF 2

LNCFCMOCS12 B050 LNCF 2

LNCFCMOCS13 B054 LNCF 2

LNCFCMOCS14 B058 LNCF 2

LNCFCMOCS15 B05C LNCF 2

LNCFCMOCS16 B060 LNCF 2

LNCFCMOCS17 B064 LNCF 2

LNCFCMOCS18 B068 LNCF 2

LNCFCMOCS19 B06C LNCF 2

LNCFCMOCS20 B070 LNCF 2

LNCFCMOCS21 B074 LNCF 2

LNCFCMOCS22 B078 LNCF 2

LNCFCMOCS23 B07C LNCF 2

LNCFCMOCS24 B080 LNCF 2

LNCFCMOCS25 B084 LNCF 2

LNCFCMOCS26 B088 LNCF 2

LNCFCMOCS27 B08C LNCF 2

LNCFCMOCS28 B090 LNCF 2

LNCFCMOCS29 B094 LNCF 2

LNCFCMOCS30 B098 LNCF 2

LNCFCMOCS31 B09C LNCF 2

TCCNTLREG B0A4 LNCF 2

NOOP LNCF 8

3DSTATE_CONSTANT_VS_Commited SVG 11

48 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Description MMIO Offset/Command Unit # of DW

3DSTATE_CONSTANT_HS_Commited SVG 11

3DSTATE_CONSTANT_DS_Commited SVG 11

3DSTATE_CONSTANT_GS_Commited SVG 11

3DSTATE_VS SVG 9

3DSTATE_BINDING_TABLE_POINTERS_VS SVG 2

3DSTATE_SAMPLER_STATE_POINTERS_VS SVG 2

3DSTATE_URB_VS SVG 2

3DSTATE_STREAMOUT SVG 5

3DSTATE_CLIP SVG 4

3DSTATE_SF SVG 4

3DSTATE_SCISSOR_STATE_POINTERS SVG 2

3DSTATE_VIEWPORT_STATE_POINTERS_CL_SF SVG 2

3DSTATE_RASTER SVG 5

3DSTATE_WM_HZ_OP SVG 5

3DSTATE_MULTISAMPLE SVG 2

3DSTATE_HS SVG 9

3DSTATE_BINDING_TABLE_POINTERS_HS SVG 2

3DSTATE_SAMPLER_STATE_POINTERS_HS SVG 2

3DSTATE_URB_HS SVG 2

3DSTATE_TE SVG 4

3DSTATE_DS SVG 11

3DSTATE_BINDING_TABLE_POINTERS_DS SVG 2

3DSTATE_SAMPLER_STATE_POINTERS_DS SVG 2

3DSTATE_URB_DS SVG 2

3DSTATE_GS SVG 10

3DSTATE_BINDING_TABLE_POINTERS_GS SVG 2

3DSTATE_SAMPLER_STATE_POINTERS_GS SVG 2

3DSTATE_URB_GS SVG 2

3DSTATE_CONSTANT_VS_NonComitted SVG 11

3DSTATE_CONSTANT_HS_NonComitted SVG 11

3DSTATE_CONSTANT_DS_NonComitted SVG 11

3DSTATE_CONSTANT_GS_NonComitted SVG 11

3DSTATE_DRAW_RECTANGULAR SVG 4

MI_LOAD_REGISTER_IMM 0x1100_1001 SVG 1

FF_PERF_REG 0x6b1c SVG 2

NOOP SVG 1

3DSTATE_CONSTANT_PS_comitted SVL 11

Doc Ref # IHD-OS-LKF-Vol 9-4.21 49

Description MMIO Offset/Command Unit # of DW

NOOP SVL 1

3DSTATE_WM SVL 2

3DSTATE_VIEWPORT_STATE_POINTER_CC SVL 2

3DSTATE_CC_STATE_POINTERS SVL 2

3DSATE_WM_SAMPLEMASK SVL 2

3DSTATE_WM_DEPTH_STENCIL SVL 4

3DSTATE_WM_CHROMAKEY SVL 2

3DSTATE_DEPTH_BUFF SVL 8

3DSTATE_HIZ_DEPTH_BUFF SVL 5

3DSTATE_STC_DEPTH_BUFF SVL 5

3DSTATE_CLEAR_PARAMS SVL 3

3DSTATE_CPS SVL 9

3DSTATE_SBE SVL 6

3DSTATE_SBE_SWIZ SVL 11

3DSTATE_PS SVL 12

3DSTATE_BINDING_TABLE_POINTERS_PS SVL 2

STATE_SAMPLER_STATE_POINTERS_PS SVL 2

3DSTATE_BLEND_STATE_POINTERS SVL 2

3DSTATE_PS_EXTRA SVL 2

3DSTATE_PS_BLEND SVL 2

NOOP SVL 1

3DSTATE_CONSTANT_PS_NonComitted SVL 11

3DSTATE_3D_MODE SVL 2

3DSTATE_SAMPLE_PATTERN SVL 9

3DSTATE_SUBSLICE_HASH_TABLE SVL 6

NOOP SVL 33

MI_LOAD_REGISTER_IMM 0x1100_101B SVL 1

Cache_Mode_0 0x7000 SVL 2

Cache_Mode_1 0x7004 SVL 2

GT_MODE 0x7008 SVL 2

FBC_RT_BASE_ADDR_REGISTER 0x7020 SVL 2

FBC_RT_BASE_ADDR_REGISTER_UPPER 0x7024 SVL 2

OA_CULL 0x7030 SVL 2

Z_DISCARD_EN 0x7040 SVL 2

NOOP SVL 6

NOOP TDL 1

MI_LOAD_REGISTER_IMM 0x1100_104F TDL 1

50 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Description MMIO Offset/Command Unit # of DW

TD_CTL E400 TDL 2

TD_CTL2 E404 TDL 2

TD_VF_VS_EMSK E408 TDL 2

TD_GS_EMSK E40C TDL 2

TD_WIZ_EMSK E410 TDL 2

TD_TS_EMSK E428 TDL 2

TD_HS_EMSK E4B0 TDL 2

TD_DS_EMSK E4B4 TDL 2

EU_PERF_CNT_CTL0 E458 TDL 2

EU_PERF_CNT_CTL1 E558 TDL 2

EU_PERF_CNT_CTL2 E658 TDL 2

EU_PERF_CNT_CTL3 E758 TDL 2

EU_PERF_CNT_CTL4 E45C TDL 2

EU_PERF_CNT_CTL5 E55C TDL 2

EU_PERF_CNT_CTL6 E65C TDL 2

CULLBIT3 E488 TDL 2

CACHE_MODE_SS E420 TDL 2

VSR_PUSHCONSTANT_BASE E518 TDL 2

VSR_EMASK E51C TDL 2

SLM_BANKHASH E660 TDL 2

NOOP TDL 10

STATE_SIP TDL 3

NOOP TDL 1

NOOP WM 1

MI_LOAD_REGISTER_IMM 0x1100_1007 WM 1

WMHWCLRVAL 0x5524 WM 2

3DSTATE_POLY_STIPPLE_PATTERN WM 33

3DSTATE_AA_LINE_PARAMS WM 3

3DSTATE_POLY_STIPPLE_OFFSET WM 2

3DSTATE_LINE_STIPPLE WM 3

3DSTATE_SLICE_HASH_STATE_POINTERS WM 2

NOOP WM 11

3DSTATE_MONOFILTER_SIZE SC 2

3DSTATE_CHROMA_KEY SC 16

NOOP SC 1

MI_LOAD_REGISTER_IMM 0x1100_100D SC 1

SAMPLER_MODE 0xE18C SC 2

Doc Ref # IHD-OS-LKF-Vol 9-4.21 51

Description MMIO Offset/Command Unit # of DW

NOOP SC 14

NOOP DM 1

3DSTATE_SAMPLER_PALETTE_LOAD0 DM 257

NOOP DM 1

3DSTATE_SAMPLER_PALETTE_LOAD1 DM 257

NOOP DM 1

MI_LOAD_REGISTER_IMM 0x1100_0001 DM 1

DM_DUMMY_REG 0xE000 DM 2

NOOP DM 8

MI_BATCH_BUFFER_END CSEND 1

NOOP CSEND 127

POSH Register State Context

Color Coding

EXECLIST CONTEXT

EXECLIST CONTEXT(PPGTT Base)

ENGINE CONTEXT

EXTENDED ENGINE CONTEXT

URB_ATOMIC CONTEXT

Description MMIO Offset/Command Unit # of DW

NOOP POCSEL 1

MI_LOAD_REGISTER_IMM 0x1100_101B POCSEL 1

 0x18244 POCSEL 2

Ring Buffer Head 0x18034 POCSEL 2

Ring Tail Pointer Register 0x18030 POCSEL 2

RING_BUFFER_START 0x18038 POCSEL 2

RING_BUFFER_CONTROL 0x1803C POCSEL 2

Batch Buffer Current Head Register (UDW) 0x18168 POCSEL 2

Batch Buffer Current Head Register 0x18140 POCSEL 2

Batch Buffer State Register 0x18110 POCSEL 2

SECOND_BB_ADDR_UDW 0x1811C POCSEL 2

SECOND_BB_ADDR 0x18114 POCSEL 2

SECOND_BB_STATE 0x18118 POCSEL 2

BB_PER_CTX_PTR 0x181C0 POCSEL 2

RCS_INDIRECT_CTX 0x181C4 POCSEL 2

52 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Description MMIO Offset/Command Unit # of DW

RCS_INDIRECT_CTX_OFFSET 0x181C8 POCSEL 2

NOOP POCSEL 2

NOOP POCSEL 48

NOOP POCSFE 1

EXCC 0x18028 POCSFE 2

MI_MODE 0x1809C POCSFE 2

INSTPM 0x180C0 POCSFE 2

TIMESTAMP Register (LSB) 0x18358 POCSFE 2

BB_START_ADDR_UDW 0x18170 POCSFE 2

BB_START_ADDR 0x18150 POCSFE 2

BB_ADD_DIFF 0x18154 POCSFE 2

BB_OFFSET 0x18158 POCSFE 2

MI_PREDICATE_RESULT_1 0x1841C POCSFE 2

CS_GPR (1-16) 0x18600 POCSFE 64

IPEHR 0x18068 POCSFE 2

NOOP POCSFE 10

NOOP POCSBE 1

MI_LOAD_REGISTER_IMM 0x1100_1045 POCSBE 1

CS_CONTEXT_STATUS1 0x18184 POCSBE 2

IA_VERTICES_COUNT 0x18310 POCSBE 4

IA_PRIMITIVES_COUNT 0x18318 POCSBE 4

VS_INVOCATION_COUNT 0x18320 POCSBE 4

CL_INVOCATION_COUNT 0x18338 POCSBE 4

CL_PRIMITIVES_COUNT 0x18340 POCSBE 4

MI_PREDICATE_SRC0 0x18400 POCSBE 2

MI_PREDICATE_SRC0 0x18404 POCSBE 2

MI_PREDICATE_SRC1 0x18408 POCSBE 2

MI_PREDICATE_SRC1 0x1840C POCSBE 2

MI_PREDICATE_DATA 0x18410 POCSBE 2

MI_PREDICATE_DATA 0x18414 POCSBE 2

MI_PRED_RESULT 0x18418 POCSBE 2

3DPRIM_END_OFFSET 0x18420 POCSBE 2

3DPRIM_START_VERTEX 0x18430 POCSBE 2

3DPRIM_VERTEX_COUNT 0x18434 POCSBE 2

3DPRIM_INSTANCE_COUNT 0x18438 POCSBE 2

3DPRIM_START_INSTANCE 0x1843C POCSBE 2

3DPRIM_BASE_VERTEX 0x18440 POCSBE 2

Doc Ref # IHD-OS-LKF-Vol 9-4.21 53

Description MMIO Offset/Command Unit # of DW

Load Indirect Extended Parameter 0 0x18690 POCSBE 2

Load Indirect Extended Parameter 1 0x18694 POCSBE 2

Load Indirect Extended Parameter 2 0x18698 POCSBE 2

MI_TAGADDR 0x18194 POCSBE 4

Reserved 0x1859C POCSBE 2

Reserved 0x185A0 POCSBE 2

PTBR_NUM_PAGES_RECORDED_REGISTER 0x18594 POCSBE 2

PTBR_PAGE_POOL_SIZE_REGISTER 0x18590 POCSBE 2

NOOP POCSBE 8

MI_TOPOLOGY_FILTER POCSBE 1

NOOP POCSBE 2

PIPELINE_SELECT POCSBE 1

STATE_BASE_ADDRESS POCSBE 22

3DSTATE_PUSH_CONSTANT_ALLOC_VS POCSBE 2

3DSTATE_BINDING_TABLE_POOL_ALLOC POCSBE 4

DUMMY_CMD 0x791A0002 POCSBE 4

3DSTATE_PTBR_POOL_BASE_ADDRESS POCSBE 3

3DSTATE_PTBR_FREE_LIST_BASE_ADDRESS POCSBE 3

3DSTATE_PTBR_RENDER_LIST_BASE_ADDRESS POCSBE 3

3DSTATE_PTBR_TILE_PASS_INFO POCSBE 4

NOOP POCSBE 15

3DSTATE_INDEX_BUFFER VFR 5

3DSTATE_VERTEX_BUFFERS VFR 133

3DSTATE_VERTEX_ELEMENTS VFR 69

3DSTATE_VF_STATISTICS VFR 1

3DSTATE_VF VFR 2

3DSTATE_SGVS VFR 2

3DSTATE_VF_INSTANCING VFR 69

3DSTATE_VF_TOPOLOGY VFR 2

NOOP VFR 5

 0x1100_1095 VFR 1

INSTANCE CNT 16E00 - 16E84h VFR 68

54 Doc Ref # IHD-OS-LKF-Vol 9-4.21

POSH Register State Context

Color Coding

EXECLIST CONTEXT

EXECLIST CONTEXT(PPGTT Base)

ENGINE CONTEXT

EXTENDED ENGINE CONTEXT

URB_ATOMIC CONTEXT

Description MMIO Offset/Command Unit # of DW

NOOP POCSEL 1

MI_LOAD_REGISTER_IMM 0x1108_1019 CSEL 1

Ring Buffer Head 0x18034 POCSEL 2

Ring Tail Pointer Register 0x18030 POCSEL 2

RING_BUFFER_START 0x18038 POCSEL 2

RING_BUFFER_CONTROL 0x1803C POCSEL 2

Batch Buffer Current Head Register (UDW) 0x18168 POCSEL 2

Batch Buffer Current Head Register 0x18140 POCSEL 2

Batch Buffer State Register 0x18110 POCSEL 2

BB_PER_CTX_PTR 0x181C0 POCSEL 2

RCS_INDIRECT_CTX 0x181C4 POCSEL 2

RCS_INDIRECT_CTX_OFFSET 0x181C8 POCSEL 2

CCID 0x18180 POCSEL 2

SEMAPHORE_TOKEN 0x182B4 POCSEL 2

NOOP POCSEL 4

NOOP POCSEL 54

NOOP POCSFE 1

BB_STACK_WRITE_PORT 0x18588 POCSFE 12

EXCC 0x18028 POCSFE 2

MI_MODE 0x1809C POCSFE 2

INSTPM 0x180C0 POCSFE 2

TIMESTAMP Register (LSB) 0x18358 POCSFE 2

BB_START_ADDR_UDW 0x18170 POCSFE 2

BB_START_ADDR 0x18150 POCSFE 2

BB_ADD_DIFF 0x18154 POCSFE 2

BB_OFFSET 0x18158 POCSFE 2

MI_PREDICATE_RESULT_1 0x1841C POCSFE 2

Doc Ref # IHD-OS-LKF-Vol 9-4.21 55

Description MMIO Offset/Command Unit # of DW

CS_GPR (1-16) 0x18600 POCSFE 64

IPEHR 0x18068 POCSFE 2

CS_MI_ADDRESS_OFFSET 0x183B4 POCSFE 2

MI_SET_PREDICATE_RESULT 0x183B8 POCSFE 2

WPARID 0x1821C POCSFE 2

PREDICATION_MASK 0x181FC POCSFE 2

NOOP POCSFE 6

NOOP POCSBE 1

CS_CONTEXT_STATUS1 0x18184 POCSBE 2

IA_VERTICES_COUNT 0x18310 POCSBE 4

IA_PRIMITIVES_COUNT 0x18318 POCSBE 4

VS_INVOCATION_COUNT 0x18320 POCSBE 4

CL_INVOCATION_COUNT 0x18338 POCSBE 4

CL_PRIMITIVES_COUNT 0x18340 POCSBE 4

MI_PREDICATE_SRC0 0x18400 POCSBE 2

MI_PREDICATE_SRC0 0x18404 POCSBE 2

MI_PREDICATE_SRC1 0x18408 POCSBE 2

MI_PREDICATE_SRC1 0x1840C POCSBE 2

MI_PREDICATE_DATA 0x18410 POCSBE 2

MI_PREDICATE_DATA 0x18414 POCSBE 2

MI_PRED_RESULT 0x18418 POCSBE 2

3DPRIM_END_OFFSET 0x18420 POCSBE 2

3DPRIM_START_VERTEX 0x18430 POCSBE 2

3DPRIM_VERTEX_COUNT 0x18434 POCSBE 2

3DPRIM_INSTANCE_COUNT 0x18438 POCSBE 2

3DPRIM_START_INSTANCE 0x1843C POCSBE 2

3DPRIM_BASE_VERTEX 0x18440 POCSBE 2

Load Indirect Extended Parameter 0 0x18690 POCSBE 2

Load Indirect Extended Parameter 1 0x18694 POCSBE 2

Load Indirect Extended Parameter 2 0x18698 POCSBE 2

MI_TAGADDR 0x18194 POCSBE 4

PTBR_NUM_PAGES_RECORDED_REGISTER 0x18594 POCSBE 2

NOOP POCSBE 12

MI_TOPOLOGY_FILTER POCSBE 1

NOOP POCSBE 2

PIPELINE_SELECT POCSBE 1

STATE_BASE_ADDRESS POCSBE 22

56 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Description MMIO Offset/Command Unit # of DW

3DSTATE_PUSH_CONSTANT_ALLOC_VS POCSBE 2

3DSTATE_BINDING_TABLE_POOL_ALLOC POCSBE 4

NOOP POCSBE 4

3DSTATE_PTBR_POOL_BASE_ADDRESS POCSBE 3

3DSTATE_PTBR_FREE_LIST_BASE_ADDRESS POCSBE 3

3DSTATE_PTBR_RENDER_LIST_BASE_ADDRESS POCSBE 3

3DSTATE_PTBR_TILE_PASS_INFO POCSBE 4

NOOP POCSBE 15

3DSTATE_INDEX_BUFFER VFR 5

3DSTATE_VERTEX_BUFFERS VFR 133

3DSTATE_VF_STATISTICS VFR 1

3DSTATE_VF VFR 2

3DSTATE_VFG VFR 4

3DSTATE_VF_INSTANCING VFR 69

3DSTATE_VF_TOPOLOGY VFR 2

NOOP VFR 5

COMMITTED VERTEX NUMBER 16E90h VFR 2

COMMITTED INSTANCE ID 16E94h VFR 2

COMMITTED PRIMITIVE ID 16E98h VFR 2

STATUS 16E9Ch VFR 2

COMMON VERTEX 16EA0h VFR 2

VF_GUARDBAND 16EA4h VFR 2

NOOP VFR 21

NOOP VFR 2

NOOP VFR 6

OVR Context OVR 1040

3DSTATE_CONSTANT_VS_Commited SVGR 11

NOOP SVGR 11

NOOP SVGR 11

NOOP SVGR 11

3DSTATE_VERTEX_ELEMENTS SVGR 69

3DSTATE_VF_COMPONENT_PACKING SVGR 5

3DSTATE_VF_SGVS SVGR 2

3DSTATE_VF_SGVS_2 SVGR 3

3DSTATE_VS SVGR 9

3DSTATE_BINDING_TABLE_POINTERS_VS SVGR 2

3DSTATE_SAMPLER_STATE_POINTERS_VS SVGR 2

Doc Ref # IHD-OS-LKF-Vol 9-4.21 57

Description MMIO Offset/Command Unit # of DW

3DSTATE_URB_ALLOC_VS SVGR 3

NOOP SVGR 37

3DSTATE_CLIP SVGR 4

3DSTATE_PRIMITIVE_REPLICATION SVGR 6

3DSTATE_SF SVGR 4

3DSTATE_SCISSOR_STATE_POINTERS SVGR 2

3DSTATE_VIEWPORT_STATE_POINTERS_CL_SF SVGR 2

3DSTATE_RASTER SVGR 5

NOOP SVGR 9

3DSTATE_MULTISAMPLE SVGR 2

NOOP SVGR 55

3DSTATE_DRAWING_RECTANGLE SVGR 4

NOOP SVGR 1

MI_LOAD_REGISTER_IMM 0x1100_1011 SVGR 1

FF_PERF_REG 0x17b1c SVGR 2

CULLBIT1 0x17100 SVGR 2

VFLSKPD 0x172A8 SVGR 2

Reserved 0x17204 SVGR 2

Reserved 0x17208 SVGR 2

Reserved 0x1720c SVGR 2

FF_MODE 0x17210 SVGR 2

Reserved 0x17280 SVGR 2

Reserved 0x17284 SVGR 2

PTBR_PAGE_POOL_SIZE_REGISTER 0x17520 SVGR 2

NOOP SVGR 2

NOOP SVGR 4

MI_BATCH_BUFFER_END CSEND 1

NOOP CSEND 127

58 Doc Ref # IHD-OS-LKF-Vol 9-4.21

3D Pipeline Stages

The following table lists the various stages of the 3D pipeline and describes their major functions.

Pipeline Stage Functions Performed

Command Stream

(CS)
The Command Stream stage is responsible for managing the 3D pipeline and passing

commands down the pipeline. In addition, the CS unit reads “constant data” from memory

buffers and places it in the URB.

Note that the CS stage is shared between the 3D, GPGPU and Media pipelines.

Vertex Fetch (VF) The Vertex Fetch stage, in response to 3D Primitive Processing commands, is responsible for

reading vertex data from memory, reformatting it, and writing the results into Vertex URB

Entries. It then outputs primitives by passing references to the VUEs down the pipeline.

Vertex Shader (VS) The Vertex Shader stage is responsible for processing (shading) incoming vertices by passing

them to VS threads.

Hull Shader (HS) The Hull Shader is responsible for processing (shading) incoming patch primitives as part of

the tessellation process.

Tessellation Engine

(TE)

The Tessellation Engine is responsible for using tessellation factors (computed in the HS

stage) to tessellate U,V parametric domains into domain point topologies.

Domain Shader (DS) The Domain Shader stage is responsible for processing (shading) the domain points

(generated by the TE stage) into corresponding vertices.

Geometry Shader

(GS)

The Geometry Shader stage is responsible for processing incoming objects by passing each

object’s vertices to a GS thread.

Stream Output Logic

(SOL)

The Stream Output Logic is responsible for outputting incoming object vertices into Stream

Out Buffers in memory.

Clipper (CLIP) The Clipper stage performs Clip Tests on incoming objects and clips objects if required.

Objects are clipped using fixed-function hardware.

Strip/Fan (SF) The Strip/Fan stage performs object setup. Object setup uses fixed-function hardware.

Windower/Masker

(WM)

The Windower/Masker performs object rasterization and determines visibility coverage.

CPS Pipeline stage that gathers coarse pixels (CPs) for Coarse Pixel Shading (CPS).

PS Dispatch (PSD) PSD assembles and dispatches Pixel Shader (PS) threads at one of these rates: CP, Pixel (P), or

Sample (S).

Doc Ref # IHD-OS-LKF-Vol 9-4.21 59

3D Pipeline-Level State

This section contains table commands for the 3D Pipeline Level.

Programming Note

Context: 3D Pipeline-Level State - Push Constant URB Allocation

The push constants are buffered in the Push Constant section of the URB which is part of the L3$. Software is

required to program the hardware to allocate space in the URB for each shader push constant. The software is

limited to the low addresses of the URB and must ensure that none of the shaders have overlapping handles.

Software may use some if not all of the Push Constant region of the URB for pr-stage handle allocations as long as

none of the push constants and handle allocations overlap.

Refer to the various 3DSTATE_PUSH_CONSTANT_ALLOC_xx state commands for details regarding the maximum

size of the Push Constant and other state programming information.

Below is a diagram that represents how the hardware may move and store one CONSTANT_BUFFER

command for a fixed function shader:

60 Doc Ref # IHD-OS-LKF-Vol 9-4.21

The bubbles in the URB are caused by the constant buffer in memory starting on a half cacheline and

being an even number in length. If the constant buffer starts on an odd cacheline and has an odd

number length, then there will only be a bubble at the beginning of the buffer in the URB. If the constant

buffer in memory starts on a cache line boundary and has an odd number length, then the bubble will

only be at the end of the constant buffer in the URB. Once the constant buffer is written to the GRF space

then all the bubbles will be removed.

Software must guarantee that there is enough space in the push constant buffer in the URB to hold one

constant buffer from memory. This includes any buffering to write the 512b aligned requests from

memory into the URB. Because the L3$ only supports writes from memory in 512b chunks, the URB may

have some bubbles between each constant buffer fetch.

3DSTATE_3D_MODE

3D Pipeline Geometry

Block Diagram

The following block diagram shows the stages of the Geometry Pipeline and where they are positioned in

the overall 3D Pipeline.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 61

POSH Pipeline Overview

The Position-Only Shading (POSH) pipeline (aka “Cull Pipe” or “Record Pipe”) is utilized to improve 3D

rendering performance by removing culled objects from the Render pipeline workload. The POSH

pipeline pre-processes geometry objects using simple “position-only” vertex input and vertex shaders.

These objects are then subjected to clipper/setup cull tests. The results of these cull tests are then stored

(compressed) as streams of “visibility tokens” in memory. Later, when the same geometry work is

submitted to the Render pipe, the VF stage of the Render pipe will receive the pre-recorded visibility

tokens and use those tokens to skip over culled objects and only process the non-culled objects. The

POSH pipe is designed to run ahead of the Render pipe by buffering visibility data for render passes and

possibly entire frames before being consumed by the Render pipe.

POSH Pipeline Work Submission

Work is performed on the POSH pipeline by submitting command streams to the POSH CS (POCS) unit

which operates similarly to the Render CS (RCS) unit. Refer to Command Stream Programming for POCS

programming details.

Geometry & Setup Stages of POSH Pipeline

The POSH pipeline contains POSH-specific versions of a subset of the Render pipe stages:

• VFR (POSH VF)

• VSR (POSH VS)

• CLR (POSH CL)

• SFR (POSH SF)

62 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Note that the POSH pipeline does not contain HS, DS, GS or StreamOut stages and therefore does not

support those functions. Work submitted to the POSH pipeline shall not contain state commands for

those stages not attempt to enable those functions.

These POSH stages are programmed in a similar manner as the corresponding Render stages. When

stage-related state commands are submitted to the POSH pipeline, the corresponding stages in the

POSH pipeline are programmed. POSH/Render pipeline programming differences are described in the

state command definitions.

OVR Stage of POSH Pipeline

An Object Visibility Recording (OVR) stage is located at the end of the POSH pipe. It is used to compress

and store visibility token streams in memory, as well as reading those streams during rendering and

passing the tokens to the VF stage. Refer to the Render Engine Command Streamer BXML for

programming details.

URB Programming when POSH Enabled

When the POSH pipeline is enabled, a URB allocation for the VSR stage is required. This allocation is

programmed via execution of 3DSTATE_URB_*_VS commands in the POSH pipeline. Software shall be

required to manage this allocation, taking into account the synchronous operation of the RCS and POCS

workloads. This programming may require explicit synchronization between the pipelines, e.g., when

Render vs. POSH URB allocation boundaries are changed.

When the POSH pipeline is enabled, a URB allocation for the POSH pipeline Push Constants may be

defined. Refer to the relevant Push Constant URB commands for details on how this allocation is defined

and used.

General Programming of Thread-Generating Stages (VS, HS, DS, GS)

This section provides common programming information for the thread-generating Geometry FF stages

(VS, HS, DS, GS). The intent is to include the common description here in order to avoid redundancy in

the subsequent stage-specific sections. The stage-specific sections will include any unique or exception

information, restrictions, etc. relevant to those stages.

3DSTATE_ Common State Variables

This section describes FF state variables, programmed via 3DSTATE_<FF> commands, that are common

to at least two thread-generating FF stages (VS, HS, DS, GS).

The states described in these sections are only used by HW when the given stage is enabled (i.e., can

request thread execution), unless specifically called out as an exception.

Thread Management State

These state variables are used by a stage to manage thread request generation.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 63

State VS HS DS GS

Maximum Number of Threads Y Y Y Y

Maximum Number Of Threads

This field specifies, for a particular stage, the maximum number of threads allowed to be simultaneously

active. Here “active” refers to (a) outstanding in the thread request queue, (b) resident in the EUs, or (c) in

the thread retirement queue – up to the point the stage sees the thread retirement. Note that the sum of

(a) and (c) above is non-zero, and therefore – depending on configuration – the allowed number of

active threads can exceed the total number of thread slots available in the EUs.

There are two main factors to consider when programming this state variable:

• Scratch space availability: In the case where threads require scratch space, SW shall allocate

enough contiguous scratch space for the stage to allow each active thread (as programmed by this

field) to access its full per-thread allocation (as programmed by PerThreadScratchSpace). This

may require SW to reduce MaximumNumberOfThreads to accommodate limitations on scratch

space availability.

• Performance: For best performance, it is recommended that SW program this field to its

maximum value. This will maximize the number of threads available to perform the stage’s

function. However, SW is free to program a smaller value (as long as it meets any restrictions), e.g.,

for performance or workaround experimentation.

Thread State Initialization State

The following values are programmed as state, subsequently included by the stage as thread request

control information, and eventually loaded into an EU architectural (ARF) register upon thread dispatch.

In most instances these initial values can be subsequently overwritten by the thread.

For a complete description of these EU ARF register fields, refer to the EU Execution Environment section.

These values do not appear in the thread payload. (This information may be referred to as the thread’s

“transparent header”, as it is forwarded to the EUs but not visible in the thread payload.)

State EU State VS HS DS GS

Kernel Start Pointer ip[31:6] Y Y Y Y

Floating Point Mode cr0.0[0] Y Y Y Y

Single Program Flow cr0.0[2] N Y N Y

Vector Mask Enable cr0.0[3] Y Y Y Y

Illegal Opcode Exception Enable cr0.1[12] Y Y Y Y

Software Exception Enable cr0.1[13] Y Y Y Y

Thread Priority sr0.0[23] Y Y Y Y

Binding Table Pointer see note Y Y Y Y

64 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Kernel Start Pointer (KSP)

This field specifies bits [31:6] of the value loaded into the EU’s Instruction Pointer (ip), which in turn

specifies the starting offset of the kernel program to be executed. The state is specified as a 64B-granular

offset from the Instruction Base Address register (programmed via STATE_BASE_ADDRESS). Bits[5:3]

of the EU ‘ip’ register (which identify a Dword within a 64B region) are loaded with 0 upon thread

dispatch.

Note (below) that Kernel Start Pointer [47:32] can be programmed via FF state, but these bits are

ignored by HW as the EU ‘ip’ register only supports a 32-bit value.

A stage may support more than one KSP state, where HW performs an on-the-fly selection of one of the

KSPs based on some criteria. Refer to the stage-specific sections for details. For those stages that support

multiple dispatch modes but only a single KSP state, SW shall ensure that the KSP value programmed

corresponds with the selected dispatch mode.

Floating Point Mode

This state bit is loaded into the EU’s Single Precision Floating Point Mode (FPMode, cr0.0[0]) which, in

turn, controls how certain single-precision floating point operations are performed within the EU

subsystem.

Single Program Flow

This state bit is loaded into the EU’s Single Program Flow (SPF, cr0.0[2]) which, in turn, controls how

certain flow control instructions operate across the EU channels.

Vector Mask Enable

This state bit is loaded into the EU’s Vector Mask Enable (VME, cr0.0[3]) which, in turn, selects whether

the EU’s Dispatch Mask or Vector Mask register is used as the execution mask for subsequent

instructions.

Illegal Opcode Exception

This state bit is loaded into the EU’s Illegal Opcode Exception Enable (cr0.1[12]) which, in turn, enables

or disables the EU’s illegal opcode exception mechanism.

Software Exception Enable

This state bit is loaded into the EU’s Software Exception Enable (cr0.1[13]) which, in turn, enables or

disables the EU’s software exception mechanism.

Thread Dispatch Priority

This state bit can be used to give thread requests eminating from a Geometry FF stage higher thread

dispatch priority than thread request sources that are not marked as high priority.

This state bit is also loaded into the EU’s Priority Class (sr0.0[23]) which, in turn, determines whether the

EU thread is considered as belonging to the high priority class.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 65

Binding Table Pointer (BTP)

Upon thread request, the BTP specified for the relevant FF stage is passed to, and stored in, the EU as

part of thread state. This BTP value is subsequently passed to the Shared Functions (e.g., Sampler) that

are required to access surfaces specified in the Binding Table. Here the BTP is passed via a side-band

channel and not directly in the message descriptor or message header.

Thread State Initialization State (Defaulted)

The following EU state variables are defaulted upon thread dispatch and therefore cannot be controlled

via Geometry FF state programming. Refer to the relevant EU sections for an understanding of these

state variables and whether the thread can overwrite the defaulted values. Note that this is not an

exhaustive list of defaulted EU state variables, only the ones deemed most interesting for Geometry FF

threads.

State EU State Default Value

FFID sr0.0[27:24] see below

Rounding Mode cr0.0[5:4] 0

Single Precision Denorm Mode cr0.0[7] 0

Double Precision Denorm Mode cr0.0[6] 0

Stack Overflow Exception Enable cr0.1[11] 0

External Halt Exception Enable cr0.1[14] 0

Breakpoint Exception Enable cr0.1[15] 0

Instruction Pointer [5:3] ip[5:3] 0

Stack Pointer sp.0 0 (see note below)

Stack Pointer Limit sp_limit 0 (see note below)

FFID

The EU’s Fixed Function Identifier (FFID, sr0.0[27:24]) is initialized to a value corresponding to the

Geometry FF stage that requested the thread dispatch. Note that this simply identifies the source FF unit,

not the specific thread dispatched.

Stack Pointer, Stack Pointer Limit

These EU state registers are defaulted to 0 for threads requested by Geometry FF units, as opposed to

other thread request sources that may cause them to be initialized differently. The threads can overwrite

the defaulted values if so desired.

Prefetch State

The following state variables can be used by SW to attempt the prefetch of certain state from memory

into internal state cache. The prefetch is requested as part of the first thread dispatch after these state

variables are specified.

66 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Programming Restriction: Software shall not specify a prefetch region that extends into an invalid

memory page, otherwise the prefetch may incur page faults.

Performance Note: Early prefetch of the state that will likely be referenced by the thread can improve

thread execution performance. This is not guaranteed, especially if the amount of prefetched data is

large which may result in state cache thrashing. Also, these prefetch requests are considered low priority

hints by HW and may be dropped under conditions of high memory demand.

State VS HS DS GS

Sampler Count Y Y Y Y

Binding Table Entry Count Y Y Y Y

Sampler Count

This field specifies how many SAMPLER_STATE structures are prefetched from memory. The count can be

specified as 0 or as a multiple of 4 (4,8,12,16). Refer to the state definition for encodings and further

details.

Performance Note: It is recommended that SW program this field to (roughly) equal the number of

sampler state structures referenced by the thread.

Binding Table Entry Count

This field specifies how many binding table entries (BTEs) and associated SURFACE_STATE structures are

prefetched from memory. The format of this field depends on whether or not HW-generated binding

tables are enabled, as determined by

3DSTATE_BINDING_TABLE_POOL_ALLOC::BindingTablePoolEnable.

SW Usage Note: When HW-generated binding tables are enabled, it is recommended that the Binding

Table Entry Count value be generated when the shader is compiled.

HW-Generated Binding Tables Disabled:

The field has a Format of U8 and specifies a count of BTEs to be prefetched ([0,255]). Each of the

SURFACE_STATE structures referenced by the BTEs will also be prefetched.

HW-Generated Binding Tables Enabled:

This field has a Format of Bitmask8 and indicates which 64B cache lines of BTEs will be fetched. Each bit

in this field corresponds to a cache line, where a cache line holds 8 16-bit BTEs. Bit 0 refers to the

cacheline starting at the Binding Table Pointer, as programmed by

3DSTATE_BINDING_TABLE_POINTER_xx.

By default, only the SURFACE_STATE structures referenced by the first 4 non-zero BTEs of each 64B

cacheline will be prefetched.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 67

Common Thread Payload-Related State

The following state variables are either included directly in the thread payload and/or used to control or

compute other fields in the thread payload.

State VS HS DS GS

Sampler State Pointer Y Y Y Y

Per-Thread Scratch Space Y Y Y Y

Scratch Space Base Pointer Y Y Y Y

Include Vertex Handles N Y N Y

Sampler State Pointer

This state variable specifies the starting, 32B-granular offset of the stage’s SAMPLER_STATE table in

memory, relative to the DynamicStateBaseAddress. It is programmed via

3DSTATE_SAMPLER_STATE_POINTERS_xx commands.

This value is included in thread payloads in R0.3[31:5] and is also directly propagated to the Sampler

shared function for use in processing “headerless” messages. If a thread can potentially send any

messages to the Sampler shared function that requires the Sampler State Pointer in the message header,

that thread shall ensure that it passes along the Sampler State Pointer value passed in the thread

payload.

Scratch Space

The Per-Thread Scratch Space state variable specifies the amount of scratch memory required by each

active thread of a stage. The value is specified as a 4-bit power of two (in excess of 10) bytes, where

programmed values in the valid range [0,11] specify scratch space requirements in the range [1KB, 2MB].

When a thread becomes “active” it is allocated a portion of scratch space, sized according to

PerThreadScratchSpace. The starting location of each thread’s scratch space allocation,

ScratchSpaceOffset, is passed in the thread payload in R0.5[31:10] and is specified as a 1KB-granular

offset from the GeneralStateBaseAddress. The computation of ScratchSpaceOffset includes the

starting address of the stage’s scratch space allocation, as programmed by ScratchSpaceBasePointer.

The maximum number of active threads for a stage is specified by the MaximumNumberOfThreads

state. SW shall abide by the scratch space restrictions included in the description of

MaximumNumberOfThreads.

This value is also included within thread payloads in R0.3[3:0]. If a thread can potentially send any “A32

Stateless” messages to the DataPort shared function, that thread shall ensure that it passes along the

PerThreadScratchSpace value passed in the thread payload.

The state command specifies starting offset of the scratch memory region allocated to a stage (Scratch

Space Base Pointer). It is specified as a 22-bit, 1KB-aligned offset from the GeneralStateBaseAddress.

Each thread requested by the FF stage will be allocated it’s exclusive portion of this space, with the per-

thread allocation size specified by Per-Thread Scratch Space. The computed offset of the thread-

specific portion is passed in the thread payload as Scratch Space Offset. If the thread needs to access

this scratch space, it shall utilize “stateless” DataPort read/write message, where the DataPort will cause

68 Doc Ref # IHD-OS-LKF-Vol 9-4.21

the General State Base Address to be added to the specific scratch space offset passed in the message

header.

Include Vertex Handles

This state variable specifies whether input vertex URB handles are included in the thread payload for

threads requested by the FF stage. SW shall set this bit if the thread kernel requires access to the data

contained input vertex URB entries, either in addition to or instead of the input vertex data pushed into

the thread payload.

URB Payload State

The following state variables specify certain parameters related to the amount and location of URB-

sourced data in the thread payload. State variables specifying other parameters are found in other state

commands. Refer to the Thread Payload Overview subsection for more details.

State VS HS DS GS

Dispatch GRF Start Register for URB Data Y Y Y Y

Vertex/Patch URB Entry Read Offset Y Y Y Y

Vertex/Patch URB Entry Read Length Y Y Y Y

Dispatch GRF Start Register for URB Data

This state variable specifies a 5b GRF# (32B offset) within the thread payload where URB-sourced data

starts. The URB-sourced data starts with some (possibly zero) amount of pushed Constant data, followed

by some (possibly zero) amount of Vertex or Patch data.

Programming Restriction: Software shall ensure that it does not cause URB data to overwrite the R0

Header or Extended Header.

Vertex/Patch URB Entry Read Offset

This state variable specifies the 32B offset at which data is to be read from each Vertex or Patch URB

entry before being included in the thread payload.

Vertex/Patch URB Entry Read Length

This state variable specifies the number of 16B (vertex elements) to be read from each Vertex or Patch

URB entry, starting from the offset specified by the Vertex/PatchURBEntryReadOffset state.

If the read length is non-zero, SW shall ensure that the specification of the source (URB) data does not

extend beyond the allocated and valid data in the URB entry. Other restrictions are described in the

Thread Payload Overview subsection.

Pre-Rasterization Vertex State

The following state variables are implemented in the FF stages whose associated threads generate

vertices (therefore the HS stage is excluded). The state variables control some aspects of how the

generated (“output”) vertices are treated if the pipeline is configured to have the stage’s vertices to reach

Doc Ref # IHD-OS-LKF-Vol 9-4.21 69

the Clip and Setup stages. Hardware determines which stage produces these “pre-rasterization” vertices

as a function of which FF stages are enabled. For example, if the GS and DS stages are disabled, the VS

stage’s set of state variables will be used or alternatively, if the GS stage is enabled, the GS stage’s set of

state variables will be used.

There are “Force” state bits in the Clip & Setup stages that can be used to override use of these per-FF

state variables and instead use corresponding state variables programmed in the Clip and/or Setup

stages.

State VS HS DS GS

Vertex URB Entry Output Read Offset Y N Y Y

Vertex URB Entry Output Read Length Y N Y Y

User Clip Distance Clip Test Enable Bitmask Y N Y Y

User Clip Distance Cull Test Enable Bitmask Y N Y Y

Vertex URB Entry Output Read Offset

This state variable specifies the 32B offset at which attribute data is to be read from each Vertex URB

entry for use by the Setup stage.

Vertex URB Entry Output Read Length

This state variable specifies the number of 16B attributes to be read from each Vertex URB entry for use

by the Setup stage, starting from the offset specified by the VertexURBEntryOutputReadOffset state.

User Clip Distance Clip Test Enable Bitmask

This state variable is used in the Clip stage’s clip test functionality. See Clip stage documentation for

details.

User Clip Distance Cull Test Enable Bitmask

This state variable is used in the Clip stage’s cull test functionality. See Clip stage documentation for

details.

UAV Access State

This state variable is used by the HW UAV Coherency mechanism.

State VS HS DS GS

Accesses UAV Y Y Y Y

Accesses UAV

This state bit indicates that threads requested by this FF stage may perform accesses to UAV resources. If

SW enables the HW UAV Coherency function, it shall set this bit in order to include this stage in the

coherency activities. For improved performance, SW should only set this bit for those FF stages that

require it. If the HW UAV Coherency function is enabled, this bit is ignored.

70 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Statistics Enable

This state variable is used to enable/disable the statistic counter for a FF stage.

State VS HS DS GS

Statistics Enable Y Y Y Y

Statistics Enable

This state bit controls whether or not the statistic counter(s) associated with a FF stage are enabled. Refer

to the specific FF stage descriptions for details on the statistics counter(s) supported.

SW shall disable statistics counting via this bit prior to submitting any 3DPRIMITIVE commands that are

not to be included in statistics counting. For example, if the statistics counters are to be maintained to

only track application-submitted work, SW shall ensure that any driver-generated work is not included in

the statistics.

Thread State (Ignored)

The following state variables can be programmed but are ignored in the HW implementation.

State VS HS DS GS

Kernel Start Pointer [47:32] Y Y Y Y

Scratch Space Base Offset Upper Y Y Y Y

URB Allocation Overview

The Geometry FF stages use the URB for temporary storage of vertex and/or patch data as URB Entries,

as well as Push Constant (PC) URB Buffers. Software can program the total size of the URB (see URB/L3

documentation). Software can also partition the URB space into FF stage-specific allocations for URB

Entries and/or PC URB Buffers. These allocations can be changed dynamically to accommodate changing

pipeline configurations and shader data requirements, though such changes may have performance

impacts. There shall be no overlap between the individual allocations and no allocation may extend

beyond the programmed URB upper limit.

Only the first 32KB of the URB can be used for VS, HS, DS, GS, and PS PC URB Buffer allocations. See Push

Constant Programming.

Software can place URB Entry allocations following any PC URB Buffer allocations. Software shall define

allocations for all the relevant Geometry FFs (VS, HS, DS, GS), though a subset of these allocations can be

“null” allocations that do not consume URB space. The VS stage always requires a non-null allocation.

The HS and DS stages only require non-null allocations when tessellation is enabled. Likewise, the GS

stage only requires a non-null allocation when GS is enabled.

When POSH is Enabled (via CTXT_SR_CTL), an additional 32KB block of URB is allocated for POCS

pipeline Push Constants.

This block is located immediately after the RCS Push Constant URB Buffer Allocation.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 71

When enabled, the size of the Push Constant URB allocation mentioned in the URB programming

information (below) will increase to 64KB total (vs. the 32KB size shown)

URB Space Partitioning

The starting offset (within the URB space) of a FF URB Entry allocation is specified by a URBStartAddress

state. The size of an allocation is defined by a NumberOfURBEntries state and a corresponding

URBEntryAllocationSize state.

72 Doc Ref # IHD-OS-LKF-Vol 9-4.21

URB Entry and Entry Allocation

Multiple-Slice Implications

The FF URB allocations are programmed based on the URB size for a single slice. If the configuration

includes multiple slices, the HW will automatically adjust the URBStartAddress and

NumberOfURBEntries states according to the number of slices. The URBEntryAllocationSize states are

not affected, nor are the PC URB Buffer allocations affected. The NumberOfURBEntries states are simply

multiplied by the number of slices. The URBStartAddress states are scaled by the number of slices after

being first decreased by 32KB, with a 32KB offset added back in after scaling. This scales the allocation

start addresses relative to the 32KB boundary versus the start of the URB.

The following diagram provides an example of how this scaling would be applied in a 2-slice

configuration.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 73

Allocation State Variables

URB Starting Address

This state variable defines the 8KB-aligned starting offset of the URB allocation for a given FF stage.

URB Entry Allocated Size

Programming Note

Context: Allocation State Variables

• This state variable defines the amount of storage allocated for each URB Entry within the allocation. It is 64B-

granular. (Note that the contents of a URB entry can be accessed at 32B granularity). The required size of a

URB Entry is typically dictated by API parameters and API shader programs.

• Software should attempt to minimize the size of URB entries in order to maximize the number of URB Entries

that can be stored in a given allocation. However, as changing URB-related state variable can incur

performance penalties, software may decide to employ sizing heuristics that permit a limited amount of

wasted space in URB entries as a performance tradeoff.

74 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Number of URB Entries

Programming Note

Context: Allocation State Variables

• This state variable defines the number of URB Entries allocated for a given FF stage. If the stage is disabled,

the number of entries can be programmed as 0, though this is not required. If the stage is enabled (which is

always true for the VS stage), a non-zero number of entries shall be specified. If the URBEntryAllocatedSize

is less than or equal to 8 64B units, this number shall be 0 or a multiple of 8.

• The minimum number of entries required as well as the maximum number supported are specific to the FF

stage and state programming (e.g., a function of Dispatch Mode) – see the documentation for the specific

stage.

Thread Payload Overview

Like all threads, the threads spawned by Geometry FF stages have some amount of payload data pre-

loaded into the GRF for use as initial input to a thread’s kernel. Some of the data is sourced directly from

the spawning FF and/or intermediate Thread Dispatch functions, while some is sourced from the URB as

specified by the spawning FF. The Geometry FF thread payloads have a similar structure, though the

exact payload size/content/layout is unique to each FF stage. This subsection describes the general

layout of the payload – refer to the specific FF stage descriptions for details and differences.

The payload data loaded into the GRF starting at R0 and is divided into two main sections: the Payload

Header followed by the Payload URB Data. The Payload Header contains information passed from FF

units, while the Payload URB Data is obtained from the URB.

Geometry FF Thread Payload Layout (General)

The Payload Header is further subdivided into a leading R0 Header and (if present) a variable-sized

Extended Header. The R0 fields are laid out to closely match the message header (M0) of thread-

generated messages to shared functions. The Extended Header (if present) starts in R1 and its length

varies.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 75

The Payload URB Data section is optional and can contain a variable amount of Push Constant Data

and/or a variable amount of (vertex or patch) URB Entry Data. The Payload URB Data starts at the GRF#

defined by the DispatchGRFStartRegisterForURBData FF state variable. Software can use this state

variable to place the Payload URB Data at a common starting GRF# even when the size of the Extended

Header varies.

R0 Header

The R0 header is used to pass various parameters to threads. This information contains SW-provided

state information, primitive information received by the FF unit from the FF pipeline, and parameters

generated/computed by the FF unit or Thread Dispatch HW.

Below is a list and description of the R0 Header fields common to all Geometry FF thread payloads. Refer

to the specific payload definitions for more details and (if relevant) other FF-specific fields.

R0 Header Field R0 Header Location

Thread ID R0.6[23:0]

FF Thread ID (FFTID) R0.5[9:0]

Scratch Space Offset R0.5[31:10]

Per Thread Scratch Space R0.3[3:0]

Sampler State Pointer R0.3[31:5]

Thread ID

This field is a sequence number that identifies this thread within the all threads spawned by the relevant

FF stage over some unspecified period of time.

FF Thread ID

This field is assigned by the relevant FF stage and used to identify the thread within the set of currently

outstanding threads spawned by the FF unit. It shall be included in EOT messages sent by the thread as

required by the relevant message header.

Scratch Space Offset

This field specifies the starting offset of the 1KB-aligned scratch space region allocated to this particular

thread. See the definition of ScratchSpaceBaseAddressLow, which specifies the starting offset for scratch

space region allocated to the FF stage.

Per Thread Scratch Space

This field is a copy of the PerThreadScratchSpace state variable programmed by SW via the

3DSTATE_<FF> commands.

Sampler State Pointer

This field is a copy of the SamplerStatePointer state variable programmed by SW via the

3DSTATE_<FF> commands

76 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Extended Header (R1+)

In some cases, additional FF-sourced information is passed in a variable-size Extended Header, which

starts at GRF R1. Some of the field definitions are common across two or more payloads and are

described below. Refer to specific payload definitions for more details and (if relevant) other FF-specific

fields.

Extended Header Fields

Output URB Handles

Input URB Handles

PrimitiveIDs

Output URB Handles

This set of 16-bit fields contains the 64B-aligned offsets into the URB at which a thread is to write output

URB data (i.e., vertex or patch data) via URB Write messages. In the VS thread payload URB Handles are

used both for input and output. Up to 8 Output URB Handles can be included in a thread payload. In

some SIMD4x2 payloads, these handles are passed in the R0 Header.

Input URB Handles

This set of 16-bit fields contains the 64B-aligned offsets into the URB at which a thread can access input

URB data (i.e., vertex or patch data) via URB Read messages. In the VS thread payload URB Handles are

used both for input and output. Up to 256 Input URB Handles can be passed in the Extended Header.

As it is often possible for all input URB data to be pushed in the thread payload, the thread may not

require Input URB Handles. As these handles may not be needed, a corresponding

IncludeVertexHandles state bit is typically included in the FF stage’s state (via 3DSTATE_<FF>). This

state bit controls whether the Input URB Handles are included in the Extended Header.

PrimitiveIDs

This set of 32-bit fields contains the PrimitiveID values corresponding to input objects being processed

by the thread. See Vertex Fetch for a description of PrimitiveID. As PrimitiveID may not be required as

input by the thread, a corresponding IncludePrimitiveID state bit is typically included in the FF stage’s

state (via 3DSTATE_<FF>). This state bit controls whether the PrimitiveIDs are included in the Extended

Header.

Payload URB Data Layouts

Before going into more detail about URB-sourced payload contents, it is important to discuss the three

basic layouts of this data: Linear, SIMD4x2 Interleaved, and SIMD8. These layouts are linked to how data

can be accessed by the EU (therefore the EU documentation should be comprehended).

Linear

In Linear layout, data is read from the URB and placed in successive GRFs starting at DW0 of the starting

destination GRF, as shown below. Data in this layout can be accessed by all EU channels of execution and

Doc Ref # IHD-OS-LKF-Vol 9-4.21 77

it is therefore used to hold “constant” data as well as patch data for DS dispatch modes that work on a

single patch at a time.

SIMD4x2 Interleaved

In SIMD4x2 Interleaved layout, the GRFs receive data from two URB entries, with the “first” URB entry

loaded into the 4 lower DWs of the GRFs and the “second” URB entry loaded into the upper DWs, as

shown below. This layout is primarily used to accommodate a kernel executing in SIMD4x2 execution

mode (see EU documentation). It is also used to pass data from two input patches into a DS

DUAL_PATCH payload, where the kernel may be executing in SIMD8 mode, but with the lower 4 SIMD8

channels operating on one patch and the upper 4 SIMD8 channels operating on another patch.

78 Doc Ref # IHD-OS-LKF-Vol 9-4.21

SIMD8

In SIMD8 layout, each DW position of the target GRFs can receive data from a different URB entry, as

shown below. (Note that it may be possible for the data from one source URB entry to be replicated in

two or more channels). This layout is used for kernels executing in SIMD8 mode, where each channel

operates on independent data.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 79

Payload URB Data

In most Geometry FF thread payloads some amount of URB-sourced data is required as input to the

thread. This data is comprised of an optional amount of Push Constant data, immediately followed by an

optional amount of URB Entry data (vertex or patch data).

The starting GRF# of the Payload URB Data section is specified by the

DispatchGRFStartRegisterForURBData per-FF state variable (programmed via 3DSTATE_<FF>). See

URB Payload State above for more information on the state variables that affect the Payload URB Data.

Push Constant Data

This section of the Payload URB Data is used to pass Push Constant data to the thread kernel. Software

can define up to 4 Push Constant Memory Buffer regions for each Geometry FF stage that requests

thread dispatches, after which the contents of those memory regions are automatically included in each

subsequent payload relevant to the FF stage. A FF stage-specific Push Constant URB Buffer is used to

buffer the memory contents, though any padding required by the URB buffer is removed before the data

is placed in the payload. See Push Constant Programming.

URB Entry Data

All Geometry FF threads have some number of (vertex or patch) Input URB Entries that serve as input to

the thread. Some amount (and possibly all) of the data from those Input URB Entries can be pushed into

the thread payload for immediate use by the thread’s kernel. While the number of Input URB Entries

associated with a thread is only indirectly controlled by software (e.g., via Dispatch Mode), the source

region within each of the Input URB Entries is directly programmed. This source region definition applies

to all of the Input URB Entries pushed into the payload.

The diagram below shows how the Vertex/Patch URB Entry Read Offset and Length states are used to

define the source region of a URB Entry that will be copied into the URB Entry Data area of the thread

payload.

80 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Input URB Entry Source Region Definition

The number of Input URB Entries pushed and the layout of the payload data is described in the relevant

FF stage descriptions.

Push Constant Programming Overview

Push constants are constant values that are pushed as part of the thread payload. Pushing constants

allow for the data to be available to the Execution Units as soon as the thread payload is loaded in the

GRF. The alternative to push constants are kernel-fetched constants.

All shaders (VS, HS, DS, GS and PS) have a section of the thread payload for constant data. For the

geometry shaders, this is inserted between the R headers and URB Vertex Data. For Pixel Shaders, this is

inserted prior to Setup Data. For more information, see the detailed descriptions of each Shader's

payload in the corresponding sections.

Below is the format for the constant portion of the thread payload:

Rn Registers prior to Push Constants

[Varies]

optional

255:0
Indirect Push Constants:

Push Constant data indirectly fetched from memory based on the 3DSTATE_CONSTANT_*

command and read from the URB. The amount of data provided is defined by the sum of the

read lengths in the last 3DSTATE_CONSTANT_*command

Data Vertex or Setup Data

Doc Ref # IHD-OS-LKF-Vol 9-4.21 81

Indirect Push Constant Programming

Note: The Resource Streamer-based “Gather Constant” function is an extension of the Push Constant

function and is described in detail in the Resource Streamer section. The Geometry FF state

programming aspects are included below, after the basic Push Constant function is described.

3D APIs and their associated shader languages support the access of constant values, typically sourced

from memory-resident Constant Buffers. Additionally, shader kernels may require access to compiler

and/or driver-generated constants. The device supports a basic Push Constant (PC) mechanism to have a

limited amount of constant data to be pushed into GRF registers via the thread payload where they are

immediately available to the kernel program. It is up to software to determine which constants (if any)

are pushed into the payload versus being dynamically referenced from memory via a shared function.

Besides functional restrictions, there are several performance tradeoffs involved in this decision: GRF

register pressure, locality of constant references, multiple references, expected shared function latency,

etc.

The device supports a basic mechanism where software can specify -- for each FF stage that generates

thread requests – up to 4 memory regions as the source for the PC data and one URB allocation used to

buffer the data internally to the device. The device will fetch the PC source data from memory and write

it into the URB Buffer, and at thread dispatch time the PC data will be read from the URB and inserted

into the thread payload GRF registers.

82 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Push Constant Memory Buffers

The 3DSTATE_CONSTANT_<FF> commands specify a set of state variables that define up to 4 PC

Memory Buffer regions in memory. The commands also initiate the process of reading the PC source

data (if any) from memory and placing it in the associated PC URB Buffer for inclusion in subsequent

thread payloads.

Up to four PC Memory Buffers can be specified. ConstantBufferReadLength specifies a 32B-granular

amount of PC data residing in the PC Memory Buffer. A length of 0 disables the corresponding buffer.

Disabling all four buffers causes no PC data to be inserted in thread payloads. SW shall disable all four

buffers whenever the corresponding PC URB Buffer is disabled. If SW disables a buffer, it shall also

specify a Pointer value of 0.

The location of a PC Memory Buffer is specified either by:

Doc Ref # IHD-OS-LKF-Vol 9-4.21 83

• 32-Byte granular GraphicsAddress

• 32-Byte granular DynamicStateOffset from the DynamicStateBaseAddress GraphicsAddress

(programmed via STATE_BASE_ADDRESS)

 The GatherPoolEnable state bit (programmed via 3DSTATE_GATHER_POOL_ALLOC) is used to enable

option (c) for Buffer 1 only. Otherwise the CONSTANT_BUFFERAddressOffsetDisable bit of the INSTPM

register controls the use of Pointer state variables:

• If the buffers are specified via a DynamicStateOffset, the DynamicStateMemoryObjectControlState

(programmed via STATE_BASE_ADDRESS) is used and corresponding DynamicState bounds

checking is performed during the memory access.

• If the buffers are specified via a GraphicsAddress, the ConstantBufferObjectControlState state

variable is used to control the memory accesses, though no bounds checking is performed.

Note that the starting location and length of the PC source data in each PC Memory Buffer is specified

via 32B-aligned/granular parameters, while the PC URB Buffer is specified via 64B-aligned/granular

parameters. The implications of this are described in the PC URB Buffer description.

State Command

Constant Buffer Object Control State 3DSTATE_CONSTANT_<FF>

Constant Buffer Read Length [0-3] 3DSTATE_CONSTANT_<FF>

Pointer to Constant Buffer [0-3] 3DSTATE_CONSTANT_<FF>

Pointer to Constant Buffer High [0-3] 3DSTATE_CONSTANT_<FF>

Push Constant URB Buffer Allocation

The 3DSTATE_PUSH_CONSTANT_ALLOC_<FF> commands specify a set of state variables is used to

define the PC URB Buffer allocation for each relevant FF stage. Each buffer is used to collect 64B-

granular/aligned PC source data prior to use in thread dispatch.

State Command

Constant Buffer Offset 3DSTATE_PUSH_CONSTANT_ALLOC_<FF>

Constant Buffer Size 3DSTATE_PUSH_CONSTANT_ALLOC_<FF>

ConstantBufferOffset specifies the 2KB-granular offset of a FF stage’s PC URB Buffer allocation. If the

ConstantBufferSize is zero, this offset is ignored.

ConstantBufferSize specifies the size of a FF stage’s PC URB Buffer allocation as a possibly-zero count of

2KB increments. Specifying a size of 0 disables the buffer. It is invalid to specify a non-zero amount of PC

source data (via 3DSTATE_CONSTANT_<FF>) when the corresponding PC URB Buffer is disabled.

In order to use PCs for a FF stage, SW shall first program ConstantBufferSize to a non-zero value. The

buffer shall be large enough to accommodate the worst-case buffering requirements of any single set of

PC Memory Buffer definitions (see below). It is invalid to specify more PC source data than can be

accommodated in the allocated PC URB Buffer. Additionally, in order to allow the device to pipeline the

84 Doc Ref # IHD-OS-LKF-Vol 9-4.21

prefetching of subsequent PC Memory Buffers, it is recommended that SW allocate PC URB Buffers larger

than this minimum requirement.

A PC URB Buffer is used to buffer 64B-granular/aligned push constant data from memory, though the PC

memory regions are defined as 32B-granular/aligned. In order to accommodate the worst case

alignment, where a specific PC memory region is not 64B aligned but is 64B granular in size, the PC URB

Buffer requires 32B of padding at both the beginning and end of the PC data and would therefore need

to be sized at least 64B larger than the source data region wrt that source buffer. If this condition holds

for all 4 PC source buffers, the PC URB Buffer needs to be sized 256B larger than the worst-case amount

of source data. If SW knows a priori that the PC source data is 64B-aligned/granular, then there is no

need to allocate additional room for 64B padding.

An important example of this PC URB Buffer sizing restriction is with respect to supporting a maximum

amount of PC source data. The per-FF limit on the amount of PC data that can be specified for inclusion

in thread payloads at any given time is 2KB (64 * 32B) spread across up to 4 source buffers. Here

minimum-sized (2KB) PC URB Buffer could only be used if all the source data was 64B aligned and 64B

granular is size, as the PC URB Buffer would have no room for padding. If any 64B padding was required,

(at least) a 4KB PC URB Buffer would need to be allocated.

Push Constant URB Buffer Placement: SW shall program all Push Constant URB Buffer allocations to be

either disabled or completely contained within the first 32KB of the URB. There are no ordering

requirements on the placement of the allocations relative to the particular FF stages (e.g., the VS

allocation can come before or after the GS allocation). SW shall not program enabled buffers to overlap.

If 32KB is greater than the amount of URB space required for all the Push Constant URB Buffers and SW

packs the allocations starting at offset 0, SW can utilize the URB space after the last allocation for URB

Entry allocations (e.g., VS VUEs), subject to URB Fence alignment restrictions.

3D Primitives Overview

The 3DPRIMITIVE command (defined in the VF Stage chapter) is used to submit 3D primitives to be

processed by the 3D pipeline. Typically, the processing results in the rendering of pixel data into the

render targets, but this is not required.

There is considerable confusion surrounding the term ‘primitive’, e.g., is a triangle strip a ‘primitive’, or is

a triangle within a triangle strip a ‘primitive’? Some APIs use the term ‘topology’ to describe the higher-

level construct (e.g., a triangle strip), and uses the term ‘primitive’ when discussing a triangle within a

triangle strip. In this spec, we will try to avoid ambiguity by using the term ‘object’ to represent the basic

shapes (point, line, triangle), and ‘topology’ to represent input geometry (strips, lists, etc.). Unfortunately,

terms like ‘3DPRIMITIVE’ must remain for legacy reasons.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 85

The following table describes the basic primitive topology types supported in the 3D pipeline.

Programming Note

Context: 3D Primitives Overview

• There are several variants of the basic topologies. These have been introduced to allow slight variations in

behavior without requiring a state change.

• Number of vertices and Dangling Vertices: Topologies have an “expected” number of vertices in order to

form complete objects within the topologies (e.g., LINELIST is expected to have an even number of vertices).

The actual number of vertices specified in the 3DPRIMITIVE command, and as output from the GS unit, is

allowed to deviate from this expected number, in which case any “dangling” vertices are discarded. The

removal of dangling vertices is initially performed in the VF unit. To filter out dangling vertices emitted by GS

threads, the CLIP unit also performs dangling-vertex removal at its input.

3D Primitive Topology Types

3D Primitive Topology

Type (ordered

alphabetically) Description

LINELIST • A list of independent line objects (2 vertices per line).

• Normal usage expects a multiple of 2 vertices, though incomplete objects are

silently ignored.

LINELIST_ADJ
• A list of independent line objects with adjacency information (4 vertices per

line).

• Normal usage expects a multiple of 4 vertices, though incomplete objects are

silently ignored.

• Not valid as output from GS thread.

LINELOOP • Similar to a 3DPRIM_LINESTRIP, though the last vertex is connected back to the

initial vertex via a line object. The LINELOOP topology is converted to LINESTRIP

topology at the beginning of the 3D pipeline.

• Normal usage expects at least 2 vertices, though incomplete objects are silently

ignored. (The 2-vertex case is required by OGL).

• Not valid after the GS stage (i.e., must be converted by a GS thread to some

other primitive type).

LINESTRIP • A list of vertices connected such that, after the first vertex, each additional

vertex is associated with the previous vertex to define a connected line object.

• Normal usage expects at least 2 vertices, though incomplete objects are silently

ignored.

LINESTRIP_ADJ • A list of vertices connected such that, after the first vertex, each additional

vertex is associated with the previous vertex to define connected line object.

The first and last segments are adjacent–only vertices.

• Normal usage expects at least 4 vertices, though incomplete objects are silently

86 Doc Ref # IHD-OS-LKF-Vol 9-4.21

3D Primitive Topology

Type (ordered

alphabetically) Description

ignored.

• Not valid as output from GS thread.

LINESTRIP_BF • Similar to LINESTRIP, except treated as “backfacing’ during rasterization (stencil

test).

• This can be used to support “line” polygon fill mode when two-sided stencil is

enabled.

LINESTRIP_CONT • Similar to LINESTRIP, except LineStipple (if enabled) is continued (vs. reset) at

the start of the primitive topology.

• This can be used to support line stipple when the API-provided primitive is split

across multiple topologies.

LINESTRIP_CONT_BF Combination of LINESTRIP_BF and LINESTRIP_CONT variations.

POINTLIST A list of point objects (1 vertex per point).

POINTLIST_BF • Similar to POINTLIST, except treated as “backfacing’ during rasterization (stencil

test).

• This can be used to support “point” polygon fill mode when two-sided stencil is

enabled.

POLYGON • Similar to TRIFAN, though the first vertex always provides the “flat-shaded”

values (vs. this being programmable through state).

• Normal usage expects at least 3 vertices, though incomplete objects are silently

ignored.

QUADLIST • A list of independent quad objects (4 vertices per quad).

• The QUADLIST topology is converted to POLYGON topology at the beginning

of the 3D pipeline.

• Normal usage expects a multiple of 4 vertices, though incomplete objects are

silently ignored.

QUADSTRIP • A list of vertices connected such that, after the first two vertices, each additional

pair of vertices are associated with the previous two vertices to define a

connected quad object.

• Normal usage expects an even number (4 or greater) of vertices, though

incomplete objects are silently ignored.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 87

3D Primitive Topology

Type (ordered

alphabetically) Description

RECTLIST • A list of independent rectangles, where only 3 vertices are provided per

rectangle object, with the fourth vertex implied by the definition of a

rectangle. V0=LowerRight, V1=LowerLeft, V2=UpperLeft. Implied V3 = V0-

V1+V2.

• Normal usage expects a multiple of 3 vertices, though incomplete objects

are silently ignored.

The RECTLIST primitive is supported specifically for 2D operations (e.g., BLTs and

“stretch” BLTs) and not as a general 3D primitive. Due to this, a number of restrictions

apply to the use of RECTLIST:

• Must utilize “screen space” coordinates (VPOS_SCREENSPACE) when the

primitive reaches the CLIP stage. The W component of position must be 1.0

for all vertices. The 3 vertices of each object should specify a screen-aligned

rectangle (after the implied vertex is computed).

• Clipping: Must not require clipping or rely on the CLIP unit’s ClipTest logic

to determine if clipping is required. Either the CLIP unit should be

DISABLED, or the CLIP unit’s Clip Mode should be set to a value other than

CLIPMODE_NORMAL.

• Viewport Mapping must be DISABLED (as is typical with the use of screen-

space coordinates).

RECTLIST_SUBPIXEL The subpixel precise, axis-aligned bounding box of the object's 3 vertices is rendered.

TRIFAN • Triangle objects arranged in a fan (or polygon). The initial vertex is maintained

as a common vertex. After the second vertex, each additional vertex is

associated with the previous vertex and the common vertex to define a

connected triangle object.

• Normal usage expects at least 3 vertices, though incomplete objects are silently

ignored.

TRIFAN_NOSTIPPLE • Similar to TRIFAN, but poylgon stipple is not applied (even if enabled).

• This can be used to support “point” polygon fill mode, under the combination

of the following conditions:

(a) when the frontfacing and backfacing polygon fill modes are different (so the

final fill mode is not known to the driver),

(b) one of the fill modes is “point” and the other is “solid”,

(c) point mode is being emulated by converting the point into a trifan,

(d) polygon stipple is enabled. In this case, polygon stipple should not be

applied to the points-emulated-as-trifans.

88 Doc Ref # IHD-OS-LKF-Vol 9-4.21

3D Primitive Topology

Type (ordered

alphabetically) Description

TRILIST
• A list of independent triangle objects (3 vertices per triangle).

•Normal usage expects a multiple of 3 vertices, though incomplete objects are

silently ignored.

TRILIST_ADJ • A list of independent triangle objects with adjacency information (6 vertices per

triangle).

• Normal usage expects a multiple of 6 vertices, though incomplete objects are

silently ignored.

• Not valid as output from GS thread.

TRISTRIP • A list of vertices connected such that, after the first two vertices, each additional

vertex is associated with the last two vertices to define a connected triangle

object.

• Normal usage expects at least 3 vertices, though incomplete objects are silently

ignored.

TRISTRIP_ADJ • A list of vertices where the even-numbered (including 0th) vertices are

connected such that, after the first two vertex pairs, each additional even-

numbered vertex is associated with the last two even-numbered vertices to

define a connected triangle object. The odd-numbered vertices are adjacent-

only vertices.

• VFUNIT will complete a drawcall with the topology of tristrip_adj even if there is

a preemption request in the middle of the draw call.

• Normal usage expects at least 6 vertices, though incomplete objects are silently

ignored.

• Not valid as output from GS thread.

TRISTRIP_REVERSE Similar to TRISTRIP, though the sense of orientation (winding order) is reversed – this

allows SW to break long tristrips into smaller pieces and still maintain correct face

orientations.

PATCHLIST_n
List of n-vertex “patch” objects. These topologies cannot be rendered directly – the

tessellation units must be used to convert them into points, lines, or triangles to

produce rasterization results. (VS, GS, and StreamOutput operations can also be

performed.)

Doc Ref # IHD-OS-LKF-Vol 9-4.21 89

The following diagrams illustrate the basic 3D primitive topologies. (Variants are not shown if they have

the same definition with respect to the information provided in the diagrams).

A note on the arrows you see below: These arrows are intended to show the vertex ordering of triangles

that are to be considered having “clockwise” winding order in screen space. Effectively, the arrows show

the order in which vertices are used in the cross-product (area, determinant) computation. Note that for

TRISTRIP, this requires that either the order of odd-numbered triangles be reversed in the cross-product

or the sign of the result of the normally-ordered cross-product be flipped (these are identical

operations).

90 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Doc Ref # IHD-OS-LKF-Vol 9-4.21 91

Thread Request Generation

Once a FF unit determines that a thread can be requested, it must gather all the information required to

submit the thread request to the Thread Dispatcher. This information is divided into several categories,

as listed below and subsequently described in detail.

• Thread Control Information: This is the information required (from the FF unit) to establish the

execution environment of the thread.

• Thread Payload Header: This is the first portion of the thread payload passed in the GRF, starting

at GRF R0. This is information passed directly from the FF unit. It precedes the Thread Payload

Input URB Data.

• Thread Payload Input URB Data: This is the second portion of the thread payload. It is read from

the URB using entry handles supplied by the FF unit.

Thread Control Information

The following table describes the various state variables that a FF unit uses to provide information to the

Thread Dispatcher and which affect the thread execution environment. Note that this information is not

directly passed to the thread in the thread payload (though some fields may be subsequently accessed

by the thread via architectural registers).

92 Doc Ref # IHD-OS-LKF-Vol 9-4.21

State Variables Included in Thread Control Information

State

Variable Usage FFs

Kernel Start

Pointer
This field, together with the General State Pointer, specifies the starting location

(1st EU instruction) of the kernel program run by threads spawned by this FF unit.

It is specified as a 64-byte-granular offset from the General State Pointer.

All FFs spawning

threads

GRF Register

Block Count

Specifies, in 16-register blocks, how many GRF registers are required to run the

kernel. The Thread Dispatcher will only seek candidate EUs that have a sufficient

number of GRF register blocks available. Upon selecting a target EU, the Thread

DIspatcher will generate a logical-to-physical GRF mapping and provide this to

the target EU.

All FFs spawning

threads

Single

Program

Flow (SPF)

Specifies whether the kernel program has a single program flow (SIMDnxm with

m = 1) or multiple program flows (SIMDnxm with m > 1). See CR0 description in

ISA Execution Environment.

All FFs spawning

threads

Thread

Dispatch

Priority

The Thread Dispatcher will give priority to those thread requests with Thread

Dispatch Priority of HIGH_PRIORITY over those marked as LOW_PRIORITY. Within

these two classes of thread requests, the Thread Dispatcher applies a priority

order (e.g., round-robin --- though this algorithm is considered a device

implementation-dependent detail).

All FFs spawning

threads

Floating

Point Mode
This determines the initial value of the Floating Point Mode bit of the EU’s CR0

architectural register that controls floating point behavior in the EU core. (See

ISA.)

All FFs spawning

threads

Exceptions

Enable

This bitmask controls the exception handing logic in the EU. (See ISA.) All FFs spawning

threads

Sampler

Count
This is a hint which specifies how many indirect SAMPLER_STATE structures

should be prefetched concurrent with thread initiation. It is recommended that

software program this field to equal the number of samplers, though there may

be some minor performance impact if this number gets large.

This value should not exceed the number of samplers accessed by the thread as

there would be no performance advantage. Note that the data prefetch is treated

as any other memory fetch (with respect to page faults, etc.).

All stages

supporting

sampling (VS,

GS, WM)

Binding

Table Entry

Count

This is a hint which specifies how many indirect BINDING_TABLE_STATE

structures should be prefetched concurrent with thread initiation. (The notes

included in Sampler Count (above) also apply to this field).

All FFs spawning

threads

Doc Ref # IHD-OS-LKF-Vol 9-4.21 93

Thread Payload Generation

FF units are responsible for generating a thread payload – the data pre-loaded into the target EU’s GRF

registers (starting at R0) that serves as the primary direct input to a thread’s kernel. The general format of

these payloads follow a similar structure, though the exact payload size/content/layout is unique to each

stage. This subsection describes the common aspects – refer to the specific stage’s chapters for details

on any differences.

The payload data is divided into two main sections: the payload header followed by the payload URB

data. The payload header contains information passed directly from the FF unit, while the payload URB

data is obtained from URB locations specified by the FF unit.

The first 256 bits of the thread payload (the initial contents of R0, aka “the R0 header”) is specially

formatted to closely match (and in some cases exactly match) the first 256 bits of thread-generated

messages (i.e., the message header) accepted by shared functions. In fact, the send instruction supports

having a copy of a GR’s contents (such as R0) used as the message header. Software must take this

intention into account (i.e., “don’t muck with R0 unless you know what you’re doing”). This is especially

important given the fact that several fields in the R0 header are considered opaque to SW, where use or

modification of their contents might lead to UNDEFINED results.

The payload header is further (loosely) divided into a leading fixed payload header section and a trailing,

variable-sized extended payload header section. In general the size, content and layout of both payload

header sections are FF-specific, though many of the fixed payload header fields are common amongst

the FF stages. The extended header is used by the FF unit to pass additional information specific to that

FF unit. The extended header is defined to start after the fixed payload header and end at the offset

defined by Dispatch GRF Start Register for URB Data. Software can cause use the Dispatch GRF Start

Register for URB Data field to insert padding into the extended header in order to maintain a fixed

offset for the start of the URB data.

Fixed Payload Header

The payload header is used to pass FF pipeline information required as thread input data. This

information is a mixture of SW-provided state information (state table pointers, etc.), primitive

information received by the FF unit from the FF pipeline, and parameters generated/computed by the FF

unit. Most of the fields of the fixed header are common between the FF stages. These non-FF-specific

fields are described in Fixed Payload Header Fields (non-FF-specific). Note that a particular stage’s

header may not contain all these fields, so they are not “common” in the strictest sense.

94 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Fixed Payload Header Fields (non-FF-specific)

Fixed Payload

Header Field

(non-FF-

specific) Description FFs

FF Unit ID Function ID of the FF unit. This value identifies the FF unit within the GPU

subsystem. The FF unit uses this field (when transmitted in a Message Header

to the URB Function) to detect messages emanating from its spawned threads.

All FFs spawning

threads

Snapshot Flag All FFs spawning

threads

Thread ID This field uniquely identifies this thread within the FF unit over some period.

All FFs spawning

threads

Scratch Space

Pointer

This is the starting location of the thread’s allocated scratch space, specified as

an offset from the General State Base Address. Note that scratch space is

allocated by the FF unit on a per-thread basis, based on the Scratch Space

Base Pointer and Per-Thread Scratch Space Size state variables. FF units

assign a thread an arbitrarily-positioned region within this space. The scratch

space for multiple (API-visible) entities (vertices, pixels) is interleaved within

the thread’s scratch space.

All FFs spawning

threads

Dispatch ID This field identifies this thread within the outstanding threads spawned by the

FF unit. This field does not uniquely identify the thread over any significant

period.

Implementation Note: This field is effectively an “active thread index”. It is

used on a thread’s URB allocation request to identify which thread’s handle

pool is to source the allocation. It is used upon thread termination to free up

the thread’s scratch space allocation.

All FFs spawning

threads

Binding Table

Pointer

This field, together with the Surface State Base Pointer, specifies the starting

location of the Binding Table used by threads spawned by the FF unit. It is

specified as a 64-byte-granular offset from the Surface State Base Pointer.

 See Shared Functions for a description of a Binding Table.

All FFs spawning

threads

Sampler State

Pointer

This field, together with the General State Base Pointer, specifies the starting

location of the Sampler State Table used by threads spawned by the FF unit. It

is specified as a 64-byte-granular offset from the General State Base Pointer.

 See Shared Functions for a description of a Sampler State Table.

All FFs spawning

threads which

sample (VS, GS,

WM)

Per Thread

Scratch Space

This field specifies the amount of scratch space allocated to each thread

spawned by the FF unit.

 The driver must allocate enough contiguous scratch space, starting at the

Scratch Space Base Pointer, to ensure that the Maximum Number of

Threads can each get Per-Thread Scratch Space size without exceeding the

driver-allocated scratch space.

All FFs spawning

threads

Handle ID <n> This ID is assigned by the FF unit and links the thread to a specific entry within

the FF unit. The FF unit will use this information upon detecting a URB_WRITE

message issued by the thread.

 Threads spawned by the GS, CLIP, and SF units are provided with a single

Handle ID / URB Return Handle pair. Threads spawned by the VS are provided

VS, GS, CLIP, SF

Doc Ref # IHD-OS-LKF-Vol 9-4.21 95

Fixed Payload

Header Field

(non-FF-

specific) Description FFs

with one or two pairs (depending on how many vertices are to be processed).

Threads spawned by the WM do not write to URB entries, and therefore this

info is not supplied.

URB Return

Handle <n>

This is an initial destination URB handle passed to the thread. If the thread

does output URB entries, this identifies the destination URB entry.

 Threads spawned by the GS, CLIP, and SF units are provided with a single

Handle ID / URB Return Handle pair. Threads spawned by the VS are provided

with one or two pairs (depending on how many vertices are to be processed).

Threads spawned by the WM do not write to URB entries, and therefore this

info is not supplied.

VS, GS, CLIP, SF

Primitive

Topology Type

As part of processing an incoming primitive, a FF unit is often required to

spawn a number of threads (for example, for each individual triangle in a

TRIANGLE_STRIP). This field identifies the type of primitive which is being

processed by the FF unit, and which has lead to the spawning of the thread.

Kernels written to process different types of objects can use this value to

direct that processing. E.g., when a CLIP kernel is to provide clipping for all the

various primitive types, the kernel would need to examine the Primitive

Topology Type to distinguish between point, lines, and triangle clipping

requests.

Note: In general, this field is identical to the Primitive Topology Type

associated with the primitive vertices as received by the FF unit. Refer to the

individual FF unit chapters for cases where the FF unit modifies the value

before passing it to the thread. (for example, certain units perform toggling of

TRIANGLESTRIP and TRIANGLESTRIP_REV).

GS, CLIP, SF, WM

Extended Payload Header

The extended header is of variable-size, where inclusion of a field is determined by FF unit state

programming.

In order to permit the use of common kernels (thus reducing the number of kernels required), the

Dispatch GRF Start Register for URB Data state variable is supported in all FF stages. This SV is used to

place the payload URB data at a specific starting GRF register, irrespective of the size of the extended

header. A kernel can therefore reference the payload URB data at fixed GRF locations, while conditionally

referencing extended payload header information.

Payload URB Data

In each thread payload, following the payload header, is some amount of URB-sourced data required as

input to the thread. This data is divided into an optional Constant URB Entry (CURBE), following either by

a Primitive URB Entry (WM) or a number of Vertex URB Entries (VS, GS, CLIP, SF). A FF unit only knows the

location of this data in the URB, and is never exposed to the contents. For each URB entry, the FF unit will

96 Doc Ref # IHD-OS-LKF-Vol 9-4.21

supply a sequence of handles, read offsets and read lengths to the GPU EU subsystem. The subsystem

will read the appropriate 256-bit locations of the URB, optionally perform swizzling (VS only), and write

the results into sequential GRF registers (starting at Dispatch GRF Start Register for URB Data).

State Variables Controlling Payload URB Data

State Variable Usage FFs

Dispatch GRF

Start Register

for URB Data

This SV identifies the starting GRF register receiving payload URB data.

 Software is responsible for ensuring that URB data does not overwrite the Fixed

or Extended Header portions of the payload.

FFs

spawning

threads

Vertex URB

Entry Read

Offset

This SV specifies the starting offset within VUEs from which vertex data is to be

read and supplied in this stage’s payloads. It is specified as a 256-bit offset into

any and all VUEs passed in the payload.

This SV can be used to skip over leading data in VUEs that is not required by the

stage’s threads (e.g., skipping over the Vertex Header data at the SF stage, as that

information is not required for setup calculations). Skipping over irrelevant data

can only help to improve performance.

 Specifying a vertex data source extending beyond the end of a vertex entry is

UNDEFINED.

VS, GS

Vertex URB

Entry Read

Length

This SV determines the amount of vertex data (starting at Vertex URB Entry Read

Offset) to be read from each VUEs and passed into the payload URB data. It is

specified in 256-bit units.

A zero value is INVALID (at very least one 256-bit unit must be read).

 Specifying a vertex data source extending beyond the end of a VUE is

UNDEFINED.

Programming Restrictions: (others may already been mentioned)

• The maximum size payload for any thread is limited by the number of GRF registers available to

the thread, as determined by min(128, 16 * GRF Register Block Count). Software is responsible

for ensuring this maximum size is not exceeded, taking into account:

o The size of the Fixed and Extended Payload Header associated with the FF unit.

o The Dispatch GRF Start Register for URB Data SV.

o The amount of CURBE data included (via Constant URB Entry Read Length)

o The number of VUEs included (as a function of FF unit, it’s state programming, and incoming

primitive types)

o The amount of VUE data included for each vertex (via Vertex URB Entry Read Length)

o (For WM-spawned PS threads) The amount of Primitive URB Entry data.

• For any type of URB Entry reads:

o Specifying a source region (via Read Offset, Read Length) that goes past the end of the URB

Entry allocation is illegal.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 97

▪ The allocated size of Vertex/Primitive URB Entries is determined by the URB Entry

Allocation Size value provided in the pipeline state descriptor of the FF unit owning

the VUE/PUE.

▪ The allocated size of CURBE entries is determined by the URB Entry Allocation Size

value provided in the CS_URB_STATE command.

Vertex Data Overview

The 3D pipeline FF stages (past VF) receive input 3D primitives as a stream of vertex information packets.

(These packets are not directly visible to software.) Much of the data associated with a vertex is passed

indirectly via a VUE handle. The information provided in vertex packets includes:

• The URB Handle of the VUE: This is used by the FF unit to refer to the VUE and perform any

required operations on it (e.g., cause it to be read into the thread payload, dereference it, etc.).

• Primitive Topology Information: This information is used to identify/delineate primitive

topologies in the 3D pipeline. Initially, the VF unit supplies this information, which then passes

through the VS stage unchanged. GS and CLIP threads must supply this information with each

vertex they produce (via the URB_WRITE message). If a FF unit directly outputs vertices (that were

not generated by a thread they spawned), that FF unit is responsible for providing this information.

• PrimType: The type of topology, as defined by the corresponding field of the 3DPRIMITIVE

command.

• StartPrim: TRUE only for the first vertex of a topology.

• EndPrim: TRUE only for the last vertex of a topology.

• (Possibly, depending on FF unit) Data read back from the Vertex Header of the VUE.

Vertex URB Entry (VUE) Formats

In general, vertex data is stored in Vertex URB Entries (VUEs) in the URB, and only referenced by the

pipeline stages indirectly via VUE handles. Therefore (for the most part) the contents/format of the vertex

data is not exposed to 3D pipeline hardware – the FF units are typically only aware of the handles and

sizes of VUEs.

VUEs are written in two ways:

• At the top of the 3D Geometry pipeline, the VF’s InputAssembly function creates VUEs and

initializes them from data extracted from Vertex Buffers as well as internally-generated data.

• VS, GS, HS and DS threads can compute, format, and write new VUEs as thread output.

There are only a few points in the 3D FF pipeline where the FF units are exposed to the VUE data.

Otherwise the VUE remains opaque to the 3D pipeline hardware.

• TE stage reads back Patch Headers from Patch URB Entries

• GS stage (optionally) reads back VertexCounts and Control Data Headers from GS VUEs

• StreamOutput stage reads back VUE contents in order to stream the vertices out

• Clip stage reads back VertexHeaders from VUEs

98 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Software must ensure that any VUEs subject to readback by the 3D pipeline start with a valid Vertex

Header. This extends to all VUEs with the following exceptions:

• If the VS function is enabled, the VF-written VUEs are not required to have Vertex Headers, as the

VS-incoming vertices are guaranteed to be consumed by the VS (i.e., the VS thread is responsible

for overwriting the input vertex data).

• If the GS FF is enabled, neither VF-written VUEs nor VS thread-generated VUEs are required to

have Vertex Headers, as the GS will consume all incoming vertices.

• If Rendering is disabled, VertexHeaders are not required anywhere.

The following table defines the Vertex Header. The Position fields are described in further detail below.

VUE Vertex Header

DWord Bits Description

D0 31:0
Reserved: MBZ

D1 31:0
Render Target Array Index (RTAIndex). This value is (eventually) used to index into a specific

element of an “array” Render Target. It is read back by the GS unit (for all exiting vertices) and the

Clip unit (for all clip-generated vertices), subsequently routed into the PS thread payload, and

eventually included in the RTWrite DataPort message header for use by the DataPort shared

function.

Software is responsible for ensuring this field is zero whenever a programmable index value is not

required. When a programmable index value is required

 , software must ensure that the correct 11-bit value is written to this field. Specifically, the kernels

must perform a reange check of computed index values against [0,2047], and output zero if that

range is exceeded. Note that the unmodified “renderTargetArrayIndex” must be maintained in the

VUE outside of the Vertex Header.

Software can force an RTAIndex of 0 to be used (effectively ignoring the setting of this DWord) by

use of the ForceZeroRTAIndex bit (3DSTATE_CLIP). Otherwise the read-back value will be used to

select an RTArray element, after being clamped to the RTArray surface’s [MinimumArrayElement,

Depth] range (SURFACE_STATE).

Format: 0-based U32 index value

D2 31:0
Viewport Index. This value is used to select one of a possible 16 sets of viewport (VP) state

parameters in the Clip unit’s VertexClipTest function and in the SF unit’s ViewportMapping and

Scissor functions.

The Clip unit (if enabled) will read back this value. The Clip unit will range-check the value against

[0,Maximum VPIndex] (see 3DSTATE_CLIP).

Software can force a value of 0 to be used by programming Maximum VPIndex to 0.

Format: 0-based U32 index value

D3 31:0
Point Width. This field specifies the width of POINT objects in screen-space pixels. It is used only for

vertices within POINTLIST and POINTLIST_BF primitive topologies, and is ignored for vertices

Doc Ref # IHD-OS-LKF-Vol 9-4.21 99

DWord Bits Description

associated with other primitive topologies.

This field is read back by the Clip unit.

Format: FLOAT32

D4 31:0
Vertex Position 0 X Coordinate. This field contains the X component of the vertex’s first 4D space

position.

Format: FLOAT32

D5 31:0
Vertex Position 0 Y Coordinate. This field contains the Y component of the vertex’s first 4D space

position.

Format: FLOAT32

D6 31:0
Vertex Position 0 Z Coordinate. This field contains the Z component of the vertex’s first NDC space

position.

Format: FLOAT32

D7 31:0
Vertex Position 0 W Coordinate. This field contains the Z component of the vertex’s first 4D space

position.

Format: FLOAT32

D8 31:0
ClipDistance 0 Value (optional). If the UserClipDistance Clip Test Enable Bitmask bit

(3DSTATE_CLIP) is set, this value will be read from the URB in the Clip stage. If the value is found to

be less than 0 or a NaN, the vertex’s UCF<0> bit will set in the Clip unit’s VertexClipTest function.

If the UserClipDistance Clip Test Enable Bitmask bit is clear, this value will not be read back, and

the vertex’s UCF<0> bit will be zero by definition.

Format: FLOAT32

ClipDistance Values are enabled for clip/cull test in the Clip stage in one of two modes: Normally the

corresponding Enable Bitmasks are obtained from the state programmed in the last “vertex-

producing” stage (VS/DS/GS) that is enabled prior to the Clip stage. E.g., if VS and DS are enabled

but GS is disabled, the masks are obtained from 3DSTATE_DS. Alternatively, the Enable Bitmasks can

be obtained directly from corresponding masks programmed via 3DSTATE_CLIP, through use of

3DSTATE_CLIP’s Force User Clip Distance [Cull/Clip] Test Enable Bitmask state bits (see description of

3DSTATE_CLIP).

D9 31:0
ClipDistance 1 Value (optional). See above.

D10 31:0
ClipDistance 2 Value (optional). See above.

D11 31:0
ClipDistance 3 Value (optional). See above.

D12 31:0
ClipDistance 4 Value (optional). See above.

100 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bits Description

D13 31:0
ClipDistance 5 Value (optional). See above.

D14 31:0
ClipDistance 6 Value (optional). See above.

D15 31:0
ClipDistance 7 Value (optional). See above.

 31:0 End of Vertex Header Padding (if required). The Vertex Header shall be padded at the and so that

the header ends on a 32-byte boundary and therefore the Remainder of Vertex Elements (below)

starts on a 32B boundary.

 31:0
(Remainder of Vertex Elements).

The absolute maximum size limit on this data is specified via a maximum limit on the amount of data

that can be read from a VUE (including the Vertex Header) (Vertex Entry URB Read Length has a

maximum value of 63 256-bit units). Therefore, the Remainder of Vertex Elements has an absolute

maximum size of 62 256-bit units. Of course, the actual allocated size of the VUE can and will limit

the amount of data in a VUE.

Vertex Positions

(For brevity, the following discussion uses the term map as a shorthand for “compute screen space

coordinate via perspective divide followed by viewport transform”.)

The “Position” fields of the Vertex Header are the only vertex position coordinates exposed to the 3D

Pipeline. The CLIP and SF units are the only FF units which perform operations using these positions. The

VUE will likely contain other position attributes for the vertex outside of the Vertex Header, though this

information is not directly exposed to the FF units. For example, the Clip Space position will likely be

required in the VUE (outside of the Vertex Header) to perform correct and robust 3D Clipping in the CLIP

thread.

CLIP unit uses the 3DSTATE_CLIP.PerspectiveDivideDisable bit to determine whether to perform a

perspective projection (divide by w) of the read-back 4D Position.

When Perspective Divide is enabled, the Clip Space position is defined in a homogeneous 4D coordinate

space (pre-perspective divide), where the visible “view volume” is defined by the APIs. The API’s VS, GS or

DS shader program will include geometric transforms in the computation of this clip space position such

that the resulting coordinate is positioned properly in relation to the view volume (i.e., it will include a

“view transform” in this computation path). When Perspective Divide is enabled, the 3D FF pipeline will

perform a perspective projection (division of x,y,z by w), perform clip-test on the resulting NDC

(Normalized Device Coordinates), and eventually perform viewport mapping (in the SF unit) to yield

screen-space (pixel) coordinates.

When Perspective Divide is disabled, the read-back Position does not undergo perspective projection

by the 3D FF pipeline.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 101

Clip Space Position

The clip-space position of a vertex is defined in a homogeneous 4D coordinate space where, after

perspective projection (division by W), the visible “view volume” is some canonical (3D) cuboid. Typically

the X/Y extents of this cuboid are [-1,+1], while the Z extents are either [-1,+1] or [0,+1]. The API’s VS or

GS shader program will include geometric transforms in the computation of this clip space position such

that the resulting coordinate is positioned properly in relation to the view volume (i.e., it will include a

“view transform” in this computation path).

Note that, under typical perspective projections, the clip-space W coordinate is equal to the view-space Z

coordinate.

A vertex’s clip-space coordinates must be maintained in the VUE up to 3D clipping, as this clipping is

performed in clip space.

Vertex clip-space positions must be included in the Vertex Header, so that they can be read-back (prior

to Clipping) and then subjected to perspective projection (in hardware) and subsequent use by the FF

pipeline.

NDC Space Position

A perspective divide operation performed on a clip-space position yields a [X,Y,Z,RHW] NDC (Normalized

Device Coordinates) space position. Here “normalized” means that visible geometry is located within the

[-1,+1] or [0,+1] extent view volume cuboid (see clip-space above).

• The NDC X,Y,Z coordinates are the clip-space X,Y,Z coordinates (respectively) divided by the clip-

space W coordinate (or, more correctly, the clip-space X,Y,Z coordinates are multiplied by the

reciprocal of the clip space W coordinate).

o Note that the X,Y,Z coordinates may contain INFINITY or NaN values (see below).

• The NDC RHW coordinate is the reciprocal of the clip-space W coordinate and therefore, under

normal perspective projections, it is the reciprocal of the view-space Z coordinate. Note that NDC

space is really a 3D coordinate space, where this RHW coordinate is retained in order to perform

perspective-correct interpolation, etal. Note that, under typical perspective projections.

o Note that the RHW coordinate make contain an INFINITY or NaN value (see below).

102 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Screen-Space Position

Screen-space coordinates are defined as:

• X,Y coordinates are in absolute screen space (pixel coordinates, upper left origin). See Vertex X,Y

Clamping and Quantization in the SF section for a discussion of the limitations/restrictions placed

on screenspace X,Y coordinates.

• Z coordinate has been mapped into the range used for DepthTest.

• RHW coordinate is actually the reciprocal of clip-space W coordinate (typically the reciprocal of the

view-space Z coordinate).

Vertex Fetch (VF) Stage

 The Vertex Fetch Stage performs one major function: executing 3DPRIMITIVE commands. This is handled

by the VF’s InputAssembly function.

The following subsections describe some high-level concepts associated with the VF stage:

• State

• 3D Primitive Command

• Functions

State

This section contains various state registers.

Control State

Register

3DSTATE_VF

3DSTATE_VF_TOPOLOGY

Index Buffer (IB) State

The 3DSTATE_INDEX_BUFFER command is used to define an Index Buffer (IB) used in subsequent

3DPRIMITIVE commands.

The RANDOM access mode of the 3DPRIMITIVE command involves the use of a memory-resident IB. The

IB, defined via the 3DSTATE_INDEX_BUFFER command described below, contains a 1D array of 8, 16 or

32-bit index values. These index values will be fetched by the InputAssembly function, and subsequently

used to compute locations in VERTEXDATA buffers from which the actual vertex data is to be fetched.

(This is opposed to the SEQUENTIAL access mode were the vertex data is simply fetched sequentially

from the buffers).

Doc Ref # IHD-OS-LKF-Vol 9-4.21 103

The following table lists which primitive topology types support the presence of Cut Indices.

Definition Cut Index?

3DPRIM_POINTLIST Y

3DPRIM_LINELIST Y

3DPRIM_LINESTRIP Y

3DPRIM_TRILIST Y

3DPRIM_TRISTRIP Y

3DPRIM_TRIFAN

3DPRIM_QUADLIST

3DPRIM_QUADSTRIP

3DPRIM_LINELIST_ADJ Y

3DPRIM_LINESTRIP_ADJ Y

3DPRIM_TRILIST_ADJ Y

3DPRIM_TRISTRIP_ADJ Y

3DPRIM_TRISTRIP_REVERSE Y

3DPRIM_POLYGON

3DPRIM_RECTLIST N

3DPRIM_LINELOOP

3DPRIM_POINTLIST_BF Y

3DPRIM_LINESTRIP_CONT Y

3DPRIM_LINESTRIP_BF Y

3DPRIM_LINESTRIP_CONT_BF Y

3DPRIM_TRIFAN_NOSTIPPLE N

3DPRIM_PATCHLIST_n

3DSTATE_INDEX_BUFFER

Vertex Buffers (VB) State

The 3DSTATE_VERTEX_BUFFERS and 3DSTATE_VF_INSTANCING commands are used to define Vertex

Buffers (VBs) used in subsequent 3DPRIMITIVE commands.

Most input vertex data is sourced from memory-resident VBs. A VB is a 1D array of structures, where the

size of the structure as defined by the VB’s BufferPitch. VBs are accessed either as VERTEXDATA buffers

or INSTANCEDATA buffers, as defined by the InstancingEnable state in 3DSTATE_VF_INSTANCING. The

VB’s access type will determine whether the VF-computed VertexIndex or InstanceIndex is used to access

data in the VB.

Given that the RANDOM access mode of the 3DPRIMITIVE command utilizes an IB (possibly provided by

an application) to compute VB index values, VB definitions contain a MaxIndex value used to detect

accesses beyond the end of the VBs. Any access outside the extent of a VB returns 0.

104 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Register

3DSTATE_VERTEX_BUFFERS

VERTEX_BUFFER_STATE

VERTEXDATA Buffers – SEQUENTIAL Access

This section pertains to (a) 3DPRIMITIVE commands with VertexAccessType = SEQUENTIAL and (b) vertex

elements with InstancingEnable set to DISABLED. Instead of “VBState.StartingBufferAddress +

VBState.MaxIndex x VBState.BufferPitch”, the address of the byte immediately beyond the last valid byte

of the buffer is determined by “VBState.StartingBufferAddress + VBState.BufferSize”.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 105

VERTEXDATA Buffers – RANDOM Access

This section pertains to (a) 3DPRIMITIVE commands with VertexAccessType = RANDOM and (b) vertex

elements with InstancingEnable set to DISABLED. Instead of “VBState.StartingBufferAddress +

VBState.MaxIndex x VBState.BufferPitch”, the address of the byte immediately beyond the last valid byte

of the buffer is determined by “VBState.StartingBufferAddress + VBState.BufferSize”.

106 Doc Ref # IHD-OS-LKF-Vol 9-4.21

INSTANCEDATA Buffers

This section pertains to vertex elements with InstancingEnable set to ENABLED. Instead of

“VBState.StartingBufferAddress + VBState.MaxIndex x VBState.BufferPitch”, the address of the byte

immediately beyond the last valid byte of the buffer is determined by “VBState.StartingBufferAddress +

VBState.BufferSize”.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 107

Vertex Definition State

The following subsections define the state information for vertex data and describe some related

processing.

Input Vertex Definition

The 3DSTATE_VERTEX_ELEMENTS command is used to define the source and format of input vertex data

and the format of how it is stored in the destination VUE as part of 3DPRIMITIVE processing in the VF

unit.

Two additional commands are added. 3DSTATE_VF_INSTANCING specifies the InstanceStepRate on a

per-vertex-element basis. 3DSTATE_VF_SGVS specifies optional insertion of VertexID and/or InstanceID

into the input vertex data (logically following the processing of the VERTEX_ELEMENT_STATE structures).

Refer to 3DPRIMITIVE Processing below for the general flow of how input vertices are input and stored

during processing of the 3DPRIMITIVE command.

Register

VERTEX_ELEMENT_STATE

3DSTATE_VERTEX_ELEMENTS

3D_Vertex_Component_Control

3DSTATE_VF_INSTANCING

3DSTATE_VF_SGVS

3DSTATE_VF_SGVS_2

3DSTATE_VF_COMPONENT_PACKING

3D Primitive Command

Following are 3D Primitive Commands:

3DPRIMITIVE

3D Primitive Topology Type Encoding

The following table defines the encoding of the Primitive Topology Type field. See 3D Pipeline for details,

programming restrictions, diagrams, and a discussion of the basic primitive types.

3D_Prim_Topo_Type

Functions

This section covers the various functions for Vertex Fetch.

108 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Input Assembly

The VF’s InputAssembly function includes (for each vertex generated):

• Generation of VertexIndex and InstanceIndex for each vertex, possibly via use of an Index Buffer.

• Lookup of the VertexIndex in the Vertex Cache (if enabled)

• If a cache miss is detected:

• Use of computed indices to fetch data from memory-resident vertex buffers

• Format conversion of the fetched vertex data

• Assembly of the format conversion results (and possibly some internally generated data) to

form the complete “input” (raw) vertex

• Storing the input vertex data in a Vertex URB Entry (VUE) in the URB

• Output of the VUE handle of the input vertex to the VS stage

• If a cache hit is detected, the VUE handle from the Vertex Cache is passed to the VS stage (marked

as a cache hit to prevent any VS processing).

Vertex Assembly

The VF utilizes a number of VERTEX_ELEMENT state structures to define the contents and format of the

vertex data to be stored in Vertex URB Entries (VUEs) in the URB. See below for a detailed description of

the command used to define these structures (3DSTATE_VERTEX_ELEMENTS).

Each active VERTEX_ELEMENT structure defines up to 4 contiguous DWords of VUE data, where each

DWord is considered a “component” of the vertex element. The starting destination DWord offset of the

vertex element in the VUE is specified, and the VERTEX_ELEMENT structures must be defined with

monotonically increasing VUE offsets. For each component, the source of the component is specified.

The source may be a constant (0, 0x1, or 1.0f), a generated ID (VertexID, InstanceID or PrimitiveID), or a

component of a structure in memory (e.g,. the Y component of an XYZW position in memory). In the case

of a memory source, the Vertex Buffer sourcing the data, and the location and format of the source data

with that VB are specified.

The VF’s Vertex Assembly process can be envisioned as the VF unit stepping through the

VERTEX_ELEMENT structures in order, fetching and format-converting the source information (if memory

resident), and storing the results in the destination VUE.

The information supplied via the 3DSTATE_VF_SGVS command is also used to optionally insert VertexID

and/or InstanceID into the input vertex data, after the VERTEX_ELEMENT structures are processed.

Vertex Cache

The VF stage communicates with the VS stage in order to implement a Vertex Cache function in the 3D

pipeline. The Vertex Cache is strictly a performance-enhancing feature and has no impact on 3D pipeline

results (other than a few statistics counters).

The Vertex Cache contains the VUE handles of VS-output (shaded) vertices if the VS function is enabled,

and the VUE handles of VF-output (raw) vertices if the VS function is disabled. (Note that the actual

Doc Ref # IHD-OS-LKF-Vol 9-4.21 109

vertex data is held in the URB, and only the handles of the vertices are stored in the cache). In either case,

the contents of the cache (VUE handles) are tagged with the VertexIndex value used to fetch the input

vertex data. The rationale for using the VertexIndex as the tag is that (assuming no other state or

parameters change) a vertex with the same VertexIndex as a previous vertex will have the same input

data, and therefore the same result from the VF+VS function.

Note that any change to the state controlling the InputAssembly function (e.g., vertex buffer definition),

or any change to the state controlling the VS function (if enabled) (e.g., VS kernel), will result in the

Vertex Cache being invalidated. In addition, any non-trivial use of instancing (i.e., more than one instance

per 3DPRIMITIVE command and the inclusion of instance data in the input vertex) will effectively

invalidate the cache between instances, as the InstanceIndex is not included in the cache tag. See Vertex

Caching in Vertex Shader for more information on the Vertex Cache (e.g., when it is implicitly disabled,

etc.)

The hardware interface to supply instancing state information is slightly different. Individual vertex

elements (instead of buffers) are tagged as instanced or not.

Input Data: Push Model vs. Pull Model

Given the programmability of the pipeline, and the ability of shaders to input (load/sample) data from

memory buffers in an arbitrary fashion, the decision arises in whether to push instance/vertex data into

the front of the pipeline or defer the data access (pull) to the shaders that require it. Modern APIs directly

support the latter model via auto-generated IDs in the Input Assembly function. An

incrementing VertexID, InstanceID, and PrimitiveID are generated in the Input Assembly process, and

these values can be declared as input to the “first enabled, relevant” shader. That shader can, for

example, use the HW-generated ID as an index into a memory resource such as a constant buffer or

vertex buffer. The 3D pipeline HW supports these IDs as required by the APIs.

There are tradeoffs involved in deciding between these models. For vertex data, it is probably always

better to push the data into the pipeline, as the VF hardware attempts to cover the latency of the data

fetch. The decision is less clear for instance data, as pushing instance data leads to larger Vertex URB

entries which will be holding redundant data (as the instance data for vertices of an object are by

definition the same). Regardless, the 3D pipeline supports both models.

Generated IDs

Note that the generated IDs are considered separate from any offset computations performed by the VF

unit, and are therefore described separately here.

The VF generates InstanceID, VertexID, and PrimitiveID values as part of the InputAssembly process.

VertexID and InstanceID are only allowed to be inserted into the input vertex data as it is gathered and

written into the URB as a VUE.

The definition/use of PrimitiveID is more complicated than the other auto-generated IDs. PrimitiveID is

associated with an “object” and not a particular vertex.

It is only available to the GS and HS as a special non-vertex input and the PS as a constant-interpolated

attribute. It is not seen by the VS or DS at all.

110 Doc Ref # IHD-OS-LKF-Vol 9-4.21

The PrimitiveID therefore is kept separate from the vertex data. Take for example a TRILIST primitive

topology: It should be possible to share vertices between triangles in the list (i.e., reuse the VS output of

a vertex), even though each triangle has a different PrimitiveID associated with it.

The optional insertion of VertexID and/or InstanceID into the input vertex data occurs as a separate step

after the processing of VERTEX_ELEMENT structures and is controlled via the 3DSTATE_VF_SGVS

command.

PrimitiveID is generated by hardware, plumbed down into the HS, GS and SF stages. It is passed along in

HS/GS thread payloads. Software can also select PrimitiveID to be swizzled into vertex attribute data in

the SF stage, though only if neither the HS nor GS stages are enabled.

3D Primitive Processing

Index Buffer Access

The following figure illustrates how the Index Buffer is accessed.

Vertex Element Data Path

The following diagram shows the path by which a vertex element within the destination VUE is generated

and how the fields of the VERTEX_ELEMENT_STATE structure is used to control the generation.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 111

112 Doc Ref # IHD-OS-LKF-Vol 9-4.21

FormatConversion

Once the VE source data has been fetched, it is subjected to format conversion. The output of format

conversion is up to 4 32-bit components, each either integer or floating-point (as specified by the

Source Element Format). See Sampler for conversion algorithms.

The following table lists the valid Source Element Format selections, along with the format and

availability of the converted components (if a component is listed as -, it cannot be used as the source of

a VUE component). Note: This table is a subset of the list of supported surface formats defined in the

Sampler chapter. Please refer to that table as the “master list”. This table is here only to identify the

components available (per format) and their format.

Source Element Formats Supported in VF Unit

Source Element Converted Component

Surface Format Name Format 0 1 2 3

R32G32B32A32_FLOAT FLOAT R G B A

R32G32B32A32_SINT SINT R G B A

R32G32B32A32_UINT UINT R G B A

R32G32B32A32_UNORM FLOAT R G B A

R32G32B32A32_SNORM FLOAT R G B A

R64G64_FLOAT FLOAT R G - -

R32G32B32A32_SSCALED FLOAT R G B A

R32G32B32A32_USCALED FLOAT R G B A

R32G32B32A32_SFIXED FLOAT R G B A

R64G64_PASSTHRU NONE R G - -

R32G32B32_FLOAT FLOAT R G B -

R32G32B32_SINT SINT R G B -

R32G32B32_UINT UINT R G B -

R32G32B32_UNORM FLOAT R G B -

R32G32B32_SNORM FLOAT R G B -

R32G32B32_SSCALED FLOAT R G B -

R32G32B32_USCALED FLOAT R G B -

R32G32B32_SFIXED FLOAT R G B -

R16G16B16A16_UNORM FLOAT R G B A

R16G16B16A16_SNORM FLOAT R G B A

R16G16B16A16_SINT SINT R G B A

R16G16B16A16_UINT UINT R G B A

R16G16B16A16_FLOAT FLOAT R G B A

R32G32_FLOAT FLOAT R G - -

R32G32_SINT SINT R G - -

Doc Ref # IHD-OS-LKF-Vol 9-4.21 113

Source Element Converted Component

R32G32_UINT UINT R G - -

R32G32_UNORM FLOAT R G - -

R32G32_SNORM FLOAT R G - -

R64_FLOAT FLOAT R - - -

R16G16B16A16_SSCALED FLOAT R G B A

R16G16B16A16_USCALED FLOAT R G B A

R32G32_SSCALED FLOAT R G - -

R32G32_USCALED FLOAT R G - -

R32G32_SFIXED FLOAT R G - -

R64_PASSTHRU NONE R - - -

B8G8R8A8_UNORM FLOAT B G R A

R10G10B10A2_UNORM FLOAT R G B A

R10G10B10A2_UINT UINT R G B A

R10G10B10_SNORM_A2_UNORM FLOAT R G B A

R8G8B8A8_UNORM FLOAT R G B A

R8G8B8A8_SNORM FLOAT R G B A

R8G8B8A8_SINT SINT R G B A

R8G8B8A8_UINT UINT R G B A

R16G16_UNORM FLOAT R G - -

R16G16_SNORM FLOAT R G - -

R16G16_SINT SINT R G - -

R16G16_UINT UINT R G - -

R16G16_FLOAT FLOAT R G - -

B10G10R10A2_UNORM FLOAT R G B A

R11G11B10_FLOAT FLOAT R G B -

R32_SINT SINT R - - -

R32_UINT UINT R - - -

R32_FLOAT FLOAT R - - -

R32_UNORM FLOAT R - - -

R32_SNORM FLOAT R - - -

R10G10B10X2_USCALED FLOAT R G B -

R8G8B8A8_SSCALED FLOAT R G B A

R8G8B8A8_USCALED FLOAT R G B A

R16G16_SSCALED FLOAT R G - -

R16G16_USCALED FLOAT R G - -

R32_SSCALED FLOAT R - - -

R32_USCALED FLOAT R - - -

114 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Source Element Converted Component

R8G8_UNORM FLOAT R G - -

R8G8_SNORM FLOAT R G - -

R8G8_SINT SINT R G - -

R8G8_UINT UINT R G - -

R16_UNORM FLOAT R - - -

R16_SNORM FLOAT R - - -

R16_SINT SINT R - - -

R16_UINT UINT R - - -

R16_FLOAT FLOAT R - - -

R8G8_SSCALED FLOAT R G - -

R8G8_USCALED FLOAT R G - -

R16_SSCALED FLOAT R - - -

R16_USCALED FLOAT R - - -

R8_UNORM FLOAT R - - -

R8_SNORM FLOAT R - - -

R8_SINT SINT R - - -

R8_UINT UINT R - - -

R8_SSCALED FLOAT R - - -

R8_USCALED FLOAT R - - -

R8G8B8_UNORM FLOAT R G B -

R8G8B8_SNORM FLOAT R G B -

R8G8B8_SSCALED FLOAT R G B -

R8G8B8_USCALED FLOAT R G B -

R8G8B8_SINT SINT R G B -

R8G8B8_UINT UINT R G B -

R8G8B8_UINT UINT R G B -

R64G64B64A64_FLOAT FLOAT R G B A

R64G64B64_FLOAT FLOAT R G B A

R16G16B16_FLOAT FLOAT R G B -

R16G16B16_UNORM FLOAT R G B -

R16G16B16_SNORM FLOAT R G B -

R16G16B16_SSCALED FLOAT R G B -

R16G16B16_USCALED FLOAT R G B -

R16G16B16_UINT UINT R G B -

R16G16B16_SINT SINT R G B -

R32_SFIXED FLOAT R - - -

R10G10B10A2_SNORM FLOAT R G B A

Doc Ref # IHD-OS-LKF-Vol 9-4.21 115

Source Element Converted Component

R10G10B10A2_USCALED FLOAT R G B A

R10G10B10A2_SSCALED FLOAT R G B A

R10G10B10A2_SINT SINT R G B A

B10G10R10A2_SNORM FLOAT R G B A

B10G10R10A2_USCALED FLOAT R G B A

B10G10R10A2_SSCALED FLOAT R G B A

B10G10R10A2_UINT UINT R G B A

B10G10R10A2_SINT SINT R G B A

R64G64B64A64_PASSTHRU NONE R G B A

R64G64B64_PASSTHRU NONE R G B -

DestinationFormatSelection

The Component Select 0..3 bits are then used to select, on a per-component basis, which destination

components will be written and with which value. The supported selections are the converted source

component, VertexID, InstanceID, PrimitiveID, the constants 0 or 1.0f, or nothing (VFCOMP_NO_STORE). If

a converted component is listed as ‘-‘ (not available) in the "Source Element Formats" table (above). It

must not be selected (via VFCOMP_STORE_SRC), or an UNPREDICTABLE value will be stored in the

destination component.

The selection process sequences from component 0 to 3. Once a Component Select of

VFCOMP_NO_STORE is encountered, all higher-numbered Component Select settings must also be

programmed as VFCOMP_NO_STORE. It is therefore not permitted to have ‘holes’ in the destination VE.

Dangling Vertex Removal

The last functional stage of processing of the 3DPRIMITIVE command is the removal of “dangling”

vertices. This stage includes the discarding of primitive topologies without enough vertices for a single

object (e.g., a TRISTRIP with only two vertices), as well as the discarding of trailing vertices that do not

form a complete primitive (e.g., the last two vertices of a 5-vertex TRILIST). 3D APIs typically require these

vertices to be (effectively) discarded before the VS stage.

Statistics Gathering

This function is best described as a filter operating on the vertex stream emitted from the processing of

the 3DPRIMITIVE. The filter inputs the PrimType, PrimStart, and PrimEnd values associated with the

generated vertices. The filter only outputs primitive topologies without dangling vertices. This requires

the filter to (a) be able to buffer some number of vertices, and (b) be able to remove dangling vertices

from the pipeline and dereference the associated VUE handles.

3DSTATE_VF_STATISTICS

116 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Vertices Generated

VF will increment the IA_VERTICES_COUNT Register (see Memory Interface Registers in Volume Ia, GPU)

for each vertex it fetches, even if that vertex comes from a cache rather than directly from a vertex buffer

in memory. Any “dangling” vertices (fetched vertices that are part of an incomplete object) will not be

included.

Objects Generated

VF will increment the IA_PRIMITIVES_COUNT Register (see Memory Interface Registers in vol1a System

Overview) for each object (point, line, triangle, or quadrilateral) that it forwards down the pipeline.

For LINELOOP, the last (closing) line object is counted.

Vertex Shader (VS) Stage

The Vertex Shader (VS) stage of the 3D Pipeline is used to perform processing (“shading”) of vertices

after they are assembled and written to the URB by the VF function. The primary function of the VS stage

is to pass vertices that miss in the VS Cache to VS threads, and then pass the VS thread-generated

vertices down the pipeline. Vertices that hit in the VS Cache have already been shaded and are therefore

passed down the pipeline unmodified.

When the VS stage is disabled, vertices flow through the unit unmodified (i.e., as written by the VF unit).

State

Register

3DSTATE_VS

3DSTATE_CONSTANT_VS

3DSTATE_PUSH_CONSTANT_ALLOC_VS

3DSTATE_BINDING_TABLE_POINTERS_VS

3DSTATE_SAMPLER_STATE_POINTERS_VS

3DSTATE_URB_VS

Functions

Vertex Shader Cache (VS$)

Note: The VS$ should not be confused with input data caches used by the VF stage when fetching data

from index or vertex buffers in memory.

The 3D Pipeline employs a Vertex Shader Cache (VS$) that is shared between the VF and VS stages. (See

Vertex Fetch chapter for additional information). The vertex index generated by the VF stage is used as

the cache tag. The cached data contains the URB handle of a VUE, which in turn typically contains the

vertex data output from a previously-executed VS shader, though if the VS function is disabled the VUE

will contain the input vertex data generated by the VF stage.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 117

When the VF stage processes a vertex, it will first perform a lookup in the VS$. If the vertex hits in the

VS$, the VS stage will return the hit VUE handle to the VF stage, and the VF stage will subsequently pass

the returned VUE handle back down the FF pipeline to VS. If the vertex misses in the VS$ (or always, if the

VS$ is disabled), the VS stage will allocate a VUE handle for the miss vertex and return this to the VF

stage. The VF stage will then proceed to fetch/generate the input vertex data, store the results into the

VUE, and then pass the VUE down to the VS stage. If the VS function is enabled, the VUE handle/data will

be used as input to a VS shader thread, and that thread will overwrite the VUE with the shader results.

The VS$ may be explicitly DISABLED via the Vertex Cache Disable bit in 3DSTATE_VS. Even when explicitly

ENABLED, the VS stage will (by default) implicitly disable the VS$ whenever it detects one of the

following conditions:

Sequential indices are used in the 3DPRIMITIVE command (though this is effectively a don’t care as there

would not be any VS$ hits).

The implicit disable persists as long as one of these conditions persist, after which the VS$ is invalidated.

The VS$ is implicitly invalidated between 3DPRIMITIVE commands and between instances within a

3DPRIMITIVE command – therefore use of InstanceID in a Vertex Element is not a condition under which

the cache is implicitly disabled.

The following table summarizes the modes of operation of the VS$.

VS$

VS

Function

Enable Mode of Operation

DISABLED

(implicitly or

explicitly)

DISABLED
The VS$ is not used. VF stage assembles all vertices and writes them into the VUE

supplied by the VS stage. VS stage subsequently passes references to these VUEs

down the pipeline without spawning any VS threads.

Usage Model: This is an exceptional condition, only required for (when the VF-

generated vertices contain PrimitiveID. Otherwise the VS$ should be enabled.

ENABLED
The VS$ is not used. VF stage assembles all vertices and writes them into the VUE

supplied by the VS stage. VS stage subsequently spawns VS threads to process all

vertices, overwriting the input data with the results. The VS stage pass references to

these VUEs down the pipeline.

Usage Model: This mode is only used when the VS function is required, but either (a)

the VS kernel produces a side effect (e.g., writes to a memory buffer) which in turn

requires every vertex to be processed by a VS thread, or (b) the input vertex contains

PrimitiveID.

ENABLED DISABLED
The VS$ is used to provide reuse of VF-generated vertices. The VF stage checks the

cache and only processes (assembles/writes) vertices that miss in the VS$. In either

case, the VS stage passes references to vertices (that hit or miss) down the pipeline

without spawning any VS threads.

Usage Model: Normal operation when the VS function is not required (e.g., SW has

detected a VS shader that simply copies outputs to inputs).

118 Doc Ref # IHD-OS-LKF-Vol 9-4.21

VS$

VS

Function

Enable Mode of Operation

ENABLED
The VS$ is used to provide reuse of VS-processed vertices. The VF stage checks the

cache and only processes (assembles/writes) vertices that miss in the VS$. The VS

stage only processes (shades) the vertices that missed in the VS$. The VS stage sends

references to hit or missed vertices down the pipeline in the correct order.

Usage Model: Normal operation when the VS function is required and use of the VS$

is permissible.

VS Thread Dispatch Masks

The VS stage controls the initial value loaded into the EU's Dispatch Mask state register as part of thread

dispatch.

SIMD8 Dispatch Mask

In SIMD8 dispatch mode, the EU Dispatch Mask is initialized as a function of the number of vertices included in the

thread dispatch, as follows:

• 1 vertex: 0x00000001

• 2 vertices: 0x00000003

• 3 vertices: 0x00000007

• 4 vertices: 0x0000000F

• 5 vertices: 0x0000001F

• 6 vertices: 0x0000003F

• 7 vertices: 0x0000007F

8 vertices: 0x000000FF

Vertex Output

VS threads must always write the destination URB entries whose handles are passed in the thread

payload. Refer to Vertex Data Overview for details on any required contents/formats.

Thread Termination

VS threads must signal thread termination, in all likelihood on the last message output to the URB shared

function. Refer to the ISA doc for details on End-Of-Thread indication.

Primitive Output

The VS unit will produce an output vertex reference for every input vertex reference received from the VF

unit, in the order received. The VS unit simply copies the PrimitiveType, StartPrim, and EndPrim

information associated with input vertices to the output vertices and does not use this information in any

way. Neither does the VS unit perform any readback of URB data.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 119

Statistics Gathering

The VS stage tracks a single pipeline statistic, the number of times a vertex shader is executed. A vertex

shader is executed for each vertex that is fetched on behalf of a 3DPRIMITIVE command, unless the

shaded results for that vertex are already available in the vertex cache. If the Statistics Enable bit in

VS_STATE is set, the VS_INVOCATION_COUNT Register (see Memory Interface Registers in Volume Ia,

GPU) will be incremented for each vertex that is dispatched to a VS thread.

When VS Function Enable is DISABLED and Statistics Enable is ENABLED, VS_INVOCATION_COUNT

increments by one for every vertex that passes through the VS stage, even though no VS threads are

spawned.

Payloads

SIMD8 Payload

The following table describes the payload delivered to VS threads.

SIMD8 VS Thread Payload

DWord Bits Description

R0.7 31

30:0 Reserved

R0.6 31:24 Reserved

23:0
Thread ID. This field uniquely identifies this thread within the threads spawned by this FF unit,

over some period of time.

Format: Reserved for HW Implementation Use.

R0.5 31:10 Description

Scratch Space Offset. Specifies the offset of the scratch space allocated to the thread, specified

as a 1KB-granular offset from the General State Base Address. See Scratch Space Base Offset

description in VS_STATE.

(See 3D Pipeline for further description on scratch space allocation).

Format = GeneralStateOffset[31:10]

R0.5 9:0 Description

FFTID: This ID is assigned by the FF unit and used to identify the thread within the set of

outstanding threads spawned by the FF unit.

Reserved for HW Implementation Use.

Format: U10

Range: 0-727

120 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bits Description

R0.4 31:5
Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table. It is specified

as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

4:0
Reserved

R0.3 31:5
Sampler State Pointer. Specifies the location of the Sampler State Table to be used by this

thread, specified as a 32-byte granular offset from the General State Base Address or Dynamic

State Base Address.

Format = DynamicStateOffset[31:5]

4 Description

Single Instance. If set, all valid vertices included in the thread payload come from the same

instance of a 3DPRIMITIVE command. Otherwise the vertices come from more than one

instance. When SIMD8SingleInstanceDispatchEnable is ENABLED, this bit will (by definition)

always be set.

3:0 Description

Per Thread Scratch Space. Specifies the amount of scratch space allowed to be used by this

thread. The value specifies the power that two is raised to (over determine the amount of

scratch space).

(See 3D Pipeline for further description.)

Format = U4 power of two (in excess of 10)

Range = [0,11] indicating [1K Bytes, 2M Bytes]

R0.2 :

R0.0

31:0 Reserved: MBZ

R1.7 31:0 Vertex 7 URB Return Handle (see R1.0)

R1.6 31:0 Vertex 6 URB Return Handle (see R1.0)

R1.5 31:0 Vertex 5 URB Return Handle (see R1.0)

R1.4 31:0 Vertex 4 URB Return Handle (see R1.0)

R1.3 31:0 Vertex 3 URB Return Handle (see R1.0)

R1.2 31:0 Vertex 2 URB Return Handle (see R1.0)

R1.1 31:0 Vertex 1 URB Return Handle (see R1.0)

R1.0 31:16 Reserved

 15:0
Vertex 0 URB Return Handle. This is the offset within the URB where Vertex 0 is to be stored.

Format: 64B-granular offset into the URB

Doc Ref # IHD-OS-LKF-Vol 9-4.21 121

DWord Bits Description

[Varies]

optional

255:0
Constant Data (optional):

 Please refer to the Push Constants chapter in the General Programming of Thread-Generating

Stages section for more details on size and source of constant data.

Vertex Data:

Input data for the 8 input vertices is located here. Vertex0 data is passed in DW0 of these GRFs,

and Vertex 7 data is passed in DW7. The first GRF contains Element 0 Component 0 for all 8

vertices, followed by components 1-3 in the three subsequent GRFs. This is followed by GRFs

containing Element 1, and so on, up to the number of elements specified by Vertex URB Read

Length. Note that the maximum limit is 30 elements per vertex, though the practical limiit

imposed by the compiler is likely lower.

Rv.7 31:0 Vertex 7 Element 0 Component 0

Rv.6 31:0 Vertex 6 Element 0 Component 0

Rv.5 31:0 Vertex 5 Element 0 Component 0

Rv.4 31:0 Vertex 4 Element 0 Component 0

Rv.3 31:0 Vertex 3 Element 0 Component 0

Rv.2 31:0 Vertex 2 Element 0 Component 0

Rv.1 31:0 Vertex 1 Element 0 Component 0

Rv.0 31:0 Vertex 0 Element 0 Component 0

Rv+1.7 31:0 Vertex 7 Element 0 Component 1

Rv+1.6 31:0 Vertex 6 Element 0 Component 1

Rv+1.5 31:0 Vertex 5 Element 0 Component 1

Rv+1.4 31:0 Vertex 4 Element 0 Component 1

Rv+1.3 31:0 Vertex 3 Element 0 Component 1

Rv+1.2 31:0 Vertex 2 Element 0 Component 1

Rv+1.1 31:0 Vertex 1 Element 0 Component 1

Rv+1.0 31:0 Vertex 0 Element 0 Component 1

.. Vertex 0-7 Element 0 Component 2,3

.. Vertex 0-7 Element 1 Component 0-3

.. Vertex 0-7 Element 2-N Component 0-3

Hull Shader (HS) Stage

The Hull Shader (HS) stage of the pipeline is used to process patchlist (PATCHLIST_n) topologies in

support of higher-order surface (HOS) tessellaton. If the HS stage is enabled, each incoming patch object

is processed by a possible series of HS threads. The combined output of these threads is a Patch URB

Entry (“patch record”) written to the URB. This patch record is used by subsequent stages (TE, DS) to

complete the HOS tessellation operations.

122 Doc Ref # IHD-OS-LKF-Vol 9-4.21

The vertices associated with patchlist primitives are also referred to as “Input Control Points” (ICPs) to

contrast them with any “Output Control Points” the HS threads may write to the patch record. (The

definition and use of OCPs are outside the scope of this document).

The HS stage also performs statistics counting. Incomplete topologies do not reach the HS stage.

The HS, TE, and DS stages must be enabled and disabled together. When these stages are disabled, all

topologies (including patchlist topologies) simply pass through to the GS stage. When these stages are

enabled, only patchlist topologies should be issued to the pipeline, otherwise behavior is UNDEFINED.

State

This section contains the state registers for the Hull Shader

Register

3DSTATE_HS

3DSTATE_PUSH_CONSTANT_ALLOC_HS

3DSTATE_CONSTANT_HS

3DSTATE_CONSTANT(Body)

3DSTATE_BINDING_TABLE_POINTERS_HS

3DSTATE_SAMPLER_STATE_POINTERS_HS

3DSTATE_URB_HS

Functions

Patch Object Staging

The HS unit accepts patchlist topologies as a stream of incoming vertices. Depending on the number of

vertices per patch object (as specified by the PATCHLIST_n topology), the HS thread assembles each

complete patch object and passes it (its vertices, PrimitiveID, etc.) to HS thread(s) as described below.

HS Thread Execution

Input to HS threads is comprised of:

• Input Control Points (incoming patch vertices), pushed into the payload and/or passed indirectly

via URB handles.

• Push Constants (common to all threads)

• Patch Data handle

• Resources available via binding table entries (accessed through shared functions)

• Miscellaneous payload fields (Instance Number, etc.)

Typically, the only output of the HS threads is the Patch URB Entry (patch record). All thread instances for

an input patch are passed the same patch record handle. As the (possibly concurrent) threads can both

read and write the patch record, it is up to the kernels to ensure deterministic results. One approach

would be to use the thread’s Instance Number as an index for URB write destinations.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 123

HS Thread Dispatch Mask

The HS stage controls the initial value loaded into the EU's Dispatch Mask state register as part of thread

dispatch.

SINGLE_PATCH Dispatch Mask

In SINGLE_PATCH mode, the EU Dispatch Mask is initialized at thread dispatch to 0x000000FF.

8_PATCH Dispatch Mask

In 8_PATCH mode, the EU Dispatch Mask is initialized as a function of the number of patches included in

the thread dispatch, as follows:

• 1 patch: 0x00000001

• 2 patches 0x00000003

• 3 patches: 0x00000007

• 4 patches: 0x0000000F

• 5 patches: 0x0000001F

• 6 patches: 0x0000003F

• 7 patches: 0x0000007F

8 patches: 0x000000FF

Patch URB Entry (Patch Record) Output

For each patch, the HS thread(s) generate a single patch record, starting with a fixed 32B Patch Header.

When the final thread instance terminates, the patch record handle is passed down the pipeline to the

Tessellation Engine (TE).

124 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Patch Header DW0-7

The first 8 DWords of the patch record is defined as a “Patch Header”. The Patch Header is written by an

HS thread and read by the TE stage. It normally contains up to six Tessellation Factors (TFs) that

determine how finely the TE stage needs to tessellate a domain (if at all).

The following tables show the fixed layouts of the Patch Header DW0-7, depending on DomainType.

Patch Header (QUAD Domain)

DWord Bits Description

7 31:0 UEQ0 Tessellation Factor

 Format: FLOAT32

6 31:0 VEQ0 Tessellation Factor

 Format: FLOAT32

5 31:0 UEQ1 Tessellation Factor

 Format: FLOAT32

4 31:0 VEQ1 Tessellation Factor

 Format: FLOAT32

3 31:0 Inside U Tessellation Factor

 Format: FLOAT32

2 31:0 Inside V Tessellation Factor

 Format: FLOAT32

1 31:0 Reserved : MBZ

0 31:1 Reserved : MBZ

 0 Description

Reserved: MBZ

Doc Ref # IHD-OS-LKF-Vol 9-4.21 125

Patch Header (TRI Domain)

DWord Bits Description

7 31:0 UEQ0 Tessellation Factor

 Format: FLOAT32

6 31:0 VEQ0 Tessellation Factor

 Format: FLOAT32

5 31:0 WEQ0 Tessellation Factor

 Format: FLOAT32

4 31:0 Inside Tessellation Factor

 Format: FLOAT32

3-1 31:0 Reserved : MBZ

0 31:1 Reserved : MBZ

 0 Description

Reserved: MBZ

Patch Header (ISOLINE Domain)

DWord Bits Description

7 31:0 Line Detail Tessellation Factor

 Format: FLOAT32

6 31:0 Line Density Tessellation Factor

 Format: FLOAT32

5-0 31:0 Reserved : MBZ

Statistics Gathering

HS Invocations

The HS unit controls the HS_INVOCATIONS counter, which counts the number of patches processed by

the HS stage.

Payloads

SINGLE_PATCH Payload

The following table shows the layout of the payload delivered to HS threads. Refer to 3D Pipeline Stage

Overview (3D Pipeline) for details on those fields that are common amongst the various pipeline stages.

Patch object vertex (ICP) data can be passed by value (data pushed in the payload) and/or by reference

(URB handle pushed in the payload).

126 Doc Ref # IHD-OS-LKF-Vol 9-4.21

SINGLE_PATCH HS Thread Payload

GRF

DWord Bits Description

R0.7 31

30:0 Reserved.

R0.6 31
Dereference Thread

This bit is defined to send back the Handle ID back to HS to dereference the input handles for

this thread.

30:24 Reserved.

23:0
Thread ID. This field uniquely identifies this thread within the threads spawned by this FF unit,

over some period of time.

Format: Reserved for HW Implementation Use.

R0.5 31:10
Scratch Space Pointer. Specifies the location of the scratch space allocated to this thread,

specified as a 1KB-aligned offset from the General State Base Address.

Format = GeneralStateOffset[31:10]

9:0
FFTID. This ID is assigned by the fixed function unit and is relative identifier for the thread. It is

used to free up resources used by the thread upon thread completion.

Format: Reserved for HW Implementation Use.

R0.4 31:5
Binding Table Pointer: Specifies the 32-byte aligned pointer to the Binding Table. It is specified

as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

4:0 Reserved.

R0.3 31:5
Sampler State Pointer. Specifies the location of the Sampler State Table to be used by this

thread, specified as a 32-byte granular offset from the General State Base Address or Dynamic

State Base Address.

Format = DynamicStateOffset[31:5]

4 Reserved.

3:0
Per Thread Scratch Space. Specifies the amount of scratch space allowed to be used by this

thread. The value specifies the power that two will be raised to (over determine the amount of

scratch space).

Programming Notes:

This amount is available to the kernel for information only. It is passed verbatim (if not altered

by the kernel) to the Data Port in any scratch space access messages, but the Data Port ignores

it.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 127

GRF

DWord Bits Description

Format = U4 power of two (in excess of 10)

Range = [0,11] indicating [1K Bytes, 2M Bytes]

R0.2 31 Reserved: MBZ.

30:24 BarrierID. This field identifies which barrier was allocated for this thread.

Format: U7

Range = [0,63]

23 Reserved.

22:16 Instance Number. A patch-relative instance number between 0 and InstanceCount-1.

Format = U7

15:0 Reserved.

R0.1 31:0
Primitive ID. This field contains the Primitive ID associated with the patch.

Format: U32

R0.0 31:16 Reserved.

15:0
Patch Data Record URB Return Handle.

Format:

Format

U14 64B-aligned URB offset.

R1 is only included for dispatches that have Include Vertex Handles enabled.

R1.7 31:16 Reserved.

15:0 ICP 7 Handle

Format:

Format

U14 64B-aligned URB offset.

R1.6 31:16 Reserved.

15:0 ICP 6 Handle

R1.5 31:16 Reserved.

15:0 ICP 5 Handle

R1.4 31:16 Reserved.

15:0 ICP 4 Handle

R1.3 31:16 Reserved.

15:0 ICP 3 Handle

128 Doc Ref # IHD-OS-LKF-Vol 9-4.21

GRF

DWord Bits Description

R1.2 31:16 Reserved.

15:0 ICP 2 Handle

R1.1 31:16 Reserved.

15:0 ICP 1 Handle

R1.0 31:16 Reserved.

15:0 ICP 0 Handle

R2 is only included for dispatches that have Include Vertex Handles enabled and when ICP Count >7

R2.7 31:16 Reserved.

15:0 ICP 15 Handle

R2.6 31:16 Reserved.

15:0 ICP 14 Handle

R2.5 31:16 Reserved.

15:0 ICP 13 Handle

R2.4 31:16 Reserved.

15:0 ICP 12 Handle

R2.3 31:16 Reserved.

15:0 ICP 11 Handle

R2.2 31:16 Reserved.

15:0 ICP 10 Handle

R2.1 31:16 Reserved.

15:0 ICP 9 Handle

R2.0 31:16 Reserved.

15:0 ICP 8 Handle

R3 is only included for dispatches that have Include Vertex Handles enabled and when ICP Count >15

R3.7 31:16 Reserved.

15:0 ICP 23 Handle

R3.6 31:16 Reserved.

15:0 ICP 22 Handle

R3.5 31:16 Reserved.

15:0 ICP 21 Handle

R3.4 31:16 Reserved.

15:0 ICP 20 Handle

R3.3 31:16 Reserved.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 129

GRF

DWord Bits Description

15:0 ICP 19 Handle

R3.2 31:16 Reserved.

15:0 ICP 18 Handle

R3.1 31:16 Reserved.

15:0 ICP 17 Handle

R3.0 31:16 Reserved.

15:0 ICP 16 Handle

R4 is only included for dispatches that have Include Vertex Handles enabled and when ICP Count >23

R4.7 31:16 Reserved.

15:0 ICP 31 Handle

R4.6 31:16 Reserved.

15:0 ICP 30 Handle

R4.5 31:16 Reserved.

15:0 ICP 29 Handle

R4.4 31:16 Reserved.

15:0 ICP 28 Handle

R4.3 31:16 Reserved.

15:0 ICP 27 Handle

R4.2 31:16 Reserved.

15:0 ICP 26 Handle

R4.1 31:16 Reserved.

15:0 ICP 25 Handle

R4.0 31:16 Reserved.

15:0 ICP 24 Handle

[Varies]

optional

255:0
Constant Data (optional):

 Please refer to the Push Constants chapter in the General Programming of Thread-

Generating Stages section for more details on size and source of constant data.

[Varies]

optional

255:0
ICP Vertex Data (optional):

There can be up to 32 vertices supplied, each with a size defined by the Vertex URB Entry Read

Length state.

Vertex 0 DWord 0 is located at Rn.0, Vertex 0 DWord 1 is located at Rn.1, etc. Vertex 1 DWord

0 immediately follows the last DWord of Vertex 0, and so on.

130 Doc Ref # IHD-OS-LKF-Vol 9-4.21

8_PATCH Payload

The following table shows the layout of the payload delivered to HS threads. Refer to 3D Pipeline Stage

Overview (3D Pipeline) for details on those fields that are common amongst the various pipeline stages.

Patch object vertex (ICP) data can be passed by value (data pushed in the payload) and/or by reference

(URB handle pushed in the payload).

8_PATCH HS Thread Payload

GRF

DWord Bits Description

R0.7 31 Reserved

30:0 Reserved

R0.6 31:24 Reserved

23:0
Thread ID. This field uniquely identifies this thread within the threads spawned by this FF unit,

over some period of time.

Format: Reserved for HW Implementation Use.

R0.5 31:10
Scratch Space Pointer. Specifies the location of the scratch space allocated to this thread,

specified as a 1KB-aligned offset from the General State Base Address.

Format = GeneralStateOffset[31:10]

9 Reserved

8:0
FFTID. This ID is assigned by the fixed function unit and is a relative identifier for the thread. It is

used to free up resources used by the thread upon thread completion.

Format: Reserved for Implementation Use

R0.4 31:5
Binding Table Pointer: Specifies the 32-byte aligned pointer to the Binding Table. It is specified

as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

4:0 Reserved

R0.3 31:5
Sampler State Pointer. Specifies the location of the Sampler State Table to be used by this

thread, specified as a 32-byte granular offset from the Dynamic State Base Address.

Format = DynamicStateOffset[31:5]

4 Reserved

3:0
Per Thread Scratch Space.

Specifies the amount of scratch space allowed to be used by this thread. The value specifies the

power that two will be raised to (over determine the amount of scratch space).

Programming Notes:This amount is available to the kernel for information only. It will be passed

verbatim (if not altered by the kernel) to the Data Port in any scratch space access messages, but

Doc Ref # IHD-OS-LKF-Vol 9-4.21 131

GRF

DWord Bits Description

the Data Port will ignore it.

Format = U4 power of two (in excess of 10) Range = [0,11] indicating [1K Bytes, 2M Bytes]

R0.2 31 Reserved: MBZ.

30:24 BarrierID. This field identifies which barrier was allocated for this thread.

Format: U7

Range = [0,63]

23 Reserved

22:16 Instance Number. A patch-relative instance number between 0 and InstanceCount-1.

Format = U7

15:0 Reserved

R0.1-R0.0 31:0 Reserved

R1.7 31:0 URB Return Handle for Patch 7 (See R1.0)

R1.6 31:0 URB Return Handle for Patch 6 (See R1.0)

R1.5 31:0 URB Return Handle for Patch 5 (See R1.0)

R1.4 31:0 URB Return Handle for Patch 4 (See R1.0)

R1.3 31:0 URB Return Handle for Patch 3 (See R1.0)

R1.2 31:0 URB Return Handle for Patch 2 (See R1.0)

R1.1 31:0 URB Return Handle for Patch 1 (See R1.0)

R1.0 31:16 Reserved

 15:0
URB Return Handle 0: This is the offset of the Patch 0’s URB entry, where shading results are to

be written.

Format: U16 64B-aligned URB Offset

The following register is included only if Include PrimitiveID is enabled.

R2.7 31:0
Primitive ID 7. This field contains the Primitive ID associated with Patch 7

Format: U32

R2.6 31:0
Primitive ID 6. This field contains the Primitive ID associated with Patch 6

Format: U32

R2.5 31:0
Primitive ID 5. This field contains the Primitive ID associated with Patch 5

Format: U32

R2.4 31:0
Primitive ID 4. This field contains the Primitive ID associated with Patch 4

132 Doc Ref # IHD-OS-LKF-Vol 9-4.21

GRF

DWord Bits Description

Format: U32

R2.3 31:0
Primitive ID 3. This field contains the Primitive ID associated with Patch 3

Format: U32

R2.2 31:0
Primitive ID 2. This field contains the Primitive ID associated with Patch 2

Format: U32

R2.1 31:0
Primitive ID 1. This field contains the Primitive ID associated with Patch 1

Format: U32

R2.0 31:0
Primitive ID 0. This field contains the Primitive ID associated with Patch 0

Format: U32

The following registers are included only if Include Vertex Handles is enabled

Rn.7 31:16 Reserved

 15:0 Patch 7 ICP 0 Handle

Rn.6 31:16 Reserved

 15:0 Patch 6 ICP 0 Handle

Rn.5 31:16 Reserved

 15:0 Patch 5 ICP 0 Handle

Rn.4 31:16 Reserved

 15:0 Patch 4 ICP 0 Handle

Rn.3 31:16 Reserved

 15:0 Patch 3 ICP 0 Handle

Rn.2 31:16 Reserved

 15:0 Patch 2 ICP 0 Handle

Rn.1 31:16 Reserved

 15:0 Patch 1 ICP 0 Handle

Rn.0 31:16 Reserved

 15:0 Patch 0 ICP 0 Handle

[Rn+1] 255:0 ICP 1 Handle for Patches 0-7

[Rn+2] 255:0 ICP 2 Handle for Patches 0-7

... ...

[Rn+31] 255:0 ICP 31 Handle for Patches 0-7

[Varies]

optional

255:0
Constant Data (optional):

 Please refer to the Push Constants chapter in the General Programming of Thread-Generating

Doc Ref # IHD-OS-LKF-Vol 9-4.21 133

GRF

DWord Bits Description

Stages section for more details on size and source of constant data.

Varies
Pushed Vertex Data (optional)

Input data for the 8 patches is located here. Patch 0 (starting with Vertex 0 of Patch 0) data is

passed in DW0 of these GRFs, and Patch 7 data is passed in DW7. The first GRF contains Vertex 0

Element 0 Component 0 for all 8 patches, followed by components 1-3 in the three subsequent

GRFs. This is followed by GRFs containing Vertex 0 Element 1 (if it exists), and so on, up to the

number of Vertex 0 elements specified by Vertex URB Read Length. This is followed by the data

for Vertex 1 for all patches (if it exists), and so on until all relevant vertices are passed.

Programming Note

Context: 8_PATCH Payload - Pushed Vertex Data

The amount of data passed is limited by the number of GRFs supported by EUs. Software is

responsible for comprehending this limit and resorting to the pull model as required.

Rv.7 31:0 Patch 7 Vertex 0 Element 0 Component 0

Rv.6 31:0 Patch 6 Vertex 0 Element 0 Component 0

Rv.5 31:0 Patch 5 Vertex 0 Element 0 Component 0

Rv.4 31:0 Patch 4 Vertex 0 Element 0 Component 0

Rv.3 31:0 Patch 3 Vertex 0 Element 0 Component 0

Rv.2 31:0 Patch 2 Vertex 0 Element 0 Component 0

Rv.1 31:0 Patch 1 Vertex 0 Element 0 Component 0

Rv.0 31:0 Patch 0 Vertex 0 Element 0 Component 0

Rv+1 31:0 Patch 0-7 Vertex 0 Element 0 Component 1

... and so on...

Tessellation Engine (TE) Stage

When enabled, the Tessellation Engine (TE) stage performs tessellation of incoming patches

(decomposition of patches into a set of smaller geometric objects, such as triangles or points). Patches

are also subjected to a Patch Cull test prior to tessellation. Culled patches are immediately discarded. The

TE stage is entirely fixed-function and does not spawn threads.

Patches are specified via URB handles output by the preceding Hull Shader stage. These handles

reference Patch URB Entry data written into the URB by HS shaders. The tessellation process is

controlled by TE state and Tessellation Factors (TFs) read from the Patch URB Entries.

The fixed-function tessellation algorithm is considered an implementation detail and is therefore beyond

the scope of this document. That detail includes both the order of output topologies as well as the order

of vertices (domain points) within the output topologies. Only a high-level overview is provided to

describe how the (few) state variables can be used to control aspects of tessellation behavior. The

134 Doc Ref # IHD-OS-LKF-Vol 9-4.21

implementation will generate deterministic results (given the same exact inputs it will produce exactly the

same outputs).

Several domain types (QUAD, TRI, and ISOLINE) are supported. Depending on the domain type, the TE

stage outputs the required point/line/triangle topologies including a domain point per vertex. These

topologies will be output to the DS stage, where the domain points will be converted to 3D object

vertices, resulting in 3D objects as typically input to the 3D pipeline when HOS tessellation is not used.

When tessellation is disabled, all topologies (including patchlist topologies) simply pass through to the

GS stage. When tessellation is enabled, only patchlist topologies should be issued to the pipeline, else

behavior is UNDEFINED. The MI_TOPOLOGY_FILTER command can be used to ensure this happens, i.e., it

can be used to have the Command Stream ignore 3DPRIMITIVE commands that do not match a specific

topology type.

Enabling tessellation is accomplished by enabling the HS/TE/DS stages in specific combinations. Those

valid combinations are described in the table below.

Valid Tessellation Enabled Configurations

To enable tessellation, the HS, TE, and DS stages must be enabled and disabled together. Other configurations will

result in behavior that is UNDEFINED.

State

This section contains the state registers for the Tessellation Engine.

3DSTATE_TE

Functions

Patch Culling

Normally, if any “outside” TF is <= 0.0 or NaN, the entire patch is culled at the TE stage.

Inside TFs are not used to cull patches.

Tessellation Factor Limits

After the Patch Culling test is performed, the TessFactors undergo a min() clamp to either the

MaxTessFactorOdd (for FRACTIONAL_ODD partitioning) or MaxTessFactorNotOdd (for

FRACTIONAL_EVEN or INTEGER partitioning). Exception: If the ISOLINE domain is specified, the

LineDensity TessFactor will be clamped to the MaxFactorNotOdd value even if FRACTIONAL_ODD

partitioning is specified).

Doc Ref # IHD-OS-LKF-Vol 9-4.21 135

Partitioning

The Partitioning state controls how the TFs are used to divide their corresponding edges.

Partitioning

Mode Definition

INTEGER
The edge is divided into an integral number of equal segments (given some fixed-point

tolerance).

After clamping, the TF is rounded up to an integer value. The edge is divided into that many

equal segments.

EVEN_FRACTIONAL
The edge is divided into an even number of possibly unequal segments. The total number of

segments is determined by rounding up the post-clamped TF to an even number.

More specifically, the edge is divided exactly in half. Like the endpoints of the edge, the

midpoint of the edge is by definition a tessellation point. Each half contains some number of

equal segments and possibly one smaller segment. The size of the smaller segment is

determined by the position of the TF value within the range defined by the TF rounded down

and up to even numbers. The closer the TF is to the smaller value, the smaller the segment size

is. When the TF reaches the smaller even value, the smaller segment disappears. The closer the

TF gets to the larger even value, the closer the smaller segment size approaches the size of the

other segments. When the TF reaches the larger even value, all segments are equal. The

position of the smaller segment along the half edge varies as a function of the TF value.

ODD_FRACTIONAL
The edge is divided into an odd number of possibly unequal segments.

The tessellation scheme is very similar to EVEN_FRACTIONAL partitioning, except that the edge

midpoint is not included as a tessellation point. This, and the fact that the tessellation points

are mirrored about the edge midpoint, causes an “odd” segment (which may or may not be

the “smaller” segment) to straddle the edge midpoint, therefore resulting in the number of

segments for the edge always being odd.

136 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Domain Types and Output Topologies

The major (if only) task of the TE stage is to tessellate a 2D (u,v) domain region, as selected by the

Domain state, into some number of 2D object topologies. (If the patch is culled, that number may be

zero). The options for Domain state are:

• QUAD: A square 2D region within a u,v Cartesian (rectangular) space. The region extends from the

origin to u=1 and v=1. Within the region, tessellation domain locations are determined. The

possible output topologies include points, clockwise triangles, and counter-clockwise triangles.

• TRI: A triangular 2D region with u,v,w barycentric (areal) coordinates. The three edges correspond

to u=0, v=0, and w=0 boundaries. In barycentric coordinates, w = 1 – u – v, therefore points within

the region are fully defined as 2D (u,v) coordinates. Within the region, tessellation domain

locations are determined. The possible output topologies include points, clockwise triangles, and

counter-clockwise triangles.

• ISOLINE: A series of points within a QUAD domain, where the points lie on lines parallel to the u

axis and extending from [0,1) in the v direction. Either the segmented lines (linestrips) or individual

point topologies can be output.

QUAD Domain Tessellation

The four “outside” TFs (TF.UEQ0, TF.VEQ0, TF.UEQ1, TF.VEQ1) are used to specify the level of tessellation

along the four corresponding edges of the 2D quad domain. The two “inside” TFs (TF.InsideU, TF.InsideV)

are used to determine the level of tessellation within a 2D “interior” region. Typically the interior region

appears as a “regularly-tessellated 2D grid”, however under certain conditions the interior region may

collapse in which case only the outside TFs are relevant.

In general, a transition region exists between each edge of the interior region and the corresponding

outside edge. The topologies generated for these regions effectively “stitch together” locations along the

outside and inside edges, as each of these edges can contain a different number of tessellated segments.

In the case where all TFs in a given direction (e.g., TF.VEQ0, TF.InsideU, and TF.VEQ1) are the same value,

it appears as if the regularly-tessellated interior region extends all the way to the outside edges. If this

condition simultaneously exists for both u and v directions, the entire domain will appear to be

tessellated into a regular grid, with no noticeable transition regions.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 137

QUAD Domain

TRI Domain Tessellation

Tessellation of the TRI domain is similar to the QUAD domain, except only three outside edges/TFs are

used, and the tessellation of the interior region is controlled by a single TF.

138 Doc Ref # IHD-OS-LKF-Vol 9-4.21

TRI Domain

ISOLINE Domain Tessellation

Tessellation of the ISOLINE domain is different but much simpler than QUAD and TRI domains. The

TF.LineDetail TF controls how finely the U direction is tessellated, while the TF.LineDensity TF controls

how finely the V direction is tessellated. When LINE output topology is selected, a series of segmented

lines parallel to the U axis (constant V) are output. When POINT output topology is selected, only the line

segment endpoints are output (as point objects). In either case there is no topology output for the V=1

edge, which avoids overlapping lines for adjacent patches.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 139

ISOLINE Domain

Domain Shader (DS) Stage

The DS stage is very similar to the VS stage in that it is responsible for dispatching EU threads to shade

vertices and maintaining a cache (with reference counts) of the shaded vertex outputs of these threads.

Major differences are as follows:

• The DS receives topologies with “domain points” instead of vertices. The only data specific to a

domain point are its U,V coordinates. These coordinates (plus a default or computed W

coordinate) are passed directly in the DS thread payload. There is no other vertex-specific “input

vertex data”.

• The concatenation of the domain point U,V coordinates (vs. a vertex index) is used as the cache

tag.

• The cache is invalidated between patches.

The DS stage accepts state information via the inline 3DSTATE_DS command.

State

This section contains the state registers for the Domain Shader.

Register

3DSTATE_DS

3DSTATE_PUSH_CONSTANT_ALLOC_DS

3DSTATE_CONSTANT_DS

3DSTATE_CONSTANT(Body)

3DSTATE_BINDING_TABLE_POINTERS_DS

140 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Register

3DSTATE_SAMPLER_STATE_POINTERS_DS

3DSTATE_URB_DS

Functions

DUAL_PATCH Thread Execution

When Dispatch Mode is set to SIMD8_SINGLE_OR_DUAL_PATCH mode, both the KSP and DUAL_PATCH

KSP kernels are enabled. The DS stage decides whether to spawn a SINGLE_PATCH (KSP) or DUAL_PATCH

thread dynamically, based on the number of domain points associated with patches. (See

Implementation Note below).

• The KSP kernel operates exactly like when SIMD8_SINGLE_PATCH mode is set. Up to 8 domain

points for a single patch are processed by the DS thread, which operates in SIMD8 fashion.

• The DUAL KSP kernel uses a hybrid SIMD8 execution mode. The 8 execution channels are divided

into 4 upper channels associated with Patch 1, and 4 lower channels associated with Patch 0. Patch

data is passed in SIMD4x2 layout, with Patch 1 data (Primitive ID, pushed URB data) in the upper 4

channels, and Patch 0 data in the lower 4 channels. The kernel operates much like

SIMD8_SINGLE_PATCH mode, though it needs to access the appropriate SIMD4 patch data.

Implementation Note: Kernel selection is as follows: If a patch requires more than 4 domain points to

be shaded, SIMD8_SINGLE_PATCH threads are spawned until 4 or fewer domain points remain. These

domain points (if any exist) are held pending until the next patch is received. Likewise, if a patch requires

4 or fewer total domain points, those domain points are held pending. In either case, if the subsequent

patch requires 4 or fewer domain points to be shaded, a SIMD8_DUAL_PATCH thread is spawned to

shade both sets of 4 or fewer domain points. If the subsequent patch requires more than 4 domain

points, the (4 or fewer) buffered domain points of the previous patch are shaded via a

SIMD8_SINGLE_PATCH thread, and the cycle continues.

Statistics Gathering

The DS stage maintains the DS_INVOCATIONS statistics counter, which counts the number of incoming

domain points, irrespective of cache hit/miss. Note that this is different than VS_INVOCATIONS, which

counts shader invocations and therefore doesn’t count cache hits.

Payloads

SIMD8 Payload

The following table describes the payload delivered to DS threads.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 141

DS Thread Payload (SIMD8)

DWord Bits Description

R0.7 31 Reserved

30:0 Reserved

R0.6 31:24 Reserved

23:0
Thread ID. This field uniquely identifies this thread within the threads spawned by this FF

unit, over some period of time.

Format: Reserved for HW Implementation Use.

R0.5 31:10
Scratch Space Offset. Specifies the offset of the scratch space allocated to the thread,

specified as a 1KB-granular offset from the General State Base Address. See Scratch Space

Base Offset description in VS_STATE.

(See 3D Pipeline for further description on scratch space allocation).

Format = GeneralStateOffset[31:10]

9:0
FFTID. This ID is assigned by the FF unit and used to identify the thread within the set of

outstanding threads spawned by the FF unit.

Format: Reserved for HW Implementation Use.

R0.4 31:5
Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table. It is

specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

4:0 Reserved

R0.3 31:5
Sampler State Pointer. Specifies the location of the Sampler State Table to be used by this

thread, specified as a 32-byte granular offset from the General State Base Address or Dynamic

State Base Address.

Format = DynamicStateOffset[31:5]

4 Reserved

3:0
Per Thread Scratch Space. Specifies the amount of scratch space allowed to be used by this

thread. The value specifies the power that two will be raised to (over determine the amount of

scratch space).

Format = U4 power of two (in excess of 10)

Range = [0,11] indicating [1K Bytes, 2M Bytes]

R0.2 31:0 Reserved: delivered as zeros (reserved for message header fields)

R0.1 31:0
PrimitiveID. This is the 32-bit PrimitiveID value associated with the patch. It is common to all

output domain points resulting from the tessellation of the patch.

142 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bits Description

Format: U32

R0.0 31:27 Reserved

26:16 Description

Reserved

15:0
Patch URB Offset. This is the offset within the URB where the patch data is stored.

Format: U14 64B-granular offset into the URB

R1.7 31:0 Domain Point 7 U Coordinate. (See Domain Point 0 U Coordinate.)

R1.6 31:0 Domain Point 6 U Coordinate. (See Domain Point 0 U Coordinate.)

R1.5 31:0 Domain Point 5 U Coordinate. (See Domain Point 0 U Coordinate.)

R1.4 31:0 Domain Point 4 U Coordinate. (See Domain Point 0 U Coordinate.)

R1.3 31:0 Domain Point 3 U Coordinate. (See Domain Point 0 U Coordinate.)

R1.2 31:0 Domain Point 2 U Coordinate. (See Domain Point 0 U Coordinate.)

R1.1 31:0 Domain Point 1 U Coordinate. (See Domain Point 0 U Coordinate.)

R1.0 31:0
Domain Point 0 U Coordinate. U coordinate associated with Domain Point 0.

Format: FLOAT32

R2.7 31:0 Domain Point 7 V Coordinate. (See Domain Point 0 V Coordinate.)

R2.6 31:0 Domain Point 6 V Coordinate. (See Domain Point 0 V Coordinate.)

R2.5 31:0 Domain Point 5 V Coordinate. (See Domain Point 0 V Coordinate.)

R2.4 31:0 Domain Point 4 V Coordinate. (See Domain Point 0 V Coordinate.)

R2.3 31:0 Domain Point 3 V Coordinate. (See Domain Point 0 V Coordinate.)

R2.2 31:0 Domain Point 2 V Coordinate. (See Domain Point 0 V Coordinate.)

R2.1 31:0 Domain Point 1 V Coordinate. (See Domain Point 0 V Coordinate.)

R2.0 31:0
Domain Point 0 V Coordinate. V coordinate associated with Domain Point 0.

Format: FLOAT32

R3.7 31:0 Domain Point 7 W Coordinate. (See Domain Point 0 W Coordinate.)

R3.6 31:0 Domain Point 6 W Coordinate. (See Domain Point 0 W Coordinate.)

R3.5 31:0 Domain Point 5 W Coordinate. (See Domain Point 0 W Coordinate.)

R3.4 31:0 Domain Point 4 W Coordinate. (See Domain Point 0 W Coordinate.)

R3.3 31:0 Domain Point 3 W Coordinate. (See Domain Point 0 W Coordinate.)

R3.2 31:0 Domain Point 2 W Coordinate. (See Domain Point 0 W Coordinate.)

R3.1 31:0 Domain Point 1 W Coordinate. (See Domain Point 0 W Coordinate.)

R3.0 31:0
Domain Point 0 W Coordinate. If Compute W Coordinate Enable is set, this field will receive

the computed value (1 – U – V) for Domain Point 0. Otherwise it is passed as 0.0.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 143

DWord Bits Description

Format: FLOAT32

R4.7 31:0 Domain Point 7 URB Return Handle. (See R4.0.)

R4.6 31:0 Domain Point 6 URB Return Handle. (See R4.0.)

R4.5 31:0 Domain Point 5 URB Return Handle. (See R4.0.)

R4.4 31:0 Domain Point 4 URB Return Handle. (See R4.0.)

R4.3 31:0 Domain Point 3 URB Return Handle. (See R4.0.)

R4.2 31:0 Domain Point 2 URB Return Handle. (See R4.0.)

R4.1 31:0 Domain Point 1 URB Return Handle. (See R4.0.)

R4.0 31:16 Reserved

15:0
Domain Point 0 URB Return Handle. This is the offset within the URB where domain point 0

is to be stored.

Format: U14 64B-granular offset into the URB

[Varies]

optional

255:0
Constant Data (optional):

 Please refer to the Push Constants chapter in the General Programming of Thread-

Generating Stages section for more details on size and source of constant data.

Varies

[Optional]

255:0
Patch URB Data (optional).

Some amount of Patch Data (possible none) can be extracted from the URB and passed to the

thread in this location in the payload. The amount of data provided is defined by the Patch

URB Entry Read Length state (3DSTATE_DS).

144 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DUAL_PATCH Payload

The following table describes the payload delivered to DS threads.

DUAL_PATCH DS Thread Payload (SIMD8)

DWord Bits Description

R0.7 31:0 Reserved

R0.6 31:24 Reserved

23:0
Thread ID. This field uniquely identifies this thread within the threads spawned by this FF unit,

over some period of time.

Format: Reserved for HW Implementation Use.

R0.5 31:10
Scratch Space Offset. Specifies the offset of the scratch space allocated to the thread,

specified as a 1KB-granular offset from the General State Base Address. See Scratch Space

Base Offset description in VS_STATE.

(See 3D Pipeline for further description on scratch space allocation).

Format = GeneralStateOffset[31:10]

9:0
FFTID. This ID is assigned by the FF unit and used to identify the thread within the set of

outstanding threads spawned by the FF unit.

Format: Reserved for HW Implementation Use.

R0.4 31:5
Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table. It is

specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

4:0 Reserved

R0.3 31:5
Sampler State Pointer. Specifies the location of the Sampler State Table to be used by this

thread, specified as a 32-byte granular offset from the General State Base Address or Dynamic

State Base Address.

Format = DynamicStateOffset[31:5]

4 Reserved

3:0
Per Thread Scratch Space. Specifies the amount of scratch space allowed to be used by this

thread. The value specifies the power that two will be raised to (over determine the amount of

scratch space).

Format = U4 power of two (in excess of 10)

Range = [0,11] indicating [1K Bytes, 2M Bytes]

R0.2 31:0 Reserved: delivered as zeros (reserved for message header fields)

Doc Ref # IHD-OS-LKF-Vol 9-4.21 145

DWord Bits Description

R0.1 31:27 Reserved

26:16 Description

Reserved

15:0
Patch 1 URB Offset. This is the offset within the URB where the Patch 1 data is stored.

Format: U16 64B-granular offset into the URB

R0.0 31:27 Reserved

26:16 Description

Reserved

15:0
Patch 0 URB Offset. This is the offset within the URB where the Patch 0 data is stored.

Format: U16 64B-granular offset into the URB

R1.5-7 31:0 Reserved

R1.4 31:0
Patch 1 PrimitiveID. This is the 32-bit PrimitiveID value associated with Patch 1.

Format: U32

R1.1-3 31:0 Reserved

R1.0 31:0
Patch 0 PrimitiveID. This is the 32-bit PrimitiveID value associated with Patch 0.

Format: U32

R2.7 31:0 Patch 1 Domain Point 3 U Coordinate. (See R2.0.)

R2.6 31:0 Patch 1 Domain Point 2 U Coordinate. (See R2.0.)

R2.5 31:0 Patch 1 Domain Point 1 U Coordinate. (See R2.0.)

R2.4 31:0 Patch 1 Domain Point 0 U Coordinate. (See R2.0.)

R2.3 31:0 Patch 0 Domain Point 3 U Coordinate. (See R2.0.)

R2.2 31:0 Patch 0 Domain Point 2 U Coordinate. (See R2.0.)

R2.1 31:0 Patch 0 Domain Point 1 U Coordinate. (See R2.0.)

R2.0 31:0
Patch 0 Domain Point 0 U Coordinate. U coordinate associated with Domain Point 0 of Patch

0.

Format: FLOAT32

R3.7 31:0 Patch 1 Domain Point 3 V Coordinate. (See R3.0.)

R3.6 31:0 Patch 1 Domain Point 2 V Coordinate. (See R3.0.)

R3.5 31:0 Patch 1 Domain Point 1 V Coordinate. (See R3.0.)

R3.4 31:0 Patch 1 Domain Point 0 V Coordinate. (See R3.0.)

R3.3 31:0 Patch 0 Domain Point 3 V Coordinate. (See R3.0.)

R3.2 31:0 Patch 0 Domain Point 2 V Coordinate. (See R3.0.)

146 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bits Description

R3.1 31:0 Patch 0 Domain Point 1 V Coordinate. (See R3.0.)

R3.0 31:0
Patch 0 Domain Point 0 V Coordinate. V coordinate associated with Domain Point 0.

Format: FLOAT32

R4.7 31:0 Patch 1 Domain Point 3 W Coordinate. (See R4.0.)

R4.6 31:0 Patch 1 Domain Point 2 W Coordinate. (See R4.0.)

R4.5 31:0 Patch 1 Domain Point 1 W Coordinate. (See R4.0.)

R4.4 31:0 Patch 1 Domain Point 0 W Coordinate. (See R4.0.)

R4.3 31:0 Patch 0 Domain Point 3 W Coordinate. (See R4.0.)

R4.2 31:0 Patch 0 Domain Point 2 W Coordinate. (See R4.0.)

R4.1 31:0 Patch 0 Domain Point 1 W Coordinate. (See R4.0.)

R4.0 31:0
Patch 0 Domain Point 0 W Coordinate. If Compute W Coordinate Enable is set, this field will

receive the computed value (1 – U – V) for Domain Point 0. Otherwise it is passed as 0.0.

Format: FLOAT32

R5.7 31:0 Patch 1 Domain Point 3 URB Return Handle. (See R5.0.)

R5.6 31:0 Patch 1 Domain Point 2 URB Return Handle. (See R5.0.)

R5.5 31:0 Patch 1 Domain Point 1 URB Return Handle. (See R5.0.)

R5.4 31:0 Patch 1 Domain Point 0 URB Return Handle. (See R5.0.)

R5.3 31:0 Patch 0 Domain Point 3 URB Return Handle. (See R5.0.)

R5.2 31:0 Patch 0 Domain Point 2 URB Return Handle. (See R5.0.)

R5.1 31:0 Patch 0 Domain Point 1 URB Return Handle. (See R5.0.)

R5.0 31:16 Reserved

15:0
Patch 0 Domain Point 0 URB Return Handle. This is the offset within the URB where Patch 0

Domain Point 0 is to be stored.

Format: U16 64B-granular offset into the URB

[Varies]

optional

255:0
Constant Data (optional):

 Please refer to the Push Constants chapter in the General Programming of Thread-

Generating Stages section for more details on size and source of constant data.

Patch 0,1 URB Data follows (optional).

This data is read from the URB and pushed in the payload. The amount of data provided for

each patch (which may be 0) is defined by the Patch URB Entry Read Length state

(3DSTATE_DS). The data is read from the URB starting at the Patch URB Entry Read Offset into

each patch, so leading data with the Patch URB entries can be skipped over.

Patch 1 data is passed in the upper 128 bits, while Patch 0 data is passed in the lower 128 bits.

This is similar to how URB data is pushed into SIMD4x2 kernels (VS, GS, etc.).

Doc Ref # IHD-OS-LKF-Vol 9-4.21 147

DWord Bits Description

[Varies]

optional

255:128 Patch 1 URB Data.

127:0 Patch 0 URB Data.

Geometry Shader (GS) Stage

GS Stage Overview

The GS stage of the 3D Pipeline converts objects within incoming primitives into new primitives through

use of a spawned thread. When enabled, the GS unit buffers incoming vertices, assembles the vertices of

each individual object within the primitives, and passes those object vertices (along with other data) to

the graphics subsystem for processing by a GS thread.

When the GS stage is disabled, vertices flow through the unit unmodified.

Refer to the Common 3D FF Unit Functions subsection in the 3D Pipeline chapter for a general

description of a 3D Pipeline stage, as much of the GS stage operation and control falls under these

“common” functions. I.e., most stage state variables and GS thread payload parameters are described in

3D Pipeline, and although they are listed here for completeness, that chapter provides the detailed

description of the associated functions.

Refer to this chapter for an overall description of the GS stage, and any exceptions the GS stage exhibits

with respect to common FF unit functions.

State

This section contains the state registers for the Geometry Shader.

Registers

3DSTATE_GS (The state used by GS is defined with this inline state packet.)

3DSTATE_CONSTANT_GS

3DSTATE_CONSTANT(Body)

3DSTATE_PUSH_CONSTANT_ALLOC_GS

3DSTATE_BINDING_TABLE_POINTERS_GS

3DSTATE_SAMPLER_STATE_POINTERS_GS

3DSTATE_URB_GS

Functions

Object Staging

The GS unit’s Object Staging Buffer (OSB) accepts primitive topologies as a stream of incoming vertices,

and spawns a thread for each individual object within the topology.

148 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Thread Request Generation

Object Vertex Ordering

The following table defines the number and order of object vertices passed in the Vertex Data portion of

the GS thread payload, assuming an input topology with N vertices. The ObjectType passed to the thread

is, by default, the incoming PrimTopologyType. Exceptions to this rule (for the TRISTRIP variants) are

called out.

The following table also shows which vertex is selected to provide PrimitiveID (bold, underlined vertex

number). In general, the vertex selected is the last vertex for non-adjacent prims, and the next-to-last

vertex for adjacent prims. Note, however, that there are exceptions:

• reorder-enabled TRISTRIP[_REV], TRISTRIP_ADJ

• “odd-numbered” objects in TRISTRIP_ADJ

PrimTopologyType

Order of Vertices in

Payload

GS Notes

<PRIMITIVE_TOPOLOGY>

(N = # of vertices)

[<object#>] =

(<vert#>,…); [{modified

PrimType passed to

thread}]

POINTLIST
[0] = (0);

[1] = (1); …;

[N-2] = (N-2);

POINTLIST_BF N/A

LINELIST

 (N is multiple of 2)
[0] = (0,1);

[1] = (2,3); …;

[(N/2)-1] = (N-2,N-1)

LINELIST_ADJ

 (N is multiple of 4)
[0] = (0,1,2,3);

[1] = (4,5,6,7); …;

[(N/4)-1)] = (N-4,N-3,N-

2,N-1)

LINESTRIP

 (N >= 2)
[0] = (0,1);

[1] = (1,2); …;

[N-2] = (N-2,N-1)

LINESTRIP_ADJ,

LINESTRIP_ADJ_CONT

 (N >= 4)

[0] = (0,1,2,3);

[1] = (1,2,3,4); …;

LINESTRIP_ADJ_CONT is added. LINESTRIP_ADJ_CONT is

generated by the Vertex Fetch unit on a restore of a mid-

draw pre-empted 3DPRIMITIVE.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 149

PrimTopologyType

Order of Vertices in

Payload

GS Notes

<PRIMITIVE_TOPOLOGY>

(N = # of vertices)

[<object#>] =

(<vert#>,…); [{modified

PrimType passed to

thread}]

[N-4] = (N-4,N-3,N-2,N-1)

LINESTRIP_BF N/A

LINESTRIP_CONT Same as LINESTRIP Handled same as LINESTRIP

LINESTRIP_CONT_BF N/A

LINELOOP

 (N >= 2)
[0] = (0,1);

[1] = (1,2);

[N] = (N-1,0);

Not supported after GS.

TRILIST

 (N is multiple of 3)
[0] = (0,1,2);

[1] = (3,4,5); …;

[(N/3)-1] = (N-3,N-2,N-1)

RECTLIST,

RECTLIST_SUBPIXEL

Same as TRILIST Handled same as TRILIST

TRILIST_ADJ

 (N is multiple of 6)
[0] = (0,1,2,3,4,5);

[1] = (6,7,8,9,10,11); …;

[(N/6)-1] = (N-6,N-5,N-

4,N-3,N-2,N-1)

TRISTRIP (Reorder Leading)

 (N >= 3)
[0] = (0,1,2); {TRISTRIP}

[1] = (1,3,2);

{TRISTRIP_REV}

[k even] = (k,k+1,k+2)

{TRISTRIP}

[k odd] = (k,k+2,k+1)

{TRISTRIP_REV}

[N-3] = (see above)

“Odd” triangles have vertices reordered and identified as

TRISTRIP to inform the thread.

TRISTRIP (Reorder Trailing)

 (N >= 3)
[0] = (0,1,2) {TRISTRIP}

[1] = (2,1,3)

{TRISTRIP_REV}; …

[k even] = (k,k+1,k+2)

{TRISTRIP}

“Odd” triangles have vertices reordered and identified as

TRISTRIP_REV to inform the thread.

150 Doc Ref # IHD-OS-LKF-Vol 9-4.21

PrimTopologyType

Order of Vertices in

Payload

GS Notes

<PRIMITIVE_TOPOLOGY>

(N = # of vertices)

[<object#>] =

(<vert#>,…); [{modified

PrimType passed to

thread}]

[k odd] = (k+1,k,k+2)

{TRISTRIP_REV}

[N-3] = (see above)

TRISTRIP_REV (Reorder

Leading)

(N >= 3)

[0] = (0,2,1)

{TRISTRIP_REV};

[1] = (1,2,3) {TRISTRIP}; …;

[k even] = (k,k+2,k+1)

{TRISTRIP_REV}

[k odd] = (k,k+1,k+2)

{TRISTRIP}

[N-3] = (see above)

“Even” triangles have vertices reordered and identified as

TRISTRIP to inform the thread.

TRISTRIP_REV (Reorder

Trailing)

(N >= 3)

[0] = (1,0,2)

{TRISTRIP_REV}

[1] = (1,2,3) {TRISTRIP}; …;

[k even] = (k+1,k,k+2,)

{TRISTRIP_REV}

[k odd] = (k,k+1,k+2)

{TRISTRIP}

[N-3] = (see above)

“Even” triangles have vertices reordered and identified as

TRISTRIP_REV to inform the thread.

TRISTRIP_ADJ (Reorder

Leading)

(N >= 6)

N = 6 or 7:

[0] = (0,1,2,5,4,3)

N = 8 or 9:

[0] = (0,1,2,6,4,3);

[1] = (2,5,6,7,4,0); …;

N >= 10:

[0] = (0,1,2,6,4,3);

[1] = (2,5,6,8,4,0); …;

[k>1, even] = (2k,2k-2,

2k+2, 2k+6,2k+4, 2k+3);

[k>2, odd] = (2k, 2k+3,

Objects have vertices reordered.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 151

PrimTopologyType

Order of Vertices in

Payload

GS Notes

<PRIMITIVE_TOPOLOGY>

(N = # of vertices)

[<object#>] =

(<vert#>,…); [{modified

PrimType passed to

thread}]

2k+4, 2k+6, 2k+2, 2k-

2);…;

Trailing object:

[(N/2)-3, even] = (N-6,N-

8,N-4,N-1,N-2,N-3);

[(N/2)-3, odd] = (N-6,N-

3,N-2,N-1,N-4,N-8);

TRISTRIP_ADJ (Reorder

Trailing)

(N >= 6)

N = 6 or 7:

[0] = (0,1,2,5,4,3)

N = 8 or 9:

[0] = (0,1,2,6,4,3);

[1] = (4,0,2,5,6,7); …;

N >= 10:

[0] = (0,1,2,6,4,3);

[1] = (4,0,2,5,6,8); …;

[k>1, even] = (2k,2k-2,

2k+2, 2k+6,2k+4, 2k+3);

[k>2, odd] = (2k+2, 2k-2,

2k, 2k+3, 2k+4, 2k+6);…;

Trailing object:

[(N/2)-3, even] = (N-6,N-

8,N-4,N-1,N-2,N-3);

[(N/2)-3, odd] = (N-4,N-

8,N-6,N-3,N-2,N-1);

OpenGL ordering rules (last non-adjacent vertex is the

last – aka provoking – vertex of the triangle). Even

triangles have the same ordering as Leading Vertex, odd

triangle ordering is different (rotated 2 vertices).

TRIFAN

 (N > 2)
[0] = (0,1,2);

[1] = (0,2,3); …;

[N-3] = (0, N-2, N-1);

TRIFAN_NOSTIPPLE Same as TRIFAN

POLYGON, POLYGON_CONT Same as TRIFAN POLYGON_CONT is added, POLYGON_CONT is

generated by the Vertex Fetch unit on a restore of a mid-

draw pre-empted 3DPRIMITIVE.

152 Doc Ref # IHD-OS-LKF-Vol 9-4.21

PrimTopologyType

Order of Vertices in

Payload

GS Notes

<PRIMITIVE_TOPOLOGY>

(N = # of vertices)

[<object#>] =

(<vert#>,…); [{modified

PrimType passed to

thread}]

QUADLIST
[0] = (0,1,2,3);

[1] = (4,5,6,7); …;

[(N/4)-1] = (N-4,N-3,N-

2,N-1);

Not supported after GS.

QUADLIST primitives are converted into POLYGONS in

VF, and therefore never reach the GS.

QUADSTRIP
[0] = (0,1,3,2);

[1] = (2,3,5,4); … ;

[(N/2)-2] = (N-4,N-3,N-

1,N-2);

Not supported after GS.

QUADSTRIP primitives are converted into POLYGONS in

VF, and therefore never reach the GS.

PrimTopologyType Order of Vertices in Payload

PATCHLIST_1

PATCHLIST_2

PATCHLIST_3..32

[0] = (0);

[1] = (1); …;

[N-2] = (N-2);

[0] = (0,1);

[1] = (2,3); …;

[(N/2)-1] = (N-2,N-1)

similar to above

Doc Ref # IHD-OS-LKF-Vol 9-4.21 153

Thread Execution

A GS thread is capable of performing arbitrary algorithms given the thread payload (especially vertex)

data and associated data structures (binding tables, sampler state, etc.) as input. Output can take the

form of vertices output to the FF pipeline (at the GS unit) and/or data written to memory buffers via the

DataPort.

The primary usage models for GS threads include (possible combinations of):

• Compiled application-provided “GS shader” programs, specifying an algorithm to convert the

vertices of an input object into some output primitives. For example, a GS shader may convert lines

of a line strip into polygons representing a corresponding segment of a blade of grass centered on

the line. Or it could use adjacency information to detect silhouette edges of triangles and output

polygons extruding out from the those edges. Or it could output absolutely nothing, effectively

terminating the pipeline at the GS stage.

• Driver-generated instructions used to write pre-clipped vertices into memory buffers (see Stream

Output below). This may be required whether or not an app-provided GS shader is enabled.

• Driver-generated instructions used to emulate API functions not supported by specialized

hardware. These functions might include (but are not limited to):

• Conversion of API-defined topologies into topologies that can be rendered (e.g.,

LINELOOP➜LINESTRIP, POLYGON➜TRIFAN, QUADs➜TRIFAN, etc.)

• Emulation of “Polygon Fill Mode”, where incoming polygons can be converted to points,

lines (wireframe), or solid objects.

• Emulation of wide/sprite points.

When rendering is required, concurrent GS threads must use the FF_SYNC message (URB shared

function) to request an initial VUE handle and synchronize output of VUEs to the pipeline (see URB in

Shared Functions). Only one GS thread can be outputting VUEs to the pipeline at a time. To achieve

parallelism, GS threads should perform the GS shader algorithm (along with any other required

functions) and buffer results (either in the GRF or scratch memory) before issuing the FF_SYNC message.

The issuing GS thread is stalled on the FF_SYNC writeback until it is that thread’s turn to output VUEs. As

only one GS thread at a time can output VUEs, the post-FF_SYNC output portion of the kernel should be

optimized as much as possible to maximize parallelism.

Thread Execution

GS URB Entry

All outputs of a GS thread are stored in the single GS thread output URB entry. Cut (1 bit/vertex) or

StreamID (2 bits/vertex) bits are packed into an optional 1-8 32B header. The Control Data Format and

Control Data Header Size states specify the size and contents of the header data (if any).

154 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Following the optional header is a variable number of 16B or 32B-aligned/granular vertices:

• When rendering is DISABLED, typically output vertices are 32B-aligned, with the exception of 16B-

alignment for vertices <= 16B in length.

• The absolute worst case size comes from three DW scalars output per vertex. If these are,

say, three “.x” outputs, you need to store each DW in a 128b (16B) element, plus another pad

16B to keep the 32B alignment. So you require 4*16B = 64B/vertex. You have to have room

for 1024 scalars / 3 scalar/vtx = 341 vertices. 341*64B = 21,824B. Then add 96B to hold

2b/vtx streamID and you get 21,920B entries.

• When rendering is ENABLED, each output vertex is 32B-aligned. Here the vertex header and vertex

‘position’ are required and therefore the minimum size vertex is 32B.

• Here the worst case size isn’t as bad as render-disabled, as you have to have a 4DW position

output, plus any additional output. So, say you output 5 DW per vertex. You need 64B/vertex

(16B vtx header, 16B position, 16B for the 2nd element, and 16B of pad). You have to have

room for 1024 scalars / 5 = 204 vertices. 204*64 = 13,056B. Then add 64B to hold 2b/vtx

streamID and you get 13,120B entries.

The size of the URB entry should be based on the declared maximum # of output vertices and the

declared output vertex size (the union of per-stream vertex structures, if required).

GS URB Entry - Output Vertex Count

The GS URB entry is the same as in the two previous generations with the following exception: If Static

Output (3DSTATE_GS) is clear, the URB entry starts with a 32B OUTPUT_VERTEX_COUNT structure as

defined below. The control header (if present) immediately follows this structure. If Static Output is set,

the control header (if present) appears at the very start of the URB entry (as described above).

Doc Ref # IHD-OS-LKF-Vol 9-4.21 155

GS OUTPUT_VERTEX_COUNT

DWord Bit Description

7:6 31:0 Reserved

0 31:16 Reserved

15:0
Output Vertex Count. Indicates the number of vertices output from this GS shader invocation.

Format = U16

Range: [0:1024]

This structure (if present) increases the maximum URB entry sizes (described above) by 32B.

The following diagram illustrates the possible layouts of a GS URB Entry:

GS Output Topologies

The following table lists which primitive topology types are valid for output by a GS thread.

156 Doc Ref # IHD-OS-LKF-Vol 9-4.21

PrimTopologyType Supported for GS Thread Output?

LINELIST Yes

LINELIST_ADJ No

LINESTRIP Yes

LINESTRIP_ADJ No

LINESTRIP_BF No

LINESTRIP_CONT Yes

LINESTRIP_CONT_BF No

LINELOOP No

POINTLIST Yes

POINTLIST_BF No

POLYGON Yes

QUADLIST No

QUADSTRIP No

RECTLIST Yes

TRIFAN Yes

TRIFAN_NOSTIPPLE Yes

TRILIST Yes

TRILIST_ADJ No

TRISTRIP Yes

TRISTRIP_ADJ No

TRISTRIP_REV Yes

PATCHLIST_xxx Yes

GS Output StreamID

When the GS Enable is DISABLED, output vertices are assigned a StreamID = 0;

When the GS Enable is ENABLED, output vertices are assigned a StreamID = Default StreamID under

the following conditions:

• Control Data Header Size = 0, or

• Control Data Header Size > 0 and Control Data Format = GSCTL_CUT

When the GS is enabled, Control Data Header Size > 0 and Control Data Format = GSCTL_SID, output

vertices are assigned a StreamID as programmed in the Control Data output by the thread.

Primitive Output

(This section refers to output from the GS unit to the pipeline, not output from the GS thread)

The GS unit will output primitives (either passed-through or generated by a GS thread) in the proper

order. This includes the buffering of a concurrent GS thread’s output until the preceding GS thread

Doc Ref # IHD-OS-LKF-Vol 9-4.21 157

terminates. Note that the requirement to buffer subsequent GS thread output until the preceding GS

thread terminates has ramifications on determining the number of VUEs allocated to the GS unit and the

number of concurrent GS threads allowed.

Statistics Gathering

There are a number of GS/StreamOutput pipeline statistics counters associated with the GS stage and GS

threads. This subsection describes these counters and controls depending on device, even in the cases

where functions outside of the GS stage (e.g., DataPort) are involved in the statistics gathering.

Refer to the Statistics Gathering summary provided earlier in this specification. Refer to the Memory

Interface Registers chapter for details on these MMIO pipeline statistics counter registers, as well as the

chapters corresponding to the other functions involved (e.g., DataPort, URB shared functions).

Payloads

Thread Payload High-Level Layout

Thread Payload High-Level Layoutshows the high-level layout of the payload delivered to GS threads.

158 Doc Ref # IHD-OS-LKF-Vol 9-4.21

 GS Dispatch Layouts

Subsequent sections provide detailed layouts for different processor generations.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 159

SIMD8 Thread Payload

The table below shows the layout of the payload delivered to GS threads.

Refer to the for details on those fields that are common among the various pipeline stages.

GRF

 DWord Bits Description

R0.7 31 Reserved

30:0 Reserved.

R0.6 31:24 Reserved.

23:0
Thread ID. This field uniquely identifies this thread within the threads spawned by this FF unit,

over some period of time.

Format: Reserved for HW Implementation Use.

R0.5 31:10
Scratch Space Pointer. Specifies the location of the scratch space allocated to this thread,

specified as a 1KB-aligned offset from the General State Base Address.

Format = GeneralStateOffset[31:10]

9:0
FFTID. This ID is assigned by the fixed function unit and is relative identifier for the thread. It is

used to free up resources used by the thread upon thread completion.

Format: Reserved for Implementation Use

R0.4 31:5
Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table. It is specified

as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

4:0 Reserved.

R0.3 31:5
Sampler State Pointer. Specifies the location of the Sampler State Table to be used by this

thread, specified as a 32-byte granular offset from the Dynamic State Base Address.

Format = DynamicStateOffset[31:5]

4 Reserved.

3:0
Per Thread Scratch Space.

Specifies the amount of scratch space allowed to be used by this thread. The value specifies the

power that two is raised to (over determine the amount of scratch space).

(See Generic Pipeline Stage for further description).

Programming Notes: This amount is available to the kernel for information only. It is passed

verbatim (if not altered by the kernel) to the Data Port in any scratch space access messages, but

the Data Port ignores it.

Format = U4 power of two (in excess of 10)

160 Doc Ref # IHD-OS-LKF-Vol 9-4.21

GRF

 DWord Bits Description

Range = [0,11] indicating [1K Bytes, 2M Bytes]

R0.2 31:23 Reserved.

22
Hint: This is a copy of the corresponding 3DSTATE_GS bit.

Format: U1

21:16
Primitive Topology Type. This field identifies the Primitive Topology Type associated with the

primitive containing this object. It indirectly specifies the number of input vertices included in the

thread payload. Note that the GS unit may toggle this value between TRISTRIP and TRISTRIP_REV.

If the Discard Adjacency bit is set, the topology type passed in the payload is UNDEFINED.

Format: See 3D Pipeline

15:0 Reserved.

R0.1-R0.0 31:0 Reserved.

R1.7 31:0 GS Instance ID / URB Return Handle for Object 7 (See R1.0)

R1.6 31:0 GS Instance ID / URB Return Handle for Object 6 (See R1.0)

R1.5 31:0 GS Instance ID / URB Return Handle for Object 5 (See R1.0)

R1.4 31:0 GS Instance ID / URB Return Handle for Object 4 (See R1.0)

R1.3 31:0 GS Instance ID / URB Return Handle for Object 3 (See R1.0)

R1.2 31:0 GS Instance ID / URB Return Handle for Object 2 (See R1.0)

R1.1 31:0 GS Instance ID / URB Return Handle for Object 1 (See R1.0)

R1.0 31:27
GS Instance ID 0. For each input object, the GS unit can spawn multiple threads (instances). This

field starts at zero for the first instance of an object and increments for subsequent instances.

Format: U5

26:16 Reserved.

15:0
URB Return Handle 0. This is the URB offset where the EU’s lower channels (DWords 3:0) results

are to be stored.

Format: U16 64B-aligned URB Offset

The following register is included only if Include PrimitiveID is enabled.

R2.7 31:0
Primitive ID 7. This field contains the Primitive ID associated with input object 7 (or the single

input object if InstanceCount>1)

Format: U32

R2.6 31:0
Primitive ID 6. This field contains the Primitive ID associated with input object 6 (or the single

input object if InstanceCount>1)

Format: U32

Doc Ref # IHD-OS-LKF-Vol 9-4.21 161

GRF

 DWord Bits Description

R2.5 31:0
Primitive ID 5. This field contains the Primitive ID associated with input object 5 (or the single

input object if InstanceCount>1)

Format: U32

R2.4 31:0
Primitive ID 4. This field contains the Primitive ID associated with input object 4 (or the single

input object if InstanceCount>1)

Format: U32

R2.3 31:0
Primitive ID 3. This field contains the Primitive ID associated with input object 3 (or the single

input object if InstanceCount>1)

Format: U32

R2.2 31:0
Primitive ID 2. This field contains the Primitive ID associated with input object 2 (or the single

input object if InstanceCount>1)

Format: U32

R2.1 31:0
Primitive ID 1. This field contains the Primitive ID associated with input object 1 (or the single

input object if InstanceCount>1)

Format: U32

R2.0 31:0
Primitive ID 0. This field contains the Primitive ID associated with input object 0 (or the single

input object if InstanceCount>1)

Format: U32

The following registers are included only if Include Vertex Handles is enabled and InstanceCount == 1.

Rn.7 31:16 Reserved.

15:0 Object 7 ICP 0 Handle

Rn.6 31:16 Reserved.

15:0 Object 6 ICP 0 Handle

Rn.5 31:16 Reserved.

15:0 Object 5 ICP 0 Handle

Rn.4 31:16 Reserved.

15:0 Object 4 ICP 0 Handle

Rn.3 31:16 Reserved.

15:0 Object 3 ICP 0 Handle

Rn.2 31:16 Reserved.

15:0 Object 2 ICP 0 Handle

Rn.1 31:16 Reserved.

162 Doc Ref # IHD-OS-LKF-Vol 9-4.21

GRF

 DWord Bits Description

15:0 Object 1 ICP 0 Handle

Rn.0 31:16 Reserved.

15:0 Object 0 ICP 0 Handle

[Rn+1] 255:0 ICP 1 Handle for Objects 0-7

[Rn+2] 255:0 ICP 2 Handle for Objects 0-7

... ...

[Rn+32] 255:0 ICP 32 Handle for Objects 0-7

The following registers are included only if Include Vertex Handles is enabled and InstanceCount > 1.

Rn.7 31:16 Reserved.

15:0 ICP 7 Handle (if required)

Rn.6 31:16 Reserved.

15:0 ICP 6 Handle (if required)

Rn.5 31:16 Reserved.

15:0 ICP 5 Handle (if required)

Rn.4 31:16 Reserved.

15:0 ICP 4 Handle (if required)

Rn.3 31:16 Reserved.

15:0 ICP 3 Handle (if required)

Rn.2 31:16 Reserved.

15:0 ICP 2 Handle (if required)

Rn.1 31:16 Reserved.

15:0 ICP 1 Handle (if required)

Rn.0 31:16 Reserved.

15:0 ICP 0 Handle

[Rn+1] 255:0 ICP 8-15 Handle

[Rn+2] 255:0 ICP 16-23 Handle

[Rn+3] 255:0 ICP 24-31 Handle

[Varies]

optional

255:0
Constant Data (optional):

 Please refer to the Push Constants chapter in the General Programming of Thread-Generating

Stages section for more details on size and source of constant data.

Varies
Pushed Vertex Data (InstanceCount == 1 Case): (optional)

Input data for the 8 input objects is located here. Object 0 (starting with Vertex 0 of Object 0)

data is passed in DW0 of these GRFs, and Object 7 data is passed in DW7. The first GRF contains

Vertex 0 Element 0 Component 0 for all 8 objects, followed by components 1-3 in the three

subsequent GRFs. This is followed by GRFs containing Vertex 0 Element 1 (if it exists), and so on,

up to the number of Vertex 0 elements specified by Vertex URB Read Length. This is followed

Doc Ref # IHD-OS-LKF-Vol 9-4.21 163

GRF

 DWord Bits Description

by the data for Vertex 1 for all objects (if it exists), and so on until all relevant vertices are passed.

Note that the amount of data passed is limited by the number of GRFs supported by EUs.

Software is responsible for comprehending this limit and resorting to the pull model as required.

Rv.7 31:0 Object 7 Vertex 0 Element 0 Component 0

Rv.6 31:0 Object 6 Vertex 0 Element 0 Component 0

Rv.5 31:0 Object 5 Vertex 0 Element 0 Component 0

Rv.4 31:0 Object 4 Vertex 0 Element 0 Component 0

Rv.3 31:0 Object 3 Vertex 0 Element 0 Component 0

Rv.2 31:0 Object 2 Vertex 0 Element 0 Component 0

Rv.1 31:0 Object 1 Vertex 0 Element 0 Component 0

Rv.0 31:0 Object 0 Vertex 0 Element 0 Component 0

Rv+1 31:0 Object 0-7 Vertex 0 Element 0 Component 1

... and so on...

Varies
Pushed Vertex Data (InstanceCount > 1 Case): (optional)

Input data for the single input object (shared across all instances) is located here.

The pushed data for Vertex 0 immediately follows any pushed constant data. The pushed data for

Vertex 1 immediately follows Vertex 0, and so on. There is no upper/lower swizzling of data.

Stream Output Logic (SOL) Stage

The Stream Output Logic (SOL) stage receives 3D topologies originating in the VF, DS or GS stage. If

enabled, the SOL stage uses programmed state information to copy portions of the vertex data

associated with the incoming topologies across one or more Stream Output (SO) Buffers.

State

This section contains state commands and structures pertaining to the StreamOut Logic (SOL) stage of

the 3D pipeline.

3DSTATE_STREAMOUT

The 3DSTATE_STREAMOUT command specifies control information for the SOL stage. Included are

enables and sizes for input streams and enables for output buffers.

The SOL unit incorrectly double buffers MMIO/NP registers and only moves them into the design for

usage when control topology is received with the SOL unit dirty state.

If the state does not change, need to resend the same state.

There is no need to send a pipeline state update to the SOL unit after SOL unit MMIO registers or non-

pipeline state are written.

164 Doc Ref # IHD-OS-LKF-Vol 9-4.21

3DSTATE_STREAMOUT

3DSTATE_SO_DECL_LIST Command

The 3DSTATE_SO_DECL_LIST instruction defines a list of Stream Output (SO) declaration entries

(SO_DECLs) and associated information for all specific SO streams in parallel.

3DSTATE_SO_DECL_LIST

SO_DECL

3DSTATE_SO_BUFFER

The 3DSTATE_SO_BUFFER command specifies the location and characteristics of an SO buffer in memory.

3DSTATE_SO_BUFFER

The SOL Unit also receives 3DSTATE_INT which is transparent to SW. 3DSTATE_INT provides 3DSTATE_WM,

3DSTATE_PS_EXTRA, and 3DSTATE_DEPTH_STENCIL_STATE fields.

Signal Description Formula

SOL_INT::Render_Enable If clear, the SO stage will not forward

any topologies down the pipeline.

If set, the SO stage will forward

topologies associated with Render

Stream Select down the pipeline.

 This bit is used even if SO Function

Enable is DISABLED.

 = (3DSTATE_STREAMOUT::Force_Rending == Force_On) ||

 (

 (3DSTATE_STREAMOUT::Force_Rending != Force_Off) &&

 !(3DSTATE_GS::Enable && 3DSTATE_GS::Output Vertex

Size == 0) &&

 !3DSTATE_STREAMOUT::API_Render_Disable &&

 (

 3DSTATE_DEPTH_STENCIL_STATE::Stencil_TestEnable

||

 3DSTATE_DEPTH_STENCIL_STATE::Depth_TestEnable ||

 3DSTATE_DEPTH_STENCIL_STATE::Depth_WriteEnable ||

 3DSTATE_PS_EXTRA::PS_Valid ||

 3DSTATE_WM::Legacy Depth_Buffer_Clear ||

 3DSTATE_WM::Legacy Depth_Buffer_Resolve_Enable ||

 3DSTATE_WM::Legacy

Hierarchical_Depth_Buffer_Resolve_Enable

)

)

Doc Ref # IHD-OS-LKF-Vol 9-4.21 165

DW1[21] DW1[20] Stream Offset Action

Full legacy mode. HW doesn’t LOAD or STORE, it simply updates the MMIO register during stream out. SW can can

the LOAD/STORE using MI_LOAD_REG/ MI_STORE_REG.

0 0 not equal to 0xFFFFFFFF SO_WRITE_OFFSET[x] = no action

0 0 equal to 0xFFFFFFFF SO_WRITE_OFFSET[x] = no action

SW can cause the LOAD of the SO_OFFSET using MI_LOAD_REG, and HW performs the STORE.

0 1 not equal to 0xFFFFFFFF SO_WRITE_OFFSET[x] = No action,

 write SO_WRITE_OFFSET[x] to memory

0 1 equal to 0xFFFFFFFF SO_WRITE_OFFSET[x] = No action,

 write SO_WRITE_OFFSET[x] to memory

HW performs the LOAD, and SW can cause the STOREs using MI_STORE_REG_MEM.

1 0 not equal to 0xFFFFFFFF SO_WRITE_OFFSET[x] = stream offset

1 0 equal to 0xFFFFFFFF SO_WRITE_OFFSET[x] = load from memory

HW performs both the LOAD and STORE.

1 1 not equal to 0xFFFFFFFF SO_WRITE_OFFSET[x] = stream offset,

 write SO_WRITE_OFFSET[x] to memory

1 1 equal to 0xFFFFFFFF SO_WRITE_OFFSET[x] = load from memory,

 write SO_WRITE_OFFSET[x] to memory

“SO_WRITE_OFFSET[x] =” occurs before the execution of the primitive, while write SO_WRITE_OFFSET[x] to memory

occurs after the execution of the primitive.

Functions

Input Buffering

For the purposes of stream output, the SOL stage breaks incoming topologies into independent objects

without adjacency information. In the process, any adjacent-only vertices are ignored. For example, it

converts TRISTRIP_ADJ into independent 3-vertex triangles. However, if rendering is enabled, incoming

topologies are passed to the Clip stage unmodified and therefore the Clip unit must be enabled if there

is any possibility of “ADJ” topologies reaching it.

Note that the SOL unit will not see incomplete objects: the VF will remove incomplete input objects, the

GS will remove GS-generated incomplete objects, and the DS does not output incomplete objects as only

complete topologies are generated by the TE stage.

The OSB (Object Staging Buffer) reorders the vertices of odd-numbered triangles in TRISTRIP topologies

to match API requirements.

Incoming topologies are tagged with a 2-bit StreamID. The StreamID is 0 for topologies originating from

the VF stage (i.e., 3DPRIMITIVE_xxx). For topologies output from the GS stage, the StreamID is set by the

GS shader. A Stream n Vertex Length is associated with each stream and defines how much data is read

from the URB for vertices in that stream.

166 Doc Ref # IHD-OS-LKF-Vol 9-4.21

The following table specifies how the SOL stage streams out object vertices for each incoming topology

type.

PrimTopologyType

Order of Vertices

Streamed Out

Any SOL Notes

<PRIMITIVE_TOPOLOGY>

 (N = # of vertices)

[<object#>] =

(<vert#>,…);

POINTLIST

 POINTLIST_BF

[0] = (0);

 [1] = (1); …;

 [N-2] = (N-2);

LINELIST

 (N is multiple of 2)

[0] = (0,1);

 [1] = (2,3); …;

 [(N/2)-1] = (N-2,N-

1)

LINELIST_ADJ

 (N is multiple of 4)

[0] = (1,2);

 [1] = (5,6); …;

 [(N/4)-1)] = (N-

3,N-2)

LINESTRIP

 LINESTRIP_BF

 LINESTRIP_CONT

 LINESTRIP_CONT_BF

 (N >= 2)

[0] = (0,1);

 [1] = (1,2); …;

 [N-2] = (N-2,N-1)

LINESTRIP_ADJ,

LINESTRIP_ADJ_CONT

 (N >= 4)

[0] = (1,2);

 [1] = (2,3); …;

 [N-4] = (N-3,N-2)

LINESTRIP_ADJ_CONT is added, LINESTRIP_ADJ_CONT is

generated by the Vertex Fetch unit on a restore of a mid-

draw pre-empted 3DPRIMITIVE.

LINELOOP N/A Not supported after VF.

TRILIST

 (N is multiple of 3)

[0] = (0,1,2);

 [1] = (3,4,5); …;

 [(N/3)-1] = (N-3,N-

2,N-1)

RECTLIST, RECTLIST_SUBPIXEL Same as TRILIST Handled same as TRILIST.

TRILIST_ADJ

 (N is multiple of 6)

[0] = (0,2,4);

 [1] = (6,8,10); …;

 [(N/6)-1] = (N-6,N-

4,N-2)

TRISTRIP

 (N >= 3)

 REORDER_LEADING

[0] = (0,1,2);

 [1] = (1,3,2);

 [k even] =

(k,k+1,k+2)

 [k odd] =

(k,k+2,k+1)

 [N-3] = (see above)

“Odd” triangles have vertices reordered to yield increasing

leading vertices starting with v0.

TRISTRIP [0] = (0,1,2); “Odd” triangles have vertices reordered to yield increasing

Doc Ref # IHD-OS-LKF-Vol 9-4.21 167

PrimTopologyType

Order of Vertices

Streamed Out

Any SOL Notes

<PRIMITIVE_TOPOLOGY>

 (N = # of vertices)

[<object#>] =

(<vert#>,…);

 (N >= 3)

 REORDER_TRAILING

 [1] = (2,1,3);

 [k even] =

(k,k+1,k+2)

 [k odd] =

(k+1,k,k+2)

 [N-3] = (see above)

trailing vertices starting with v2.

TRISTRIP_REV

 (N >= 3)

 REORDER_LEADING

[0] = (0,2,1)

 [1] = (1,2,3);…;

 [k even] =

(k,k+2,k+1)

 [k odd] =

(k,k+1,k+2)

 [N-3] = (see above)

“Even” triangles have vertices reordered to yield increasing

leading vertices starting with v0.

TRISTRIP_REV

 (N >= 3)

 REORDER_TRAILING

[0] = (1,0,2)

 [1] = (1,2,3);…;

 [k even] =

(k+1,k,k+2)

 [k odd] =

(k,k+1,k+2)

 [N-3] = (see above)

“Even” triangles have vertices reordered to yield increasing

trailing vertices starting with v2.

TRISTRIP_ADJ

 (N even, N >= 6)

 REORDER_LEADING

N = 6 or 7:

 [0] = (0,2,4)

 N = 8 or 9:

 [0] = (0,2,4);

 [1] = (2,6,4); …;

 N > 10:

 [0] = (0,2,4);

 [1] = (2,6,4); …;

 [k>1, even] = (2k,

2k+2, 2k+4);

 [k>2, odd] = (2k,

2k+4, 2k+2);…;

 Trailing object:

 [(N/2)-3, even] =

(N-6,N-4,N-2);

 [(N/2)-3, odd] =

(N-6,N-2,N-4);

“Odd” objects have vertices reordered to yield increasing-by-

2 leading vertices starting with v0.

TRISTRIP_ADJ

 (N even, N >= 6)

 REORDER_TRAILING

N = 6 or 7:

 [0] = (0,2,4)

 N = 8 or 9:

 [0] = (0,2,4);

 [1] = (4,2,6); …;

 N > 10:

“Odd” objects have vertices reordered to yield increasing-by-

2 trailing vertices starting with v4.

168 Doc Ref # IHD-OS-LKF-Vol 9-4.21

PrimTopologyType

Order of Vertices

Streamed Out

Any SOL Notes

<PRIMITIVE_TOPOLOGY>

 (N = # of vertices)

[<object#>] =

(<vert#>,…);

 [0] = (0,2,4);

 [1] = (4,2,6); …;

 [k>1, even] = (2k,

2k+2, 2k+4);

 [k>2, odd] =

(2k+2,2k, 2k+4,);…;

 Trailing object:

 [(N/2)-3, even] =

(N-6,N-4,N-2);

 [(N/2)-3, odd] =

(N-4,N-6,N-2);

TRIFAN

 (N > 2)

[0] = (0,1,2);

 [1] = (0,2,3); …;

 [N-3] = (0, N-2, N-

1);

TRIFAN_NOSTIPPLE Same as TRIFAN

POLYGON, POLYGON_CONT Same as TRIFAN POLYGON_CONT is added, POLYGON_CONT is generated by

the Vertex Fetch unit on a restore of a mid-draw pre-empted

3DPRIMITIVE.

QUADLIST

 QUADSTRIP

N/A Not supported after VF.

PATCHLIST_1 [0] = (0);

 [1] = (1); …;

 [N-2] = (N-2);

PATCHLIST_2 [0] = (0,1);

 [1] = (2,3); …;

 [(N/2)-1] = (N-2,N-

1)

PATCHLIST_3..32 similar to above

Doc Ref # IHD-OS-LKF-Vol 9-4.21 169

Stream Output Function

As previously mentioned, incoming 3D topologies are targeted at one of the four streams. The SOL stage

contains state information specific to each of the four streams.

A stream’s list of SO declarations (SO_DECL structures) is used to perform the SO function for objects

targeted to that particular stream. The 3DSTATE_SO_DECL_LIST command is used to specify the list of

SO_DECL structures for all four streams in parallel. Software is required to scan the SO_DECL lists of

streams to determine which SO buffers are targeted. The Stream To Buffer Selects bits in

3DSTATE_SO_DECL_LIST must be programmed accordingly (if the buffer is targeted, the select bit must

set, else it must be cleared).

If a stream has no SO_DECL state defined (NumEntries is 0), incoming objects targeting that stream are

effectively ignored. As there is no attempt to perform stream output, overflow detection is neither

required nor performed.

Otherwise, an overflow check is performed. First any attempt to output to a disabled buffer is detected.

This occurs when the stream has a Stream To Buffer Selects bit set but the corresponding SO Buffer

Enable is clear. Assuming all targeted buffers are enabled, an additional check is made to ensure that

there is enough room in each targeted buffer to hold the number of vertices which be output to it (for

the input object). Here the buffer’s current end address is compared to what the write offset would be if

the output was performed. The latter value is computed as (write_offset + vertex_count * buffer_pitch). If

this value is greater than the end address, an overflow is signaled. This check is performed for each

buffer included in Stream To Buffer Selects.

If an overflow is not signaled, the SO function is performed. The SO_DECL list for the targeted stream is

traversed independently for each object vertex, and the operation specified by the SO_DECL structure is

performed (typically causing data to be appended to an SO buffer). In the process, SO buffer Write

Offsets are incremented.

Stream Output Buffers

Up to four SO buffers are supported. The SO buffer parameters (start/end address, etc.) are specified by

the 3DSTATE_SO_BUFFER command.

The 3DSTATE_STREAMOUT command specifies a SO Buffer Enable bit for each of the buffers. If a buffer is

disabled, its state is ignored and no output will be attempted for that buffer. Any attempt to output to

that buffer will immediately signal an overflow condition.

The SOL stage maintains a current Write Offset register value for each SO buffer. These registers can be

written via MI_LOAD_REGISTER_MEM or MI_LOAD_REGISTER_IMM commands. The SOL stage will

increment the Write Offsets as a part of the SO function. Software can cause a Write Offset register to be

written to memory via an MI_STORE_REGISTER_MEM command, though a preceding flush operation may

be required to ensure that any previous SO functions have completed.

170 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Surface Format Name

R32G32B32A32_FLOAT

R32G32B32A32_SINT

R32G32B32A32_UINT

R32G32B32_FLOAT

R32G32B32_SINT

R32G32B32_UINT

R32G32_FLOAT

R32G32_SINT

R32G32_UINT

R32_SINT

R32_UINT

R32_FLOAT

Rendering Disable

Independent of SOL function enable, if rendering (i.e, 3D pipeline functions past the SOL stage) is

enabled (via clearing the Rendering Disable bit), the SOL stage will pass topologies for a specific input

stream (as selected by Render Stream Select) down the pipeline, with the exception of PATCHLIST_n

topologies which are never passed downstream. Software must ensure that the vertices exiting the SOL

stage include a vertex header and position value so that the topologies can be correctly processed by

subsequent pipeline stages. Specifically, rendering must be disabled whenever 128-bit vertices are

output from a GS thread.

If Rendering Disable is set, the SOL stage will prevent any topologies from exiting the SOL stage.

Statistics

The SOL stage controls the incrementing of two 64-bit statistics counter registers for each of the four

output buffer slots, SO_NUM_PRIMS_WRITTEN[] and SO_PRIM_STORAGE_NEEDED[].

Doc Ref # IHD-OS-LKF-Vol 9-4.21 171

3D Pipeline Rasterization

Common Rasterization State

This section contains rasterization state pointers.

Pointers

3DSTATE_VIEWPORT_STATE_POINTERS_CC

3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP

3DSTATE_SCISSOR_STATE_POINTERS

3DSTATE_RASTER

3D Pipeline – CLIP Stage Overview

The CLIP stage of the 3D Pipeline is similar to the GS stage in that it can be used to perform general

processing on incoming 3D objects via spawned threads. However, the CLIP stage also includes

specialized logic to perform a ClipTest function on incoming objects. These two usage models of the CLIP

stage are outlined below.

Refer to the Common 3D FF Unit Functions subsection in the 3D Overview chapter for a general

description of a 3D Pipeline stage, as much of the CLIP stage operation and control falls under these

“common” functions. I.e., many of the CLIP stage state variables and CLIP thread payload parameters are

described in 3D Overview, and although they are listed here for completeness, that chapter provides the

detailed description of the associated functions.

Refer to this chapter for an overall description of the CLIP stage, details on the ClipTest function, and any

exceptions the CLIP stage exhibits with respect to common FF unit functions.

Clip Stage – 3D Clipping

The ClipTest fixed function is provided to optimize the CLIP stage for support of generalized 3D Clipping.

The CLIP FF unit examines the position of incoming vertices, performs a fixed function VertexClipTest on

these positions, and then examines the results for the vertices of each independent object in

ClipDetermination.

The results of ClipDetermination indicate whether an object is to be clipped (MustClip), discarded

(TrivialReject) or passed down the pipeline unmodified (TrivialAccept). In the MustClip case, the fixed

function clipping hardware is responsible for performing the actual 3D Clipping algorithm. The

CLIP hardware is passed the source object vertex data and is able to output a new, arbitrary 3D primitive

(e.g., the clipped primitive), or no output at all. Note that the output primitive is comprised of newly-

generated vertex positions, barycentric attributes and shares vertices with the source primitive for rest of

the attributes.The CLIP unit maintains the proper ordering of CLIP-generated primitives and any

surrounding trivially-accepted primitives and processes all the primitives in order.

The outgoing primitive stream is sent down the pipeline to the Strip/Fan (SF) FF stage (now including the

read-back VUE Vertex Header data such as Vertex Position (NDC or screen space), RTAIndex, VPIndex,

172 Doc Ref # IHD-OS-LKF-Vol 9-4.21

PointWidth) and control information (PrimType, PrimStart, PrimEnd) while the remainder of the vertex

data remains in the VUE in the URB.

Fixed Function Clipper

The GPU supports Fixed Function Clipping.

Note: In an earlier generation, clipping was done in the EU. However, the clipper thread latency was high

and caused a bottleneck in the pipeline. Hence the motivation for a fixed function clipper.

Concepts

This section provides an overview of 3D clip-testing and clipping concepts, as defined by the Direct3D*

and OpenGL* APIs. It is provided as background material. Some of the concepts impact HW functionality

while others impact CLIP kernel functionality.

* Other names and brands may be claimed as the property of others.

CLIP Stage Input

As a stage of the 3D pipeline, the CLIP stage receives inputs from the previous (GS) stage. Refer to 3D

Overview for an overview of the various types of input to a 3D Pipeline stage. The remainder of this

subsection describes the inputs specific to the CLIP stage.

State

This section contains state clips for the Clip Stage. For each processor generation, the state used by the

clip stage is defined by the appropriate inline state packet, linked below.

3DSTATE_CLIP

3D_STATE_CLIP

The Clip unit will unconditionally reject incoming PATCHLIST topologies, if not already discarded by SOL. So there is

no need for SW to explicitly set the CLIP_mode to reject PATCHLIST topologies.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 173

Clip Unit also receives 3DSTATE_RASTER. It also receives 3DSTATE_INT which is transparent to SW.

3DSTATE_INT provides 3DSTATE_VS, 3DSTATE_DS and 3DSTATE_GS fields.

Signal Description Formula

CLIP_INT::Front_Winding Determines whether a triangle object is considered

“front facing” if the screen space vertex positions,

when traversed in the order, result in a clockwise (CW)

or counter-clockwise (CCW) winding order. Does not

apply to points or lines.

= 3DSTATE_RASTER::FrontWinding

CLIP_INT::CullMode Controls removal (culling) of triangle objects based on

orientation. The cull mode only applies to triangle

objects and does not apply to lines, points, or

rectangles.

= 3DSTATE_RASTER::CullMode

CLIP_INT::Viewport Z ClipTest

Enable

This field is used to control whether the Viewport Z

extents (near, far) are considered in VertexClipTest.

= 3DSTATE_RASTER::Viewport Z ClipTest

Enable

CLIP_INT::User Clip Distance

Cull Test Enable Bitmask
This 8-bit mask field selects which of the 8 user clip

distances against which trivial reject/trivial accept

determination needs to be made (does not cause a

must clip).

 DX10 allows simultaneous use of ClipDistance and

Cull Distance test of up to 8 distances.

This mask must be mutually exclusive to final

CLIP_INT::User Clip Distance Clip Test Enable Bitmask.

Same mask bit can't be set for both.

 = (3DSTATE_CLIP::ForceUser Clip

Distance Cull Test Enable Bitmask

== Force) ?

 3DSTATE_CLIP::User Clip Distance

Cull Test Enable Bitmask :

 3DSTATE_GS::GS_Enable ?

 3DSTATE_GS:: GS User Clip

Distance Cull Test Enable Bitmask

:

 3DSTATE_DS:DS_Enable ?

 3DSTATE_DS:: DS User Clip

Distance Cull Test Enable Bitmask

:

 3DSTATE_INT:VS_Enable ?

 3DSTATE_VS:: VS User Clip

Distance Cull Test Enable Bitmask

:

 0

CLIP_INT::User Clip Distance

Clip Test Enable Bitmask
This 8-bit mask field selects which of the 8 user clip

distances against which trivial reject/trivial accept

determination needs to be made (does not cause a

must clip).

 DX10 allows simultaneous use of ClipDistance and

Clip Distance test of up to 8 distances.

This mask must be mutually exclusive to final

CLIP_INT::User Clip Distance Cull Test Enable Bitmask.

Same mask bit can't be set for both.

 = (3DSTATE_CLIP::ForceUser Clip

Distance Clip Test Enable Bitmask

== Force) ?

 3DSTATE_CLIP::User Clip Distance

Clip Test Enable Bitmask :

 3DSTATE_GS:GS_Enable ?

 3DSTATE_GS::GS User Clip

Distance Clip Test Enable Bitmask

:

 3DSTATE_DS::DS_Enable ?

 3DSTATE_DS::DS User Clip

Distance Clip Test Enable Bitmask

:

 3DSTATE_VS::VS_Enable ?

 3DSTATE_VS::VS User Clip

Distance Clip Test Enable Bitmask

:

 0

174 Doc Ref # IHD-OS-LKF-Vol 9-4.21

VUE Readback

Starting with the CLIP stage, the 3D pipeline requires vertex information in addition to the VUE handle.

For example, the CLIP unit’s VertexClipTest function needs the vertex position, as does the SF unit’s

functions. This information is obtained by the 3D pipeline reading a portion of each vertex’s VUE data

directly from the URB. This readback (effectively) occurs immediately before the CLIP VertexClipTest

function, and immediately after a CLIP thread completes the output of a destination VUE.

The Vertex Header (first 256 bits) of the VUE data is read back. (See the previous VUE Formats subsection

(above) for details on the content and format of the Vertex Header.) Additional Clip/Cull data (located

immediately past the Vertex Header) may be read prior to clipping.

This readback occurs automatically and is not under software control. The only software implication is

that the Vertex Header must be valid at the readback points, and therefore must have been previously

loaded or written by a thread.

VertexClipTest Function

The VertexClipTest function compares each incoming vertex position (x,y,z,w) with various viewport and

guardband parameters (either hard-coded values or specified by state variables).

The RHW component of the incoming vertex position is tested for NaN value, and if a NaN is detected,

the vertex is marked as “BAD” by setting the outcode[BAD]. If a NaN is detected in any vertex

homogeneous x,y,z,w component or an enabled ClipDistance value, the vertex is marked as “BAD” by

setting the outcode[BAD].

In general, any object containing a BAD vertex will be discarded, as how to clip/render such objects is

undefined.

However, in the case of CLIP_ALL mode, a CLIP thread will be spawned even for objects with “BAD”

vertices. The CLIP kernel is required to handle this case, and can examine the Object Outcode [BAD]

payload bit to detect the condition. (Note that the VP and GB Object Outcodes are UNDEFINED when

BAD is set.)

If the incoming RHW coordinate is negative (including negative 0) the NEGW outcode is set. Also, this

condition is used to select the proper comparison functions for the VP and GB outcode tests (below).

Next, the VPXY and GB outcodes are computed, depending on the corresponding enable SV bits. If one

of VPXY or GB is disabled, the enabled set of outcodes are copied to the disabled set of outcodes. This

effectively defines the disabled boundaries to coincide with the enabled boundaries (i.e., disabling the GB

is just like setting it to the VPXY values, and vice versa).

The VPZ outcode is computed as required by the API mode SV.

Separate VP Z Near (ZMin) and Z Far (ZMax) ClipTest Enable state bits are provided in 3DSTATE_RASTER.

Finally, the incoming UserClipFlags are masked and copied to corresponding outcodes.

The following algorithm is used by VertexClipTest:

Doc Ref # IHD-OS-LKF-Vol 9-4.21 175

 //

 // Vertex ClipTest

 //

 // On input:

 // if (CLIP.PreMapped)

 // x,y are viewport mapped

 // z is NDC ([0,1] is visible)

 // else

 // x,y,z are NDC (post-perspective divide)

 // w is always 1/w

 //

 // Initialize outCodes to “inside”

 //

 outCode[*] = 0

 //

 // Check if w is NaN

 // Any object containing one of these “bad” vertices will likely be discarded

 //

 if (ISNAN(homogeneous x,y,z,w or enabled ClipDistance value)

 {

 outCode[BAD] = 1

 }

 //

 // If 1/w is negative, w is negative and therefore outside of the w=0 plane

 //

 //

 rhw_neg = ISNEG(rhw)

 if (rhw_neg)

 {

 outCode[NEGW] = 1

 }

 //

 // View Volume Clip Test

 // If Premapped, the 2D viewport is defined in screen space

 // otherwise the canonical NDC viewvolume applies ([-1,1])

 //

 if (CLIP_STATE.PreMapped)

 {

 vp_XMIN = CLIP_STATE.VP_XMIN

 vp_XMAX = CLIP_STATE.VP_XMAX

 vp_YMIN = CLIP_STATE.VP_YMIN

 vp_YMAX = CLIP_STATE.VP_YMAX

 } else {

 vp_XMIN = -1.0f

 vp_XMAX = +1.0f

 vp_YMIN = -1.0f

 vp_YMAX = +1.0f

 }

 if (CLIP_STATE.ViewportXYClipTestEnable) {

 outCode[VP_XMIN] = (x < vp_XMIN)

 outCode[VP_XMAX] = (x > vp_XMAX)

 outCode[VP_YMIN] = (y < vp_YMIN)

 outCode[VP_YMAX] = (y > vp_YMAX)

 #ifdef (BW-E0)

 if (rhw_neg) {

 outCode[VP_XMIN] = (x >= vp_XMIN)

 outCode[VP_XMAX] = (x <= vp_XMAX)

 outCode[VP_YMIN] = (y >= vp_XMIN)

 outCode[VP_YMAX] = (y <= vp_XMAX)

 }

 #endif

 if (rhw_neg) {

176 Doc Ref # IHD-OS-LKF-Vol 9-4.21

 outCode[VP_XMIN] = (x > vp_XMIN)

 outCode[VP_XMAX] = (x < vp_XMAX)

 outCode[VP_YMIN] = (y > vp_XMIN)

 outCode[VP_YMAX] = (y < vp_XMAX)

 }

 }

 if (CLIP_STATE.ViewportZClipTestEnable) {

 if (CLIP_STATE.APIMode == APIMODE_D3D) {

 vp_ZMIN = 0.0f

 vp_ZMAX = 1.0f

 } else { // OGL

 vp_ZMIN = -1.0f

 vp_ZMAX = 1.0f

 }

 outCode[VP_ZMIN] = (z < vp_ZMIN)

 outCode[VP_ZMAX] = (z > vp_ZMAX)

 #ifdef (BW-E0)

 if (rhw_neg) {

 outCode[VP_ZMIN] = (z >= vp_ZMIN)

 outCode[VP_ZMAX] = (z <= vp_ZMAX)

 }

 #endif

 if (rhw_neg) {

 outCode[VP_ZMIN] = (z > vp_ZMIN)

 outCode[VP_ZMAX] = (z < vp_ZMAX)

 }

 }

 //

 // Guardband Clip Test

 //

 if {CLIP_STATE.GuardbandClipTestEnable) {

 gb_XMIN = CLIP_STATE.Viewport[vpindex].GB_XMIN

 gb_XMAX = CLIP_STATE.Viewport[vpindex].GB_XMAX

 gb_YMIN = CLIP_STATE.Viewport[vpindex].GB_YMIN

 gb_YMAX = CLIP_STATE.Viewport[vpindex].GB_YMAX

 outCode[GB_XMIN] = (x < gb_XMIN)

 outCode[GB_XMAX] = (x > gb_XMAX)

 outCode[GB_YMIN] = (y < gb_YMIN)

 outCode[GB_YMAX] = (y > gb_YMAX)

 #ifdef (BW-E0)

 if (rhw_neg) {

 outCode[GB_XMIN] = (x >= gb_XMIN)

 outCode[GB_XMAX] = (x <= gb_XMAX)

 outCode[GB_YMIN] = (y >= gb_YMIN)

 outCode[GB_YMAX] = (y <= gb_YMAX)

 }

 #endif

 if (rhw_neg) {

 outCode[GB_XMIN] = (x > gb_XMIN)

 outCode[GB_XMAX] = (x < gb_XMAX)

 outCode[GB_YMIN] = (y > gb_YMIN)

 outCode[GB_YMAX] = (y < gb_YMAX)

 }

 }

 //

 // Handle case where either VP or GB disabled (but not both)

 // In this case, the disabled set take on the outcodes of the enabled set

 //

 if (CLIP_STATE.ViewportXYClipTestEnable && !CLIP_STATE.GuardbandClipTestEnable) {

 outCode[GB_XMIN] = outCode[VP_XMIN]

 outCode[GB_XMAX] = outCode[VP_XMAX]

Doc Ref # IHD-OS-LKF-Vol 9-4.21 177

 outCode[GB_YMIN] = outCode[VP_YMIN]

 outCode[GB_YMAX] = outCode[VP_YMAX]

 } else if (!CLIP_STATE.ViewportXYClipTestEnable && CLIP_STATE.GuardbandClipTestEnable) {

 outCode[VP_XMIN] = outCode[GB_XMIN]

 outCode[VP_XMAX] = outCode[GB_XMAX]

 outCode[VP_YMIN] = outCode[GB_YMIN]

 outCode[VP_YMAX] = outCode[GB_YMAX]

 }

 //

 // X/Y/Z NaN Handling

 //

 xyorgben = (CLIP_STATE.ViewportXYClipTestEnable || CLIP_STATE.GuardbandClipTestEnable)

 if (isNAN(x)) {

 outCode[GB_XMIN] = xyorgben

 outCode[GB_XMAX] = xyorgben

 outCode[VP_XMIN] = xyorgben

 outCode[VP_XMAX] = xyorgben

 }

 if (isNAN(y)) {

 outCode[GB_YMIN] = xyorgben

 outCode[GB_YMAX] = xyorgben

 outCode[VP_YMIN] = xyorgben

 outCode[VP_YMAX] = xyorgben

 }

 if (isNaN) {

 outCode[VP_ZMIN] = CLIP_STATE.ViewportZClipTestEnable

 outCode[VP_ZMAX] = CLIP_STATE.ViewportZClipTestEnable

 }

 //

 // UserClipFlags

 //

 ExamineUCFs

 for (i=0; i<7; i++)

 {

 outCode[UC0+i] = userClipFlag[i] & CLIP_STATE.UserClipFlagsClipTestEnableBitmask[i]

 }

 outCode[UC7] = userClipFlag[i] & CLIP_STATE.UserClipFlagsClipTestEnableBitmask[7]

Object Staging

The CLIP unit’s Object Staging Buffer (OSB) accepts streams of input vertex information packets, along

with each vertex’s VertexClipTest result (outCode). This information is buffered until a complete object or

the last vertex of the primitive topology is received. The OSB then performs the ClipDetermination

function on the object vertices, and takes the actions required by the results of that function.

Partial Object Removal

The OSB is responsible for removing incomplete LINESTRIP and TRISTRIP objects that it may receive from

the preceding stage (GS). Partial object removal is not supported for other primitive types due to either

(a) the GS is not permitted to output those primitive types (e.g., primitives with adjacency info), and the

VF unit will have removed the partial objects as part of 3DPRIMITIVE processing, or (b) although the GS

thread is allowed to output the primitive type (e.g., LINELIST), it is assumed that the GS kernel will be

correctly implemented to avoid outputting partial objects (or pipeline behavior is UNDEFINED).

An object is considered ‘partial’ if the last vertex of the primitive topology is encountered (i.e., PrimEnd is

set) before a complete set of vertices for that object have been received. Given that only LINESTRIP and

178 Doc Ref # IHD-OS-LKF-Vol 9-4.21

TRISTRIP primitive types are subject to CLIP unit partial object removal, the only supported cases of

partial objects are 1-vertex LINESTRIPs and 1 or 2-vertex TRISTRIPs.

ClipDetermination Function

In ClipDetermination, the vertex outcodes of the primitive are combined in order to determine the clip

status of the object (TR: trivially reject; TA: trivial accept; MC: must clip; BAD: invalid coordinate). Only

those vertices included in the object are examined (3 vertices for a triangle, 2 for a line, and 1 for a point).

The outcode bit arrays for the vertices are separately ANDed (intersection) and ORed (union) together

(across vertices, not within the array) to yield objANDCode and objORCode bit arrays.

TR/TA against interesting boundary subsets are then computed. The TR status is computed as the logical

OR of the appropriate objANDCode bits, as the vertices need only be outside of one common boundary

to be trivially rejected. The TA status is computed as the logical NOR of the appropriate objORCode bits,

as any vertex being outside of any of the boundaries prevents the object from being trivially accepted.

If any vertex contains a BAD coordinate, the object is considered BAD and any computed TR/TA results

will effectively be ignored in the final action determination.

Next, the boundary subset TR/TA results are combined to determine an overall status of the object. If the

object is TR against any viewport or enabled UC plane, the object is considered TR. Note that, by

definition, being TR against a VPXY boundary implies that the vertices will be TR agains the

corresponding GB boundary, so computing TR_GB is unnecessary.

The treatment of the UCF outcodes is conditional on the UserClipFlags MustClip Enable state. If

DISABLED, an object that is not TR against the UCFs is considered TA against them. Put another way,

objects will only be culled (not clipped) with respect to the UCFs. If ENABLED, the UCF outcodes are

treated like the other outcodes, in that they are used to determine TR, TA or MC status, and an object

can be passed to a CLIP thread simply based on it straddling a UCF.

Finally, the object is considered MC if it is neither TR or TA.

The following logic is used to compute the final TR, TA, and MC status.

 //

 // ClipDetermination

 //

 // Compute objANDCode and objORCode

 //

 switch (object type) {

 case POINT:

 {

 objANDCode[...] = v0.outCode[...]

 objORCode[...] = v0.outCode[...]

 } break

 case LINE:

 {

 objANDCode[...] = v0.outCode[...] & v1.outCode[...]

 objORCode[...] = v0.outCode[...] | v1.outCode[...]

 } break

 case TRIANGLE:

 {

 objANDCode[...] = v0.outCode[...] & v1.outCode[...] & v2.outCode[...]

 objORCode[...] = v0.outCode[...] | v1.outCode[...] | v2.outCode[...]

 } break

Doc Ref # IHD-OS-LKF-Vol 9-4.21 179

 }

 //

 // Determine TR/TA against interesting boundary subsets

 //

 TR_VPXY = (objANDCode[VP_L] | objANDCode[VP_R] | objANDCode[VP_T] | objANDCode[VP_B])

 TR_GB = (objANDCode[GB_L] | objANDCode[GB_R] | objANDCode[GB_T] | objANDCode[GB_B])

 TA_GB = !(objORCode[GB_L] | objORCode[GB_R] | objORCode[GB_T] | objORCode[GB_B])

 TA_VPZ = !(objORCode[VP_N] | objORCode[VP_Z])

 TR_VPZ = (objANDCode[VP_N] | objANDCode[VP_Z])

 TA_UC = !(objORCode[UC0] | objORCode[UC1] | ... | objORCode[UC7])

 TR_UC = (objANDCode[UC0] | objANDCode[UC1] | ... | objANDCode[UC7])

 BAD = objORCode[BAD]

 TA_NEGW = !objORCode[NEGW]

 TR_NEGW = objANDCode[NEGW]

 //

 // Trivial Reject

 //

 // An object is considered TR if all vertices are TR against any common boundary

 // Note that this allows the case of the VPXY being outside the GB

 //

 TR = TR_GB || TR_VPXY || TR_VPZ || TR_UC || TR_NEGW

 #else

 TR = TR_GB || TR_VPXY || TR_VPZ || TR_UC

 //

 // Trivial Accept

 //

 // For an object to be TA, it must be TA against the VPZ and GB, not TR,

 // and considered TA against the UC planes and NEGW

 // If the UCMC mode is disabled, an object is considered TA against the UC

 // as long as it isn’t TR against the UC.

 // If the UCMC mode is enabled, then the object really has to be TA against the UC

 // to be considered TA

 // In this way, enabling the UCMC mode will force clipping if the object is neither

 // TA or TR against the UC

 //

 TA = !TR && TA_GB && TA_VPZ && TA_NEGW

 UCMC = CLIP_STATE.UserClipFlagsMustClipEnable

 TA = TA && ((UCMC && TA_UC) || (!UCMC && !TR_UC))

 //

 // MustClip

 // This is simply defined as not TA or TR

 // Note that exactly one of TA, TR and MC will be set

 //

 MC = !(TA || TR)

180 Doc Ref # IHD-OS-LKF-Vol 9-4.21

ClipMode State

The ClipMode state determines what action the CLIP unit takes given the results of ClipDetermination.

The possible actions are:

• PASSTHRU: Pass the object directly down the pipeline. A CLIP thread is not spawned.

• DISCARD: Remove the object from the pipeline and dereference object vertices as required (that

is, dereferencing will not occur if the vertices are shared with other objects).

• SPAWN: Pass the object to a CLIP thread. In the process of initiating the thread, the object vertices

may be dereferenced.

The following logic is used to determine what to do with the object (PASSTHRU or DISCARD or SPAWN).

 //

 // Use the ClipMode to determine the action to take

 //

 switch (CLIP_STATE.ClipMode) {

 case NORMAL:

 {

 PASSTHRU = TA && !BAD

 DISCARD = TR || BAD

 SPAWN = MC && !BAD

 }

 case CLIP_ALL:

 {

 PASSTHRU = 0

 DISCARD = 0

 SPAWN = 1

 }

 case CLIP_NOT_REJECT:

 {

 PASSTHRU = 0

 DISCARD = TR || BAD

 SPAWN = !(TR || BAD)

 }

 case REJECT_ALL:

 {

 PASSTHRU = 0

 DISCARD = 1

 SPAWN = 0

 }

 case ACCEPT_ALL:

 {

 PASSTHRU = !BAD

 DISCARD = BAD

 SPAWN = 0

 }

 } endswitch

NORMAL ClipMode

In NORMAL mode, objects will be discarded if TR or BAD, passed through if TA, and passed to a CLIP

thread if MC. Those mode is typically used when the CLIP kernel is only used to perform 3D Clipping (the

expected usage model).

Doc Ref # IHD-OS-LKF-Vol 9-4.21 181

CLIP_ALL ClipMode

In CLIP_ALL mode, all objects (regardless of classification) will be passed to CLIP threads. Note that this

includes BAD objects. This mode can be used to perform arbitrary processing in the CLIP thread, or as a

backup if for some reason the CLIP unit fixed functions (VertexClipTest, ClipDetermination) are not

sufficient for controlling 3D Clipping.

CLIP_NON_REJECT ClipMode

This mode is similar to CLIP_ALL mode, but TR and BAD objects are discarded an all other (TA, MC)

objects are passed to CLIP threads. Usage of this mode assumes that the CLIP unit fixed functions

(VertexClipTest, ClipDetermination) are sufficient at least in respect to determining trivial reject.

REJECT_ALL ClipMode

In REJECT_ALL mode, all objects (regardless of classification) are discarded. This mode effectively clips

out all objects.

ACCEPT_ALL ClipMode

In ACCEPT_ALL mode, all non-BAD objects are passed directly down the pipeline. This mode partially

disables the CLIP stage. BAD objects will still be discarded, and incomplete primitives (generated by a GS

thread) will be discarded.

Primitive topologies with adjacency are also handled, in that the adjacent-only vertices are dereferenced

and only non-adjacent objects are passed down the pipeline. This condition can arise when primitive

topologies with adjacency are generated but the GS stage is disabled. If this condition is allowed, the

CLIP stage must not be completely disabled – as this would allow adjacent vertices to pass through the

CLIP stage and lead to unpredictable results as the rest of the pipeline does not comprehend adjacency.

Object Pass-Through

Depending on ClipMode, objects may be passed directly down the pipeline. The PrimTopologyType

associated with the output objects may differ from the input PrimTopologyType, as shown in the table

below.

Programming Note: The CLIP unit does not tolerate primitives with adjacency that have “dangling

vertices”. This should not be an issue under normal conditions, as the VF unit does not generate these

sorts of primitives and the GS thread is restricted (though by specification only) to not output these sorts

of primitives.

Input

 PrimTopologyType

Pass-Through

Output

 PrimTopologyType Notes

POINTLIST POINTLIST

POINTLIST_BF POINTLIST_BF

LINELIST LINELIST

182 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Input

 PrimTopologyType

Pass-Through

Output

 PrimTopologyType Notes

LINELIST_ADJ LINELIST Adjacent vertices removed.

LINESTRIP LINESTRIP

LINESTRIP_ADJ,

LINESTRIP_ADJ_CONT

LINESTRIP
Adjacent vertices removed.

LINESTRIP_ADJ_CONT is added. LINESTRIP_ADJ_CONT is

generated by the Vertex Fetch unit on a restore of a mid-draw

pre-empted 3DPRIMITIVE.

LINESTRIP_BF LINESTRIP_BF

LINESTRIP_CONT LINESTRIP_CONT

LINESTRIP_CONT_BF LINESTRIP_CONT_BF

LINELOOP N/A Not supported after GS.

TRILIST TRILIST

RECTLIST RECTLIST

TRILIST_ADJ TRILIST Adjacent vertices removed.

TRISTRIP TRISTRIP or

TRISTRIP_REV
Depends on where the incoming strip is broken (if at all) by

discarded or clipped objects

See Tristrip Clipping subsection.

TRISTRIP_REV TRISTRIP or

TRISTRIP_REV
Depends on where the incoming strip is broken (if at all) by

discarded or clipped objects.

See Tristrip Clipping subsection.

TRISTRIP_ADJ TRISTRIP or

TRISTRIP_REV
Depends on where the incoming strip is broken (if at all) by

discarded or clipped objects.

Adjacent vertices removed.

See Tristrip Clipping subsection.

TRIFAN TRIFAN

TRIFAN_NOSTIPPLE TRIFAN_NOSTIPPLE

POLYGON,

POLYGON_CONT

POLYGON POLYGON_CONT is added. POLYGON_CONT is generated by

the Vertex Fetch unit on a restore of a mid-draw pre-empted

3DPRIMITIVE.

QUADLIST N/A Not supported after GS.

QUADSTRIP N/A Not supported after GS.

Primitive Output

(This section refers to output from the CLIP unit to the pipeline, not output from the CLIP thread)

Doc Ref # IHD-OS-LKF-Vol 9-4.21 183

The CLIP unit will output primitives (either passed-through or generated by a CLIP thread) in the proper

order. This includes the buffering of a concurrent CLIP thread’s output until the preceding CLIP thread

terminates. Note that the requirement to buffer subsequent CLIP thread output until the preceding CLIP

thread terminates has ramifications on determining the number of VUEs allocated to the CLIP unit and

the number of concurrent CLIP threads allowed.

Other Functionality

Statistics Gathering

Software is responsible for controlling (enabling) these counters in order to provide the required

statistics at the DDI level. For example, software might need to disable statistics gathering before

submitting non-API-visible objects (e.g., RECTLISTs) for processing.

The CLIP unit must be ENABLED (via the CLIP Enable bit of PIPELINED_STATE_POINTERS) for it to affect

the statistics counters. This might lead to a pathological case where the CLIP unit needs to be ENABLED

simply to provide statistics gathering. If no clipping functionality is desired, Clip Mode can be set to

ACCEPT_ALL to effectively inhibit clipping while leaving the CLIP stage ENABLED.

The statistic the CLIP unit affects (if enabled) is CL_INVOCATION_COUNT, incremented for every object

received from the GS stage.

CL_INVOCATION_COUNT

If the Statistics Enable bit (CLIP_STATE) is set, the CLIP unit increments the CL_INVOCATION_COUNT

register for every complete object received from the GS stage.

To maintain a count of application-generated objects, software must clear the CLIP unit’s Statistic

Enable whenever driver-generated objects are rendered.

3D Pipeline - Strips and Fans (SF) Stage

The Strips and Fan (SF) stage of the 3D pipeline is responsible for performing “setup” operations required

to rasterize 3D objects.

This functionality is handled completely in hardware, and the SF unit no longer has the ability to spawn

threads.

Attribute Setup/Interpolation Process

The following sections describe the Attribute Setup/Interpolation Process.

Attribute Setup/Interpolation Process

Hardware computes all needed parameters, as there is no setup thread.

184 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Primitive Assembly

The first subfunction within the SF unit is Primitive Assembly. Here 3D primitive vertex information is

buffered and, when a sufficient number of vertices are received, converted into basic 3D objects which

are then passed to the Viewport Transformation subfunction.

The number of vertices passed with each primitive is constrained by the primitive type. Primitive

Assembly. Passing any other number of vertices results in UNDEFINED behavior. Note that this restriction

only applies to primitive output by GS threads (which is under control of the GS kernel). See the Vertex

Fetch chapter for details on how the VF unit automatically removes incomplete objects resulting from

processing a 3DPRIMITIVE command.

SF-Supported Primitive Types & Vertex Count Restrictions

primType VertexCount Restriction

3DPRIM_TRILIST nonzero multiple of 3

3DPRIM_TRISTRIP

 3DPRIM_TRISTRIP_REVERSE

>=3

3DPRIM_TRIFAN

3DPRIM_TRIFAN_NOSTIPPLE

3DPRIM_POLYGON

>=3

3DPRIM_LINELIST nonzero multiple of 2

3DPRIM_LINESTRIP

3DPRIM_LINESTRIP_CONT

3DPRIM_LINESTRIP_BF

3DPRIM_LINESTRIP_CONT_BF

>=2

3DPRIM_RECTLIST nonzero multiple of 3

3DPRIM_POINTLIST

 3DPRIM_POINTLIST_BF

nonzero

Primitive Assembly for a list of the 3D object types.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 185

3D Object Types

objectType generated by primType Vertices/Object

3DOBJ_POINT 3DPRIM_POINTLIST

 3DPRIM_POINTLIST_BF

1

3DOBJ_LINE
3DPRIM_LINELIST

3DPRIM_LINESTRIP

3DPRIM_LINESTRIP_CONT

3DPRIM_LINESTRIP_BF

3DPRIM_LINESTRIP_CONT_BF

2

3DOBJ_TRIANGLE
3DPRIM_TRILIST

3DPRIM_TRISTRIP

3DPRIM_TRISTRIP_REVERSE

3DPRIM_TRIFAN

3DPRIM_TRIFAN_NOSTIPPLE

3DPRIM_POLYGON

3

3DOBJ_RECTANGLE 3DPRIM_RECTLIST 3 (expanded to 4 in RectangleCompletion)

Primitive Assembly for the outputs of Primitive Decomposition.

Primitive Decomposition Outputs

Variable Type Description

objectType enum
Type of object. Primitive Assembly

nV uint The number of object vertices passed to Object Setup. Primitive Assembly

v[0..nV-1]* various Data arrays associated with object vertices. Data in the array consists of X, Y, Z, invW

and a pointer to the other vertex attributes. These additional attributes are not used

by directly by the 3D fixed functions but are made available to the SF thread. The

number of valid vertices depends on the object type. Primitive Assembly

invertOrientation enum Indicates whether the orientation (CW or CCW winding order) of the vertices of a

triangle object should be inverted. Ignored for non-triangle objects.

backFacing enum Valid only for points and line objects, indicates a back facing object. This is used later

for culling.

provokingVtx uint Specifies the index (into the v[] arrays) of the vertex considered the “provoking” vertex

(for flat shading). The selection of the provoking vertex is programmable via SF_STATE

(xxx Provoking Vertex Select state variables.)

polyStippleEnable boolean TRUE if Polygon Stippling is enabled. FALSE for TRIFAN_NOSTIPPLE. Ignored for non-

triangle objects.

continueStipple boolean Only applies to line objects. TRUE if Line Stippling should be continued (i.e., not reset)

186 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Variable Type Description

from where the previous line left off. If FALSE, Line Stippling is reset for each line

object.

renderTargetIndex uint Index of the render target (array element or 3D slice), clamped to 0 by the GS unit if

the max value was exceeded. This value is simply passed in SF thread payloads and

not used within the SF unit.

viewPortIndex uint Index of a viewport transform matrix within the SF_VIEWPORT structure used to

perform Viewport Transformation on object vertices and scissor operations on an

object.

pointSize unit For point objects, this value specifies the screen space size (width,height) of the

square point to be rasterized about the vertex position. Otherwise the value is

ignored.

The following table defines, for each primitive topology type, which vertex’s VPIndex/RTAIndex applies to

the objects within the topology.

 VPIndex/RTAIndex Selection

PrimTopologyType Viewport Index Usage

POINTLIST

POINTLIST_BF

Each vertex supplies the VPIndex for the corresponding point object

LINELIST
The leading vertex of each line supplies the VPIndex for the corresponding line object.

V0.VPIndex→ Line(V0,V1)

V2.VPIndex→ Line(V2,V3)

...

LINESTRIP

LINESTRIP_BF

LINESTRIP_CONT

LINESTRIP_CONT_BF

The leading vertex of each line segment supplies the VPIndex for the corresponding line

object.

V0.VPIndex→ Line(V0,V1)

V1.VPIndex→ Line(V1,V2)

...

NOTE: If the VPIndex changes within the topology, shared vertices will be processed

(mapped) multiple times.

TRILIST

 RECTLIST
The leading vertex of each triangle/rect supplies the VPIndex for the corresponding

triangle/rect objects.

V0.VPIndex→ Tri(V0,V1,V2)

V3.VPIndex→ Tri(V3,V4,V5)

...

NOTE: For Autostrips multiple viewport index is not supported. APIs defines the multiple

viewport index to be

Doc Ref # IHD-OS-LKF-Vol 9-4.21 187

PrimTopologyType Viewport Index Usage

output from Geometry shader that only generates Tristrips. If any other shader outputing

multiple viewport indices

for other topologies either autostrip needs to be disable or clipper guardband test needs

to be disabled.

TRISTRIP

 TRISTRIP_REVERSE
The leading vertex of each triangle supplies the VPIndex for the corresponding triangle

object.

V0.VPIndex→ Tri(V0,V1,V2)

V1.VPIndex→ Tri(V1,V2,V3)

...

NOTE: If the VPIndex changes within the primitive, shared vertices will be processed

(mapped) multiple times.

TRIFAN

TRIFAN_NOSTIPPLE

POLYGON

The first vertex (V0) supplies the VPIndex for all triangle objects.

Point List Decomposition

The 3DPRIM_POINTLIST and 3DPRIM_POINTLIST_BACKFACING primitives specify a list of independent

points.

3DPRIM_POINTLIST Primitive

The decomposition process divides the list into a series of basic 3DOBJ_POINT objects that are then

passed individually and in order to the Object Setup subfunction. The provokingVertex of each object is,

by definition, v[0].

Points have no winding order, so the primitive command is used to explicitly state whether they are

back-facing or front-facing points. Primitives of type 3DPRIM_POINTLIST_BACKFACING are decomposed

188 Doc Ref # IHD-OS-LKF-Vol 9-4.21

exactly the same way as 3DPRIM_POINTLIST primitives, but the backFacing variable is set for resulting

point objects being passed on to object setup.

 PointListDecomposition()

 {

 objectType = 3DOBJ_POINT

 nV = 1

 provokingVtx = 0

 if (primType == 3DPRIM_POINTLIST)

 {

 backFacing = FALSE

 }

 else // primType == 3DPRIM_POINTLIST_BACKFACING

 {

 backFacing = TRUE

 }

 for each (vertex in [0..vertexCount-1])

 {

 v[0] ← vIn[i] // copy all arrays

 // (for example, v[]X, v[]Y, and so on)

 ObjectSetup()

 }

 }

Line List Decomposition

The 3DPRIM_LINELIST primitive specifies a list of independent lines.

3DPRIM_LINELIST Primitive

The decomposition process divides the list into a series of basic 3DOBJ_LINE objects that are then passed

individually and in order to the Object Setup stage. The lines are generated with the following object

vertex order: v0, v1; v2, v3; and so on. The provokingVertex of each object is taken from the Line

List/Strip Provoking Vertex Select state variable, as programmed via SF_STATE.

 LineListDecomposition()

 {

 objectType = 3DOBJ_LINE

 nV = 2

 provokingVtx = Line List/Strip Provoking Vertex Select continueStipple = FALSE

Doc Ref # IHD-OS-LKF-Vol 9-4.21 189

 for each (vertex I in [0..vertexCount-2] by 2)

 {

 v[0] arrays ← vIn[i] arrays

 v[1] arrays ← vIn[i+1] arrays

 ObjectSetup()

 }

 }

Line Strip Decomposition

The 3DPRIM_LINESTRIP, 3DPRIM_LINESTRIP_CONT, 3DPRIM_LINESTRIP_BF, and

3DPRIM_LINESTRIP_CONT_BF primitives specify a list of connected lines.

3DPRIM_LINESTRIP_xxx Primitive

The decomposition process divides the strip into a series of basic 3DOBJ_LINE objects that are then

passed individually and in order to the Object Setup stage. The lines are generated with the following

object vertex order: v0,v1; v1,v2; and so on. The provokingVertex of each object is taken from the Line

List/Strip Provoking Vertex Select state variable, as programmed via SF_STATE.

Lines have no winding order, so the primitive command is used to explicitly state whether they are back-

facing or front-facing lines. Primitives of type 3DPRIM_LINESTRIP[_CONT]_BF are decomposed exactly the

same way as 3DPRIM_LINESTRIP[_CONT] primitives, but the backFacing variable is set for the resulting

line objects being passed on to object setup. Likewise 3DPRIM_LINESTRIP_CONT[_BF] primitives are

decomposed identically to basic line strips, but the continueStipple variable is set to true so that the line

stipple pattern will pick up from where it left off with the last line primitive, rather than being reset.

 LineStripDecomposition()

 {

 objectType = 3DOBJ_LINE

 nV = 2

 provokingVtx = Line List/Strip Provoking Vertex Select

 if (primType == 3DPRIM_LINESTRIP)

 {

 backFacing = FALSE

 continueStipple = FALSE

 } else if (primType == 3DPRIM_LINESTRIP_BF)

190 Doc Ref # IHD-OS-LKF-Vol 9-4.21

 {

 backFacing = TRUE

 continueStipple = FALSE

 } else if (primType == 3DPRIM_LINESTRIP_CONT)

 {

 backFacing = FALSE

 continueStipple = TRUE

 } else if (primType == 3DPRIM_LINESTRIP_CONT_BF)

 {

 backFacing = TRUE

 continueStipple = TRUE

 }

 for each (vertex I in [0..vertexCount-1])

 {

 v[0] arrays ← vIn[i] arrays

 v[1] arrays ← vIn[i+1] arrays

 ObjectSetup()

 continueStipple = TRUE

 }

 }

Triangle List Decomposition

The 3DPRIM_TRILIST primitive specifies a list of independent triangles.

3DPRIM_TRILIST Primitive

The decomposition process divides the list into a series of basic 3DOBJ_TRIANGLE objects that are then

passed individually and in order to the Object Setup stage. The triangles are generated with the

following object vertex order: v0,v1,v2; v3,v4,v5; and so on. The provokingVertex of each object is taken

from the Triangle List/Strip Provoking Vertex Select state variable, as programmed via SF_STATE.

 TriangleListDecomposition() {

 objectType = 3DOBJ_TRIANGLE

 nV = 3

 invertOrientation = FALSE

 provokingVtx = Triangle List/Strip Provoking Vertex Select

 polyStippleEnable = TRUE

 for each (vertex I in [0..vertexCount-3] by 3)

 {

Doc Ref # IHD-OS-LKF-Vol 9-4.21 191

 v[0] arrays ← vIn[i] arrays

 v[1] arrays ← vIn[i+1] arrays

 v[2] arrays ← vIn[i+2] arrays

 ObjectSetup()

 }

 }

Triangle Strip Decomposition

The 3DPRIM_TRISTRIP and 3DPRIM_TRISTRIP_REVERSE primitives specify a series of triangles arranged in

a strip, as illustrated below.

3DPRIM_TRISTRIP[_REVERSE] Primitive

The decomposition process divides the strip into a series of basic 3DOBJ_TRIANGLE objects that are then

passed individually and in order to the Object Setup stage. The triangles are generated with the

following object vertex order: v0,v1,v2; v1,v2,v3; v2,v3,v4; and so on. Note that the winding order of the

vertices alternates between CW (clockwise), CCW (counter-clockwise), CW, etc. The provokingVertex of

each object is taken from the Triangle List/Strip Provoking Vertex Select state variable, as

programmed via SF_STATE.

The 3D pipeline uses the winding order of the vertices to distinguish between front-facing and back-

facing triangles (Triangle Orientation (Face) Culling below). Therefore, the 3D pipeline must account for

the alternation of winding order in strip triangles. The invertOrientation variable is generated and used

for this purpose.

To accommodate the situation where the driver is forced to break an input strip primitive into multiple

tristrip primitive commands (for example, due to ring or batch buffer size restrictions), two tristrip

primitive types are supported. 3DPRIM_TRISTRIP is used for the initial section of a strip, and wherever a

192 Doc Ref # IHD-OS-LKF-Vol 9-4.21

continuation of a strip starts with a triangle with a CW winding order. 3DPRIM_TRISTRIP_REVERSE is used

for a continuation of a strip that starts with a triangle with a CCW winding order.

 TriangleStripDecomposition()

 {

 objectType = 3DOBJ_TRIANGLE

 nV = 3

 provokingVtx = Triangle List/Strip Provoking Vertex Select

 if (primType == 3DPRIM_TRISTRIP)

 invertOrientation = FALSE

 else // primType == 3DPRIM_TRISTRIP_REVERSE

 invertOrientation = TRUE

 polyStippleEnable = TRUE

 for each (vertex I in [0..vertexCount-3])

 {

 v[0] arrays ← vIn[i] arrays

 v[1] arrays ← vIn[i+1] arrays

 v[2] arrays ← vIn[i+2] arrays

 ObjectSetup()

 invertOrientation = ! invertOrientation

 }

 }

Triangle Fan Decomposition

The 3DPRIM_TRIFAN and 3DPRIM_TRIFAN_NOSTIPPLE primitives specify a series of triangles arranged in

a fan, as illustrated below.

3DPRIM_TRIFAN Primitive

The decomposition process divides the fan into a series of basic 3DOBJ_TRIANGLE objects that are then

passed individually and in order to the Object Setup stage. The triangles are generated with the

following object vertex order: v0,v1,v2; v0,v2,v3; v0,v3,v4; and so on. As there is no alternation in the

vertex winding order, the invertOrientation variable is output as FALSE unconditionally. The

provokingVertex of each object is taken from the Triangle Fan Provoking Vertex state variable, as

programmed via SF_STATE.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 193

Primitives of type 3DPRIM_TRIFAN_NOSTIPPLE are decomposed exactly the same way, except the

polyStippleEnable variable is FALSE for the resulting objects being passed on to object setup. This will

inhibit polygon stipple for these triangle objects.

 TriangleFanDecomposition()

 {

 objectType = 3DOBJ_TRIANGLE

 nV = 3

 invertOrientation = FALSE

 provokingVtx = Triangle Fan Provoking Vertex Select

 if (primType == 3DPRIM_TRIFAN)

 polyStippleEnable = TRUE

 else // primType == 3DPRIM_TRIFAN_NOSTIPPLE

 polyStippleEnable = FALSE

 v[0] arrays ← vIn[0] arrays

 // the 1st vertex is common

 for each (vertex I in [1..vertexCount-2])

 {

 v[1] arrays ← vIn[i] arrays

 v[2] arrays ← vIn[i+1] arrays

 ObjectSetup()

 }

 }

Polygon Decomposition

The 3DPRIM_POLYGON primitive is identical to the 3DPRIM_TRIFAN primitive with the exception that the

provokingVtx is overridden with 0. This support has been added specifically for OpenGL support, avoiding

the need for the driver to change the provoking vertex selection when switching between trifan and

polygon primitives.

Rectangle List Decomposition

The 3DPRIM_RECTLIST primitive command specifies a list of independent, axis-aligned rectangles. Only

the lower right, lower left, and upper left vertices (in that order) are included in the command – the

upper right vertex is derived from the other vertices (in Object Setup).

3DPRIM_RECTLIST Primitive

194 Doc Ref # IHD-OS-LKF-Vol 9-4.21

The decomposition of the 3DPRIM_RECTLIST primitive is identical to the 3DPRIM_TRILIST decomposition,

with the exception of the objectType variable.

 RectangleListDecomposition()

 {

 objectType = 3DOBJ_RECTANGLE

 nV = 3

 invertOrientation = FALSE

 provokingVtx = 0

 for each (vertex I in [0..vertexCount-3] by 3)

 {

 v[0] arrays ← vIn[i] arrays

 v[1] arrays ← vIn[i+1] arrays

 v[2] arrays ← vIn[i+2] arrays

 ObjectSetup()

 }

 }

Object Setup

The Object Setup subfunction of the SF stage takes the post-viewport-transform data associated with

each vertex of a basic object and computes various parameters required for scan conversion. This

includes generation of implied vertices, translations and adjustments on vertex positions, and culling

(removal) of certain classes of objects. The final object information is passed to the Windower/Masker

(WM) stage where the object is rasterized into pixels.

Invalid Position Culling (Pre/Post-Transform)

Invalid Position Culling (Pre/Post-Transform)

At input the the SF stage, any objects containing a floating-point NaN value for Position X, Y, Z, or RHW

will be unconditionally discarded. Note that this occurs on an object (not primitive) basis.

If Viewport Transformation is enabled, any objects containing a floating-point NaN value for post-

transform Position X, Y or Z will be unconditionally discarded.

Viewport Transformation

If the Viewport Transform Enable bit of SF_STATE is ENABLED, a viewport transformation is applied to

each vertex of the object.

The VPIndex associated with the leading vertex of the object is used to obtain the Viewport Matrix

Element data from the corresponding element of the SF_VIEWPORT structure in memory. For each

object vertex, the following scale and translate transformation is applied to the position coordinates:

x’ = m00 * x + m30

y’ = m11 * y + m31

z’ = m22 * z + m32

Software is responsible for computing the matrix elements from the viewport information provided to it

from the API.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 195

Destination Origin Bias

The positioning of the pixel sampling grid is programmable and is controlled by the Destination Origin

Horizontal/Vertical Bias state variables (set via SF_STATE). If these bias values are both 0, pixels are

sampled on an integer grid. Pixel (0,0) will be considered inside the object if the sample point at XY

coordinate (0,0) falls within the primitive.

If the bias values are both 0.5, pixels are sampled on a “half” integer grid (i.e., X.5, Y.5). Pixel (0,0) will be

considered inside the object if the sample point at XY coordinate (0.5,0.5) falls within the primitive. This

positioning of the sample grid corresponds with the OpenGL rasterization rules, where “fragment

centers” lay on a half-integer grid. It also corresponds with the Intel740 rasterizer (though that device did

not employ “top left” rules).

Note that subsequent descriptions of rasterization rules for the various objects will be with reference to

the pixel sampling grid.

Destination Origin Bias

Point Rasterization Rule Adjustment

POINT objects are rasterized as square RECTANGLEs, with one exception: The Point Rasterization Rule

state variable (in SF_STATE) controls the rendering of point object edges that fall directly on pixel sample

points, as the treatment of these edge pixels varies between APIs.

RASTRULE_UPPER_LEFT

196 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Drawing Rectangle Offset Application

The Drawing Rectangle Offset subfunction offsets the object’s vertex X,Y positions by the pixel-exact,

unclipped drawing rectangle origin (as programmed via the Drawing Rectangle Origin X,Y values in the

3DSTATE_DRAWING_RECTANGLE command). The Drawing Rectangle Offset subfunction (at least with

respect to Color Buffer access) is unconditional, and therefore to (effectively) turn off the offset function

the origin would need to be set to (0,0). A non-zero offset is typically specified when window-relative or

viewport-relative screen coordinates are input to the device. Here the drawing rectangle origin would be

loaded with the absolute screen coordinates of the window’s or viewport’s upper-left corner.

Clipping of objects which extend outside of the Drawing Rectangle occurs later in the pipeline. Note that

this clipping is based on the “clipped” draw rectangle (as programmed via the Clipped Drawing

Rectangle values in the 3DSTATE_DRAWING_RECTANGLE command), which must be clamped by

software to the rendertarget boundaries. The unclipped drawing rectangle origin, however, can extend

outside the screen limits in order to support windows whose origins are moved off-screen. This is

illustrated in the following diagrams.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 197

Onscreen Draw Rectangle

Partially-offscreen Draw Rectangle

3DSTATE_DRAWING_RECTANGLE

Point Width Application

This stage of the pipeline applies only to 3DOBJ_POINT objects. Here the point object is converted from

a single vertex to four vertices located at the corners of a square centered at the point’s X,Y position. The

width and height of the square are specified by a point width parameter. The Point Width Source value

in SF_STATE determines the source of the point width parameter: the point width is either taken from the

Point Width value programmed in SF_STATE or the PointWidth specified with the vertex (as read back

from the vertex VUE earlier in the pipeline).

198 Doc Ref # IHD-OS-LKF-Vol 9-4.21

The corner vertices are computed by adding and subtracting one half of the point width. Point Width

Application.

Point Width Application

Z and W vertex attributes are copied from the single point center vertex to each of the four corner

vertices.

Rectangle Completion

This stage of the pipeline applies only to 3DOBJ_RECTANGLE objects. Here the X,Y coordinates of the 4th

(upper right) vertex of the rectangle object is computed from the first 3 vertices as shown in the

following diagram. The other vertex attributes assigned to the implied vertex (v[3]) are UNDEFINED as

they are not used. The Object Setup subfunction will use the values at only the first 3 vertices to compute

attribute interpolants used across the entire rectangle.

Rectangle Completion

Doc Ref # IHD-OS-LKF-Vol 9-4.21 199

Vertex XY Clamping and Quantization

At this stage of the pipeline, vertex X and Y positions are in continuous screen (pixel) coordinates. These

positions are quantized to subpixel precision by rounding the incoming values to the nearest subpixel

(using round-to-nearest-or-even rules matching the DirectX reference device). The device supports

rasterization with either 4 or 8 fractional (subpixel) position bits, as specified by the Vertex SubPixel

Precision Select bit of SF_STATE.

The vertex X and Y screenspace coordinates are also clamped to the fixed-point “guardband” range

supported by the rasterization hardware, as listed in the following table:

Per-Device Guardband Extents

Supported X,Y ScreenSpace “Guardband” Extent

Maximum Post-Clamp Delta

 (X or Y)

[-32K,32K-1] N/A

Note that this clamping occurs after the Drawing Rectangle Origin has been applied and objects have

been expanded (i.e., points have been expanded to squares, etc.). In almost all circumstances, if an

object’s vertices are actually modified by this clamping (i.e., had X or Y coordinates outside of the

guardband extent the rendered object will not match the intended result. Therefore software should take

steps to ensure that this does not happen – e.g., by clipping objects such that they do not exceed these

limits after the Drawing Rectangle is applied.

In addition, in order to be correctly rendered, objects must have a screenspace bounding box not

exceeding 8K in the X or Y direction. This additional restriction must also be comprehended by software,

i.e., enforced by use of clipping.

Degenerate Object Culling

At this stage of the pipeline, “degenerate” objects are discarded. This operation is automatic and cannot

be disabled. (The object rasterization rules would by definition cause these objects to be “invisible” – this

culling operation is mentioned here to reinforce that the device implementation optimizes these

degeneracies as early as possible).

Degenerate Object Culling for definitions of degenerate objects.

Degenerate Objects

objType Degenerate Object Definition

3DOBJ_POINT Two or more corner vertices are coincident (i.e., the radius quantized to zero)

3DOBJ_LINE The endpoints are coincident

3DOBJ_TRIANGLE All three vertices are collinear or any two vertices are coincident and SOLID fill mode applies to

the triangle

3DOBJ_RECTANGLE Two or more corner vertices are coincident

200 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Triangle Orientation (Face) Culling

At this stage of the pipeline, 3DOBJ_TRIANGLE objects can be optionally discarded based on the “face

orientation” of the object. This culling operation does not apply to the other object types.

This operation is typically called “back face culling”, though front facing objects (or all 3DOBJ_TRIANGLE

objects) can be selected to be discarded as well. Face culling is typically used to eliminate triangles facing

away from the viewer, thus reducing rendering time.

The “winding order” of a triangle is defined by the the triangle vertex’s 2D (X,Y) screen space position

when traversed from v0 to v1 to v2. That traversal proceeds in either a clockwise (CW) or counter-

clockwise (CCW) direction. The “winding order” of a triangle is defined by the the triangle vertex’s 2D

(X,Y) screen space position when traversed from v0 to v1 to v2. That traversal will proceed in either a

clockwise (CW) or counter-clockwise (CCW) direction. A degenerate triangle is considered “backfacing”,

regardless of the FrontWinding state.

Triangle Winding Order

The Front Winding state variable in SF_STATE controls whether CW or CCW triangles are considered as

having a “front-facing” orientation (at which point non-front-facing triangles are considered “back-

facing”). The internal variable invertOrientation associated with the triangle object is then used to

determine whether the orientation of a that triangle should be inverted. Recall that this variable is set in

the Primitive Decomposition stage to account for the alternating orientations of triangles in strip

primitives resulting form the ordering of the vertices used to process them.

The Cull Mode state variable in SF_STATE specifies how triangles are discarded according to their

resultant orientation. See Degenerate Objects.

Cull Mode

CullMode Definition

CULLMODE_NONE The face culling operation is disabled.

CULLMODE_FRONT Triangles with “front facing” orientation are discarded.

CULLMODE_BACK Triangles with “back facing” orientation are discarded.

CULLMODE_BOTH All triangles are discarded.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 201

Scissor Rectangle Clipping

A scissor operation can be used to restrict the extent of rendered pixels to a screen-space aligned

rectangle. If the scissor operation is enabled, portions of objects falling outside of the intersection of the

scissor rectangle and the clipped draw rectangle are clipped (pixels discarded).

The scissor operation is enabled by the Scissor Rectangle Enable state variable in SF_STATE. If enabled,

the VPIndex associated with the leading vertex of the object is used to select the corresponding

SF_VIEWPORT structure. Up to 16 structures are supported. The Scissor Rectangle X,Y Min,Max fields of

the SF_VIEWPORT structure defines a scissor rectangle as a rectangle in integer pixel coordinates relative

to the (unclipped) origin of the Drawing Rectangle. The scissor rectangle is defined relative to the

Drawing Rectangle to better support the OpenGL API. (OpenGL specifies the “Scissor Box” in window-

relative coordinates). This allows instruction buffers with embedded Scissor Rectangle definitions to

remain valid even after the destination window (drawing rectangle) moves.

Specifying either scissor rectangle xmin > xmax or ymin > ymax will cause all polygons to be discarded

for a given viewport (effectively a null scissor rectangle).

Viewport Extents Test

Viewport extents test can be used to restrict the extent of rendered pixels to the viewport extents. If this

operation is enabled, portion of the objects falling outside of the intersection of the scissor rectangle (if

enabled) and the clipped draw rectangle and viewport extents are clipped (pixels discarded). This

operation similar to the scissor test except both have different enables and the viewport extents can be

programmed to the fractional float values.

This operation is enabled by the View Transform Enable state variable in SF_STATE. If enabled, the

VPIndex associated with the leading vertex of the object is used to select the corresponding

SF_CLIP_VIEWPORT structure. Up to 16 structures are supported. The X/Y Min/Max ViewPort fields of

the SF_CLIP_VIEWPORT structure defines viewport extents as a rectangle in float screen pixel

coordinates relative to the (unclipped) origin of the Drawing Rectangle. Please note that these co-

ordinates can be fractional values and hardware will do appropriate rounding and convert it to integer

pixel co-ordinates (floor rouding used). This View Transform Enable state also controls the viewport

transform so appropriate the viewport transform coefficients need to be populated in the

SF_CLIP_VIEPWORT structure along with the viewport extents.

Final clip rectangle used to define the rendering area will now depend on three rectangles namely

drawing rectangle, Scissor rectangle, Viewport Extents. If both Scissor Rectangle Enable and View

202 Doc Ref # IHD-OS-LKF-Vol 9-4.21

transform enable are set then intersection of all rectangles (Viewport extents, Scissor rectangle, Draw

rectangle) becomes final clip rectangle, while If only Scissor Rectangle Enable is enabled then the

intersection of (Scissor rectangle, Draw rectangle) becomes final clip rectangle. If only View transform

enable is enabled then intersection of (Viewport extents, Draw rectangle) become the final clip rectangle,

while If none is enabled then (Draw rectangle) is the final clip rectangle.

Specifying either viewport extents xmin > xmax or ymin > ymax will cause all polygons to be discarded

for a given viewport (effectively a null viewport).

Line Rasterization

The device supports three styles of line rendering: zero-width (cosmetic) lines, non-antialiased lines, and

antialiased lines.

 Non-antialiased lines are rendered as a polygon having a specified width as measured parallel to the

major axis of the line. Antialiased lines are rendered as a rectangle having a specified width measured

perpendicular to the line connecting the vertices.

The functions required to render lines are split between the SF and WM units. The SF unit is responsible

for computing the overall geometry of the object to be rendered, including the pixel-exact bounding

box, edge equations, etc., and therefore is provided with the screen-geometry-related state variables.

The WM unit performs the actual scan conversion, determining the exact pixels included/excluded and

coverage values for anti-aliased lines.

Zero-Width (Cosmetic) Line Rasterization

Note: The specification of zero-width line rasterization would be more correctly included in the WM Unit

chapter, though is being included here to keep it with the rasterization details of the other line types.

When the Line Width is set to zero, the device will use special rules to rasterize zero-width (“cosmetic”)

lines. The Anti-Aliasing Enable state variable is ignored when Line Width is zero.

When the LineWidth is set to zero, the device will use special rules to rasterize “cosmetic” lines.

 The rasterization rules also comply with the OpenGL conformance requirements (for 1-pixel wide non-

smooth lines). Refer to the appropriate API specifications for details on these requirements.

The GIQ rules basically intersect the directed, ideal line connecting two endpoints with an array of

diamond-shaped areas surrounding pixel sample points. Wherever the line exits a diamond (including

passing through a diamond), the corresponding pixel is lit. Special rules are used to define the subpixel

locations that are considered interior to the diamonds, as a function of the slope of the line. When a line

ends in a diamond (and therefore does not exit that diamond), the corresponding pixel is not drawn.

When a line starts in a diamond and exits that diamond, the corresponding pixel is drawn.

GIQ (Diamond) Sampling Rules – Legacy Mode

When the Legacy Line Rasterization Enable bit in WM_STATE is ENABLED, zero-width lines are

rasterized according to the algorithm presented in this subsection. Also note that the Last Pixel Enable

Doc Ref # IHD-OS-LKF-Vol 9-4.21 203

bit of SF_STATE controls whether the last pixel of the last line in a LINESTRIP_xxx primitive or the last pixel

of each line in a LINELIST_xxx primitive is rendered.

Refer to the following figure, which shows the neighborhood of subpixels around a given pixel sample

point. Note that the device divides a pixel into a 16x16 array of subpixels, referenced by their upper left

corners.

The solid-colored subpixels are considered “interior” to the diamond centered on the pixel sample point.

Here the Manhattan distance to the pixel sample point (center) is less than ½.

The subpixels falling on the edges of the diamond (Manhattan distance = ½) are exclusive, with the

following exceptions:

1. The bottom corner subpixel is always inclusive. This is to ensure that lines with slopes in the

open range (-1,1) touch a diamond even when they cross exactly between pixel diamonds.

2. The right corner subpixel is inclusive as long as the line slope is not exactly one, in which

case the left corner subpixel is inclusive. Including the right corner subpixel ensures that lines

with slopes in the range (1, +infinity] or [-infinity, -1) touch a diamond even when they cross

exactly between pixel diamonds. Including the left corner on slope=1 lines is required for proper

handling of slope=1 lines (see (3) below) – where if the right corner was inclusive, a slope=1 line

falling exactly between pixel centers would wind up lighting pixel on both sides of the line (not

desired).

3. The subpixels along the bottom left edge are inclusive only if the line slope = 1. This is to

correctly handle the case where a slope=1 line falls enters the diamond through a left or bottom

corner and ends on the bottom left edge. One does not consider this “passing through” the

diamond (where the normal rules would have us light the pixel). This is to avoid the following

case: One slope=1 line segment enters through one corner and ends on the edge, and another

(continuation) line segments starts at that point on the edge and exits through the other corner. If

simply passing through a corner caused the pixel to be lit, this case would case the pixel to be lit

twice – breaking the rule that connected line segments should not cause double-hits or missing

pixels. So, by considering the entire bottom left edge as “inside” for slope=1 lines, we will only

light the pixel when a line passes through the entire edge, or starts on the edge (or the left or

bottom corner) and exits the diamond.

204 Doc Ref # IHD-OS-LKF-Vol 9-4.21

4. The subpixels along the bottom right edge are inclusive only if the line slope = -1. Similar

case as (3), except slope=-1 lines require the bottom right edge to be considered inclusive.

The following equation determines whether a point (point.x, point.y) is inside the diamond of the pixel

sample point (sample.x, sample.y), given additional information about the slope (slopePosOne,

slopeNegOne).

 delta_x = point.x – sample.x

 delta_y = point.y – sample.y

 distance = abs(delta_x) + abs(delta_y)

 interior = (distance < 0.5)

 bottom_corner = (delta_x == 0.0) && (delta_y == 0.5)

 left_corner = (delta_x == –0.5) && (delta_y == 0.0)

 right_corner = (delta_x == 0.5) && (delta_y == 0.0)

 bottom_left_edge = (distance == 0.5) && (delta_x < 0) && (delta_y > 0)

 bottom_right_edge = (distance == 0.5) && (delta_x > 0) && (delta_y > 0)

 inside = interior || bottom_corner || (slopePosOne ? left_corner : right_corner) ||

(slopePosOne && left_edge) || (slopeNegOne && right_edge)

GIQ (Diamond) Sampling Rules – DX10 Mode

When the Legacy Line Rasterization Enable bit in WM_STATE is DISABLED, zero-width lines are

rasterized according to the algorithm presented in this subsection. Also note that the Last Pixel Enable

bit of SF_STATE controls whether the last pixel of the last line in a LINESTRIP_xxx primitive or the last pixel

of each line in a LINELIST_xxx primitive is rendered.

Refer to the following figure, which shows the neighborhood of subpixels around a given pixel sample

point. Note that the device divides a pixel into a 16x16 array of subpixels, referenced by their upper left

corners.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 205

The solid-colored subpixels are considered “interior” to the diamond centered on the pixel sample point.

Here the Manhattan distance to the pixel sample point (center) is less than ½.

The subpixels falling on the edges of the diamond (Manhattan distance = ½) are exclusive, with the

following exceptions:

1. The bottom corner subpixel is always inclusive. This is to ensure that lines with slopes in the

open range (-1,1) touch a diamond even when they cross exactly between pixel diamonds.

2. The right corner subpixel is inclusive as long as the line is not X Major (X Major is defined as

-1 <= slope <= 1). Including the right corner subpixel ensures that lines with slopes in the range

(>1, +infinity] or [-infinity, <-1) touch a diamond even when they cross exactly between pixel

diamonds.

3. The left corner subpixel is never inclusive. For Y Major lines, having the right corner subpixel as

always inclusive requires that the left corner subpixel should never be inclusive, since a line falling

exactly between pixel centers would wind up lighting pixel on both sides of the line (not desired).

4. The subpixels along the bottom left edge are always inclusive. This is to correctly handle the

case where a line enters the diamond through a left or bottom corner and ends on the bottom left

edge. One does not consider this “passing through” the diamond (where the normal rules would

have us light the pixel). This is to avoid the following case: One line segment enters through one

corner and ends on the edge, and another (continuation) line segments starts at that point on the

edge and exits through the other corner. If simply passing through a corner caused the pixel to be

lit, this case would cause the pixel to be lit twice – breaking the rule that connected line segments

should not cause double-hits or missing pixels. So, by considering the entire bottom left edge as

“inside”, the pixel is only lit when a line passes through the entire edge, or starts on the edge (or

the left or bottom corner) and exits the diamond.

5. The subpixels along the bottom right edge are always inclusive. Same as case as (4), except

slope=-1 lines require the bottom right edge to be considered inclusive.

The following equation determines whether a point (point.x, point.y) is inside the diamond of the pixel

sample point (sample.x, sample.y), given additional information about the slope (XMajor).

 delta_x = point.x – sample.x

 delta_y = point.y – sample.y

 distance = abs(delta_x) + abs(delta_y)

 interior = (distance < 0.5)

 bottom_corner = (delta_x == 0.0) && (delta_y == 0.5)

 left_corner = (delta_x == –0.5) && (delta_y == 0.0)

 right_corner = (delta_x == 0.5) && (delta_y == 0.0)

 bottom_left_edge = (distance == 0.5) && (delta_x < 0) && (delta_y > 0)

 bottom_right_edge = (distance == 0.5) && (delta_x > 0) && (delta_y > 0)

 inside = interior || bottom_corner || (!XMajor && right_corner) || (bottom_left_edge)

|| (bottom_right_edge)

Non-Antialiased Wide Line Rasterization

Non-anti-aliased, non-zero-width lines are rendered as parallelograms that are centered on, and aligned

to, the line joining the endpoint vertices. Pixels sampled interior to the parallelogram are rendered; pixels

sampled exactly on the parallelogram edges are rendered according to the polygon “top left” rules.

206 Doc Ref # IHD-OS-LKF-Vol 9-4.21

The parallelogram is formed by first determining the major axis of the line (diagonal lines are considered

x-major). The corners of the parallelogram are computed by translating the line endpoints by +/-(Line

Width / 2) in the direction of the minor axis, as shown in the following diagram.

Non-Antialiased Line Rasterization

Anti-Aliased Line Rasterization

Anti-aliased lines are rendered as rectangles that are centered on, and aligned to, the line joining the

endpoint vertices. For each pixel in the rectangle, a fractional coverage value (referred to as Antialias

Alpha) is computed – this coverage value is normally used to attenuate the pixel’s alpha in the pixel

shader thread. The resultant alpha value is therefore available for use in those downstream pixel pipeline

stages to generate the desired effect (e.g., use the attenuated alpha value to modulate the pixel’s color,

and add the result to the destination color, etc.). Note that software is required to explicitly program the

pixel shader and pixel pipeline to obtain the desired anti-aliasing effect – the device simply makes the

coverage-attenuated pixel alpha values available for use in the pixel shader.

The dimensions of the rendered rectangle, and the parameters controlling the coverage value

computation, are programmed via the Line Width, Line AA Region, and Line Cap AA Region state

variables, as shown below. The edges parallel to the line are located at the distance (LineWidth/2) from

the line (measured in screen pixel units perpendicular to the line). The end-cap edges are perpendicular

to the line and located at the distance (LineCapAARegion) from the endpoints.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 207

Anti-aliased Line Rasterization

Along the parallel edges, the coverage values ramp from the value 0 at the very edges of the rectangle to

the value 1 at the perpendicular distance (LineAARegion/2) from a given edge (in the direction of the

line). A pixel’s coverage value is computed with respect to the closest edge. In the cases where

(LineAARegion/2) < (LineWidth/2), this results in a region of fractional coverage values near the edges of

the rectangle, and a region of “fully-covered” coverage values (i.e., the value 1) at the interior of the line.

When (LineAARegion/2) == (LineWidth/2), only pixel sample points falling exactly on the line can

generate fully-covered coverage values. If (LineAARegion/2) > (LineWidth/2), no pixels can be fully-

covered (it is expected that this case is not typically desired).

Along the end cap edges, the coverage values ramp from the value 1 at the line endpoint to the value 0

at the cap edge – itself at a perpendicular distance (LineCapAARegion) from the endpoint. Note that,

unlike the line-parallel edges, there is only a single parameter (LineCapAARegion) controlling the

extension of the line at the end caps and the associated coverage ramp.

The regions near the corners of the rectangle have coverage values influenced by distances from both

the line-parallel and end cap edges – here the two coverage values are multiplied together to provide a

composite coverage value.

208 Doc Ref # IHD-OS-LKF-Vol 9-4.21

The computed coverage value for each pixel is passed through the Windower Thread Dispatch payload.

The Pixel Shader kernel should be passed (unmodified) by the shader to the Render Cache as part of it’s

output message.

SF Pipeline State Summary

3DSTATE_RASTER

3DSTATE_RASTER

Signal SF_INT::Multisample Rasterization Mode

Description

This field determines whether multisample rasterization is enabled and how pixel sample points are

defined.

Formula

See Table: WM_INT::Multisample Rasterization Mode in 3D Pipeline Windower > Windower Pipelined

State > 3DSTATE_WM > 3DSTATE_WM

Signal SF_INT::Global Depth Offset Enable Solid

Description This field determines when Global Depth bias gets enabled.

Formula
= (3DSTATE_RASTER:: Global Depth Offset Enable Solid?

(

(3DSTATE_RASTER::Global Depth Offset Constant != IEEE_FP_ZERO) || (3DSTATE_RASTER::Global Depth Offset

Scale != IEEE_FP_ZERO)

):

Disable

Signal SF_INT:: Global Depth Offset Enable Wireframe

Description This field determines when Global Depth bias gets enabled.

Formula = (3DSTATE_RASTER:: Global Depth Offset Enable Wireframe? ((3DSTATE_RASTER::Global Depth Offset Constant

!= IEEE_FP_ZERO) || (3DSTATE_RASTER::Global Depth Offset Scale != IEEE_FP_ZERO)): Disable

Signal SF_INT:: Global Depth Offset Enable Point

Description This field determines when Global Depth bias gets enabled.

Formula = (3DSTATE_RASTER:: Global Depth Offset Enable Point? ((3DSTATE_RASTER::Global Depth Offset Constant !=

IEEE_FP_ZERO) || (3DSTATE_RASTER::Global Depth Offset Scale != IEEE_FP_ZERO)): Disable

3DSTATE_SF

The state used by the SF stage is defined by this inline state packet.

3DSTATE_SF

Doc Ref # IHD-OS-LKF-Vol 9-4.21 209

The SF Unit also receives 3DSTATE_RASTER. It also receives 3DSTATE_INT which is transparent to SW. 3DSTATE_INT

provides 3DSTATE_WM, 3DSTATE_WM_HZ_OP, 3DSTATE_DETPH_BUFFER, and 3DSTATE_MULTISAMPLE fields.

Signal SF_INT::Number of Multisamples

Description Set the number of multisamples.

Formula
= (WM_INT::WM_HZ_OP) ?

3DSTATE_ WM_HZ_OP::Number of Multisamples :

3DSTATE_MULTISAMPLE::Number of Multisamples

Signal SF_INT::Pixel Position Offset Enable

Description Enables the device to offset pixel positions by 0.5 both in horizontal and vertical directions.

Formula
= (WM_INT::WM_HZ_OP) ?

3DSTATE_ WM_HZ_OP:: Pixel Position Offset Enable:

3DSTATE_MULTISAMPLE:: Pixel Position Offset Enable

Signal SF_INT::Pixel Position Offset

Description
Causes the device to offset pixel positions by 0.5 both in horizontal and vertical directions.

It is to be noted this is done to adjust the pixel co-ordinate system to DX9 like, so any screen space

rectangles (eg: HiZ Clear, Resolve etc) generated internally by driver in this mode needs to be aware

of this offset adjustment and send the rectangles according to alignment restriction taking this offset

adjustment into consideration.

Formula
= (SF_INT::Number of Multisamples >1) &&

 (3DSTATE_MULTISAMPLE:: Pixel Location == PIXLOC_UL_CORNER) &&

SF_INT::Pixel Position Offset Enable

210 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Signal SF_INT: Global Depth Offset Enable Solid

Description Set the number of multisamples

Formula
= (3DSTATE_RASTER:: Global Depth Offset Enable Solid ?

(

(3DSTATE_RASTER::Global Depth Offset Constant != IEEE_FP_ZERO) || (3DSTATE_RASTER::Global Depth Offset

Scale != IEEE_FP_ZERO)

):

Disable

Signal SF_INT: Global Depth Offset Enable Wireframe

Description Set the number of multisamples

Fromula
= (3DSTATE_RASTER:: Global Depth Offset Enable Wireframe ?

(

(3DSTATE_RASTER::Global Depth Offset Constant != IEEE_FP_ZERO) || (3DSTATE_RASTER::Global Depth Offset

Scale != IEEE_FP_ZERO)

):

Disable

Signal SF_INT: Global Depth Offset Enable Point

Description Set the number of multisamples.

Formula
= (3DSTATE_RASTER:: Global Depth Offset Enable Point ?

(

(3DSTATE_RASTER::Global Depth Offset Constant != IEEE_FP_ZERO) ||

(3DSTATE_RASTER::Global Depth Offset Scale != IEEE_FP_ZERO)

):

Disable

Doc Ref # IHD-OS-LKF-Vol 9-4.21 211

Signal SF_INT::FrontFace Fill Mode

Description This state controls how front-facing triangle and rectangle objects are rendered.

Formula
= 3DSTATE_INT::WM_HZ_OP ?

SOLID :

3DSTATE_RASTER:: FrontFace Fill Mode

Signal SF_INT::BackFace Fill Mode

Description This state controls how Back-facing triangle and rectangle objects are rendered.

Formula
= 3DSTATE_INT::WM_HZ_OP ?

SOLID :

3DSTATE_RASTER:: BackFace Fill Mode

Signal SF_INT::FrontWinding

Description Determines whether a triangle object is considered “front facing” if the screen space vertex positions,

when traversed in the order, result in a clockwise (CW) or counter-clockwise (CCW) winding order.

Does not apply to points or lines.

Formula
= 3DSTATE_INT::WM_HZ_OP ?

FRONTWINDING_CW :

3DSTATE_RASTER::FrontWinding

Signal SF_INT::Cull Mode

Description Controls removal (culling) of triangle objects based on orientation. The cull mode only applies to

triangle objects and does not apply to lines, points or rectangles.

Formula
= SF_INT::WM_HZ_OP ?

CULLMODE_BACK :

3DSTATE_RASTER:: Cull Mode

212 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Signal SF_INT::Scissor Rectangle Enable

Description This field is used to control whether the Viewport Z extents (near, far) are considered in

VertexClipTest.

Formula
= SF_INT::WM_HZ_OP ?

3DSTATE_WM_HZ_OP:: Scissor Rectangle Enable :

3DSTATE_RASTER::Scissor Rectangle Enable

Signal SF_INT::Anti-aliasing Enable

Description This field enables “alpha-based” line antialiasing.

Formula
= = SF_INT::WM_HZ_OP ?

3DSTATE_WM_HZ_OP:: Scissor Rectangle Enable :

3DSTATE_RASTER::Anti-aliasing Enable

Signal SF_INT::Global Depth Offset Constant

Description Specifies the constant term in the Global Depth Offset function.

Formula = 3DSTATE_RASTER::Global Depth Offset Constant

Signal SF_INT::Global Depth Offset Scale

Description Specifies the constant term in the Global Depth Offset function.

Formula = 3DSTATE_RASTER::Global Depth Offset Scale

Signal SF_INT::Global Depth Offset Clamp

Description Specifies the clamp term used in the Global Depth Offset function.

Formula = 3DSTATE_RASTER::Global Depth Offset Clamp

Signal SF_INT::Line Stipple Enable

Description Specifies the clamp term used in the Global Depth Offset function.

Formula = 3DSTATE_WM::Line Stipple Enable

Doc Ref # IHD-OS-LKF-Vol 9-4.21 213

Signal SF_INT::RT Independent Rasterization Enable

Description Enables RT Independent Rasterization.

Formula
= 3DSTATE_INT::WM_HZ_OP ?

Disable :

3DSTATE_RASTER::ForcedSampleCount != NUMRASTSAMPLES_0

Signal SF_INT::WM_HZ_OP

Description Enables WM_HZ_OP.

Formula
= (3DSTATE_WM_HZ_OP::DepthBufferClear ||

3DSTATE_WM_HZ_OP::DepthBufferResolve ||

3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||

3DSTATE_WM_HZ_OP::StencilBufferClear ||

3DSTATE_WM_HZ_OP::StencilBufferResolve) ?

Enable :

Disable

Signal SF_INT:: View Transform Enable

Description Enables View Transform

Formula
= SF_INT::WM_HZ_OP ?

Disable :

3DSTATE_SF::View Transform Enable

Signal SF_INT::Render Target Array index

Description Render Target Array index being render to

Formula
= 3DSTATE_INT::WM_HZ_OP ?

0 :

Render Target Array index pipelined from clipper

214 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Signal SF_INT::Depth Buffer Surface Format

Description Depth format being used

Formula = 3DSTATE_INT:: Depth Buffer Surface Format

Signal SF_INT::Viewport index

Description Viewport being used.

Formula
= SF_INT::WM_HZ_OP ?

0 :

Viewport index pipelined from clipper

SF_CLIP_VIEWPORT

The viewport-specific state used by both the SF and CL units (SF_CLIP_VIEWPORT) is stored as an array of

up to 16 elements, each of which contains the DWords described below. The start of each element is

spaced 16 DWords apart. The location of the first element of the array, as specified by both Pointer to

SF_VIEWPORT and Pointer to CLIP_VIEWPORT, is aligned to a 64-byte boundary.

SCISSOR_RECT

Attribute Interpolation Setup

With the attribute interpolation setup function being implemented in hardware for a number of state

fields in 3DSTATE_SF are utilized to control interpolation setup.

Number of SF Output Attributes sets the number of attributes that will be output from the SF stage,

not including position. This can be used to specify up to 32, and may differ from the number of input

attributes. The number of input attributes is derived from the Vertex URB Entry Read Length field. Note

that this field is also used to specify whether swizzling is to be performed on Attributes 0-15 or Attributes

16-32. See the state field definition for details.

Attribute Swizzling

The first or last set of 16 attributes can be swizzled according to certain state fields. Attribute Swizzle

Enable enables the swizzling for all 16 of these attributes, and each of the attributes has a 2-bit Swizzle

Select field that controls swizzling with the following settings:

• INPUTATTR – This attribute is sourced from AttrInputReg[SourceAttribute].

• INPUTATTR_FACING – This attribute is sourced from AttrInputReg[SourceAttribute] if the object is

front-facing, otherwise it is sourced from AttrInputReg[SourceAttribute+1].

• INPUTATTR_W – This attribute is sourced from AttrInputReg[SourceAttribute]. WYZW (the W

component of the source is copied to the X component of the destination).

• INPUTATTR_FACING – If the object is front-facing, this attribute is sourced from

AttrInputReg[SourceAttribute]. WYZW (the W component of the source is copied to the X

Doc Ref # IHD-OS-LKF-Vol 9-4.21 215

component of the destination). If the object is front-facing, this attribute is sourced from

AttrInputReg[SourceAttribute+1]. WYZW.

Each of the first or last set of 16 attributes also has a 5-bit Source Attribute field which specify, per

output attribute (not component), which input attribute sources the output attribute when INPUTATTR is

selected for Swizzle Select. A Source Attribute value of 0 corresponds to the 128-bit attribute

immediately following the vertex 4D position. If INPUTATTR_FACING is selected, this specifies the first of

two consecutive (front,back) input attributes, where the SourceAttribute value can be an odd or even

number (just not 31, as that would place the back-face input attribute past the end of the input max

complement of input attributes).

Constant overriding is also available for the first or last set of 16 attributes. Each attribute has a Constant

Source field which specifies the constant values per swizzled attribute, with the following settings

available:

• XYZW = 0000

• XYZW = 0001

• XYZW = 1111

Each channel of each attribute has a Component Override field to control whether the corresponding

channel is overridden with the constant value defined in Constant Source.

Interpolation Modes

All 32 attributes have a Constant Interpolation Enable state field bit to specify whether all components

of the post-swizzled attribute are to be interpolated as constant values (not varying over the pixels of the

object). If set, the attribute at the provoking vertex is copied to a0, and a1 and a2 are set to zero – this

results in a constant interpolation of the provoking vertex value. If clear, the attribute is linearly

interpolated. Attributes 0-15 are further subjected to Wrap Shortest processing on a per-component

basis, via the Attribute WrapShortest Enables state bitfields. WrapShortest processing modifies the a1

and/or a2 values depending on attribute deltas. All

The table below indicates the output values of a0, a1, and a2 depending on interpolation mode settings.

 a0 a1 a2

Constant A0 0.0 0.0

Linear A0 A1-A0 A2-A0

Wrap Shortest

A0
(A1-A0)+1 (A1-A0) <= -0.5

(A1-A0)-1 (A1-A0) >= 0.5

(A1-A0) otherwise

(A2-A0)+1 (A2-A0) <= -0.5

(A2-A0)-1 (A2-A0) >= 0.5

(A2-A0) otherwise

Point Sprites

Normally all vertex attributes (including texture coordinates) other than position are simply replicated

from the incoming point center vertex to the generated point object (corner) vertices. However, both

216 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DX9 and OGL support “sprite points”, where some/all texture coordinates are replaced with full-scale 2D

texture coordinates.

A 32-bit PointSprite TextureCoordinate Enable bit mask controls whether the corresponding vertex

attribute is to be replaced by a sprite point texture coordinate. The global (not per-attribute) Point

Sprite TextureCoordinate Origin field controls how the point object vertex (top/bottom, left/right)

texture coordinates are generated:

UPPERLEFT Left Right

Top (0,0,0,1) (1,0,0,1)

Bottom (0,1,0,1) (1,1,0,1)

LOWERLEFT Left Right

Top (0,1,0,1) (1,1,0,1)

Bottom (0,0,0,1) (1,0,0,1)

The state used by “setup backend” is defined by the following inline state packet.

3DSTATE_SBE

The state used by “setup backend” is defined by the following inline state packet.

3DSTATE_SBE_SWIZ

SBE Unit also receives 3DSTATE_INT which is transparent to SW. 3DSTATE_INT provides 3DSTATE_VS,

3DSTATE_DS, and 3DSTATE_GS fields.

Signal SBD_INT::Vertex URB Entry Read Lenth

Description Specifies the amount of URB data read for each Vertex URB entry, in 256-bit register increments.

Formula
= (3DSTATE_SBE::Force Vertex URB Entry Read Length == Force) ?

3DSTATE_SBE::Vertex URB Entry Read Length :

3DSTATE_GS::GS_Enable ? 3DSTATE_GS::Vertex URB Entry Output Length :

3DSTATE_DS::DS_Enable ? 3DSTATE_DS::Vertex URB Entry Output Length :

3DSTATE_VS::Vertex URB Entry Output Length

Doc Ref # IHD-OS-LKF-Vol 9-4.21 217

Signal
SBE_INT::Vertex URB Entry Read Offset

Description Specifies the offset (in 256-bit units) at which Vertex URB data is to be read from the URB

Formula
= (3DSTATE_SBE::Force Vertex URB entry Offset == Force) ?

3DSTATE_SBE::Vertex URB Entry Read Offset:

3DSTATE_GS::GS_Enable ? 3DSTATE_GS:: Vertex URB Entry Output Read Offset:

3DSTATE_DS:DS_Enable ? 3DSTATE_DS:: Vertex URB Entry Output Read Offset :

3DSTATE_VS:: Vertex URB Entry Output Read Offset

Signal SBE_INT::PrimId_override

Description When true indicates that SBE provides the Primitive ID.

Formula
= 3DSTATE_GS::GS_Enable ? false :

3DSTATE_SBE::Primitive ID Override Component Select !=0

Barycentric Attribute Interpolation

Given hardware clipper and setup, some of the previous flexibility in the algorithm used to interpolate

attributes is no longer available. Hardware uses barycentric parameters to aid in attribute interpolation,

and these parameters are computed in hardware per-pixel (or per-sample) and delivered in the thread

payload to the pixel shader. Also delivered in the payload are a set of vertex deltas (a0, a1, and a2) per

channel of each attribute.

There are six different barycentric parameters that can be enabled for delivery in the pixel shader

payload. These are enabled via the Barycentric Interpolation Mode bits in 3DSTATE_WM.

In the pixel shader kernel, the following computation is done for each attribute channel of each

pixel/sample given the corresponding attribute channel a0/a1/a2 and the pixel/sample’s b1/b2

barycentric parameters, where A is the value of the attribute channel at that pixel/sample:

A = a0 + (a1 * b1) + (a2 * b2)

Depth Offset

The state for depth offset in 3DSTATE_SF controls the depth offset function. Since this function was

previously contained in the Windower stage, refer to the “Depth Offset” section in the Windower chapter

for more details on this function.

Other SF Functions

The only other SF-related function is statistics gathering.

218 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Statistics Gathering

The SF stage itself does not have any associated pipeline statistics; however, it counts the number of

objects being output by the clipper on the clipper’s behalf, since it is less feasible to have the CLIP unit

figure out how many objects have been output by a clip thread. It is easy for the SF unit to count the

number of objects it receives from the CLIP stage since it is decomposing the output primitive topologies

into objects anyway.

If the Statistics Enable bit is set in SF_STATE, then SF will increment the CL_PRIMITIVES_COUNT Register

(see Memory Interface Registers in Volume Ia, GPU) once for each object in each primitive topology it

receives from the CLIP stage. This bit should always be set if clipping is enabled and pipeline statistics are

desired.

Software should always clear the Statistics Enable bit in SF_STATE if the clipper is disabled since objects

SF receives are not considered “primitives output by the clipper” unless the clipper is enabled. Note that

the clipper can be disabled either using bypass mode via a PIPELINE_STATE_POINTERS command with

Clip Enable clear or by setting Clip Mode in CLIP_STATE to CLIPMODE_ACCEPT_ALL.

Windower (WM) Stage

Overview

As mentioned in the SF Unit chapter, the SF stage prepares an object for scan conversion by the

Window/Masker (WM) unit Refer to the SF Unit chapter for details on the screen-space geometry of

objects to be rendered The WM unit uses the parameters provided by the SF unit in the object-specific

rasterization algorithms.

The WM stage of the 3D pipeline performs the following operations (at a high level)

• Pre-scan-conversion modification of some primitive attributes, including

o Application of Depth Offset to the position Z attribute

• Scan-conversion of the various primitive types, including

o 2D clipping to the scissor/draw rectangle intersection

• Spawning of Pixel Shader (PS) threads to process the pixels resulting from scan-conversion

The spawned Pixel Shader (PS) threads are responsible for the following (high-level) operations

• interpolation of vertex attributes (other than X,Y,Z) to the pixel location

• performing any “Pixel Shader” operations dictated by the API PS program

o Using the Sampler shared function to sample data from “texture” surfaces

o Using the DataPort to perform general memory I/O

• Submitting the shaded pixel results to the DataPort for any subsequent “blending” (aka Output

Merger) operation and write to the RenderCache.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 219

The WM unit keeps a scoreboard of pixels being processed in outstanding PS threads in order to

guarantee in-order rasterization results This allows the WM unit to overlap processing of several objects.

Windower Pipelined State

3DSTATE_WM

The following inline state packets define the state used by the windower stage for different generations.

State Packets

3DSTATE_WM

Programming Note

Context: Windower Pipelined State

Note: WM Unit also receives 3DSTATE_WM_HZ_OP, 3DSTATE_RASTER, 3DSTATE_MULTISAMPLE,

3DSTATE_WM_CHROMAKEY, 3DSTATE_PS_BLEND, and 3DSTATE_PS_EXTRA

Signal WM_INT:: Pixel Shader Computed Stencil

Description This field specifies the computed stencil mode for the pixel shader.

Formula
= (WM_INT::WM_HZ_OP) ?

0 :

 3DSTATE_PS_EXTRA::Computed Stencil

Signal WM_INT::ThreadDispatchEnable

Description This bit, if set, indicates that it is possible for a PS thread to modify a render target.

Formula
= (3DSTATE_WM::ForceThreadDispatch == ON) ||

(

(3DSTATE_WM::ForceThreadDispatch != OFF) &&

! WM_INT::WM_HZ_OP &&

3DSTATE_PS_EXTRA::PixelShaderValid &&

(

(!3DSTATE_PS_EXTRA::PixelShaderDoesNotWriteRT &&

3DSTATE_PS_BLEND::HasWriteableRT

) ||

(3DSTATE_PS_EXTRA::PixelShaderHasUAV)

||

WM_INT:: Pixel Shader Kill Pixel ||

220 Doc Ref # IHD-OS-LKF-Vol 9-4.21

(WM_INT::Pixel Shader Computed Depth Mode != PSCDEPTH_OFF &&

(WM_INT::Depth Test Enable || WM_INT::Depth Write Enable)

) || (3DSTATE_PS_EXTRA::Computed Stencil && WM_INT::Stencil Test

Enable) ||

(3DSTATE_WM::EDSC_Mode == 1 &&

(WM_INT::Depth Test Enable ||

WM_INT::Depth Write Enable ||

WM_INT::Stencil Test Enable)

) ||

(WM_INT::RT Independent Rasterization Enable

)

)

)

Signal WM_INT::Pixel Shader Computed Depth Mode

Description This field specifies the computed depth mode for the pixel shader.

Formula
= (3DSTATE_PS_EXTRA::ForceComputedDepth == Force) ?

3DSTATE_PS_EXTRA::Pixel Shader Computed Depth Mode :

(WM_INT::WM_HZ_OP || WM_INT::RT Independent Rasterization Enable) ?

PSCDEPTH_OFF:

3DSTATE_PS_EXTRA::Pixel Shader Computed Depth Mode

Signal WM_INT::Pixel Shader Uses Source Depth

Description This bit, if ENABLED, indicates that the PS kernel requires the source depth value (vPos.z) to be passed

in the payload.

Formula = 3DSTATE_PS_EXTRA::Pixel Shader Uses Source Depth

Doc Ref # IHD-OS-LKF-Vol 9-4.21 221

Signal WM_INT::Pixel Shader Uses Source W

Description This bit, if ENABLED, indicates that the PS kernel requires the interpolated source W value (vPos.w) to

be passed in the payload

Formula = 3DSTATE_PS_EXTRA::Pixel Shader Uses Source W

Signal WM_INT::Pixel Shader Uses Input Coverage Mask

Description This bit, if ENABLED, indicates that the PS kernel requires the input coverage mask to be passed in the

payload.

Formula = 3DSTATE_PS_EXTRA::Pixel Shader Uses Input Coverage Mask

Signal WM_INT::Multisample Rasterization Mode

Description This field determines whether multisample rasterization is enabled and how pixel sample points are

defined.

Formula
See Table below: WM_INT::Multisample Rasterization Mode

WM_INT::Multisample Rasterization Mode

3DSTATE_RASTER::

Force Multisampling

Force Force Force Force Normal Normal Normal

3DSTATE_RASTER::

DX Multisample

Rasterization Mode

MSRASTMODE

_ OFF_PIXEL

MSRASTMODE

_

OFF_PATTERN

MSRASTMODE

_ ON_PIXEL

MSRASTMODE

_ ON_PATTERN

* * *

WM_INT::WM_HZ_OP * * * * True True False

3DSTATE_WM_HZ_OP:

:

Number of

Multisamples

* * * * >

NUMSAMPLES_

1

NUMSAMPLES_

1

*

WM_INT::Multisample

Rasterization Mode

OFF_PIXEL OFF_PATTERN ON_PIXEL ON_PATTERN ON_PATTERN ON_PIXEL Determined

from Table 1

in 3D Pipeline

Windower >

Multisamplin

g >

Multisample

Modes/State)

Note: OFF_PIXEL, OFF_PATTERN, ON_PIXEL, ON_PATTERN modes are described in 3D Pipeline Windower

> Multisampling > Multisample Modes/State.

222 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Signal WM_INT::Multisample Dispatch Mode

Description This bit, determines how PS threads are dispatched

Formula
= (WM_INT::RT Independent Rasterization Enable)?

PerPixel:

(3DSTATE_PS_EXTRA::PixelShaderIsPerSample) ?

PerSample :

PerPixel

Signal WM_INT::Pixel Shader Kill Pixel

Description
This bit, if ENABLED, indicates that the PS kernel or color calculator has the ability to kill (discard)

pixels or samples, other than due to depth or stencil testing.

Formula
= (3DSTATE_WM::ForceKillPixel == ON) ||

(

(3DSTATE_WM::ForceKillPixel != Off) &&

! WM_INT::WM_HZ_OP &&

! 3DSTATE_WM::EDSC_Mode == 2 &&

(WM_INT::Depth Write Enable ||

 WM_INT::Stencil Write Enable) &&

(

3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||

3DSTATE_PS_EXTRA:: oMask Present to RenderTarget ||

3DSTATE_PS_BLEND::AlphaToCoverageEnable ||

3DSTATE_PS_BLEND::AlphaTestEnable ||

3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable

)

)

Doc Ref # IHD-OS-LKF-Vol 9-4.21 223

Signal WM_INT::Early Depth/Stencil Control

Description This field specifies the behavior of early depth/stencil test.

Formula
= (WM_INT::WM_HZ_OP) ?

EDSC_NORMAL :

 WM_INT::RT Independent Rasterization Enable ?

EDSC_PSEXEC :

3DSTATE_WM::Early Depth/Stencil Control

Signal WM_INT::RT Independent Rasterization Enable

Description Enables Render Target Independent Rasterization.

Formula
=

(WM_INT::WM_HZ_OP ?

Disable :

(3DSTATE_RASTER::ForceSampleCount != NUMRASTSAMPLES_0) ?

Enable :

Disable

Signal WM_INT::Statistics Enable

Description Enables Statistics

Formula
= (WM_INT::WM_HZ_OP) ?

Disable :

3DSTATE_WM:: Statistics Enable

Signal WM_INT::Polygon Stipple Enable

Description Enables Poly Stipple

Formula
= (WM_INT::WM_HZ_OP) ?

Disable :

3DSTATE_WM::Polygon Stipple Enable

224 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Signal WM_INT::WM_HZ_OP

Description Enables WM_HZ_OP

Formula
= (3DSTATE_WM_HZ_OP::DepthBufferClear ||

3DSTATE_WM_HZ_OP::DepthBufferResolve ||

3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||

3DSTATE_WM_HZ_OP::StencilBufferResolve ||

3DSTATE_WM_HZ_OP::StencilBufferClear ||

3DSTATE_WM_HZ_OP::DepthBufferPartialResolve) ?

Enable :

Disable

Signal WM_INT:: Pixel Location

Description Sets the input pixel location to Center if UL and doing multisampling

Formula (3DSTATE_MULTISAMPLE::Pixel Location && 3DSTATE_MULTISAMPLE::Pixel Position Offset Enable &&

WM_MULTISAMPLE_INT::Number of Multisamples > 0) ? 0 : 3DSTATE_MULTISAMPLE::Pixel Location

3DSTATE_SAMPLE_MASK

The following inline state packets define the sample mask state used by the windower stage for different

generations.

State Packets

3DSTATE_SAMPLE_MASK

Doc Ref # IHD-OS-LKF-Vol 9-4.21 225

Signal WM_INT:: Sample Mask Enable

Description Sets Sample Mask used in rasterization

Formula
Switch(WM_MULTISAMPLE_INT::Number of Multisamples

{

Case NUMSAMPLES_1: WM_INT:: Sample Mask Enable = 0x0001; break;

Case NUMSAMPLES_2: WM_INT:: Sample Mask Enable = 0x0003; break;

Case NUMSAMPLES_4: WM_INT:: Sample Mask Enable = 0x000F; break;

Case NUMSAMPLES_8: WM_INT:: Sample Mask Enable = 0x00FF; break;

Add this additional case:

Case NUMSAMPLES_16: WM_INT:: Sample Mask Enable = 0xFFFF; break;

}

Signal WM_INT:: Sample Mask

Description Sets Sample Mask used in rasterization

Formula
= WM_INT:: Sample Mask Enable &

(WM_INT::WM_HZ_OP) ?

3DSTATE_WM_HZ_OP::Sample Mask:

3DSTATE_SAMPLE_MASK::Sample Mask

)

3DSTATE_WM_CHROMAKEY

3DSTATE_WM_HZ_OP

226 Doc Ref # IHD-OS-LKF-Vol 9-4.21

State Restrictions

State Restriction

3DSTATE_PS::Render Target Fast Clear Enable Must be disabled

3DSTATE_PS:: Render Target Resolve Enable Must be disabled

3DSTATE_WM:: Legacy Depth Buffer Clear Must be disabled

3DSTATE_WM:: Legacy Depth Buffer Resolve Must be disabled

3DSTATE_WM:: Legacy Hierarchical Depth Buffer

Resolve Enable

Must be disabled

3DSTATE_MULTISAMPLE::Pixel Location Must be set according to the API being used.

3DSTATE_CLEAR_PARAMS ::Depth Clear Value Must be programmed according to the API when

3DSTATE_WM_HZ_OP::Depth Buffer Clear is set

3DSTATE_CLEAR_PARAMS :Depth Clear Value

Valid

Must be enabled when 3DSTATE_WM_HZ_OP::Depth Buffer Clear

is set

State Overrides

State Stencil buffer Clear Depth buffer clear

Depth Buffer Resolve

Enable (full or

partial)

Hierarchical Depth

Buffer Resolve

Enable

SF_INT:: Statistics

Enable

Disable Disable Disable Disable

SF_INT:: View

Transform Enable

Disable Disable Disable Disable

SF_INT::Multisamp

le Rasterization

Mode

(3DSTATE_WM_HZ_OP

::NumberOfSamples >

1) ?

ON_PATTERN :

ON_PIXEL

(3DSTATE_WM_HZ_OP

::NumberOfSamples >

1) ?

ON_PATTERN :

ON_PIXEL

(3DSTATE_WM_HZ_OP

::NumberOfSamples >

1) ?

ON_PATTERN :

ON_PIXEL

(3DSTATE_WM_HZ_OP

::NumberOfSamples >

1) ?

ON_PATTERN :

ON_PIXEL

SF_INT::Cull Mode CULLMODE_BACK CULLMODE_BACK CULLMODE_BACK CULLMODE_BACK

SF_INT::Scissor

Rectangle Enable

3DSTATE_WM_HZ_OP::

Scissor Rectangle

Enable

3DSTATE_WM_HZ_OP::

Scissor Rectangle

Enable

3DSTATE_WM_HZ_OP::

Scissor Rectangle

Enable

3DSTATE_WM_HZ_OP::

Scissor Rectangle

Enable

SF_INT::RT

Independent

Rasterization

Enable

Disable Disable Disable Disable

SF_INT::FrontFace

Fill Mode

SOLID SOLID SOLID SOLID

SF_INT::FrontWind

ing

FRONTWINDING_CW FRONTWINDING_CW FRONTWINDING_CW FRONTWINDING_CW

SF_INT::Render 0 0 0 0

Doc Ref # IHD-OS-LKF-Vol 9-4.21 227

State Stencil buffer Clear Depth buffer clear

Depth Buffer Resolve

Enable (full or

partial)

Hierarchical Depth

Buffer Resolve

Enable

Target Array index

SF_INT::Viewport

index

0 0 0 0

SF_INT:: Geometry

Hashing Disable

Disable Disable Disable Disable

WM_INT::StencilT

estEnable

Enable
Stencil buffer Clear ?

Enable :

Disable

Disable Disable

WM_INT::StencilW

riteEnable

Enable
Stencil buffer Clear ?

Enable :

Disable

Disable Disable

WM_INT::DepthTe

stEnable

Disable Disable Enable Disable

WM_INT::DepthW

riteEnable
Depth buffer Clear ?

Enable :

Disable

Enable Enable Enable

WM_INT::DepthTe

stFunction

NEVER NEVER NEVER NEVER

WM_INT::StencilT

estFunction

ALWAYS
Stencil buffer Clear ?

ALWAYS:

No Override

No Override No Override

WM_INT::StencilP

assDepthPassOp

REPLACE
Stencil buffer Clear ?

REPLACE:

No Override

No Override No Override

WM_INT::

Statistics Enable

Disable Disable Disable Disable

WM_INT::ThreadD

ispatchEnable

Disable Disable Disable Disable

WM_INT:: Pixel

Shader Kill Pixel

Disable Disable Disable Disable

WM_INT:: Pixel

Shader Computed

PSCDEPTH_OFF PSCDEPTH_OFF PSCDEPTH_OFF PSCDEPTH_OFF

228 Doc Ref # IHD-OS-LKF-Vol 9-4.21

State Stencil buffer Clear Depth buffer clear

Depth Buffer Resolve

Enable (full or

partial)

Hierarchical Depth

Buffer Resolve

Enable

Depth Mode

: WM_INT:

Computed Stencil

Enable

Disable Disable Disable Disable

WM_INT::RT

Independent

Rasterization

Enable

Disable Disable Disable Disable

WM_INT::Polygon

Stipple Enable

Disable Disable Disable Disable

WM_INT::Multisa

mple

Rasterization

Mode

NumberOfSamples >

0 ? ON_PATTERN :

ON_PIXEL)

NumberOfSamples >

0 ? ON_PATTERN :

ON_PIXEL)

NumberOfSamples >

0 ? ON_PATTERN :

ON_PIXEL)

NumberOfSamples >

0 ? ON_PATTERN :

ON_PIXEL)

MULTISAMPLE_IN

T::Number of

Multisamples

3DSTATE_WM_HZ_OP::

Number of

Multisamples

3DSTATE_WM_HZ_OP::

Number of

Multisamples

3DSTATE_WM_HZ_OP::

Number of

Multisamples

3DSTATE_WM_HZ_OP::

Number of

Multisamples

WM_INT::Sample

Mask

3DSTATE_WM_HZ_OP::

Sample Mask

3DSTATE_WM_HZ_OP::

Sample Mask

3DSTATE_WM_HZ_OP::

Sample Mask

3DSTATE_WM_HZ_OP::

Sample Mask

WM_INT::Early

Depth/Stencil

Control

EDSC_NORMAL EDSC_NORMAL EDSC_NORMAL EDSC_NORMAL

WM_INT:: Full

Surface Depth

Clear

Depth buffer clear ?

WM_HZ_OP:: Full

Surface Depth Clear :

Disable

WM_HZ_OP:: Full

Surface Depth Clear

Disable Disable

WM_INT:: Full

Surface Depth

Clear

Depth buffer clear ?

WM_HZ_OP:: Full

Surface Depth Clear :

Disable

WM_HZ_OP:: Full

Surface Depth Clear

Disable Disable

3DSTATE_WM_DEPTH_STENCIL

Doc Ref # IHD-OS-LKF-Vol 9-4.21 229

Signal WM_INT::StencilWriteEnable

Description Enables writes to the Stencil Buffer

Formula
= 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE &&

3DSTATE_DEPTH_BUFFER::STENCIL_WRITE_ENABLE &&

(

 (WM_INT::WM_HZ_OP ?

 Use the WM_INT::StencilWriteEnable from WM_HZ_OP table :

 WM_INT::StencilTestEnable &&

 3DSTATE_WM_DEPTH_STENCIL::StencilBufferWriteEnable

)

)

Signal WM_INT::StencilTestEnable

Description Enables Stencil Test

Formula
= 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE &&

(

WM_INT::WM_HZ_OP ?

Use the WM_INT::StencilTestEnable from WM_HZ_OP table :

(3DSTATE_WM_DEPTH_STENCIL::StencilTestEnable &&

!WM_INT::RT Independent Rasterization Enable)

)

230 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Signal WM_INT::DepthTestEnable

Description Enables Depth Test

Formula
= (3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL) &&

(

WM_INT::WM_HZ_OP ?

Use the WM_INT::DepthTestEnable from WM_HZ_OP table :

(3DSTATE_WM_DEPTH_STENCIL::DepthTestEnable &&

! WM_INT::RT Independent Rasterization Enable)

)

Signal WM_INT::DepthTestFunction

Description Depth Test Function

Formula
WM_INT::WM_HZ_OP ?

Use the WM_INT::DepthTestFunction from WM_HZ_OP table :

3DSTATE_WM_DEPTH_STENCIL::DepthTestFunction

Signal WM_INT::DepthWriteEnable

Description Enables Depth Write

Formula
= (3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL) &&

3DSTATE_DEPTH_BUFFER::DEPTH_WRITE_ENABLE &&

(

WM_INT::WM_HZ_OP ?

Use the WM_INT::DepthWriteEnable from WM_HZ_OP table :

3DSTATE_WM_DEPTH_STENCIL::DepthWriteEnable

)

Doc Ref # IHD-OS-LKF-Vol 9-4.21 231

Signal WM_INT::StencilTestFunction

Description Stencil Test Function

Formula
WM_INT::WM_HZ_OP ?

Use the WM_INT::StencilTestFunction from WM_HZ_OP table :

3DSTATE_WM_DEPTH_STENCIL::StencilTestFunction

Signal WM_INT::StencilPassDepthPassOp

Description StencilPassDepthPassOp

Formula
WM_INT::WM_HZ_OP ?

Use the WM_INT::StencilPassDepthPassOp from WM_HZ_OP table :

3DSTATE_WM_DEPTH_STENCIL::StencilPassDepthPassOp

Signal WM_INT::Stencil Test Mask

Description Stencil test Mask

Formula
= 3DSTATE_WM_HZ_OP::StencilClear ?

0xFF :

3DSTATE_WM_DEPTH_STENCIL::Stencil Test Mask

Signal WM_INT::Stencil Write Mask

Description Stencil Write Mask

Formula
= 3DSTATE_WM_HZ_OP::StencilClear ?

0xFF :

3DSTATE_WM_DEPTH_STENCIL::Stencil Write Mask

232 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Signal WM_INT::BackFace Stencil Test Mask

Description Stencil test Mask

Formula
= 3DSTATE_WM_HZ_OP::StencilClear ?

0xFF :

3DSTATE_WM_DEPTH_STENCIL:: Backface Stencil Test Mask

Signal WM_INT:: BackFace Stencil Write Mask

Description Stencil Write Mask

Formula
= 3DSTATE_WM_HZ_OP::StencilClear ?

0xFF :

3DSTATE_WM_DEPTH_STENCIL::Backface Stencil Write Mask

Rasterization

The WM unit uses the setup computations performed by the SF unit to rasterize objects into the

corresponding set of pixels Most of the controls regarding the screen-space geometry of rendered

objects are programmed via the SF unit.

The rasterization process generates pixels in 2x2 groups of pixels called subspans (see Pixels with a

SubSpan below) which, after being subjected to various inclusion/discard tests, are grouped and passed

to spawned Pixel Shader (PS) threads for subsequent processing Once these PS threads are spawned, the

WM unit provides only bookkeeping functions on the pixels Note that the WM unit can proceed on to

rasterize subsequent objects while PS threads from previous objects are still executing.

Pixels with a SubSpan

Doc Ref # IHD-OS-LKF-Vol 9-4.21 233

Drawing Rectangle Clipping

The Drawing Rectangle defines the maximum extent of pixels which can be rendered Portions of objects

falling outside the Drawing Rectangle will be clipped (pixels discarded) Implementations will typically

discard objects falling completely outside of the Drawing Rectangle as early in the pipeline as possible

There is no control to turn off Drawing Rectangle clipping – it is unconditional.

For the purposes of clipping, the Drawing Rectangle must itself be clipped to the destination buffer

extents (The Drawing Rectangle Origin, used to offset relative X,Y coordinates earlier in the pipeline, is

permitted to lie offscreen). The Clipped Drawing Rectangle X,Y Min,Max state variables (programmed

via 3DSTATE_DRAWING_RECTANGLE – See SF Unit) defines the intersection of the Drawing Rectangle

and the Color Buffer It is specified with non-negative integer pixel coordinates relative to the Destination

Buffer upper-left origin.

Pixels with coordinates outside of the Drawing Rectangle cannot be rendered (i.e., the rectangle is

inclusive) For example, to render to a full-screen 1280x1024 buffer, the following values would be

required: Xmin=0, Ymin=0, Xmax=1279 and Ymax=1023

For “full screen” rendering, the Drawing Rectangle coincides with the screen-sized buffer For “front-

buffer windowed” rendering it coincides with the destination “window”.

Line Rasterization

See SF Unit chapter for details on the screen-space geometry of the various line types.

Coverage Values for Anti-Aliased Lines

The WM unit is provided with both the Line Anti-Aliasing Region Width and Line End Cap Anti-

aliasing Region Width state variables (in WM_STATE) in order to compute the coverage values for anti-

aliased lines.

3DSTATE_AA_LINE_PARAMS

3DSTATE_AA_LINE_PARAMETERS

The slope and bias values should be computed to closely match the reference rasterizer results Based on

empirical data, the following recommendations are offered:

The final alpha for the center of the line needs to be 148 to match the reference rasterizer In this case,

the Lo to edge 0 and edge 3 will be the same Since the alpha for each edge is multiplied together, we

get:

edge0alpha * edge1alpha = 148/255 = 0.580392157

Since edge0alpha = edge3alpha we get:

(edge0alpha)2 = 0.580392157

edge0alpha = sqrt(0.580392157) = 0.761834731 at the center pixel

The desired alpha for pixel 1 = 54/255 = 0.211764706

234 Doc Ref # IHD-OS-LKF-Vol 9-4.21

The slope is (0.761834731 – 0.211764706) = 0.550070025

Since we are using 8 bit precision, the slope becomes

AA Coverage [EndCap] Slope = 0.55078125

The alpha value for Lo = 0 (second pixel from center) determines the bias term and is equal to

(0.211764706 – 0.550070025) = -0.338305319

With 8 bits of precision the programmed bias value

Line Stipple

Line stipple, controlled via the Line Stipple Enable state variable in WM_STATE, discards certain pixels

that are produced by non-AA line rasterization.

The line stipple rule is specified via the following state variables programmed via 3DSTATE_LINE_STIPPLE:

the 16-bit Line Stipple Pattern (p), Line Stipple Repeat Count I, and Line Stipple Inverse Repeat

Count. Software must compute Line Stipple Inverse Repeat Count as 1.0f / Line Stipple Repeat Count

and then converted from float to the required fixed-point encoding (see 3STATE_LINE_STIPPLE).

The WM unit maintains an internal Line Stipple Counter state variable (s) The initial value of s is zero; s is

incremented after production of each pixel of a line segment (pixels are produced in order, beginning at

the starting point and working towards the ending point). S is reset to 0 whenever a new primitive is

processed (unless the primitive type is LINESTRIP_CONT or LINESTRIP_CONT_BF), and before every line

segment in a group of independent segments (LINELIST primitive).

During the rasterization of lines, the WM unit computes:

A pixel is rendered if the bth bit of p is 1, otherwise it is discarded. The bits of p are numbered with 0

being the least significant and 15 being the most significant.

3DSTATE_LINE_STIPPLE

Polygon (Triangle and Rectangle) Rasterization

The rasterization of LINE, TRIANGLE, and RECTANGLE objects into pixels requires a “pixel sampling grid”

to be defined This grid is defined as an axis-aligned array of pixel sample points spaced exactly 1 pixel

unit apart If a sample point falls within one of these objects, the pixel associated with the sample point is

considered “inside” the object, and information for that pixel is generated and passed down the pipeline

For TRIANGLE and RECTANGLE objects, if a sample point intersects an edge of the object, the associated

pixel is considered “inside” the object if the intersecting edge is a “left” or “top” edge (or, more exactly,

the intersected edge is not a “right” or “bottom” edge) Note that “top” and “bottom” edges are by

definition exactly horizontal. See TRIANGLE and RECTANGLE Edge Types below for the edge types for

representative TRIANGLE and RECTANGLE objects (solid edges are inclusive, dashed edges are exclusive).

TRIANGLE and RECTANGLE Edge Types

Doc Ref # IHD-OS-LKF-Vol 9-4.21 235

Polygon Stipple

The Polygon Stipple function, controlled via the Polygon Stipple Enable state variable in WM_STATE,

allows only selected pixels of a repeated 32x32 pixel pattern to be rendered Polygon stipple is applied

only to the following primitive types:

3DPRIM_POLYGON

3DPRIM_TRIFAN

3DPRIM_TRILIST

3DPRIM_TRISTRIP

3DPRIM_TRISTRIP_REVERSE

Note that the 3DPRIM_TRIFAN_NOSTIPPLE object is never subject to polygon stipple.

The stipple pattern is defined as a 32x32 bit pixel mask via the 3DSTATE_POLY_STIPPLE_PATTERN

command. This is a non-pipelined command which incurs an implicit pipeline flush when executed.

The origin of the pattern is specified via Polygon Stipple X,Y Offset state variables programmed via the

3DSTATE_POLY_STIPPLE_OFFSET command The offsets are pixel offsets from the Color Buffer origin to

the upper left corner of the stipple pattern. This is a non-pipelined command which incurs an implicit

pipeline flush when executed.

3DSTATE_POLY_STIPPLE_OFFSET

3DSTATE_POLY_STIPPLE_PATTERN

236 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Multisampling

The multisampling function has two components:

• Multisample Rasterization: multisample rasterization occurs at a subpixel level, wherein each

pixel consists of a number of “samples” at state-defined positions within the pixel footprint.

Coverage of the primitive as well as color calculator operations (stencil test, depth test, color buffer

blending, etc.) are done at the sample level. In addition, the pixel shader itself can optionally run at

the sample level depending on a separate state field.

• Multisample Render Targets (MSRT): The render targets, as well as the depth and stencil buffers,

now have the ability to store per-sample values. When combined with multisample rasterization,

color calculator operations such as stencil test, depth test, and color buffer blending are done with

the destination surface containing potentially different values per sample.

3DSTATE_MULTISAMPLE

Signal WM_MULTISAMPLE_INT::Number of Multisamples

Description Set the number of multisamples

Formula
= (WM_INT::WM_HZ_OP) ?

3DSTATE_ WM_HZ_OP::Number of Multisamples :

3DSTATE_MULTISAMPLE::Number of Multisamples

3DSTATE_SAMPLE_PATTERN

Multisample ModesState

A number of state variables control the operation of the multisampling function. The following table

indicates the states and their location. Refer to the state definition for more details.

State Element Source Description

Multisample

Rasterization

Mode

WM_INT::Multisample Rasterization

Mode

Controls whether rasterization of non-lines is

performed on a pixel or sample basis (PIXEL vs.

PATTERN), and whether multisample rasterization of

lines is enabled (OFF vs. ON). From this generation

forward, this state element becomes an internal signal

computed by other state variables (also listed here)

unless certain modes are set, which can be seen in the

WM_INT equation for the signal.

Multisample

Dispatch Mode

WM_INT::Multisample Dispatch Mode Controls whether the pixel shader is executed per pixel

or per sample.

Number of

Multisamples

3DSTATE_MULTISAMPLE and

SURFACE_STATE

Indicates the number of samples per pixel contained

on the surface. This field in 3DSTATE_MULTISAMPLE

must match the corresponding field in

SURFACE_STATE for each render target. The depth,

hierarchical depth, and stencil buffers inherit this field

Doc Ref # IHD-OS-LKF-Vol 9-4.21 237

State Element Source Description

from 3DSTATE_MULTISAMPLE.

RTIR Enabled 3DSTATE_RASTER::ForcedSampleCount

!= NUMRASTSAMPLES_0

Enable Render Target Independent Rasterization.

Pixel Location 3DSTATE_MULTISAMPLE Indicates the subpixel location where values specified

as “pixel” are sampled. This is either the upper left

corner or the center.

MSAA Sample

Offsets

3DSTATE_SAMPLE_PATTERN For each of the N samples, specifies the subpixel

location of each sample.

RTIR Sample

Offsets

3DSTATE_SAMPLE_PATTERN For each of the N samples, specifies the subpixel

location of each sample.

API Mode 3DSTATE_RASTER One of the deciding factors of what the Multisample

Rasterization Mode should be according to

WM_INT::Multisample Rasterization Mode. Software

sets this field according to the API's version.

DX

Multisample

Rasterization

Enable

3DSTATE_RASTER Controls ON/OFF part of Multisample Rasterization

Mode, depending on the API Mode according to

WM_INT::Multisample Rasterization Mode.

This table does not apply if (3DSTATE_RASTER::ForceMultisampleRasterMode == Force) or (WM_INT::WM_HZ_OP

== true).

Table 1: Multisample Rasterization Modes

Number of

Multisample

s

NUMSAMPLES_

1

NUMSAMPLES_

1

>

NUMSAMPLES_

1

>

NUMSAMPLES_

1 Any Any Any Any

DX

Multisample

Rasterization

Enable

0 1 0 1 0 1 0 1

Rast Number

of Samples

Disabled Disabled Disabled Disabled NUMRAST

SAMPLES_

1

NUMRAST

SAMPLES_

1

>

 NUMRAST

 SAMPLES_1

>

 NUMRAST

 SAMPLES_1

API Mode ==

DX9.0/OGL

OFF_PIXEL OFF_PIXEL OFF_PIXEL ON_PATTERN Invalid Invalid Invalid Invalid

API Mode ==

DX10.0

OFF_PIXEL ON_PIXEL OFF_PIXEL ON_PATTERN OFF_PIXEL Invalid Invalid Invalid

API Mode ==

DX10.1+

OFF_PIXEL ON_PIXEL OFF_PATTERN ON_PATTERN OFF_PIXEL ON_PIXEL OFF_PATTER

N

ON_PATTER

N

Definitions for lines terms used in Table 2 through Table 4:

• Legacy Lines: Way of drawing lines that allows Diamond Lines (SF_STATE::Line Width == 0.0), Non-anti-

aliased Wide Lines (SF_STATE::Line Width != 0.0), and Line Stippling (3DSTATE_WM:: Line Stipple Enable ==

1).

238 Doc Ref # IHD-OS-LKF-Vol 9-4.21

• AA Lines: Way of drawing lines that allows Anti-aliased line. These are lines rendered as rectangles that are

centered on, and aligned to, the line joining the endpoint vertices with coverage value (referred to as Anti-

alias Alpha) computed per pixel.

AA Line Support

 Requirement

SF_INT::Anti-aliasing Enable == 1

• MSAA Lines: Way of drawing lines that allows Multisample Anti-aliased lines. These are lines rendered as

rectangles that are centered on, and aligned to, the line joining the endpoint vertices, but no Anti alias alpha

coverage is computed.

Table 2: Type of Line Algorithm Given an Arrangement of State Variables

Multisample

 Rasterization

 Mode Anti-Aliasing Enable SF_STATE::Line Width Line Algorithm

OFF_* 0 Non-Zero Non-Anti-aliased Wide Lines

OFF_* 0 0.0 Diamond Lines

OFF_* 1 Non-Zero See Note A below.

OFF_* 1 0.0 Diamond Lines

ON_* * * MSAA Lines

Note A: Anti-Aliasing Details for Table 2

Anti-Aliasing Details

Anti-Aliased Lines with Alpha Coverage

Table 3: Multisample Modes with RTIR Disabled

Number of Multisamples MS RAST MODE MS DISP MODE HW Mode

NUMSAMPLES_1 OFF_PIXEL PERSAMPLE
Legacy Non-MSAA Mode

1X rasterization, using Pixel Location

Legacy lines or AA-line rasterization

1X PS, sample at Pixel Location

1X output merge, eval Depth at Pixel Location

ON_PIXEL PERSAMPLE
1X Multisampling Mode

1X rasterization, using Pixel Location

MSAA lines only, using Pixel Location

1X PS, sample at Pixel Location

1X output merge, eval Depth at Pixel Location

- PERPIXEL Treated the same as PERSAMPLE

Doc Ref # IHD-OS-LKF-Vol 9-4.21 239

Number of Multisamples MS RAST MODE MS DISP MODE HW Mode

ON_PATTERN - Invalid

OFF_PATTERN - Invalid

n where n >

NUMSAMPLES_1

OFF_PIXEL PERPIXEL
MSRT Only, PerPixel PS

1X rasterization, using Pixel Location

See Note B below.

1X PS, sample at Pixel Location

4X output merge, eval Depth at Pixel Location

PERSAMPLE
MSRT Only, PerSample PS

1X rasterization, using Pixel Location

See Note B below.

nX PS, all samples at Pixel Location

nX output merge, eval Depth at Pixel Location

ON_PIXEL PERPIXEL
Multibuffering MSAA, PerPixel PS

1X rasterization, using Pixel Location

MSAA lines only

1X PS, sample at Pixel Location

4X output merge, eval Depth at Pixel Location

PERSAMPLE
Multibuffering MSAA, PerSample PS

1X rasterization, using Pixel Location

MSAA lines only

nX PS, all samples at Pixel Location

nX output merge, eval Depth at Pixel Location

OFF_PATTERN PERPIXEL
Mixed Mode, PerPixel PS

See Note B below.

Non-Lines: nX rasterization, using Sample Offsets

1X PS, sample at Pixel Location

nX output merge, eval depth at Sample Offsets

PERSAMPLE
Mixed Mode, PerSample PS

See Note B below.

Non-Lines: nX rasterization, using Sample Offsets

240 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Number of Multisamples MS RAST MODE MS DISP MODE HW Mode

nX PS, sample at Pixel Location or Sample Offsets

nX output merge, eval depth at Sample Offsets

ON_PATTERN PERPIXEL
Pattern MSAA, PerPixel PS

nX rasterization, using Sample Offsets

MSAA lines only

1X PS, sample at Pixel Location

nX output merge, eval depth at Sample Offsets

PERSAMPLE
Pattern MSAA, PerSample PS

nX rasterization, using Sample Offsets

MSAA lines only

nX PS, sample at Pixel Location or Sample Offsets

nX output merge, eval depth at Sample Offsets

Note B: Line Details for Table 3 and Table 4

Line Details

Legacy lines or AA-line rasterization. For PERPIXEL or PERSAMPLE in Table 3 use pixel location. For OFF_PATTERN in

Table 4 use pixel location.

Table 4: Multisample Modes with RTIR Enabled

Rast Number of

 Samples MS RAST MODE HW Mode

NUMRASTSAMPLES_1 OFF_PIXEL
Legacy Non-MSAA Mode

1X rasterization, using Pixel Location

Legacy lines or AA-line rasterization

1X PS, sample at Pixel Location

1X output merge, eval Depth at Pixel Location

ON_PIXEL
1X Multisampling Mode

1X rasterization, using Pixel Location

MSAA lines only, using Pixel Location

1X PS, sample at Pixel Location

1X output merge, eval Depth at Pixel Location

Doc Ref # IHD-OS-LKF-Vol 9-4.21 241

Rast Number of

 Samples MS RAST MODE HW Mode

ON_PATTERN Invalid

OFF_PATTERN Invalid

n where n >

NUMRASTSAMPLES_1

OFF_PIXEL Invalid

ON_PIXEL Invalid

OFF_PATTERN
Mixed Mode, PerPixel PS

See Note B above.

Non-Lines: nX rasterization, using Sample Offsets

1X PS, sample at Pixel Location

1X output merge, eval depth atPixel Location

ON_PATTERN
Pattern RTIR, PerPixel PS

nX rasterization, using Sample Offsets

MSAA lines only

1X PS, sample at Pixel Location

1X output merge, eval Depth at Pixel Location

Note: Multisample Dispatch Mode is not taken into account in Table 4 given that with RTIR:

Details

The value of PERSAMPLE is converted to PERPIXEL internally.

Other WM Functions

The only other WM function is Statistics Gathering.

Statistics Gathering

If Statistics Enable is set in WM_STATE or 3DSTATE_WM, the Windower increments the

PS_INVOCATIONS_COUNT register once for each unmasked pixel (or sample) that is dispatched to a Pixel

Shader thread.

If Early Depth Test Enable is set it is possible for pixels or samples to be discarded before reaching the

Pixel Shader due to failing the depth or stencil test. PS_INVOCATIONS_COUNT will still be incremented

for these pixels or samples since the depth test occurs after the pixel shader from the point of view of

SW.

Pixel

This section contains the following subsections:

• Depth and Stencil, which covers the Depth and Stencil test functions

242 Doc Ref # IHD-OS-LKF-Vol 9-4.21

• Pixel Dispatch, which covers pixel shader state, pixel grouping, multisampling effects on pixel

shader dispatch, and pixel shader thread payload

• Pixel Backend, which covers backend processing

Pixel Hashing

A block of pixel is hashed to slice and subslice based on screenspace X,Y. Cross Slice Hashing Mode and

Subslice Hashing Mode indicate the size and shape of the pixel block used for the hash. Subslice

hashing is calculated independently from slice hashing, but together determine how pixel workload is

distributed to all the subslices.

3DSTATE_3D_MODE

X,Y shown below is the pixel block address.

DualSubSlice Hashing

Changed from direct mapping pixels to subslices to mapping pixels to a pair of subslices called

DualSubSlices. Wherever hashing to subslice is mentioned, it now refers to hashing to DualSubSlice. For

example, instead of doing 4-way subslice hashing, does 2-way DualSubSlice hashing using the same

algorithm as prior for 2-way subslice hashing. There are two levels of direct mapping of pixels: first level

is Slice, second level is DualSubSlice.

PixelPipe Hashing

Combines the subslices from two slices into a single purpose built slice. This configuration contains two

pixelpipes (Z&PBE) in the same fashion to two slice configuration, so 2way PixelPipe hashing is required.

Wherever hashing to slice is mentioned, it now refers to PixelPipe. For example, instead of doing 2-way

slice hashing, does 2-way PixelPipe hashing using the controls from 2-way slice hashing, and subslice

hashing will use which PixelPipe the pair of DualSubSlices is within to select which HashCtrl. There are

two levels of direct mapping of pixels: first level is PixelPipe, second level is DualSubSlice.

SubSlice Hashing

2-way Hashing

 subslice_id = X[0] ^ Y[0]

3-way Hashing

 If X+Y is divisible by 3, then subslice_id=0, else subslice_id = 1 + X[2]^Y[0]

Doc Ref # IHD-OS-LKF-Vol 9-4.21 243

Programmable DualSubSlice Hashing

In addition to the above calculated dualsubslice_id, when enabled via Subslice Hashing Table Enable,

dualsubslice_id is indicated by the entry in the dualsubslice_id hashing tables. X,Y address used to index the table is

either 8x8 or 16x16 pixel block.

DUALSUBSLICE_HASH_TABLE_8x8

DUALSUBSLICE_HASH_TABLE_16x8

Slice Hashing

Table based Hashing

Slice_id hash is a lookup into a 256 entry slice_hash_table. The lowest 4 bits of the pixel block X,Y is used to index

into the 16x16 table.

slice_id = slice_hash_table[Y[3:0]][X[3:0]]

Default ROM Table

When Slice Hashing Table Enable is set to false, slice_hash_table defaults to ROM tables based on the current

number of active slices, and the following effective slice_id.

slice_id = (X[3:0] + Y[3:0]) % active_number_slices

Programmable Hashing

When Slice Hashing Table Enable is set to true, slice_hash_table is fetched via indirect state. An array of

slice_hash_tables is stored at memory pointed to by Slice Hash Table State Pointer. First entry in the array is

slices==2. No slice_hash_table is fetched when there is only one active slice.

3DSTATE_SLICE_TABLE_STATE_POINTERS

244 Doc Ref # IHD-OS-LKF-Vol 9-4.21

SLICE_HASH_TABLE - SLICE_HASH_TABLE

Coarse Pixel Shading

In Prior products, Pixel Shader can be invoked at either pixel frequency or at sample frequency. In

general, finer grain shading creates more BW and compute demands in the graphics sub-system. In

certain use cases, it is possible to do coarser grain shading than pixel without noticeable change to the

image quality. This observation leads to HW support for coarser than pixel grain shading rate. It is called

Coarse Pixel Shading (CPS).

Coarse Pixels

Similar to how pixels consist of multiple samples under MSAA, a coarse pixel consists of several pixels.

Coarse pixel size is defined in terms of pixels by an ordered pair, e.g. (2,4) means CP has 2 pixels in X-axis

and 4 pixels in Y-axis. Allowable CP sizes are from the set {1,2,4} X {1,2,4}. When CPS is enabled, HW

computes CPsizes and gathers visible pixels to form CPs.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 245

CPS Modes

Coarse Pixel Shading requires per primitive CP sizes to be determined. CPsize is fixed for a block of 8X8

aligned pixel block. There are two modes for determining the CPsize:

Constant: Entire RTV has the flat CPsizes as defined by the 3DSTATE_CPS. This mode can be used to

under-shade uniformly.

Radial: Since camera focal plane tends to carry more detailed information in the rendered image, this

mode provides increasing CPsizes as distance from the focal point (defined in 3DSTATE_PS) increases.

Therefore shading rate decreases as pixels fall farther from the focal point. In this mode, CPsize is a

function of the fragment's position.XY. Detailed computation with respect to parameters from

3DSTATE_CPS is described below:

First define the following variables:

• Let (Px, Py) be the (x,y) pixel position of the pixel for which the requested coarse pixel size is being

computed, in pixel coordinates

• Let (Cx, Cy) be the center position, in pixel coordinates, specified as CoarsePixelSizeState.CenterX

and CoarsePixelSizeState.CenterY. These values must be in [0.0f,

MAX_RENDER_TARGET_LINEAR_RESOLUTION].

• Let be the maximum coarse pixel size specified as (CoarsePixelSizeState.MinSizeX,

CoarsePixelSizeState.MinSizeY). These values must be in [1.0f, 4.0f] (the minimum and maximum

allowed coarse pixel sizes).

• Let be the minimum coarse pixel size specified as (CoarsePixelSizeState.MaxSizeX,

CoarsePixelSizeState.MaxSizeY). These values must be in [1.0f, 4.0f] (the minimum and maximum

allowed coarse pixel sizes).

• Let Rmin be the minimum radius specified as CoarsePixelSizeState.RadiusMinSize. These values must

be in [0.0f, MAX_RENDER_TARGET_LINEAR_RESOLUTION * sqrt(2.0f)] (the minimum and maximum

radii in pixel coordinates).

• Let Rmax be the maximum radius specified as CoarsePixelSizeState.RadiusMaxSize. These values

must be in [0.0f, MAX_RENDER_TARGET_LINEAR_RESOLUTION * sqrt(2.0ff)] (the minimum and

maximum radii in pixel coordinates).

• Let (Mx,My) be

• Let Aratio be the radial function aspect ratio defined as the length in pixels of the ellipse X axis over

the Y axis.

Then determine SV_CoarsePixelSize as follows:

DeltaX = (Cx- Px)

DeltaY = (Cy- Py)

If (Aratio≤ 1) DeltaY = Aratio* DeltaY

246 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Else DeltaX = (1/Aratio)*DeltaX

D= Distance(DeltaX,DeltaY)

CoarsePixelSizex= Mx* (D - Rmin) +

CoarsePixelSizey= M_y*(D- Rmin)+

CoarsePixelSizex= clamp(CoarsePixelSizex, ,)

CoarsePixelSizey= clamp(CoarsePixelSizey, ,)

RequestedCoarsePixelSize = (CoarsePixelSizex, Coars, ePixelSizey)

Where Distance() is the Pythagorean distance function between two points defined by the

following function:

However, because this function may be expensive to compute exactly, the distance function may be

approximated by HW.

Early Depth/Stencil Processing

The Windower/IZ unit provides the Early Depth Test function, a major performance-optimization feature

where an attempt is made to remove pixels that fail the Depth and Stencil Tests prior to pixel shading.

This requires the WM unit to perform the interpolation of pixel (“source”) depth values, read the current

(“destination”) depth values from the cached depth buffer, and perform the Depth and Stencil Tests As

the WM unit has per-pixel source and destination Z values, these values are passed in the PS thread

payload, if required.

Depth Offset

Note: The depth offset function is contained in SF unit, thus the state to control it is also contained in SF

unit.

There are occasions where the Z position of some objects need to be slightly offset to reduce artifacts

due to coplanar or near-coplanar primitives. A typical example is drawing the edges of triangles as

wireframes – the lines need to be drawn slightly closer to the viewer to ensure they will not be occluded

by the underlying polygon. Another example is drawing objects on a wall – without a bias on the z

positions, they might be fully or partially occluded by the wall.

The device supports global depth offset, applied only to triangles, that bases the offset on the object’s z

slope Note that there is no clamping applied at this stage after the Z position is offset – clamping to [0,1]

can be performed later after the Z position is interpolated to the pixel. This is preferable to clamping

prior to interpolation, as the clamping would change the Z slope of the entire object.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 247

The Global Depth Offset function is controlled by the Global Depth Offset Enable state variable in

WM_STATE Global Depth Offset is only applied to 3DOBJ_TRIANGLE objects.

When Global Depth Offset Enable is ENABLED, the pipeline will compute:

 MaxDepthSlope = max(abs(dZ/dX),abs(dz/dy)) // approximation of max depth slope for

polygon

When UNORM Depth Buffer is at Output Merger (or no Depth Buffer):

 Bias = GlobalDepthOffsetConstant * r + GlobalDepthOffsetScale * MaxDepthSlope

Where r is the minimum representable value > 0 in the depth buffer format, converted to float32 (note: If

state bit Legacy Global Depth Bias Enable is set, the r term will be forced to 1.0)

When Floating Point Depth Buffer at Output Merger:

 Bias = GlobalDepthOffsetConstant * 2^(exponent(max z in primitive) – r) +

GlobalDepthOffsetScale * MaxDepthSlope

Where r is the # of mantissa bits in the floating point representation (excluding the hidden bit), e.g. 23

for float32 (note: If state bit Legacy Global Depth Bias Enable is set, no scaling is applied to the

GobalDepthOffsetConstant).

Adding Bias to z:

 if (GlobalDepthOffsetClamp > 0)

 Bias = min(DepthBiasClamp, Bias)

 else if(GlobalDepthOffsetClamp < 0)

 Bias = max(DepthBiasClamp, Bias)

 // else if GlobalDepthOffsetClamp == 0, no clamping occurs

 z = z + Bias

Biasing is constant for a given primitive. The biasing formulas are performed with float32 arithmetic

Global Depth Bias is not applied to any point or line primitives.

Early Depth Test/Stencil Test/Write

When Early Depth Test Enable is ENABLED, the WM unit will attempt to discard depth-occluded pixels

during scan conversion (before processing them in the Pixel Shader). Pixels are only discarded when the

WM unit can ensure that they would have no impact to the ColorBuffer or DepthBuffer. This function is

therefore only a performance feature.

Note: The Early Depth Test Enable bit is no longer present. This function is always enabled.

If some pixels within a subspan are discarded, only the pixel mask is affected indicating that the

discarded pixels are not active. If all pixels within a subspan are discarded, that subspan will not even be

dispatched.

Software-Provided PS Kernel Info

For the WM unit to properly perform Early Depth Test and supply the proper information in the PS

thread payload (and even determine if a PS thread needs to be dispatched), it requires information

regarding the PS kernel operation This information is provided by a number of state bits in WM_STATE,

as summarized in the following table.

248 Doc Ref # IHD-OS-LKF-Vol 9-4.21

State Bit Description

Pixel Shader

Kill Pixel

This must be set when there is a chance that valid pixels passed to a PS thread may be discarded.

This includes the discard of pixels by the PS thread resulting from a “killpixel” or “alphatest”

function or as dictated by the results of the sampling of a “chroma-keyed” texture The WM unit

needs this information to prevent early depth/stencil writes for pixels which might be killed by the

PS thread, etc.

 See WM_STATE/3DSTATE_WM for more information.

Pixel Shader

Computed

Depth

This must be set when the PS thread computes the “source” depth value (i.e., from the API POV,

writes to the “oDepth” output) In this case the WM unit can’t make any decisions based on the

WM-interpolated depth value.

 See WM_STATE/3DSTATE_WM for more information.

Pixel Shader

Uses Source

Depth

Must be set if the PS thread requires the WM-interpolated source depth value. This forces the

source depth to be passed in the thread payload where otherwise the WM unit would not have

seen it as required.

 See WM_STATE/3DSTATE_WM for more information.

Hierarchical Depth Buffer

A hierarchical depth buffer is supported to reduce memory traffic due to depth buffer accesses. This

buffer is supported only in Tile Y memory.

The Surface Type, Height, Width, Depth, Minimum Array Element, Render Target View Extent, and

Depth Coordinate Offset X/Y of the hierarchical depth buffer are inherited from the depth buffer. The

height and width of the hierarchical depth buffer that must be allocated are computed by the following

formulas, where HZ is the hierarchical depth buffer and Z is the depth buffer. The Z_Height, Z_Width, and

Z_Depth values given in these formulas are those present in 3DSTATE_DEPTH_BUFFER incremented by

one.

The Z_Height and Z_Width values must equal those present in 3DSTATE_DEPTH_BUFFER incremented by

one.

Surface Type HZ_Width (Bytes) HZ_Height (Rows) HZ_Qpitch (Rows)

SURFTYPE_1D ceiling(Z_Width / 16) * 16 ceiling((HZ_QPitch/2)/8) *8 * Z_Depth see below

SURFTYPE_2D ceiling(Z_Width / 16) * 16 ceiling((HZ_QPitch/2)/8) *8 * Z_Depth see below

SURFTYPE_3D not applicable

SURFTYPE_CUBE ceiling(Z_Width / 16) * 16 ceiling((HZ_QPitch/2)/8) *8 * 6 * Z_Depth see below

To compute the minimum QPitch for the HZ surface, the height of each LOD in pixels is determined using the

equations for hL in the GPU Overview volume, using a vertical alignment j=8. The following equation gives the

minimum HZ_QPitch based on largest LOD m defined in the surface:

If m is less than 2, treat all hL with L > m as zero and use the above equation.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 249

The minimum HZ_Height required for a 3D surface must be computed based on hL parameters documented in the

GPU Overview volume, and the maximum LOD m:

The format of the data in the hierarchical depth buffer is not documented here, as this surface needs

only to be allocated by software. Hardware will read and write this surface during operation and its

contents are discarded once the last primitive is rendered that uses the hierarchical depth buffer.

The hierarchical depth buffer can be enabled whenever a depth buffer is defined, with its effect being

invisible other than generally higher performance. The only exception is the hierarchical depth buffer

must be disabled when using software tiled rendering.

If HiZ is enabled, you must initialize the clear value by either:

1. Perform a depth clear pass to initialize the clear value.

2. Send a 3dstate_clear_params packet with valid = 1.

Without one of these events, context switching will fail, as it will try to save off a clear value even though

no valid clear value has been set. When context restore happens, HW will restore an uninitialized clear

value.

Depth Buffer Clear

With the hierarchical depth buffer enabled, performance is generally improved by using the special clear

mechanism described here to clear the hierarchical depth buffer and the depth buffer. This is enabled

though the Depth Buffer Clear field in WM_STATE or 3DSTATE_WM or using the 3DSTATE_WM_HZ_OP.

This bit can be used to clear the depth buffer in the following situations:

• Complete depth buffer clear.

• Partial depth buffer clear with the clear value the same as the one used on the previous clear.

• Partial depth buffer clear with the clear value different than the one used on the previous clear can

use this mechanism if a depth buffer resolve is performed first.

The following is required when performing a depth buffer clear using any of the above clearing methods

(WM_STATE, 3DSTATE_WM or 3DSTATE_WM_HZ_OP).

• The hierarchical depth buffer enable must be set in the 3DSTATE_DEPTH_BUFFER.

• The fields in 3DSTATE_CLEAR_PARAMS are set to indicate the source of the clear value and (if

source is in this command) the clear value itself.

• The clear value must be between the min and max depth values (inclusive) defined in the

CC_VIEWPORT. If the depth buffer.

• The following alignment restrictions need to be met while doing the fast-clear:

Alignment Restriction

The minimum granularity of clear is one pixel, but all samples of the pixel must be cleared. Clearing partial

samples of a pixel is not supported. If a newly allocated depth buffer is not padded to an integer multiple of

8x4 pixels, and if the first operation on the depth buffer does not clear the entire width and height of the

surface, then first a HiZ ambiguate must be done on the portions of the depth buffer that are not cleared. If

the depth buffer clear operation does clear the entire width and height of the surface, then the “full surface

250 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Alignment Restriction

clear” bit in 3DSTATE_WM_OP must be set to 1.

The following is required when performing a depth buffer clear with using the WM_STATE or

3DSTATE_WM:

• If other rendering operations have preceded this clear, a PIPE_CONTROL with depth cache flush

enabled, Depth Stall bit enabled must be issued before the rectangle primitive used for the depth

buffer clear operation.

• Depth Test Enable must be disabled and Depth Buffer Write Enable must be enabled (if depth is

being cleared).

• Stencil buffer clear can be performed at the same time by enabling Stencil Buffer Write Enable.

Stencil Test Enable must be enabled and Stencil Pass Depth Pass Op set to REPLACE, and the clear

value that is placed in the stencil buffer is the Stencil Reference Value from COLOR_CALC_STATE.

• Note also that stencil buffer clear can be performed without depth buffer clear. For stencil only

clear, Depth Test Enable and Depth Buffer Write Enable must be disabled.

In some cases, Depth Buffer Clear cannot be enabled and the legacy method of clearing must be used:

• If the depth buffer format is D32_FLOAT_S8X24_UINT or D24_UNORM_S8_UINT.

• If stencil test is enabled but the separate stencil buffer is disabled.

Depth buffer clear pass using any of the methods (WM_STATE, 3DSTATE_WM or 3DSTATE_WM_HZ_OP)

must be followed by a PIPE_CONTROL command with DEPTH_STALL bit and Depth FLUSH bits “set”

before starting to render.

Note: If using the optimized depth buffer clear, this pipecontrol should be done after the resetting of the

clear/resolve bits in the 3DSTATE_WM_HZ_OP (step #8).

Depth Buffer Resolve

If the hierarchical depth buffer is enabled, the depth buffer may contain incorrect results after rendering

is complete If the depth buffer is retained and used for another purpose (i.e as input to the sampling

engine as a shadow map), it must first be “resolved” This is done by setting the Depth Buffer Resolve

Enable field in WM_STATE or 3DSTATE_WM and rendering a full render target sized rectangle. Once this

is complete, the depth buffer will contain the same contents as it would have had the rendering been

performed with the hierarchical depth buffer disabled. In a typical usage model, depth buffer needs to be

resolved after rendering on it and before using a depth buffer as a source for any consecutive operation.

Depth buffer can be used as a source in three different cases: using it as a texture for the nest rendering

sequence, honoring a lock on the depth buffer to the host OR using the depth buffer as a blit source.

The following is required when performing a depth buffer resolve:

• The surface must have been initialized with a Depth Buffer Clear after its allocation to initialize the

Depth Clear Value.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 251

• A rectangle primitive of the same size as the previous depth buffer clear operation must be

delivered, and depth buffer state cannot have changed since the previous depth buffer clear

operation.

• Depth Test Enable must be enabled with the Depth Test Function set to NEVER. Depth Buffer

Write Enable must be enabled. Stencil Test Enable and Stencil Buffer Write Enable must be

disabled.

• Pixel Shader Dispatch, Alpha Test, Pixel Shader Kill Pixel and Pixel Shader Computed Depth

must all be disabled.

Programming Note

Context: HTML

HW uses the clear value from the 3DSTATE_CLEAR_PARAM. If you change the value in the

3DSTATE_CLEAR_PARAMS before resolve, it will flush the depth caches and have the new-clear value in its register.

When doing the resolve pass, it is driver’s responsibility to make sure that the clear-value for the depth buffer is the

same one as the clear-pass.

Hierarchical Depth Buffer Resolve

If the hierarchical depth buffer is enabled, the hierarchical depth buffer may contain incorrect results if

the depth buffer is written to outside of the 3D rendering operation If this occurs, the hierarchical depth

buffer must be resolved to avoid incorrect device behavior. This is done by setting the Hierarchical Depth

Buffer Resolve Enable field in WM_STATE or 3DSTATE_WM and rendering a full render target sized

rectangle. Once this is complete, the hierarchical depth buffer will contain contents such that rendering

will give the same results as it would have had the rendering been performed with the hierarchical depth

buffer disabled.

The following is required when performing a hierarchical depth buffer resolve:

• A rectangle primitive covering the full render target must be delivered.

• Depth Test Enable must be disabled. Depth Buffer Write Enable must be enabled. Stencil Test

Enable and Stencil Buffer Write Enable must be disabled.

• Pixel Shader Dispatch, Alpha Test, Pixel Shader Kill Pixel, and Pixel Shader Computed Depth

must all be disabled.

Optimized Depth Buffer Clear and/or Stencil Buffer Clear

With the hierarchical depth buffer enabled, performance is generally improved by using the special clear

mechanism described here to clear the hierarchical depth buffer and the depth buffer This is enabled

though the Depth Buffer Clear field in 3DSTATE_WM_HZ_OP This bit can be used to clear the depth

buffer in the following situations:

• All 3D units before SF will be bypassed by WM_HZ_OP and states for those units need not be

set/restored for these rectangles.

• Complete depth buffer clear

• Partial depth buffer clear with the clear value the same as the one used on the previous clear

252 Doc Ref # IHD-OS-LKF-Vol 9-4.21

• Partial depth buffer clear with the clear value different than the one used on the previous clear can

use this mechanism if a depth buffer resolve is performed first.

• The minimum granularity of clear is one pixel, but all samples of the pixel must be cleared. Clearing

partial samples of a pixel is not supported

Stencil Buffer Clears can be alone or at the same time as depth buffer clears by using the Stencil Buffer

Clear bit in 3DSTATE_WM_HZ_OP.

Note for SURFACE_TYPE CUBE : To clear / resolve a CUBE_SURFACE using WM_HZ_OP, the

surface_type must be changed to 2D and the depth is calculated for that.

As there are 6 faces of the cube, the depth is multiplied by 6 to get the number of slices in the cube. The

min_array_index is one of the slices.

Hence, in order to clear / resolve, go through each slice & multiply depth by 6 and then using the min-

array-index, point to the respective slice for clear/resolve.

The proper sequence of commands is as follows:

1. Setup 3DSTATE_DEPTH_BUFFER (as needed). Render Target Array index will be internally force to

zero. SW must set 3DSTATE_DEPTH_BUFFER::MinimumArrayElement to render to the array to be

cleared.

2. Setup 3DSTATE_HIER_DEPTH_BUFFER (as needed)

3. Setup 3DSTATE_STENCIL_BUFFER (as needed)

4.

5. Setup 3DSTATE_DRAWING_RECTANGLE (as needed and only if it is different from already existing

drawing rectangle)

6. 3DSTATE_WM_HZ_OP w/ 1 of the clear/resolve bits set

 // This overrides existing state and forces them to what is needed for the clear

 // This also carries the vertex info for doing the clear

7. PIPE_CONTROL w/ all bits clear except for “Post-Sync Operation” must set to “Write Immediate

Data” enabled.

 // This causes 3DSTATE_WM_HZ_OP state to be committed to SF and WM as a pipeline state.

Once state is committed to SF, causes to spawn a rectangle to be drawn

8. 3DSTATE_WM_HZ_OP w/ none of the clear/resolve bits set

 // This clears the overrides

9. Restore 3DSTATE_DEPTH_BUFFER (as needed).

10. Restore 3DSTATE_HIER_DEPTH_BUFFER (as needed)

11. Restore 3DSTATE_STENCIL_BUFFER (as needed)

Arbitrary size rectangles are supported using the Top Left X, Top Left Y, Bottom Right X, Bottom Right Y

fields in the 3DSTATE_WM_HZ_OP.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 253

Optimized Depth Buffer Resolve

If the hierarchical depth buffer is enabled, the depth buffer may contain incorrect results after rendering

is complete If the depth buffer is retained and used for another purpose (i.e locked by the app), it must

first be “resolved” This is done by setting the Depth Buffer Resolve Enable field in

3DSTATE_WM_HZ_OP. The depth buffer resolve uses the same sequence as the optimized Depth buffer

clear (see above) except the Depth Buffer Resolve Enable bit is set. Once this is complete, the depth

buffer will contain the same contents as it would have had the rendering been performed with the

hierarchical depth buffer disabled. In a typical usage model, depth buffer needs to be resolved after

rendering on it and before using a depth buffer as a source for any consecutive operation. Depth buffer

can be used as a source in three different cases: using it as a texture for the nest rendering sequence,

honoring a lock on the depth buffer to the host OR using the depth buffer as a blit source.

Doing a resolve operation requires that a preceding Depth Buffer Clear operation is required to have

initialized the Depth Clear Value.

Optimized Hierarchical Depth Buffer Resolve

If the hierarchical depth buffer is enabled, the hierarchical depth buffer may contain incorrect results if

the depth buffer is written to outside of the 3D rendering operation. If this occurs, the hierarchical depth

buffer must be “resolved” to avoid incorrect device behavior. This is done by setting the Hierarchical

Depth Buffer Resolve Enable field in 3DSTATE_WM_HZ_OP and specifying a full render target sized

rectangle. The depth buffer resolve uses the same sequence as the optimized Depth buffer clear (see

above) except the Hierarchical Depth Buffer Resolve Enable bit is set. Once this is complete, the

hierarchical depth buffer will contain contents such that rendering will give the same results as it would

have had the rendering been performed with the hierarchical depth buffer disabled.

The following is required when performing a hierarchical depth buffer resolve:

• A rectangle primitive covering the full render target must be programmed on Xmin, Ymin, Xmax,

and Ymax in the 3DSTATE_WM_HZ_OP command.

• The rectangle primitive size must be aligned to 8x4 pixels.

Separate Stencil Buffer

The following tables describe the separate stencil buffer for different generations.

The separate stencil buffer is always enabled, thus the field in 3DSTATE_DEPTH_BUFFER to explicitly enable the

separate stencil buffer has been removed. Surface formats with interleaved depth and stencil are no longer

supported.

The stencil buffer has a format of R8_UNIT, and shares Surface Type, Height, Width, and Depth, Minimum

Array Element, Render Target View Extent, Depth Coordinate Offset X/Y, LOD, and Depth Buffer Object

Control State fields of the depth buffer.

254 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DepthStencil Buffer State

This section contains the state registers for the Depth/Stencil Buffers.

Register

3DSTATE_DEPTH_BUFFER

3DSTATE_STENCIL_BUFFER

3DSTATE_HIER_DEPTH_BUFFER

3DSTATE_CLEAR_PARAMS

Pixel Shader Thread Generation

After a group of object fragments have been rasterized, the Pixel Shader (PSD) function is invoked to

further compute output information and cause results to be written to output surfaces (like color, depth,

stencil, UAvs etc). Fragments can be P or S.

Fragments can also be CP.

For each fragment, the Pixel Shader calculates the values of the various vertex attributes that are to be

interpolated across the object using the interpolation coefficients. It then executes an API-supplied Pixel

Shader Program. Instructions in this program permit the accessing of texture map data, where Texture

Samplers are employed to sample and filter texture maps (see the Shared Functions chapter). Arithmetic

operations can be performed on the texture data, input fragment information, and Pixel Shader

Constants to compute the resultant fragment’s output. The Pixel Shader program also allows the pixel to

be discarded from further processing.

3DSTATE_PS

This command is used to set state used by the pixel shader dispatch stage.

Command

3DSTATE_PS

Programming Note

Context: Pixel Shader Thread Generation

Note: The PS Unit also receives 3DSTATE_PS_BLEND, 3DSTATE_SAMPLEMASK, 3DSTATE_MULTISAMPLE, and

3DSTATE_PS_EXTRA.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 255

Signal PS_INT::oMask Present to RenderTarget

Description This bit is inserted in the PS payload header and made available to the DataPort (either via the

message header or via header bypass) to indicate that oMask data (one or two phases) is included in

Render Target Write messages. If present, the oMask data is used to mask off samples.

Formula = 3DSTATE_PS_EXTRA::oMask Present to RenderTarget

Signal PS_INT::Dual Source Blend Enable

Description This field is set if dual source blend is enabled. If this bit is disabled, the data port dual source

message reverts to a single source message using source 0.

Formula
= 3DSTATE_PS_BLEND::ColorBufferBlendEnable &&

(PS_INT::UsesSrc1BlendFactor ||

(PS_INT::IndependentAlphaUsesSrc1BlendFactors &&

3DSTATE_PS_BLEND::Independent Alpha Blend Enable)

)

Signal PS_INT::UsesSrc1BlendFactor

Description

Formula
=

(3DSTATE_PS_BLEND::SourceBlendFactor == BLENDFACTOR_SRC1_COLOR) ||

(3DSTATE_PS_BLEND::SourceBlendFactor == BLENDFACTOR_SRC1_ALPHA) ||

(3DSTATE_PS_BLEND::SourceBlendFactor == BLENDFACTOR_INV_SRC1_COLOR) ||

(3DSTATE_PS_BLEND::SourceBlendFactor == BLENDFACTOR_INV_SRC1_ALPHA) ||

(3DSTATE_PS_BLEND::DestinationBlendFactor == BLENDFACTOR_SRC1_COLOR) ||

(3DSTATE_PS_BLEND::DestinationBlendFactor == BLENDFACTOR_SRC1_ALPHA) ||

(3DSTATE_PS_BLEND::DestinationBlendFactor == BLENDFACTOR_INV_SRC1_COLOR) ||

(3DSTATE_PS_BLEND::DestinationBlendFactor == BLENDFACTOR_INV_SRC1_ALPHA)

256 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Signal PS_INT::IndependentAlphaUsesSrc1BlendFactors

Description

Formula
=

(3DSTATE_PS_BLEND::SourceAlphaBlendFactor == BLENDFACTOR_SRC1_COLOR) ||

(3DSTATE_PS_BLEND::SourceAlphaBlendFactor == BLENDFACTOR_SRC1_ALPHA) ||

(3DSTATE_PS_BLEND::SourceAlphaBlendFactor == BLENDFACTOR_INV_SRC1_COLOR) ||

(3DSTATE_PS_BLEND::SourceAlphaBlendFactor == BLENDFACTOR_INV_SRC1_ALPHA) ||

(3DSTATE_PS_BLEND::DestinationAlphaBlendFactor == BLENDFACTOR_SRC1_COLOR) ||

(3DSTATE_PS_BLEND::DestinationAlphaBlendFactor == BLENDFACTOR_SRC1_ALPHA) ||

(3DSTATE_PS_BLEND::DestinationAlphaBlendFactor == BLENDFACTOR_INV_SRC1_COLOR) ||

(3DSTATE_PS_BLEND::DestinationAlphaBlendFactor == BLENDFACTOR_INV_SRC1_ALPHA)

Signal PS_INT::PS UAV-only

Description Pixel Shader UAV-only render target

Formula = 3DSTATE_PS_EXTRA::Pixel Shader Has UAV && !3DSTATE_PS_EXTRA:: Pixel Shader Does not write to

RT

Command

3DSTATE_PS_EXTRA

 This command is used to set state used by the pixel shader dispatch stage

3DSTATE_PS_BLEND

 This command is used to set state used by the pixel shader dispatch stage

3DSTATE_CONSTANT_PS

3DSTATE_BINDING_TABLE_POINTERS_PS

3DSTATE_PUSH_CONSTANT_ALLOC_PS

3DSTATE_SAMPLER_STATE_POINTERS_PS

Pixel Grouping (Dispatch Size) Control

The WM unit can pass a grouping of 2 subspans (8 pixels), 4 subspans (16 pixels), or 8 subspans (32

pixels) to a Pixel Shader thread. Software should take into account the following considerations when

determining which groupings to support/enable during operation. This determination involves a tradeoff

of these likely conflicting issues. Note that the size of the dispatch has significant impact on the kernel

program. (It is certainly not transparent to the kernel.) Also note that there is no implied spatial

relationship between the subspans passed to a PS thread, other than the fact that they come from the

same object.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 257

• Thread Efficiency: In general, there is some amount of overhead involved with PS thread dispatch,

and if this can be amortized over a larger number of pixels, efficiency will likely increase. This is

especially true for very short PS kernels, as may be used for desktop composition, etc.

• GRF Consumption: Processing more pixels per thread requires a larger thread payload and likely

more temporary register usage, both of which translate into a requirement for a larger GRF register

allocation for the threads. This increased GRF usage could lead to increased use of scratch space

(for spill/fill, etc.) and possibly less efficient use of the EUs (as it would be less likely to find an EU

with enough free physical GRF registers to service the thread).

• Object Size: If the number of very small objects (e.g., covering 2 subspans or fewer) is expected to

comprise a significant portion of the workload, supporting the 8-pixel dispatch mode may be

advantageous. Otherwise there could be a large number of 16-pixel dispatches with only 1 or 2

valid subspans, resulting in low efficiency for those threads.

• Intangibles: Kernel footprint & Instruction Cache impact; Complexity; ….

The groupings of subspans that the WM unit is allowed to include in a PS thread payload is controlled by

the 32,16,8 Pixel Dispatch Enable state variables programmed in WM_STATE. Using these state

variables, the WM unit attempts to dispatch the largest allowed grouping of subspans. The following

table lists the possible combinations of these state variables.

Please note that, the valid column in the table indicates which products supports the combination

dispatch. Combinations that are not listed in the table are not available on any product.

The letter codes A, B, D, and E used in the Variable Pixel Dispatch table below are valid for all projects

with some specific mode restrictions for specific projects for B, D, and E as indicated in the next few

tables.

D is like B with an added general restriction, that it cannot be used in non-1x PERSAMPLE mode.

E cannot be used in PERSAMPLE mode with number of multisamples >= 2.

258 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Variable Pixel Dispatch

Contiguous

64 Pixel

Dispatch

Enable

Contiguous

32 Pixel

Dispatch

Enable

32 Pixel

Dispatch

Enable

16 Pixel

Dispatch

Enable

8 Pixel

Dispatch

Enable Valid

IP for n-pixel

Contiguous

Dispatch

IP for n-pixel Dispatch

(KSP offsets are in

128-bit instruction

units)

n=64 n=32 n=32 n=16 n=8

0 0 0 0 1 A KSP[0]

0 0 0 1 0 B KSP[0]

0 0 0 1 1 D KSP[2] KSP[0]

0 0 1 0 0 B KSP[0]

0 0 1 1 0 E KSP[1] KSP[2]

0 0 1 1 1 D KSP[1] KSP[2] KSP[0]

0 0 1 0 1 F KSP[1] KSP[0]

0 1 1 1 0 D KSP[2] KSP[1] KSP[0]

1 0 1 1 0 D KSP[2] KSP[1] KSP[0]

Each of the three KSP values is separately specified. In addition, each kernel has a separately-specified

GRF register count.

Depending on the subspan grouping selected, the WM unit will modify the starting PS Instruction

Pointer (derived from the Kernel Start Pointer in WM_STATE) as a means to inform the PS kernel of the

number of subspans included in the payload. The modified IP is a function of the enabled modes and the

dispatch size, as shown in the table below.

HW will pick the right Kernel start pointer according to the dispatch size. (Note that the pointer from

WM_STATE is 64-byte aligned which corresponds to four 128-bit instructions.)

If only one dispatch mode is enabled, the Jitter should not include any jump table entries at the

beginning of the PS kernel. If multiple dispatch modes are enabled, a two entry jump table should always

be inserted, regardless of which modes are enabled (jump table entry for 8 pixel dispatch, followed by

jump table entry for 32 pixel dispatch).

Note that for SIMD32 dispatch, pixel shader dispatch function increments GRF Start Register for URB

Data state by 2 to account for the additional SIMD16 payload. The Pixel Shader kernel needs to

comprehend this modification for SIMD32.

 if (32PixelDispatchEnable && n > 7)

 Dispatch 32 Pixels

 else if (16PixelDispatchEnable && (n > 2 || ! 8PixelDispatchEnable))

 Dispatch 16 Pixels

 else

 Dispatch 8 Pixels

 end if

Doc Ref # IHD-OS-LKF-Vol 9-4.21 259

Multisampling Effects on Pixel Shader Dispatch

The pixel shader payloads are defined in terms of subspans and pixels. The slots in the pixel shader

thread previously mapped 1:1 with pixels. With multisampling, a slot could contain a pixel or may just

contain a single sample, depending on the mode. Payload definitions now refer to slot to make the

definition independent of multisampling mode.

MSDISPMODE_PERPIXEL Thread Dispatch

In PERPIXEL mode, the pixel shader kernel still works on 2/4/8 separate subspans, depending on dispatch

mode. The fact that rasterization and the depth/stencil tests are being performed on a per-sample (not

per-pixel) basis is transparent to the pixel shader kernel.

Programming Note

Context: MSDISPMODE_PERPIXEL Thread Dispatch

When NUM_MULTISAMPLES == 16 (i.e. 16x MSAA) and PS_DISPATCH_MODE is PER_PIXEL, SIMD32 pixel shader is

not supported.

MSDISPMODE_PERSAMPLE Thread Dispatch

In PERSAMPLE mode, the pixel shader needs to operate on a sample vs. pixel basis (although this

collapses in NUMSAMPLES_1 mode) Instead of processing strictly different subspans in parallel , the PS

kernel processes different sample indices of one or more subspans in parallel For example, a SIMD16

dispatch in PERSAMPLE/NUMSAMPLES_4 mode would operate on a single subspan, with the usual “4

Subspan0 pixel slots” used for the “4 Sample0 locations of the (single) subspan” Subspan1 slots would be

used for the Sample1 locations, and so on This layout allows the pixel shader to compute

derivatives/LOD based on deltas between corresponding sample locations in the subspan in the same

fashion as LEGACY pixel shader execution, and as required by DX10.1.

Depending on the dispatch mode (8/16/32 pixels) and multisampling mode (1X/4X), there are different

mappings of subspans/samples onto dispatches and slots-within-dispatch In some cases, more than one

subspan may be included in a dispatch, while in other cases multiple dispatches are be required to

process all samples for a single subspan In the latter case, the StartingSamplePairIndex value is

included in the payload header so the Render Target Write message will access the correct samples with

each message.

260 Doc Ref # IHD-OS-LKF-Vol 9-4.21

PERSAMPLE SIMD16 4X Dispatch

Doc Ref # IHD-OS-LKF-Vol 9-4.21 261

PERSAMPLE Dispatch

The following table provides the complete dispatch/slot mappings for all the MS/Dispatch combinations.

Dispatch Size Num Samples

Slot Mapping

 (SSPI = Starting Sample Pair Index)

SIMD32
1X

Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]

Slot[11:8] = Subspan[2].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[3].Pixel[3:0].Sample[0]

Slot[19:16] = Subspan[4].Pixel[3:0].Sample[0]

Slot[23:20] = Subspan[5].Pixel[3:0].Sample[0]

Slot[27:24] = Subspan[6].Pixel[3:0].Sample[0]

Slot[31:28] = Subspan[7].Pixel[3:0].Sample[0]

 2X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[1].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[1].Pixel[3:0].Sample[1]

Slot[19:16] = Subspan[2].Pixel[3:0].Sample[0]

Slot[23:20] = Subspan[2].Pixel[3:0].Sample[1]

Slot[27:24] = Subspan[3].Pixel[3:0].Sample[0]

Slot[31:28] = Subspan[3].Pixel[3:0].Sample[1]

 4X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[3]

Slot[19:16] = Subspan[1].Pixel[3:0].Sample[0]

Slot[23:20] = Subspan[1].Pixel[3:0].Sample[1]

Slot[27:24] = Subspan[1].Pixel[3:0].Sample[2]

Slot[31:28] = Subspan[1].Pixel[3:0].Sample[3]

 8X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[2]

262 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Dispatch Size Num Samples

Slot Mapping

 (SSPI = Starting Sample Pair Index)

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[3]

Slot[19:16] = Subspan[0].Pixel[3:0].Sample[4]

Slot[23:20] = Subspan[0].Pixel[3:0].Sample[5]

Slot[27:24] = Subspan[0].Pixel[3:0].Sample[6]

Slot[31:28] = Subspan[0].Pixel[3:0].Sample[7]

 16x
Dispatch[i]: (i=0, 4)

SSPI = i

Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[SSPI*2+2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[SSPI*2+3]

Slot[19:16] = Subspan[0].Pixel[3:0].Sample[SSPI*2+4]

Slot[23:20] = Subspan[0].Pixel[3:0].Sample[SSPI*2+5]

Slot[27:24] = Subspan[0].Pixel[3:0].Sample[SSPI*2+6]

Slot[31:28] = Subspan[0].Pixel[3:0].Sample[SSPI*2+7]

SIMD16 1X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]

Slot[11:8] = Subspan[2].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[3].Pixel[3:0].Sample[0]

 2X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[1].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[1].Pixel[3:0].Sample[1]

 4X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[3]

 8X
Dispatch[i]: (i=0, 2)

SSPI = i

Doc Ref # IHD-OS-LKF-Vol 9-4.21 263

Dispatch Size Num Samples

Slot Mapping

 (SSPI = Starting Sample Pair Index)

Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[SSPI*2+2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[SSPI*2+3]

 16x
Dispatch[i]: (i=0, 2, 4, 6)

SSPI = i

Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[SSPI*2+2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[SSPI*2+3]

SIMD8
1X

Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]

 2X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

 4X
Dispatch[i]: (i=0..1)

 SSPI = i

 Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]

 Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]

 8X
Dispatch[i]: (i=0, 1, 2, 3)

 SSPI = i

 Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]

 Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]

 16x
Dispatch[i]: (i=0, 1, 2, 3, 4, 5, 6, 7)

 SSPI = i

 Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]

 Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]

264 Doc Ref # IHD-OS-LKF-Vol 9-4.21

PS Thread Payload for Normal Dispatch

The following table lists all possible contents included in a PS thread payload, in the order they are

provided. Certain portions of the payload are optional, in which case the corresponding phase is skipped.

This payload does not apply to the contiguous dispatch modes. The payload for these modes is

documented in the section titled PS Thread Payload for Contiguous Dispatch.

PS Thread Payload for Normal Dispatch

All registers are numbered starting at 0, but many registers are skipped depending on configuration. This

causes all registers below to be renumbered to fill in the skipped locations. The only case where actual

registers may be skipped is immediately before the constant data and again before the setup data.

PS Thread Payload for Normal Dispatch

DWord Bits Description

R0.7 31
Reserved.

30:24 Reserved

23:0
Primitive Thread ID: This field contains the primitive thread count passed to the Windower from

the Strips Fans Unit.

Format: Reserved for HW Implementation Use.

R0.6 31:24 Reserved

23:0
Thread ID: This field contains the thread count which is incremented by the Windower for every

thread that is dispatched.

Format: Reserved for HW Implementation Use.

R0.5 31:10
Scratch Space Pointer: Specifies the 1K-byte aligned pointer to the scratch space available for

this PS thread. This is specified as an offset to the General State Base Address.

Format = GeneralStateOffset[31:10]

9:8 Reserved

7:0
FFTID: This ID is assigned by the WM unit and is an identifier for the thread. It is used to free up

resources used by the thread upon thread completion.

Format: Reserved for HW Implementation Use.

R0.4 31:5
Binding Table Pointer: Specifies the 32-byte aligned pointer to the Binding Table. It is specified

as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

4:0 Reserved

R0.3 31:5
Sampler State Pointer: Specifies the 32-byte aligned pointer to the Sampler State table. It is

Doc Ref # IHD-OS-LKF-Vol 9-4.21 265

DWord Bits Description

specified as an offset from the Dynamic State Base Address.

Format = DynamicStateOffset[31:5]

4 Reserved

3:0
Per Thread Scratch Space: Specifies the amount of scratch space allowed to be used by this

thread.

Programming Notes: This amount is available to the kernel for information only. It will be

passed verbatim (if not altered by the kernel) to the Data Port in any scratch space access

messages, but the Data Port will ignore it.

Format = U4

Range = [0,11] indicating [1k bytes, 2M bytes] in powers of two

R0.2 31:0 Reserved: Delivered as zeros (reserved for message header fields).

R0.1 31:6
Color Calculator State Pointer: Specifies the 64-byte aligned pointer to the Color Calculator

state (COLOR_CALC_STATE structure in memory). It is specified as an offset from the Dynamic

State Base Address. This value is eventually passed to the ColorCalc function in the DataPort and

is used to fetch the corresponding CC_STATE data.

Format = DynamicStateOffset[31:5]

5:0 Reserved

R0.0 31 Reserved

30:27
Viewport Index: Specifies the index of the viewport currently being used.

Format = U4

Range = [0,15]

26:16
Render Target Array Index: Specifies the array index to be used for the following surface types:

SURFTYPE_1D: specifies the array index Range = [0,2047]

SURFTYPE_2D: specifies the array index Range = [0,2047]

SURFTYPE_3D: specifies the “r” coordinate Range = [0,2047]

SURFTYPE_CUBE: specifies the face identifier Range = [0,5]

Face Render Target Array Index

+x 0

-x 1

+y 2

-y 3

+z 4

-z 5

266 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bits Description

Format = U11

15
Front/Back Facing Polygon: Determines whether the polygon is front or back facing. Used by

the render cache to determine which stencil test state to use.

0: Front Facing

1: Back Facing

13
Source Depth to Render Target: Indicates that source depth will be sent to the render target.

12
oMask to Render Target: Indicates that oMask will be sent to the render target.

11:9 Reserved

8 Reserved for expansion of Starting Sample Pair Index.

7:6
Starting Sample Pair Index: Indicates the index of the first sample pair of the dispatch.

Format = U2

Range = [0,3]

5 Reserved

4:0
Primitive Topology Type: This field identifies the Primitive Topology Type associated with the

primitive spawning this object. The WM unit does not modify this value (e.g., objects within

POINTLIST topologies see POINTLIST).

Format: (See 3DPRIMITIVE command in 3D Pipeline.)

R1.7 31:16
Pixel/Sample Mask (SubSpan[3:0]): Indicates which pixels within the four subspans are lit. If 32

pixel dispatch is enabled, this field contains the pixel mask for the first four subspans.

Note: This is not a duplicate of the Dispatch Mask that is delivered to the thread. The dispatch

mask has all pixels within a subspan as active if any of them are lit to enable LOD calculations to

occur correctly.

This field must not be modified by the Pixel Shader kernel.

15:0
Pixel/Sample Mask Copy (SubSpan[3:0]): This is a duplicate copy of the pixel mask. This copy

can be modified as the pixel shader thread executes in order to turn off pixels based on kill

instructions.

R1.6 31:0
YStart coordinate (screen space) for upper-left vertex of a triangle being rasterized.

Format = float32

R1.5 31:16
Y3: Y coordinate (screen space) for upper-left pixel of subspan 3 (slot 12).

Format = U16

Doc Ref # IHD-OS-LKF-Vol 9-4.21 267

DWord Bits Description

15:0
X3: X coordinate (screen space) for upper-left pixel of subspan 3 (slot 12).

Format = U16

R1.4 31:16
Y2: Y coordinate (screen space) for upper-left pixel of subspan 2 (slot 8).

Format = U16

15:0
X2: X coordinate (screen space) for upper-left pixel of subspan 2 (slot 8).

Format = U16

R1.3 31:16
Y1: Y coordinate (screen space) for upper-left pixel of subspan 1 (slot 4).

Format = U16

15:0
X1: X coordinate (screen space) for upper-left pixel of subspan 1 (slot 4).

Format = U16

R1.2 31:16
Y0: Y coordinate (screen space) for upper-left pixel of subspan 0 (slot 0).

Format = U16

15:0
X0: X coordinate (screen space) for upper-left pixel of subspan 0 (slot 0).

Format = U16

R1.1 31:0
XStart coordinate (screen space) for upper-left vertex of a triangle being rasterized.

Format = float32

R1.0 31:20 Reserved

19:16
MSAA rate (multisample count)

Format: U4 [1..16]

This field specifies MSAA sampling rate (required for PS+S monolithic shader).

15:8
ActualCoarsePixelShadingSize.Y if coarse pixel dispatch

Format: U8

This field specifies size (in pixels) of coarse pixel shading rate in Y dimension. Valid values are 1, 2,

and 4.

Note: coarse shading rate is constant for all coarse pixels in same thread dispatch.

15:12
Slot 3 SampleID (if pixel or sample dispatch)

Format = U4

268 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bits Description

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

11:8
Slot 2 SampleID (if pixel or sample dispatch)

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

7:0
ActualCoarsePixelShadingSize.X if coarse pixel dispatch

Format: U8

This field specifies size (in pixels) of coarse pixel shading rate in X dimension. Valid values are 1, 2,

and 4.

Note: coarse shading rate is constant for all coarse pixels in same thread dispatch.

7:4
Slot 1 SampleID (if pixel or sample dispatch)

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

3:0
Slot 0 SampleID (if pixel or sample dispatch)

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

R2: Delivered only if this is a 32-pixel dispatch.

R2.7 31:16
Pixel/Sample Mask (SubSpan[7:4]): Indicates which pixels within the upper four subspans are

lit. This field is valid only when the 32 pixel dispatch state is enabled. This field must not be

Doc Ref # IHD-OS-LKF-Vol 9-4.21 269

DWord Bits Description

modified by the pixel shader thread.

Note: This is not a duplicate of the dispatch mask that is delivered to the thread. The dispatch

mask has all pixels within a subspan as active if any of them are lit to enable LOD calculations to

occur correctly.

This field must not be modified by the Pixel Shader kernel.

15:0
Pixel/Sample Mask Copy (SubSpan[7:4]): This is a duplicate copy of pixel mask for the upper

16 pixels. This copy will be modified as the pixel shader thread executes to turn off pixels based

on kill instructions.

R2.6 31:0 Reserved

R2.5 31:16
Y7: Y coordinate (screen space) for upper-left pixel of subspan 7 (slot 28)

Format = U16

15:0
X7: X coordinate (screen space) for upper-left pixel of subspan 7 (slot 28)

Format = U16

R2.4 31:16 Y6

15:0 X6

R2.3 31:16 Y5

15:0 X5

R2.2 31:16 Y4

15:0 X4

R2.1 31:0 Reserved

R2.0 31:16 Reserved

15:12
Slot 7 SampleID

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

16X MSAA range [0..15]

11:8
Slot 6 SampleID

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

270 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bits Description

4X MSAA range [0..3]

8X MSAA range [0..7]

16X MSAA range [0..15]

7:4
Slot 5 SampleID

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

16X MSAA range [0..15]

3:0
Slot 4 SampleID

Format = U4

1X MSAA range: [0]

2X MSAA range [0,1]

4X MSAA range [0..3]

8X MSAA range [0..7]

16X MSAA range [0..15]

R3-R26: Delivered only if the corresponding Barycentric Interpolation Mode bit is set. Register

phases containing Slot 8-15 data are not delivered in 8-pixel dispatch mode.

R3.7 31:0
Perspective Pixel Location Barycentric[1] for Slot 7

This and the next register phase is only included if the corresponding enable bit in Barycentric

Interpolation Mode is set.

Format = IEEE_Float

R3.6 31:0 Perspective Pixel Location Barycentric[1] for Slot 6

R3.5 31:0 Perspective Pixel Location Barycentric[1] for Slot 5

R3.4 31:0 Perspective Pixel Location Barycentric[1] for Slot 4

R3.3 31:0 Perspective Pixel Location Barycentric[1] for Slot 3

R3.2 31:0 Perspective Pixel Location Barycentric[1] for Slot 2

R3.1 31:0 Perspective Pixel Location Barycentric[1] for Slot 1

R3.0 31:0 Perspective Pixel Location Barycentric[1] for Slot 0

R4 Perspective Pixel Location Barycentric[2] for Slots 7:0

R5.7 31:0 Perspective Pixel Location Barycentric[1] for Slot 15

Doc Ref # IHD-OS-LKF-Vol 9-4.21 271

DWord Bits Description

R5.6 31:0 Perspective Pixel Location Barycentric[1] for Slot 14

R5.5 31:0 Perspective Pixel Location Barycentric[1] for Slot 13

R5.4 31:0 Perspective Pixel Location Barycentric[1] for Slot 12

R5.3 31:0 Perspective Pixel Location Barycentric[1] for Slot 11

R5.2 31:0 Perspective Pixel Location Barycentric[1] for Slot 10

R5.1 31:0 Perspective Pixel Location Barycentric[1] for Slot 9

R5.0 31:0 Perspective Pixel Location Barycentric[1] for Slot 8

R6 Perspective Pixel Location Barycentric[2] for Slots 15:8

R7:10 Perspective Centroid Barycentric

R11:14 Perspective Sample Barycentric

R15:18 Linear Pixel Location Barycentric

R19:22 Linear Centroid Barycentric

R23:26 Linear Sample Barycentric

R27: Delivered only if Pixel Shader Uses Source Depth is set.

R27.7 31:0
Interpolated Depth for Slot 7

Format = IEEE_Float

This and the next register phase is only included if Pixel Shader Uses Source Depth (WM_STATE)

is set.

R27.6 31:0 Interpolated Depth for Slot 6

R27.5 31:0 Interpolated Depth for Slot 5

R27.4 31:0 Interpolated Depth for Slot 4

R27.3 31:0 Interpolated Depth for Slot 3

R27.2 31:0 Interpolated Depth for Slot 2

R27.1 31:0 Interpolated Depth for Slot 1

R27.0 31:0 Interpolated Depth for Slot 0

R28: Delivered only if Pixel Shader Uses Source Depth is set and this is not an 8-pixel dispatch.

R28.7 31:0 Interpolated Depth for Slot 15

R28.6 31:0 Interpolated Depth for Slot 14

R28.5 31:0 Interpolated Depth for Slot 13

R28.4 31:0 Interpolated Depth for Slot 12

R28.3 31:0 Interpolated Depth for Slot 11

R28.2 31:0 Interpolated Depth for Slot 10

R28.1 31:0 Interpolated Depth for Slot 9

R28.0 31:0 Interpolated Depth for Slot 8

272 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bits Description

R29: Delivered only if Pixel Shader Uses Source W is set.

R29.7 31:0
Interpolated W for Slot 7

Format = IEEE_Float

This and the next register phase are only included if Pixel Shader Uses Source W (WM_STATE) is

set.

R29.6 31:0 Interpolated W for Slot 6

R29.5 31:0 Interpolated W for Slot 5

R29.4 31:0 Interpolated W for Slot 4

R29.3 31:0 Interpolated W for Slot 3

R29.2 31:0 Interpolated W for Slot 2

R29.1 31:0 Interpolated W for Slot 1

R29.0 31:0 Interpolated W for Slot 0

R30: Delivered only if Pixel Shader Uses Source W is set and this is not an 8-pixel dispatch.

R30.7 31:0 Interpolated W for Slot 15

R30.6 31:0 Interpolated W for Slot 14

R30.5 31:0 Interpolated W for Slot 13

R30.4 31:0 Interpolated W for Slot 12

R30.3 31:0 Interpolated W for Slot 11

R30.2 31:0 Interpolated W for Slot 10

R30.1 31:0 Interpolated W for Slot 9

R30.0 31:0 Interpolated W for Slot 8

R31: Delivered only if Position XY Offset Select is either POSOFFSET_CENTROID or

POSOFFSET_SAMPLE.

R31.7 31:24
Position Offset Y for Slot 15

This field contains either the CENTROID or SAMPLE position offset for Y, depending on the state

of Position XY Offset Select.

Format = U4.4

For non-CP rate dispatch: Range = [0.0,1.0)

For CP rate dispatch: Range = [0.0,4.0)

23:16
Position Offset X for Slot 15

This field contains either the CENTROID or SAMPLE position offset for X, depending on the state

of Position XY Offset Select.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 273

DWord Bits Description

Format = U4.4

For non-CP rate dispatch: Range = [0.0,1.0)

For CP rate dispatch: Range = [0.0,4.0)

15:8 Position Offset Y for Slot 14

7:0 Position Offset X for Slot 14

R31.6 31:24 Position Offset Y for Slot 13

23:16 Position Offset X for Slot 13

15:8 Position Offset Y for Slot 12

7:0 Position Offset X for Slot 12

R31.5:4 Position Offset X/Y for Slot[11:8]

R31.3:2 Position Offset X/Y for Slot[7:4]

R31.1:0 Position Offset X/Y for Slot[3:0]

R32: Delivered only if Pixel Shader Uses Input Coverage Mask is set.

R32.7 31:0
Input Coverage Mask for Slot 7

Format = U32

This and the next register phase is only included if Pixel Shader Uses Input Coverage Mask

(3DSTATE_PS) is set.

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask

for kernels dispatched at coarse-rate.

R32.6 31:0
Input Coverage Mask for Slot 6

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask

for kernels dispatched at coarse-rate.

R32.5 31:0
Input Coverage Mask for Slot 5

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask

for kernels dispatched at coarse-rate.

R32.4 31:0
Input Coverage Mask for Slot 4

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask

for kernels dispatched at coarse-rate.

R32.3 31:0
Input Coverage Mask for Slot 3

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask

for kernels dispatched at coarse-rate.

R32.2 31:0
Input Coverage Mask for Slot 2

274 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bits Description

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask

for kernels dispatched at coarse-rate.

R32.1 31:0
Input Coverage Mask for Slot 1

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask

for kernels dispatched at coarse-rate.

R32.0 31:0
Input Coverage Mask for Slot 0

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask

for kernels dispatched at coarse-rate.

R33: Delivered only if Pixel Shader Uses Input Coverage Mask is set and this is not an 8-pixel

dispatch.

R33.7 31:0
Input Coverage Mask for Slot 15

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask

for kernels dispatched at coarse-rate.

R33.6 31:0
Input Coverage Mask for Slot 14

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask

for kernels dispatched at coarse-rate.

R33.5 31:0
Input Coverage Mask for Slot 13

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask

for kernels dispatched at coarse-rate.

R33.4 31:0
Input Coverage Mask for Slot 12

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask

for kernels dispatched at coarse-rate.

R33.3 31:0
Input Coverage Mask for Slot 11

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask

for kernels dispatched at coarse-rate.

R33.2 31:0
Input Coverage Mask for Slot 10

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask

for kernels dispatched at coarse-rate.

R33.1 31:0
Input Coverage Mask for Slot 9

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask

for kernels dispatched at coarse-rate.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 275

DWord Bits Description

R33.0 31:0
Input Coverage Mask for Slot 8

Fields encode sample Coverage Mask for kernels dispatched at pixel-rate or pixel Coverage Mask

for kernels dispatched at coarse-rate.

R34-R57: Delivered only if the corresponding Barycentric Interpolation Mode bit is set and this

is a 32-pixel dispatch.

R34.7 31:0
Perspective Pixel Location Barycentric[1] for Slot 23

This and the next register phase is only included if the corresponding enable bit in Barycentric

Interpolation Mode is set.

Format = IEEE_Float

R34.6 31:0 Perspective Pixel Location Barycentric[1] for Slot 22

R34.5 31:0 Perspective Pixel Location Barycentric[1] for Slot 21

R34.4 31:0 Perspective Pixel Location Barycentric[1] for Slot 20

R34.3 31:0 Perspective Pixel Location Barycentric[1] for Slot 19

R34.2 31:0 Perspective Pixel Location Barycentric[1] for Slot 18

R34.1 31:0 Perspective Pixel Location Barycentric[1] for Slot 17

R34.0 31:0 Perspective Pixel Location Barycentric[1] for Slot 16

R35 Perspective Pixel Location Barycentric[2] for Slots 23:16

R36.7 31:0 Perspective Pixel Location Barycentric[1] for Slot 31

R36.6 31:0 Perspective Pixel Location Barycentric[1] for Slot 30

R36.5 31:0 Perspective Pixel Location Barycentric[1] for Slot 29

R36.4 31:0 Perspective Pixel Location Barycentric[1] for Slot 28

R36.3 31:0 Perspective Pixel Location Barycentric[1] for Slot 27

R36.2 31:0 Perspective Pixel Location Barycentric[1] for Slot 26

R36.1 31:0 Perspective Pixel Location Barycentric[1] for Slot 25

R36.0 31:0 Perspective Pixel Location Barycentric[1] for Slot 24

R37 Perspective Pixel Location Barycentric[2] for Slots 31:24

R38:41 Perspective Centroid Barycentric

R42:45 Perspective Sample Barycentric

R46:49 Linear Pixel Location Barycentric

R50:53 Linear Centroid Barycentric

R54:57 Linear Sample Barycentric

R58-R59: Delivered only if Pixel Shader Uses Source Depth is set and this is a 32-pixel dispatch.

R58.7 31:0
Interpolated Depth for Slot 23

276 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bits Description

Format = IEEE_Float

This and the next register phase is only included if Pixel Shader Uses Source Depth (WM_STATE)

bit is set.

R58.6 31:0 Interpolated Depth for Slot 22

R58.5 31:0 Interpolated Depth for Slot 21

R58.4 31:0 Interpolated Depth for Slot 20

R58.3 31:0 Interpolated Depth for Slot 19

R58.2 31:0 Interpolated Depth for Slot 18

R58.1 31:0 Interpolated Depth for Slot 17

R58.0 31:0 Interpolated Depth for Slot 16

R59.7 31:0 Interpolated Depth for Slot 31

R59.6 31:0 Interpolated Depth for Slot 30

R59.5 31:0 Interpolated Depth for Slot 29

R59.4 31:0 Interpolated Depth for Slot 28

R59.3 31:0 Interpolated Depth for Slot 27

R59.2 31:0 Interpolated Depth for Slot 26

R59.1 31:0 Interpolated Depth for Slot 25

R59.0 31:0 Interpolated Depth for Slot 24

 R60-R61:Delivered only if Pixel Shader Uses Source W is set and this is a 32-pixel dispatch.

R60.7 31:0
Interpolated W for Slot 23

Format = IEEE_Float

This and the next register phase are only included if Pixel Shader Uses Source W (WM_STATE)

bit is set.

R60.6 31:0 Interpolated W for Slot 22

R60.5 31:0 Interpolated W for Slot 21

R60.4 31:0 Interpolated W for Slot 20

R60.3 31:0 Interpolated W for Slot 19

R60.2 31:0 Interpolated W for Slot 18

R60.1 31:0 Interpolated W for Slot 17

R60.0 31:0 Interpolated W for Slot 16

R61.7 31:0 Interpolated W for Slot 31

R61.6 31:0 Interpolated W for Slot 30

R61.5 31:0 Interpolated W for Slot 29

R61.4 31:0 Interpolated W for Slot 28

R61.3 31:0 Interpolated W for Slot 27

R61.2 31:0 Interpolated W for Slot 26

Doc Ref # IHD-OS-LKF-Vol 9-4.21 277

DWord Bits Description

R61.1 31:0 Interpolated W for Slot 25

R61.0 31:0 Interpolated W for Slot 24

R62: Delivered only if Position XY Offset Select is either POSOFFSET_CENTROID or

POSOFFSET_SAMPLE and this is a 32-pixel dispatch.

R62.7 31:24
Position Offset Y for Slot 31

This field contains either the CENTROID or SAMPLE position offset for Y, depending on the state

of Position XY Offset Select.

Format = U4.4

Range = [0.0,1.0)

23:16
Position Offset X for Slot 31

This field contains either the CENTROID or SAMPLE position offset for X, depending on the state

of Position XY Offset Select.

Format = U4.4

Range = [0.0,1.0)

15:8 Position Offset Y for Slot 30

7:0 Position Offset X for Slot 30

R62.6 31:24 Position Offset Y for Slot 29

23:16 Position Offset X for Slot 29

15:8 Position Offset Y for Slot 28

7:0 Position Offset X for Slot 28

R62.5:4 Position Offset X/Y for Slot[27:24]

R62.3:2 Position Offset X/Y for Slot[23:20]

R62.1:0 Position Offset X/Y for Slot[19:16]

 R63-R64: Delivered only if Pixel Shader Uses Input Coverage Mask is set and this is a 32-pixel

dispatch.

R63.7 31:0
Input Coverage Mask for Slot 23

Format = U32

This and the next register phase are only included if Pixel Shader Uses Input Coverage Mask

(3DSTATE_PS) is set.

R63.6 31:0 Input Coverage Mask for Slot 22

R63.5 31:0 Input Coverage Mask for Slot 21

R63.4 31:0 Input Coverage Mask for Slot 20

R63.3 31:0 Input Coverage Mask for Slot 19

R63.2 31:0 Input Coverage Mask for Slot 18

278 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bits Description

R63.1 31:0 Input Coverage Mask for Slot 17

R63.0 31:0 Input Coverage Mask for Slot 16

R64.7 31:0 Input Coverage Mask for Slot 31

R64.6 31:0 Input Coverage Mask for Slot 30

R64.5 31:0 Input Coverage Mask for Slot 29

R64.4 31:0 Input Coverage Mask for Slot 28

R64.3 31:0 Input Coverage Mask for Slot 27

R64.2 31:0 Input Coverage Mask for Slot 26

R64.1 31:0 Input Coverage Mask for Slot 25

R64.0 31:0 Input Coverage Mask for Slot 24

 R65 delivered ONLY if Pixel Shader Requires RequiredCoarsePixelShadingSize is set.

R65.7 31:0
RequestedCoarsePixelShadingRate.Y for subspan 3 (slot 12)

This is post-clamp value, expected range [1.0f,4.0f] or inner range if min/max configured.

Format: IEEE_Float

R65.6 31:0
RequestedCoarsePixelShadingRate.Y for subspan 2 (slot 8)

Format: IEEE_Float

R65.5 31:0
RequestedCoarsePixelShadingRate.Y for subspan 1 (slot 4)

Format: IEEE_Float

R65.4 31:0
RequestedCoarsePixelShadingRate.Y for subspan 0 (slot 0)

Format: IEEE_Float

R65.3 31:0
RequestedCoarsePixelShadingRate.X for subspan 3 (slot 12)

Format: IEEE_Float

R65.2 31:0
RequestedCoarsePixelShadingRate.X for subspan 2 (slot 8)

Format: IEEE_Float

R65.1 31:0
RequestedCoarsePixelShadingRate.X for subspan 1 (slot 4)

Format: IEEE_Float

R65.0 31:0
RequestedCoarsePixelShadingRate.X for subspan 0 (slot 0)

Format: IEEE_Float

R66: delivered only if Pixel Shader Requires Source Depth and/or W Attribute Vertex Deltas is set.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 279

DWord Bits Description

R66.7 31:0
rhw_c0 – Co for 1/w plane

Format = IEEE_Float

R66.6 31:0 Reserved – MBZ

R66.5 31:0
rhw_cx – Cx for 1/w plane

Format = IEEE_Float

R66.4 31:0
rhw_cy - Cy for 1/w plane

Format = IEEE_Float

R66.3 31:0
z_c0 – Co for z plane

Format = IEEE_Float

R66.2 31:0 Reserved – MBZ

R66.1 31:0
z_cx – Cx for z plane

Format = IEEE_Float

R66.0 31:0
z_cy - Cy for z plane

Format = IEEE_Float

R68: delivered only if Pixel Shader Requires Perspective Bary Planes is set.

R68.7 31:0
bary2_c0 – Co for bary2/w plane

Format = IEEE_Float

R68.6 31:0 Reserved – MBZ

R68.5 31:0
bary2_cx – Cx for bary2/w plane

Format = IEEE_Float

R68.4 31:0
bary2_cy - Cy for bary2/w plane

Format = IEEE_Float

R68.3 31:0
bary1_c0 – Co for bary1/w plane

Format = IEEE_Float

R68.2 31:0 Reserved – MBZ

R68.1 31:0
bary1_cx – Cx for bary1/w plane

Format = IEEE_Float

280 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bits Description

R68.0 31:0
bary1_cy - Cy for bary1/w plane

Format = IEEE_Float

 R70: delivered only if Pixel Shader Requires Non-Perspective Bary Planes is set.

R70.7 31:0
npc_bary2_c0 – Co for npc_bary2 plane

Format = IEEE_Float

R70.6 31:0 Reserved – MBZ

R70.5 31:0
npc_bary2_cx – Cx for npc_bary2 plane

Format = IEEE_Float

R70.4 31:0
npc_bary2_cy - Cy for npc_bary2 plane

Format = IEEE_Float

R70.3 31:0
npc_bary1_c0 – Co for npc_bary1 plane

Format = IEEE_Float

R70.2 31:0 Reserved – MBZ

R70.1 31:0
npc_bary1_cx – Cx for npc_bary1 plane

Format = IEEE_Float

R70.0 31:0
npc_bary1_cy - Cy for npc_bary1 plane

Format = IEEE_Float

 R72: delivered only if Pixel Shader Requires sample offsets is set.

R72.7 31:28 Reserved – MBZ

27:24
Sub-sample Y offset for sample 15

Format: U0.4

Subpixel Y offset of Sample 15 relative to the UL pixel origin

Range: [0,0.9375]

23:20 Reserved – MBZ

19:16 Sub-sample Y offset for sample 14

15:12 Reserved – MBZ

11:8 Sub-sample Y offset for sample 13

7:4 Reserved – MBZ

3:0 Sub-sample Y offset for sample 12

R72.6 31:28 Reserved – MBZ

Doc Ref # IHD-OS-LKF-Vol 9-4.21 281

DWord Bits Description

27:24 Sub-sample Y offset for sample 11

23:20 Reserved – MBZ

19:16 Sub-sample Y offset for sample 10

15:12 Reserved – MBZ

11:8 Sub-sample Y offset for sample 9

7:4 Reserved – MBZ

3:0 Sub-sample Y offset for sample 8

R72.5 31:28 Reserved – MBZ

27:24 Sub-sample Y offset for sample 7

23:20 Reserved – MBZ

19:16 Sub-sample Y offset for sample 6

15:12 Reserved – MBZ

11:8 Sub-sample Y offset for sample 5

7:4 Reserved – MBZ

3:0 Sub-sample Y offset for sample 4

R72.4 31:28 Reserved – MBZ

27:24 Sub-sample Y offset for sample 3

23:20 Reserved – MBZ

19:16 Sub-sample Y offset for sample 2

15:12 Reserved – MBZ

11:8 Sub-sample Y offset for sample 1

7:4 Reserved – MBZ

3:0 Sub-sample Y offset for sample 0

R72.3 31:28 Reserved – MBZ

27:24
Sub-sample X offset for sample 15

Format: U0.4

Subpixel X offset of Sample 15 relative to the UL pixel origin

Range: [0,0.9375]

23:20 Reserved – MBZ

19:16 Sub-sample X offset for sample 14

15:12 Reserved – MBZ

11:8 Sub-sample X offset for sample 13

7:4 Reserved – MBZ

3:0 Sub-sample X offset for sample 12

R72.2 31:28 Reserved – MBZ

27:24 Sub-sample X offset for sample 11

282 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bits Description

23:20 Reserved – MBZ

19:16 Sub-sample X offset for sample 10

15:12 Reserved – MBZ

11:8 Sub-sample X offset for sample 9

7:4 Reserved – MBZ

3:0 Sub-sample X offset for sample 8

R72.1 31:28 Reserved – MBZ

27:24 Sub-sample X offset for sample 7

23:20 Reserved – MBZ

19:16 Sub-sample X offset for sample 6

15:12 Reserved – MBZ

11:8 Sub-sample X offset for sample 5

7:4 Reserved – MBZ

3:0 Sub-sample X offset for sample 4

R72.0 31:28 Reserved – MBZ

27:24 Sub-sample X offset for sample 3

23:20 Reserved – MBZ

19:16 Sub-sample X offset for sample 2

15:12 Reserved – MBZ

11:8 Sub-sample X offset for sample 1

7:4 Reserved – MBZ

3:0 Sub-sample X offset for sample 0

[Varies]

optional

255:0
Constant Data (optional):

 For more details about the size and source of constant data, please refer to General

Programming of Thread-Generating Stages in the Push Constants chapter.

Pixel Backend

This section contains the following subsections:

• MCS Buffer for Render Target(s)

• Render Target Fast Clear

• Render TargetResolve

Doc Ref # IHD-OS-LKF-Vol 9-4.21 283

Color Calculator (Output Merger)

Overview

Note: The Color Calculator logic resides in the Render Cache backing Data Port (DAP) shared

function. It is described in this chapter as the Color Calc functions are naturally an extension of the 3D

pipeline past the WM stage. See the DataPort chapter for details on the messages used by the Pixel

Shader to invoke Color Calculator functionality.

The Color Calculator (referred to as “Output Merger in the DX Spec) function within the Data Port shared

function completes the processing of rasterized pixels after the pixel color and depth have been

computed by the Pixel Shader. This processing is initiated when the pixel shader thread sends a Render

Target Write message (see Shared Functions) to the Render Cache. (Note that a single pixel shader thread

may send multiple Render Target Write messages, with the result that multiple render targets get

updated.) The pixel variables pass through a pipeline of fixed (yet programmable) functions, and the

results are conditionally written into the appropriate buffers.

The word “pixel” used in this section is effectively replaced with the word “sample” if multisample

rasterization is enabled.

Pipeline Stage Description

Alpha Coverage It generates coverage masks using AlphaToCoverage AND/OR AlphaToOne functions based on

src0.alpha.

Alpha Test Compare pixel alpha with reference alpha and conditionally discard pixel.

Stencil Test Compare pixel stencil value with reference and forward result to Buffer Update stage.

Depth Test Compare pix.Z with corresponding Z value in the Depth Buffer and forward result to Buffer

Update stage.

Color Blending Combine pixel color with corresponding color in color buffer according to programmable

function.

Gamma

Correction

Adjust pixel’s color according to gamma function for SRGB destination surfaces.

Color

Quantization

Convert “full precision” pixel color values to fixed precision of the color buffer format.

Logic Ops Combine pixel color logically with existing color buffer color (mutually exclusive with Color

Blending).

Buffer Update Write final pixel values to color and depth buffers or discard pixel without update.

The following logic describes the high-level operation of the Pixel Processing pipeline:

 PixelProcessing() {

 AlphaCoverage()

 AlphaTest()

 DepthBufferCoordinateOffsetDisable

 StencilTest()

 DepthTest()

 ColorBufferBlending()

 GammaCorrection()

 ColorQuantization()

 LogicalOps()

 BufferUpdate()

284 Doc Ref # IHD-OS-LKF-Vol 9-4.21

 }

Alpha Coverage

Alpha coverage logic is supported and can be controlled using three state variables:

• AlphaToCoverage Enable, when enabled Color Calculator modifies the sample mask. This

function (along with AlphaToOne) come at the top of the pixel pipeline. The sample’s

Source0.Alpha value (possibly being replicated from the pixel’s Source0.Alpha) is used to compute

a (optionally dithered) 1/2/4-bit mask (depending on NumSamples).

• The AlphaToCoverage Dither Enable SV is used to control the dithering of the AlphaToCoverage

mask. The bit corresponding to the sample# is then ANDed with the sample’s incoming mask bits

– allowing the sample to be masked off depending on alpha.

• AlphaToOne Enable, when enabled, Color Calculator must replace Source0.Alpha (if present) with

1.0f.

• If AlphaToCoverage is disabled, AlphaToCoverage Dither does not have any impact.

• If Pixel Shader outputs oMask, AlphaToCoverage is disabled in hardware, regardless of the state

setting for this feature.

Notes:

• Src0.alpha needs to be first multiplied with AA alpha before applying AlphaToCoverage and

AlphaToOne functions.

• An alpha value of NaN results in a no coverage (zero) mask.

• Alpha values from the pixel shader are treated as FLOAT32 format for computing the

AlphaToCoverage Mask.

Alpha Test

The Alpha Test function can be used to discard pixels based on a comparison between the incoming

pixel’s alpha value and the Alpha Test Reference state variable in COLOR_CALC_STATE. This operation

can be used to remove transparent or nearly-transparent pixels, though other uses for the alpha channel

and alpha test are certainly possible.

This function is enabled by the Alpha Test Enable state variable in COLOR_CALC_STATE. If ENABLED, this

function compares the incoming pixel’s alpha value (pixColor.Alpha) and the reference alpha value

specified by via the Alpha Test Reference state variable in COLOR_CALC_STATE. The comparison

performed is specified by the Alpha Test Function state variable in COLOR_CALC_STATE.

The Alpha Test Format state variable is used to specify whether Alpha Test is performed using fixed-

point (UNORM8) or FLOAT32 values. Accordingly, it determines whether the Alpha Reference Value is

passed in a UNORM8 or FLOAT32 format. If UNORM8 is selected, the pixel’s alpha value will be

converted from floating-point to UNORM8 before the comparison.

Pixels that pass the Alpha Test proceed for further processing. Those that fail are discarded at this point

in the pipeline.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 285

If Alpha Test Enable is DISABLED, this pipeline stage has no effect.

The Alpha Test function is supported in conjunction with Multiple Render Targets (MRTs). If delivered in

the incoming render target write message, source 0 alpha is used to perform the alpha test. If source 0

alpha is not delivered, the normal alpha value is used to perform the alpha test.

Depth Coordinate Offset

The Depth Coordinate Offset function applies a programmable constant offset to the RenderTarget X,Y

screen space coordinates in order to generate DepthBuffer coordinates.

The function has been specifically added to allow the OpenGL driver to deal with a RenderTarget and

DepthBuffer of differing sizes.

This condition is not an issue for the D3D driver, as D3D defines an upper-left screen coordinate origin

which matches the HW rasterizer; as long as the application limits rendering to the smaller of the

RT/DepthBuffer extents, no special logic is required.

OpenGL defines a lower-left screen coordinate origin. This requires the driver to incorporate a “Y

coordinate flipping” transformation into the viewport mapping function. The Y extent of the RT is used in

this flipping transformation. If the DepthBuffer extent is different, the wrong pixel Y locations within the

DepthBuffer will be accessed.

The least expensive solution is to provide a translation offset to be applied to the post-viewport-mapped

DepthBuffer Y pixel coordinate, effectively allowing the alignment of the lower-left origins of the RT and

DepthBuffer. [Note that the previous DBCOD feature performed an optional translation of post-viewport-

mapping RT pixel (screen) coordinates to generate DepthBuffer pixel (window) coordinates. Specifically,

the Draw Rect Origin X,Y state could be subtracted from the RT pixel coordinates.]

This function uses Depth Coordinate Offset X,Y state (signed 16-bit values in

3DSTATE_DEPTH_RECTANGLE) that is unconditionally added to the RT pixel coordinates to generate

DepthBuffer pixel coordinates.

The previous DBCOB feature can be supported by having the driver program Depth Coordinate X,Y

Offset to the two’s complement of the the Draw Rect Origin. By programming Depth Coordinate X,Y

Offset to zeros, the current “normal” operation (DBCOD disabled) can be achieved.

Programming Note

Context: Depth Coordinate Offset

• Only simple 2D RTs are supported (no mipmaps).

• Software must ensure that the resultant DepthBuffer Coordinate X,Y values are non-negative.

• There are alignment restrictions – see 3DSTATE_DEPTH_BUFFER command.on SFID_DP_DC2) are IA

coherent.

Stencil Test

The Stencil Test function can be used to discard pixels based on a comparison between the [Backface]

Stencil Test Reference state variable and the pixel’s stencil value. This is a general purpose function

286 Doc Ref # IHD-OS-LKF-Vol 9-4.21

used for such effects as shadow volumes, per-pixel clipping, etc. The result of this comparison is used in

the Stencil Buffer Update function later in the pipeline.

This function is enabled by the Stencil Test Enable state variable. If ENABLED, the current stencil buffer

value for this pixel is read.

Programming Note

Context: Color Calculator - Stencil Test

If the Depth Buffer is either undefined or does not have a surface format of D32_FLOAT_S8X24_UINT or

D24_UNORM_S8_UINT and separate stencil buffer is disabled, Stencil Test Enable must be DISABLED.

A 2nd set of the stencil test state variables is provided so that pixels from back-facing objects, assuming

they are not culled, can have a stencil test performed on them separate from the test for normal front-

facing objects. The separate stencil test for back-facing objects can be enabled via the Double Sided

Stencil Enable state variable. Otherwise, non-culled back-facing objects will use the same test function,

mask and reference value as front-facing objects. The 2nd stencil state for back-facing objects is most

commonly used to improve the performance of rendering shadow volumes which require a different

stencil buffer operation depending on whether pixels rendered are from a front-facing or back-facing

object. The backface stencil state removes the requirement to render the shadow volumes in 2 passes or

sort the objects into front-facing and back-facing lists.

The remainder of this subsection describes the function in term of [Backface] <state variable name>.

The Backface set of state variables are only used if Double Sided Stencil Enable is ENABLED and the

object is considered back-facing. Otherwise the normal (front-facing) state variables are used.

This function then compares the [Backface] Stencil Test Reference value and the pixel’s stencil value

value after logically ANDing both values by [Backface] Stencil Test Mask. The comparison performed is

specified by the [Backface] Stencil Test Function state variable. The result of the comparison is passed

down the pipeline for use in the Stencil Buffer Update function. The Stencil Test function does not in

itself discard pixels.

If Stencil Test Enable is DISABLED, a result of “stencil test passed” is propagated down the pipeline.

Depth Test

The Depth Test function can be used to discard pixels based on a comparison between the incoming

pixel’s depth value and the current depth buffer value associated with the pixel. This function is typically

used to perform the “Z Buffer” hidden surface removal. The result of this pipeline function is used in the

Stencil Buffer Update function later in the pipeline.

This function is enabled by the Depth Test Enable state variable. If enabled, the pixel’s (“source”) depth

value is first computed. After computation the pixel’s depth value is clamped to the range defined by

Minimum Depth and Maximum Depth in the selected CC_VIEWPORT state. Then the current

(“destination”) depth buffer value for this pixel is read.

This function then compares the source and destination depth values. The comparison performed is

specified by the Depth Test Function state variable.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 287

The result of the comparison is propogated down the pipeline for use in the subsequent Depth Buffer

Update function. The Depth Test function does not in itself discard pixels.

If Depth Test Enable is DISABLED, a result of “depth test passed” is propagated down the pipeline.

Programming Note:

• Enabling the Depth Test function without defining a Depth Buffer is UNDEFINED.

Pre-Blend Color Clamping

Pre-Blend Color Clamping, controlled via Pre-Blend Color Clamp Enable OR Pre-Blend Source Only

Clamp Enable and Color Clamp Range states in COLOR_CALC_STATE, is affected by the enabling of

Color Buffer Blend as described below.

The following table summarizes the requirements involved with Pre-/Post-Blend Color Clamping.

Programming Note

Context: Negative Values

Errata - Negative values on Unsigned Float channels are always clamped to 0 if blending is enabled, regardless of

how pre-blend clamping is programmed.

Blending Pre-Blend Color Clamp Clamp Range

Off Disabled: clamp to RT range (1) Must set range = RT range

(except if Pre Blend Source Only

Clamp Enable is set)

Enabled: clamp to RT range (1) Must set range = RT range

On (if

permitted)

Disabled: clamp to internal format (1) for float RTs and to RT

range for UNORM/SNORM RTs

Must set range = RT range

Enabled: clamp to RT range (1) Must set range = RT range

1) If Pre Blend Source Only Clamp Enable is set in BLEND STATE, SourceColor is clamped to COLORCLAMP_UNORM

Values written to a render target are always clamped to the RT range.

288 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Pre-Blend Color Clamping When Blending is Disabled

The clamping of source color components is controlled by Pre-Blend Color Clamp Enable. If ENABLED,

all source color components are clamped to the range specified by Color Clamp Range. If DISABLED, no

clamping is performed.

Programming Note

Context: Pre-Blend Color Clamping When Blending is Disabled

• Given the possibility of writing UNPREDICTABLE values to the Color Buffer, it is expected and highly

recommended that, when blending is disabled, software set Pre-Blend Color Clamp Enable to ENABLED

and select an appropriate Color Clamp Range.

• When using SINT or UINT rendertarget surface formats, Blending must be DISABLED. The Pre-Blend Color

Clamp Enable and Color Clamp Range fields are ignored, and an implied clamp to the rendertarget surface

format is performed.

Pre-Blend Color Clamping When Blending is Enabled

The clamping of source, destination and constant color components is controlled by Pre-Blend Color

Clamp Enable. If ENABLED, all these color components are clamped to the range specified by Color

Clamp Range. If DISABLED, no clamping is performed on these color components prior to blending.

Color Buffer Blending

The Color Buffer Blending function is used to combine one or two incoming “source” pixel color+alpha

values with the “destination” color+alpha read from the corresponding location in a RenderTarget.

Blending is enabled on a global basis by the Color Buffer Blend Enable state variable (in

COLOR_CALC_STATE). If DISABLED, Blending and Post-Blend Clamp functions are disabled for all

RenderTargets, and the pixel values (possibly subject to Pre-Blend Clamp) are passed through

unchanged.

The Color Buffer Blend Enable is in the per-render-target BLEND_STATE, and the field in SURFACE_STATE

is no longer supported.

Programming Note

Context: Color Buffer Blending, Logic Ops, DataPort, surface formats, render targets

• Color Buffer Blending and Logic Ops must not be enabled simultaneously, or behavior is UNDEFINED.

• Dual source blending: The DataPort only supports dual source blending with a SIMD8-style message.

• Only certain surface formats support Color Buffer Blending. Refer to the Surface Format tables in Sampling

Engine. Blending must be disabled on a RenderTarget if blending is not supported.

The incoming “source” pixel values are modulated by a selected “source” blend factor, and the possibly

gamma-decorrected “destination” values are modulated by a “destination” blend factor. These terms are

then combined with a “blend function”. In general:

src_term = src_blend_factor * src_color

Doc Ref # IHD-OS-LKF-Vol 9-4.21 289

dst_term = dst_blend_factor * dst_color

color output = blend_function(src_term, dst_term)

If there is no alpha value contained in the Color Buffer, a default value of 1.0 is used and,

correspondingly, there is no alpha component computed by this function.

Dual Source Blending: When using “Dual Source” Render Target Write messages, the Source1 pixel

color+alpha passed in the message can be selected as a src/dst blend factor (see "Color Buffer Blend

Color Factors"). In single-source mode, those blend factor selections are invalid. If SRC1 is included in a

src/dst blend factor and a DualSource RT Write message is not used, results are UNDEFINED. (This

reflects the same restriction in DX APIs, where undefined results are produced if “o1” is not written by a

PS – there are no default values defined). If SRC1 is not included in a src/dst blend factor, dual source

blending must be disabled.

The blending of the color and alpha components is controlled with two separate (color and alpha) sets of

state variables. However, if the Independent Alpha Blend Enable state variable in COLOR_CALC_STATE

is DISABLED, then the “color” (rather than “alpha”) set of state variables is used for both color and alpha.

Note that this is the only use of the Independent Alpha Blend Enable state – it does not control

whether Blending occurs, only how.

Per Render Target Blend State: Blend state is selected based on Render Target Index contained in the

message header, and appropriate blend state is applied to Render Target Write messages.

The following table describes the color source and destination blend factors controlled by the Source

[Alpha] Blend Factor and Destination [Alpha] Blend Factor state variables in COLOR_CALC_STATE.

Note that the blend factors applied to the R,G,B channels are always controlled by the

Source/Destination Blend Factor, while the blend factor applied to the alpha channel is controlled

either by Source/Destination Blend Factor or Source/Destination Alpha Blend Factor.

Color Buffer Blend Color Factors

Blend Factor Selection

Blend Factor Applied for R,G,B,A channels

 (oN = output from PS to RT#N)

 (o1 = 2nd output from PS in Dual-Souce mode only)

 (rtN = destination color from RT#N)

 (CC = Constant Color)

BLENDFACTOR_ZERO 0.0, 0.0, 0.0, 0.0

BLENDFACTOR_ONE 1.0, 1.0, 1.0, 1.0

BLENDFACTOR_SRC_COLOR oN.r, oN.g, oN.b, oN.a

BLENDFACTOR_INV_SRC_COLOR 1.0-oN.r, 1.0-oN.g, 1.0-oN.b, 1.0-oN.a

BLENDFACTOR_SRC_ALPHA oN.a, oN.a, oN.a, oN.a

BLENDFACTOR_INV_SRC_ALPHA 1.0-oN.a, 1.0-oN.a, 1.0-oN.a, 1.0-oN.a

BLENDFACTOR_SRC1_COLOR o1.r, o1.g, o1.b, o1.a

BLENDFACTOR_INV_SRC1_COLOR 1.0-o1.r, 1.0-o1.g, 1.0-o1.b, 1.0-o1.a

BLENDFACTOR_SRC1_ALPHA o1.a, o1.a, o1.a, o1.a

290 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Blend Factor Selection

Blend Factor Applied for R,G,B,A channels

 (oN = output from PS to RT#N)

 (o1 = 2nd output from PS in Dual-Souce mode only)

 (rtN = destination color from RT#N)

 (CC = Constant Color)

BLENDFACTOR_INV_SRC1_ALPHA 1.0-o1.a, 1.0-o1.a, 1.0-o1.a, 1.0-o1.a

BLENDFACTOR_DST_COLOR rtN.r, rtN.g, rtN.b, rtN.a

BLENDFACTOR_INV_DST_COLOR 1.0-rtN.r, 1.0-rtN.g, 1.0-rtN.b, 1.0-rtN.a

BLENDFACTOR_DST_ALPHA rtN.a, rtN.a, rtN.a, rtN.a

BLENDFACTOR_INV_DST_ALPHA 1.0-rtN.a, 1.0-rtN.a, 1.0-rtN.a, 1.0-rtN.a

BLENDFACTOR_CONST_COLOR CC.r, CC.g, CC.b, CC.a

BLENDFACTOR_INV_CONST_COLOR 1.0-CC.r, 1.0-CC.g, 1.0-CC.b, 1.0-CC.a

BLENDFACTOR_CONST_ALPHA CC.a, CC.a, CC.a, CC.a

BLENDFACTOR_INV_CONST_ALPHA 1.0-CC.a, 1.0-CC.a, 1.0-CC.a, 1.0-CC.a

BLENDFACTOR_SRC_ALPHA_SATURATE f,f,f,1.0 where f = min(1.0 – rtN.a, oN.a)

The following table lists the supported blending operations defined by the Color Blend Function state

variable and the Alpha Blend Function state variable (when in independent alpha blend mode).

Color Buffer Blend Functions

Blend Function Operation (for each color component)

BLENDFUNCTION_ADD SrcColor*SrcFactor + DstColor*DstFactor

BLENDFUNCTION_SUBTRACT SrcColor*SrcFactor - DstColor*DstFactor

BLENDFUNCTION_REVERSE_SUBTRACT DstColor*DstFactor - SrcColor*SrcFactor

BLENDFUNCTION_MIN
min (SrcColor*SrcFactor, DstColor*DstFactor)

Programming Note: This is a superset of the OpenGL “min” function.

BLENDFUNCTION_MAX
max (SrcColor*SrcFactor, DstColor*DstFactor)

Programming Note: This is a superset of the OpenGL “max” function.

Post-Blend Color Clamping

(See Pre-Blend Color Clamping above for a summary table regarding clamping)

Post-Blend Color clamping is available only if Blending is enabled.

If Blending is enabled, the clamping of blending output color components is controlled by Post-Blend

Color Clamp Enable. If ENABLED, the color components output from blending are clamped to the range

specified by Color Clamp Range. If DISABLED, no clamping is performed at this point.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 291

Regardless of the setting of Post-Blend Color Clamp Enable, when Blending is enabled color

components will be automatically clamped to (at least) the render target surface format range at this

stage of the pipeline.

Dithering

Dithering is used to give the illusion of a higher resolution when using low-bpp channels in color buffers

(e.g., with 16bpp color buffer). By carefully choosing an arrangement of lower resolution colors, colors

otherwise not representable can be approximated, especially when seen at a distance where the viewer’s

eyes will average adjacent pixel colors. Color dithering tends to diffuse the sharp color bands seen on

smooth-shaded objects.

A four-bit dither value is obtained from a 4x4 Dither Constant matrix depending on the pixel’s X and Y

screen coordinate. The pixel’s X and Y screen coordinates are first offset by the Dither Offset X and

Dither Offset Y state variables (these offsets are used to provide window-relative dithering). Then the

two LSBs of the pixel's screen X coordinate are used to address a column in the dither matrix, and the

two LSBs of the pixel's screen Y coordinate are used to address a row. This way, the matrix repeats every

four pixels in both directions.

The value obtained is appropriately shifted to align with (what would be otherwise) truncated bits of the

component being dithered. It is then added with the component and the result is truncated to the bit

depth of the component given the color buffer format.

Dithering Process (5-Bit Example)

292 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Logic Ops

The Logic Ops function is used to combine the incoming “source” pixel color/alpha values with the

corresponding “destination” color/alpha contained in the ColorBuffer, using a logic function.

The Logic Op function is enabled by the LogicOp Enable state variable. If DISABLED, this function is

ignored and the incoming pixel values are passed through unchanged.

Programming Notes

Programming Note

Color Buffer Blending and Logic Ops must not be enabled simultaneously, or behavior is UNDEFINED.

Logic Ops are supported on all blendable render targets and render targets with *INT formats.

The following table lists the supported logic ops. The logic op is selected using the Logic Op Function

field in COLOR_CALC_STATE.

Logic Ops

LogicOp Function Definition (S=Source, D=Destination)

LOGICOP_CLEAR all 0’s

LOGICOP_NOR NOT (S OR D)

LOGICOP_AND_INVERTED (NOT S) AND D

LOGICOP_COPY_INVERTED NOT S

LOGICOP_AND_REVERSE S AND NOT D

LOGICOP_INVERT NOT D

LOGICOP_XOR S XOR D

LOGICOP_NAND NOT (S AND D)

LOGICOP_AND S AND D

LOGICOP_EQUIV NOT (S XOR D)

LOGICOP_NOOP D

LOGICOP_OR_INVERTED (NOT S) OR D

LOGICOP_COPY S

LOGICOP_OR_REVERSE S OR NOT D

LOGICOP_OR S OR D

LOGICOP_SET all 1’s

Buffer Update

The Buffer Update function is responsible for updating the pixel’s Stencil, Depth and Color Buffer

contents based upon the results of the Stencil and Depth Test functions. Note that Kill Pixel and/or Alpha

Test functions may have already discarded the pixel by this point.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 293

Stencil Buffer Updates

If and only if stencil testing is enabled, the Stencil Buffer is updated according to the Stencil Fail Op,

Stencil Pass Depth Fail Op, and Stencil Pass Depth Pass Op state (or their backface counterparts if

Double Sided Stencil Enable is ENABLED and the pixel is from a back-facing object) and the results of

the Stencil Test and Depth Test functions.

Stencil Fail Op and Backface Stencil Fail Op specify how/if the stencil buffer is modified if the stencil

test fails. Stencil Pass Depth Fail Op and Backface Stencil Pass Depth Fail Op specify how/if the stencil

buffer is modified if the stencil test passes but the depth test fails. Stencil Pass Depth Pass Op and

Backface Stencil Pass Depth Pass Op specify how/if the stencil buffer is modified if both the stencil and

depth tests pass. The operations (on the stencil buffer) that are to be performed under one of these

(mutually exclusive) conditions is summarized in the following table.

Stencil Buffer Operations

Stencil Operation Description

STENCILOP_KEEP Do not modify the stencil buffer

STENCILOP_ZERO Store a 0

STENCILOP_REPLACE
Store the StencilTestReference reference value

STENCILOP_INCRSAT Saturating increment (clamp to max value)

STENCILOP_DECRSAT Saturating decrement (clamp to 0)

STENCILOP_INCR Increment (possible wrap around to 0)

STENCILOP_DECR Decrement (possible wrap to max value)

STENCILOP_INVERT Logically invert the stencil value

Any and all writes to the stencil portion of the depth buffer are enabled by the Stencil Buffer Write

Enable state variable.

When writes are enabled, the Stencil Buffer Write Mask and Backface Stencil Buffer Write Mask state

variables provide an 8-bit mask that selects which bits of the stencil write value are modified. Masked-off

bits (i.e., mask bit == 0) are left unmodified in the Stencil Buffer.

Programming Note

Context: Stencil Buffer Updates

The Stencil Buffer can be written even if depth buffer writes are disabled via Depth Buffer Write Enable

Depth Buffer Updates

Any and all writes to the Depth Buffer are enabled by the Depth Buffer Write Enable state variable. If

there is no Depth Buffer, writes must be explicitly disabled with this state variable, or operation is

UNDEFINED.

294 Doc Ref # IHD-OS-LKF-Vol 9-4.21

If depth testing is disabled or the depth test passed, the incoming pixel’s depth value is written to the

Depth Buffer. If depth testing is enabled and the depth test failed, the pixel is discarded – with no

modification to the Depth or Color Buffers (though the Stencil Buffer may have been modified).

Color Gamma Correction

Computed RGB (not A) channels can be gamma-corrected prior to update of the Color Buffer.

This function is automatically invoked whenever the destination surface (render target) has an SRGB

format (see surface formats in Sampling Engine). For these surfaces, the computed RGB values are

converted from gamma=1.0 space to gamma=2.4 space by applying a ^(2.4) exponential function.

Color Buffer Updates

Finally, if the pixel has not been discarded by this point, the incoming pixel color is written into the Color

Buffer. The Surface Format of the color buffer indicates which channel(s) are written (e.g., R8G8_UNORM

are written with the Red and Green channels only). The Color Buffer Component Write Disables from

the Color Buffer’s SURFACE_STATE provide an independent write disable for each channel of the Color

Buffer.

Pixel Pipeline State Summary

COLOR_CALC_STATE

3DSTATE_BLEND_STATE_POINTERS

3DSTATE_BLEND_STATE_POINTERS

3DSTATE_DEPTH_STENCIL_STATE_POINTERS

3DSTATE_DEPTH_STENCIL_STATE_POINTERS been replaced by 3DSTATE_WM_DEPTH_STENCIL. (See 3D

Pipeline – Windower for details.)

COLOR_CALC_STATE

COLOR_CALC_STATE

DEPTH_STENCIL_STATE

DEPTH_STENCIL_STATE has been replaced by 3DSTATE_WM_DEPTH_STENCIL. (See 3D Pipeline –

Windower for details).

Doc Ref # IHD-OS-LKF-Vol 9-4.21 295

BLEND_STATE

BLEND_STATE

Signal CC_INT::AlphaTestEnable

Description AlphaTestEnable

Formula
= BLEND_STATE::AlphaTestEnable &&

!3DSTATE_WM_HZ_OP::DepthBufferResolveEnable &&

!3DSTATE_WM_HZ_OP::DepthBufferClear &&

!3DSTATE_WM_HZ_OP::StencilBufferClear

Signal CC_INT::AlphaToCoverageEnable

Description AlphaToCoverageEnable

Formula
= BLEND_STATE::AlphaToCoverageEnable &&

!3DSTATE_PS_EXTRA::PixelShaderDisableAlphaToCoverage

CC_VIEWPORT

CC_VIEWPORT

Other Pixel Pipeline Functions

Statistics Gathering

If Statistics Enable is set in 3DSTATE_WM, the PS_DEPTH_COUNT register (see Memory Interface

Registers in Volume 1a, GPU Overview) is incremented once for each pixel (or sample) that passes the

depth, stencil and alpha tests. Note that each of these tests is treated as passing if disabled. This count is

accurate regardless of whether Early Depth Test Enable is set. To obtain the value from this register at a

deterministic place in the primitive stream without flushing the pipeline, however, the PIPE_CONTROL

command must be used. See Volume 2a, 3D Pipeline, for details on PIPE_CONTROL.

GPGPU Compute Pipeline

This section of the BSpec discusses the programming the General Purpose GPU Pipeline, including:

• how GPGPU and Media threads are dispatched,

• thread resource management,

• how thread groups are tracked, and

• preemption and context switching.

296 Doc Ref # IHD-OS-LKF-Vol 9-4.21

General Purpose Compute Model

The General Purpose (GP) compute model consists of a host connected to one or more compute devices.

Each compute device consists of several Processing Elements (PEs), also known as Execution Units (EUs).

Applications are then architected as a combination of host software (per the host framework), and

kernels that are submitted by the host to run on the PEs with a pre-defined decoupling point.

Figure: General Purpose Compute Model

The GP compute architecture contains two distinct units of execution: a host program and a set of

kernels that execute within the context set by the host. The host interacts with these kernels through a

command queue. Each device may have its own command queue. When a command is submitted into

the command queue, the command is checked for dependencies and then executed on a PE inside the

compute unit clusters. Once the command has finished executing, the kernel communicates an end of

life cycle through “end of thread” message.

The GP execution model determines how to schedule and execute the kernels. When a kernel-enqueue

command submits a kernel for execution, the command defines an index space or N-dimensional range.

A kernel-instance consists of the kernel, the argument values associated with the kernel, and the

parameters that define the index space. When a compute device executes a kernel-instance, the kernel

function executes for each point in the defined index space or N-dimensional range.

An executing kernel function is called a work-item, and a collection of these work-items is called a work-

group. A compute device manages work-items using work-groups. Individual work-items are identified

by either a global ID, or a combination of the work-group ID and a local ID inside the work-group.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 297

The work-group concept, which essentially runs the same kernel on several unit items in a group,

captures the essence of data parallel computing. The PEs can organize work-items in vector format and

run the same kernel on the vector, hence speeding up the compute for all such applications.

A device can compute each work-group in any arbitrary order. Also, the work-items within a single work-

group execute concurrently, with no guarantee on the order of progress. A high level work-group

function, like Barriers, applies to each work-item in a work-group, to facilitate the required

synchronization points. Such a work-group function must be defined so that all work-items in the work-

group encounter precisely the same work-group function.

Synchronization can also occur at the command level, where the synchronization can happen between

commands in host command-queues. In this mode, one command can depend on execution points in

another command or multiple commands.

Other types of synchronization based on memory-order constraints inside a program include Atomics

and Fences. These synchronization types control how a memory operation of any particular work-item is

made visible to another, which offers micro-level synchronization points in the data-parallel compute

model.

The memory model for a general-purpose engine is partitioned into host-side memory and device-side

memory, using Shared Virtual Memory (SVM) to move objects between the two sides. The device-side

memory is further divided into four distinct disjoint regions as defined below:

• Global Memory: Memory region accessible to all work-items within a context.

• Constant Memory: Memory region that remains constant during kernel execution.

• Local Memory: Memory region local and exclusive to a work-group (also called SLM).

• Private memory: Memory region private to a work-item.

298 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Doc Ref # IHD-OS-LKF-Vol 9-4.21 299

GPGPU Context in GPU Hardware

The following block diagram provides an overview of the GPU Hardware. The media pipeline and the 3D

fixed function pipeline are positioned in parallel. Concurrency of the media pipeline and the 3D pipeline

is not supported. At any given time, only one of the two pipelines can be activated. A programmer can

switch between the two pipelines within a single context by using the MI_PIPELINE_SELECT command.

The media pipeline provides media functions and has media-specific fixed function capability. These

fixed functions are able to control shared functions and resources, feed generic threads to the Execution

Units (EUs), and interact with generic threads during runtime. Since a programmer can use the media

pipeline for non-media applications, the media pipeline can also be called the general purpose pipeline.

Henceforth, we refer to this fixed function pipeline as either the media or GPGPU pipeline, keeping in

mind its general-purpose capability.

The GPU subsystem consists of an array of EUs (also called an array of cores) and a set of shared

functions outside the EUs. The EUs leverage these shared functions for I/O and dedicated computations.

Programmers access the GPU subsystem via the 3D or media pipelines.

EUs are general-purpose programmable cores that support a rich instruction set. This instruction set has

been optimized to support various 3D API shader languages, media functions processing, and compute

kernels.

Shared functions are dedicated hardware accelerator units that provide specialized supplemental

functionality for the EUs, to run filtered load, scatter, gather, and filter/blended store operations.

300 Doc Ref # IHD-OS-LKF-Vol 9-4.21

GPGPU PIPE Overview

This section describes conceptual details of the GPGPU PIPE hardware.

When running a GPGPU application, a host-side application on the IA core controls the workflow for

GPGPU Pipe. The host-side application loads the code and data to be run on the GPU into memory, and

sets up the context to ensure that there are no faults or that any faults are handled correctly. Then the

host-side application submits the workloads to run in a command buffer in the command streamer.

The command streamer workloads can run independently on the GPU, which acts as a hardware

accelerator. When a workload or context is in the command streamer, the CS reads commands from the

current context out of the command buffer and forwards those commands to either the 3D pipe or

Media/GPGPU pipe.

The Media/GPGPU pipe executes those commands, sets up the GPGPU Pipe contexts and parameters,

and prepares for thread dispatch. The pipe sends the per-thread payload, cross-thread payload, and

interface descriptor from memory to the URB for a temporary holding buffer.

Threads are dispatched by the thread spawner (TS). For each thread, TS checks if there is a thread slot

available in any of the EUs. For a media thread in particular, the TS checks whether there is a dependency

for the thread indicated by the thread scoreboard. This scoreboard helps to order the threads, and then

dispatches them to the dispatch pipe. If there is no space in the dispatch pipe, then TS backs up and

holds the thread dispatch. Hence in the GPGPU, most threads are synchronized using a thread slot

barrier, while media threads are synchronized based on the scoreboard.

Once a thread is in the dispatch queue, it traverses through the Global, Slice, and Local distribution

queues. The Local queue pushes into suitable rows, EUs, and even to a particular thread in an EU. The EU

then executes the kernel for a thread independently from the instruction cache.

Normally all threads run independently in an EU, but a thread can stall under two conditions:

1. There is a barrier, which is a mechanism to synchronize multiple threads; or

2. One thread is dependent on another thread.

Eventually all threads must exit after executing the laid-down kernel, at which point the EU issues an EOT

message indicating the exit has occurred. The EOT message is returned to TS, indicating the exit of an

earlier dispatched thread, plus availability of a new slot for a new thread dispatch.

Programming the GPGPU Pipeline

The commands for either Programmable Media or GPGPU contexts uses mostly the same commands,

with a few sequence differences as described in this section.

The Programmable Media Pipeline is programmed using command sequences. Media hardware threads

are created through the parameterized media walker. Dispatch of a thread is controlled by a scoreboard

mechanism.

The media pipeline can now use pipelined state changes, via the added MEDIA_STATE_FLUSH command.

The MEDIA_STATE_FLUSH serves as a fence for state change by flushing the VFE/TS front ends without

waiting for threads to retire.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 301

Note that media pipeline is the main user of the CURBE command. Media state commands deliver the

interface descriptors directly, instead of loading them through indirect state.

Thread Lifecycle

Once a dispatcher selects a thread, the thread lifecycle is as follows:

• TS forwards the interface descriptor pointer to the L1 interface descriptor cache − a small fully

associated cache containing up to four interface descriptors. If the interface descriptor is not

found in the L1 interface descriptor cache, a corresponding request is forwarded to the L2

cache. Interface descriptors return back to TS in requested order.

• Once TS receives an interface descriptor, it checks whether the maximum concurrent thread

number has been reached to determine whether to make a thread dispatch request or to stall

the request until another thread retires. If the thread requests the use of scratch memory, TS

also generates a pointer into the scratch space.

• TS then builds the transparent header and the R0 header, and TS makes a thread request to

the thread dispatcher.

• TS keeps track of each dispatched thread, and monitors messages from each thread, including

resource dereference and/or thread termination. When TS receives a thread termination

message, it can recover the scratch space and thread slot allocated to the specified thread.

The URB handle for a terminated thread may also be dereferenced for future reuse. Note that

URB handle dereference may occur before a thread terminates. For more details, see the

Media Message section.

The following flowchart outlines the thread lifecycle process.

302 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Figure: Thread Lifecycle Process

Doc Ref # IHD-OS-LKF-Vol 9-4.21 303

Command Sequence

The Command Sequence programming model requires the following steps. Some of the steps listed are

optional, but the order shown must be strictly followed. Some usage restrictions are emphasized for

descriptive purposes. For more details, refer to the definitions of each command.

Step 1: MI_FLUSH/PIPE_CONTROL

• This step is mandatory.

• Each command in this step can be used multiple times, but that is not recommended for performance

reasons.

Step 2: State command PIPELINE_SELECT

• This step is optional if it is known that, within the same context, the media pipeline was selected before

Step 1.

• The command in this step can be used multiple time, but that is not recommended for performance

reasons.

Step 3: State commands configuring pipeline states

STATE_BASE_ADDRESS:

• This command is mandatory for this step.

• Multiple instances of this command are allowed. The last instance overwrites previous ones.

• This command must precede any other state commands mentioned below.

The fields Indirect Object Base Address and Indirect Object Access Upper Bound are used to control

indirect Media object load. The fields Dynamics Base Address and Dynamics Base Access Upper Bound

are used to control indirect CURBE and interface descriptor object load.

On receiving the STATE_BASE_ADDRESS command, the Media/GPGPU pipe (VFE) stores the 48-bit

Dynamics Base Address, Dynamics Base Access Upper Bound, Indirect Object Base Address, and Indirect

Object Access Upper Bound in state registers. These values are used to calculate the fetch addresses for

CURBE, Interface Descriptor, and Indirect Data respectively.

• Note that the STATE_BASE_ADDRESS command may be inserted before and after any

commands listed in Steps 1 and 2 above. For example, STATE_BASE_ADDRESS may be placed

in the ring buffer while other commands are put in a batch buffer.

STATE_SIP:

• This command is optional for this step, unless the kernels use SIP.

MEDIA_VFE_STATE:

• This command is mandatory for this step.

• This command destroys all outstanding URB handles in the system, then generates a new set of URB

handles based on state parameters, number of URBs, and URB length from the VFE FF state.

304 Doc Ref # IHD-OS-LKF-Vol 9-4.21

• On receiving a MEDIA_VFE_STATE command, VFE allocates the number of handles specified by Number

of URB Entries, with each handle size as specified in URB Entry Allocation Size, starting at CURBE

Allocation Size + 64.

• MEDIA_VFE_STATE also stores other state information, including Scratch Space, Gateway, Scoreboard,

and Max Thread limit

• Multiple instances of the MEDIA_VFE_STATE command are allowed. The last instance overwrites previous

ones.

MEDIA_CURBE_LOAD:

• This command is optional for this step.

• Multiple instances of this command are allowed. The last instance overwrites previous ones.

• On receiving a MEDIA_CURBE_LOAD command, VFE fetches the CURBE data from CURBE Data Start

Address by reading CURBE Total Data Length bytes. The Address is defined relative to the Dynamics Base

Address programmed through STATE_BASE_ADDRESS command.

• VFE breaks the CURBE Total Data Length into 64-byte chunks, and sends request through GAFS. The

fetched data is written directly into URB at the address specified in the tag of the request. This address is

set at 64. VFE tracks this fetch through its local up/down counter.

MEDIA_INTERFACE_DESCRIPTOR_LOAD:

• This command is mandatory for this step.

• Multiple instances of this command are allowed. The last instance overwrites previous ones.

• On receiving a MEDIA_INTERFACE_DESCRIPTOR_LOAD command, VFE fetches the Interface Descriptors

from the Interface Descriptor Data Start Address by reading Interface Descriptor Total Length bytes. The

Address is defined relative to the Dynamics Base Address, programmed through the

STATE_BASE_ADDRESS command.

• VFE breaks the Interface Descriptor Total Length into 64 byte chunks and sends a request to GAFS. The

fetched data is directly written into URB at the address specified in the tag of the request. That address is

set as zero. VFE tracks this fetch through its local up/down counter.

Step 4: Primitive commands

This step must follow previous steps, which prepare the Media/GPU pipeline for the execution of

primitive commands.

MEDIA_OBJECT/ MEDIA_OBJECT_GRPIP:

• You can issue this command multiple times, to continue processing media primitives.

On receiving a MEDIA_OBJECT/MEDIA_OBJECT_GRPID command, VFE fetches indirect data from Indirect

Data Start Address by reading Indirect Data Length bytes. The Address is defined relative to the Indirect

Object Base Address, programmed through the STATE_BASE_ADDRESS command.

VFE breaks the Indirect Data Length into 64-byte chunks and sends the request to GPU memory interface

unit. The fetched data is written directly into URB at the address specified in the request tag. This address

Doc Ref # IHD-OS-LKF-Vol 9-4.21 305

is set as the handle address + inline data length (found from csdwlengthr [] - cmd_length), rounded up

to the next 32-byte boundary. VFE tracks this fetch through its local up/down counter.

• If inline or indirect data is present in the command, the URB handle is allocated from UEM.

• Upon receiving this command, VFE stores the Media Object information to pass to the TSG unit,

including the Interface Descriptor Offset, Child Present, Thread Synchronization, Scoreboard, and GRPID

(for MEDIA_OBJECT_GRPID command).

• The command writes inline data at the starting URB handle address through the GAFS interface. If the

inline data in not a multiple of 32-bytes, padding is added to the next 32-byte boundary.

• When the transfer of inline and indirect data is complete, VFE sends a thread dispatch signal to the

thread dispatcher.

GPGPU Pipeline Notes

• Set up the interface descriptor with the number of threads in barrier. The barrier ID is not specified

here, because hardware can automatically assign barriers to available thread groups. The amount

of CURBE data to deliver per thread dispatch is set in the interface descriptor.

• Set up CURBE with thread IDs and common data for all thread dispatches in the thread group.

• Set up a GPGPU_WALKER command with the thread group IDs to dispatch the threads. Each

thread dispatch in the thread group sends CURBE data in sections; a new thread group starts

sending the CURBE data from the beginning of the buffer.

• Place a MEDIA_STATE_FLUSH right before the MI_BATCH_BUFFER_END of any batch buffer that

uses MEDIA_OBJECT.

• The kernel should handle barriers as follows:

o The BarrierMsg contains the barrier ID and a way to reprogram the barrier count.

o The barrier count reprogram is not normally used for GPGPU workloads.

o When all threads in the group have reached the barrier, the gateway returns a notification bit 0.

o The kernel must wait for the barrier to finish with a WAIT N0.

CURBE/Indirect Payload Dispatch

Example of a CURBE command sequence:

• MEDIA_STATE_FLUSH // Make sure dispatch is not accessing CURBE

• MEDIA_CURBE_LOAD

• GPGPU_WALKER

The GPGPU commands extend to allow indirect input as an alternative to CURBE using the exact same

mechanism: the same offset specifies what data is delivered to all threads, and a count specifies how

much data is delivered per thread. A single indirect pointer points to both the Cross-Thread and Per-

Thread Constant Data, which are stored in the URB. The positions of the cross-thread and per-thread

constants are swapped in the EU GRF.

306 Doc Ref # IHD-OS-LKF-Vol 9-4.21

To use indirect payload storage, the product (URB entry allocation size * number of URB entries) must be

enough to cover the sum of the cross-thread and per-thread indirect data to be loaded. The

MEDIA_VFE_STATE command sets these state variables. The URB entry allocation must be equal to or

greater than the indirect data length in GPGPU_WALKER. Use the maximum number of URB entries that

fills the URB space, to avoid a shortage of handles that could cause a performance problem.

Indirect input is defined as follows:

• Indirect uses a 32-bit memory pointer for the start address (compared to 64 bit for CURBE).

• Indirect does not use the constant URB entry read offset.

• Indirect multiplies the cross-thread constant data read length and constant entry read length by 32 to

convert them into bytes.

• The X/Y/Z payload in the EU GRF comes before the cross-thread constant data.

Media GPGPU Payload Limitations

The Media/GPGPU instructions can have three types of payloads, but not all combinations are allowed.

The following table lists the legal combinations.

Table: Media GPGPU Payload Limitations

Workload Commands Data Stored

GPGPU GPGPU_WALKER CURBE

GPGPU_WALKER INDIRECT

Media (Legacy) Media_Object CURBE

Media_Object INDIRECT

Media_Object INLINE

Media_Object CURBE+INLINE

Media_Object CURBE+INDIRECT

Media_Object INLINE+INDIRECT

Media_Object CURBE+ INLINE+INDIRECT

Media_Object_Walker CURBE

Media_Object_Walker INLINE

Doc Ref # IHD-OS-LKF-Vol 9-4.21 307

Media_Object_Walker CURBE+INLINE

Media_Object_Walker INDIRECT

Media using Barrier/SLM Media_Object_GRPID CURBE

Media_Object_GRPID INDIRECT

Media_Object_GRPID INLINE

Media_Object_Walker (with group id) CURBE

Media_Object_Walker (with group id) INLINE

Media_Object_Walker (with group id) INDIRECT

The Dynamic State MOCS, specified in STATE_BASE_ADDRESS, fetch indirect and CURBE payloads from

memory during thread dispatch.

Media State Model

The media state model is based on an in-line state load mechanism. State commands load VFE state,

URB configuration, and Interface Descriptors to VFE hardware.

All Interface Descriptors have the same size and are organized as a contiguous array in memory. The

Interface Descriptor Index can select these descriptors for a given kernel, which allows different kinds of

kernels to coexist in the system.

The state-command-related headers are as follows.

Pipeline

 (Media)

 Bits[28:27]

Opcode

 Bits[26:24]

Sub Opcode

 Bits[23:16]

Command

2h 0h 00h MEDIA_VFE_STATE

2h 0h 01h MEDIA_CURBE_LOAD

2h 0h 02h MEDIA_INTERFACE_DESCRIPTOR_LOAD

308 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Commands for GPGPU Pipe

This section lists and explains the various commands that VFE executes for media and GPGPU context on

render pipe, including several commands that are shared with media mode. There are three types of VFE

commands:

• Null command – may write URB, but does not place any request to the TSG unit.

• Object command – may write URB, and then place a single request to the TSG unit.

• Walker command – may write URB, and then trigger VFE_WALKER to generate multiple

requests to the TSG unit.

Table: VFE Commands

CmdID Command Command type

1 MEDIA_CURBE_LOAD null command

2 MEDIA_INTERFACE_DESCRIPTOR_LOAD null command

3 MEDIA_VFE_STATE null command

3 MEDIA_STATE_FLUSH1 object command

4 MEDIA_OBJECT object command

5 MEDIA_OBJECT_GRPID object command

7 MEDIA_WALKER walker command

9 GPGPU_WALKER walker command

1 The MEDIA_STATE_FLUSH command is also an object command, to ensure that it reaches the top of the

root FIFO in TSG unit only when all previous requests are dispatched.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 309

MEDIA_VFE_STATE

MEDIA_VFE_STATE is the primary state command for GPGPU pipe, and sets up context for GPGPU pipe

usage as follows:

VFE allocates URB handles (1-128) and specifies the size for each URB entry.

Defines Scratch Space allocation per thread and CURBE allocation size.

Sets up and controls the hardware scoreboard in the media pipeline. Sets up the type, mask and relative

vertical and horizontal distance of the dependent instant for each of the eight possible scoreboards.

Sets up the gateway usage model, especially if the gateway protocol needs to be bypassed and

timestamp reset.

Defines the maximum number of simultaneous active threads possible in the system and in the thread

dispatch policy, chooses the best subslice for a thread, and selects a field to specify which slices or

subslices the dispatch can disable.

Defines SLM bank selection policy, determined by a bit that allows selection between the least loaded

SLM bank or a bank that is paired with the thread’s subslice.

Note that a stalled PIPE_CONTROL (a top-end synchronization command) is required before the

MEDIA_VFE_STATE command, unless the only bits changed are scoreboard-related. If bit changes are

scoreboard-related, a MEDIA_STATE_FLUSH command is sufficient.

For more details, see the MEDIA_VFE_STATE definition.

MEDIA_STATE_FLUSH

The MEDIA_STATE_FLUSH command flushes the media/GPGPU parser. In general this command is the

same as an MI_FLUSH, except MI_FLUSH clears the entire 3D/render pipeline.

A key function of the MEDIA_STATE_FLUSH command is to stall the Command Streamer (CS) in one of

two ways based on a watermark:

(1) Stalls the CS until there is programmed amount of room in a subslice, or enough SLM, or a free

barrier.

(2) Stalls the CS until the last-level thread dispatch unit is able to dispatch the last thread to the EU.

The MEDIA_STATE_FLUSH command also indexes the resource needed to support the above watermark.

A bit in this command indicates whether the write data out of the current thread group needs to be

flushed beyond the visibility of following commands.

Note: You should program the MEDIA_STATE_FLUSH command for any of the following:

(a) prior to new media state, CURBE, or interface descriptor commands;

(b) while programming for a new state in the same context; or

(c) while switching to a new context.

310 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Also note that the interface descriptor offset field updates the MEDIA_STATE_FLUSH command to specify

all resources required for the next thread group. If the resources are not available, the next thread group

cannot start.

For more details, see the MEDIA_STATE_FLUSH definition.

MEDIA_VFE_STATE

MEDIA_VFE_STATE is the primary state command for GPGPU pipe, and sets up context for GPGPU pipe

usage as follows:

• VFE allocates URB handles (1-128) and specifies the size for each URB entry.

• Defines Scratch Space allocation per thread and CURBE allocation size.

• Sets up and controls the hardware scoreboard in the media pipeline. Sets up the type, mask and

relative vertical and horizontal distance of the dependent instant for each of the eight possible

scoreboards.

• Sets up the gateway usage model, especially if the gateway protocol needs to be bypassed and

timestamp reset.

• Defines the maximum number of simultaneous active threads possible in the system and in the

thread dispatch policy, chooses the best subslice for a thread, and selects a field to specify which

slices or subslices the dispatch can disable.

• Defines SLM bank selection policy, determined by a bit that allows selection between the least

loaded SLM bank or a bank that is paired with the thread’s subslice.

Note that a stalled PIPE_CONTROL (a top-end synchronization command) is required before the

MEDIA_VFE_STATE command, unless the only bits changed are scoreboard-related. If bit changes are

scoreboard-related, a MEDIA_VFE_STATE command is sufficient.

For more details, see the MEDIA_VFE_STATE definition.

MEDIA_STATE_FLUSH

The MEDIA_STATE_FLUSH command flushes the media/GPGPU parser. In general this command is the

same as an MI_FLUSH, except MI_FLUSH clears the entire 3D/render pipeline.

A key function of the MEDIA_STATE_FLUSH command is to stall the Command Streamer (CS) in one of

two ways based on a watermark:

(1) Stalls the CS until there is programmed amount of room in a subslice, or enough SLM, or a free

barrier.

(2) Stalls the CS until the last-level thread dispatch unit is able to dispatch the last thread to the EU.

The MEDIA_STATE_FLUSH command also indexes the resource needed to support the above watermark.

A bit in this command indicates whether the write data out of the current thread group needs to be

flushed beyond the visibility of following commands.

Note: You should program the MEDIA_STATE_FLUSH command for any of the following:

Doc Ref # IHD-OS-LKF-Vol 9-4.21 311

(a) prior to new media state, CURBE, or interface descriptor commands;

(b) while programming for a new state in the same context; or

(c) while switching to a new context.

Also note that the interface descriptor offset field updates the MEDIA_STATE_FLUSH command to specify

all resources required for the next thread group. If the resources are not available, the next thread group

cannot start.

For more details, see the MEDIA_STATE_FLUSH definition.

MEDIA_CURBE_LOAD

The MEDIA_CURBE_LOAD command establishes the Constant URB Entry (CURBE) mode for Payloads by

defining:

Total CURBE data length provides an address range up to 217 bytes for the CURBE payload data. This field

is 64-byte aligned.

CURBE start address specifies the 64-byte aligned address where CURBE data must start to reside. This is

a relative address to the address established by the STATE_BASE_ADDRESS command.

For more details, see the MEDIA_CURBE_LOAD definition.

MEDIA_INTERFACE_DESCRIPTOR_LOAD

The MEDIA_INTERFACE_DESCRIPTOR_LOAD command sets up the VFE by defining where to fetch the

Interface descriptor and how many Bytes to fetch:

Loads the descriptor total length in bytes and the 64-byte aligned pointer to the interface descriptor

data. This interface descriptor pointer is relative to the Dynamic Base Address programmed through the

STATE_BASE_ADDRESS command.

VFE fetches the data based on the pointer and loads the data into URB.

Note: Use a MEDIA_STATE_FLUSH (without watermark) before this command to ensure that the

temporary interface descriptor storage is cleared.

For more details, see the MEDIA_INTERFACE_DESCRIPTOR_LOAD definition.

MEDIA_OBJECT

The MEDIA_OBJECT command is the basic media primitive command for the media pipeline, defined as

follows:

Supports loading of inline, CURBE, and indirect data.

Can be used in the following three VFE modes: Generic mode, IS mode, and VLD mode.

Specifies the length of inline data in all of the above three modes and all the associated

rules.

312 Doc Ref # IHD-OS-LKF-Vol 9-4.21

For indirect data, defines the rules for determining the length and start address for the same

three modes.

Cannot be used in AVC-IT, AVC-MC and VC1-IT modes.

Note: If neither SLM nor a barrier is used, MEDIA_OBJECT must be used instead of the

MEDIA_OBJECT_GRPID command.

For more details, see the MEDIA_OBJECT definition.

MEDIA_OBJECT_GRPID

The MEDIA_OBJECT_GRPID command is a variation of the MEDIA_OBJECT command and includes a 32-

bit group ID, which is a unique identifying number describing threads that share the same barriers

and/or SLMs.

• The interface descriptor command specifies how much SLM is needed and how many threads

report to a barrier. This command tracks and executes such groups.

• All MEDIA_OBJECT_GRPIDs with the same group ID need to have the same interface descriptor.

They must also be dispatched to the same Subslice, which is ensured by the hardware dispatcher

if Force Destination = 0, or by software if Force Destination = 1.

• Slice/SS destination select parameters can ensure where the dispatch happens for the group.

Software can also ensure that all threads needed for the Barrier fit into a subslice, or the Barrier

would never be satisfied due to insufficient condition.

• Hardware only dispatches a single group at a time, and that must be enforced by the

programmer for MEDIA_OBJECT_GRPID commands – unlike the MEDIA_OBJECT_WALKER

command.

• A bitfield defines whether threads associated with MEDIA_OBJECT_GRPID need to use the

scoreboard, and whether there are supporting fields to provide the X, Y, and color terms for the

scoreboard.

Note: MEDIA_OBJECT_GRPID supports the GPGPU version of payload delivery using the following:

• Per-thread payload containing a split of either indirect or CURBE between the threads, and

• Cross-thread payload sent to all threads.

For indirect payload splitting to work properly, you must send the same pointer with all the commands

associated with the thread group. A kernel does not split inline data, but sends the payload attached to

each command with the corresponding thread. Only one of inline, indirect, or CURBE is allowed, and you

must send at least one form of payload.

Also note that you must place MEDIA_STATE_FLUSH, with the watermark bit, between groups created by

MEDIA_OBJECT_GRPID. The Interface Descriptor associated with the watermark must match the Interface

Descriptor used for the subsequent group.

There are two walker commands: MEDIA_OBJECT_WALKER and GPGPU_WALKER.

For more details, see the MEDIA_OBJECT_GRPID definition.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 313

MEDIA_OBJECT_WALKER

The MEDIA_OBJECT_WALKER command can create multiple threads with various patterns, per the walker

parameters provided in the command. Thread generation for “parameterized media walker” works as

follows:

The MEDIA_OBJECT_WALKER command uses the VFE hardware walker to generate threads associated

with a rectangular-shaped object. You can use this command only in generic mode. This command can

generate one or more threads.

MEDIA_OBJECT_WALKER supports loading only of inline data or CURBE, but not indirect data. You must

send at least one form of payload.

When inline data is present, MEDIA_OBJECT_WALKER repeats that data for all dispatched threads, so

pipeline flushes are not required. When commands are issued without a pipeline flush in between,

changes to the ‘global’ (shared) data are supported. (Unlike CURBE, which requires pipeline flushes for

such changes.)

Note: You must place a MEDIA_STATE_FLUSH command after each MEDIA_OBJECT_WALKER with inline

data.

For more details, see the MEDIA_OBJECT_WALKER definition.

GPGPU_WALKER

GPGPU_WALKER has counters in each of the X, Y, and Z dimensions to generate thread group IDs in

sequence, and to generate a thread dispatch request per thread for each thread group.

• GPGPU_WALKER does not support inline data.

• When dispatching threads through the GPGPU walker, use either direct mode parameter passing

or indirect passing through the GPGPU_XXX_MMIO registers.

• In direct mode parameter passing, take the X, Y, and Z dimension parameters from the command

itself.

Some notes on GPGPU_WALKER:

• If all three dimensions (X, Y, and Z) of the GPGPU_WALKER command are programmed to one,

then all three starting X, Y, and Z values must be zero.

• If any of the three dimensions X, Y, or Z are greater than one, then the starting X, Y, and Z values

correctly wrap at the dimension limit.

• Send at least one form of payload (either indirect or CURBE) with the GPGPU_WALKER.

For more details, see the GPGPU_WALKER definition.

Synchronization of the Media-GPGPU Pipeline

The PIPE_CONTROL command synchronizes the Media/GPGPU Pipeline in the same way as for the 3D

pipeline. PIPE_CONTROL for the Media pipe case stalls at the top of the pipe until the Media FFs finish

processing commands parsed before PIPE_CONTROL. Post-synchronization operations, flushing of

314 Doc Ref # IHD-OS-LKF-Vol 9-4.21

caches, and interrupts then occur per the enabled PIPE_CONTROL parameter fields. Due to the stalling

behavior at the top, only one PIPE_CONTROL command can be outstanding at a time on the Media Pipe.

The top of the pipe synchronization enforces the read-only cache invalidation. This synchronization

guarantees that primitives rendered after a synchronization event fetch the latest read-only data from

memory.

For more details, see the PIPE_CONTROL command definition.

Supporting Commands for MEDIA-GPGPU Pipe

PIPE_CONTROL

Use the PIPE_CONTROL command to implement synchronization in the render pipe. For Media and

GPPIPE, this causes a synchronization that stalls at the top of the pipe until the Media FFs finish

processing commands parsed before PIPE_CONTROL.

PIPE_CONTROL with flush replaces MI_FLUSH. Prior, use the MI_FLUSH command to perform an internal

flush operation. The parser pauses on an internal flush until all drawing engines on the render pipe have

completed any pending operations, and the read caches are invalidated − including the texture cache

accessed via the Sampler or data port.

PIPELINE_SELECT

Use the PIPELINE_SELECT command to select the currently active pipe in the render engine. Only one of

either the 3D pipeline or the GPGPU pipeline can be selected at a time; selection of these pipelines is

mutually exclusive.

STATE_BASE_ADDRESS

The STATE_BASE_ADDRESS command sets the base pointers for subsequent state, instruction, and

media indirect object accesses by the GPPIPE.

3DSTATE_BINDING_TABLE_POOL_ALLOC

The 3DSTATE_BINDING_TABLE_POOL_ALLOC command when enables Binding Table Pool sets the base

pointer for susbequent Binding Table Pointer access by the GPPIPE.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 315

Thread Spawner (TS)

Thread spawning is fundamental to the functionality of GPGPU and programmable media. The VFE can

create sets of threads using the GPGPU_WALKER, or the VFE can assemble general-purpose threads

using MEDIA_OBJECT_WALKER in generic media mode.

A command streamer interprets and forwards VFE-decodable commands to the VFE unit. The VFE first

runs one set of commands to set up the GP pipe, then runs WALKER commands to do automatic thread

generation. A single GPGPU WALKER command can create a whole list of threads by walking either a

one-dimensional range (X-pattern), a two-dimensional range (X-Y pattern), or a three-dimensional range

(X-Y-Z pattern). Similarly, a media WALKER command can create a list of threads through a walking

pattern of left, right, diagonal, forward, or backward.

The thread request queue stores thread requests, and is in arbitration only if the number of outstanding

threads does not exceed the maximum thread state variable. Otherwise, the thread request queue stalls

until some other threads retire or terminate. TS keeps everything needed to get the threads ready for

dispatch, and then tracks dispatched threads until their retirement.

The Thread Spawner (TS) unit is responsible for requesting threads from the thread dispatcher, managing

scratch memory, maintaining outstanding thread counts, and monitoring the termination of threads.

Memory Resources for Threads

The GPGPU memory model uses URB, SLM, scratch space, and GRF. URB, SLM, and scratch space are

physically in the L3 Cache and logically segregated; GRF is exclusively inside the EUs. The following

section covers these items and their usage model in more detail.

URB

The Unified Return Buffer (URB) is as a temporary holding area that handles the process of thread

creation and dispatch. VFE manages the URB in both GPGPU and generic media modes, and allocates

one URB handle for each thread. The URB handle delivers the payload into the thread. The TS signals VFE

to de-reference the URB handle immediately after receiving acknowledgement from TD that the thread

has been dispatched.

The first 64 URB entries are reserved for the interface description, and CURBE data is placed after the IDs.

URB handles are required for indirect data. When the VFE starts, it creates up to 128 handles by

partitioning the remaining URB space into evenly-spaced addresses, and saving the resulting handles to

a buffer. The resulting handles are removed from the buffer on use and returned to the buffer when they

retire.

MEDIA_VFE_STATE specifies the amount of CURBE space, the URB handle size, and the number of URB

handles.

The driver must ensure that:

((URB_handle_size * URB_num_handle) – CURBE – 64) <= URB_allocation_in_L3.

316 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Shared Local Memory (SLM)

The Shared Local Memory is a 64KB block per L3 half-slice that must be shared between all thread

groups on that half-slice. An SLM memory manager, similar to the scratch space memory manager,

allocates the SLM space.

At a given time, a single interface descriptor dispatches most threads. For a new interface descriptor

request, the GP pipe is drained and all shared memory recovered before allocating new shared memory.

Hence only a single size of shared memory needs to be supported at one time.

For simplicity, only power-of-2 shared memory sizes from 4KB to 64KB are allowed. A thread request

specifies what size is needed. The first thread of a Thread Group is marked whether it requires new

shared local memory. If not, the old SLM offset is sent with the dispatch.

A simple set of 16 bits allocates 4KB shared memory, with more bits used for larger sizes. A priority

encoder finds the first unused bit and the offset associated with a particular barrier ID. The barrier ID

then tracks the thread group. When thread group tracking indicates that a thread group is completely

retired, that section of SLM can be reclaimed.

Local Memory/Scratch Space

Local memory is allocated per thread dispatched to the EU. The scratch space manager provides between

1KB and 2MB memory per thread.

GRF

A General Register File (GRF) inside the EU represents the per-thread private memory of the general

purpose compute framework memory model. The GRFs are register files dedicated to read/write

operations of the threads. There are 128 GRFs of 32 bytes each per thread.

GPGPU Walker

A single GPGPU job may require thousands or even millions of threads. Creating these threads

individually would be inefficient, so the GPGPU_WALKER command generates the threads algorithmically

(rather than modifying the Media Walker).

Doc Ref # IHD-OS-LKF-Vol 9-4.21 317

Figure: GPGPU Thread Group Walker

The X, Y, and Z counters for a thread group each have an initial and maximum value. Combining the

three counter values forms the thread group ID sent with each dispatch. Each counter contains 32 bits;

there is no limit on the size of the thread ID.

The GPGPU requires that 1024 SIMD channels be available for a maximum-size thread group. Thread

groups that do not need access to a barrier or SLM are not limited to 1024 SIMD channels.

In general, the formula for “number of Threads” = “number of Channels” / SIMD size.

The thread groups can be expanded over a pair of subslices, e.g. with eight EUs per subslice and seven

threads per EU. Also, threads per subslice = ((Thread Count (per EU)) * (EU count/Subslice)).

For example, in a system with ten EUs per subslice, each with seven hardware threads, a maximum-size

thread group fits in a subslice if SIMD16 instructions are used, but not if SIMD8 instructions are used.

See the Configurations section for an exact determination of what SIMD option is required to fit in the

subslice of the targeted configuration.

The three thread counters count the number of dispatches in a single thread group: up to 32 dispatches

for SIMD32 or 64 dispatches for SIMD16/8. There are three thread counters to select the execution masks

correctly – see the Execution Masks section.

Each thread counter is six bits to allow flexibility for any dimension going to 64, while the rest do not

increment. A thread is generated each time one of the thread counters increment. When the thread

group X counter reaches the maximum it is reset to 0, and the Y counter is incremented. When the

thread group Y counter reaches the maximum it is reset to 0, and the Z counter is incremented. When all

the counters reach their maximum values, the thread group is done and the thread group counter can

increment to start a new thread group.

The compiler determines how many SIMD channels are needed per thread group, and then decides how

these are split among EU threads. The number of threads is programmed in the thread counter, and the

SIMD mode (SIMD8/SIMD16/SIMD32) is specified in the GPGPU_WALKER command.

The maximum thread group size must fit into a single subslice (or DSS) and run in parallel, so the number

of EU threads must be less than the number specified in Configurations for threads per subslice (DSS).

318 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Thread Payload

The payload for each thread dispatched is as follows:

1. A thread group ID that identifies the group to which the threads belong. This consists of three 32-bit

X/Y/Z values.

2. The set of X/Y/Z counters that form the thread ID for each channel. If the Z counter is not used, then only

X and Y are needed.

3. The execution mask that indicates what channels are active.

Thread IDs form a 2D or 3D surface that is mapped into SIMD32, SIMD16, or SIMD8 dispatches. The

compiler supplies the mapping, rather than having the hardware force a particular mapping of thread IDs

to channels.

The VFE receives a simple count of the number of threads per thread group, which counts the number of

dispatches. A constant buffer in the MEDIA_CURBE_LOAD command contains the thread IDs for all

threads in a thread group. You can use a single set of thread IDs repeatedly for all thread groups, since

the thread IDs are the same for each thread group ID output by the GPGPU_WALKER.

The following figure is an example set of payloads for a 2 Z x 2 Y x 12 X and a SIMD16 dispatch. This

thread group requires three dispatches:

Figure: Dispatch Arrangement

In this case the thread counter width is programmed with a maximum value of three. Since the execution

masks are all F, it doesn’t matter how the thread counters are programmed, as long as they count to

three before finishing the thread group.

The first dispatch would tell the TS that the payload starts at the beginning of the constant buffer and

has a length of three. The next dispatch would have a payload starting at Constant_Buffer_Start + 3. The

final dispatch payload starts at Constant_Buffer_Start + 6. If there are more thread groups in the

command they would each get exactly the same payload, except for a different thread group ID, barrier,

and shared local memory space.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 319

Execution Masks

The number of channels required by a GPGPU job may not fit evenly into the number of SIMD channels,

which can leave some channels idle. The execution mask tells the hardware what channels are actively

used.

The payload for a general-purpose thread must include the execution mask. The execution mask has one

bit set per channel for up to 32 channels. SIMD16 and SIMD8 use the LSB bits of the execution mask. The

5-bit number transferred from VFE expands to produce the 32-bit mask. This mask uses the Dmask from

the pixel shader dispatch in the transparent header.

A thread group is modeled as a 3D solid, with each channel acting as one X/Y/Z point in the solid. This

group can have the following forms:

A line with 1024 X channels from 0 to 1023, and constant Y/Z;

A square with X ranging from 0 to 32 and Y ranging from 0 to32;

A cube with X ranging from 0 to 9, Y ranging from 0 to 9, and Z ranging from 0 to 9.

Software needs to determine how to map these shapes onto the 32 SIMD32 channels per dispatch, or 16

SIMD16, or 8 SIMD8. The mapping per thread is a 2D square of channels such as 8x4, 16x2, or 32x1.

Below is a diagram of a 22x6 thread group that is mapped onto a set of 8x4 SIMD32 channels:

Figure: Mapping onto a Set of SIMD32 Channels

Note that the dispatches in the upper left have execution masks of all-F, while all the right edge

dispatches have the same execution mask; likewise all the bottom edge dispatches have the same

execution mask. The bottom right is the logical-AND of the right and bottom edge dispatches.

A 32-bit right and bottom mask is sent with the GPGPU_WALKER command, and the thread width, height

and depth counters determine when the masks are used. Width, height and depth are used instead of

X/Y/Z, since it is not required that width = X; width and height are the two variables that are changing in

a single SIMD dispatch even if they are Y and Z.

For each dispatch, the width counter increments until it reaches the maximum. The dispatch with

width=max uses the right execution mask. The height counter is then incremented and the process

repeated. If at any time the height counter = max then the execution mask is the bottom execution mask.

When the height and width counters are both max then the dispatch is the AND of the right and bottom

masks, and the depth counter increments.

The same 2Z x 2Y x 12X thread group described above dispatched as SIMD32 with each dispatch

delivering a 16X x 2Y shape requires two dispatches with empty bits in the right execution mask and all F

in the bottom.

320 Doc Ref # IHD-OS-LKF-Vol 9-4.21

The width and height counter would have a maximum of one, and the depth counter would have a

maximum of two. The two dispatches use the AND of the two masks, but since the bottom mask is F it

would be the same as just the right mask.

The execution masks can also be used when the software wants to pack the channels rather than lay

them out in a regular pattern:

In this case the width counter can have a maximum of two, and the height and depth counters have a

maximum of one. The first dispatch uses the bottom mask only (all F), and the second uses the right AND

bottom mask to remove unused channels.

Media and GPGPU Indirect Thread Dispatch

Indirect thread dispatch allows one thread group to control the group size of a following thread group.

To enable GPGPU indirect thread dispatch, use the following sequence of commands in the ring buffer:

GPGPU_OBJECT/WALKER // Either a set of objects or a walker to dispatch a thread group to write the next

group's properties to memory.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 321

MI_FLUSH // Make sure the thread group has finished executing.

MEDIA_CURBE_LOAD // Load the thread ids for new group.

MI_LOAD_REGISTER_MEMORY // Load the indirect MMIO GPGPU registers from the mem written by the previous

group.

GPGPU_WALKER (indirect) // A walker with the indirect bit set.

The first thread group writes the following data to memory:

1. The thread IDs delivered in the CURBE, written where the following MEDIA_CURBE_LOAD reads them.

2. The GPGPU_WALKER parameters, written where the MI_LOAD_REGISTER_MEMORY reads them:

a. GPGPU_DISPATCHDIMX - the X dimension of the number of thread groups in which to dispatch;

DW offset 7

b. GPGPU_DISPATCHDIMY - the Y dimension of the number of thread groups in which to dispatch;

DW offset 10

c. GPGPU_DISPATCHDIMZ - the Z dimension of the number of thread groups in which to dispatch;

DW offset 12

Use CURBE (rather than indirect) for the payload when using indirect dispatch.

Parameterized Media Walker

The Parameterized Media Walker is a hardware thread-generation mechanism to create threads

associated with units in a generalized two-dimensional space (e.g. blocks in a 2D image). With a small

number of unit step vectors, the walker can implement a large number of walking patterns. This walker

may provide functions that are normally handled by the host software, thus simplifying the host software

to GPU interface.

The walker described here is doubly nested, meaning a “local” walker can perform a variety of two-

dimensional walking patterns while a “global” walker performs similar two-dimensional patterns upon

many local walkers. The local walker has three levels (outer, middle, and inner) while the global walker

has two levels (outer and inner). Hence the walker algorithm has five-nested loops that modify local state

based on user-defined unit step vectors.

The parameterized media walker’s programmability is derived from the following.

• The walker traverses a unit-normalized surface. Some example unit sizes:

o 1x1: Walking pixels,

o 4x4: Walking sub-blocks,

o 16x16: Walking macro-blocks, and

o 32x16: Walking macro-block-pairs.

• Unit step vectors to describe the motion at each of level of nesting.

322 Doc Ref # IHD-OS-LKF-Vol 9-4.21

• Starting locations for the local and global walkers.

• Block sizes of the local and global walker.

• A small number of special mode controls for the inner-most loop, designed to efficiently divide an image

into two balanced workloads for dual-slice designs.

Walker Parameter Description

The global and local loops are both described by the same four parameters:

• Resolution,

• Starting location,

• Outer unit vector, and

• Inner unit vector.

The local inner loop has some special modes that are described later. A table of the user inputs and

some example values are shown below:

A programmer implicitly defines what a “unit” represents, which means the walker traverses a “unit

normalized space” that is not inherently bound to pixel walking.

If the smallest unit of work to be walked is a 4x3 block of pixels, you can program the inner loop to step

(4,3) or (1,1) as follows:

• In the (4,3) case, the user is walking units of pixels.

• In the (1,1) case, the user is walking units of 4x3 blocks of pixels.

Note that hardware doesn’t contain enough bits for pixel walking for resolutions like 1920x1088 pixels.

The intended usage of the walker is for block walking where the block size is not relevant to the walker

parameters.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 323

Basic Parameters for the Local Loop

Basic Parameters for the Local Loop The local inner and outer loop xy-pair parameters alone can describe

a large variety of primitive walking patterns. Below are nine primitive walking patterns generated by

varying only the inner and outer unit step vectors of the local loop:

Figure: Local Loop Walking Patterns

• The top row of the figure above shows the outer unit vector pointing down (+Y) and the inner unit vector

pointing right (+X). Skip rows and columns by increasing the unit step vectors beyond one.

• The middle row of the figure shows the outer unit vector pointing right (+X) and the inner unit vector

pointing down (+Y). Skip rows and columns by increasing the unit step vectors beyond one.

• The last row of the figure shows the option to walk patterns not aligned to the edges. The left option

yields a 45º walking pattern by setting the inner unit vector to (-1,1). The middle option yields a

checkerboard pattern by skipping every other outer loop and retaining the inner unit vector of (-1,1). The

right option yields a 26.5º walking pattern by setting the inner unit vector to (-2,1).

324 Doc Ref # IHD-OS-LKF-Vol 9-4.21

The block resolution, shown as [8,8], and the starting location, shown as [0,0], can be varied and the

walking patterns can be stretched and rotated in many ways. The diagram below shows an example of

where the start position and unit step vectors can be set to achieve a full rotation of the same pattern:

Figure: More Local Loop Walking Patterns

Walker Algorithm Description

The walker algorithm has been tested and optimized in software. A high-level pseudo-code description is

given below:

 Walker(){ //C-Style Pseudo-Code of Walker Algorithm

 Load_Inputs_And_Initialize();

 While (Global_Outer_Loop_In_Bounds()){

 Global_Inner_Loop_Intialization();

Doc Ref # IHD-OS-LKF-Vol 9-4.21 325

 While (Global_Inner_Loop_In_Bounds()){

 Local_Block_Boundary_Adjustment();

 Local_Outer_Loop_Initialization();

 While (Local_Outer_Loop_In_Bounds()){

 Local_Middle_Loop_Initialization();

 While (Local_Middle_Steps_Remaining()){

 Local_Inner_Loop_Initialization();

 While (Local_Inner_Loop_Is_Shrinking()){

 Execute();

 Calculate_Next_Local_Inner_X_Y();

 } //End Local Inner Loop

 Calculate_Next_Local_Middle_X_Y();

 } //End Local Middle Loop

 Calculate_Next_Local_Outer_X_Y();

 Calculate_Next_Local_Inverse_Outer_X_Y();

 } //End Local Outer Loop

 Calculate_Next_Global_Inner_X_Y();

 } //End Global Inner Loop

 Calculate_Next_Global_Outer_X_Y();

 } //End Global Outer Loop

 } //End Walker

The above pseudo-code has the following characteristics:

• There are five levels of iteration.

• The highest two levels are called “global” and the lowest three levels are called “local”:

o The global loop contains an outer and an inner loop;

o The local loop contains an outer, middle, and inner loop;

o The user defines a bounding box for the global and local resolution;

o The user also specifies the starting location within each bounding box.

• Each of the five loops has its own persistence:

o Current position (x,y),

o Unit step vector (x,y).

• The final output (x,y) is a summation of the global x,y and the local x,y.

326 Doc Ref # IHD-OS-LKF-Vol 9-4.21

• The next (x,y) for a given level can be calculated while the next lower level is still executing. The (x,y)

calculation result tests whether the current level needs to execute again once control is returned.

The flow of the global outer and inner loops is as follows:

1. Check a bound condition;

2. Initialize the next level loop;

3. Execute the next level loop;

4. When the next level loop fails its bound condition, calculate the next position for the current loop

level and repeat.

Walker Algorithm Flowchart for the Global Loop

Doc Ref # IHD-OS-LKF-Vol 9-4.21 327

Figure: Walker Algorithm Flowchart for the Global Loop

Note the grey box above labeled, “Local Block Boundary Adjustment.” Use this logic to adjust the local

block size, when the distance between the current global position and the edge of the image is less than

the local resolution. Local starting positions may also be modified by the same logic, if the defined

starting position is larger than the new local block size.

The flow of the three local loops does not vary much from the two global loops. The differences are as

follows:

• The local middle loop, in addition to a boundary check, also ensures the number of middle steps is

less than or equal to the user-defined “number of extra steps.”

• The local inner loop only checks to see whether the prior distance between the x,y starting and

ending points is greater than their current distance. If this comparison is true, that implies the two

inner loops are converging towards each other.

• When the middle loop check fails, both the starting points (local outer) and ending points (local

inner) are updated.

328 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Walker Algorithm Flowchart for the Local Loop

Figure: Walker Algorithm Flowchart for the Local Loop

Flexible Dispatch of Local Loop

A local loop automatically splits between available subslices with adjacent blocks kept next to each other,

to improve cache and execution efficiency. A single iteration of the local loop splits into equal segments,

one for each currently powered-up subslice. The dispatches for the local loop are done so that one

Doc Ref # IHD-OS-LKF-Vol 9-4.21 329

thread from each segment is dispatched before repeating the process. For example: segment 0, thread 0

is followed by segment 1, thread 0 rather than segment 0, thread 1.

Figure: Splitting a Wavefront Between Six Segments

Each color in the figure above indicates a separate segment dispatched to a specific subslice. In this

example, each local loop walks a diagonal line from the lower left to the upper right, while the global

loop steps between the lines. Dependencies are to the left and above, which is a typical usage model.

The first few iterations are in the upper right corner and have few blocks dispatched per local loop.

Farther down, the length of the local loop gets large enough that the six available subslices are full of

threads from each segment running in parallel, and being dispatched in an even manner.

Masked Dispatch

Masked dispatch adds a dispatch mask to the Media_Object_Walker command, which provides a bit per

dispatch to determine whether to drop the dispatch. This allows use of Media_Object_Walker with

330 Doc Ref # IHD-OS-LKF-Vol 9-4.21

irregularly shaped areas. When using the masked dispatch mode, program the walker to walk the surface

as a simple rectangle, with X changing in the innermost loop.

CURBE contains the dispatch mask, so a Media_Object_Walker command that uses the dispatch mask

cannot use CURBE in the dispatch payload. CURBE contains a bitmask for which each bit corresponds to

the X/Y blockID (not the pixel X/Y). The byte address of each bit is defined as follows:

Byte_address = (Y * pitch + X) » 8

Pitch is the number of horizontal blocks in the surface, rounded up to the next power of two bits (e.g.

128, 256, or 512).

The Media_Object_Walker command allows X and Y to have a maximum of nine bits, which corresponds

to a 512 pixels x 512 pixels surface in CURBE. For 16 pixel by 16 pixel blocks, this would represent a total

of 8KB x 8KB pixels. Note that in this mode, the walker dispatches in sequence, rather than splitting the

local loop into segments that dispatch to individual subslices (as described in “Flexible Dispatch of Local

Loop” above).

Doc Ref # IHD-OS-LKF-Vol 9-4.21 331

Thread Dispatch

The following sections cover the thread dispatch process in the GPGPU pipe.

Thread Dispatch Format

The thread dispatch for GPPIPE consists of a series of headers and payloads, routed through the dispatch

pipeline from the thread spawner unit up until the EU. The thread dispatch consists of transparent and R0

headers and an associated payload that may consist of per-thread and cross-thread data. The

transparent header part gets translated as part of the EU state surrounding the threads, becomes the

context for a thread while the rest of the payload (including R0 and any optional payload) gets copied to

the GRF, and acts as parameters for the thread. Both the transparent and R0 headers are crafted

dynamically by hardware based on the interface descriptor.

All threads begin with a transparent header, followed by an R0 header. The format of R0 is different for

GPGPU and media threads, as well as for other 3D fixed functions. While the thread spawner generates

the headers, the payload is fetched from URB and attached by the dispatch pipeline before dispatch to

the EU.

Table: Dispatch Combinations and Associated TSG Phases

Dispatch Type Dispatch Parameters TSG Phases (2 or 3 clocks /

thread)

GPGPU

Mode

CURBE

Length

Cross

Length

Payload

Length

Ph-

1

Ph-

2

Ph-3

Media Thread no CURBE

no Payload

0 0 0 0 TH R0

Media Thread no CURBE

with Payload

0 0 0 >0 TH R0 Root Handle (DW0)

Media Thread with CURBE

no Payload

0 >0 0 0 TH R0

Media Thread with CURBE

with Payload

0 >0 0 >0 TH R0 Root Handle (DW0)

GPGPU Thread no Thread

ID no CURBE

1 0 0 0 TH R0

GPGPU Thread with Thread

ID no CURBE

1 >0 0 0 TH R0

GPGPU Thread with Thread 1 >0 >0 0 TH R0 Cross Thread CURBE

332 Doc Ref # IHD-OS-LKF-Vol 9-4.21

ID with CURBE Handle (DW0)

The interface descriptor of a given thread determines whether the CURBE data field is present.

INTERFACE_DESCRIPTOR_DATA

Interface descriptor data is the data structure fetched from the URB, using the interface descriptor data

start address. The interface descriptor data serves as the key parameter file to set up the modes of

execution, formation, and usage model of threads and thread groups.

Some of the key parameters controlled by the interface descriptor are as follows:

• Basic thread execution attributes such as the kernel start pointer, floating point mode selection,

thread priority definition, handling of de-normalized numbers, and whether the thread can be pre-

empted if a mid-thread pre-emption request comes through.

• Number of threads in a GPGPU thread group. This parameter needs to be accurate because it is

used in the pre-emption sequence to ensure proper pre-emption. The minimum value is one and

the maximum is the number of threads in two subslices for local barrier. For global barrier it may

be higher.

• SLM size for a thread group, which is specified in powers of two and minimum increments of 4K

blocks up to 64K per subslice.

• Barrier enable and global barrier enable/disable. These parameters define whether there is a

barrier associated with a thread group and, if so, can it be local within a subslice or cross-subslice

as a global barrier (or both). Setting a global barrier affects performance.

• Constant URB Entry (CURBE) data is a combination of fields. First is the address offset where the

constant URB data can be found, followed by a combination of “constant/indirect URB entry read

length” and “cross-thread constant data read length.” The latter two items define whether there is

any payload – and, if so, whether that is per-thread only payload, CURBE only, or both.

• The binding table pointer, and the number of binding table entries that the kernel uses. Also, the

sampler state table pointer and sampler count for kernels in use.

• Some exception enables that get loaded directly into the EU CR0 registers.

For more details, see the INTERFACE_DESCRIPTOR_DATA definition.

R0 Headers

GPGPU and Media R0 headers differ in their organization. Even for Media threads, those with groups

attached have a different R0 header than the generic mode R0 header.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 333

GPGPU R0 Header

The thread dispatch payload for a GPGPU thread consists of:

An R0 header;

If present, cross-thread CURBE data in R1 and subsequent registers; and

Per-thread payload (e.g. X/Y/Z thread IDs) in the next available registers of the thread - starting in R1 if

there is no CURBE data.

DWord Bits Description

R0.7 31:0 Thread Group ID Z: This field identifies the Z component of the thread group that this thread

belongs to.

R0.6 31:0 Thread Group ID Y: This field identifies the Y component of the thread group that this thread

belongs to.

R0.5 31:10
Scratch Space Pointer. Specifies the 1K-byte aligned pointer to the scratch space (used for the

GPGPU local memory space).

Format = GeneralStateOffset[31:10]

R0.5 9:0
FFTID. This ID is assigned by TS and is a unique identifier for the thread in comparison to other

concurrent threads (of any thread group). It is used to free up resources used by the thread upon

thread completion.

 Format = U9

R0.4 31:5
Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table. It is specified as

an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

R0.4 4 Reserved: MBZ

R0.4 3:0
Indicates the stack memory size.

334 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bits Description

Range = [0,11] indicating [1K bytes, 2M bytes]

Programming Note: Exception handling on stack overflow is not supported when GPGPU mid-

thread pre-emption is desired.

R0.3 31:5
Sampler State Pointer. Specifies the 32-byte aligned pointer to the sampler state table.

Format = GeneralStateOffset[31:5]

R0.3 4 Reserved: MBZ

R0.3 3:0
Per Thread Scratch Space. Specifies the amount of scratch space, in 16-byte quantities, allowed to

be used by this thread. The value specifies the power that two is raised to, to determine the amount

of scratch space.

Format = U4

Range = [0,11] indicating [1K bytes, 2M bytes] in powers of two.

R0.2 31 Barrier Enable. This field indicates that a barrier has been allocated for this kernel.

R0.2 30:24 BarrierID. This field indicates the barrier that this kernel is associated with.

Format: U7

Range = [0,63]

R0.2 14:11 Reserved: MBZ

R0.2 10 GPGPU Dispatch - This field indicates that the dispatch is from GPGPU_WALKER rather than the

various media dispatch instructions.

R0.2 3:1 Reserved: MBZ

R0.1 31:0 Thread Group ID X: This field identifies the X component of the thread group that this thread

belongs to.

R0.0 31:24
SLM ID. This field encodes whether SLM was allocated for this thread, and if so, the SLM base offset

used with SLM operations.

Format: U8

R0.0 23:17 Reserved: MBZ

R0.0 16 FFSID: Fixed Function Stack ID. This field indicates which stack the thread belongs to.

R0.0 15:0 URB Handle: This is the URB handle indicating the URB space for use by the thread.

Cross-thread CURBE if present is in R1 and above, followed by the X/Y/Z thread id values for each

channel in the thread.

MEDIA R0 Header

The thread payload messages for generic mode and for MEDIA_OBJECT_WALKER are in the same format.

The R0 header is the same in both cases, then there are constants from CURBE when CURBE is enabled,

Doc Ref # IHD-OS-LKF-Vol 9-4.21 335

followed by inline data when inline is enabled. The inline data block field is the same as in the

MEDIA_OBJECT command, with zero-filled partial GRF, and there is no indirect data block field.

The R0 header of the MEDIA_OBJECT_GRPID and MEDIA_OBJECT_WALKER payload with groups enabled

is different from the generic mode and MEDIA_OBJECT* payload without groups enabled. This header

payload difference is shown in the table below.

Table: Media R0 Header Payload

DWord Bits Description

R0.7 31:0 Group ID LSB. This is the LSBs of the Group ID. For MEDIA_OBJECT_GRPID threads this is the entire

group id. For MEDIA_OBJECT_WALKER threads the interpretation depends on the Group ID Loop

Select:

 0: No groups, field is 0.

 1: cat(InnerGlobalCnt[6:0], OuterLocalCnt[9:0], MidLocalCnt[4:0], InnerLocalCnt[9:0]); rest of group

id is in R0.2.

 2: cat(OuterGlobalCnt[6:0], InnerGlobalCnt[9:0], OuterLocalCnt[9:0], MidLocalCnt[4:0]); rest of group

id is in R0.2.

 3: cat(2’b0, OuterGlobalCnt[9:0], InnerGlobalCnt[9:0], OuterLocalCnt[9:0]).

 4: cat(12’b0, OuterGlobalCnt[9:0], InnerGlobalCnt[9:0]).

 5: cat(22’b0, OuterGlobalCnt[9:0]).

R0.5 31:10 Scratch Space Pointer. Specifies the 1k-byte aligned pointer to the scratch space. This field is only

valid when Scratch Space is enabled.

 Format = GeneralStateOffset[31:10]

R0.5 9:0 FFTID. This ID is assigned by TS and is a unique identifier for the thread in comparison to other

concurrent root threads. It is used to free up resources used by the thread upon thread completion.

R0.4 31:5 Binding Table Pointer. Specifies the 32-byte aligned pointer to the Binding Table. It is specified as

an offset from the Surface State Base Address.

 Format = SurfaceStateOffset[31:5]

R0.4 4:0 Reserved: MBZ

R0.3 31:5 Sampler State Pointer. Specifies the 32-byte aligned pointer to the sampler state table.

 Format = GeneralStateOffset[31:5]

R0.3 4 Reserved: MBZ

R0.3 3:0 Per Thread Scratch Space. Specifies the amount of scratch space, in 1K-byte quantities, allowed to

be used by this thread. The value specifies the power to which two is raised to determine the

amount of scratch space.

 Format = U4

 Range = [0,11] indicating [1K bytes, 2M bytes] in powers of two

R0.2 31 Barrier Enable. This field indicates that a barrier has been allocated for this kernel.

R0.2 30:24 BarrierID. This field indicates the barrier that this kernel is associated with.

 Format: U7

 Range = [0,63]

R0.2 23:11 Group ID MSB. This field is the MSBs of the Group ID. These bits are 0 for MEDIA_OBJECT_GRPID.

For MEDIA_OBJECT_WALKER threads the interpretation depends on the Group ID Loop Select:

 0: No groups, field is 0.

 1: cat(OuterGlobalCnt[9:0], InnerGlobalCnt[9:7]).

336 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bits Description

 2: cat(10’b0, OuterGlobalCnt[9:7]).

 3-5: All zero.

R0.2 10 Reserved: MBZ

R0.2 9:4 Interface Descriptor Offset. This field specifies the offset from the interface descriptor base

pointer to the interface descriptor that is applied to this object. It is specified in units of interface

descriptors.

 Format = U6

R0.2 3:0 Reserved: MBZ

R0.1 31:24 Block Color. This field is the 8-bit Media block Color value. It specifies which dependency color the

current thread belongs to

 Format = U8

R0.1 23 Reserved: MBZ

R0.1 22:12 Block Y. This field provides the Y media block coordinate of current thread.

 Format = U11

R0.1 11 Reserved: MBZ

R0.1 10:0 Block X. This field provides the X media block coordinate of current thread.

 Format = U11

R0.0 31:24 SLM ID. This field encodes whether SLM was allocated for this thread, and if so, the SLM base offset

used with SLM operations.

R0.0 23:17 Reserved: MBZ

R0.0 16 FFSID: Fixed Function Stack ID. This field indicates which stack the thread belongs to.

R0.0 15:0 URB Handle. This is the URB handle where indicating the URB space for use by the root thread and

its children.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 337

Thread Tracking and Synchronization

You must track a dispatched thread for the End Of Thread (EOT) lifecycle. The tracking process in

TS creates renewable capacity in the EU farms, and renews thread resources by releasing them once the

thread lifecycle finishes. For GPGPU, the synchronization between threads is done through barrier; in

Media, the synchronization is done through the scoreboard.

Thread Synchronization Monitors

Thread Synchronization Monitors (TSM) are a hardware feature used for inter-thread communication. It

can be used to implement a software scoreboard or other synchronization method with a higher

performance than using polling. Unlike barriers, TSM allows communication across all thread in the entire

machine, rather than just the threads in a thread group.

 TSM uses messages to the Message Gateway to monitor and signal events. The messages used are:

 1) MonitorEvent – this message indicates to the Gateway that a particular Event ID is of interest to the

sending thread and should be monitored. When the corresponding event occurs it is recorded in the

Gateway but no message is sent until a WaitForEvent message is sent.

 2) WaitForEvent – this message tells the Gateway that the thread is ready to go to sleep until the event

or a timeout occurs. After sending this message the thread should read the writeback register to allow

the EU to switch to other threads until the event occurs and the dependency is cleared. The message

payload specifies how long the Gateway should wait before signaling a timeout, and the writeback

register specified gets a value of 0 if a timeout occurs or 1 if the event occurs. Note that a pre-emption

will always cause a timeout.

 3) SignalEvent – this message is broadcast to every Gateway (including the source Gateway). The event

is recorded for each thread that has a MonitorEvent with a matching event ID, while a message is sent to

each thread which has a WaitForEvent outstanding. If the WaitForEvent occurs after the SignalEvent then

the message will go out immediately upon receiving the WaitForEvent. After the message goes out

thread will still be monitoring that event, so it can be reused as long as care is taken that every thread

gets the same number of events – if an event happens twice while a thread is merely monitoring before

WaitForEvent it will only see the event once.

 4) MonitorNoEvent – this message disables the monitoring of events for this thread. This is also done

when the thread exits with the EOT (End of Thread) message.

 See the Message Gateway section of the Bspec for more details of these messages.

 Here is an example of using TSM for a software scoreboard which is used to determine if macroblocks

that the current thread is dependent on have completed:

For (all dependencies for this macroblock) {

 MonitorEvent(scoreboard[dx][dy]); // Start monitor before checking dependency

bit

 While (!atomic_read(scoreboard[dx][dy])) {

 WaitForEvent(EventID(dx,dy), timeout); // EventID determined from dx & dy

 }

338 Doc Ref # IHD-OS-LKF-Vol 9-4.21

 }

// MonitorNoEvent is not needed here

 DoBlock(); // All normal processing of block

 Atomic_write(scoreboard[x][y], 1); // Set the dependency bit for following

blocks

 SignalEvent(EventID(x,y));

Barriers and Shared Local Memory

Barriers and Shared Local Memory (SLM) offer advantages for both general purpose and media

applications. Barriers can synchronize between GPGPU and media threads more efficiently than atomics

can do, while SLM can be used to share data between tightly associated threads.

Barriers and SLM can also be used with a more generalized walker, to add the ability to use the

scoreboard at the same time. Implementation requires an identifying number similar to the thread group

ID that can be used to track and free resources. The MEDIA_OBJECT_WALKER can use various loop

counts to define the group ID.

For flexibility, you can specify which loop counts form the group ID, and which ones count the threads

inside each group. If cross-slice barriers are disabled, the walker must ensure that all threads in a group

are dispatched to a single subslice so that the barrier and SLM are available to all group members. Make

sure that the number of threads generated per group is no larger than the number of threads available in

a subslice.

MEDIA_OBJECT_WALKER adds the X/Y values for the various loops together to produce a single X/Y

point. Since some walking patterns have overlapping X/Y values, the combined X/Y point cannot be used

for the global ID; instead, execution counts are concatenated together to produce an ID number. (An

execution count is a tally of how many times each loop is executed.) The GPGPU thread group ID is a 96-

bit number, so it easily contains the 49 bits created by all the execution counts.

The media walker has five nested loops for producing the X/Y point. In addition, there is an innermost

color loop defined as follows:

1. Color loop – 4 bits

2. Inner local loop execution count – 10 bits

3. Mid local loop execution count – 5 bits

4. Outer local loop execution count – 10 bits

5. Inner global loop execution count – 10 bits

6. Outer global loop execution count – 10 bits

A media walker parameter specifies the global ID bits by identifying at what point to switch between the

group ID and per-thread ID. Unused loops always have execution counts of zero. The media walker forms

group IDs by concatenating execution counts that are enabled in the Group ID Loop Select to create the

LSBs of the IDs, and sets any unused MSBs to zero.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 339

Barriers and SLM Example:

If a MEDIA_OBJECT_WALKER specifies that the outer local loop count and above form the group ID, then

every iteration of the color, inner local, and mid local dispatches a thread with the same group ID.

TS allocates a shared barrier and SLM (as specified in the interface descriptor), and ensures that all

threads go to the same subslice. If no global barriers are used, the number of threads must fit on a single

subslice; if global barriers are used, the number of threads must fit on the system.

The group ID for this example is formed by concatenating the outer global exec count, inner global exec

count, and outer local exec count. When the group ID increments, the TS allocates a new barrier and SLM

and pick an available subslice.

Media-GPGPU Thread EOT Message

The thread EOT message is issued to the Gateway unit by a GPGPU or Media thread running on an EU.

This message contains only one 8-DWord register which is intended to be a direct copy of R0 in the

thread payload. It indicates that the thread is terminating and the thread spawner should dereference the

barrier and SLM resources that were optionally allocated with the thread when it was dispatched.

Message Descriptor

Thread EOT Message Descriptor

Message Payload

DWord Bits Description

M0.5 31:10 Ignored.

M0.5 9:0 Ignored.

M0.4 31:0 Ignored.

M0.3 31:0 Ignored.

M0.2 31 Barrier Enable. This field indicates whether a barrier was allocated for this thread.

 Format: Enable

M0.2 30:24 BarrierID. When Barrier Enable is set, this field identifies which barrier was allocated for this thread.

 Format: U7

M0.2 23:0 Ignored.

M0.1 31:0 Ignored.

M0.0 31:24 SLM ID. This field encodes whether SLM was allocated for this thread, and if so, the SLM base offset

used with SLM operations.

 Format: U8

M0.0 23:0 Ignored

340 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Context Switch for GPGPU and Media

In the ExecList scheduling mode, software triggers preemption by submitting a new pending execlist to

the ExecList Submit Port (ELSP). On detecting the availability of the new pending execlist, hardware

triggers preemption on a preemptable command. Following successful preemption, the newly submitted

execlist undergoes a context switch. As part of the context switch, the Logical Ring Context Address

(LRCA) saves the preempted context state. The context state contains details for hardware to resume

execution of a resubmitted context from the point where the context was preempted.

The GPGPU Pipe supports several types of preemption boundaries:

GPGPU Pipe Preemption Boundaries

Preemption

Boundary Description

Command

(coarsest

granularity)

The context is preempted after the current command is completed. The GPGPU Pipe is flushed,

and the current context state is saved so that the next command in the command buffer will be

executed when the context is resumed.

Threadgroup The context is preempted in the middle of a GPGPU Walker or Media Walker command. After all

previously dispatched threadgroups have completed, the current walker position is saved along

with the current context state. The current walker command will be executed when the context is

resumed and then re-start at the next theadgroup dispatch in the walker.

Mid-Thread

(finest

granularity)

The context is preempted in the middle of a GPGPU Walker command. After all previously

dispatched threadgroups have started running in an EU, each running thread is preempted at

the next interruptible EU instruction, all per-thread data is saved, the current walker position is

saved along with the current context state. When the context is resumed, all the per-thread data

is restored, the threads are re-started, and the current walker command is executed to re-start at

the next threadgroup dispatch in the walker.

Programming Note

Context: Mid-Thread Preemption

Usually software selects either command or threadgroup preemption because they save less data as part of the

context image and are responsive enough for the applications. Mid-thread preemption has a lot more overhead but

sometimes guarantees a shorter preemption time when threadgroups run a long time.

Programming Note

Context: Per-Context vs Global Selection of Preemption Boundary

The GPGPU Pipe preemption boundary is set by software by the Media GPGPU Preemption Control.

If preemption is signaled and the Preemption Control specifies a boundary not supported the currently

running command or command streamer, then the preemption will occur on the boundary supported by

that command and command streamer.

If a particular sequence of commands within a context needs to be protected from preemption, then it

must be explicitly put between the MI_ARB_OFF/MI_ARB_ON command pair.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 341

Preemption Boundaries supported by GPGPU Pipe Commands and Command Streamers

Recognized Preemption

Boundaries Current GPGPU Pipe Command

Which Render Engine Command

Streamer is running the Command

• Mid-thread

• Threadgroup

• Command

GPGPU_WALKER RCS

• Threadgroup

• Command

MEDIA_OBJECT_WALKER RCS

• Command All other GPGPU Pipe Commands, including:

• MEDIA_VFE_STATE,

• MEDIA_STATE_FLUSH,

• MEDIA_LOAD_INTERFACE_DESCRIPTOR

• MEDIA_CURBE_LOAD

 Any MI_ Command when MI_ARB_ON,

including:

• PIPE_CONTROL

• PIPELINE_SELECT

• MI_ARB_CHECK

• MI_WAIT_FOR_EVENT

• MI_SEMAPHORE_WAIT

RCS

342 Doc Ref # IHD-OS-LKF-Vol 9-4.21

3D and GPGPU Programs

Overview of kernel execution with EU instructions and Shared Function messages.

EU Overview

The instruction set is a general-purpose data-parallel instruction set optimized for graphics and media

computations. Support for 3D graphics API (Application Programming Interface) Shader instructions is

mostly native, meaning that efficiently executes Shader programs. Depending on Shader program

operation modes (for example, a Vertex Shader may be executed on a base of a vertex pair, while a Pixel

Shader may be executed on a base of a 16-pixel group), translation from 3D graphics API Shader

instruction streams into native instructions may be required. In addition, there are many specific

capabilities that accelerate media applications. The following feature list summarizes the instruction set

architecture:

• SIMD (single instruction multiple data) instructions. The maximum number of data elements per

instruction depends on the data type.

• SIMD parallel arithmetic, vector arithmetic, logical, and SIMD control/branch instructions.

• Instruction level variable-width SIMD execution.

• Conditional SIMD execution via destination mask, predication, and execution mask.

• Instruction compaction.

• An instruction may be executed in multiple cycles over a SIMD execution pipeline.

• Most instructions have three operands. Some instructions have additional implied source or

destination operands. Some instructions have explicit dual destinations.

• Region-based register addressing.

• Direct or indirect (indexed) register addressing.

• Scalar or vector immediate source operand.

• Higher precision accumulator registers are architecturally visible.

• Self-modifying code is not allowed (instruction streams, including instruction caches, are read-

only).

CoIssue/Dual Issue:

Restrictions:

• Opcodes: All opcodes except DX11 special opcodes.

• Datatype: All datatypes except bytes.

• Accessmode:

o Align1:

▪ No Scattering or Gathering data. This means data in source and destination registers are

aligned and packed (data is contiguous in a register) i.e. when VertStride = Width * HorizStride.

 //Example:

 // allowed, data is contiguous and source and destination regioning map one

to one.

 mov (8) r10.0:f r11.0<8;8,1>:f

Doc Ref # IHD-OS-LKF-Vol 9-4.21 343

 // not allowed, data from source is strided and requires gathering to write

to destination

 mov (8) r10.0:f r11.0<4;4,2>:f

 // not allowed, data from source is contiguous but not aligned with

destination.

 //Destination register requires scattering

 mov (8) r10.0<2>:w r11.0<8;8,1>:w

 //not allowed, data from source is contiguous but destination is not aligned

to source

 mov (8) r10.1:f r11.0<4;4,1>:f

 // allowed. Source and destination have stride but are aligned

 mov (4) r10.1:f r11.1<4;4,1>:f

▪ A scalar on 32b/64b datatype is allowed.

o Align16

• Addressmode: Direct Addressing

Register File: GRF/NULL/Immediates. No access to Accumulator.

Thread scheduling:

Threads are scheduled with the "oldest first" policy: a thread runs as long as no dependency is

encountered. When a switch is required, the oldest thread i.e., the thread which has been spawned the

first is the next to execute. After scheduling the next instruction from the currently executing thread, if

any of the four units are free, the EU tries to fill them from instructions from other threads (processed in

oldest to newest order).

An additional thread scheduling policy was introduced. This new policy issues the thread in a round

robin fashion as opposed to oldest first. It is a global selection policy meaning that all the EUs are selected

to run one policy or the other in an any given time.

Primary Usage Models

In describing the usage models of the instruction set, the following sections forward reference

terminology, syntax, and instructions described later in this specification. For clarity reasons, not all

forward references are explained at the point of reference. See the Instruction Set Summary chapter for

information about instruction fields and syntax.

AOS and SOA Data Structures

With the Align1 and Align16 access modes, the instruction set provides effective SIMD computation

whether data is arranged in array of structures (AOS) form or in structure of arrays (SOA) form. The AOS

and SOA data structures are illustrated by the examples in AOS and SOA Data Structures. The example

shows two different ways of storing four vectors in four SIMD registers. For simplicity, the data vector

and the SIMD register both have four data elements. The four data elements in a vector are denoted by

X, Y, Z, and W just as for a vertex in 3D geometry. The AOS structure stores one vector in a register and

the next vector in another register. The SOA structure stores one data element of each vector in a

344 Doc Ref # IHD-OS-LKF-Vol 9-4.21

register and the next element of each vector in the next register and so on. The two structures can be

related by a matrix transpose operation.

AOS and SOA Data Structures

3D and media applications take advantage of such broad architecture support and use both AOS and

SOA data arrangements.

• Vertices in 3D Geometry (Vertex Shader and Geometry Shader) are arranged in AOS form and use

SIMD4x2 and SIMD4 modes, respectively, as detailed below.

• Pixels in 3D Rasterization (Pixel Shader) are arranged in SOA form and use SIMD8 and SIMD16

modes as detailed below.

• Pixels in media are primarily arranged in SOA form, and occasionally in AOS form with possibly

mixed modes of operation that uses region-based addressing extensively.

These are preferred methods; alternative arrangements may also be possible. Shared function resources

provide data transpose capability to support both modes of operations: The sampler has a transpose for

sample reads, the data port has a transpose for render cache writes, and the URB unit has a transpose for

URB writes.

The following 3D graphics API Shader instruction is used in the following sections to illustrate various

operation modes:

 add dst.xyz src0.yxzw src1.zwxy

This example is a SIMD instruction that takes two source operands src0 and src1, adds them, and stores

the result to the destination operand dst. Each operand contains four floating-point data elements. The

data type is determined by the instruction opcode. This instruction also uses source swizzles (.yxzw for

src0 and .zwxy for src1) and a destination mask (.xyz). Please refer to the programming specifications of

3D graphics API Shader instructions for more details.

A general register has 256 bits, which can store 8 floating point data elements. For 3D graphics, the

mode of operation is (loosely) termed after the data structure as SIMDmxn, where m is the size of the

vector and n is the number of concurrent program flows executed in SIMD.

Execution with AOS data structures:

Doc Ref # IHD-OS-LKF-Vol 9-4.21 345

• SIMD4 (short for SIMD4x1) indicates that a SIMD instruction operates on 4-element vectors

storedin registers. There is one program flow.

• SIMD4x2 indicates that a SIMD instruction operates on a pair of 4-element vectors in registers.

There are effectively two programs running side by side with one vector per program.

Execution with SOA data structures, also referred to as “channel serial” execution, mostly uses:

• SIMD8 (short for SIMD1x8) indicates a SIMD instruction based on the SOA data structure where

one register contains one data element (the same one) for each of 8 vectors. Effectively, there are 8

concurrent program flows.

• SIMD16 (short for SIMD1x16) indicates that a SIMD instruction operates on a pair of registers that

contain one data element (the same one) for each of 16 vectors. SIMD16 has 16 concurrent

program flows.

SIMD16 Mode of Operation

With 16 concurrent program flows, one element of a vector would take two GRF registers. In this mode,

two corresponding vectors from the two program flows fill a register.

With the following register mappings,

src0:r2-r9 (with 16 X data elements in r2-r3, Y in r4-5, Z in r6-7 and W in r8-9),

src1:r10-r17,

dst:r18-r25,

the example 3D graphics API Shader instruction can be translated into the following three instructions:

add (16) r18<1>:f r4<8;8,1>:f r14<8;8,1>:f// dst.x = src0.y + src1.z

add (16) r20<1>:f r6<8;8,1>:f r16<8;8,1>:f// dst.y = src0.z + src1.w

add (16) r22<1>:f r8<8;8,1>:f r10<8;8,1>:f // dst.z = src0.w + src1.x

The three instructions correspond to the three enabled destination masks As there is no output for the W

elements of dst, no instruction is needed for that element. The first instruction inputs the Y elements of

src0 and the Z elements of src1 and outputs the X elements of dst. The operation of this instruction is

shown in SIMD16 Mode of Operation.

With more than one program flow, the above instructions are also subject to the execution mask. The 16-

bit dispatch mask is partitioned into four groups with four bits each. For Pixel Shader generated by the

Windower, each 4-bit group corresponds to a 2x2 pixel subspan. If a subspan is not valid for a Pixel

Shader instance, the corresponding 4-bit group in the dispatch mask is not set. Therefore, the same

instructions can be used independent of the number of available subspans without creating bogus data

in the subspans that are not valid.

346 Doc Ref # IHD-OS-LKF-Vol 9-4.21

A SIMD16 Example

Similar to SIMD4x2 mode, a constant may also be shared for the 16 program flows. For example, the first

source operand could be a 4-element vector (e.g. a constant) stored in doublewords 0-3 in r2 (AOS

format). The example 3D graphics API Shader instruction can then be translated into the following

instruction:

add (16) r18<1>:f r2.1<0;1,0>:f r14<8;8,1>:f {Compr}// dst.x = src0.y + src1.z

add (16) r20<1>:f r2.2<0;1,0>:f r16<8;8,1>:f {Compr}// dst.y = src0.z + src1.w

add (16) r22<1>:f r2.3<0;1,0>:f r10<8;8,1>:f {Compr}// dst.z = src0.w + src1.x

The register region of the first source operand represents a replicated scalar. The operation of the first

instruction is illustrated in SIMD16 Mode of Operation.

 Another SIMD16 Example with an AOS Shared Constant

Doc Ref # IHD-OS-LKF-Vol 9-4.21 347

SIMD8 Mode of Operation

Each compressed instruction has two corresponding native instructions. Taking the example instruction

shown in SIMD16 Mode of Operation, it is equivalent to the following two instructions.

add (8) r18<1>:f r4<8;8,1>:f r14<8;8,1>:f // dst.x[7:0] = src0.y + src1.z

add (8) r19<1>:f r5<8;8,1>:f r15<8;8,1>:f {SecHalf}

// dst.x[15:8] = src0.y + src1.z

Therefore, SIMD8 can be viewed as a special case for SIMD16.

There are other reasons that SIMD8 instructions may be used. Within a program with 16 concurrent

program flows, some time SIMD8 instruction must be used due to architecture restrictions. For example,

the address register a0 only have 8 elements, if an indirect GRF addressing is used, SIMD16 instructions

are not allowed.

Messages

Communication between the EUs and the shared functions and between the fixed function pipelines

(which are not considered part of the “Subsystem”) and the EUs is accomplished via packets of

information called messages. Message transmission is requested via the send instruction. Refer to the

send instruction definition in the ISA Reference chapter for details.

The information transmitted in a message falls into two categories:

• Message Payload.

• Associated (“sideband”) information provided by:

o Message Descriptor. Specified with the send instruction. Included in the message

descriptor is control and routing information such as the target function ID, message

payload length, response length, etc.

o Additional information provided by the send instruction, e.g., the starting destination

register number, the execution mask (EMASK), etc.

o A small subset of Thread State, such as the Thread ID, EUID, etc.

The software view of messages is shown in Data Flow Associated With Messages. There are four basic

phases to a message’s lifetime as illustrated below:

1. Creation.

2. Delivery. The thread issues the message for delivery via the send instruction. The send instruction

also specifies the destination shared function ID (SFID), and where in the GRF any response is to be

directed. The messaging subsystem enqueues the message for delivery and eventually routes the

message to the specified shared function.

3. Processing. The shared function receives the message and services it accordingly, as defined by

the shared function definition.

4. Writeback. If called for, the shared function delivers an integral number of registers of data to the

thread’s GRF in response to the message.

348 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Data Flow Associated With Messages

Message Payload Containing a Header

For most shared functions, the first register of the message payload contains the header payload of the

message (or simply the message header).

Consequently, the rest of the message payload is referred to as the data payload.

Messages to Gateway combine the header and data payloads in a single message register.

Writebacks

Some messages generate return data as dictated by the ‘function-control’ (opcode) field of the ‘send’

instruction (part of the <desc> field). The Gen4 execution unit and message passing infrastructure do not

interpret this field in any way to determine if writeback data is to be expected. Instead explicit fields in

the ‘send’ instruction to the execution unit the starting GRF register and count of returning data. The

execution unit uses this information to set in-flight bits on those registers to prevent execution of any

instruction which uses them as an operand until the register(s) is(are) eventually written in response to

the message. If a message is not expected to return data, the ‘send’ instruction’s writeback destination

specifier (<post_dest>) must be set to ‘null’ and the response length field of <desc> must be 0 (see

‘send’ instruction for more details).

The writeback data, if called for, arrives as a series of register writes to the GRF at the location specified

by the starting GRF register and length as specified in the ‘send’ instruction. As each register is written

back to the GRF, its in-flight flag is cleared and it becomes available for use as an instruction operand. If

a thread was suspended pending return of that register, the dependency is lifted and the thread is

allowed to continue execution (assuming no other dependency for that thread remains outstanding).

Doc Ref # IHD-OS-LKF-Vol 9-4.21 349

Message Delivery Ordering Rules

All messages between a thread and an individual shared function are delivered in the ordered they were

sent. Messages to different shared functions originating from a single thread may arrive at their

respective shared functions out of order.

The writebacks of various messages from the shared functions may return in any order. Further individual

destination registers resulting from a single message may return out of order, potentially allowing

execution to continue before the entire response has returned (depending on the dependency chain

inherent in the thread).

Execution Mask and Messages

The Gen4 Architecture defines an Execution Mask (EMask) for each instruction issued. This 16b bit-field

identifies which SIMD computation channels are enabled for that instruction. Since the ‘send’ instruction

is inherently scalar, the EMask is ignored as far as instruction dispatch is concerned. Further the execution

size has no impact on the size of the ‘send' instruction’s implicit move (it is always 1 register regardless of

specified execution size).

The 16b EMask is forwarded with the message to the destination shared function to indicate which SIMD

channels were enabled at the time of the ‘send’. A shared function may interpret or ignore this field as

dictated by the functionality it exposes.

The DataPort writes to the render cache ignore this field completely, instead using the pixel mask

included in-band in the message payload to indicate which channels carry valid data.

End-Of-Thread (EOT) Message

The final instruction of all threads must be a send instruction that signals ‘End-Of-Thread’ (EOT). An EOT

message is one in which the EOT bit is set in the send instruction’s 32b <desc> field. When issuing

instructions, the EU looks for an EOT message, and when issued, shuts down the thread from further

execution and considers the thread completed.

Only a subset of the shared functions can be specified as the target function of an EOT message, as

shown in the table below.

Target Shared Functions

supporting EOT messages

Target Shared Functions

not supporting EOT messages

PixelPort, URB, ThreadSpawner DataPort, Sampler

Both the fixed-functions and the thread dispatcher require EOT notification at the completion of each

thread. The thread dispatcher and fixed functions in the 3D pipeline obtain EOT notification via the target

shared functions.

The thread dispatcher, upon detecting an end-of-thread message, updates its accounting of resource

usage by that thread, and is free to issue a new thread to take the place of the ended thread. Fixed

functions require end-of-thread notification to maintain accounting as to which threads it issued have

completed and which remain outstanding, and their associated resources such as URB handles.

350 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Unlike the thread dispatcher, fixed-functions discriminate end-of-thread messages, only acting upon

those from threads which they originated, as indicated by the 4b fixed-function ID present in R0 of end-

of-thread message payload. This 4b field is attached to the thread at new-thread dispatch time and is

placed in its designated field in the R0 contents delivered to the GRF. Thus to satisfy the inclusion of the

fixed-function ID, the typical end-of-thread message generally supplies R0 from the GRF as the first

register of an end-of-thread message.

As an optimization, an end-of-thread message may be overload upon another “productive” message,

saving the cost in execution and bandwidth of a dedicated end-of-thread message. Outside of the end-

of-thread message, most threads issue a message just prior to their termination (for instance, a Pixel Port

write to the framebuffer) so the overloaded end-of-thread is the common case. The requirement is that

the message contains R0 from the GRF (to supply the fixed-function ID), and that destination shared

function be either (a) the URB; (b) the Pixel Port; or, (c) the Thread Spawner, as these functions reside on

the O-Bus. In the case where the last real message of a thread is to some other shared function, the

thread must issue a separate message for the purposes of signaling end-of-thread.

Performance

The Gen4 Architecture imposes no requirement as to a shared function’s latency or throughput. Due to

this as well as factors such as message queuing, shared bus arbitration, implementation choices in bus

bandwidth, and instantaneous demand for that function, the latency in delivering and obtaining a

response to a message is non-deterministic. It is expected that a Gen4 implementation has some notion

of fairness in transmission and servicing of messages so as to keep latency outliers to a minimum.

Other factors to consider with regard to performance:

Software prefetching techniques may be beneficial for long latency data fetches (i.e. issue a load early in

the thread for data that is required late in the thread).

Message Description Syntax

All message formats are defined in terms of DWords (32 bits). The message registers in all cases are 256

bits wide, or 8 DWords. The registers and DWords within the registers are named as follows, where n is

the register number, and d is the DWord number from 0 to 7, from the least significant DWord at bits

[31:0] within the 256-bit register to the most significant DWord at bits [255:224], respectively. For

writeback messages, the register number indicates the offset from the specified starting destination

register.

Dispatch Messages: Rn.d

Dispatch messages are sent by the fixed functions to dispatch threads. See the fixed function chapters in

the 3D and Media volume.

SEND Instruction Messages: Mn.d

These are the messages initiated by the thread via the SEND instruction to access shared functions. See

the chapters on the shared functions later in this volume.

Writeback Messages: Wn.d

Doc Ref # IHD-OS-LKF-Vol 9-4.21 351

These messages return data from the shared function to the GRF where it can be accessed by thread that

initiated the message.

The bits within each DWord are given in the second column in each table.

Message Errors

Messages are constructed via software, and not all possible bit encodings are legal, thus there is the

possibility that a message may be sent containing one or more errors in its descriptor or payload

contents. There are two points of error detection in the message passing system: (a) the message

delivery subsystem is capable of detecting bad FunctionIDs and some cases of bad message lengths; (b)

the shared functions contain various error detection mechanisms which identify bad sub-function codes,

bad message lengths, and other misc errors. The error detection capabilities are specific to each shared

function. The execution unit hardware itself does not perform message validation prior to transmission.

In both cases, information regarding the erroneous message is captured and made visible through

MMIO registers, and the driver notified via an interrupt mechanism.

The set of possible errors is listed in Error Cases with the associated outcome.

Error Cases

Error Outcome

Bad Shared Function ID The message is discarded before reaching any shared function. If the message specified a

destination, those registers will be marked as in-flight, and any future usage by the

thread of those registers will cause a dependency which will never clear, resulting in a

hung thread and eventual time-out.

Unknown opcode

Incorrect message

length

The destination shared function detects unknown opcodes (as specified in the ‘send’

instructions <desc> field), and known opcodes where the message payload is either too

long or too short, and threats these cases as errors. When detected, the shared function

latches and makes available via MMIO registers the following information: the EU and

thread ID which sent the message, the length of the message and expected response,

and any relevant portions of the first register (R0) of the message payload. The shared

function alerts the driver of an erroneous message through and interrupt mechanism

then continues normal operation with the subsequent message.

Bad message contents

in payload

Detection of bad data is an implementation decision of the shared function. Not all fields

may be checked by the shared function, so an erroneous payload may return bogus data

or no data at all. If an erroneous value is detected by the shared function, it is free to

discard the message and continue with the subsequent message. If the thread was

expecting a response, the destination registers specified in the associated ‘send’

instruction are never cleared potentially resulting in a hung thread and time-out.

Incorrect response

length
Case: too few registers specified – the thread may proceed with execution prior to all the

data returning from the shared function, resulting in the thread operating on bad data in

the GRF.

Case: too many registers specified – the message response does not clear all the registers

of the destination. In this case, if the thread references any of the residual registers, it

may hand and result in an eventual time-out.

352 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Error Outcome

Improper use of End-Of-

Thread (EOT)
Any ‘send’ instruction which specifies EOT must have a ‘null’ destination register. The EU

enforces this and, if detected, will not issue the ‘send’ instruction, resulting in a hung

thread and an eventual time-out.

The ‘send’ instruction specifies that EOT is only recognized if the <desc> field of the

instruction is an immediate. Should a thread attempt to end a thread using a <desc>

sourced from a register, the EOT bit will not be recognized. In this case, the thread will

continue to execute beyond the intended end of thread, resulting in a wide range of error

conditions.

Two outstanding

messages using

overlapping GRF

destinations ranges

This is not checked by HW. Due to varying latencies between two messages, and out-of-

order, non-contiguous writeback cycles, the outcome in the GRF is indeterminate; may be

the result from the first message, or the result from the second message, or a

combination of both.

Registers and Register Regions

Register Files

Registers are grouped into different name spaces called register files. There are two register files, the

General Register File and the Architecture Register File. A third encoding of some register file instruction

fields indicates immediate operands within instructions rather than a register file.

• General Register File (GRF): The GRF contains general-purpose read-write registers.

• Architecture Register File (ARF): The ARF contains all architectural registers defined for specific

purposes, including address registers (a#), accumulators (acc#), flags (f#), notification count (n#),

instruction pointer (ip), null register (null), etc.

• Immediate: Certain instructions can take immediate source operands. A distinct register file field

encoding indicates an immediate operand.

Each thread executed in an EU has its own thread context, a dedicated register space that is not shared

between threads, whether executing on a common EU or on a different EU. In the rest of the chapters in

this volume, register access is relative to a given thread.

GRF Registers

Number of Registers: Various

Default Value: None

Normal Access: RW

Elements: Various

Element Size: Various

Element Type: Various

Access Granularity: Byte

Doc Ref # IHD-OS-LKF-Vol 9-4.21 353

Write Mask Granularity: Byte

Indexable? Yes

Registers in the General Register File are the most commonly used read-write registers. During the

execution of a thread, GRF registers are used to store the temporary data, and serve as the destination to

receive data from shared function units (and sometimes from a fixed function unit). They are also used to

store the input (initialization) data when a thread is created. By allowing fixed function hardware to

initialize some portion of GRF registers during thread dispatch time, architecture can achieve better

parallelism. A thread’s execution efficiency can also be improved as some data are already in the register

to be executed upon. Besides these registers containing thread’s payload, the rest of GRF registers of a

thread are not initialized.

Summary of GRF Registers

Register File Register Name Description

General Register File (GRF) r# General purpose read write registers

Each execution unit has a fixed size physical GRF register RAM. The GRF register RAM is shared by all

threads on the EU. Each thread has a dedicated space of 128 register, r0 through r127.

GRF registers can be accessed using region-based addressing at byte granularity (both read and write). A

source operand must be contained within two adjacent registers. A destination operand must be

contained within one register. GRF registers support direct addressing and register-indirect addressing.

Register-indirect addressing uses the address registers (ARF registers a#) and an immediate address

offset value.

When accessing (read and/or write) outside the GRF register range allocated for a given thread either

through direct or indirect addressing, the result is unpredictable.

Register Size Allocation Granularity Number per Thread

256 bits Fixed allocation of 128 registers 128 registers

ARF Registers

ARF Registers Overview

Besides registers that are directly indicated by a unique register file coding, all other registers belong to

the Architecture Register File (ARF). Encodings of architecture register types are based on the MSBs of

the register number field, RegNum, in the instruction word. The RegNum field has 8 bits. The 4 MSBs,

RegNum[7:4], represent the architecture register type. This is summarized in the Summary of Architecture

Registers table below.

Description

GRF registers are directly indicated by a unique register file encoding.

354 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Summary of Architecture Registers

Register Type

 (RegNum [7:4]) Register Name Register Count Description

0000b null 1 Null register

0001b a0.# 1 Address register

0010b acc# 10 Accumulator register

0011b f#.# 2 Flag register

0100b ce# 1 Channel Enable register

0101b msg# 32 Message Control Register

0110b sp 1 Stack Pointer Register

0111b sr0.# 2 State register

1000b cr0.# 1 Control register

1001b n# 2 Notification Count register

1010b ip 1 Instruction Pointer register

1011b tdr 1 Thread Dependency register

1100b tm0 2 Pause register

1101b fc#.# 39 Flow Control register

1110b Reserved Reserved

Programming Note

Context: ARF Registers Overview

The remaining register number field RegNum[3:0] is used to identify the register number of a given architecture

register type. Therefore, the maximum number of registers for a given architecture register type is limited to 16. The

subregister number field, SubRegNum, in the instruction word has 5 bits. It is used to address subregister regions

for an architecture register supporting register subdivision.

The SubRegNum field is in units of bytes. Therefore, the maximum number of bytes of an architecture register is

limited to 32. Depending on the alignment restriction of a register type, only certain encodings of SubRegNum field

apply for an architecture register. The detailed definitions are provided in subsequent sections.

Programming Note

Context: ARF Registers Overview

In general an ARF register can be dst (destination) or src0 (source 0, first source operand) for an instruction.

Depending on the register and the instruction, other restrictions may apply.

Access Granularity

ARF registers may be accessed with subregister granularity according to the descriptions below and

following the same rule of region-based addressing for GRF.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 355

The machine code for register number and subregister number of ARF follows the same rule as for other

register files with byte granularity. For an ARF as a source operand, the region-based address controls

the source swizzle mux. The destination subregister number and destination horizontal stride can be

used to generate the destination write mask at byte level.

Subregister fields of an ARF register may not all be populated (indicated by the subregister being

indicated as reserved). Writes to unpopulated subregisters are dropped; there are no side effect. Reads

from unpopulated subregisters, if not specified, return unpredictable data.

Some ARF registers are read-only. Writes to read-only ARF registers are dropped and there are no side

effects.

Null Register

Null Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 0000b

Number of Registers: 1

Default Value: N/A

Normal Access: N/A

Elements: N/A

Element Size: N/A

Element Type: N/A

Access Granularity: N/A

Write Mask Granularity: N/A

SecHalf Control? N/A

Indexable? No

The null register is a special encoding for an operand that does not have a physical mapping. It is

primarily used in instructions to indicate non-existent operands. Writing to the null register has no side

effect. Reading from the null register returns an undefined result.

The null register can be used where a source operand is absent. For example, for a single source operand

instruction such as MOV or NOT, the second source operand src1 must be a null register.

When the null register is used as the destination operand of an instruction, it indicates the computed

results are not stored in any registers. However, implied writes to the accumulator register, if applicable,

may still occur for the instruction. When the conditional modifier is present, updates to the selected flag

register also occur. In this case, the register region fields of the ‘null’ operand are valid.

Another example use is to use the null register as the posted destination of a send instruction for data

write to indicate that no write completion acknowledgement is required. In this case, however, the

register region fields are still valid. The null register can also be the first source operand for a send

instruction indicating the absent of the implied move. See the send instruction for details.

356 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Address Register

Address Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 0001b

Number of Registers: 1

Default Value: None

Normal Access: RW

Elements: 16

Element Size: 16 bits

Element Type: UW or UD

Access Granularity: Word

Write Mask Granularity: Word

SecHalf Control? N/A

Indexable? No

Description

There are sixteen address subregisters forming a 16-element vector. Each address subregister contains 16 bits.

Address subregisters can be used as regular source and destination operands, as the indexing addresses for

register-indirect-addressed access of GRF registers, and also as the source of the message descriptor for the send

instruction.

Register and Subregister Numbers for Address Register

RegNum[3:0] SubRegNum[4:0]

0000b = a0

All other encodings

are reserved.

When register a0 or subregisters in a0 are used as the address register for register-indirect

addressing, the address subregisters must be accessed as unsigned word integers. Therefore,

the subregister number field must also be word-aligned.

00000b = a0.0:uw

00010b = a0.1:uw

00100b = a0.2:uw

00110b = a0.3:uw

01000b = a0.4:uw

01010b = a0.5:uw

01100b = a0.6:uw

01110b = a0.7:uw

10000b = a0.8:uw

10010b = a0.9:uw

Doc Ref # IHD-OS-LKF-Vol 9-4.21 357

RegNum[3:0] SubRegNum[4:0]

10100b = a0.10:uw

10110b = a0.11:uw

11000b = a0.12:uw

11010b = a0.13:uw

11100b = a0.14:uw

11110b = a0.15:uw

All other encodings are reserved.

However, when register a0 or subregisters in a0 are explicit source and/or destination

registers, other data types are allowed as long as the register region falls in the 128-bit range.

Address Register Fields

DWord Bits Description

7 31:16 Address subregister a0.15:uw. Follows the same format as a0.3.

15:0 Address subregister a0.14:uw. Follows the same format as a0.2.

6 31:16 Address subregister a0.13:uw. Follows the same format as a0.3.

15:0 Address subregister a0.12:uw. Follows the same format as a0.2.

5 31:16 Address subregister a0.11:uw. Follows the same format as a0.3.

15:0 Address subregister a0.10:uw. Follows the same format as a0.2.

4 31:16 Address subregister a0.9:uw. Follows the same format as a0.3.

15:0 Address subregister a0.8:uw. Follows the same format as a0.2.

3 31:16 Address subregister a0.7:uw. Follows the same format as a0.3.

15:0 Address subregister a0.6:uw. Follows the same format as a0.2.

2 31:16
Address subregister a0.5:uw. Follows the same format as a0.3.

15:0
Address subregister a0.4:uw. Follows the same format as a0.2.

1 31:16
Address subregister a0.3:uw. This field can be used for register-indirect register addressing or

serve as extended descriptor for a send instruction. When used for register-indirect register

addressing, it is a 12-bit unsigned integer. For a send instruction, it provides the higher 16 bits of

<exdesc>.

Format: U12 or U16

15:0
Address subregister a0.2:uw. This field can be used for register-indirect register addressing or

serve as extended descriptor for a send instruction. When used for register-indirect register

addressing, it is a 12-bit unsigned integer. For a send instruction, it provides the lower 16 bits of

<exdesc>.

Format: U12 or U16

358 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bits Description

0 31:16
Address subregister a0.1:uw. This field can be used for register-indirect register addressing or

serve as message descriptor or extended descriptor for a send instruction. When used for register-

indirect register addressing, it is a 12-bit unsigned integer. For a send instruction, it provides the

higher 16 bits of <desc> or <exdesc>.

Format: U12 or U16.

15:0
Address subregister a0.0:uw. This field can be used for register-indirect register addressing or

serve as message descriptor or extended descriptor for a send instruction. When used for register-

indirect register addressing, it is a 12-bit unsigned integer. For a send instruction, it provides the

lower 16 bits of <desc> or <exdesc>.

Format: U12 or U16.

When used as a source or destination operand, the address subregisters can be accessed individually or

as a group. In the following example, the first instruction moves 8 address subregisters to the first half of

GRF register r1, the second instruction replicates a0.4:uw as an unsigned word to the second half of r1,

the third instruction moves the first 4 words in r1 into the first 4 address subregisters, and the fourth

instruction replicates r1.4 as a unsigned word to the next 4 address subregisters.

 mov (8) r1.0<1>:uw a0.0<8;8,1>:uw // r1.n = a0.n for n = 0 to 7 in words

 mov (8) r1.8<1>:uw a0.4<0;1,0>:uw // r1.m = a0.4 for m = 8 to 15 in words

 mov (4) a0.0<1>:uw r1.0<4;4,1>:uw // a0.n = r1.n for n = 0 to 3 in words

 mov (4) a0.4<1>:uw r1.4<0;1,0>:uw // a0.m = r1.4 for m = 4 to 7 in words

When used as the register-indirect addressing for GRF registers, the address subregisters can be

accessed individually or as a group. When accessed as a group, the address subregisters must be group-

aligned. For example, when two address subregisters are used for register indirect addressing, they must

be aligned to even address subregisters. In the following example, the first instruction is legal. However,

the second one is not. As ExecSize = 8 and the width of src0 is 4, two address subregisters are used as

row indices, each pointing to 4 data elements spaced by HorzStride = 1 dword. For the first instruction,

the two address subregisters are a0.2:uw and a0.3:uw. The two align to a DWord group in the address

register. However, the two address subregisters for the second instruction are a0.3:uw and a0.4:uw. They

are not DWord-aligned in the address register and therefore violate the above mentioned alignment

rule.

 mov (8) r1.0<1>:d r[a0.2]<4,1>:d // a0.2 and a0.3 are used for src1

 mov (8) r1.0<1>:d r[a0.3]<4,1>:d // ILLEGAL use of register indirect

Programming Note

Context: ARF Registers

Implementation restriction: When used as the source operand <desc> for the send instruction, only the first

dword subregister of a0 register is allowed (i.e. a0.0:ud, which can be viewed as the combination of a0.0:uw and

a0.1:uw). In addition, it must be of UD type and in the following form <desc> = a0.0<0;1,0>:ud.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 359

Programming Note

Context: ARF Registers

Performance Note: There is only one scoreboard for the whole address register. When a write to some

subregisters is in flight, hardware stalls any instruction writing to other subregisters. Software may use the

destination dependency control {NoDDChk, NoDDClr} to improve performance in this case. Similarly, when a write

to some subregisters is in flight, hardware stalls any instruction sourcing other subregisters until the write retires.

Accumulator Registers

Accumulator Registers Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 0010b

Number of Registers: 10

Default Value: None

Normal Access: RW

Accumulator registers can be accessed either as explicit or implied source and/or destination registers.

To a programmer, each accumulator register may contain either 8 DWords or 16 Words of data elements.

However, as described in the Implementation Precision Restriction notes below, each data element may

have higher precision with added guard bits not indicated by the numeric data type.

Accumulator capabilities vary by data type, not just data size, as described in the Accumulator Channel

Precision table below. For example, D and F are both 32-bit data types, but differ in accumulator support.

See the Accumulator Restrictions section for information about additional general accumulator

restrictions and also accumulator restrictions for specific instructions.

Register and Subregister Numbers for Accumulator Registers

RegNum[3:0] SubRegNum[4] SubRegNum[3:0]

0000b-1001b = acc0-acc9

All other encodings are reserved.

0 : Lower half

1 : Upper half

Reserved: MBZ

• Accumulators are updated implicitly only if the AccWrCtrl bit is set in the instruction. The

Accumulator Disable bit in control register cr0.0 allows software to disable the use of AccWrCtrl for

implicit accumulator updates. The write enable in word granularity for the instruction is used to

update the accumulator. Data in disabled channels is not updated.

• When an accumulator register is an implicit source or destination operand, hardware always uses

acc0 by default and also uses acc1 if the execution size exceeds the number of elements in acc0.

When implicit access to acc1 is required, QtrCtrl is used. Note that QtrCtrl can be used only if acc1

is accessible for a given data type. If acc1 is not accessible for a given data type, QtrCtrl defaults to

acc0.

360 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Description

acc0 and acc1 are supported for half-precision (HF, Half Float) and single-precision (F, Float). Use QtrCtrl of Q2 or

Q4 to access acc1 for Float. use QtrCtrl of H2 to access acc1 for Half Float.

Examples:

 // Updates acc0 and acc1 because it is SIMD16:

 add (16) r10:f r11:f r12:f {AccWrEn}

 // Updates acc0 because it is SIMD8:

 add (8) r10:f r11:f r12:f {AccWrEn}

 // Updates acc1. Implicit access to acc1 using QtrCtrl:

 add (8) r10:f r11:f r12:f {AccWrEn, Q2}

 // Updates acc1 for Half Floats using QtrCtrl:

 add (16) r10:hf r11:hf r12:hf {AccWrEn, H2}

• It is illegal to specify different accumulator registers for source and destination operands in an

instruction (e.g. “add (8) acc1:f acc0:f”). The result of such an instruction is unpredictable.

• Accumulator registers may be accessed explicitly as src0 operands only.

• Swizzling is not allowed when an accumulator is used as an implicit source or an explicit source in

an instruction.

• Reading accumulator content with a datatype different from the previous write will result in

undeterministic values.

• Word datatype write to accumulator is not allowed when destination is odd offset strided by 2.

• For any DWord operation, including DWord multiply, accumulator can store up to 8 channels of

data, with only acc0 supported.

• When an accumulator register is an explicit destination, it follows the rules of a destination

register. If an accumulator is an explicit source operand, its register region must match that of the

destination register with the exception(s) described below.

Exceptions

When OWords of accumulators are accessed, the source and destination OWords may be different. For example,

the following instructions are allowed:

 mov (4) r10.4<1>:f acc0.0<1>:f

 add (4) r10.0<1>:f acc0.4<1>:f r11.0<1>:f

 mov (8) r10.8<1>:uw acc0.0<1>:uw

 add (8) r10.0<1>:uw acc0.8<1>:uw r11.0<1>:uw

The source and destination datatypes MUST be the same for such access of accumulator.

If destination is contained within one register, source must also be contained within one accumulator register.

Implementation Precision Restriction: As there are only 64 bits per channel in DWord mode (D and

UD), it is sufficient to store the multiplication result of two DWord operands as long as the post source

modified sources are still within 32 bits. If any one source is type UD and is negated, the negated result

becomes 33 bits. The DWord multiplication result is then 65 bits, bigger than the storage capacity of

accumulators. Consequently, the results are unpredictable.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 361

Implementation Precision Restriction: As there are only 33 bits per channel in Word mode (W and

UW), it is sufficient to store the multiplication result of two Word operands with and without source

modifier as the result is up to 33 bits. Integers are stored in accumulator in 2's complement form with bit

32 as the sign bit. As there is no guard bit left, the accumulator can only be sourced once before running

into a risk of overflowing. When overflow occurs, only modular addition can generate a correct result. But

in this case, conditional flags may be incorrect. When saturation is used, the output is unpredictable. This

is also true for other operations that may result in more than 33 bits of data. For example, adding UD

(FFFFFFFFh) with D (FFFFFFFFh) results in 1FFFFFFFEh. The sign bit is now at bit 34 and is lost when stored

in the accumulator. When it is read out later from the accumulator, it becomes a negative number as bit

32 now becomes the sign bit.

Accumulator Channel Precision

Data

Type

Accumulator

 Number

Number

of

Channels

Bits Per

Channel Description

DF acc0 4 64 When accumulator is used for Double Float, it has the exact same precision as any

GRF register.

F
acc0/acc1

8 32 When accumulator is used for Float, it has the exact same precision as any GRF

register.

HF
acc0/acc1

16 16 When accumulator is used for Half Float, it has the exact same precision as any GRF

register.

Q N/A N/A N/A Not supported data type.

D

(UD)

acc0 8 33/64
When the internal execution data type is doubleword integer, each accumulator

register contains 8 channels of (extended) doubleword integer values. The data are

always stored in accumulator in 2's complement form with 64 bits total regardless

of the source data type. This is sufficient to construct the 64-bit D or UD

multiplication results using an instruction macro sequence consisting of mul, mach,

and shr (or mov).

Writing to acc1 may corrupt this result.

W

(UW)

acc0 16 33
When the internal execution data type is word integer, each accumulator register

contains 16 channels of (extended) word integer values. The data are always stored

in accumulator in 2's complement form with 33 bits total. This supports single

instruction multiplication of two word sources in W and/or UW format.

Writing to acc1 may corrupt this result.

B (UB) N/A N/A N/A Not supported data type.

Math Macro Extended Accumulators

Special Accumulators acc2-acc9

These are accumulator registers defined for a special purpose. They are used to emulate IEEE-compliant

fdiv and sqrt macro operations. The access is different from acc0 and acc1, which are defined as full 256-

362 Doc Ref # IHD-OS-LKF-Vol 9-4.21

bit registers having 8 DWords and may be accessed explicitly or implicitly. Conversely, these math macro

extended accumulators consist of just a few bits and have very restricted access.

Example:

These registers may be accessed explicitly by a mov operation, with no source modifiers, condition modifiers, or

saturation. When accessed explicitly, the datatype must be D. On reads, the low 2 bits of each DWord are valid data.

The other bits are undefined. On writes, the low two bits are updated and other bits are dropped.

// Move 256 bits from acc8 to r10. Just low two bits of each DWord are valid:

 mov (8) r10:ud acc8:ud

 // Move 256 bits from r10 to acc8. Just low two bits of each DWord are updated:

 mov (8) acc8:ud r10:ud

• These registers are accessed directly by math macro opcodes only. Note: These macro operations

are madm and some others defined under the math opcode section. The macro descriptions also

define the restrictive implicit uses of these registers.

Description

Implicit access across accumulator registers is required for each source operand for these macro instructions. The

SubRegNum bits in the instruction are used to implicitly address the different accumulators. The noacc value is

specified when no write to accumulator is required; think of it as a null.

SpecialAcc[3:0] Encoding Accumulator Register

0000b acc2

0001b acc3

0010b acc4

0011b acc5

0100b acc6

0101b acc7

0110b acc8

0111b acc9

1000b noacc

The MSB bits [4:1] of the source SubRegNum are used to specify the SpecialAcc[3:0], similarly the destination

SubRegNum bits are used to specify SpecialAcc[3:2] with the lower bits SpecialAcc[1:0] directly specified in the

instruction.

Flag Register

Flag Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 0011b

Number of Registers: 2

Doc Ref # IHD-OS-LKF-Vol 9-4.21 363

Attribute Value

Default Value: None

Normal Access: RW

Elements: 2

Element Size: 32 bits

Element Type: UD

Access Granularity: Word

Write Mask Granularity: Word

SecHalf Control? Yes

Indexable? No

There are two flag registers, f0 and f1.

Each flag register contains two 16-bit subregisters. Each flag bit corresponds to a data channel.

Predication uses flag values to enable or disable channels. Conditional modifiers assign flag values. If an

instruction uses both predication and conditional modifiers, both features use the same flag register or

subregisters.

Flags can be split to halfs, quarters, or eighths using the QtrCtrl and NibCtrl instruction fields. Those

fields affect the selection of flags for predication and conditional modifiers, but do not affect reading or

writing flags as explicit instruction operands.

The values held in the individual bits of a flag register are the result of the most recent instruction with a

conditional modifier and specifying that flag register. For example:

 add.nz.f0.0 ...

Updates flag subregister f0.0 with the per-channel results of the not zero condition.

The flag register has per-bit write enables. When being updated as the secondary destination associated

with a conditional modifier, only the bits corresponding to the enabled channels in EMask are updated.

Other bits in the flag subregister are unchanged.

Flag registers and subregisters can also be explicit source or destination operands.

The sel instruction does not update flags.

364 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Register and Subregister Numbers for Flag Register

RegNum[3:0] SubRegNum[4:0]

0000b = f0:ud

0001b = f1:ud

Other encodings are reserved.

00000b = fn.0:uw

00010b = fn.1:uw

Other encodings are reserved.

Reference an entire flag register as f0:ud or f1:ud. Reference the flag subregisters as f0.0:uw, f0.1:uw,

f1.0:uw, and f1.1:uw.

Channel Enable Register

Channel Enable Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 0100b

Number of Registers: 1

Default Value: N/A

Normal Access: RO

Elements: 1

Element Size: 32 bits

Element Type: UD

Access Granularity: DWord

Write Mask Granularity: N/A

SecHalf Control? No

Indexable? No

Register and Subregister Numbers for Channel Enable Register

RegNum[3:0] SubRegNum[4:0]

0000b = ce

All other encodings are reserved.

00000b = ce:ud.

All other encodings are reserved.

Channel Enable Register Fields

DWord Bits Description

0 31:0
Channel Enable Register ce:ud

Format: U32

This field contains 32 bits of Channel Enables for the current instruction.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 365

Message Control Registers

Message Control Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 0101b

Number of Registers: 8

Default Value: None

Normal Access: RW

Elements: 2

Element Size: 32 bits

Element Type: UD

Access Granularity: Word

Write Mask Granularity: Word

Register and SubRegister Numbers for Message Control Registers

RegNum[3:0] SubRegNum[4:0]

0000b - 0111 = msg0 - msg7

All other encodings are reserved.

MBZ

These are specific control registers used to track messaging. These may be saved and restored by the

kernel only when a thread is in the context save/restore mode. Access of these registers otherwise, will

result in undeterministic behaviour.

Each thread has 8 registers. The granularity of access is always one full register, i.e., 256b. These registers

must be accessed with a MOV with no predication, src modifiers or conditional modifiers. They MUST be

accessed in direct addressing more only. Access mode is ignored when reading/writing these registers.

These registers must be accessed in order, i.e., reads/writes are in order from msg0 to msg7.

Programming Note

Context: Message Control Registers

Message Control Registers must never be saved or restored

Stack Pointer Register

Stack Pointer Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 0110b

Number of Registers: 1

Default Value: Provided by the Dispatcher

366 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Attribute Value

Normal Access: RW

Elements: 2

Element Size: 64 bits

Element Type: UD

Access Granularity: DWord

Write Mask Granularity: DWord

SecHalf Control No

Indexable No

The stack pointer register can be accessed as a unsigned DWord integer (or as a QWord. It consists of a

read-write register, containing the current stack pointer (sp.0), which is relative to the Generate State

Base Address, and a read-only stack limit register (sp.1). The stack pointer is inserted into the message

header when data is stored into scratch space as a stack. The stack pointer is managed by software. If the

stack pointer exceeds the limit or the space allocated, an exception is triggered. See the Stack Pointer

Exception in the Exceptions Section. Writes to the stack pointer must use the {Switch} ThreadCtrl option.

Register and Subregister Numbers for SP Register

RegNum[3:0] SubRegNum[4:0]

0000b = sp

All other encodings are reserved.

00000b = sp.0:uq.

01000b = sp.1:uq

All other encodings are reserved.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 367

SP Register Fields

DWord Bits Description

0..1 63:48 Reserved. MBZ.

47:0
sp.0. Specifies the current stack pointer. This pointer is relative to the General State Base Address.

This register is initialized at thread load to the top of the per thread Scratch Space. The register is

R/W.

sp = [scratch space pointer] + [scratch space] - 1

Alternatively, this register may be updated by Software to any flat address space. In such cases, the

stack is NOT relative to the General State Base Address. Software must ensure that the address is

exclusive for the thread.

2..3 63:48 Reserved. MBZ.

47:0
sp.1. Specifies the upper limit for the stack pointer. This pointer is relative to the General State Base

Address. This register is initialized at thread load to the limit allocated for stack in the state. See the

GPGPU Thread Payload description for details. The register is R/W.

sp_limit = [scratch space pointer] + [stack space limit]

Alternatively, this register may be updated by software, similar to the sp register. In such cases,

software is responsible for allocating the right thread stack pointer limit.

State Register

State Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 0111b

Number of Registers: 2

Default Value: Provided by the Dispatcher

Normal Access: RW

Elements: 4

Element Size: 32 bits

Element Type: UD

Access Granularity: Byte

Write Mask Granularity: N/A

SecHalf Control? No

Indexable? No

368 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Register and Subregister Numbers for State Register

RegNum[3:0] SubRegNum[4:0]

0000b = sr0

All other encodings are reserved.

Valid encoding range:

00000b – 01100b

All other encodings are reserved.

0001b = sr1

All other encodings are reserved.

Valid encoding range:

00000b

All other encodings are reserved.

State Register Fields

DWord Bits Description

0

(sr0.0:ud)

31:28 Reserved. MBZ.

27:24 FFID (Fixed Function Identifier). Specifies which fixed function unit generates the current thread.

This field is set at thread dispatch and is forwarded on the message bus for all out-going

messages from this thread.

23
Priority Class. This field, when set, indicates the thread belongs to the high priority class, which

has higher scheduling priority over any thread with this field cleared. The priority field below

determines the relative priority within the same priority class. This field is initialized by the thread

dispatcher at thread dispatch time and stays unchanged throughout the life span of the thread.

This field is forwarded on the message bus to the message bus arbiter for all out-going messages.

It serves as a priority hint for the target shared function. See the Shared Function chapters for

whether and how a shared function uses this priority hint.

0 = Low priority class.

1 = High priority class.

22:20
Priority. This field is the relative aging priority of the thread. This field indicates the ‘age’ of this

thread relative to other threads within the EU. No two threads in the same EU can have the same

priority number (independent of the priority class value). Within the same priority class, an older

thread (with a larger priority number) has higher schedule priority over a younger thread.

This field is set to zero at a thread’s dispatch.

During a thread’s run time, this field may or may not be incremented when a new thread is

dispatched to the same EU. It is only incremented when another thread’s priority number is

incremented and reaches the same value. For example, if currently there is a thread with priority 0

on an EU, then dispatching a new thread to that EU causes the old thread’s priority number to

increment to 1. However, if the active thread (assuming for simplicity that there is only one) on an

EU has a priority number 1 (or 2 or 3), then dispatching a new thread to this EU does not change

the old thread’s priority number. As threads on an EU may terminate in arbitrary order, the exact

number for a thread depends on the dynamic execution of threads.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 369

DWord Bits Description

When thread context is saved and restored after pre-emption, the Priority is not restored to the

original state. Instead the priority is initiated as if new threads were loaded.

19:15 Reserved. MBZ.

14:4
[14:12] Slice ID.

[11:9] Dual-SubSlice ID

[8] SubSlice ID.

[7:4] EUID.

3 Reserved. MBZ.

2:0 TID (The thread identifier). Specifies the thread slot that the current thread is assigned to. This

field is set at thread dispatch.

1

(sr0.1:ud)

31:22 FFTID (Fixed Function Thread ID). There is no connection between this thread ID, assigned in fixed

functions, and the TID assigned in the EUs.

21 Reserved.

20
Page Fault Status. This bit speficies if the thread has hit a page fault on a memory read, memory

write or instruction fetch operation.

The bit is cleared when the thread is restarted after a fault.

18:16 Page Fault Code. The fault code indicates the type of fault encountered.

15:7 Hardware Defined State. The byte is defined for hardware use only. The content is saved and

restored in the event of mid thread preemption.

6:0
IEEE Exception. The exception bits are sticky bits set by the opcode when one of the exception is

triggered. These bits are defined per thread and all channels update one sticky bit. These bits may

be cleared by software or on a thread load. Updates to these bits may be turned OFF by the IEEE

Exception trap enable in the CR register. When these bits are required as source of an operation,

the previous instruction must use a {Switch}. This ensures all asynchronous flag updates are

complete before using as source operand. The following table describes these bits:

Workaround: These bits will have undefined value if a previously saved GPGPU context is

restored for execution. All new contexts will have these bits initialized to zero.

Bits Definition

[6:5] Reserved

4 Inexact Exception

3 Overflow

2 Underflow

1 Divide by Zero

0 Invalid Operation

370 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bits Description

2

(sr0.2:ud)

31:0
Dispatch Mask (DMask). This 32-bit field specifies which channels are active at Dispatch time. This

field is used by hardware to initialize the mask register.

Format: U32

3

(sr0.3:ud)

31:0
Vector Mask (VMask). This 32-bit field contains, for each 4-bit group, the OR of the

corresponding 4-bit group in the dispatch mask. This field is used by hardware to initialize the

mask register.

Format: U32

0

(sr1.0:ud)

31:0 Hardware Defined State Register. The contents of these register are hardware defined and are

required only for handling page-fault. These bits are saved and restored by SIP when threads are

pre-empted. Writes to these registers must follow the sequence described in ‘send’ instruction for

the correct behavior of hardware.

1

(sr1.1:ud)

31:0 Hardware Defined State Register. Same as sr1.0

2

(sr1.2:ud)

31:0 Hardware Defined State Register. Same as sr1.0

3

(sr1.3:ud)

31:0 Hardware Defined State Register. Same as sr1.0

Implementation Restriction on Register Access: When the state register is used as a source and/or

destination, hardware does not ensure execution pipeline coherency. Software must set the thread

control field to ‘switch’ for an instruction that uses state register as an explicit operand. This is important

as the state register is an implicit source or destination for many instructions. For example, fields like IEEE

Exception may be an implicit destination updated by multiple back to back instructions. Therefore, if the

instructions updating the state register doesn’t set ‘switch’, subsequent instructions may have undefined

results.

Control Register

Control Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 1000b

Number of Registers: 1

Default Value: Provided by the Dispatcher

Normal Access: RW

Elements: 4

Element Size: 32 bits

Doc Ref # IHD-OS-LKF-Vol 9-4.21 371

Attribute Value

Element Type: UD

Access Granularity: DWord

Write Mask Granularity: DWord

SecHalf Control? No

Indexable? No

The Control register is a read-write register. It contains four 32-bit subregisters that can be accessed

individually.

Subregister cr0.0:ud contains normal operation control fields such as the floating-point mode and the

accumulator disable. It also contains the master exception status/control field that allows software to

switch back to the application thread from the System Routine.

Subregister cr0.1:ud contains the mask and status/control fields for all exceptions. The exception fields

are arranged in significance-decreasing order from MSB to LSB. This arrangement allows the System

Routine to use the lzd instruction to find the high priority exceptions and handle them first. As each

exception is mapped to a single bit, another exception priority order may be implemented by software.

The System Routine may choose to handle one exception at a time, by handling the exception detected

by an lzdinstruction and returning to the application thread. Or it may choose to handle all the

concurrent exceptions, by looping through the exception fields until all outstanding exceptions are

handled before returning back to the application thread.

Exception enable bits (bits 15:0 in cr0.1:ud) control whether an exception causes hardware to jump to the

System Routine or not. Exception status and control bits (bits 31:16 in cr0.1:ud) indicate which exceptions

have occurred, and are used by the system routine to clear the exception. Even if a given exception is

disabled, the corresponding exception status and control bit still reflects its status, whether an exception

event has occurred or not.

cr0.2:ud contains the Application IP (AIP) indicating the current thread IP when an exception occurs.

cr0.3:ud is reserved. Values written to this subregister are dropped; the result of reading from this

subregister is unpredictable.

Fields in Control registers also reference a virtual register called System IP (SIP). SIP is the virtual register

holding the global System IP, which is the initial instruction pointer for the System Routine. The SIP is a

GraphicsAddress. There is only one SIP for the whole system. It is virtual only from a thread’s point of

view, as it is not visible (i.e. not readable and not writeable) to the thread software executed on a EU. It

can only be accessed indirectly by the hardware to respond to exception events. Upon an exception,

hardware performs some bookkeeping (e.g. saving the current IP into AIP) and then jumps to SIP. Upon

finishing exception handling, the System Routine may return back to the application by clearing the

Master Exception Status and Control field in cr0, which causes the hardware to load AIP to IP register.

See the STATE_SIP command for how to set SIP.

Although the SIP may be more than 32 bits wide, the EU still only uses the low 32 bits.

372 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Register and Subregister Numbers for Control Register

RegNum[3:0] SubRegNum[4:0]

0000b = cr0

All other encodings are reserved.

00000b = cr0.0:ud. It contains general thread control fields.

00100b = cr0.1:ud. It contains exception status and control.

01000b = cr0.2:ud. It contains AIP.

All other encodings are reserved.

Control Register Fields

DWord Bits Description

0 31
Master Exception State and Control. This bit is the master state and control for all exceptions.

Reading a 0 indicates that the thread is in normal operation state and a 1 means the thread is in

exception handle state. Upon an exception event, hardware sets this bit to 1 and switches to SIP.

Writing 1 to this bit has no effect. Writing 0 to this bit also has no effect if the previous value is 0.

In both cases, the bit keeps the previous value. If the previous value of this bit is 1, software

writing a 0 causes the thread to return to AIP. This transition is automatic – software does not

have to move AIP to IP. The value of this bit then stays as 0. This bit is initialized to 0.

0 = The thread is in normal state.

1 = The thread is in exception state.

30:16 Reserved. MBZ.

14 Thread preemption disable: This field specifies whether the thread is allowed to stop in middle

on receiving mid-thread preemption request.

0 = Thread is preempted on receiving preemption indication.

1 = Thread is preempted only in case of page-fault.

13 Reserved. MBZ.

12
IEEE Float to Integer Rounding Mode. This bit determines how rounding modes are handled in

float to integer conversion operation. This bit is initialized to 0 during Thread Dispatch.

This bit must be set for IEEE compliant float to integer conversion operation.

0= The result of float to integer conversion operation is with RTZ rounding mode.

1= The result of float to integer conversion operation is with rounding mode programmed in

cr0.0[5:4].

11
IEEE MinMax. This bit determines how SNAN is handled in min/max operations. This bit is

initialized to 0 during Thread Dispatch.

This bit must be set for IEEE compliant min/max operation.

0 = The result of min/max is a non-SNAN source.

1 = The result of min/max is the SNAN source.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 373

DWord Bits Description

10
Half Precision Denorm Mode. This bit determines how denormal numbers are handled for the

HF (Half Float) type. This bit is initialized to 0 during Thread Dispatch.

0 = Flush denorms to zero when reading source operands and flush denorm calculation results to

zero. Denorm flushing preserves sign.

1 = Allow denorm source values and denorm results.

9
IEEE Exception Trap Enable. This bit enables trapping IEEE exception flags. This control bit may

updated by software. It is initially zero on thread load. If enabled, IEEE floating-point exceptions

set sticky bits in the IEEE Exceptions field of sr0.1. Note that IEEE floating-point exceptions do not

transfer control to any handler.

0 = IEEE Exception flags are NOT trapped.

1 = IEEE Exception flags are trapped.

7
Single Precision Denorm Mode. This bit determines how denormal numbers are handled for the

F (Float) type when using the IEEE floating-point mode. It is ignored in the ALT floating-point

mode, which always flushs denorms. This bit is initialized by Thread Dispatch.

0 = Flush denorms to zero when reading source operands and flush denorm calculation results to

zero. Denorm flushing preserves sign.

1 = Allow denorm source values and denorm results.

6
Double Precision Denorm Mode. This bit determines how denormal numbers are handled for

the DF (Double Float) type. It is initialized by Thread Dispatch.

0 = Flush denorms to zero when reading source operands and flush denorm calculation results to

zero. Denorm flushing preserves sign.

1 = Allow denorm source values and denorm results.

5:4
Rounding Mode. This field specifies the FPU rounding mode. It is initialized by Thread Dispatch.

00b = Round to Nearest or Even (RTNE)

01b = Round Up, toward +inf (RU)

10b = Round Down, toward -inf (RD)

11b = Round Toward Zero (RTZ)

3
Vector Mask Enable (VME). This bit indicates DMask or Vmask should be used by EU for

execution. This bit is set by the Thread Dispatch.

0: Use Dispatch Mask (DMASK)

1: Use Vector Mask (VMASK)

2
Single Program Flow (SPF). Specifies whether the thread has a single program flow (SIMDnxm

with m = 1) or multiple program flows (SIMDnxm with m > 1). This bit affects the operation of all

374 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bits Description

branch instructions. In Single Program Flow mode, all execution channels branch and/or loop

identically. This bit is initialized by the Thread Dispatch.

0: Multiple Program Flows

1: Single Program Flow

Programming Restrictions:

Only H1/Q1/N1 are allowed in SPF mode.

Power Optimization: If an entire shader does not do SIMD branching, the driver can set the SPF bit

to 1 to save power in HW.

1
Accumulator Disable. This bit controls the update of the accumulator by the instruction field

AccWrCtrl. If this bit is cleared, the accumulator is updated for all instructions with AccWrCtrl

enabled. If set, the accumulator is disabled for all update operations, maintaining its value prior to

being disabled. Setting this bit has no effect if the accumulator is the explicit destination operand

for an instruction. This bit is initialized to 0.

0: Enable accumulator update.

1: Disable accumulator update.

Usage Notes:

This control bit is primarily designed for the System Routine. That routine is not expected to use

the accumulator, though it may need to use instructions that implicitly update the accumulator. To

use such instructions in the System Routine, but still preserve the accumulator contents on

returning to the application kernel, the System Routine would either (a) save and restore the

accumulator, or (b) prevent the accumulator from being unintentionally modified. This control bit

has been added for the latter method.

Software has the option to limit the setting of this control bit to strictly within the System Routine.

If, by convention, this bit is clear within application kernels, the System Routine can simply set the

bit upon entry and clear it before returning control to the application kernel. This usage model

would not necessarily require cr0.0 to be saved/restored in the System Routine. However, if by

convention application kernels are permitted to set this bit, then the System Routine is required to

preserve the content of this bit.

0
Single Precision Floating Point Mode (FP Mode). This bit specifies whether the current single-

precision floating-point operation mode is IEEE mode (IEEE Standard 754) or the ALT (alternative

mode). This bit does not affect the floating-point mode used for other floating-point data types.

This bit is also forwarded on the message sideband for all out-going messages, for example, to

control the floating-point mode of the Sampler. Software may modify this bit to dynamically

switch between the two floating-point modes. This bit is initialized by Thread Dispatch.

0 = IEEE floating-point mode for the F (Float) type.

1 = ALT (alternative) floating-point mode for the F (Float) type.

1 30
External Halt Exception Status and Control. This bit indicates the External Halt exception. It is

set by EU hardware on receiving the broadcast External Halt signal. The System Routine should

Doc Ref # IHD-OS-LKF-Vol 9-4.21 375

DWord Bits Description

reset this bit before returning to an application routine to avoid infinite loops.

This bit may be set or cleared by software. This bit is initialized to 0.

29
Software Exception Control. This bit is the control bit for software exceptions. Setting this bit to

1 in an application routine causes an exception. Clearing this bit in an application routine has no

effect. Upon entering the system routine, the hardware maintains this bit as 1 to signify a software

exception. The System Routine should reset this bit before returning to an application routine.

This bit may be set or cleared by software. This bit is initialized to 0.

28
Illegal Opcode Exception Status. This bit, when set, indicates an illegal opcode exception. The

exception handler routine normally does not return back to the application thread upon an illegal

opcode exception. Leaving this bit set has no effect on hardware; if system software adversely

returns to an application routine leaving this bit set, it doesn’t cause any exception. This bit should

not be set by software or left set by the system routine to avoid confusion.

This bit is initialized to 0.

27
Stack Overflow Exception Status. This bit when set, indicates a stack overflow exception. The

exception handler routine normally does not return back to the application thread upon a stack

overflow exception. Leaving this bit set has no effect on hardware; if system software adversely

returns to an application routine leaving this bit set, it doesn’t cause any exception. This bit should

not be set by software or left set by the system routine to avoid confusion.

This bit is initialized to 0.

25 Context Save Status. This bit when set, indicates a Context Save process has been initiated. The

system routine must reset this bit after saving the context to terminate the thread.

24 Context Restore Status. This bit when set, indicates a Context Restore process has been initiated.

The system routine must reset this bit after restoring the context. The reset of this bit is required

before invoking application routine.

23:16 Reserved. MBZ.

13
Software Exception Enable. This bit enables or disables the software exception. Enabling or

disabling this bit may allow host software to turn on/off certain features (such as profiling) without

changing the kernel program.

This bit is initialized by the Thread Dispatcher.

Format = ENABLED:

0: Disabled

1: Enabled

12
Illegal Opcode Exception Enable. This bit specifies whether the illegal opcode exception is

enabled or not. The Illegal opcode exception includes illegal opcodes and undefined opcodes,

caused by bad programs or run-time data corruption.

This bit is initialized by the Thread Dispatcher.

376 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bits Description

Software should normally assign this bit in the interface descriptor. Even though this mechanism is

provided to disable the illegal opcode exception, it should be used with extreme caution.

Format = ENABLED:

0: Disabled

1: Enabled

11
Stack Overflow Exception Enable. This bit specifies whether the stack overflow exception is

enabled or not. The stack overflow exception includes an overflow or an underflow in the stack

space allocated for the thread.

This bit is initialized by the Thread Dispatcher.

Software should normally assign this bit in the interface descriptor.

Format = ENABLED:

0: Disabled

1: Enabled

10:0 Reserved. MBZ.

2

(cr0.2:ud)

31:3
Application IP (AIP). This is the register storing the instruction pointer before an exception is

handled. Upon an exception, hardware automatically saves the current IP into the AIP register, and

then sets the Master Exception State and Control field to 1, which forces a switch to the System

IP (SIP). The AIP register may contain either the pointer to the instruction that causes the

exception (such as breakpoint) or the one after (such as masked stack overflow/underflow

exceptions). This is shown in the following table, where IP is the instruction that generated the

exception.

Exception Type AIP Value

External Halt N/A (1)

Software Exception IP + 1

Illegal Opcode IP

(1) External Halt exception is asynchronous and not associated with an instruction.

When the System Routine changes the Master Exception State and Control field from 1 to 0,

hardware restores IP from this register. This field is writable allowing the returning IP to be altered

after an exception is handled.

2:0 Reserved. MBZ.

Programming Note

Implementation Restriction on Register Access: When the control register is used as an explicit source and/or

destination, hardware does not ensure execution pipeline coherency. Software must set the thread control field to

‘switch’ for an instruction that uses control register as an explicit operand. This is important as the control register is

Doc Ref # IHD-OS-LKF-Vol 9-4.21 377

Programming Note

an implicit source for most instructions. For example, fields like FPMode and Accumulator Disable control the

arithmetic and/or logic instructions. Therefore, if the instruction updating the control register doesn’t set ‘switch’,

subsequent instructions may have undefined results.

Notification Registers

Notification Registers Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 1001b

Number of Registers: 1

Default Value: No

Normal Access: RO (RW – Context save/restore only)

Elements: 2

Element Size: 32 bits

Element Type: UD

Access Granularity: DWord

Write Mask Granularity: DWord

SecHalf Control? No

Indexable? No

There are three notification registers (n0.0:ud, n0.1:ud, and n0.2:ud) used by the wait instruction. These

registers are read-only, except under context restore, and can be accessed in 32-bit granularity. Write

access to this register is allowed only when context is restored.

Programming Note

Context: Notification Registers - Workaround

The sub-register numbers for n0.0 and n0.2 are swapped on a write, i.e., a destination of n0.0 is required to update

n0.2 and n0.2 is required to update n0.0.

It should be noted that in the extreme case, it is possible to have more notifications to a thread than the

maximum allowed number of concurrent threads in the system. Therefore, the range of the thread-to-

thread notification count in n0, is larger than the maximum number of threads computed by EUID * TID.

There is only one bit for the host-to-thread notification count in n0.1.

When directly accessed, this register is read-only. If the value is non zero, the only way to alter the value

is to use the wait instruction to decrement the value until zero is reached. A wait instruction on a zero

notification subregister causes the thread to stall, waiting for a notification signal from outside targeting

the same subregister. See the wait instruction for details.

Implementation Restriction: The notification registers are initialized to 0 after hardware/software reset.

However, these registers are not reset at thread dispatch time.

378 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Register and Subregister Numbers for Notification Registers

RegNum[3:0] SubRegNum[4:0]

0000b = n0

All other encodings are reserved.

00000b = n0.0:ud

00100b = n0.1:ud

01000b = n0.2:ud

All other encodings are reserved.

Notification Register 0 Fields

DWord Bits Description

0 31:1 Reserved. MBZ.

0
Thread to Thread Notification Count. This register is used by the WAIT instruction for thread-to-

thread synchronization. The value read from this register specifies the outstanding notifications

received from other threads. It can be changed indirectly by using the WAIT instruction. See the

WAIT instruction for details.

Format: U1

Notification Register 1 Fields

DWord Bits Description

0 31:1 Reserved. MBZ.

0
Host to Thread Notification. This register is used by the WAIT instruction for host-to-thread

synchronization via MMIO registers.

Format: U1

Format of the Notification Register

IP Register

IP Register Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 1010b

Number of Registers: 1

Doc Ref # IHD-OS-LKF-Vol 9-4.21 379

Attribute Value

Default Value: Provided by the Dispatcher

Normal Access: RW

Elements: 1

Element Size: 32 bits

Element Type: UD

Access Granularity: DWord

Write Mask Granularity: DWord

SecHalf Control? No

Indexable? No

The ip register can be accessed as a 32-bit quantity. It is a read-write register, containing the current

instruction pointer, which is relative to the Generate State Base Address. Reading this register returns

the instruction pointer of the current instruction. The 3 LSBs are always read as zero. Writing this register

causes program flow to jump to the new address. Writes to this register should use the Switch ThreadCtrl

option. When it is written, the 3 LSBs are dropped by hardware.

Register and Subregister Numbers for IP Register

RegNum[3:0] SubRegNum[4:0]

0000b = ip

All other encodings are reserved.

00000b = ip:ud

All other encodings are reserved.

IP Register Fields

DWord Bits Subfield Description

0 31:3 Ip. Specifies the current instruction pointer. This pointer is relative to the General State Base

Address.

2:0 Reserved. MBZ.

380 Doc Ref # IHD-OS-LKF-Vol 9-4.21

TDR Registers

TDR Registers Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 1011b

Number of Registers: 1

Default Value: No

Normal Access: RO/CW

Elements: 8

Element Size: 16 bits

Element Type: UW

Access Granularity: Word

Write Mask Granularity: Word

SecHalf Control? No

Indexable? No

There are 8 thread dependency registers (tdr0.0:uw to tdr0.7:uw) used by HW for the sendc instruction.

These registers are read-only and can be accessed in 16-bit granularity.

When accessed explicitly, each thread dependency register has FFTID in the lower 10 bits, bits 10 to 14

are forced to zero by HW. Bit 15 is the valid bit, which indicate whether the current thread has a

dependency on the dependency thread stored in this thread dependency register.

The thread dependency registers are read only, the valids can only be set with a thread dispatch, and are

reset by broadcasting end of thread messages after a thread retired. The FFTID’s can only be changed

with a thread dispatch. Any write into any of the TDR registers will clear the valid bit for the particular

TDR if the write enable is true, the FFTID portion is strictly read only.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 381

Register and Subregister Numbers for TDR Registers

RegNum[3:0] SubRegNum[4:0]

1011b = tdr0

All other encodings are reserved.

00000b = tdr0.0:uw

00010b = tdr0.1:uw

00100b = tdr0.2:uw

00110b = tdr0.3:uw

01000b = tdr0.4:uw

01010b = tdr0.5:uw

01100b = tdr0.6:uw

01110b = tdr0.7:uw

All other encodings are reserved.

TDR Registers Fields

DWord Bits Description

3 31 Valid7. This field indicates whether the thread specified by FFTID7 is still in-flight.

30:26 Reserved. MBZ

25:16
FFTID7. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U10

15 Valid6. This field indicates whether the thread specified by FFTID6 is still in-flight.

14:10 Reserved. MBZ

9:0
FFTID6. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U10

2 31 Valid5. This field indicates whether the thread specified by FFTID5 is still in-flight.

30:26 Reserved. MBZ

25:16
FFTID5. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U10

15 Valid4. This field indicates whether the thread specified by FFTID4 is still in-flight.

14:10 Reserved. MBZ

9:0
FFTID4. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

382 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bits Description

Format: U10

1 31 Valid3. This field indicates whether the thread specified by FFTID3 is still in-flight.

30:26 Reserved. MBZ

25:16
FFTID3. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U10

15 Valid2. This field indicates whether the thread specified by FFTID2 is still in-flight.

14:10 Reserved. MBZ

9:0
FFTID2. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U10

0 31 Valid1. This field indicates whether the thread specified by FFTID1 is still in-flight.

30:26 Reserved. MBZ

25:16
FFTID1. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U10

15 Valid0. This field indicates whether the thread specified by FFTID0 is still in-flight.

14:10 Reserved. MBZ

9:0
FFTID0. This field is the FFTID of the third thread that the current thread depends on. It can be

changed by the end of thread broadcasting messages.

Format: U10

Doc Ref # IHD-OS-LKF-Vol 9-4.21 383

Performance Registers

Performance Registers Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 1100b

Number of Registers: 1

Default Value: 0h

Normal Access: RO/RW

Elements: 4

Elements: 5

Element Size: 32 bits

Element Type: UD

Timestamp Register

This register is a low latency timestamp source, “TM”, available as part of a thread's Architectural Register

File (ARF). This is a is free running counter, 64b in size, and exposed to the ISA as individual 32b high

‘TmHigh’ and low ‘TmLow’ unsigned integer source operands. As part of the EU's register space, access

to the timestamp has a low and deterministic latency and therefore can be used for intra-kernel high

resolution performance profiling.

The TM features provides a 1-bit indicator ‘TmEvent’ which identifies the occurrence of a time-impacting

event such as context switch or frequency change since the last time any portion of the Timestamp

register value was read by that thread. Software that uses the Timestamp capability should check this bit

to identify when a relative time calculation may be suspect. To properly use this additional information,

the instrumentation code should operate on the Timestamp register value as a whole (i.e. as an 8 dword

register) so that the 64b time and this 1b value are captured simultaneously, as opposed to 32b portions,

to eliminate the chance of missing a TmEvent that might occur between accesses to 32b portions of this

register.

Programming Note

Context: Performance Registers

The Timestamp register is saved as part of thread state on context-save, but only ‘TmEvent’ is restored (and

technically always restored to ‘1’ as a context switch had occurred).

Performance Counter Register

This is a counter intended to provide finer grained visibility into the EUs performance inside kernels. This

counter is a 32-bit free-running counter that increments if the EU flexible performance event selected for

OA counter A7 is true (please refer to OA documentation for details on how to count various EU flexible

events on OA counter A7). The pm0 count continues to increment during a thread's active/standby state

transitions as well as context switches. It is read-only and not pre- or resettable under any software

control, either kernel or driver, other than a full gfx reset.

Pause Register

384 Doc Ref # IHD-OS-LKF-Vol 9-4.21

This register provides the mechanism for a thread to pause itself from further execution for a short amount of time.

This may be useful in situations where a periodic polling operation on an external resource is required, but polling

loop time needs to be controlled to prevent excessive consumption of execution slots and resource bandwidth. To

mitigate excessive polling rates, this ‘pause’ operation can be placed in the polling loop to cap the periodic polling

at some maximum rate.

The ‘pause’ operation is invoked by the kernel itself through the writing of the Pause Register with an unsigned-

word value. The register over the course of many clocks will count down from the written value to zero, in steps of

32 decrements every 32 EU clocks (first decrement event has an uncertainty between 1 to 32 clocks). Upon reaching

0x0, the decrement stops. During the time the Pause Register is non-zero, no new instruction issue occurs; upon

reaching a 0-count, the thread once again becomes a candidate for execution. Note that any instruction or

message issued prior to the invocation of the ‘pause’ continues to execute and retire. Actual resumption of

instruction issues after the pause duration may further be delayed through normal operational policies such as

thread priority and/or outstanding register dependencies.

The value written for ‘pause’ should be considered a number of instruction issue slots (divide by 2 for SIMD-8

instruction slots, or 4 for SIMD-16 instruction slots), as opposed to some fixed time duration.

The Pause Register is reset to 0x0 when a new thread is loaded. It is also reset to 0x0 upon invocation of the System

Thread IP (SIP) and at the commencement of a context save or context restore event. The value of the register is not

saved/restored as part of context save/restore.

The actual duration of the pause is considered approximate; generally, the duration will be somewhat

longer than the value written, as the counting does don’t commence until the write to the ‘Pause’

register actually retires.

Programming Note

Context: Pause Register - Workaround

When writing to the Pause Register, Switch should be used in the instruction, to ensure that pause register is

written before trying to execute the next instruction.

Register and Subregister Numbers for Performance Register

RegNum[3:0] SubRegNum[4:0]

0000b = tm0

All other encodings are reserved.

00000b = tm0.0:ud.

00100b = tm0.1:ud.

01000b = tm0.2:ud

01100b = tm0.3:ud

10000b = tm0.4:ud

All other encodings are reserved.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 385

Performance Register Fields

DWord Bits Description

0

(tm0.0:ud)

31:0
TmLow. The lower 32b of the 64b timestamp value sourced from Cr clock. Read-only.

Format: U32

1

tm0.1:ud

31:0
TmHigh. The upper 32b of the 64b timestamp value sourced from Cr clock. Read-only.

Format: U32

2

tm0.2:ud

31:1 Reserved

0 TmEvent. Indicates a discontinuous time-impacting event (e.g. context switch, frequency change)

occurred since any portion of the Timestamp register was last read, thus making any relative

duration calculation based on this counter suspect. This bit is reset at the time a new thread is

loaded, and on each read of any portion of the ‘Timestamp’ register.

3

tm0.3

(pm0)

31:0
pm0. Increments based on the EU flexible performance event currently selected being true.

Format: U32

4

tm0.4:ud

(tp0)

31:16 Reserved

15:0
Pause Counter. The pause duration. A non-zero value written to this register causes execution of

the thread to halt for the corresponding number of clocks. Lower 5 bits are always zero and

therefore, writing value less than 64 may not result in a pause.

[15:10] – Reserved, must be written as zero; when read, returns zero.

[9:5] - Count value.

[4:0] – Reserved, must be zero.

Format: U16

Flow Control Registers

Summary

Attribute Value

ARF Register Type Encoding (RegNum[7:4]): 1101b

Number of Registers: 34

Default Value: None

Normal Access: RW*

386 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Register and Subregister Numbers for Flow Control Registers

RegNum[3:0] SubRegNum[4:0]

0000b = fc0 00000b-11111b = fc0.0–fc0.31.

0001b = fc1 00000b = fc1.0.

 All other encodings are reserved.

0010b = fc2 00000b = fc2.0.

 All other encodings are reserved.

These are special hardware registers used in handling flow control operations. These registers may be

accessed ONLY in context save/restore operation using the SIP. These registers are accessed with the

‘MOV’ opcode. Use of any other opcode or access of these registers in non-context save/restore modes

may result in undeterministic behaviour of hardware.

These registers are accessed as 256b registers. Parts of the 256b register may be redundant, depending

on the hardware implementation of each register. The fields “RegNum” and “SubRegNum” are used

together to address these registers.

Immediate

Two forms of immediate are provided as a source operand: scalar and vector.

The immediate field may be 64 bits or 32 bits. For a word, unsigned word, or half-float immediate data,

software must replicate the same 16-bit immediate value to both the lower word and the high word of

the 32-bit immediate field in an instruction. The 64-bit immediate takes up two DWords of the

instruction bit field. Hence a 64-bit immediate is supported ONLY for a MOV operation. The field is

denoted by imm32:type for 32-bit immediates and imm64:type for 64-bit immediates.

For a scalar immediate, the numeric data types supported are :uw, :w, :ud, :d, :uq, :q for integers AND :hf,

:f, :df for floats. Refer to the Instruction Machine format topics for the encoding of these immediates.

The immediate form of vector allows a constant vector to be in-lined in the instruction stream. Both

integer and float immediate vectors are supported.

An immediate integer vector is denoted by type v or uv as imm32:v or imm32:uv, where the 32-bit

immediate field is partitioned into 8 4-bit subfields. Refer to the Numeric DataType topic for description

of the packing of vector integers to a DWord.

An immediate float vector is denoted by type vf as imm32:vf, where the 32-bit immediate field is

partitioned into 4 8-bit subfields. Refer to the Numeric DataType topic for the description of the packing

of vector floats to a DWord.

When an immediate vector is used in an instruction, the destination must be 128-bit aligned with

destination horizontal stride equivalent to a word for an immediate integer vector (v) and equivalent to a

DWord for an immediate float vector (vf).

Doc Ref # IHD-OS-LKF-Vol 9-4.21 387

Region Parameters

Unlike conventional SIMD architectures where an N-bit wide SIMD instruction can only operate on N-bit

aligned SIMD data registers, a region-based register addressing scheme is employed in architecture. The

region-based register addressing capability significantly improves the SIMD computation efficiency by

providing per-instruction-based multiple data gathering from register file. This avoids instruction

overhead to perform data pack, unpack, and shuffling, which has been observed on other SIMD

architectures. One benefit of such capability is allowing various kinds of 3D Graphics API Shader compute

models to run efficiently. Another benefit is allowing high throughput of media applications, which tend

to operate on byte or word data elements.

This can be illustrated by the example shown in Conventional SIMD Instruction Sequence and SIMD

Instruction Sequence for the Same Program. As shown in Conventional SIMD Instruction Sequence, a

sequence of SIMD instruction is executed on a conventional load/store based superscalar machine with

SIMD instruction extension. The data parallelism can be achieved by first level of loop unrolling. As

shown, there is a second level of loop for the task. Before a given SIMD compute instruction, Process (i),

can proceed, there might be a load, a data rearrange, and a data unpack (and conversion) instruction to

load and prepare the input data. After the compute instruction is complete, it might also require pack,

re-arrange and store instructions, to format and save the same to memory. At the loop, other scalar

computations such as loop count and address generation may be needed. For the same program, when

the data can fit in the large GRF register file, the outer loop may be unrolled. Here one or a few block

loads (using send instruction) may be sufficient to move the working set into GRF. Then the data shuffle

can be combined with the processing operation with region-based addressing capability. Per operand

float type and mixed data type operation may also allow to combine data conditioning operations with

computing operations. These techniques in architecture help to achieve high compute efficiency and

throughput for graphics and media applications.

388 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Conventional SIMD Instruction Sequence

SIMD Instruction Sequence for the Same Program

In an instruction, each operand defines a region in the register file. A region may contain multiple data

elements. Each data element is assigned to an execution channel in the EU. The total number of data

Doc Ref # IHD-OS-LKF-Vol 9-4.21 389

elements of a region is called the size of the region, or the size of the operand. The number of execution

channels is called the execution size (ExecSize), which is specified in the instruction word. ExecSize

determines the size of region for source and destination operands in an instruction.

• For an instruction with two source operands, the sizes of the two source operands must be the

same.

• The size of a destination operand generally matches the execution size, therefore equals to the

number of source operand(s) in the same instruction.

o Exception of this rule is present for the integer reduction instructions (such as sad2 and

sada2) where the destination area is smaller than the source area.

Regions are generalized 2-dimensional (2D) arrays in row-major order. The first dimension is named

the horizontal dimension (data elements within a row) and the second dimension is termed the vertical

dimension (data elements in a column). Here, horizontal/vertical and row/column are just symbolic

notations.

When the GRF registers are viewed as a row-major 2D array of memory, such a notation normally matches well with

the geometric locations of the data elements of an operand.

However, as the register region is fully described by the parameters discussed below, the data elements

of a register region may not form a regular rectangular shape. For example, Vertical Stride parameter is

allowed to be smaller than Horizontal Stride, making the rows of a register region interleave with each

other. It should also note that the meanings of horizontal/vertical here is different than that used for the

flag control in Section Flag Register.

An example of a register region (r4.1<16;8,2>:w) with 16 elements

A 16-element register region with interleaved rows (r5.0<1;8,2>:w) shows another example where the

rows are interleaved. The region, having word data elements, starts at location r5.0:w. HorzStride, the

distance within a row, is 2 words. So the second element (channel number 1) is at location 5.2:w. And

there are 8 elements per row. VertStride, the distance between two rows, is only 1 word, which is less

390 Doc Ref # IHD-OS-LKF-Vol 9-4.21

than HorzStride. Therefore, the first element of the second row (channel number 8) is at r5.1:w, just next

to channel number 0. It is clear from the picture that the two rows are interleaved.

By varying the region parameters, reader may construct other configurations. The next section provides

more details on the region-based register addressing. However, there are restrictions imposed by

hardware implementation, which can be found in the later sections of this chapter.

A 16-element register region with interleaved rows (r5.0<1;8,2>:w)

Without considering the source channel swizzle and destination register region description, the above

row-major-order region description provides the data assignment to each execution channel. The

following pseudo code computes the addresses of data elements assigned to execution channels for a

special case when the destination register is aligned to 256-bit register boundary.

// Input: Type: ub | b | uw | w | ud | d | f | v

//RegNum: In unit of 256-bit register

//SubRegNum: In unit of data element size

//ExecSize, Width, VertStride, HorzStride: In unit of data elements

// Output: Address[0:ExecSize-1] for execution channels

int ElementSize = (Type==“b”||Type==“ub”) ? 1 : (Type==“w”|Type==“uw”) ? 2 : 4;

int Height = ExecSize / Width;

int Channel = 0;

int RowBase = RegNum«5 + SubRegNum * ElementSize;

for (int y=0; y<Height; y++) {

int Offset = RowBase;

for (int x=0; x<Width; x++) {

Address [Channel++] = Offset;

Doc Ref # IHD-OS-LKF-Vol 9-4.21 391

Offset += HorzStride*ElementSize;

}

RowBase += VertStride * ElementSize;

}

As HorzStride and VertStride are specified independently (note that VertStride might be smaller than or

equal to HorzStride), the region may take various shapes from a replicated scalar, a replicated vector, a

vector of replicated scalars, a sliding window, to a non-overlapped 2D array.

A region-based description of a destination operand can take the following simplified format

RegFile RegNum.SubRegNum<HorzStride>:type

The destination operand is only allowed to have a 1 dimensional region. The Register Region Origin and

Type are the same as for a source operand. The total number of elements is given by ExecSize. However,

only HorzStride is required to describe the 1D region, not VertStride and Width.

As a source register region may cross multiple physical GRF registers, an instruction with such source

operands may take more than two execution cycles to gather source data elements for execution. The

destination register region of a non-compressed instruction is restricted to be within a physical GRF

register. In other words, destination scatter writes over multiple registers are not supported.

Region Addressing Modes

There are two different register addressing modes: Direct register addressing and register-indirect

register addressing. Depending on the register region description, the register-indirect register

addressing mode can be further divided into three usages: 1x1 index region where only the origin of

register region is provided by the address register, Vx1 index region where the offset of each row of the

register region is provided by an address register, VxH index region where the offset of each data

element is provided by an address register.

Direct Register Addressing

In this mode, all register region parameters are specified for an operand using fields in the instruction

word.

Direct Register Addressing and Direct Register Addressing are two examples of direct register addressing.

For the example in Direct Register Addressing, all operands are 2D rectangular regions having the same

size of 16 data elements. The two source operands, Src0 and Src1, have 16 bytes. The destination

operand, Dst, has 16 words. There are 8 elements in a row for Src0 and Src1. The vertical stride of 16

bytes for Src0 and Src1 indicates that the first element and the 9’th element are 16 bytes apart in the

register file. Note that Src0 falls into the 256-bit physical GRF register starting at r1.0, but Src1 crosses the

256-bit physical GRF register boundary between r2 and r3. The numbers in the shaded regions are the

values of the data elements. Observing the upper right corners of the source/destination regions (first

data element), we have C = 3+9.

A region description example in direct register addressing

392 Doc Ref # IHD-OS-LKF-Vol 9-4.21

For the example in Direct Register Addressing, the sizes of areas of Src0 and Src1 are the same, but Src0

contains a vector of replicated scalars. With HorzStride = 0 and Width = 8, the first row of 8 elements in

Src0 is a replication of the byte at r1.14. Comparing ExecSize of 16 to Width of 8 indicates that there is a

second row of 8 elements in Src0. With VertStride = 16, the second row in Src0 is a replication of the byte

at r1.20 (20 = 14+16). Effectively, the 16 data elements of Src0 are {1,1,1,1,1,1,1,1, 4,4,4,4,4,4,4,4}.

A region description example in direct register addressing with src0 as a vector of replicated

scalars

Doc Ref # IHD-OS-LKF-Vol 9-4.21 393

Register-Indirect Register Addressing with a 1x1 Index Region

In the register-indirect register addressing mode with 1x1 index region, the region origin is provided by

the content of the address register, the rest of region parameters are provided by the fields in the

instruction word.

Register-Indirect Register Addressing with a 1x1 Index Region depicts an example for this addressing

mode. For example, the presence of a full region description <16;8,1> for Src0 indicates that only the

origin of the region is provided by the address register a0.0.

An example illustrating register-indirect register addressing mode with a 1x1 index region

Register-Indirect Register Addressing with a Vx1 Index Region

In the register-indirect register addressing mode with Vx1 index region, the horizontal dimension is

described by the fields in the instruction word and the vertical dimension is described by an address

register region. Specifically, the origin of each row of the data region is provided by the contents of an

address register region. The rows are described by the width and the horizontal stride. The first address

register is provided and the following contiguous address registers are for the following rows. The total

number of address registers used is inferred from the parameters ExecSize and Width.

Within the 16-bit address register, bits 15:5 determine RegNum and bits 4:0 determine SubRegNum.

An example is provided in Register-Indirect Register Addressing with a Vx1 Index Region. The assembly

syntax notion of a register region without vertical stride, <4,1>, corresponding to the special encoding of

vertical stride of 0xF in the instruction word, indicates the VxH or Vx1 mode of indirect register

addressing. In this case, the origin for each row of src0 is provided by the address register. As

394 Doc Ref # IHD-OS-LKF-Vol 9-4.21

ExecSize/Width = 2, there are two address registers a0.0 and a0.1, each pointing to a row of 4 data

elements.

 An example illustrating register-indirect-register addressing mode with a Vx1 index region (src0)

Register-Indirect Register Addressing with a VxH Index Region

In the register-indirect register addressing mode with VxH index region, the position of each data

element is provided by the contexts in an address register region. This mode has the identical syntax as

the Vx1 index region mode, and in fact, can be viewed as a special case of the Vx1 mode. When Width of

the region is 1, the number of address registers used equals ExecSize.

An example is provided in Register-Indirect Register Addressing with a VxH Index Region. The absent of

vertical stride in the region description <1,0> with width = 1 indicates that the origin for each row of 1

data element of Src0 is provided by the address register. As ExecSize/Width = 8, there are 8 address

registers from a0.0 to a0.7, each pointing to a single data elements.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 395

An example illustrating register-indirect register addressing mode with a VxH index region (Src0).

Access Modes

There are two basic register access modes controlled by a single bit instruction subfield called Access

Mode.

• 16-byte Aligned Access Mode (align16): In this mode, the origins of all operands (sources and

destination), whether it is by direct addressing or register-indirect addressing, are 16-byte aligned.

For example a row in the region description starts at 16-bype aligned and the width the row must

be 4 and the 4 data elements within a row must span 16-bytes. In this access mode (and with other

restrictions put forward later), full-channel swizzle for both source operands and per-channel mask

for destination operand are supported on a 4-component basis. In other words, the control and

setting of full source swizzle and destination mask are repeated for every 4 components up to total

of ExecSize channels.

o The align16 access mode can be used for AOS operations. See examples provided in the Primary

Usage Model section for SIMD4x2 and SIMD4x1 modes of operation to support 3D API Vertex

Shader and Geometric Shader execution.

• 1-byte Aligned Access Mode (align1): In this mode, the origins of all operands may be aligned to

their data type and could be 1-byte if the operand is of byte type. In this access mode, full region

396 Doc Ref # IHD-OS-LKF-Vol 9-4.21

register descriptions are supported, however, source swizzle or destination mask are not

supported.

o The align1 access mode can be used for SOA operations. See examples provided in the Primary

Usage Model section for SIMD8 and SIMD16 modes of operation to support 3D API Pixel Shader.

Many media applications also operate well in align1 access mode.

o Align16 accessmode is restricted to IEEE macro instructions only. All other non-IEEE macro

instructions must use Align1 accessmode.

Execution Data Type

The architecture carries out arithmetic and logical operations using a smaller set of data types than the

variety supported as source or destination operands. These are the execution data types. A particular

arithmetic or logical instruction has one execution data type, from those listed in the table.

Execution Data Types

Type Description

W Word. 16-bit signed integer.

D Doubleword. 32-bit signed integer.

Q Quadword. 64-bit signed integer.

F Float. 32-bit single precision floating-point number.

DF Double Float. 64-bit double precision floating-point number.

HF Half Float. 16-bit half precision floating-point number.

The following rules explain the conversion of multiple source operand types, possibly a mix of different

types, to one common execution type:

• For floating-point sources, all source operands must have the same floating-point type, with the

exceptions below:

• A two-source floating-point instruction can have Float as the src0 type and VF (Packed

Restricted Float Vector) as the immediate src1 type.

• Mixing floating-point and integer source types is not allowed. Either all source types must be one

floating-point type or all source types must be integer types.

• Unsigned integers are converted to signed integers.

• Byte (B) or Unsigned Byte (UB) values are converted to a Word or wider integer execution type.

• If source operands have different integer widths, use the widest width specified to choose the

signed integer execution type.

Note that when the execution data type is an integer type, it is always a signed integer type. For integer

execution types, extra precision is provided within the hardware, including the accumulators, so that

conversions from unsigned to signed do not affect instruction correctness.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 397

Register Region Restrictions

A register region is described as packed if its elements are adjacent in memory, with no intervening

space, no overlap, and no replicated values. If there is more than one element in a row, elements must be

adjacent. If there is more than one row, rows must be adjacent. When two registers are used, the

registers must be adjacent and both must exist.

The following register region rules apply to the implementation.

1. General Restrictions Based on Operand Types

There are these general restrictions based on operand types:

1. Where n is the largest element size in bytes for any source or destination operand type,

ExecSize * n must be <= 64.

2. When the Execution Data Type is wider than the destination data type, the destination must

be aligned as required by the wider execution data type and specify a HorzStride equal to

the ratio in sizes of the two data types. For example, a mov with a D source and B destination

must use a 4-byte aligned destination and a Dst.HorzStride of 4.

2. General Restrictions on Regioning Parameters

The mapping of data elements within the region of a source operand is in row-major order and is

determined by the region description of the source operand, the destination operand, and the

ExecSize, with these restrictions:

1. ExecSize must be greater than or equal to Width.

2. If ExecSize = Width and HorzStride ≠ 0, VertStride must be set to Width * HorzStride.

3. If ExecSize = Width and HorzStride = 0, there is no restriction on VertStride.

4. If Width = 1, HorzStride must be 0 regardless of the values of ExecSize and VertStride.

5. If ExecSize = Width = 1, both VertStride and HorzStride must be 0.

6. If VertStride = HorzStride = 0, Width must be 1 regardless of the value of ExecSize.

7. Dst.HorzStride must not be 0.

8. VertStride must be used to cross GRF register boundaries. This rule implies that elements

within a ‘Width’ cannot cross GRF boundaries.

3. Region Alignment Rules for Direct Register Addressing

1. In Direct Addressing mode, a source cannot span more than 2 adjacent GRF registers.

2. A destination cannot span more than 2 adjacent GRF registers.

3. When a source or destination spans two registers, there are restrictions that vary by project,

described in the following table. If you are viewing a version of the BSpec limited to other

particular projects, the table may appear with no data rows.

4. Special Cases for Byte Operations

1. When the destination type is byte (UB or B) only a ‘raw move’ using the mov instruction

supports a packed byte destination register region: Dst.HorzStride = 1 and Dst.DstType = (UB

or B). This packed byte destination register region is not allowed for any other instructions,

398 Doc Ref # IHD-OS-LKF-Vol 9-4.21

including a ‘raw move’ using the selinstruction, because the sel instruction is based on Word

or DWord wide execution channels.

2. There is a relaxed alignment rule for byte destinations. When the destination type is byte (UB

or B), destination data types can be aligned to either the lowest byte or the second lowest

byte of the execution channel. For example, if one of the source operands is in word mode (a

signed or unsigned word integer), the execution data type will be signed word integer. In

this case the destination data bytes can be either all in the even byte locations or all in the

odd byte locations.

This rule has two implications illustrated by this example:

 // Example:

 mov (8) r10.0<2>:b r11.0<8;8,1>:w

 mov (8) r10.1<2>:b r11.0<8;8,1>:w

 // Dst.HorzStride must be 2 in the above example so that the destination

 // subregisters are aligned to the execution data type, which is :w.

 // However, the offset may be .0 or .1.

 // This special handling applies to byte destinations ONLY.

5. Special Cases for Word Operations

There are some special cases for word operations for specific projects, described in the following

table. If you are viewing a version of the BSpec limited to other particular projects, the table may

not show and there are no special cases in this category.

There is a relaxed alignment rule for word destinations. When the destination type is word (UW, W,

HF), destination data types can be aligned to either the lowest word or the second lowest word of

the execution channel. This means the destination data words can be either all in the even word

locations or all in the odd word locations.

 // Example:

 add (8) r10.0<2>:hf r11.0<8;8,1>:f r12.0<8;8,1>:hf

 add (8) r10.1<2>:hf r11.0<8;8,1>:f r12.0<8;8,1>:hf

 // Note: The destination offset may be .0 or .1 although the destination subregister

 // is required to be aligned to execution datatype.

6. Special Requirements for Handling Double Precision Data Types

There are special requirements for handling double precision data types that vary by project,

described in the following table. If you are viewing a version of the BSpec limited to other

particular projects, the table may appear with no data rows.

Special Requirements for Handling Double Precision Data Types

Requirement

In Align16 mode, all regioning parameters must use the syntax of a pair of packed floats, including channel selects

and channel enables.

 // Example:

Doc Ref # IHD-OS-LKF-Vol 9-4.21 399

Requirement

 mov (8) r10.0.xyzw:df r11.0.xyzw:df

 // The above instruction moves four double floats. The .x picks the

 // low 32 bits and the .y picks the high 32 bits of the double float.

In Align1 mode, all regioning parameters like stride, execution size, and width are in units of element size. However

in Align16 mode, the channel selects and channel enables must always be used in pairs of packed floats, because

these parameters are defined for DWord elements ONLY.

 // Example:

 mov (4) r10.0<1>:df r11.0<4;4,1>:df

 // The above instruction moves four double floats.

ARF registers must never be used with 64b datatype or when operation is integer DWord multiply.

When source or destination datatype is 64b or operation is integer DWord multiply, DepCtrl must not be used.

7. Special Requirements for Handling Mixed Mode Float Operations

There are some special requirements for handling mixed mode float operations for specific

projects, described in the following table. If you are viewing a version of the BSpec limited to other

particular projects, the table may appear with no data rows.

Requirement

In Align16 mode, when half float and float data types are mixed between source operands OR between source and

destination operands, the register content are assumed to be packed. In such cases the execution size reflects the

number of float elements. Since a stride of 1 is assumed, source is selected in packed form and 16 bit packed data

is updated on the destination operand, if the datatype is half-float.

For Align16 mixed mode, both input and output packed f16 data must be oword aligned, no oword crossing in

packed f16.

Examples:

 Case (a)

 mad (8) r10.0.xy:hf r11.0.xxxx:f r12.xyzw:hf r13.yyyy:hf

 // The 16b of each word (r12.0, r12.1, r12.2, r12.3.. and so on) forms the source operand.

 // r13.1 and r13.5 is replicated for source operand.

 // The lower 16b of a Dword is updated for destination. With channel enables .xy , r10.0,

r10.1, r10.4 and r10.5 are updated.

 Case (b)

 mad (8) r10.0.xy:f r11.0.xxxx:f r12.xyzw:hf r13.yyyy:hf

 // The example is similar to Case(a), except that entire DWord is updated on the destination.

In Align16 mode, replicate is supported and is coissueable.

 mad(8) r20.xyzw:hf r3.0.r:f r6.0.xyzw:hf r6.0.xyzw:hf {Q1}

No SIMD16 in mixed mode when destination is packed f16 for both Align1 and Align16.

 mad(8) r3.xyzw:hf r4.xyzw:f r6.xyzw:hf r7.xyzw:hf

 add(8) r20.0<1>:hf r3<8;8,1>:f r6.0<8;8,1>:hf {Q1}

400 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Requirement

No accumulator read access for Align16 mixed float.

When source is float or half float from accumulator register and destination is half float with a stride of 1, the

source must register aligned. i.e., source must have offset zero.

No swizzle is allowed when an accumulator is used as an implicit source or an explicit source in an instruction. i.e.

when destination is half float with an implicit accumulator source, destination stride needs to be 2.

 mac(8) r3<2>:hf r4.0<8;8,1>:f r6.0<8;4,2>:hf

 mov(8) r3<1>:f acc0.0<8;4,2>:hf

In Align16, vertical stride can never be zero for f16

 add(8) r3.xyzw:hf r4.0<4>xyzw:f r6.0<0>.xyzw:hf

Math operations for mixed mode:

- In Align16, only packed format is supported

 math(8) r3.xyzw:hf r4.0.<4>xyzw:f r6.0<0>.xyzw:hf 0x09

- In Align1, f16 inputs need to be strided

 math(8) r3<1>:hf r4.0<8;8,1>:f r6.0<8;4,2>:hf

In Align1, destination stride can be smaller than execution type. When destination is stride of 1, 16 bit packed data

is updated on the destination. However, output packed f16 data must be oword aligned, no oword crossing in

packed f16.

 add(8) r3<1>:hf r4.0<8;8,1>:f r6.0<8;4,2>:hf

For mixed float operations, f16 datatype write to accumulator cannot be packed destination.

8. Regioning Rules for Register Indirect Addressing

Regioning rules for register indirect addressing vary for specific projects, described in the following

table. If you are viewing a version of the BSpec limited to other particular projects, the table may

appear with no data rows.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 401

Rules

1. When the execution size and destination regioning parameters require two adjacent registers, these registers

are accessed using one index register ONLY.

 // Example:

 mov (16) r[a0.0]:f r10:f

 // The above instruction behaves the same as the following two instructions:

 mov (8) r[a0.0]:f r10:f

 mov (8) r[a0.0, 8*4]:f r11:f

2. When the destination requires two registers and the sources are 1x1 indirect mode, the sources must be

assembled from two GRF registers accessed by a single index register. The data for each destination GRF

register is entirely derived from one source register. This is ensured by appropriate use of regioning

parameters. The exception to this is the use of indirect scalar sources, where the same element is used across

the execution size.

 // Example:

 // Case (a)

 add (16) r[a0.0]:f r[a0.2]:f r[a0.4]:f

 // The above instruction behaves the same as the following two instructions:

 add (8) r[a0.0]:f r[a0.2]:f r[a0.4]:f

 add (8) r[a0.0, 8*4]:f r[a0.2, 8*4]:f r[a0.4, 8*4]:f

 // Note that the immediate for the second instruction is based on regioning.

 // In this case, it is 8 DWs.

 // Case (b)

 add (16) r[a0.0]:ud r[a0.2]<4;8,1>:w r10<8;8,1>:ud

 // The above instruction behaves the same as the following two instructions:

 add (8) r[a0.0]:f r[a0.2]<4;8,1>:w r10<8;8,1>:ud

 add (8) r[a0.0, 8*4]:f r[a0.2, 4*2]<4;8,1>:w r11<8;8,1>:ud

 // Note that the immediate for the second instruction is based on regioning.

 // VertStride of 4 with data type of word.

 // Case (c):

 add (16) r[a0.0]:f r[a0.2]:f r[a0.4]<0;1,0>:f

 // The above instruction behaves the same as the following two instructions:

 add (8) r[a0.0]:f r[a0.2]:f r[a0.4]<0;1,0>:f

 add (8) r[a0.0, 8*4]:f r[a0.2, 8*4]:f r[a0.4]<0;1,0>:f

 // Note that the src1 indirect address does not change.

3. Indirect addressing on src1 must be a 1x1 indexed region mode.

4. When a Vx1 or a VxH addressing mode is used on src0, the destination may use one or two registers.

 // Example:

 // Case (a)

 add (16) r[a0.0]<1>:d r[a0.0]<4,1>:ud r16.0<8;8,1>:ud

 // The above instruction behaves the same as the following two instructions:

 add (8) r[a0.0]<1>:d r[a0.0]<4,1>:ud r16.0<8;8,1>:ud

 add (8) r[a0.0, 8*4]<1>:d r[a0.2]<4,1>:ud r17.0<8;8,1>:ud

 // Since the pointer (index register) is incremented every 4 elements

 // (width), the second instruction moves from a0.0 to a0.2.

 // Case (b)

 add (16) r10.0<2>:uw r[a0.0, 0]<1,0>:uw r16.0<8;8,1>:uw

 // The above instruction behaves the same as the following two instructions:

 add (8) r10.0<2>:uw r[a0.0, 0]<1,0>:uw r16.0<8;8,1>:uw

 add (8) r11.0<2>:uw r[a0.8, 0]<1,0>:uw r17.0<8;8,1>:uw

 // Since the pointer (index register) is incremented every 1 element

 // (width), the second instruction moves from a0.0 to a0.8.

402 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Rules

5. Indirect addressing on the destination must be a 1x1 indexed region mode.

Execution size of 32 is NOT supported in Vx1 or VxH modes.

1. Special Restrictions

There are some special restrictions on register region access for specific projects, described

in the following table. If you are viewing a version of the BSpec limited to other particular

projects, the table may appear with no data rows.

Restriction

All flow control (branching) instructions must use the Align1 access mode.

When using Align16 mode for conversion of data elements of different sizes, both source and destination must be

one register each.

In Align16 mode, each destination register gets all data from one source register. This means, the data for one

destination register is never scattered across two source registers.

 // Example:

 // Allowed – all sources are contained within one register.

 mul (8) r10.0:f r11.0:f r12.4<0>:f

 // NOT Allowed – src1 (r14) is scattered across two registers.

 mad (8) r10.0:f r12.0<0>:f r14.4:f r16.0:f

Conversion between Integer and HF (Half Float) must be DWord-aligned and strided by a DWord on the

destination.

 // Example:

 add (8) r10.0<2>:hf r11.0<8;8,1>:w r12.0<8;8,1>:w

 // Destination stride must be 2.

 mov (8) r10.0<2>:w r11.0<8;8,1>:hf

 // Destination stride must be 2.

The src, dst overlapping behavior with the second half src and the first half destination to the same register must

not be used with any compressed instruction.

Regioning Rules for Align1 Ternary Operations

Width is an implied regioning parameter.

1. Width is 1 when Vertical and Horizontal Strides are both zero (broadcast access).

2. Width is equal to Vertical Stride when Horizontal Stride is zero.

3. Width is equal to Vertical Stride/Horizontal Stride when both Strides are non-zero.

4. Vertical Stride must not be zero if Horizontal Stride is non-zero. This implies Vertical Stride is always greater

than Horizontal Stride.

5. For Source 2, if Horizontal Stride is non-zero, then Width is the a register's width of elements (e.g. 8 for a 32-

bit data type). Otherwise, if Horizontal Stride is 0, then so is the Vertical (and rule 1 applies). This means

Vertical Stride is always ‘Width’ * ‘Horizontal Stride’.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 403

Restriction

6. The Source 2 operand must be 64-bit aligned.

 src2 regioning removal

1. Byte datatype is not supported

2. Broadcast is supported (<0>)

3. When source 2 is not a scalar, regioning must follow these rules:

• Source 2 offset and destination offset must be aligned to the same word e.g. mad(4) e.g. r10.2<1>:hf

r20:f r21:hf r22.2<1>:hf

• Source 2 and destination strides in bytes must be same.

• In mixed mode cases, source2 stride needs to be aligned to the maximum datatype e.g. mad(4)

r10.2<1>:f r20:f r21:hf r22.2<2>:hf

Byte data type is not supported for src1 register regioning. This includes byte broadcast as well.

Destination Operand Description

Destination Region Parameters

Based on the above restrictions, a subset of register region parameters are sufficient to describe the

destination operand:

• Destination Register Origin

o Destination Register Number and Destination Subregister Number for direct register addressing

mode

o A Scalar Destination Register Index for register-indirect-register addressing mode

• Destination Register ‘Region’ – Note that destination register region does not have full region

description parameters

o Destination Horizontal Stride

SIMD Execution Control

This section of the PRM discusses SIMD execution, both with and without predication. See the subtopics

for more details.

Predication

Predication is the conditional SIMD channel selection for execution on a per instruction basis. It is an

efficient way of dynamic SIMD channel enabling without paying branch instruction overhead. When

predication is enabled for an instruction, a Predicate Mask (PMask), which contains 16-bit channel

enables, is generated internally in EU. Note that PMask is not a software visible register. It is provided

here to explain how SIMD execution control works. PMask generation is based on the Predication

404 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Control (PredCtrl) field, Predication Inversion (PredInv) field and the flag source register in the instruction

word. See Instruction Summary chapter for definition of these fields.

Predicationshows the block diagram of the hardware logic to generate PMask. PMask is generated based

on combinatory logic operation of the bits in the flag register. Instruction field PredCtrl controls the

horizontal evaluation unit and vertical evaluation unit. MUX A in the figure selects whether horizontally-

evaluated results or vertically-evaluated results are sent to the Predication Invertion unit. The PredInv

field controls the Prediction Inversion unit. Either one 16-bit flag subregister or the whole flag register

may be selected to generate the PMask depending on the predication control modes. MUX B indicates

that predication can be enabled and disabled. Predication can be grouped into the following three

categories. Predication functionality also depends on the Access Mode of the instruction.

• No predication: Of course, predication can be disabled. This is the most commonly used case.

• Predication with horizontal combination: the predicate mask is generated based on combinatory

logic operation of bits within a selected flag subregister.

• Predication with vertical combination: the predicate mask is generated based on combinatory logic

operation of bits across flag multiple subregisters.

Generation of predication mask

Doc Ref # IHD-OS-LKF-Vol 9-4.21 405

No Predication

When PredCtrl field of a given instruction is set to 0 (“no predication”), it indicates that no predication is

applied to this instruction. Effectively, the resulting PMask is all 1’s. This is shown by the 2:1 multiplexer B

controlled by the Pred Enable signal in Predication. Where predication is not enabled for an instruction,

multiplex B is selected to output 0xFF to PMask.

Predication with Horizontal Combination

Predication with horizontal combination inputs the 16 bits of a single flag subregister (f0.0:uw or f0.1:uw)

and passes them through combinatory logic of the Horizontal Evaluation unit to create PMask.

The simplest combination is 'no combination' – the same 16 bits from selected flag subregister are

output to MUX A. In this case, a bit in the selected flag subregister controls the conditional execution of

the corresponding execution channel. Let the selected flag subregister be denoted as f0.#, the following

pseudo code describes the predicate mask generation for predication with sequential flag channel

mapping.

 If (PredCtrl == “Sequential flag channel mapping”) {

 For (ch=0; ch<16; ch++)

 PMask[ch] = (PredInv == TRUE) ? ~f0.#[ch] : f0.#[ch];

 }

More complex horizontal evaluation is based on channel grouping. A group of adjacent channels (bits

from flag subregister) are evaluated together and a single bit is replicated to the group. The size of

groups is in power of 2. The supported combination depends on the Access Mode of an instruction.

In Align16 access mode, horizontal combination is based on 4-channel groups.

• Channel replication: PredCtrl of '.x', '.y', '.z' and '.w' select a single channel from each 4-channel

group and replicate it as the output for the group. For example, PredCtrl = '.x' means that channel

0 in each group is replicated.

• OR combination: PredCtrl of '.any4h' means that if any of the channel in a group is enabled,

outputs for the 4 channels in the group are all enabled.

• AND combination: PredCtrl of '.all4h' means that only when all of the channels in a group are

enabled, the output for the group is enabled.

These combinations in Align16 mode can be described by the following pseudo-code.

 If (Access Mode == Align16) {

 For (ch = 0; ch < 16; ch += 4)

 Switch (PredCtrl) {

 Case '.x': bTmp = f0.#[ch]; break;

 Case '.y': bTmp = f0.#[ch+1]; break;

 Case '.z': bTmp = f0.#[ch+2]; break;

 Case '.w': bTmp = f0.#[ch+3]; break;

 Case '.any4h': bTmp = f0.#[ch] | f0.#[ch+1] | f0.#[ch+2] | f0.#[ch+3]; break;

Case '.all4h': bTmp = f0.#[ch] & f0.#[ch+1] & f0.#[ch+2] & f0.#[ch+3]; break;

 }

 bTmp = (PredInv == TRUE) ? ~bTmp : bTmp;

 PMask[ch] = PMask[ch+1] = PMask[ch+2] = PMask[ch+3] = bTmp;

 }

 }

406 Doc Ref # IHD-OS-LKF-Vol 9-4.21

In Align1 access mode, horizontal combination is based on AND combination '.any#h' and OR

combination '.all#h' on channel groups with various sizes, where # is the number of channels in a group

ranging from 2 to 16. This is described by the following pseudo-code.

 If (Access Mode == Align1) {

 Switch (PredCtrl) {

 Case '.any2h': groupSize = 2; <op> = '|'; break; Case '.all2h':

 groupSize = 2; <op> = '&'; break;

 Case '.any4h': groupSize = 4; <op> = '|'; break; Case '.all4h':

 groupSize = 4; <op> = '&'; break;

 Case '.any8h': groupSize = 8; <op> = '|'; break; Case '.all8h':

 groupSize = 8; <op> = '&'; break;

 Case '.any16h': groupSize = 16; <op> = '|'; break; Case '.all16h':

 groupSize = 16; <op> = '&'; break; }

 For (ch = 0; ch < 16; ch += groupSize) {

 For (inc = 0, bTmp = FALSE; inc < groupSize; inc ++)

 bTmp = bTmp <op> f0.#[ch+inc];

 For (inc = 0; inc < groupSize; inc ++)

 PMask[ch+inc] = bTmp;

 }

 }

Predication with Vertical Combination

Predication with vertical combination uses both flag subregister as inputs. The AND or OR combination is

across the subregisters on a channel by channel basis. This is shown by the following pseudo-code.

 If (Access Mode == Align1) {

 For (ch = 0; ch < 16; ch ++) {

 If (PredCtrl == ‘any2v’)

 PMask[ch] = f0.0[ch] | f0.1[ch]

 Else If (PredCtrl == ‘all2v’)

 PMask[ch] = f0.0[ch] & f0.1[ch]

 }

 }

Predication with Vertical Combination

Predication with vertical combination uses both flag register as inputs. The AND or OR combination is

across the registers on a channel by channel basis. This is shown by the following pseudo-code.

 If (Access Mode == Align1) {

 For (ch = 0; ch < 32; ch ++) {

 If (PredCtrl == ‘anyv’)

 PMask[ch] = f0.0[ch] | f1.0[ch]

 Else If (PredCtrl == ‘allv’)

 PMask[ch] = f0.0[ch] & f1.0[ch]

 }

 }

End of Thread

There is no special instruction opcode (such as an END instruction) to cause the thread to terminate

execution. Instead, the end of thread is signified by a send instruction with the end-of-thread (EOT)

sideband bit set. Upon executing a send instruction with EOT set, the EU stops on the thread. Upon

observing an EOT signal on the output message bus, the Thread Dispatcher makes the thread’s resource

available. If a thread uses pre-allocated resource managed by a fixed function, such as URB handles and

Doc Ref # IHD-OS-LKF-Vol 9-4.21 407

scratch memory, some fixed function protocol also requires the thread to terminate with the message

header phase to carry the information in order for the fixed function to release the pre-allocated

resource.

EU hardware guarantees that if a terminated thread has in-flight read messages or loads at the time of

‘end’ that their writebacks will not interfere with either other threads in the system or new threads loaded

in the system in the future.

More details can be found in the send instruction description in Instruction Reference chapter.

Assigning Conditional Flags

Instructions can output two sets of conditional signals, one set from before the outputs clamping/re-

normalizing/format conversion logic, we call this the pre conditional signals. The second set is generated

from the final results after clamping and re-normalizing/format conversion logic, and we call this the

post conditional signals. The post conditional signals are used for fusing the DirectX compare instruction.

Note: The flags generated from the post conditional signals should be equivalent to the flags generated

by a separate cmp instruction after the current arithmetic instruction.

The pre conditional signals are used to generated flags for cmp/cmpn instructions only, this logically

does the compare of the two input sources. The post conditional signals are used to generated flags for

all the other arithmetic instructions, this logically does the compare of the result with zero.

cmpn with both sources as NaNs is a don't care case as this doesn't impact the MIN/MAX operations.

The pre conditional signals include the following:

• pre_sign bit: This bit reflects the sign of the computed result before going through any kind of

clamping, normalizing, or format conversion logic.

• pre_zero bit: This bit reflects whether the computed result is zero before any kind of clamping,

normalizing, or format conversion logic.

The post conditional signals include the following:

• post_sign bit: This bit reflects the sign of the final result after all the clamping, normalizing, or

format conversion logic.

• post_zero bit: This bit reflects whether the final result is zero after all the clamping, normalizing, or

format conversion logic.

• OF bit: This bit reflects whether an overflow occured in any of the computation of the current

instruction, including clamping, re-normalizing, and format conversion.

• NC bit: The NaN computed bit indicates whether the computed result is not a number. It carries

valid information for instructions operating on floating point values. For an operation on integer

operands, this bit is always 0.

• NS0 bit: The NaN Source 0 bit indicates whether src0 of an execution channel is not a number. It

carries valid information for instructions operating on floating point values. For an operation on

integer operands, this bit is always 0.

408 Doc Ref # IHD-OS-LKF-Vol 9-4.21

• NS1 bit: The NaN Source 1 bit indicates whether src1 of an execution channel is not a number. It

carries valid information for instructions operating on floating point values. For an operation on

integer operands, this bit is always 0. For an operation with one source operand, this bit is also set

to 0. This bit is only used for the comparison instruction cmpn, which is specifically provided to

emulate MIN/MAX operations. For any other instructions, this bit is undefined.

• Note that the bits generated at the output of a compute are before the .sat.

Flag Generation for cmp Instructions (The Supported Conditional Modifiers are .e, .ne, .g, .ge, .l,

and .le.)

Conditional

Modifier Meaning Resulting Flag Value (for an execution channel)

.e Equal-to
(pre_zero & ! (NS0 | NS1)). This conditional modifier tests whether the two

sources are equal.

If either source is NaN (i.e. NC is true), the flag is forced to false.

.ne Not-Equal-to
! (pre_zero & ! (NS0 | NS1)). This conditional modifier test whether the two

sources are equal. It takes exactly the reverse polarity as the modifier .e.

.g Greater-than
(! pre_sign & ! pre_zero & ! (NS0 | NS1)). This conditional modifier tests

whether src0 is greater than src1.

If either source is a NaN (i.e. NC is true), the flag is forced to false.

.ge Greater-than-or-

equal-to
((! pre_sign | pre_zero) & ! (NS0 | NS1)). This conditional modifier tests

whether src0 is greater than or equal to src1.

If either source is a NaN (i.e. NC is true), the flag is forced to false.

.l Less-than
(pre_sign & !pre_zero & ! (NS0 | NS1)). This conditional modifier tests

whether src0 is less than src1.

If either source is a NaN (i.e. NC is true), the flag is forced to false.

.le Less-than-or-

equal-to
((pre_sign | pre_zero) & ! (NS0 | NS1)). This conditional modifier tests

whether src0 is less than or equal to src1.

If either source is a NaN (i.e. NC is true), the flag is forced to false.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 409

Flag Generation for All Instructions Other than cmp/cmpn Instructions (The Supported Conditional

Modifiers are .e, .ne, .g, .ge, .l, .le, .o, and .u.)

Conditional

Modifier Meaning Resulting Flag Value (for an execution channel)

.e Equal-to
(post_zero & ! NC). This conditional modifier tests whether the result is equal to

zero.

If either source is NaN (i.e. NC is true), the flag is forced to false.

.ne Not-Equal-to
! (post_zero & ! NC). This conditional modifier test whether the result is not

equal to zero.

It takes exactly the reverse polarity as modifier .e.

.g Greater-than
(! post_sign & ! post_zero & ! NC). This conditional modifier tests whether

result is greater than zero.

If either source is a NaN (i.e. NC is true), the flag is forced to false.

.ge Greater-than-

or-equal-to
((! post_sign | post_zero) & ! NC). This conditional modifier tests whether result

is greater than or equal to zero.

If either source is a NaN (i.e. NC is true), the flag is forced to false.

.l Less-than
(post_sign & ! post_zero & ! NC). This conditional modifier tests whether result

is equal to zero.

If either source is a NaN (i.e. NC is true), the flag is forced to false.

.le Less-than-or-

equal-to
((post_sign | post_zero) & ! NC). This conditional modifier tests whether result

is equal to or less than zero.

If either source is a NaN (i.e. NC is true), the flag is forced to false.

.o Overflow
OF. This conditional modifier tests whether the computed result causes overflow

– the computed result is outside the range of the destination data type.

Note: The legacy condition modifier behavior is different from IEEE exception

Overflow flag. For inf float to int conversion, .o will set the legacy Overflow flag,

but IEEE exception Overflow flag won’t be set.

All other internal conditional signals are ignored.

.u Unordered
NC. This conditional modifier tests whether the computed result is a NaN

(unordered).

All other internal conditional signals are ignored.

410 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Destination Hazard

Architecture has built-in hardware to avoid destination hazard.

Destination Hazard stands for the risk condition when multiple operations are trying to write to the same

destination and the result of the destination may be ambiguous. This may or may not happen for two

instructions with the same destination, or with destinations that have overlapped register region,

depending on the ordering of the arrival of destination results. Let’s consider two instructions in a thread

with potential destination hazard. There may be other instruction between them as long as there is no

instruction sourcing the same destination. Using register scoreboards, hardware automatically takes care

of the destination hazard by not issuing the second instruction until the destination scoreboard is

cleared. However, for certain cases, in fact for most cases, such destination hazard indicated by the

register scoreboard is false, causing unnecessary delay of instruction issuing. This may result in lower

performance. The destination dependency control field in the instruction word {NoDDClr, NoDDChk}

allows software to selectively override such hardware destination dependency mechanism. Such

performance optimization hooks must be used with extreme caution. When it is not certain that it is a

false destination hazard, the programmer should rely on hardware to resolve the dependency.

As the destination dependency control field does not apply to send instruction, there is only one

condition that a programmer may use the {NoDDClr, NoDDChk} capability.

Instructions other than send, may use this control as long as operations that have different pipeline latencies are

not mixed. The operations that have longer latencies are:

▪ Opcodes pln, lrp, dp*.

▪ Operations involving double precision computation.

Integer DW multiplication where both source operands are DWs.

Non-present Operands

Some instructions do not have two source operands and one destination operand. If an operand is not

present for an instruction the operand field in the binary instruction must be filed with null. Otherwise,

results are unpredictable.

Specifically, for instructions with a single source, it only uses the first source operand src0. In this case,

the second source operand src1 must be set to null and also with the same type as the first source

operand src0. It is a special case when src0 is an immediate, as an immediate src0 uses DW3 of the

instruction word, which is normally used by src1. In this case, src1 must be programmed with register file

ARF and the same data type as src0.

Instruction Prefetch

Due to prefetch of the instruction stream, the EUs may attempt to access up to 8 instructions (512b)

beyond the end of the kernel program – possibly into the next memory page. Although these

instructions will not be executed, they must be accounted for the prefetch in order to avoid invalid page

access faults. GFX software is required to pad the end of all kernel programs with 512b data. A more

efficient approach would be to ensure that the page after all kernel programs is at least valid (even if

Doc Ref # IHD-OS-LKF-Vol 9-4.21 411

mapped to a dummy page). Note that the General State Access Upper Bound field of the

STATE_BASE_ADDRESS command can be used to prevent memory accesses past the end of the General

State heap (where kernel programs must reside).

ISA Introduction

This chapter contains these sections that introduce this volume.

• Introducing the Execution Unit

• EU Terms and Acronyms

• EU Changes by Processor Generation

• EU Notation

• Subsequent chapters cover:

• EU Data Types

• Execution Environment

• Exceptions

• Instruction Set Summary

• Instruction Set Reference

The EU Programming Guide provides some useful examples and information but is not a complete or

comprehensive programming guide.

Introducing the Execution Unit

This section introduces the Execution Unit (EU), a simple and capable processor within the GPU that

supports graphics processing within the graphics pipelines, can do general purpose computing (GPGPU),

and responds to exceptional conditions via the System Routine.

The EU provides parallelism at two levels: thread and data element. Multiple threads can execute on the

EU; the number executing concurrently depends on the processor and is transparent to EU code. Each

thread has its own registers (GRF and ARF, described below). Most EU instructions operate on arrays of

data elements; the number of data elements is normally the ExecSize (execution size) or number of

channels for the instruction. A channel is a logical unit of execution for data element access, masking,

and flow control within instructions. The number of channels is independent of the number of physical

ALUs or FPUs for a particular graphics processor.

EU native instructions are 128 bits (16 bytes) wide. Some combinations of instruction options can use

compact instruction formats that are 64 bits (8 bytes) wide. Identifying instructions that can be

compacted and creating the compact representations is done by software tools, including compilers and

assemblers.

Data manipulation instructions have a destination operand (dst) and one, two, or three source operands

(src0, src1, or src2). The instruction opcode determines the number of source operands. An instruction's

last source operand can be an immediate value rather than a register.

Data read or written by a thread is generally in the thread's GRF (General Register File), 128 general

registers, each 32 bytes. A data element address within the GRF is denoted by a register number (r0 to

412 Doc Ref # IHD-OS-LKF-Vol 9-4.21

r127) and a subregister number. In the instruction syntax, subregister numbers are in units of data

element size. For example, a :d (Signed Doubleword Integer) element can be in subregister 0 to 7,

corresponding to byte numbers in the instruction encoding of 0, 4, ... 28.

The EU cannot directly read or write data in system memory.

Specialized registers used to implement the ISA are in a distinct per thread Architecture Register File

(ARF). Each such register or group of related registers has its own distinct name. For example, ip is the

instruction pointer and f0 is a flags register. An ARF register can be a src0 or dst operand but not a src1

or src2 operand. There are restrictions on how particular ARF registers are accessed that should be

understood before directly reading or writing those registers. See the ARF Registers section for more

information.

The EU supports both integer and floating-point data types, as described in the Numeric Data Types

section.

For EU flow control, each channel has its own per-channel instruction pointer (PcIP[n]) and only executes

an instruction when IP == PcIP[n] and any other masks enable the channel. Most flow control

instructions use signed offsets from the current instruction address to reference their targets.

Unconditional branches are done using mov with IP as the destination. Flow control can also use SPF

(Single Program Flow) mode to execute with a single instruction pointer (IP).

The EU ISA supports predication, masking, regioning, swizzling, some type conversions, source

modification, saturation, accumulator updates, and flag updates as part of instruction execution:

• Predication creates a bit mask (PMask) to enable or disable channels for a particular instruction

execution. Pmask is derived from flag register and subregister values using boolean formulas

determined by the PredCtrl (Predicate Control) and PredInv (Predicate Inversion) instruction fields.

See the Predication section.

• Masking is the overall process of determining which channels execute for a given instruction based

on five factors:

• Number of channels (only channels in [0, ExecSize - 1] can execute)

• Execution mask (EMask)

• Whether the channel is on the instruction (if not in Single Program Flow mode and MaskCtrl

is not NoMask)

• Predicate mask (PMask)

• In Align16 mode, any enabling of channels using the Dst.ChanEn instruction field (if MaskCtrl

is not NoMask).

• Regioning specifies an array of data elements contained in one or two registers, with options for

scattering, interleaving, or repeating data elements in registers using width and stride values,

subject to significant constraints. Regioning also includes access mode (Align1 or Align16) and

addressing mode (Direct or Indirect). See the Registers and Register Regions section.

• Swizzling allows small scale reordering of data elements within groups of four at the input using

the modulo 4 channel names x, y, z, and w. For example, a swizzle of .wzyx with an ExecSize of 8

reads execution channels 0 to 7 from these input channels: 3, 2, 1, 0, 7, 6, 5, and 4. Swizzling is only

available in the Align16 access mode, described in the Execution Environment chapter.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 413

• Type Conversions do any needed conversion from source data type to execution data type and

from execution data type to destination data type. See Execution Data Type for more information.

Each instruction description indicates what combinations of data types are supported.

• Source Modification modifies a source operand just before doing the requested operation. For a

numeric operation, the choices are:

• No modification (normal).

• - indicating negation.

• (abs) indicating absolute value.

• -(abs) indicating a forced negative value.

 Source modification logically occurs after any conversion from source data type to execution data

type. Each instruction description indicates whether it supports source modification.

• Saturation clamps result values to the nearest value within a saturation range determined by the

destination type. For a floating-point type, the saturation range is [0.0, 1.0]. For an integer type, the

saturation range is the entire range for that type, for example [0, 65535] for the UW (Unsigned

Word) type. Each instruction description indicates whether it supports saturation.

• Accumulator Updates optionally update the accumulator register or registers in the ARF with

destination values as a side effect of instruction execution. The AccWrCtrl instruction field enables

accumulator updates. The Accumulator Disable flag in control register 0 (cr0) can be used to

disable accumulator updates, regardless of AccWrCtrl values; for example, this flag may be used in

the System Routine.

• Flag Updates optionally update a flags register and subregister (f0.0, f0.1, f1.0, or f1.1) with

conditional flags based on the CondModifier (Condition Modifier) instruction field. For example, a

CondModifier of .nz (not zero) assigns flag bits based on whether result elements are not zero (1)

or zero (0). Each instruction description indicates whether it supports the Condition Modifier and

any restrictions on the values supported.

The EU is not required to execute steps in its internal pipeline sequentially or in order, so long as it

produces correct results.

The assembler syntax uses spaces between operands and encloses ExecSize and any predicate in

parentheses. Instruction mnemonics, register names, conditional modifiers, predicate controls, and type

designators use lowercase. Function names used with the math instruction are UPPERCASE.

(pred) inst cmod sat (exec_size) dst src0 src1 { inst_opt, ... }

General register destination regions use the syntax rm.n<HorzStride>:type. General register directly

addressed source regions use the syntax rm.n<VertStride;Width,HorzStride>:type. You need to

understand more about register regioning to understand all of these terms.

The following example assembly language instruction adds two packed 16-element single-precision Float

arrays in r4/r5 and r2/r3 writing results to r0/r1, only on those channels enabled by the predicate in f0.0

along with any other applicable masks.

 (f0.0) add (16) r0.0<1>:f r2.0<8;8,1>:f r4.0<8;8,1>:f

414 Doc Ref # IHD-OS-LKF-Vol 9-4.21

EU Terms and Acronyms

This section provides three tables describing EU general terms and acronyms, EU data types, and EU

selected ARF registers.

EU General Terms and Acronyms

Term Description

ALT mode A floating-point execution mode that maps +/- inf to +/- fmax, +/- denorm to +/-0, and NaN to

+0 at the FPU inputs and never produces infinities, denormals, or NaN values as outputs. See IEEE

mode.

ALU Arithmetic Logic Unit. A functional block that performs integer arithmetic and logic operations, as

distinct from instruction fetch and decode, floating-point operations (see FPU), or messaging.

AOS Array Of Structures. Also see SOA.

ARF Architecture Register File, a distinct register file containing registers used to implement specific ISA

features. For example the Instruction Pointer and condition flags are in ARF registers. See GRF.

byte An 8-bit value aligned on an 8-bit boundary and the basic unit of addressing. Bits within a byte are

denoted 0 to 7 from LSB to MSB.

channel
A logical unit of SIMD data parallel execution within a thread and within the EU. The number of

physical ALUs or FPUs is not directly related to the number of channels.

Supports up to 32 channels.

compact

instruction
A 64-bit instruction encoded as described in the EU Compact Instructions section. Only some

combinations of instruction parameters can be encoded as compact instructions. See native

instruction.

compressed

instruction

An instruction that writes to two destination registers. For example a SIMD16 instruction with Float

operands can write channels 0 to 7 to one 32-byte general register and channels 8 to 15 to a

second, consecutive 32-byte general register.

denorm A very small but nonzero number in IEEE mode, with a magnitude less than the smallest normalized

floating-point number representable in a particular floating-point format. Denormals lose precision

as their values approach zero, called gradual underflow.

DWord Doubleword. A 32-bit (4-byte) value aligned on a 32-bit (4-byte) boundary. Bits within a DWord are

denoted 0 to 31 from LSB to MSB.

EOT End of Thread. A flag set on a send or sendc instruction to terminate a thread's execution on the EU.

EU Execution Unit. The single GPU unit described in this volume. This volume describes individual data

parallel execution paths within a thread in the EU as channels. A few fields, like EUID, use EU to refer

to a particular hardware resource used to implement the overall EU.

exception An error or interrupt condition that arises during execution that may transfer control to the System

Routine. Some exceptions can be disabled, preventing such transfers. As defined in this volume,

some errors do not produce exceptions.

ExecSize The number of execution channels for a particular instruction. Channels within that number are

enabled or disabled by various masks.

floating-point Numeric types that allow fractional values and often a wider range than integer types. The EU

Doc Ref # IHD-OS-LKF-Vol 9-4.21 415

Term Description

supports binary floating-point types including the single precision type and the double precision

type defined by the IEEE 754 standard.

GRF General Register File, a distinct register file containing 128 general registers, r0 to r127. Each

general register is 256 bits (32 bytes), can contain any type of data, and can be accessed with any

valid combination of addressing mode, access mode, and region parameters. A general register is

directly addressed using a register number and subregister number, or indirectly addressed using

an address subregister (index register) and an address immediate offset.

IEEE mode A floating-point execution mode that supports all the kinds of floating-point values described by

the IEEE 754 standard: normalized finite nonzero binary floating-point numbers, signed zeros,

signed infinities, signed denormals that are closer to zero than any normalized value but still

nonzero, and NaN (not a number) values. See ALT mode.

index register An address subregister when used for indirect addressing.

inf Infinity, +inf or -inf, as a floating-point value in IEEE mode.

instruction In this volume, instruction always refers to an EU instruction.

ISA Instruction Set Architecture, processor aspects visible to programs and programmers and

independent of a particular implementation, including data types, registers, memory access,

addressing modes, exceptions, instruction encodings, and the instruction set itself. An ISA does not

include instruction timing, hardware pipeline details, or the number of physical resources (ALUs,

FPUs, instruction decoders) mapped to logical constructs (threads, channels). This volume also

includes a recommended assembly language syntax, closely related to the ISA but logically distinct

from it.

LSB Least significant bit.

message A data structure transmitted from a thread to another thread, to a shared function, or to a fixed

function. Message passing is the primary communication mechanism of the architecture.

MSB Most significant bit.

NaN Not a Number. A non-numeric value allowed in the standard single precision and double precision

floating-point number formats. Quiet NaNs propagate through calculations and signaling NaNs

cause exceptions. NaNs are not used in the ALT floating-point mode.

native

instruction

A 128-bit instruction, the regular instruction format that allows all defined instruction parameters

and options. Some instructions can also be encoded using a 64-bit compact instruction format.

OWord Octword. A 128-bit (16-byte) value aligned on a 128-bit (16-byte) boundary. Bits within an OWord

are denoted 0 to 127 from LSB to MSB. This term is used rarely and may be dropped from future

versions of this volume.

packed
A register region is described as packed if its elements are adjacent in memory, with no intervening

space, no overlap, and no replicated values. If there is more than one element in a row, elements

must be adjacent. If there is more than one row, rows must be adjacent. When two registers are

used, the registers must be adjacent and both must exist.

The immediate vector data types are all described as Packed because each such type packs several

small data elements into a 32-bit immediate value.

QWord Quadword. A 64-bit (8-byte) value aligned on a 64-bit (8-byte) boundary. Bits within a QWord are

denoted 0 to 63 from LSB to MSB.

416 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Term Description

region A collection of data locations in registers and subregisters for a source or destination operand. The

associated regioning parameters allow regions to be arrays with various layouts.

register Part of the directly accessible state of an EU program, such as a general register in the GRF or an

architecture register in the ARF. Note that system memory is not directly accessible.

SIMD Single Instruction Multiple Data. Each EU instruction can operate on multiple data elements in

parallel, as specified by the instruction's ExecSize.

SIP System Instruction Pointer, the starting IP value for the System Routine.

SOA Structure of Arrays. Also see AOS.

SPF Single Program Flow. A mode in which every execution channel uses the common instruction

pointer, IP in the ip register. The SPF bit in the control register is 1 to enable SPF and 0 to disable it.

If SPF is disabled, then each execution channel n has its own instruction pointer, PcIP[n] and each

channel n is only eligible to execute, subject to other masking, when PcIP[n] == IP.

swizzle Rearrange data elements within a vector. The EU supports modulo four swizzling of register source

operands at the input in the Align16 access mode.

System

Routine

A global EU exception handling routine. Any enabled exception from any EU thread transfers

control to this routine.

thread An instance of a program executing on the EU. The life cycle for a thread on the EU starts with the

first instruction after being dispatched to the EU by the Thread Dispatcher and ends after executing

a send or sendc instruction with EOT set, signaling thread termination. Threads can be independent

or can communicate with each other via the Message Gateway shared function.

word A 16-bit (2-byte) value aligned on a 16-bit (2-byte) boundary. Bits within a word are denoted 0 to

15 from LSB to MSB. Word has denoted a 16-bit unit for Intel processors since the 8086 and 8088

processors were introduced in 1978.

The next table lists all EU numeric data types. See the Numeric Data Types section for more information

about each data type.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 417

EU Numeric Data Types (Listed Alphabetically by Short Name)

Short

Name

Assembler

 Syntax

Long

 Name

Size

in

Bytes

Size

in

 Bits

Integral

 or

Float Description

B :b Signed Byte Integer 1 8 I Signed integer in the range -128 to 127.

D :d Signed Doubleword

Integer

4 32 I Signed integer in the range -231 to 231 - 1.

DF :df Double Float 8 64 F Double precision floating-point number.

F :f Float 4 32 F Single precision floating-point number.

HF :hf Half Float 2 16 F Half precision floating-point number.

Q :q Signed Quadword

Integer

8 64 I Signed integer in the range -263 to 263 - 1.

UB :ub Unsigned Byte Integer 1 8 I Unsigned integer in the range 0 to 255.

UD :ud Unsigned Doubleword

Integer

4 32 I Unsigned integer in the range 0 to 232 - 1.

UQ :uq Unsigned Quadword

Integer

8 64 I Unsigned integer in the range 0 to 264 - 1.

UV :uv Packed Unsigned Half

Byte Integer Vector

4 32 I Eight 4-bit unsigned integer values each in

the range 0 to 15. Only used as an immediate

value.

UW :uw Unsigned Word Integer 2 16 I Unsigned integer in the range 0 to 65,535.

V :v Packed Signed Half

Byte Integer Vector

4 32 I Eight 4-bit signed integer values each in the

range -8 to 7. Only used as an immediate

value.

VF :vf Packed Restricted Float

Vector

4 32 F Four 8-bit restricted float values. Only used

as an immediate value.

W :w Signed Word Integer 2 16 I Signed integer in the range -32,768 to

32,767.

The next table lists the seven ARF registers that you should understand first, omitting several others. See

the ARF Registers section for more information, including descriptions of additional registers not listed

below.

418 Doc Ref # IHD-OS-LKF-Vol 9-4.21

EU Selected ARF Registers (Listed Alphabetically by Name)

Name

Assembler

Syntax Description

Accumulators acc0, acc1
Data registers that can hold integer or floating-point values of various sizes. Many

instructions can implicitly update accumulators with a copy of destination values,

done by setting the AccWrCtrl instruction option. A few instructions, like mac

(Multiply Accumulate), use the accumulators as an implicit source operand, useful for

some iterative calculations.

There are added accumulator registers acc2 to acc9 for special purposes; these added

accumulators are not generally used.

Address

Register

a0.s
Holds subregisters primarily used for indirect addressing. Each subregister is a 16-bit

UW (Unsigned Word) value. For an indirectly addressed operand or element, the

subregister value plus an AddrImm signed offset field determines the byte address

(RegNum and SubRegNum) within the register file (GRF).

There are 16 address subregisters.

Control

Register

cr0.s Contains bit fields for floating-point modes, flow control modes, and exception

enable/disable. Also contains exception indicator flags and saves the AIP (Application

Instruction Pointer) on transferring control to the System Routine to handle an

exception.

Flags fr.s Used as the outputs for various channel conditional signals, such as equality/zero or

overflow. Used as the inputs for predication. There are two 32-bit flags registers each

containing two 16-bit subregisters.

Instruction

Pointer

 (IP)

ip
References the current instruction in memory, as an unsigned offset from the General

State Base Address. IP is the thread's overall instruction pointer. Each channel n can

have its own instruction pointer (PcIP[n]). If not in Single Program Flow mode (SPF is

0) then only those channels where PcIP[n] == IP are eligible to execute the

instruction, if enabled by all other applicable masks.

Null Register null
Indicates a non-existent operand. Unused operands in the instruction format, like the

unused second source operand field in a mov instruction, are encoded as null.

For present source operands, reading a null source operand returns undefined values.

For null destination operands, results are discarded but any implicit updates to

accumulators or flags still occur.

State Register sr0.s Contains thread identification and scheduling fields, and mask fields for enabling or

disabling channels.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 419

Execution Units (EUs)

Each EU is a vector machine capable of performing a given operation on as many as 16 pieces of data of

the same type in parallel (though not necessarily on the same instant in time). In addition, each EU can

support a number of execution contexts called threads that are used to avoid stalling the EU during a

high-latency operation (external to the EU) by providing an opportunity for the EU to switch to a

completely different workload with minimal latency while waiting for the high-latency operation to

complete.

For example, if a program executing on an EU requires a texture read by the sampling engine, the EU

may not necessarily idle while the data is fetched from memory, arranged, filtered and returned to the

EU. Instead the EU will likely switch execution to another (unrelated) thread associated with that EU. If

that thread encounters a stall, the EU may switch to yet another thread and so on. Once the Sampler

result arrives back at the EU, the EU can switch back to the original thread and use the returned data as it

continues execution of that thread.

The fact that there are multiple EU cores each with multiple threads can generally be ignored by

software. There are some exceptions to this rule: e.g., for:

• thread-to-thread communication (see Message Gateway, Media)

• synchronization of thread output to memory buffers (see Geometry Shader)

In contrast, the internal SIMD aspects of the EU are very much exposed to software.

This volume will not deal with the details of the EUs.

EU Changes by Processor Generation

This section describes how the EU changes for particular processor generations. Instruction compaction

tables can differ for each generation, so that is not mentioned in these lists. Particular readers and

audiences can see only certain content in this section. Workarounds for particular generations, SKUs, or

steppings are not included in these lists. Some small changes in instruction layouts are not included in

these lists.

Description

These features or behaviors are added:

• The maximum ExecSize increases to 32, for byte or word operands.

• Increase the number of flag registers from one to two.

• Add the NibCtrl field, used with QtrCtrl to select groups of channels or flags.

• Add the DF (Double Float) data type, the first time an 8-byte data type is supported. DF only supports the

IEEE floating-point mode and not the ALT floating-point mode.

• Add a shared source data type field and a destination data type field for instructions with three source

operands, allowing F (Float), DF (Double Float), D (Signed Doubleword Integer), or UD (Unsigned

Doubleword Integer) types to be specified.

• Add bit manipulation instructions: bfi1, bfi2, bfrev, cbit, fbh, and fbl.

• Add the integer addc (Add with Carry) and subb (Subtract with Borrow) instructions.

420 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Description

• Add the brc (Branch Converging) and brd (Branch Diverging) instructions.

• For the cmp and cmpn instructions, relax the accumulator restrictions.

• For the sel instruction, remove the accumulator restriction.

• Add the Rounding Mode and Double Precision Denorm Mode fields in Control Register 0.

• DF (Double Float) operands use an element size of 8. Regioning and channel parameters for the DF type are

determined normally, in the same way as for other types.

• Add the channel enable register, flow control registers, and stack pointer register in the ARF.

• In the Control Register, add the Force Exception Status and Control, Context Save Status, and Context

Restore Status bits.

• Relative instruction offsets (JIP, UIP) are now 32-bit values in units of bytes (rather than 16-bit values using 8-

byte units) for some instructions: brc, brd, call, and jmpi.

• A call instruction can get the relative instruction offset (JIP) from a register.

• Add the calla (Call Absolute) instruction.

• A mov instruction with different source and destination types can now use conditional modifiers.

• Add the HF (Half Float) type and a corresponding HF execution data type and execution path.

• Add flags to indicate IEEE floating-point exceptions and to enable or disable exception reporting to those

flags.

• Add the Single Precision Denorm Mode bit in Control Register 0. It can be enabled to allow calculations

using the F (Float) type in IEEE floating-point mode to support denormals and gradual underflow.

• Add the Q (Signed Quadword Integer) and UQ (Unsigned Quadword Integer) types. Integer source types

cannot mix 64-bit and 8-bit operands. Some integer instructions (e.g., avg) do not support Q or UQ source

types.

• Instructions with one source operand and a 64-bit source type can have immediate 64-bit source operands.

• The JIP and UIP relative instruction offset fields in all remaining flow control instructions (those instructions

that did not make this change) are 32-bit values in units of bytes (rather than 16-bit values using 8-byte

units).

• The instruction layout is noticeably different. The SrcType and DstType instruction fields are widened to allow

for more type encodings as three types are added. The AddrSubRegNum instruction field is widened to

allow for 16 address subregisters rather than 8. The layout now supports 64-bit immediate source operands

for one-source instructions and 32-bit relative instruction offset fields for flow control instructions.

• In the 3-source instruction format, widen the SrcType and DstType fields and add an encoding for the HF

(Half Float) type.

• Add a compact instruction format for 3-source instructions.

• Use a different source modifier interpretation for logical (and, not, or, xor) instructions.

• An accumulator source operand for a logical instruction can now have a source modifier.

• Add eight address subregisters, increasing the number of address subregisters from 8 to 16.

• For the brc and brd instructions do not allow the Switch instruction option.

• For the cmp and cmpn instructions, remove the accumulator restrictions.

• Add the goto instruction, reusing the opcode for the discontinued fork instruction.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 421

Description

• Add the join instruction.

• For the lzd instruction, remove the accumulator restriction.

• The mach instruction reverses the roles of the two source operands compared to previous generations.

• Add the madm instruction.

• Enhance the math instruction to allow some immediate source values and support the INVM and RSQRTM

functions.

• For the mul instruction, relax the accumulator restriction on source operands so it applies for only integer

source operands.

• For the rounding instructions (rndd, rnde, rndu, and rndz), remove the accumulator restrictions.

• Revise the shl and shr instructions to use the low 6 bits of the shift count in QWord mode, versus the low 5

bits otherwise.

• Add the smov instruction.

• Add eight accumulator registers, acc2 to acc9, used only for the special purpose of emulating IEEE-compliant

fdiv and sqrt operations.

• Add message control registers.

• Widen the sp (Stack Pointer) register to 64 bits.

• Add the IEEE Exception, Page Fault Status, and Page Fault Code bit fields in the State Register.

• Remove some regioning restrictions when operands span two registers.

• Add the Half Precision Denorm Mode bit in the Control Register. It can be enabled to allow calculations

using the HF (Half Float) type to support denormals and gradual underflow.

• Restrict Align 16 access mode only to IEEE macros

• Remove the Align 16 access mode

422 Doc Ref # IHD-OS-LKF-Vol 9-4.21

EU Notation

The Courier New font is used for code examples and for the Syntax, Format, and Pseudocode sections in

the instruction reference.

The italic font style is used for instruction mnemonics outside of code (e.g., the send instruction), for

syntactic production names, for key values in algorithms (ExecSize), and to emphasize a word or phrase.

For example: When bit 10 is set, the destination register scoreboard is not cleared.

The bold font weight is used for the short name and long name of a bit field being described, for value

names being defined, for syntactic terminals, for unnumbered subheadings, and for the terms Note or

Workaround used to introduce a paragraph.

Bit field names and value names used where not being defined and not as syntactic terminals are in plain

text.

Bit field values in hex use the 0x prefix. The BSpec currently uses the 0x prefix for hex in some parts and

the h suffix for hex in other parts. For single bits, values appear as simply 0 or 1. For multi-bit binary

values, the appropriate number of binary digits appears with a b suffix.

Instruction mnemonics are lowercase. Function names invoked using the math instruction are

UPPERCASE. For example, SQRT.

Tables describing bit field layouts or registers proceed from most significant to least significant bits.

Figures showing bit fields or registers show most significant bits on the left and least significant bits on

the right.

Any bit, field, or register described as Reserved should be regarded as undefined and unpredictable.

Such bits should be treated as follows:

• When testing values, do not depend on the state of reserved bits. Mask out or otherwise ignore

such bits.

• Sometimes software must initialize reserved bits. For example, a compiler must write complete

instruction values when creating an instruction stream, including reserved bits. In such cases, write

reserved bits as zeros unless otherwise indicated.

• Do not use reserved bits as extra storage for software-defined values; put nothing in such bits.

• When saving state and restoring state, save and restore any reserved bits as well.

• Do not assume that reserved bits are invariant between explicit writes. Software should function

even if reserved bits change in undefined and unpredictable ways.

Any value, encoding, or combination of values or encodings described as Reserved must not be used.

The EU's behavior is undefined in this case.

When a combination of instruction parameters or an EU state is described as producing undefined

results or behavior, do not assume that undefined results or behavior are confined to specific

instructions, operands, registers, or channels.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 423

Execution Environment

EU Data Types

Fundamental Data Types

Numeric Data Types

Floating Point Modes

o IEEE Floating Point Mode

o Partial Listing of Honored IEEE 754 Rules

o Complete Listing of Deviations or Additional Requirements vs IEEE 754

o Min/Max of Floating Point Numbers

o Alternative Floating Point Mode

Floating-Point Support

o IEEE Floating-Point Exceptions

o Floating-Point Compare Operations

Type Conversion

Fundamental Data Types

The fundamental data types in the architecture are halfbyte, byte, word, doubleword (DW), quadword

(QW), double quadword (DQ) and quad quadword (QQ). They are defined based on the number of bits

of the data type, ranging from 4 bits to 256 bits. As shown in the figure below, a halfbyte contains 4 bits,

a byte contains 8 bits, a word contains two bytes, a doubleword (DWord) contains two words, and so on.

Halfbyte is a special data type that is not accessed directly as a standalone data element; it is only

allowed as a subfield of the numeric data type of “packed signed halfbyte integer vector” described in

the next section.

424 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Fundamental Data Types

With the exception of halfbyte, the access of a data element to/from a register or to/from memory must

be aligned on the natural boundaries of the data type. The natural boundary for a word has an even-

numbered address in units of bytes. The natural boundary for a doubleword has an address divisible by 4

bytes. Similarly, the natural boundary for a quadword, double quadword, and quad quadword has an

address divisible by 8, 16, and 32 bytes, respectively. Double quadword, and quad quadword do not have

corresponding numeric data types. Instead, they are used to describe a group (a vector) of numeric data

elements of smaller size aligned to larger natural boundaries.

Numeric Data Types

The numeric data types defined in the architecture include signed and unsigned integers and floating-

point numbers (floats) of various sizes. These numeric data types are described below.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 425

Integer Numeric Data Types

The Execution Unit supports the following integer data types. Signed integer types use two's

complement representation for negative numbers.

UB: Unsigned Byte, 8-bit Unsigned Integer

7 0

B: Byte, 8-bit Signed Integer

7 6 0

S

UW: Unsigned Word, 16-bit Unsigned Integer

1

 5 0

W: Word, 16-bit Signed Integer

1

 5

1

 4 0

S

UD: Unsigned Doubleword, 32-bit Unsigned Integer

3

 1 0

D: Doubleword, 32-bit Signed Integer

3

 1

3

 0 0

S

UQ: Unsigned Quadword, 64-bit Unsigned Integer

6

 3 0

426 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Q: Quadword, 64-bit Signed Integer

6

 3

6

 2 0

S

UV: Packed Unsigned Half-Byte Integer Vector, 8 x 4-Bit Unsigned Integer

3

 1

2

 8

2

 7

2

 4

2

 3

2

 0

1

 9

1

 6

1

 5

1

 2

1

 1 8 7 4 3 0

V: Packed Signed Half-Byte Integer Vector, 8 x 4-Bit Signed Integer

3

 1

2

 8

2

 7

2

 4

2

 3

2

 0

1

 9

1

 6

1

 5

1

 2

1

 1 8 7 4 3 0

S S S S S S S S

The following table summarizes the EU integer data types.

Execution Unit Integer Data Types

Notation Size in Bits Name Range

UB 8 Unsigned Byte Integer [0, 255]

B 8 Signed Byte Integer [-128, 127]

UW 16 Unsigned Word Integer [0, 65535]

W 16 Signed Word Integer [-32768, 32767]

UD 32 Unsigned Doubleword Integer [0, 232 – 1]

D 32 Signed Doubleword Integer [–231, 231 – 1]

UQ 64 Unsigned Quadword Integer [0, 264 – 1]

Q 64 Signed Quadword Integer [–263, 263 – 1]

UV 32 Packed Unsigned Half-Byte

 Integer Vector

[0, 15] in each of eight 4-bit immediate vector elements.

V 32 Packed Signed Half-Byte

 Integer Vector

[-8, 7] in each of eight 4-bit immediate vector elements.

Restriction: Only a raw move using the mov instruction supports a packed byte destination register

region. For information about raw moves, refer to the Description in mov – Move.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 427

Floating-Point Numeric Data Types

The Execution Unit supports the following floating-point data types.

Type or Description

The Float type uses the single precision format specified in IEEE Standard 754-1985 for Binary Floating-Point

Arithmetic.

The Double Float type uses the double precision format specified in IEEE Standard 754-1985 for Binary Floating-

Point Arithmetic.

In the ALT floating-point mode, representations for infinities, denorms, and NaNs within those formats are not

used.

The EU does not support the double extended precision (80-bit) floating-point format found in the x86/x87/Intel 64

floating-point registers.

All floating-point formats are signed using signed magnitude representation (a distinct sign bit, separate from the

magnitude information).

The Half Float type uses the binary16 format specified in IEEE Standard 754-2008.

The F (Float) type supports both the ALT and IEEE floating-point modes, controlled by the Single Precision Floating-

Point Mode bit in the Control Register.

Whether IEEE mode F calculations support denorms or flush denormalized values to zero is controlled by the Single

Precision Denorm Mode bit in the Control Register.

The DF (Double Float) type only supports the IEEE floating-point mode. Whether DF calculations support denorms

or flush denormalized values to zero is controlled by the Double Precision Denorm Mode bit in the Control

Register.

The HF (Half Float) type only supports the IEEE floating-point mode.

Whether HF calculations support denorms or flush denormalized values to zero is controlled by the Half Precision

Denorm Mode bit.

The Native Float type will be used only to emulate plane macro with high precision intermediate storage in

accumulator.

HF: Half Float, 16-bit Half-Precision Floating-Point Number

1

 5

1

 4

1

 0 9 0

S biased exp. fraction

F: Float, 32-bit Single-Precision Floating-Point Number

3

 1

3

 0

2

 3

2

 2 0

S biased exponent fraction

428 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DF: Double Float, 64-bit Double-Precision Floating-Point Number

6

 3

6

 2

5

 2

5

 1 0

S biased exponent fraction

NF: Native Float, 66-bit Native-Precision Floating-Point Number

66 65 56 55 0

S biased exponent fraction

VF: Packed Restricted Float Vector, 4 x 8-Bit Restricted Precision Floating-Point Number

3

 1

3

 0

2

 8

2

 7

2

 4

2

 3

2

 2

2

 0

1

 9

1

 6

1

 5

1

 4

1

 2

1

 1 8 7 6 4 3 0

S b. exp. frac. S b. exp. frac. S b. exp. frac. S b. exp. frac.

The following table summarizes the EU floating-point data types.

Execution Unit Floating-Point Data Types

Notation

Size in

Bits Name Range

HF 16 Half Float
Half precision, 1 sign bit, 5 bits for the biased exponent, and 10 bits for the

significand:

[–(2–2-10)31…–2-40, 0.0, 2-40… (2–2-10)31]

F 32 Float
Single precision, 1 sign bit, 8 bits for the biased exponent, and 23 bits for

the significand:

[–(2–2-23)127…–2-149, 0.0, 2-149… (2–2-23)127]

DF 64 Double Float
Double precision, 1 sign bit, 11 bits for the biased exponent, and 52 bits for

the significand:

[–(2–2-52)1023…–2-1074, 0.0, 2-1074… (2–2-52)1023]

NF 67 Native Float
Native float precision, 1 sign bit, 10 bit for biased exponent, and 56 bits for

the significant:

[–(2–2-56)511...–2-566, 0.0, 2-566...(2–2-56)511]

VF 32 Packed

Restricted

 Float Vector

Restricted precision. Each of four 8-bit immediate vector elements has 1

sign bit,

 3 bits for the biased exponent (bias of 3), and 4 bits for the significand:

[–31… –0.1328125, -0, 0, 0.1328125 … 31]

Doc Ref # IHD-OS-LKF-Vol 9-4.21 429

Packed Signed Half-Byte Integer Vector

A packed signed halfbyte integer vector consists of 8 signed halfbyte integers contained in a

doubleword. Each signed halfbyte integer element has a range from -8 to 7 with the sign on bit 3. This

numeric data type is only used by an immediate source operand of doubleword in an instruction. It

cannot be used for the destination operand or a non-immediate source operand. hardware converts the

vector into an 8-element signed word vector by sign extension. This is illustrated in Converting a packed

half-byte vector to a 128-bit signed integer vector.

The short hand format notation for a packed signed half-byte vector is V.

Converting a Packed Half-Byte Vector to a 128-bit Signed Integer Vector

430 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Packed UnSigned Half-Byte Integer Vector

A packed unsigned halfbyte integer vector consists of 8 unsigned halfbyte integers contained in a

doubleword. Each unsigned halfbyte integer element has a range from 0 to 15. This numeric data type is

only used by an immediate source operand of doubleword in an instruction. It cannot be used for the

destination operand or a non-immediate source operand. Hardware converts the vector into an 8-

element signed word vector.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 431

Packed Restricted Float Vector

A packed restricted float vector consists of 4 8-bit restricted floats contained in a doubleword. Each

restricted float has the sign at bit 7, a 3-bit coded exponent in bits 4 to 6, a 4-bit fraction in bits 0 to 3,

and an implied integer 1. The exponent is in excess-3 format – having a bias of 3. Restricted float

provides zero, positive/negative normalized numbers with a small range (3-bit exponent) and small

precision (4-bit fraction). This numeric data type is only used by an immediate source operand of

doubleword in an instruction. It cannot be used for the destination operand, or a non-immediate source

operand.

The following figure shows how to convert an 8-bit restricted float into a single precision float.

Converting a 3-bit exponent with a bias of 3 to an 8-bit exponent with a bias of 127 is by adding 4, or

equivalently copying bit 2 to bit 7 and putting the inverted bit 2 to bits 6:2. A special logic is also needed

to take care of positive/negative zeros.

Conversion from a Restricted 8-bit Float to a Single-Precision Float

The following table shows all possible numbers of the restricted 8-bit float. Only normalized float

numbers can be represented, including positive and negative zero, and positive and negative finite

numbers. Normalized infinites, NaN, and denormalized float numbers cannot be represented by this

type. It should be noted that this 8-bit floating point format does not follow IEEE-754 convention in

describing numbers with small magnitudes. Specifically, when the exponent field is zero and the fraction

field is not zero, an implied one is still present instead of taking a denormalized form (without an implied

one). This results in a simple implementation but with a smaller dynamic range – the magnitude of the

smallest non-zero number is 0.1328125.

Examples of Restricted 8-bit Float Numbers

Class Hex #

Sign

[7]

Exponent

[6:4]

Fraction

[3:0]

Extended

 8-bit

Exponent

Floating Number

 in Decimal

432 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Class Hex #

Sign

[7]

Exponent

[6:4]

Fraction

[3:0]

Extended

 8-bit

Exponent

Floating Number

 in Decimal

Positive Normalized

Float

0x70-

0x7F

0 111 0000 … 1111 1000 0011 16 … 31

0x60-

0x6F

0 110 0000 … 1111 1000 0010 8 … 15.5

0x50-

0x5F

0 101 0000 … 1111 1000 0001 4 … 7.75

0x40-

0x4F

0 100 0000 … 1111 1000 0000 2 … 3.875

0x30-

0x3F

0 011 0000 … 1111 0111 1111 1 … 1.9375

0x20-

0x2F

0 010 0000 … 1111 0111 1110 0.5 … 0.96875

0x10-

0x1F

0 001 0000 … 1111 0111 1101 0.25 … 0.484375

0x01-

0x0F

0 000 0001 … 1111 0111 1100 0.1328125 …

0.2421875

0x00 0 000 0000 0000 0000 0 (+zero)

Negative Normalized

Float

0xF0-0xFF 1 111 0000 … 1111 1000 0011 -16 … -31

0xE0-

0xEF

1 110 0000 … 1111 1000 0010 -8 … -15.5

0xD0-

0xDF

1 101 0000 … 1111 1000 0001 -4 … -7.75

0xC0-

0xCF

1 100 0000 … 1111 1000 0000 -2 … -3.875

0xB0-

0xBF

1 011 0000 … 1111 0111 1111 -1 … -1.9375

0xA0-

0xAF

1 010 0000 … 1111 0111 1110 -0.5 … -0.96875

0x90-

0x9F

1 001 0000 … 1111 0111 1101 -0.25 … -0.484375

0x81-

0x8F

1 000 0001 … 1111 0111 1100 -0.1328125 … -

0.2421875

0x80 1 000 0000 0000 0000 -0 (-zero)

The following figure shows the conversion of a packed exponent-only float to a 4-element vector of

single precision floats.

The shorthand format notation for a packed signed half-byte vector is VF.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 433

Floating Point Modes

Architecture supports two floating point operation modes, namely IEEE floating point mode (IEEE mode)

and alternative floating point mode (ALT mode). Both modes follow mostly the requirements in IEEE-754

but with different deviations. The deviations will be described in details in later sections. The primary

difference between these modes is on the handling of Infs, NaNs and denorms. The IEEE floating point

mode may be used to support newer versions of 3D graphics API Shaders and the alternative floating

point mode may be used to support early Shader versions. Taking DirectX 3D graphics API Shaders for

example, shader models before version 3.0 may use the alternative floating point mode, while version 3.0

and following shader models may use the IEEE floating point mode.

These two modes are supported by all units that perform floating point computations, including

execution units, shared functions like Extended Math, the Sampler and the Render Cache color calculator,

and fixed functions like VF, Clipper, SF and WIZ. Host software sets floating point mode through the fixed

function state descriptors for 3D pipeline and the interface descriptor for media pipeline. Therefore

different modes may be associated with different threads running concurrently. Floating point mode

control for EU and shared functions are based on the floating point mode field (bit 0) of cr0 register.

434 Doc Ref # IHD-OS-LKF-Vol 9-4.21

IEEE Floating Point Mode

Partial Listing of Honored IEEE-754 Rules

Here is a summary of expected 32-bit floating point behaviors in architecture. Refer to IEEE-754 for

topics not mentioned.

• INF – INF = NaN

• 0 * (+/–)INF = NaN

• 1 / (+INF) = +0 and 1 / (–INF) = –0

• (+/–)INF / (+/–)INF = NaN as A/B = A * (1/B)

• INV (+0) = RSQ (+0) = +INF, INV (–0) = RSQ (–0) = –INF, and SQRT (–0) = –0

• RSQ (–finite) = SQRT (–finite) = NaN

• LOG (+0) = LOG (–0) = –INF, LOG (–finite) = LOG (–INF) = NaN

• NaN (any OP) any-value = NaN with one exception for min/max mentioned below. Resulting NaN

may have different bit pattern than the source NaN.

• Normal comparison with conditional modifier of EQ, GT, GE, LT, LE, when either or both operands

is NaN, returns FALSE. Normal comparison of NE, when either or both operands is NaN, returns

TRUE.

• Note: Normal comparison is either a cmp instruction or an instruction with conditional

modifier

• Special comparison cmpn with conditional modifier of EQ, GT, GE, LT, LE, when the second source

operand is NaN, returns TRUE, regardless of the first source operand, and when the second source

operand is not NaN, but first one is, returns FALSE. Cmpn of NE, when the second source operand

is NaN, returns FALSE, regardless of the first source operand, and when the second source operand

is not NaN, but first one is, returns TRUE.

• This is used to support the proposed IEEE-754R rule on min or max operations. For which, if

only one operand is NaN, min and max operations return the other operand as the result.

• Both normal and special comparisons of any non-NaN value against +/– INF return exact result

according to the conditional modifier. This is because that infinities are exact representation in the

sense that +INF = +INF and –INF = –INF.

• NaN is unordered in the sense that NaN != NaN.

• IEEE-754 requires floating point operations to produce a result that is the nearest representable

value to an infinitely precise result, known as "round to nearest even" (RTNE). 32-bit floating point

operations must produce a result that is within 0.5 Unit-Last-Place (0.5 ULP) of the infinitely precise

result. This applies to addition, subtraction, and multiplication.

• All arithmetic floating point instructions does Round To Nearest Even at the end of the

computation, except the round instructions.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 435

Complete Listing of Deviations or Additional Requirements vs IEEE-754

For a result that cannot be represented precisely by the floating point format, the EU uses rounding to

nearest or even to produce a result that is within 0.5 Unit-Last-Place(0.5 ULP) of the infinitely precise

result.

Description

The rounding mode is specified by the Rounding Mode field in the Control Register.

Handle denorms as follows:

• When inputs are denorms in mixed mode (one of the source operand is half float and other is single

precision float OR source is half float and destination is single precision float), on upconversion, they are

non-denorms. So computes in 32b can handle this.

• When outputs are denorms, the denorms are retained if there is a format conversion.

• Mixed mode operations should always behave like sum of individual operations.

Mixed float datatype (F/HF) is only supported for MOV instruction in hardware.

EM operations do not support HF datatype.

Other information regarding floating-point behaviors:

• NaN input to an operation always produces NaN on output, however the exact bit pattern of the

NaN is not required to stay the same (unless the operation is a raw “mov” instruction which does

not alter data at all.)

• x*1.0f must always result in x (except denorm flushed and possible bit pattern change for NaN).

• x +/- 0.0f must always result in x (except denorm flushed and possible bit pattern change for NaN).

But -0 + 0 = +0.

• Fused operations (such as mac, dp4, dp3, etc.) may produce intermediate results out of 32-bit float

range, but whose final results would be within 32-bit float range if intermediate results were kept

at greater precision. In this case, implementations are permitted to produce either the correct

result, or else ±inf. Thus, compatibility between a fused operation, such as mac, with the unfused

equivalent, mul followed by add in this case, is not guaranteed.

• As the accumulator registers have more precision than 32-bit float, any instruction with

accumulator as a source/destination operand may produce a different result than that using more

general registers, as indicated in this table:

Description

Such an instruction may produce a different result than that using GRF registers.

• API Shader divide operations are implemented as x*(1.0f/y). With the two-step method, x*(1.0f/y),

the multiply and the divide each independently operate at the 32-bit floating point precision level

(accuracy to 1 ULP).

• See the Type Conversion section for rules on converting to and from float representations.

436 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Min Max of Floating Point Numbers

A special comparison called Compare-NaN is introduced in the architecture to handle the difference of

above mentioned floating-point comparison and the rules on supporting MIN/MAX. To compute the

MIN or MAX of two floating-point numbers, if one of the numbers is NaN and the other is not, MIN or

MAX of the two numbers returns the one that is not NaN. When two numbers are NaN, MIN or MAX of

the two numbers returns source1.

When both the sources are NaN inputs, the special case in the section 2.4.8 Floating point Min/Max

Operations describe the results.

 When one source is SNAN, DX,OCL and IEEE treat the outputs differently. The special case section 2.4.8

Floating point Min/Max operations described the results.

Min and Max is supported by conditional select.

Note even though f0.0 is specified in the instruction, the flag register is not touched by this instruction.

The following tables detail the rules for this special compare-NaN operation for floating-point numbers.

Notice that excepting “Not-Equal-To” comparison-NaN, last columns in all other tables have ‘T’.

Results of “Less-Than” Comparison-NaN – CMPN.L

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf F T T T T T T T T

-Fin F T/F T T T T T T T

-denorm F F F F F F T T T

-0 F F F F T F T T T

+0 F F F F F F T T T

+denorm F F F F F F T T T

+Fin F F F F F F T/F T T

+inf F F F F F F F F T

NaN F F F F F F F F F

Doc Ref # IHD-OS-LKF-Vol 9-4.21 437

Results of “Greater-Than or Equal-To” Comparison-NaN – CMPN.GE

src0 src1 -inf -Fin -denorm -0 +0 +denorm +Fin +inf NaN

-inf T F F F F F F F T

-Fin T T/F F F F F F F T

-denorm T T T T T T F F T

-0 T T T T F T F F T

+0 T T T T T T F F T

+denorm T T T T T T F F T

+Fin T T T T T T T/F F T

+inf T T T T T T T T T

NaN F F F F F F F F F

Alternative Floating Point Mode

The key characteristics of the alternative floating point mode is that NaN, Inf, and denorm are not

expected for an application to pass into the graphics pipeline, and the graphics hardware must not

generate NaN, Inf, or denorm as computation result. For example, a result that is larger than the

maximum representable floating point number is expected to be flushed to the largest representable

floating point number, i.e., +fmax. The fmax has an exponent of 0xFE and a mantissa of all one’s, which is

the same for IEEE floating point mode.

Note that this mode is applicable ONLY to Single Precision Float datatype.

Description

This also implies that ALT mode is not supported when Single precision datatype is involved in format conversion

to double precision or half precision.

ALT_MODE is supported for Single Precision float ONLY. Hence, ALT_MODE is NOT supported in mixed mode

operation.

Here is the complete list of the differences of legacy graphics mode from the relaxed IEEE-754 floating

point mode.

• Any +/- INF result must be flushed to +/- fmax, instead of being output as +/- INF.

• Extended mathematics functions of log(), rsq(), and sqrt() take the absolute value of the sources

before computation to avoid generating INF and NaN results.

Supported Legacy Float Mode and Impacted Units shows the support of these differences in various

hardware units.

438 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Supported Legacy Float Mode and Impacted Units

IEEE-754 Deviations VF Clipper SF WIZ EU EM Sampler RC

Any +/- INF result flushed to

 +/- fmax

Y Y Y Y Y Y Y Y

Log, rsq, sqrt take abs() of sources N/A N/A N/A N/A N/A Y N/A N/A

Dismissed legacy behaviors shows some of the desired or recommended alternative floating point mode

behaviors that do not have hardware design impact. The reasons of not needing special hardware

support for these items are also provided. This is based on the compliance requirement that can be

found in the DirectX 9 specification: “Handling of NaNs, Infs, and denorms is undefined. Applications

should not pass in such values into the graphics pipeline.”

Dismissed Legacy Behaviors

Suggested IEEE-754 Deviations Reason for Dismiss

Mov forces (+/-)INF to (+/-)fmax (+/-)INF is never present as input

(+/-)INF – (+/-)INF = +/- fmax instead of NaN (+/-)INF is never present as input

Denorm must be flushed to zero in all cases (including

trivial mov and point sampling)

Denorm is never present as input

Anything*0=0 (including NaN*0=0 and INF*0=0) NaN and INF are never present as input

Except propagated NaN, NaN is never generated NaN is never present as input and never generates NaN

based on rules in the previous table

An input NaN gets propagated excepting (a)-(d) NaN is never present as input

(a) Rcp (and rsq) of 0 yields fmax N/A, as it is already covered by the general rule “Any +/-

INF result flushed to +/- fmax”

(b) Sampler honors 0/0 = 0 as if (1/0)*0 There is no divide in Sampler

I Rcp (and rsq) of INF yields +/- 0 (+/-)INF is never present as input

(d) Sampler honors INF/INF = 0 as if (1/INF)=0 followed

by Anything*0 = 0

There is no divide in Sampler

Doc Ref # IHD-OS-LKF-Vol 9-4.21 439

Floating-Point Support

The following sections describe floating-point support relative to the IEEE Standard for Floating-Point

Arithmetic, currently IEEE Standard 754-2008. These sections cover binary floating-point arithmetic, as

the EU provides no support for decimal floating-point arithmetic.

Note: Hardware alone is usually not fully conformant to the IEEE standard. It requires software functions

to supplement the hardware.

• Adds the HF (Half Float) type and a corresponding HF execution data type and execution path.

• Adds flags to indicate IEEE floating-point exceptions and to enable or disable exception reporting

to those flags.

• Adds the Single Precision Denorm Mode bit in Control Register 0. It can be enabled to allow

calculations using the F (Float) type in IEEE floating-point mode to support denormals and gradual

underflow.

Floating-Point Types and Values

The EU supports 16-bit (HF, Half Float), 32-bit (F, Float), and 64-bit (DF, Double Float) types in the IEEE

Standard formats (respectively binary16, binary32, and binary64 in IEEE 754-2008). See Floating-Point

Numeric Data Types for the layout of the supported floating-point types.

Any bit pattern for a floating-point value corresponds to a value defined by the standard: ± finite

(normalized nonzero finite number), ± 0 (signed zero), ± inf (signed infinity), ± denorm (denormalized,

very small but nonzero number), or NaN (Not a Number). A NaN can be a signaling NaN (sNaN) or quiet

NaN (qNaN).

These operating modes are available for the different floating-point types:

• Half Float uses the IEEE floating-point mode.

• Half Float support for denormals and gradual underflow is controlled by the Half Precision Denorm

Mode bit.

• Float can use the ALT (Alternative Floating-Point Mode) or the IEEE floating-point mode. In IEEE

mode, support for denormals and gradual underflow is controlled by the Single Precision Denorm

Mode bit in the Control Register.

• Double Float uses the IEEE floating-point mode. Support for denormals and gradual underflow is

controlled by the Double Precision Denorm Mode bit in the Control Register.

Flush to zero is not defined by IEEE Standard 754, but is implementation-specific and required by some

APIs (including DirectX), thus the EU ISA supports either using or flushing Float or Double Float denorms

based on the respective Denorm Mode bits.

Specifications in this volume sometimes reference ±fmax, the largest finite magnitude representable in a

format, and ±fmin, the smallest normalized nonzero magnitude representable in a format. Calculating

those values uses the extreme exponent values for finite nonzero floating-point values, Emax and Emin

440 Doc Ref # IHD-OS-LKF-Vol 9-4.21

below, along with the number of explicit fraction bits (not counting the implicit bit in the significand).

The following table provides these values, with the fmax and fmin values generally approximate.

Floating-Point Type Parameters

Type

Exp.

 Bits

Exp.

 Bias Emax Emin

Explicit

 Fraction

 Bits fmax fmin

HF 5 15 15 -14 10 65504.0 about 6.1E-5

F 8 127 127 -126 23 about 3.4E38 about 1.18E-38

DF 11 1023 1023 -1022 52 about 1.79E308 about 2.23E-308

Where f is the number of explicit fraction bits, the general formula for fmax is (2.0 - 2-f) * 2Emax.

The general formula for fmin is 2Emin.

Not a Number (NaN) Formats

A NaN has a biased exponent field with all bits set (as if encoding an exponent of Emax + 1), a nonzero

fraction field (as a zero fraction field with that exponent indicates infinity), and either sign bit.

As specified in IEEE Standard 754-2008, the MSB of the fraction field, what would be the first bit

following the binary point in a numeric value, determines a NaN's type:

0 - Signaling NaN (sNaN). The remaining fraction bits cannot all be zero.

1 - Quiet NaN (qNaN). The remaining fraction bits can have any value.

When an sNaN is an input, an operation normally signals the Invalid Operation exception and quietizes

the NaN, producing the equivalent qNaN value, with MSB set to 1, at the output. Raw moves do not

check for NaNs and do not signal exceptions or quietize NaN values.

When QNAN as one of the input to an operation this results in QNAN without raising the exception flag.

This silently propagates and the output is the same QNAN as in the input.

Intel specifies the value qNaN Indefinite as a quiet NaN with all zeros in the remaining fraction bits, those

other than the MSB. This value is useful because it is never produced by quietizing an sNaN, thus qNaN

Indefinite may be used to initialize floating-point values that are not otherwise initialized by software,

allowing the uninitialized case to be distinguished.

The EU applies numeric source modifiers (-, (abs), or -(abs)) to NaN source values as well as to other

values, possibly changing the sign bit of a NaN value when it is propagated. NaN sign bits are normally

don't care values.

Per IEEE Standard 754-2008, a NaN's payload is contained in all fraction field bits other than the fraction

MSB. Thus in the overall floating-point format, the sign bit, biased exponent, and fraction MSB are not

part of the payload. NaN payload values are not affected by quietizing or by source modifiers. As noted

above, an sNaN must have a nonzero payload and a qNaN can have any payload.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 441

Floating-Point Rounding Modes

The EU supports the four rounding modes required in IEEE Standard 754 for binary floating-point

arithmetic. If the unrounded result of infinite precision and range is exactly representable in the

destination format, then that exact result is produced and no exception is signaled. For an unrounded

result of infinite precision and range that is not exactly representable in the destination format (an

inexact result), rounding chooses a numerically adjacent value in the destination format, while signaling

the Inexact, Overflow, or Underflow exceptions when appropriate. The four rounding modes are:

RNE - Round to nearest or even. Choose the value in the destination precision nearest to the

unrounded result. If the unrounded result is midway between two such values, choose the value with

its least significant fraction bit as 0 (even).

RD - Round down, toward minus infinity.

RU - Round up, toward plus infinity.

RZ - Round toward zero.

The rounding mode is specified by the Rounding Mode field in the Control Register. It is initialized by

Thread Dispatch. The normal default value is round to nearest or even. The Rounding Mode can be read

to check the mode and written to change it. The Control Register and the Rounding Mode value are

thread-specific; the Rounding Mode applies to all floating-point types, all execution channels, and all

floating-point instructions executed by the thread after it is assigned.

Rounding an inexact result signals the Inexact Exception.

Rounding an inexact result preserves the sign of the result.

Infinities and NaNs are exact results and are not affected by the rounding mode.

Zeros are exact results, but the signs of zero results are affected by the rounding mode in certain cases:

X - X = +0 for RNE, RU, RZ

X - X = -0 for RD

(+0) + (-0) = (-0) + (+0) = +0 for RNE, RU, RZ

(+0) + (-0) = (-0) + (+0) = -0 for RD

Regardless of the rounding mode, (+0) + (+0) = +0 and (-0) + (-0) = -0.

The directed rounding modes are round down, round up, and round toward zero.

In IEEE mode, when a floating-point overflow occurs the result is determined by the sign of the result and

the rounding mode:

+ and (RNE or RU): + inf

+ and (RD or RZ): + fmax

- and (RU or RZ): - fmax

- and (RNE or RD): - inf

442 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Note that for floating-point overflow in IEEE mode, RNE always produces ± inf and RZ always produces ±

fmax.

Floating-Point Operations and Precision

IEEE Standard 754-2008 requires the following floating-point operations to be precise within <= 0.5 ulp

(unit in the last place) when using the round to nearest or even rounding mode:

ADD (add instruction)

DIV (math instruction with FDIV function code)

FMA (fused multiply add, mad instruction)

MUL (mul instruction)

SQRT (math instruction with SQRT function code)

SUB (add instruction using one - source modifier)

Conversions (float to float, float to int, and int to float)

Min/Max

Compare

Single Precision Floating-Point Rounding to Integral Values

The rndd (Round Down), rnde (Round to Nearest or Even), rndu (Round Up), and the rndz (Round to

Zero) instructions round arbitary Float values to integral Float values. Each instruction specifies its

rounding mode so these instructions are not affected by the Rounding Mode in the Control Register.

An integral source value produces the same value for the destination (ignoring any saturation). For

magnitudes >= 8,388,608 (223) all Float values are integral.

The rounding instructions are sign preserving.

Signed zeros are propagated. In IEEE mode, signed infinities are propagated. In IEEE mode, sNaN inputs

are quietized, the equivalent qNaN is produced, and the Invalid Operation exception is indicated. In IEEE

mode, qNaN inputs are propagated.

No other exceptions are signaled for these instructions. For example if the source and result values differ,

the Inexact exception is not signaled.

The Single Precision Denorm Mode in the Control Register affects the results of the rndd and rndu

instructions for denorm source values.

Floating-Point to Integer Conversion

The mov and sel instructions can be used to convert floating-point values to integers. In the tables below,

Imin is the smallest representable value in a signed integer type, Imax is the largest representable value

in an integer type, and f is a finite floating-point value after rounding to an integral value using the

current rounding mode.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 443

Converting unrepresentable floating-point values, including infinities, NaNs, and values that convert to

integers outside of the destination type's range, signal Invalid Operation exceptions. When the

destination integer type is unsigned, normalized nonzero negative inputs signal Invalid Operation

exceptions and negative denorm inputs signal Inexact exceptions.

Data written in accumulator using implicit or explicit destination will not be IEEE compliant.

Floating-Point to Integer Conversion Results and Exceptions for Signed Integer Types

FP Value Integer Result FP Exception

qNaN 0 Invalid Operation

sNaN 0 Invalid Operation

+inf Imax Invalid Operation

f > Imax Imax Invalid Operation

Imin <= f <= Imax f Inexact if rounding changed f

f < Imin Imin Invalid Operation

-inf Imin Invalid Operation

Floating-Point to Integer Conversion Results and Exceptions for Unsigned Integer Types

FP Value Integer Result FP Exception

qNaN 0 Invalid Operation

sNaN 0 Invalid Operation

+inf Imax Invalid Operation

f > Imax Imax Invalid Operation

0 <= f <= Imax f Inexact if rounding changed f

f = -0 0 Inexact

-1 < f < -0 0 Inexact

-1 < f < -0 Real Indefinite Invalid Operation

-fmax <= f <= -1 Real Indefinite Invalid Operation

-inf Real Indefinite Invalid Operation

Note: Real Indefinite is encoded as Integer value 0.

Integer to Floating-Point Conversion

Integer to floating-point conversion follows these rules in IEEE mode:

• The result is never ± inf, never NaN, and never -0.

• If the integer source value is not exactly representable in the destination floating-point format, use

the current rounding mode to choose an adjacent floating-point value and signal the Inexact

Exception.

• If the integer source value is too large to represent in the destination floating-point format (only

possible when converting to Half Float from D, UD, or UW) then signal the Overflow Exception.

444 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Based on the sign and the current rounding mode, the result is ± fmax or ± inf, as described in the

Overflow Exception section.

Floating-Point Min/Max Operations

In the following Min/Max operations, sNaN inputs are preferred to non-NaN inputs and non-NaN inputs

are preferred to qNaN inputs.

Min(x, qNaN) = Min(qNaN, x) = x with no exceptions signaled.

Min(x, sNaN) = Min(sNaN, x) = qNaN (quietized value corresponding to the input sNaN) and signal the

Invalid Operation exception.

Note: DX deviates from this rule:

The DX behavior is inferred from the denorm bit.

Min(x, sNaN) = Min(sNaN, x) = x

Max(x, qNaN) = Max(qNaN, x) = x with no exceptions signaled.

Max(x, sNaN) = Max(sNaN, x) = qNaN (quietized value corresponding to the input sNaN) and signal the

Invalid Operation exception.

Note: DX deviates from this rule:

The DX behavior is inferred from the denorm bit.

Max(x, sNaN) = Max(sNaN, x) = x

Special cases(when both sources are NaN inputs)

Min(qNaN, qNan) = qNaN (of the first source) and no exception raised

Min(qNaN, sNaN) = Min(sNaN, qNaN) = qNaN (quiet-ized sNaN and signal the Invalid Operation

exception)

Min(sNaN, sNaN) = qNaN(of the first source and signal Invalid Operation Exception)

Max(qNaN, qNan) = qNaN (of the first source) and no exception raised

Max(qNaN, sNaN) = Max(sNaN, qNaN) = qNaN (quiet-ized sNaN and signal the Invalid Operation

exception)

Max(sNaN, sNaN) = qNaN(of the first source and signal Invalid Operation Exception)

Doc Ref # IHD-OS-LKF-Vol 9-4.21 445

IEEE Floating-Point Exceptions

The EU detects the five floating-point exceptions defined by IEEE Standard 754:

Invalid Operation

Division by Zero

Overflow

Underflow

Inexact

Signaling Floating-Point Exceptions

When enabled in the Control Register, floating-point exceptions are detected and set sticky flag bits in

the State Register. There is no mechanism for automatic transfer to a handler, so floating-point

exceptions are not handled like other exceptions described in the Exceptions chapter.

Setting flags to indicating Floating-Point exceptions is the default exception handling approach specified

by IEEE Standard 754. The flag bits are sticky because in normal operation the EU only sets these bits as

exceptions occur, and does not clear these bits, so a set value sticks until cleared by software. The

Control Register and State Register are cleared at reset and initialized at thread load. Both are read/write

registers. These fields are used:

• IEEE Exception Trap Enable (Control Register cr0.0:ud bit 9). This bit enables trapping IEEE

exception flags. This control bit may be updated by software. It is initially zero on thread load. If

enabled, IEEE floating-point exceptions set sticky bits in the IEEE Exception field of sr0.1, in the

State Register. Note: Software must set this flag at thread start to use the IEEE Exception flags.

• IEEE Exception. (State Register sr0.1:ud bits 7:0). The IEEE exception bits are sticky bits set by the

opcodes when floating-point exceptions are triggered. These bits are defined per thread and all

channels update one set of sticky bits. These bits are cleared on thread load and may be cleared by

software. Exception updates to these bits may be disabled by clearing the IEEE Exception Trap

Enable bit in the Control Register. The following table specifies the IEEE exception bits:

Bits Definition

7:5 Reserved

4 Inexact Exception

3 Overflow Exception

2 Underflow Exception

1 Division by Zero Exception

0 Invalid Operation Exception

The IEEE exception flags are per thread, shared by all channels. (Maintaining separate per channel

exception flags for 32 channels would require 160 bits per thread.)

446 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Invalid Operation Exception

An Invalid Operation exception is signaled by any operation on a signaling NaN (sNaN) or by certain

combinations of operations and operands with undefined results, always producing a quiet NaN (qNaN)

result.

The following specific operations signal Invalid Operation, where x is a positive, finite, nonzero, and

normalized number:

+inf - (+inf) or (-inf) - (-inf)

± 0 / ± 0

± inf / ± inf

± 0 × ± inf or ± inf × ± 0

Remainder(± x, ± 0)

Remainder(± inf, ± x)

Sqrt(-x)

Note that Sqrt(-0) is -0 per IEEE Standard 754 and does not cause any exception.

These instructions can signal specific Invalid Operation exceptions (and also on sNaN inputs except for

Float inputs in ALT mode), producing a qNaN result:

add

dp2, dp3, dp4, and dph (the Dot Product instructions)

line

lrp

mac

mad

madm

math with the FDIV, SQRT, or RSQRTM function codes

mul

pln

These other instructions signal Invalid Operation exceptions on sNaN inputs (except for Float inputs in

ALT mode), producing a qNaN result:

cmp, cmpn

frc

math with all other function codes for floating-point operations

mov except for raw moves

rndd, rnde, rndu, and rndz (the Round instructions)

Doc Ref # IHD-OS-LKF-Vol 9-4.21 447

sel

smov except for raw moves

Division by Zero Exception

The operation ± x / ± 0, where x is a positive, finite, nonzero, and normalized number, signals the

Division by Zero Exception and produces a correctly signed ± inf result. Note that in accordance with the

standard, ± 0 / ± 0 signals Invalid Operation, does not signal Division by Zero, and produces a qNaN

result. This behavior can occur for the math instruction with the FDIV function code.

The operation LOG2(± 0) signals the Division by Zero Exception and produces -inf as the result. This

behavior can occur for the math instruction with the LOG function code.

Overflow Exception

A floating-point overflow occurs when an operation with a finite result produces an internal result with

magnitude > fmax, the maximum representable finite value in the destination format. The internal result

is rounded to the destination precision with the current rounding mode but has an unbounded

exponent. An overflow produces ± inf or ± fmax as the result, depending on the sign and the rounding

mode.

The following algorithm describes floating-point overflow processing:

1. Compute the result with infinite precision and unbounded range.

2. Normalize the result using an unbounded exponent.

3. Round the result to the destination precision using an unbounded exponent and the current

rounding mode.

4. If (abs(rounded unbounded result) > fmax(destination format)) {

Set the Overflow Exception flag to 1.

Output = ± inf or ± fmax depending on the sign and the rounding mode:

+ and (RNE or RU): + inf

+ and (RD or RZ): + fmax

- and (RU or RZ): - fmax

- and (RNE or RD): - inf

}

}

Note: The first three steps of the overflow and underflow algorithms are identical.

448 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Underflow Exception

An underflow occurs when an operation produces a tiny but nonzero inexact result x, with abs(x) < fmin,

where fmin = 2Emin. See the Floating-Point Type Parameters table for the fmin and Emin values for

different floating-point types.

IEEE Standard 754 allows underflow to be determined before or after rounding. The Execution Unit

determines underflow after rounding, which is consistent with the behavior of the x87 and SSE

instructions in the CPU.

When denorms are flushed to zero, no underflow exceptions are signaled. Flush to zero is not defined by

IEEE Standard 754, but is implementation specific and required by some APIs (including DirectX), thus the

EU ISA supports either using or flushing Float or Double Float denorms based on the respective Denorm

Mode bits.

When denorms are enabled, if an operation's internal result rounded to the destination precision, but

using an unbounded exponent range, has a magnitude that is less than fmin but nonzero AND the

denorm result in the destination format is inexact, then signal the Underflow Exception.

The rounded result can be ± 0, ± fmin, or (when denorms are enabled) ± denorm.

IEEE Standard 754 requires the non-intuitive behavior that an exact denorm result does not set the

Underflow Exception flag.

The following algorithm describes floating-point underflow processing:

1. Compute the result with infinite precision and unbounded range.

2. Normalize the result using an unbounded exponent.

3. Round the result to the destination precision using an unbounded exponent and the current

rounding mode.

4. If (0 < abs(rounded unbounded result) < fmin(destination format) {

if (flush denorms to zero) {

Output = 0; // No underflow exception.

}

Else {

Renormalize to the bounded exponent with the original infinite precision value...

...and round that value to the destination precision using the current rounding

mode.

If (the just computed value differs from the value computed in step (3) in exponent or

mantissa) {

Set the Underflow Exception flag to 1.

} // Note: Underflow is not set if the tiny result is the same as when computed with an

unbounded exponent.

Output = rounded result using the destination precision and destination exponent range;

Doc Ref # IHD-OS-LKF-Vol 9-4.21 449

}

}

Else { // Not a tiny number.

Output = rounded number;

}

Inexact Exception

An Inexact Exception occurs when the internal unrounded result, with infinite precision and unbounded

exponent range, differs from the generated result after format conversion, normalizing or denormalizing,

and rounding. An Inexact Exception occurs irrespective of any saturation to exact zero or exact +1.0. The

Inexact Exception is normal and may occur more often than not. For example, the calculation 1.0 / 3.0 is

inexact in any binary floating-point format. These rules determine whether a result is inexact:

• Infinities and NaNs are never inexact.

• Flushing a denorm internal result to zero (always for Half Float and if the appropriate Denorm

Mode is 0 for Float and Double Float) is always inexact.

• If any rounding occurs using the current Rounding Mode, so the rounded result differs from the

internal unrounded result, the result is inexact. However explicit round to integral using any of the

rounding instructions (rndd, rnde, rndu, and rndz) is never inexact.

450 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Floating-Point Compare Operations

Four mutually exclusive relations are possible between two floating-point values, src0 and src1:

Less than. src0 < src1 and neither source is NaN.

Equal. src0 = src1 and neither source is NaN.

Greater than. src0 > src1 and neither source is NaN.

Unordered. Any source is NaN.

Any NaN compares unordered to any value, including itself.

Infinities of the same sign compare as equal.

Zeros compare as equal regardless of sign: -0 = +0.

Floating-Point Compare Relations

src1

src0 -inf -fin

-

denorm -0 +0

+denor

m +fin +inf NaN

-inf E L L L L L L L U

-fin G * L L L L L L U

-

denorm

G G *^ L^ L^ L^ L L U

-0 G G G^ E E L^ L L U

+0 G G G^ E E L^ L L U

+denor

m

G G G^ G^ G^ *^ L L U

+fin G G G G G G * L U

+inf G G G G G G G E U

NaN U U U U U U U U U

Notes

* Relation can be L, E, or G.

^ When denorms are flushed to zero then all denorms and zeros compare as E.

The next six tables show the results of six specific comparisons, corresponding to the .g, .l, .e, .ne, .ge,

and .le conditional modifiers used with the cmp instruction and a floating-point source type. Any NaN

source produces a false comparison result for these modifiers other than .ne and produces a true

comparison result for the .ne modifier.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 451

Results of Greater Than Comparison — cmp.g

src1

src0 -inf -fin

-

denorm -0 +0

+denor

m +fin +inf NaN

-inf F F F F F F F F F

-fin T * F F F F F F F

-

denorm

T T *^ F^ F^ F^ F F F

-0 T T T^ F F F^ F F F

+0 T T T^ F F F^ F F F

+denor

m

T T T^ T^ T^ *^ F F F

+fin T T T T T T * F F

+inf T T T T T T T F F

NaN F F F F F F F F F

Notes

* Result can be T or F.

^ When denorms are flushed to zero then all denorms and zeros compare as equal, making

the .g comparison result F.

Results of Less Than Comparison — cmp.l

src1

src0 -inf -fin

-

denorm -0 +0

+denor

m +fin +inf NaN

-inf F T T T T T T T F

-fin F * T T T T T T F

-

denorm

F F *^ T^ T^ T^ T T F

-0 F F F^ F F T^ T T F

+0 F F F^ F F T^ T T F

+denor

m

F F F^ F^ F^ *^ T T F

+fin F F F F F F * T F

+inf F F F F F F F F F

NaN F F F F F F F F F

Notes

* Result can be T or F.

^ When denorms are flushed to zero then all denorms and zeros compare as equal, making

the .l comparison result F.

452 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Results of Equal Comparison — cmp.e

src1

src0 -inf -fin

-

denorm -0 +0

+denor

m +fin +inf NaN

-inf T F F F F F F F F

-fin F * F F F F F F F

-

denorm

F F *^ F^ F^ F^ F F F

-0 F F F^ T T F^ F F F

+0 F F F^ T T F^ F F F

+denor

m

F F F^ F^ F^ *^ F F F

+fin F F F F F F * F F

+inf F F F F F F F T F

NaN F F F F F F F F F

Notes

* Result can be T or F.

^ When denorms are flushed to zero then all denorms and zeros compare as equal, making

the .e comparison result T.

Results of Not Equal Comparison — cmp.ne

src1

src0 -inf -fin

-

denorm -0 +0

+denor

m +fin +inf NaN

-inf F T T T T T T T T

-fin T * T T T T T T T

-

denorm

T T *^ T^ T^ T^ T T T

-0 T T T^ F F T^ T T T

+0 T T T^ F F T^ T T T

+denor

m

T T T^ T^ T^ *^ T T T

+fin T T T T T T * T T

+inf T T T T T T T F T

NaN T T T T T T T T T

Notes

* Result can be T or F.

^ When denorms are flushed to zero then all denorms and zeros compare as equal, making

the .ne comparison result F.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 453

Results of Greater Than or Equal Comparison — cmp.ge

src1

src0 -inf -fin

-

denorm -0 +0

+denor

m +fin +inf NaN

-inf T F F F F F F F F

-fin T * F F F F F F F

-

denorm

T T *^ F^ F^ F^ F F F

-0 T T T^ T T F^ F F F

+0 T T T^ T T F^ F F F

+denor

m

T T T^ T^ T^ *^ F F F

+fin T T T T T T * F F

+inf T T T T T T T T F

NaN F F F F F F F F F

Notes

* Result can be T or F.

^ When denorms are flushed to zero then all denorms and zeros compare as equal, making

the .ge comparison result T.

Results of Less Than or Equal Comparison — cmp.le

src1

src0 -inf -fin

-

denorm -0 +0

+denor

m +fin +inf NaN

-inf T T T T T T T T F

-fin F * T T T T T T F

-

denorm

F F *^ T^ T^ T^ T T F

-0 F F F^ T T T^ T T F

+0 F F F^ T T T^ T T F

+denor

m

F F F^ F^ F^ *^ T T F

+fin F F F F F F * T F

+inf F F F F F F F T F

NaN F F F F F F F F F

Notes

* Result can be T or F.

^ When denorms are flushed to zero then all denorms and zeros compare as equal, making

the .le comparison result T.

454 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Type Conversion

Float to Integer

Converting from float to integer is based on rounding toward zero(RTZ is for DX, IEEE expects all four

rounding modes). If the floating point value is +0, -0, +Denorm, -Denorm, +NaN –r -NaN, the resulting

integer value is always 0. If the floating point value is positive infinity (or negative infinity), the conversion

result takes the largest (or the smallest) represent-able integer value. If the floating point value is larger

(or smaller) than the largest (or the smallest) represent-able integer value, the conversion result takes the

largest (or the smallest) represent-able integer value. The following table shows these special cases. The

last two rows are just examples. They can be any number outside the represent-able range of the output

integer type (UD, D, UW, W, UB and B).

Input Format Output Format

F UD D UW W UB B

+/- Zero 00000000 00000000 00000000 00000000 00000000 00000000

+/- Denorm 00000000 00000000 00000000 00000000 00000000 00000000

NAN 00000000 00000000 00000000 00000000 00000000 00000000

-NAN 00000000 00000000 00000000 00000000 00000000 00000000

INF FFFFFFFF 7FFFFFFF 0000FFFF 00007FFF 000000FF 0000007F

-INF 00000000 80000000 00000000 00008000 00000000 00000080

+232 (*)
FFFFFFFF 7FFFFFFF 0000FFFF 00007FFF 000000FF 0000007F

-232-1 (*)
00000000 80000000 00000000 00008000 00000000 00000080

Integer to Integer with Same or Higher Precision

Converting an unsigned integer to a signed or an unsigned integer with higher precision is based on

zero extension.

Converting an unsigned integer to a signed integer with the same precision is based on modular wrap-

around. Without saturation, a larger than represent-able number becomes a negative number. With

saturation, a larger than represent-able number is saturated to the largest positive represent-able

number.

Converting a signed integer to a signed integer with higher precision is based on sign extension.

Converting a signed integer to an unsigned integer with higher precision is based on sign extension.

Without saturation, a negative number becomes a large positive number with the sign bit wrapped-up.

With saturation, a negative number is saturated to zero.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 455

Integer to Integer with Lower Precision

Converting a signed or an unsigned integer to a signed or an unsigned integer with lower precision is

based on bit truncation. Without saturation, only the lower bits are kept in the output regardless of the

sign-ness of input and output. With saturation, a number that is outside the represent-able range is

saturated to the closest represent-able value.

Integer to Float

Converting a signed or an unsigned integer to a single precision float number is to round to the closest

representable float number. For any integer number with magnitude less than or equal to 24 bits,

resulting float number is a precise representation of the input. However, if it is more than 24 bits, by

default a “round to nearest even” is performed.

Double Precision Float to Single Precision Float

The upper Dword of every Qword will be written with undefined value when converting DF to F.

Single Precision Float to Double Precision Float

Converting a single precision floating-point number to a double precision floating-point number will

produce a precise representation of the input.

Single Precision Float Double Precision Float

-inf -inf

-finite -finite

-denorm -finite

-0 -0

+0 +0

+denorm +finite

+finite +finite

+inf +inf

NaN NaN

Exceptions

The Architecture defines a basic exception handling mechanism for several exception cases. This

mechanism supports both normal operations such as extensions of the mask-stack depth, as well as

detecting some illegal conditions.

456 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Exception Types

Type Trigger / Source Sync/Async Recognition

Software Exception Thread code Synchronous

Breakpoint • A bit in the instruction

word

• Breakpoint IP match

• Breakpoint Opcode

match

Synchronous

Illegal Opcode
Hardware Synchronous

Halt MMIO register write Asynchronous

Context Save/Restore Preemption Interrupt Asynchronous

Threads may choose which exceptions to recognize and which to ignore. This mask information is

specified on a per-kernel basis in fixed function state generated by the driver, and delivered to the EU as

part of a new thread dispatch. Upon arrival at the EU, the exception-mask information is used to initialize

the exception enable fields of that thread's cr0.1 register, which controls exception recognition. This

register is instantiated on a per-thread basis, allowing independent control of exception type recognition

across hardware threads. The exception enable bits in the cr0.1 register are read/write, and thus can be

enabled/disabled via software at any time during thread execution.

The exception handling mechanism relies on the System Routine, a single subroutine that provides

common exception handling for all threads on all EUs in the system. This System Routine is defined per-

context and is identified via a System IP (SIP) register in context state. At the time of each context switch,

the appropriate SIP for that context is loaded into each EU, allowing each context to have custom

implementation of exception handling routines if so desired.

The mechanism does not support handling recursive system routine access. This means when a thread

cannot be asynchronously interrupted to an exception when executing a SIP.

Example:

 An Exception is not supported when hardware is executing a SIP for context save and restore

operations.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 457

Exception-Related Architecture Registers

Exception-related registers are architecture registers cr0.0 through cr0.2. These registers are instantiated

on a per-thread basis providing each hardware thread with unique control over exception recognition

and handling. The registers provide the capability to mask exception types, determine the type of raised

exception, store the return address, and control exiting from the System Routine back to the application

thread.

Many of the bits in these registers are manipulated by both hardware and software. In all cases, the

read/write operations by hardware and software occur at exclusive times in a thread's lifetime, thus there

is no need for atomic read-modify-write operations when accessing these registers.

System Routine

The following diagram illustrates the basic flow of exception handling and the structure of the System

Routine.

458 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Invoking the System Routine

The System Routine is invoked in response to a raised exception. Once an exception is raised, no further

instructions from the application thread are issued until the System Routine has executed and returned

control back to the application thread.

After an exception is recognized by hardware, the EU saves the thread's IP into its AIP register (cr0.2), and

then moves the System Routine offset, SIP, into the thread's IP register. At this point the next instruction

issued for that thread is the first instruction of the System Routine.

The System Routine maintains the same execution priority, GRF register space, and thread state as the

application thread from which it is invoked.

Due to assuming the same priority, there may be significant absolute time between an exception being

raised and invoking the System Routine, as other higher priority threads within the EU continue to

execute. From a thread's perspective, once an exception is recognized, the next instruction issued is from

the System Routine.

At the time of System Routine invocation, there may still be outstanding registers in-flight from the

application thread. Depending on the instruction sequence in the System Routine, an in-flight register

may be referenced by the System Routine and cause a register-in-flight dependency. These

dependencies are honored by the System Routine and may cause the System Routine to be suspended

until the register retires.

Exception processing is not nested within the System Routine. If a future exception is detected while

executing the System Routine, the exception is latched into cr0.1, but does not cause a nested re-

invocation of the System Routine. The exception recognition hardware recognizes only one outstanding

exception of each type; i.e., once a specific exception type is detected and latched in cr0.1, and until the

exception is cleared, any further exception of that type is lost.

Accumulators are not natively preserved across the System Routine. To make sure the accumulators are

in the identical state once control is returned to the application thread, the System Routine must either

set the Accumulator Disable bit of cr0.0 before using any instruction that modifies an accumulator, or

save and restore the accumulators (using GRF registers or system thread scratch memory) around the

System Routine. Saving and restoring accumulators, including their extended precision bits, can be

accomplished by a short series of moves and shifts of the accumulator register. Also note that the state

of the Accumulator Disable bit itself must be preserved unless, by convention, the driver software limits

its manipulation to only the System Routine.

Further, upon System Routine entry, the execution-related masks (Continue, Loop, If, and Active masks,

contained in the Mask Register) will remain set as they were in the application thread. Thus only a subset

of channels may be active for execution. To enable execution on all channels, the System Routine may

choose to use the instruction option ‘NoMask’, or may choose to set the mask registers to the desired

value so long as it saves/restores the original masks upon System Routine entry/exit.

Similarly there is no hardware mechanism to preserve flags, mask-stacks, or other architecture registers

across the System Routine. The System Routine must ensure that these values are preserved (see the

Conditional Instructions Within the System Routine section for related information).

Doc Ref # IHD-OS-LKF-Vol 9-4.21 459

Returning to the Application Thread

Prior to returning control to the application thread, the System Routine should clear the proper

Exception Status and Control bit in cr0.1. Failure to do so forces the thread's execution to reenter the

System Routine before any further instructions are executed from the application thread. (Note that

single-stepping functionality is the one exception where the exception's Status and Control bit is not

reset before exit.)

The System Routine may choose to loop within a single invocation of the System Routine until all

pending exceptions are serviced, or may choose to service exceptions one at a time (a simpler solution,

but less efficient).

The System Routine is exited, and control returned to the application thread, via a write to the Master

Exception State and Control bit in cr0.0. Upon clearing this bit, the value of AIP (cr0.2) is restored to the

thread’s IP register and, with no further exceptions pending, execution resumes at that address. The

System Routine must follow any write to the Master Exception State and Control bit with at least one

SIMD-16 nop instruction to allow control to transition. Throughout the System Routine, the AIP register

maintains its value at the time the exception was raised unless directly modified by the System Routine.

(See the AIP register definition for specifics on the IP value saved to AIP).

System IP (SIP)

The System IP (SIP) is the 16 byte-aligned offset of the first instruction of the System Routine, relative to

the General State Base Address. SIP is assigned by the STATE_SIP command to the command streamer

which updates SIP in the EU.

The SIP is widened to 48 bits. However, the EU still only uses the low 32 bits (bits 31:4 with bits 3:0 as

zero).

When the System Routine is invoked, the application thread's current IP is first saved into the AIP field of

cr0.2. The SIP address is then loaded into the thread's IP register and execution continues within the

System Routine. Thus, each invocation of the System Routine has a common entry point. Returning from

the System Routine loads IP from AIP, continuing thread execution.

System Routine Register Space

The System Routine uses the same GRF space as the thread that invokes it.

As such all of the calling thread's registers and their contents are visible to the System Routine. Further,

the System Routine must only use r0..r15 of the GRF, as a minimal thread may have requested and been

allocated this few. If the System Routine requires more registers than this, the driver should establish a

higher minimum allocation for all threads.

The System Routine may encounter any residual register dependencies of the calling thread until such

time that they clear by the return of in-flight writebacks.

Only one 32-bit GRF location, r0.4, is reserved for System Routine use. This location is sufficient to allow

the System Routine to calculate the appropriate offset of its private scratch memory in the larger system

scratch memory space (as dictated by binding table entry 254). The offset is left as a driver convention,

but is likely based on a combination of Thread and EU IDs (see the example system handler in the System

460 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Scratch Memory Space) section. Other than the reserved r0.4 register field, there is no explicit GRF

register space dedicated to the System Routine, and any GRF needs must be accomplished via (a)

convention between the System Routine and application code, or (b) the System Routine temporarily

spilling the thread's GRF register contents to scratch memory and restoring those contents before

System Routine exit.

No persistent storage is automatically allocated to the System Routine, although a driver implementation

may set aside part of system scratch memory for the System Routine.

Any parameter passing to the System Routine (for use by software exceptions) is done via the GRF based

on system thread/application thread convention.

System Scratch Memory Space

There is a single unified system scratch memory space per context shared by all EUs. It is anticipated that

block is further partitioned into a unique scratch sub-space per thread via conventions implemented in

the System Routine, with each hardware thread having a uniform block size at a calculated offset from

the base address. The block address for a thread can be based on an offset derived from the thread's

execution unit ID and thread ID made available through the TID and EUID field of architecture register

sr0.0.

Per_Thread_Block_Size = System_Scratch_Block_Size / (EU_Count * Thread_Per_EU);

Offset = (sr0.0.EID * Threads_Per_EU + sr0.0.TID) * Per_Thread_Block_Size;

where in:

Threads_Per_EU = 4

EU_Count = 8

System_Scratch_Block_Size is a driver choice.

Access to system scratch memory is performed through the Data Port via linear single register or block-

based read/write messages. The driver may choose to use any binding table index for system scratch

surface description. As a practical matter, the same index is expected to be used across all binding tables,

as the index is typically hard coded in Data Port messages used within the System Routine coupled with

the fact that a single System Routine is used for all threads. Read/write messages to the Data Port

contain the address of the binding table (provided in r0 of all threads) and an offset, from which the Data

Port calculates the final target address.

It is expected that the system scratch memory space is allocated by the driver at context-create time and

remains persistent at a constant memory address throughout a context's lifetime.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 461

Conditional Instructions Within the System Routine

It is expected that most, if not all, control flow within the System Routine is scalar in nature. If so, the

System Routine should set SPF (Single Program Flow, cr0.0) to enable scalar branching. In this mode,

conditional/loop instructions do not update the mask stacks and therefore do not have restrictions on

their use nor require the save/restore of hardware mask stack registers.

If SIMD branching is desired within the System Routine, special considerations must be taken. Upon entry

to the System Routine, the depth of the mask stacks is unknown at that point, and may be near full. If so,

a subsequent conditional instruction and its associated mask ‘push’ may cause a stack overflow. This

would generate an exception within the system routine, an unsupported occurrence. To prevent this, if

the System Routine uses SIMD conditional instructions, it must save the mask stacks prior to the first

SIMD conditional instruction, and restore them after the last SIMD conditional instruction. As a general

solution, it may be easiest to simply implement the save/restore as part of the entry/exit code sequence,

using an available GRF register pair as a storage location. Once saved, the stacks should be reset to their

empty condition, namely depth = 0 and top of stack = 0xFFFFFFFF.

Use of NoDDClr

The instruction word defines an instruction option NoDDClr that overrides the native register

dependency clearing mechanism of the typical instruction. When specified, NoDDClr does not clear, at

register writeback time, the dependency placed on the destination register of the instruction. Use of this

mechanism may provided increased performance when a kernel can guarantee no dependency issues

between instructions, but may cause issues with exception handling in some circumstances as discussed

here.

Typically NoDDClr is used in an instruction series to enable a sequence of writes to sub-fields of a GRF

register without paying a dependency penalty on each instruction. In this case, NoDDClr and NoDDChk

are used across an instruction sequence to allow the first instruction to set the destination dependency,

interior instructions to write to the GRF register without dependency checks, and the last instruction to

clear the dependency. (This sequence is referred to as a NoDDClr code block going forward). By only

allowing the last instruction to clear the dependency, program execution is prevented from going

beyond a certain point until all writes of that sequence are known to retire.

The problem arises if an exception is raised within a NoDDClr code block. In this case, there exists the

potential for the System Routine to hang while attempting to save/restore a register used as a

destination register by the NoDDCLr code block, as the outstanding dependency on that register will not

clear until the final instruction of the NoDDCLr block is executed, sometime after the System Routine

returns. Should the System Routine attempt to use that register, it hangs waiting on a dependency to be

cleared by an instruction not yet issued.

Note: This is a known condition and will in some cases not allow the full GRF contents to be externally

visible in System Routine scratch space during a break or halt exception.

To avoid this condition, guidelines are provided below for consideration. (Note that these are general

guidelines, some of which can be alleviated through careful coding and register usage conventions and

restrictions.)

462 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Guideline

NoDDClr code blocks should only be used where absolutely necessary.

Instructions that may generate exceptions should not be placed within NoDDClr blocks. This includes most

conditional branch instructions (if, do, while, ...).

If possible, use NoDDClr on registers high in the thread's register allocation (e.g. r120), thus even if a System

Routine hang occurs, as much of the GRF is visible as possible. (Note that this would also require the System

Routine to update the progress of the GRF dump, perhaps with each GRF block written, or to initialize the System

Routine's scratch space to a known value, to be able to distinguish valid/locations from unwritten locations).

Also a driver implementation may consider a disable-NoDDclr option in which jitted code does not use

the NoDDClr capability. In this case, there is no change to the code that is jitted other than removal of

the NoDDClr instruction option. The code executes as normal, but with a higher number of thread

switches in what would have been a NoDDClr code block.

Exception Descriptions

This section describes conditions that can cause exceptions and transfer control to the System Routine.

Illegal Opcode

The ISA defines a single illegal opcode. The byte value of the illegal opcode is 0x00 due to it being a

likely byte value encountered by a wayward instruction pointer value. The illegal instruction signals an

exception if exception handling is enabled and invokes the system interrupt routine. If exception

handling is NOT enabled, the illegal opcode is executed resulting in undetermined behavior including a

system hang. Hardware decodes all legal opcodes supported. Any byte value that is not in the legal

opcode list is decoded as an illegal opcode to trigger exception.

Undefined Opcodes

All undefined opcodes in the 8-bit opcode space (which includes instruction bit 7, reserved for future

opcode expansion) are detected by hardware. If an undefined opcode is detected, the opcode is

overridden by hardware, forcing the opcode value within the pipeline to the defined illegal opcode. The

offending instruction, should it eventually be issued down the execution unit’s pipeline, generates an

Illegal Opcode exception as described in the section Illegal Opcode. The memory location of the

offending opcode keeps its original value. That location can be queried to determine the opcode value.

Software Exception

A mechanism is provided to allow an application thread to invoke an exception and is triggered using

the Software Exception Set and Clear bit of cr0.1. Sub-function determination and parameter passing into

and out of the exception handler is left to convention between the system-thread and application-

thread. The thread's IP is incremented before saving AIP and entering the System Routine, causing

execution to resume at the next application-thread instruction after returning from the System Routine.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 463

Context Save and Restore

The System Routine is also used to save and restore the context of the Execution Unit. This feature is

enabled in GPGPU workloads only.

When the execution engine receives a preemption or an interrupt, the application thread invokes the

System Routine. The System Routine is invoked only when all in-flight registers have retired. The system

routine is used to save all the state of the EU to memory. When the sequence is complete, the master

exception control bit is cleared. This action stops all execution for the given thread and invalidates the

thread. This means a new thread from a different context may be loaded. When the master exception

control bit is cleared, software must ensure that all outstanding messages from the EU are dispatched

out of the execution message pipeline. This is achieved by creating a dependency on the last send that is

saving EU state. A dummy instruction before clearing the master exception control bit ensures that this is

achieved.

The System Routine is also invoked on a context restore request. In this case a dummy thread is loaded

into the EU which starts with the System Routine. This routine now restores the state of the EU. The

restore sequence used in such a case should be consistent with the save sequence to ensure that state is

restored correctly. After completing the restore sequence, the System Routine must clear the master

exception control bit in the Control Register. This enables hardware to switch to the application thread

which continues execution.

Programming Note

Context: Context Save and Restore

When context save and restore is required to be supported for GPGPU work loads, Stack Overflow exception

handling will not be supported. Software will either need to ensure stack is either completely disabled OR used in

such a way, an exception will not trigger.

Events That Do Not Generate Exceptions

The conditions described in this section are either not recognized or do not generate an exception.

Illegal Instruction Format

This condition includes malformed instructions in which the opcode is legal, but the source or

destination operands or other instruction attributes do not comply with the instruction specification.

There is no direct hardware support to detect these cases and the outcome of issuing a malformed

instruction is undefined.

Malformed Message

A message's contents, destination registers, lengths, and descriptors are not interpreted in any way by

the execution unit. Errors in specifying message fields do not raise exceptions in the EU but may be

detected and reported by the shared functions.

464 Doc Ref # IHD-OS-LKF-Vol 9-4.21

GRF Register Out of Bounds

Unique GRF storage is allocated to each thread which, at a minimum, satisfies the register requirements

specified in the thread's declaration. References to GRF register numbers beyond that called for in the

thread's declaration do not generate exceptions. Depending on the implementation, out-of-bounds

register numbers may be remapped to r0..r15, although this functionality should not be relied upon by

the thread. The hardware guarantees the isolation of each thread's register space, thus there is no

possibility of direct register manipulation via an out-of-bounds register access.

Hung Thread

There is no hardware mechanism in the EU to detect a hung thread and such a thread may remain hung

indefinitely. It is expected that one or more hung threads will eventually cause the driver to recognize a

context timeout and take appropriate recovery action.

Instruction Fetch Out of Bounds

The EU implements a full 32-bit instruction address range (with the 4 LSBs don’t care), making it possible

for a thread to attempt to jump to any 16-byte aligned offset in the 32-bit instruction address range.

(Instruction addresses are offsets from the General State Base Address.) The EU does not provide any

type of address checking on instruction fetch requests sent to the memory/cache hierarchy, although

error conditions for memory addresses are reported via the Page Table Error Register and other memory

interface registers.

FPU Math Errors

The EU's floating point units (FPUs) have defined behaviors for traditional floating point errors and do

not generate exceptions. There is no support for signaling FPU math errors as exceptions.

Adds the IEEE Exception Trap Enable bit, which enables trapping IEEE exception flags. If enabled, IEEE

floating-point exceptions set sticky bits in the IEEE Exceptions field of sr0.1. Note that IEEE floating-point

exceptions still do not transfer control to any handler.

Computational Overflow

Depending on source operand types and values, destination type, and the operation being performed,

overflows may occur in the execution pipelines. Many instructions support the overflow (.o) conditional

modifier that assigns flag bits based on whether or not an overflow occurs.

The EU never signals exceptions for overflows. Software must provide any overflow handling.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 465

System Routine Example

The following code sequence illustrates some concepts of the System Routine. It is intended to be just a

shell, without getting into the specifics of each exception handler.

This example contains code for the message registers in the MRF. Other code in this example is useful for

other processor generations.

The example frees enough MRF and GRF space to get the routine started, then jumps to the handler for

the specific exception. Many other implementations are also valid, including single exception servicing

(as opposed to looping) per invocation, and saving only the GRF or MRF space required by the exception

being serviced.

 #define ACC_DISABLE_MASK 0xFFFFFFFD

 #define MASTER_EXCP_MASK 0x7FFFFFFF

 #define SYSROUTINE_SCRATCH_BLKSIZE 16384 // for example

 // Shared function IDs:

 #define DPR 0x04000000

 #define DPW 0x05000000

 // Message lengths:

 #define ML5 0x00500000

 #define ML9 0x00900000

 // Response lengths:

 #define RL0 0x00000000

 #define RL4 0x00040000

 #define RL8 0x00080000

 // Data port block sizes:

 #define BS1_LOW 0x0000

 #define BS1_HIGH 0x0100

 #define BS2 0x0200

 #define BS4 0x0300

 // Scratch Layout:

 #define SCR_OFFSET_MRF 0 .

 #define SCR_OFFSET_GRF 512 // + 16 MRF registers

 #define SCR_OFFSET_ARF 512 + 4096 // + 16 MRF + 128 GRF registers

 // Write data port constants:

 // target=dcache, type= oword_block_wr, binding_tbl_offset=0

 #define DPW 0x000

 // Read data port constants:

 // target=dcache, type= oword_block_rd, binding_tbl_offset=0

 #define DPR 0x000

 Sys_Entry: // Entry point to the System Routine.

 // Disable accumulator for system routine:

 and (1) cr0.0 cr0.0 ACC_DISABLE_MASK {NoMask}

 // Calc scratch offset for this thread into r0.4:

 shr (1) r0.4 sr0.0:uw 6 {NoMask}

 add (1) r0.4 r0.4 sr0.0:ub {NoMask}

 mul (1) r0.4 r0.4 SYSROUTINE_SCRATCH_BLKSIZE {NoMask}

 // Setup m0 with block offset:

466 Doc Ref # IHD-OS-LKF-Vol 9-4.21

 mov (8) m0 r0{NoMask}

 // Save MRF 7..0 (may choose to save the whole MRF).

 add (1) m0.2 r0.4 SCR_OFFSET_MRF {NoMask}

 send (8) null m0 null DPW|ML9|RL0 {NoMask}

 // Save MRF 8..15 (optional; req’ed if sys-routine stays w/in mrf7-0).

 mov (8) m7 r0 {NoMask}

 add (1) m7.2 r0.4 (SCR_OFFSET_MRF + 256) {NoMask}

 send (8) null m7 null DPW|ML9|RL0 {NoMask}

 // Save r0..r1 to system scratch:

 // Note: done as a single register to guarantee external visibility

 // See Use of NoDDClr mov (16) m1 r0 {NoMask}

 send (8) m0 null null DPW|ML2|RL0 {NoMask}

 // Save r2..r3 to free some room:

 mov (16) m3 r2 {NoMask}

 add (1) m0.2 r0.4 SCR_OFFSET_GRF + 64 {NoMask}

 send (8) m0 null null DPW|ML4|RL0 {NoMask}

 // Save r4..r7 to free some room (optional, depending on needs):

 mov (16) m8 r4 {NoMask}

 mov (16) m10 r6 {NoMask}

 add (1) m7.2 r0.4 (SCR_OFFSET_GRF + 128) {NoMask}

 send (8) m7 null null DPW|ML5|RL0 {NoMask}

 // Save r8..r11 to free some room (optional, depending on needs):

 mov (16) m1 r8 {NoMask}

 mov (16) m3 r10 {NoMask}

 add (1) m0.2 r0.4 (SCR_OFFSET_GRF + 256) {NoMask}

 send (8) m0 null null DPW|ML5|RL0 {NoMask}

 // Save r12..r15 to free some room (optional, depending on needs):

 mov (16) m8 r12 {NoMask}

 mov (16) m10 r14 {NoMask}

 add (1) m7.2 r0.4 (SCR_OFFSET_GRF + 384) {NoMask}

 send (8) m7 null null DPW|ML5|RL0 {NoMask}

 // Save selected ARF registers (optional, depending on use):

 // flags, others ...

 // Save f0.0:

 mov (1) r1.0:uw f0.0 {NoMask}

 Next: // Exceptions pending? If not, exit.

 cmp.e (1) f0.0 cr0.4:uw 0:uw {NoMask}

 (f0.0) mov (1) IP EXIT {NoMask}

 // Find highest priority exception:

 lzd (1) r1.1:uw cr0.4:uw {NoMask}

 // Jump table to service routine:

 jmpi (1) r1.1:uw{NoMask}

 mov (1) IP CRService_0 {NoMask}

 mov (1) IP CRService_1 {NoMask}

 mov (1) IP CRService_2 {NoMask}

 ...

 mov (1) IP CRService_15{NoMask}

 mov (1) IP Next

 Service_0:

 // Clear exception from cr0.1.

 // Perform service routine.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 467

 // Jump to exit (or if looping on exceptions, go to next loop).

 ...

 Service_15:

 // Clear exception from cr0.1.

 // Perform service routine.

 // Jump to exit (or if looping on exceptions, go to next loop).

 Exit:

 // Restore f0.0.

 // Restore other ARF registers (as required).

 // Restore r12..r15.

 // Restore r8..r11.

 // Restore r4..r7.

 // Restore r0..r3.

 // Restore m8..m15.

 // Restore m0..m7.

 // Clear Master Exception State bit in cr0.0:

 and (1) cr0.0 cr0.0 MASTER_EXCP_MASK

 nop (16)

Below is a code sequence to programmatically clear the GRF scoreboard in case of a timeout waiting on

a register that may never return.

At this point, all we know is we have a hung thread. We’d like to copy the GRF to scratch memory to

make it visible, but there may be a register that is hung with an outstanding dependency. To get around

any hung dependency, walk the GRF using NoDDChk, using an execution mask of f0 == 0 so we don’t

touch the register contents.

 Clear_Dep:

 mov f0 0x00

 (f0) mov r0 0x00 {NoDDChk}

 (f0) mov r1 0x00 {NoDDChk}

 (f0) mov r2 0x00 {NoDDChk}

 ...

 (f0) mov r127 0x00 {NoDDChk}

 // GRF scoreboard now cleared.

Instruction Set Summary

Instruction Set Characteristics

468 Doc Ref # IHD-OS-LKF-Vol 9-4.21

SIMD Instructions and SIMD Width

Instructions are SIMD (single instruction multiple data) instructions. The number of data elements per

instruction, or the execution size, depends on the data type. For example, the execution size for

instructions operating on 256-bit wide vectors can be up to 8 for 32-bit data types, and be up to 16 for

16-bit data. The maximum execution size for instructions for 8-bit data types is also limited to 16.

An instruction compression mode is supported for 32-bit instructions (including mixed 32-bit and 16-bit

data computation). A compressed instruction works on twice as much SIMD data as that for a non-

compressed instruction. A compressed instruction is converted into two native instructions by the

instruction dispatcher in the EU.

Instructions are executed on a narrower SIMD execution pipeline. Therefore, native instructions take

multiple execution cycles to complete.

Instruction Operands and Register Regions

Most instructions may have up to three operands, two sources and one destination. Each operand is able

to address a register region. Source operands support negate and absolute modifier and channel swizzle,

and the destination operand supports channel mask.

Dual destination instructions are also supported (four-operand instructions in a general sense): One case

is for the implied destination – flag register, where the conditional modifiers and the predicate modifiers

may apply. Another case is the message header creation (implied move or implied assembling of the

header) in the send instruction.

Each execution channel contains an accumulator that is wider than the input data to support back-to-

back accumulation operations with increased precision. The added precision (see accumulator register

description in Execution Environment chapter) determines the maximum number of accumulations

before possible overflow. The accumulator can be pre-loaded through the use of mov. It can also be pre-

loaded by arithmetic instructions such as add or mul, since the result of these instructions can go to the

accumulator. The accumulator registers are per thread and therefore safe for thread switching.

Register access can be direct or register-indirect. Register-indirect register access uses address registers

plus an immediate offset term to compute the register addresses, and only applies to the first source

operand (src0) and/or the destination operand.

There is one address register.

There are 16 address sub-registers.

Each sub-register contains a 16-bit unsigned value. The leading two sub-registers form a special

doubleword that can be used as the descriptor for the send instruction.

Source operand can also be immediate value (also referred to as inline constants). For instructions with

two source operands, only the second operand src1 is allowed to be immediate. For instructions with

only one source operand, the source operand src0 is used and it can be an immediate.

An immediate source operand can be a scalar value of specified type up to 32-bit wide, which is

replicated to create a vector with length of Execution Size. An immediate operand can also be a special

Doc Ref # IHD-OS-LKF-Vol 9-4.21 469

32-bit vector with 8 elements each of 4-bit signed integer value, or a 32-bit vector with 4 elements each

of 8-bit restricted float value.

Instruction Execution

It is implied that all instructions operate across all channels of data unless otherwise specified either via

destination mask, predication, execution mask (caused by SIMD branch and loop instructions), or

execution size.

Instruction execution size can be specified per instruction, from scalar (ExecSize = 1) up to the maximal

execution size supported for the data type, with the restriction that execution size can only be in power

of 2.

Instruction Formats

This section shows the machine formats of the instruction set. The instructions in the architecture have a

fixed length of 128 bits in the native format. A compact format, discussed separately in this volume, can

represent some instructions using 64 bits. Out of the 128 bits in the native format, there are 120 bits in

use, and the remaining bits are reserved for future extensions. One instruction consists of instruction

fields that control various stages of execution. These fields are roughly grouped into the 4 DWords as

follows:

• Instruction Operation Doubleword (DW0) contains the Opcode and other general instruction

control fields.

• Instruction Destination Doubleword (DW1) specifies the destination operand (dst) and the register

file and type of source operands.

• Instruction Source 0 Doubleword (DW2) contains the first source operand (src0).

• Instruction Source 1 Doubleword (DW3) contains the second source operand (src1) and is used to

hold any 32-bit immediate source (Imm32 as src0 or src1).

Instructions with one source operand of type DF, Q, or UQ can use an Imm64 64-bit immediate source

operand in DWord 2 and DWord3.

Most instructions have 1 or 2 source operands and use a common instruction format. Within that format,

there are variations based on AddrMode and AccessMode. There is a separate instruction format for a

small number of instructions with 3 source operands. Send, math, and branching instructions have

format variations described separately.

The 3-source instructions have the following restrictions:

• Only GRF registers can be sources and only GRF registers can be the destination.

• Subregister numbers have DWord granularity if AccessMode is Align16.

• AccessMode is Align16, uses Align16-style swizzling, with extra replication control. There is no

other regioning support.

•

470 Doc Ref # IHD-OS-LKF-Vol 9-4.21

The next two subsections describe the instruction formats for various processor generations using tables.

The following diagrams provide another view of the same information. The first diagram is for native

instructions with one or two source operands.

Instruction Format – 1-src and 2-src

The next diagram is for native instructions with three source operands.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 471

Instruction Format – 3-src

472 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Instruction Format – 3-src

Doc Ref # IHD-OS-LKF-Vol 9-4.21 473

Instruction Fields

This section contains two large tables that together describe all instruction fields. The first table describes

common instruction fields that are not specific to a source or destination operand. The second table

describes fields used to describe source or destination operands, including fields that describe register

regioning and immediate operand fields.

Notable changes for instructions include adding three new data types (Q, UQ, HF), widening all type

fields to four bits each to accommodate the new type encodings, providing a new source modifier

interpretation for logical operations, widening the AddrSubRegNum fields to four bits to accommodate

16 (rather than 8) address subregisters, and supporting 64-bit immediate (Imm64) source values for

instructions with single source operands.

In the assembler syntax, some fields appear in the positions used for destination or source operands but

are not normal operands. Such fields appear in the Common Instruction Fields table, notably the JIP and

UIP instruction offsets used in some flow control instructions.

Common Instruction Fields (Alphabetically by Short Name)

Field Description

AccWrCtrl/

 BranchCtrl

Accumulator Write Control. Enable or disable implicitly writing results to the accumulator as

well as to the destination.

 0 = Do not write results to the accumulator; write results only to the destination.

 1 = AccWrEn. Write results to the accumulator as well as to the destination.

 This bit should not be set if the accumulator is the explicit destination operand.

 Some instructions do not allow this option, including mov and send.

Branch Control. Used by the goto instruction to control branching. See the goto instruction

description for more information about BranchCtrl.

CmptCtrl Compaction Control. Indicates whether the instruction is compacted to the 64-bit compact

instruction format. When this bit is set, the 64-bit compact instruction format is used. The EU

decodes the compact format using lookup tables internal to the hardware, but documented for

use by software tools. Only some instruction variations can be compacted, the variations

supported by those lookup tables and the compact format. See EU Compact Instruction Format

for more information.

 0 = No Compaction. No compaction. 128-bit native instruction supporting all instruction

options.

 1 = CmptCtrl. Compaction is enabled. 64-bit compact instruction supporting only some

instruction variations.

CondModifier
Condition Modifier. This field sets the flag register based on internal conditional signals output

from the execution pipe such as sign, zero, overflow, NaNs, etc. If this field is 0000b, no flag

registers are updated. Flag registers are not updated for instructions with embedded compares.

This field applies to all instructions except send, sendc, and math.

0000b = Do not modify the flag register (normal)

0001b = Zero or Equal (.z or .e)

0010b = Not Zero or Not Equal (.nz or .ne)

474 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Field Description

0011b = Greater than (.g)

0100b = Greater than or equal (.ge)

0101b = Less than (.l)

0110b = Less than or equal (.le)

0111b = Reserved

1000b = Overflow (.o)

1001b = Unordered with Computed NaN (.u)

1010b-1111b = Reserved

DepCtrl Destination Dependency Control. This field selectively disables destination dependency check

and clear for this instruction.

 When it is set to 00b, normal destination dependency control is performed for the instruction;

hardware checks for destination hazards to ensure data integrity. Specifically, a destination

register dependency check is conducted before the instruction is made ready for execution.

After the instruction is executed, the destination register scoreboard is cleared when the

destination operands retire.

 When NoDDClr is set, the destination register scoreboard is not cleared when destination

operands retire. When NoDDChk is set, hardware does not check for destination register

dependencies before the instruction is made ready for execution. NoDDClr and NoDDChk are

not mutually exclusive; both can be set.

 When this field is not 00b, hardware does not protect against destination hazards for the

instruction. These settings are typically used to assemble data in a fine grained fashion (for

example, a matrix-vector compute with dot-product instructions), where data integrity is

guaranteed by software based on the intended usage of instruction sequences.

 00b = Destination dependency checked and cleared (normal).

 01b = NoDDClr. Destination dependency checked but not cleared.

 10b = NoDDChk. Destination dependency not checked but cleared.

 11b = NoDDClr, NoDDChk. Destination dependency not checked and not cleared.

 See the Destination Hazard and the Use of NoDDClr sections for more information.

EOT End of Thread. For a send or sendc instruction, this bit controls thread termination. It is not

used for other instructions. For a send or sendcinstruction, if this field is set, the EU terminates

the thread and also sets the EOT bit in the message sideband.

 0 = The thread is not terminated.

 1 = End of thread (EOT).

ExDesc Extended message descriptor. A 32 bit immediate extended message descriptor for send and

sendc instructions. This field is not used for other instructions.

ExecSize Execution Size. Specifies the number of parallel execution channels and data elements for the

instruction, a power of 2 from 1 to 32. The size cannot exceed the maximum number of

channels allowed for the largest data type specified for a source or destination operand.

ExecSize x largest data type size in bytes <= 64.

 000b = 1 Channels (scalar operation).

 001b = 2 Channels. Any data type.

 010b = 4 Channels. Any data type.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 475

Field Description

 011b = 8 Channels. Any data type.

 100b = 16 Channels. 4-byte or smaller data types. Excludes DF, Q, and UQ types.

 101b = 32 Channels. 2-byte or 1-byte data types. Excludes D, DF, F, Q, UD, and UQ types.

 110b-111b = Reserved.

 An operand's Width must be <= ExecSize.

FC Function Control. Specifies the extended math function carried out by the mathinstruction. Not

used for any other instruction. This field is in the same position as the CondModifier instruction

field, so the math instruction does not support conditional modifiers.

 See the math Extended Math Function instruction description for more information about this

field.

FlagRegNum/

FlagSubRegNum

Flag Register Number/Flag Sub-Register Number. Selects the 32-bit flag register (f0 or f1)

and the 16-bit flag subregister (.0 or .1). The specified flag subregister is the source for any

predication and the destination for new flag values produced by any enabled conditional

modifier. A flag subregister can be both a predication source and a conditional modifier

destination in the same instruction. The number of flag bits used or updated depends on the

execution size.

 00b f0.0

 01b f0.1

 10b f1.0

 11b f1.1

JIP Jump Instruction Pointer. A Doubleword Signed Integer offset relative to the current IP (which

references the current instruction) in units of bytes. Typically an immediate value in the

instruction. For the brc (Branch Converging) instruction, both JIP and UIP can be contained in a

register.

MaskCtrl Mask Control (formerly WECtrl/Write Enable Control). This flag disables the normal write

enables; it should normally be 0.

 0 = Use the normal write enables in Dst.ChanEn (normal setting).

 1 = NoMask. Write all channels except those disabled by predication or by other masks besides

the write enables.

 MaskCtrl = NoMask also skips the check for PcIP[n] == ExIP before enabling a channel, as

described in the Evaluate Write Enable section.

NibCtrl Nibble Control. This field is used in some instructions along with QtrCtrl. See the description of

QtrCtrl below. NibCtrl is only used for SIMD4 instructions with a 64bit datatype as source or

destination.

 0 = Use an odd 1/8th for DMask/VMask and ARF (first, third, fifth, or seventh depending on

QtrCtrl).

 1 = Use an even 1/8th for DMask/VMask and ARF (second, fourth, sixth, or eighth depending

on QtrCtrl).

 Note that if eighths are given zero-based indices from 0 to 7, then NibCtrl = 0 indicates even

indices and NibCtrl = 1 indicates odd indices.

NoSrcDepSet
No Source Dependency Set. In send, sendc, sends and sendsc instruction, this bit controls the

setting of GRF source dependency. The source dependencies of both sources are considered

together.

When it is set to 0, normal write after read (WAR) dependency control is performed for the

476 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Field Description

instruction; hardware checks for write after read hazard and ensure data integrity. Specifically

source register dependency is set by the current instruction and a destination register

dependency check is expected to be conducted before the next instruction is made ready for

execution.

When it is set to 1, hardware does not protect against write after read data hazard for the

instruction. This setting is used in send instruction where the same source data is reused without

modification by multiple send instruction.

Software must send to the same shared function which must not be in fault and stream page

fault mode and guarantee one of the following for all the source registers used in a send

instruction to ensure data integrity.

• The last send instruction before the instruction which modifies its source(s) does not use

this setting.

• The instruction which modifies the source(s) is either dependent on the destination

register of the last send instruction with the source(s) or has instruction before it which

does so.

• The instruction which modifies the source(s) is either dependent on the source register of

the last send instruction with the source(s) which does not use this setting or has

instruction before it which does so.

0 = source dependency is set (normal).

1 = NoSrcDepSet. Source dependency is not set.

OpCode
Operation Code. Contains the instruction operation code. Each opcode used is given a unique

mnemonic. For example, the opcode 0x01 has the mnemonic mov indicating a Move instruction.

 See the Opcode Encoding section for details of opcode encoding.

PredCtrl
Predicate Control. This field, together with PredInv, controls generating the predication mask

(PMask) for the instruction. It allows per-channel conditional execution the instruction based on

the content of the selected flag register. The encoding depends on the access mode. See the

Predication section for more information about predication.

In Align16 access mode, there are eight encodings (including no predication). All encodings are

based on group-of-4 predicate bits, including channel sequential, replication swizzles and

horizontal any or all operations. The same configuration is repeated for each group-of-4

execution channels.

In Align1 access mode, there are twelve encodings (including no predication). The encodings

apply to all execution channels with explicit channel grouping from a single channel up to a

group of 16 channels.

Predicate Control in Align16 access mode:

0000b = No predication (normal).

0001b = Predication with sequential flag channel mapping.

0010b = Predication with replication swizzle .x.

0011b = Predication with replication swizzle .y.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 477

Field Description

0100b = Predication with replication swizzle .z.

0101b = Predication with replication swizzle .w.

0110b = Predication with .any4h.

0111b = Predication with .all4h.

1000b-1111b = Reserved.

Predicate Control in Align1 access mode:

0000b = No predication (normal).

0001b = Predication with sequential flag channel mapping.

0010b = Predication with .anyv (f0.0 OR f1.0 on the same channel).

0011b = Predication with .allv (f0.0 AND f1.0 on the same channel).

0100b = Predication with .any2h (any in group of 2 channels).

0101b = Predication with .all2h (all in group of 2 channels).

0110b = Predication with .any4h (any in group of 4 channels).

0111b = Predication with .all4h (all in group of 4 channels).

1000b = Predication with .any8h (any in group of 8 channels).

1001b = Predication with .all8h (all in group of 8 channels).

1010b = Predication with .any16h (any in group of 16 channels).

1011b = Predication with .all16h (all in group of 16 channels).

1100b = Predication with .any32h (any in group of 32 channels).

1101b = Predication with .all32h (all in group of 32 channels).

1110b-1111b = Reserved.

PredInv Predicate Inverse. Together with PredCtrl, controls generation of the predication mask (PMask)

for the instruction. When it is set and PredCtrl is not 0000b, predication uses the inverse of the

predication bits produced by PredCtrl. In other words, the effect of PredInv happens after the

effects of PredCtrl.

 This field is ignored if PredCtrl is 0000b; there is no predication.

 0 = +. Positive polarity of predication. Use the predication mask produced by PredCtrl.

 1 = -. Negative polarity of predication. If PredCtrl is nonzero, invert the predication mask.

 PMask is the final predication mask produced by the effects of both fields.

QtrCtrl
Quarter Control. This field provides explicit control for ARF selection.

This field combined with ExecSize determines which channels are used for the ARF registers.

Along with NibCtrl, 1/8 DMask/VMask and ARF can be selected.

QtrCtrl NibCtrl ExecSize Syntax Description

478 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Field Description

00b 0 8 1Q Use first quarter for DMask/VMask.

 Use first half for everything else.

01b 0 8 2Q Use second quarter for DMask/VMask.

 Use second half for everything else.

10b 0 8 3Q Use third quarter for DMask/VMask.

 Use first half for everything else.

11b 0 8 4Q Use fourth quarter for DMask/VMask.

 Use second half for everything else.

00b 0 16 1H Use first half for DMask/VMask.

 Use all channels for everything else.

10b 0 16 2H Use second half for DMask/VMask.

 Use all channels for everything else.

00b 0 4 1N Use first 1/8th for DMask/VMask and ARF.

00b 1 4 2N Use second 1/8th for DMask/VMask and ARF.

01b 0 4 3N Use third 1/8th for DMask/VMask and ARF.

01b 1 4 4N Use fourth 1/8th for DMask/VMask and ARF.

10b 0 4 5N Use fifth 1/8th for DMask/VMask and ARF.

10b 1 4 6N Use sixth 1/8th for DMask/VMask and ARF.

11b 0 4 7N Use seventh 1/8th for DMask/VMask and ARF.

11b 1 4 8N Use eighth 1/8th for DMask/VMask and ARF.

2H is only allowed for SIMD16 instruction in Single Program Flow mode (SPF = 1).

NibCtrl is only allowed for SIMD4 instructions with a 64bit datatype as source or destination

type.

Reg32 In a send, sendc, sends or sendsc instruction refers to the option of providing the message

descriptor field DWords correspondingly as the first dwords of the Address Register rather than

as an immediate operand.

Saturate Saturate. Enables or disables destination saturation.

 When it is set, output values to the destination register are saturated. The saturation operation

depends on the destination data type. Saturation is the operation that converts any value

outside the saturation target range for the data type to the closest value in the target range.

 For a floating-point destination type, the saturation target range is [0.0, 1.0]. For a floating-

point NaN, there is no "closest value"; any NaN saturates to 0.0. Note that enabling Saturate

overrides all of the NaN propagation behaviors described for various numeric instructions. Any

floating-point number greater than 1.0, including +INF, saturates to 1.0. Any negative floating-

point number, including -INF, saturates to 0.0. Any floating-point number in the range 0.0 to 1.0

is not changed by saturation.

 For an integer destination type, the maximum range for that type is the saturation target range.

For example, the saturation range for B (Signed Byte Integer) is [-128, 127].

 When Saturate is clear, destination values are not saturated. For example, a wrapped result

(modulo) is output to the destination for an overflowed integer value. See the Numeric Data

Types section for information about data types and their ranges.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 479

Field Description

 0 = No destination modification (normal).

 1 = sat. Saturate the output.

SFID Shared Function ID. Specifies a shared function that is the target of a sendor sendc instruction.

This field is not used for any other instructions. This field is in the same position as the

CondModifier instruction field, so the send and sendcinstructions do not support conditional

modifiers.

ThreadCtrl
Thread Control. This field provides explicit control for thread switching.

If this field is set to 00b, it is up to the Execution Unit to manage thread switching. This is the

normal operating mode. In this mode, for example, if the current instruction cannot proceed

due to operand dependencies, the EU switches to the next available thread to fill the compute

pipe. For another example, if the current instruction is ready to run but another thread with

higher priority also has an instruction ready, the EU switches to that thread.

If this field is Switch, a forced thread switch occurs after the current instruction executes and

before the next instruction. In addition, a long delay (longer than the execution pipe latency) for

the current thread is introduced for the thread. Particularly, the instruction queue of the current

thread is flushed after the current instruction is dispatched for execution.

If this field is Atomic, the next instruction gets highest priority in the thread arbitration for the

execution pipelines.

Switch is designed primarily as a safety feature in case there are race conditions for certain

instructions.

00b = Normal Thread Control. Execution may or may not be preempted by another thread

following this instruction.

01b = Atomic. Prevent any thread switch immediately following this instruction. Always execute

the next instruction (which may not be next sequentially if the current instruction branches).

Atomic can be used with send, sends, sendc, sendsc ONLY.

10b = Switch. Force a switch to another thread after this instruction and before the next

instruction.

11b = NoPreempt: Thread won’t stop on this instruction even after receiving a pre-emption

request.

UIP Update Instruction Pointer. A Doubleword Signed Integer offset relative to the current IP

(which references the current instruction) in units of bytes. Typically, an immediate value in the

instruction. For the brc (Branch Converging) instruction, both JIP and UIP can be contained in a

register.

In the following table of operand fields, use just the last part of the field name. For example, to find the

Src1.ChanSel field, look for ChanSel.

480 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Source or Destination Operand Fields (Alphabetically by Short Name)

Field Description

AddrImm Address Immediate. A 10-bit signed integer offset in units of bytes, only used with the Indirect

Addressing Mode. In that addressing mode, the Address Immediate value is added to an

address subregister value to determine the operand's address in the GRF.

 Allowed for any GRF register operand, destination or source. ARF registers cannot be accessed

with indirect addressing.

 The Address Immediate field cannot cover the 4K-byte range of the thread's GRF. Whatever

address subregister value is used along with this offset provides a window into the GRF, limited

by the offset range.

 In the Align16 Access Mode, the low four bits of AddrImm are zero and do not appear in the

instruction format.

 Format = S9

 Range = [-512, 511]

AddrMode Addressing Mode. Whether the destination register and subregister are encoded in the

instruction (Direct Addressing) or calculated using the contents of an address subregister and

an offset (Indirect Addressing). This field applies to source and destination register operands,

for instructions with 1 or 2 source operands.

 0 = Direct Addressing ("Direct"). Direct register addressing.

 1 = Indirect Addressing ("Register-Indirect" or "Indirect"). Register-indirect register addressing.

 Instructions with 3 source operands use Direct Addressing.

AddrSubRegNum Address Sub-Register Number. The address register contains 16 Word-sized subregisters.

This field is only used with the Indirect Addressing Mode and specifies the address subregister

containing a value added to the Address Immediate value to determine the operand address.

 Format = U4

 Range = [0, 15]

 Some variations of Indirect Addressing use multiple address subregisters, where

AddrSubRegNum determines the first subregister used.

ChanEn Channel Enable. Dst.ChanEn, used only for the destination operand and only in the Align16

Access Mode.

 Provides four channel enable bits applied modulo four to all ExecSize channels. For example,

0xF enables all channels, 0 disables all channels, 0xA enables odd-numbered channels, and so

on.

 The assembler mnemonics are x, y, z, and w for channels 0, 1, 2, and 3 respectively.

 If MaskCtrl is 1 (mnemonic NoMask) then all channels are enabled regardless of the ChanEn

value, equivalent to ChanEn of 0xF (xyzw). Predication and execution masking, in addition to

ChanEn and MaskCtrl, determine what channels are actually written.

 For i in 0, 1, 2, 3:

 Bit i = 0 For channel j where j % 4 == i, disable writing that channel.

 Bit i = 1 For channel j where j % 4 == i, enable writing that channel.

ChanSel Channel Select. This field controls the channel swizzle for a non-immediate source operand in

the Align16 access mode. It is not used for immediate operands, destination operands, or in the

Align1 access mode. The normally sequential channel assignment can be altered by explicitly

identifying neighboring data elements for each channel. Out of the 8-bit field, 2 bits are

assigned for each channel within the group of 4. ChanSel[1:0], [3:2], [5:4] and [7:6] are for

channel 0 (x), 1 (y), 2 (z), and 3 (w) in the group, respectively. When operating on 64-bit

Doc Ref # IHD-OS-LKF-Vol 9-4.21 481

Field Description

operands, these channel selects must be used in pairs to select a contiguous 64-bit source.

 For example with an execution size of 8, r0.0<4>.zywz:f assigns the channels as follows: Chan0

= Data2, Chan1 = Data1, Chan2 = Data3, Chan3 = Data2; Chan4 = Data6, Chan5 = Data5,

Chan6 = Data7, Chan7 = Data6.

 The 2-bit Channel Selection field for each channel within the group of 4 is defined as:

 00b = x. Channel 0 is selected for the corresponding execution channel.

 01b = y. Channel 1 is selected for the corresponding execution channel.

 10b = z. Channel 2 is selected for the corresponding execution channel.

 11b = w. Channel 3 is selected for the corresponding execution channel.

 Note: When using channel select for 64-bit operands, the valid selects are .xy and .zw. This is

required to pick a pair of DWords.

Desc Message descriptor. A 31 bit immediate message descriptor for send, sendc, sends and sendsc

instructions.This field is not used for other instructions.

DstType
Destination Type. Dst.DstType specifies the numeric data type of the destination operand dst.

The bits of the destination operand are interpreted as the identified numeric data type, rather

than coerced into a type implied by the operator. For a send or sendc instruction, this field

applies to CurrDst, the current destination operand. Three source instructions use a 3-bit

encoding that allows fewer data types.

Encoding for one or two source instructions:

0000b = :ud. Unsigned Doubleword integer.

0001b = :d. Signed Doubleword integer.

0010b = :uw. Unsigned Word integer.

0011b = :w. Signed Word integer.

0100b = :ub. Unsigned Byte integer.

0101b = :b. Signed Byte integer.

0110b = :uq. Unsigned Quadword integer.

0111b = :q. Signed Quadword integer.

1000b = :hf. Half Float (16-bit).

1001b = :f. Single precision Float (32-bit).

1010b = :df. Double precision Float (64-bit).

1011b = :nf. Native precision Float (66-bit).

1100b to 1111b = Reserved.

Encoding for ternary Instructions

When ExecutionDatatype is 1

482 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Field Description

000b = :hf. Half precision Float (16-bit).

001b = :f. Single precision Float (32-bit).

010b = :df. Double precision Float (64-bit).

011b - 111 = Reserved

When Execution Datatype is 0

000b = :ud. Unsigned Doubleword Integer.

001b = :d. Signed Doubleword Integer.

010b = :uw. Unsigned Word Integer.

011b = :w. Signed Word Integer.

100b = :ub. Unsiged ByteInteger

101b = :b. Signed Byte Integer

 110b - 111b = Reserved

ExDesc Extended message descriptor. A 32 bit immediate extended message descriptor for send,

sendc, sends and sendsc instructions.This field is not used for other instructions.

HorzStride Horizontal Stride. Is the distance in units of data element size between two adjacent data

elements within a row (horizontal) in the register region for an operand.

 A horizontal stride of 0 is used for a row that is one-element wide, useful when an instruction

repeats a column value or repeats a scalar value. For example, adding a single column to every

column in a 2D array or adding a scalar to every element in a 2D array uses HorzStride of 0.

 A horizontal stride of 1 indicates that elements are adjacent within a row.

 References to HorzStride in this volume normally reference the value not the encoding, so

there are references to HorzStride of 4, which is encoded as 11b.

 This field applies to both source and destination register operands.

 This field is used with both direct and indirect addressing.

 00b = 0 Elements

 01b = 1 Element

 10b = 2 Elements

 11b = 4 Elements

 See the Register Region Restrictions section for rules that constrain HorzStride in relation to

other region parameters.

Imm[28:0] A 29-bit immediate message descriptor for a send or sendc instruction. This field is not used for

other instructions.

Imm32
A 32-bit immediate data field for an immediate source operand. Only one source operand can

be immediate, the last source operand. Of course a destination operand is never immediate.

For a two-source instruction, src1 can be immediate; for a one-source instruction src0 can be.

The source type for an immediate operand cannot be B or UB (signed or unsigned byte). The

source type can be one of the packed vector types that are only allowed as immediate

operands: V, UV, or VF.

For the W or UW (signed or unsigned word) source types, the 16-bit value must be replicated in

Doc Ref # IHD-OS-LKF-Vol 9-4.21 483

Field Description

both the low and high words of the 32-bit immediate value.

The low order bits are directly used when fewer than 32-bits are needed for the source type.

The 32-bit value is not coerced into the designated type.

See the Numeric Data Types section for information about data types and their ranges.

In send, sendc, sends or sendsc instruction, refers to the 31bit immediate message descriptor

field and the 32bit immediate extended message descriptor field.

Imm64 A 64-bit immediate data field for an immediate source operand, only used for a one-source

instruction with a 64-bit Source Type (DF, Q, or UQ).

RegFile Register File. Select a source or destination register file or indicate an immediate source

operand:

 00b = ARF Architecture Register File. Only allowed for src0 or destination.

 01b = GRF General Register File. Allowed for any source or destination.

 10b = Reserved.

 11b = Immediate operand. Only allowed for the last source operand. Not allowed for the

destination operand or for any other source operand. Note that for flow control instructions

requiring two offsets, regfile of source0 is required to be immediate since the 64b for

immediates occupy the DW2 and DW3.

RegNum Register Number. The register number for the operand. For a GRF register, is the part of a

register address that aligns to a 256-bit (32-byte) boundary. For an ARF register, this field is

encoded such that MSBs identify the architecture register type and LSBs provide the register

number.

 An ARF register can only be dst or src0. Any src1 or src2 operands cannot be ARF registers.

 RegNum and SubRegNum together provide the byte-aligned address for the origin of a

register region. RegNum provides bits 12:5 of that address. For one-source and two-source

instructions, SubregNum provides bits 4:0. For three-source instructions, the address must be

DWord-aligned; SubRegNum provides bits 4:2 of the address and bits 1:0 are zero.

 This field is present for the direct addressing mode and not present for indirect addressing.

 This field applies to both source and destination operands.

 Format = U8, if RegFile = GRF.

 0x00 to 0x7F = Register number in the range [0, 127].

 0x80 to 0xFF = Reserved.

 Format = 8-bit encoding, if RegFile = ARF.

 This field encodes the architecture register type as well as providing the register number. See

the ARF Registers Overview section and the sections for individual ARF registers for details.

RepCtrl Replicate Control. This field is only present in three-source instructions, for each of the three

source operands. It controls replication of the starting channel to all channels in the execution

size. ChanSel does not apply when Replicate Control is set. This is applicable to 32b datatypes

and 16b datatype. 64b datatypes cannot use the replicate control.

 0 = No replication.

 1 = Replicate across all channels.

SelReg32Desc Select Reg32 for message descriptor. In sends or sendsc instruction, refers to the selection of

Reg32 for the message descriptor field.

 0 = Desc.

 1 = Reg32. First Dword of Address Register is used for message descriptor.

484 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Field Description

SpecialAcc Special Accumulator. Specify the accumulator numbers used by the IEEE macro instructions.

The 8 special accumulators, acc2 to acc9 are encoded consecutively from 0000b to 0111b

and noacc, indicating no special accumulator used is encoded as 1000b.

SrcMod
Source Modifier. Specify any numeric (normally) or logical (for logic instructions) modification

to a source value before delivery to the execution pipe.

The numeric value of each data element of a source operand can optionally have its absolute

value taken, its sign inverted (arithmetic negation), or both (absolute value followed by

arithmetic negation producing a guaranteed negative value).

When used with logic instructions (and, not, or, xor), this field indicates whether the source bits

are inverted (bitwise NOT) before delivery to the execution pipe, regardless of the source type.

This field only applies to source operands. It does not apply to the destination.

This field is not present for an immediate source operand.

For no modification, there is no assembler notation or syntax.

Encoding for all instructions other than logic instructions:

00b = No modification (normal).

01b = (abs). Absolute value.

10b = -. Negation.

11b = -(abs). Negation of the absolute value (forced negative value).

Encoding for logic instructions:

00b = No modification (normal).

01b = No modification (normal). This encoding cannot be selected in the assembler syntax.

10b = - Indicates a bitwise NOT, inverting the source bits.

11b = No modification (normal). This encoding cannot be selected in the assembler syntax.

SrcType
Source Type. Specifies the numeric data type of a source operand. In a two-source instruction,

each source operand has its own source type field. In a three-source instruction, one source

type is used for all three source operands.

The bits of a source operand are interpreted as the identified numeric data type, rather than

coerced into a type implied by the operator.

Depending on the RegFile field for the source, this field uses one of two encodings. For a non-

immediate source (from a register file), use the Source Register Type Encoding, which is

identical to the Destination Type encoding. For an immediate source, use the Source Immediate

Type Encoding, which does not support signed or unsigned byte immediate values and does

support the three packed vector types, V, UV, and VF.

Note that three-source instructions do not support immediate operands, that only the second

source (src1) of a two-source instruction can be immediate, and that 64-bit immediate values

(DF, Q, or UQ) can only be used with one-source instructions.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 485

Field Description

In a two-source instruction with a V (Packed Signed Half-Byte Integer Vector) or UV (Packed

Unsigned Half-Byte Integer Vector) immediate operand, the other source operand must have a

type compatible with packed word execution mode, one of B, UB, W, or UW.

Note that DF (Double Float) and HF (Half Float) have different encodings in the Source Register

Type Encoding and the Source Immediate Type Encoding.

The Source Register Type Encoding and Source Immediate Type Encoding lists apply to

instructions with one or two source operands.

Source Register Type Encoding:

0000b = UD. Unsigned Doubleword integer.

0001b = D. Signed Doubleword integer.

0010b = UW. Unsigned Word integer.

0011b = W. Signed Word integer.

0100b = UB. Unsigned Byte integer.

0101b = B. Signed Byte integer.

0110b = UQ. Unsigned Quadword integer.

0111b = Q. Signed Quadword integer.

1000b = HF. Half Float (16-bit).

1001b = F. Single precision Float (32-bit).

1010b = DF. Double precision Float (64-bit).

1011b = :nf. Native precision Float (66-bit).

1100b to 1111b = Reserved.

Source Immediate Type Encoding:

0000b = UD. Unsigned Doubleword integer.

0001b = D. Signed Doubleword integer.

0010b = UW. Unsigned Word integer.

0011b = W. Signed Word integer.

0100b = UV. Packed Unsigned Half-Byte Integer Vector, 8 x 4-Bit Unsigned Integer.

0101b = V. Packed Signed Half-Byte Integer Vector, 8 x 4-Bit Signed Integer.

0110b = UQ. Unsigned Quadword integer.

0111b = Q. Signed Quadword integer.

1000b = HF. Half Float (16-bit).

1001b = F. Single precision Float (32-bit).

486 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Field Description

1010b = DF. Double precision Float (64-bit).

1011b = VF. Packed Restricted Float Vector, 4 x 8-Bit Restricted Precision Floating-Point

Number.

1100b to 1111b = Reserved.

Three source instructions can use operands with mixed-mode precision. When SrcType field is

set to :f or :hf it defines precision for source 0 only, and fields Src1Type and Src2Type define

precision for other source operands:

 0b = :f. Single precision Float (32-bit).

 1b = :hf. Half precision Float (16-bit).

Encoding for ternary Instructions

When ExecutionDatatype is 1

000b = :hf. Half precision Float (16-bit).

001b = :f. Single precision Float (32-bit).

010b = :df. Double precision Float (64-bit).

011b - 111 = Reserved

When Execution Datatype is 0

000b = :ud. Unsigned Doubleword Integer.

001b = :d. Signed Doubleword Integer.

010b = :uw. Unsigned Word Integer.

011b = :w. Signed Word Integer.

100b = :ub. Unsiged Byte Integer

101b = :b. Signed Byte Integer

 110b - 111b = Reserved

SubRegNum
Sub-Register Number. The subregister number for the operand. For a GRF register, is the byte

address within a 256-bit (32-byte) register. For an ARF register, determines the sub-register

number according to the specified encoding for the given architecture register.

RegNum and SubRegNum together provide the byte-aligned address for the origin of a GRF

register region. RegNum provides bits 12:5 of that address. For one-source and two-source

instructions, SubregNum provides bits 4:0. For three-source instructions, the address must be

DWord-aligned; SubRegNum provides bits 4:2 of the address and bits 1:0 are zero.

Note: The recommended instruction syntax uses subregister numbers within the GRF in units of

actual data element size, corresponding to the data type used. For example for the F (Float)

type, the assembler syntax uses subregister numbers 0 to 7, corresponding to subregister byte

Doc Ref # IHD-OS-LKF-Vol 9-4.21 487

Field Description

addresses of 0 to 28 in steps of 4, the element size.

This field is present for the direct addressing mode and not present for indirect addressing.

This field applies to both source and destination operands.

Format = U5, if RegFile = GRF and the instruction has fewer than three source operands.

0x00 to 0x1F = Sub-Register number in the range of [0, 31].

Format = U3, if RegFile = GRF and the instruction has three source operands.

0x0 to 0x7 = Sub-Register number MSBs in the range of [0,7]. The two LSBs are zero.

Format = U4, if RegFile = GRF and the instruction has three source operands.

 0x0 to 0x15 = Sub-Register number MSBs in the range of [0,15].

Format = 5-bit encoding, if RegFile = ARF.

See the ARF Registers Overview section and the sections for individual ARF registers for details.

VertStride
Vertical Stride. The vertical stride of a source operand's register region in units of data

element size.

Supported values are 0, powers of 2 from 1 to 32, and a special encoding used for indirect

addressing in Align1 mode.

Values greater than 32 are not supported due to the restriction that a source operand must

reside within two adjacent 256-bit registers (64 bytes total).

The special encoding 1111b (0xF) is only valid when the operand is in register-indirect

addressing mode (AddrMode = 1). If this field is set to 0xF, one or more sub-registers of the

address registers may be used to compute source addresses. Each address sub-register

provides the origin for a row of data elements. The number of address sub-registers used is

equal to instruction's ExecSize / source operand's Width.

This field only applies to source operands. It does not apply to the destination.

For Align16 access mode, only encodings of 0000b, 0010b, and 0011b are allowed. Other codes

are reserved.

Note 1: A Vertical Stride larger than 32 is not allowed due to the restriction that a source

operand must reside within two adjacent 256-bit registers (64 bytes total).

Note 2: In Align16 access mode, as encoding 1111b is reserved, only single-index indirect

addressing is supported.

Note 3: If indirect addressing is supported for src1, the encoding 1111b is reserved for src1 and

only single-index indirect addressing is supported.

Note 4: The encoding 0010b is used for 64-bit operands (types DF, Q, or UQ).

0000b = 0 Elements

0001b = 1 Element. Align1 mode only.

0010b = 2 Elements

488 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Field Description

0011b = 4 Elements

0100b = 8 Elements. Align1 mode only.

0101b = 16 Elements (applies to byte or word operands only). Align1 mode only.

0110b = 32 Elements (applies to byte operands only). Align1 mode only.

0111b-1110b = Reserved.

1111b = VxH or Vx1 mode (only valid for register-indirect addressing in Align1 mode).

Width Width. The number of elements in the horizontal dimension of the region for a source

operand. This field cannot exceed the ExecSize field of the instruction.

 This field only applies to source operands. It does not apply to the destination.

 000b = 1 Element

 001b = 2 Elements

 010b = 4 Elements

 011b = 8 Elements

 100b = 16 Elements

 101b-111b = Reserved

 Note that with ExecSize of 32, because the maximum Width is 16, there are at least two rows in

a source region.

Align1 Ternary Operations Field Definition

Field Description

Execution

Datatype

This field defines common data type for all sources and destination operands.

 1 - Float

 0 - Integer

Src HStride Source stride is required for regioning/accessing datatypes of varied size.

 00 - 0 elements

 01 - 1 elements

 10 - 2 elements

 11 - 4 elements

Src Vstride Source Vertical Stride is required for regioning/accessing datatypes of varied size. It is one way to

obtain a vector of scalars.

 00 - 0 elements

 01 - 2 elements

 10 - 4 elements

 11 - 8 elements

 Note: Applicable to Src0 and Src1 ONLY.

Src Regfile Src0Regfile

 0 - GRF

1 – Immediate

1 - (Src0.Type == Native Float) ? ARF : Immediate.

(Restriction : Only valid ARF type is Accumulator)

Doc Ref # IHD-OS-LKF-Vol 9-4.21 489

Field Description

Src1Regfile

 0 - GRF

 1 - ARF (Restriction : Only valid ARF type is Accumulator)

Src2Regfile

 0 - GRF

 1 - Immediate

DstRegfile 0 - GRF

 1 - ARF (Restriction: Only valid ARF type is Accumulator)

Dst Hstride Destination horizontal stride is required for striding based on execution size or packing the

destination datatype

 0 - 1 element

 1 - 2 elements

Native Instruction Layouts

This section describes the Execution Unit instruction formats.

DWord 0, bits 31:0 of the 128-bit instruction, has the same format regardless of the number of source

operands.

The following three tables cover the most common instruction format, for instructions with 1 or 2 source

operands; then the format for the few instructions with 3 source operands; and finally format variations

used by a few specific instructions, including branching instructions.

490 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Execution Unit Instruction Format for 1 or 2 Source Operands

Bits Description

AddrMode and AccessMode Variations

AddrMode = Direct AddrMode = Indirect

Align16 Align1 Align16 Align1

Any Imm32 32-bit or Imm64 64-bit immediate operand uses bits 127:96, replacing the following fields.

127:122 Reserved

121 Varies based on

AddrMode

Reserved Src1.AddrImm[9]

120:117 Src1.VertStride

116 Varies based on

AccessMode

Reserved Src1.Width Reserved Src1.Width

115:114 Src1.ChanSel[7:4] Src1.ChanSel[7

:4] 113:112 Src1.HorzStride Src1.HorzStride

111 Src1.AddrMode

110:109 Src1.SrcMod

108:105 Src1.SrcMod Src1.RegNum Src1.AddrSubRegNum

104:101 Src1.AddrImm

[8:4]

Src1.AddrImm[8:0]

100 Src1.SubRegNum

[4]

Src1.SubRegNum

[4:0]

99:96 Src1.ChanSel[3:0] Src1.ChanSel[3

:0]

Any Imm64 64-bit immediate operand uses bits 127:64, replacing the following fields.

95 Varies based on

AddrMode

Reserved Src0.AddrImm[9]

94:91 Src1.SrcType

90:89 Src1.RegFile

88:85 Src0.VertStride

84 Varies based on

AccessMode

Reserved Src0.Width Reserved Src0.Width

83:82 Src0.ChanSel[7:4] Src0.ChanSel[7

:4] 81:80 Src0.HorzStride Src0.HorzStride

79 Src0.AddrMode

78:77 Src0.SrcMod

76:73 Varies based on

AddrMode and

AccessMode

Src0.RegNum Src0.AddrSubRegNum

72:69 Src0.AddrImm

[8:4]

Src0.AddrImm[8:0]

68 Src0.SubRegNum

[4]

Src0.SubRegNum

[4:0]

67:64 Src0.ChanSel[3:0] Src0.ChanSel[3

:0]

63 Dst.AddrMode

Doc Ref # IHD-OS-LKF-Vol 9-4.21 491

Bits Description

AddrMode and AccessMode Variations

AddrMode = Direct AddrMode = Indirect

Align16 Align1 Align16 Align1

62:61 Varies based on

AccessMode

Reserved Dst.HorzStride Reserved Dst.HorzStride

60:57 Varies based on

AddrMode and

AccessMode

Dst.RegNum Dst.AddrSubRegNum

56:53 Dst.AddrImm[

8:4]

Dst.AddrImm[8:0]

52 Dst.SubRegNum[

4]

Dst.SubRegNum[

4:0]

51:48 Dst.ChanEn[3:0] Dst.ChanEn[3:

0]

47 Varies based on

AddrMode

Reserved : MBZ Dst.AddrImm[9]

46:43 Src0.SrcType

42:41 Src0.RegFile

40:37 Dst.DstType

36:35 Dst.RegFile

34 MaskCtrl

33:32 FlagRegNum / FlagSubRegNum

31 Saturate

30

29 CmptCtrl

28 AccWrCtrl/BranchCtrl

27:24 CondModifier

23:21 ExecSize

20 PredInv

19:16 PredCtrl

15:14 ThreadCtrl

13:12 QtrCtrl

11 NibCtrl

10:9 DepCtrl

8 AccessMode

7 Reserved (for future Opcode expansion)

6:0 Opcode

The 3-source operand instructions are:

1. bfe - Bit Field Extract

2. bfi2 - Bit Field Insert 2

3. lrp - Linear Interpolation

492 Doc Ref # IHD-OS-LKF-Vol 9-4.21

4. mad - Multiply Add

5. madm - Multiply Add for Macro

In the 3-source instruction format, the upper QWord contains three groups of 21 bits for the three

source operands, where each group contains four fields in 20 bits and otherwise adjacent groups are

separated by single reserved bits.

Specific instructions have different instruction formats as described below. These instructions include

send / sendc, math, and branch instructions.

Execution Unit Instruction Format for Specific Instructions

The instruction fields Src0.VertStride, Src0.Width[1:0], Src0.ChanSel[7:4], Src0.HorzStride, Src0.ChanSel[3:0],

Src0.AddrImm[3:0], Src1.SrcType and AccWrCtrl are not used for send/sendc/sends/sendsc instructions. Additionally

for sends/sendsc instructions Src0.SrcMod, Dst.HorzStride, Dst.ChanEn, Dst.AddrImm[3:0] and Src0.SrcType are not

used.

Src0.RegFile[1], Src1.RegFile[1] and Dst.RegFile[1] are implicitly set to 0, and Src0.RegFile[0] is implicitly set as 1 for

sends/sendsc instructions. Also note, ExDesc[4] and ExDesc[16:9] are unused and not encoded below.

When SelReg32Desc is set the a0.0:ud is used to provide the Descriptor value, and when SelReg32ExDesc

is set the Instruction bits [82:80] provide the AddrSubRegNum[3:1] for addressing the a0 register for

Extended Descriptor.

Bits

Regular 1 or 2

 Source Operands

 Description

Empty white areas mean Same, use the regular description

send / sendc sends / sendsc math

Branch

Instructions

127 Reserved ExDesc[5] (EOT) JIP[31:0]

126:125 Reserved Desc[30:0] / Reg32

124:121 Reserved

120:117 Src1.VertStride

116:112 Varies based on AccessMode

111 Src1.AddrMode

110:109 Src1.SrcMod

108:96 Varies based on AddrMode

and AccessMode

95 Reserved
ExDesc[31:16]/Reg32

ExDesc[18:16]/AddrSubRegNum[3:1]

 UIP[31:0]

 (2-offset

 branches)
94:91 Src1.SrcType ExDesc[31:28]

90:89 Src1.RegFile

88:85 Src0.VertStride ExDesc[27:24]

84 Varies based on AccessMode

83:80 Varies based on AccessMode ExDesc[23:20]

79 Src0.AddrMode

78 Src0.SrcMod[1] Src0.AddrImm[9]

Doc Ref # IHD-OS-LKF-Vol 9-4.21 493

Bits

Regular 1 or 2

 Source Operands

 Description

Empty white areas mean Same, use the regular description

send / sendc sends / sendsc math

Branch

Instructions

77 Src0.SrcMod[0] SelReg32Desc

76:68 Varies based on AddrMode

and AccessMode

67:64 Varies based on AddrMode

and AccessMode

ExDesc[19:16] ExDesc[9:6]

63 Dst.AddrMode

62 Varies based on AccessMode Dst.AddrImm[9]

61 Varies based on AccessMode SelReg32ExDesc

60:52 Varies based on AddrMode

and AccessMode

51:48 Varies based on AddrMode

and AccessMode

Src1.RegNum[7:4]

47 Reserved
Src1.RegNum[3:0]

46:44 Src0.SrcType

43 Src0.SrcType

42 Src0.RegFile[1]

41 Src0.RegFile[0]

40:37 Dst.DstType

36 Dst.RegFile[1] Src1.RegFile[0]

35 Dst.RegFile[0]

34 MaskCtrl

33:32 FlagRegNum /

FlagSubRegNum

31 Saturate

30

29 CmptCtrl

28 AccWrCtrl NoSrcDepSet

27:24 CondModifier ExDesc[3:0] (SFID) FC[3:0] MBZ

23:21 ExecSize

20 PredInv

19:16 PredCtrl

15:14 ThreadCtrl

13:12 QtrCtrl

11 NibCtrl

10:9 DepCtrl

494 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Bits

Regular 1 or 2

 Source Operands

 Description

Empty white areas mean Same, use the regular description

send / sendc sends / sendsc math

Branch

Instructions

8 AccessMode

7 Reserved (for future Opcode

expansion)

6:0 Opcode

Instruction Format for 3 Source Operands (Align1)

Either src0 or src2 can use 16-bit immediate value, but not both. The instruction supports mixed-mode

operands, and in particular fp16 immediate can be used together with other fp32 operands.

The older Align16 (on the left) can only encode GRF. The newer Align1 ternary format (on the right)

allows one encode the more combinations of operand types for ternary operations.

src0 + src1 * src2

 reg + reg * reg

 reg + acc * reg

 reg + reg * imm

 reg + acc * imm

 imm + reg * reg

 imm + acc * reg

Bits AccessMode = Align1

High Low # Description Imm

127 127 1 Reserved

126 126 1

125 125 1 Src2 Regnum Resvd

124 118 7 Src2 Imm

117 115 3 Src2

 SubRegnum 114 113 2

112 111 2 Src2 Hstride

110 109 2 Reserved

108 107 2 Src2 Type

106 106 1

105 105 1 Reserved

104 97 8 Src1 Regnum

96 94 3 Src1 SubRegnum

Doc Ref # IHD-OS-LKF-Vol 9-4.21 495

93 92 2

91 90 2 Src1 Hstride

89 88 2 Src1 Vstride

87 86 2 Src1 Type

85 85 1

84 84 1 Reserved

83 83 1 Src0 Regnum Resvd

82 76 7 Src0 Imm

75 73 3 Src0

 SubRegnum 72 71 2

70 69 2 Src0 Hstride

68 67 2 Src0 Vstride

66 65 2 Src0 Type

64 64 1

63 56 8 Dst Regnum

55 54 2
Dst SubRegnum[4:3] / SpecialAcc[3:2]

53 53 1 SpecialAcc[1:0]

52 52 1

51 50 2 Reserved

49 49 1 Dst Hstride

48 46 3 Dst Type

45 45 1 Src2.Regfile

44 44 1 Src1.Regfile

43 43 1 Src0.Regfile

42 41 2

40 39 2

38 37 2

36 36 1 DstRegfile

35 35 1 Execution Datatype

34 34 1

33 32 2

31 31 1

30 30 1

29 29 1

28 28 1

27 24 4

23 21 3

496 Doc Ref # IHD-OS-LKF-Vol 9-4.21

20 20 1

19 16 4

15 14 2

13 12 2

11 11 1

10 9 2

8 8 1

7 7 1

6 0 7

EU Compact Instructions

On receiving an instruction with bit 29 (CmptCtrl) set, HW recognizes it as a 64-bit compact instruction.

Hardware then uses the index fields inside the compact instruction to lookup values in the associated

compaction tables, then uses the table outputs along with other fields in the compact instruction to

reconstruct the 128-bit native-sized instruction.

All flow control instructions use the new offset format, a signed 32-bit offset in units of bytes

The native 128-bit instruction format provides access to all instruction options. Only some instruction

options and combinations of instruction options can be represented in the compact instruction formats.

Which native instructions can be represented as compact instructions and the details of the compact

instruction formats and the compaction tables used may change with each processor generation.

In the following instruction format tables the Mapping Bits and Mapping Description columns describe

the mappings into native instruction fields.

EU Compact Instruction Format

The following table describes the EU compact instruction format, it adds support for compacting

instructions with three source operands.

Supports instruction compaction for 3-source instructions as well as for 1 or 2-source instructions. The

next two tables provide the compact instruction formats for 1 or 2-source instructions first and then for

3-source instructions.

The compact instruction format for 1 or 2-source instructions is essentially identical to the compact

instruction format for earlier generations, but the compact fields expand to somewhat different fields in

the native instruction format, as the native instruction format changed.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 497

Compact Instruction Format 1 or 2 Source Operands

Bits Size

Mapping

Bits

Compact

Name Mapping Description

63:56 8 108:101

 (Not Imm.)

 or 103:96

 (Imm.)

Src1.RegNum
Src1.RegNum if not immediate. Imm32[7:0] if immediate.

55:48 8 76:69 Src0.RegNum Src0.RegNum.

47:40 8 60:53 Dst.RegNum Dst.RegNum.

39:35 5 120:109

 (Not Imm.)

 or 127:104

 (Imm.)

Src1Index
If not an immediate operand, lookup one of 32 12-bit values that maps

to bits 120:109. That value is used (from MSB to LSB) for the

Src1.VertStride, various Src1 bit fields based on AccessMode

(Src1.ChanSel[7:4], Src1.Width, Src1.HorzStride), Src1.AddrMode, and

Src1.SrcMod bit fields.

If an immediate operand, there is no lookup. Determines bits 127:104

(Imm32[31:8]) as follows: map bits 39:35 directly to bits 108:104. Sign

extend to fill bits 127:109. Compact format bit 39 is thus copied to all of

bits 127:108 for an immediate operand.

34:30 5 88:77 Src0Index Lookup one of 32 12-bit values. That value is used (from MSB to LSB) for

the Src0.VertStride, various Src0 bit fields based on AccessMode

(Src0.ChanSel[7:4], Src0.Width, Src0.HorzStride), Src0.AddrMode, and

Src0.SrcMod bit fields. Note that this field spans a DWord boundary

within the QWord compacted instruction.

29 1 29 CmptCtrl
Compaction Control. The same in both the compact and native formats:

0: Regular instruction, not compacted.

1: Compacted instruction.

28 1 Not

mapped.

Reserved Not mapped.

27:24 4 27:24 CondModifier CondModifier. The same in both the compact and native formats.

23 1 28 AccWrCtrl AccWrCtrl.

22:18 5 100:96,

68:64, 52:48

SubRegIndex Lookup one of 32 15-bit values. That value is used (from MSB to LSB) for

various fields for Src1, Src0, and Dst, including ChanEn/ChanSel,

SubRegNum, and AddrImm[4] or AddrImm[4:0], depending on

AddrMode and AccessMode.

17:13 5 63:61,

94:89, 46:35

DataTypeIndex Lookup one of 32 21-bit values. That value is used (from MSB to LSB) for

the Dst.AddrMode, Dst.HorzStride, Src1.SrcType, Src1.RegFile,

Src0.SrcType, Src0.RegFile, Dst.DstType, and Dst.RegFile bit fields.

12:8 5 33:32, 31,

23:12, 10:9,

34, 8

ControlIndex Lookup one of 32 19-bit values. That value is used (from MSB to LSB) for

the FlagRegNum/FlagSubRegNum, Saturate, ExecSize, PredInv, PredCtrl,

ThreadCtrl, QtrCtrl, DepCtrl, MaskCtrl, and AccessMode bit fields.

498 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Bits Size

Mapping

Bits

Compact

Name Mapping Description

6:0 7 6:0 Opcode Opcode. The same in both the compact and native formats.

The following diagrams are an alternate presentation of the compact instruction formats.

Compact Instruction Format 1 or 2 Source Operands

Doc Ref # IHD-OS-LKF-Vol 9-4.21 499

EU Instruction Compaction Tables

The following four tables describe the mappings for the ControlIndex, DataTypeIndex, SubRegIndex,

Src0Index, and Src1Index fields in the 1 or 2 source operand compact instruction format.

ControlIndex Compact Instruction Field Mappings 1 or 2 Source Operands

ControlIndex 19-Bit Mapping Mapped Meaning

0 0000000000000000010 Align1 | We | (1) | f0.0

1 0000100000000000000 Align1 | (4) | f0.0

2 0000100000000000001 Align16 | (4) | f0.0

3 0000100000000000010 Align1 | We | (4) | f0.0

4 0000100000000000011 Align16 | We | (4) | f0.0

5 0000100000000000100 Align1 | NoDDClr | (4) | f0.0

6 0000100000000000101 Align16 | NoDDClr | (4) | f0.0

7 0000100000000000111 Align16 | We | NoDDClr | (4) | f0.0

8 0000100000000001000 Align1 | NoDDChk | (4) | f0.0

9 0000100000000001001 Align16 | NoDDChk | (4) | f0.0

10 0000100000000001101 Align16 | NoDDClr, NoDDChk | (4) | f0.0

11 0000110000000000000 Align1 | Q1 | (8) | f0.0

12 0000110000000000001 Align16 | Q1 | (8) | f0.0

13 0000110000000000010 Align1 | We | Q1 | (8) | f0.0

14 0000110000000000011 Align16 | We | Q1 | (8) | f0.0

15 0000110000000000100 Align1 | NoDDClr | Q1 | (8) | f0.0

16 0000110000000000101 Align16 | NoDDClr | Q1 | (8) | f0.0

17 0000110000000000111 Align16 | We | NoDDClr | Q1 | (8) | f0.0

18 0000110000000001001 Align16 | NoDDChk | Q1 | (8) | f0.0

19 0000110000000001101 Align16 | NoDDClr, NoDDChk | Q1 | (8) | f0.0

20 0000110000000010000 Align1 | Q2 | (8) | f0.0

21 0000110000100000000 Align1 | Q1 | +f.xyzw | (8) | f0.0

22 0001000000000000000 Align1 | H1 | (16) | f0.0

23 0001000000000000010 Align1 | We | H1 | (16) | f0.0

24 0001000000000000100 Align1 | NoDDClr | H1 | (16) | f0.0

25 0001000000100000000 Align1 | H1 | +f.xyzw | (16) | f0.0

26 0010110000000000000 Align1 | Q1 | (8) | .sat | f0.0

27 0010110000000010000 Align1 | Q2 | (8) | .sat | f0.0

28 0011000000000000000 Align1 | H1 | (16) | .sat | f0.0

29 0011000000100000000 Align1 | H1 | +f.xyzw | (16) | .sat | f0.0

30 0101000000000000000 Align1 | H1 | (16) | f0.1

500 Doc Ref # IHD-OS-LKF-Vol 9-4.21

ControlIndex 19-Bit Mapping Mapped Meaning

31 0101000000100000000 Align1 | H1 | +f.xyzw | (16) | f0.1

DataTypeIndex Compact Instruction Field Mappings 1 or 2 Source Operands

DataTypeIndex 21-Bit Mapping Mapped Meaning

0 001000000000000000001 r:ud | a:ud | a:ud | <1> | dir |

1 001000000000001000000 a:ud | r:ud | a:ud | <1> | dir |

2 001000000000001000001 r:ud | r:ud | a:ud | <1> | dir |

3 001000000000011000001 r:ud | i:ud | a:ud | <1> | dir |

4 001000000000101011101 r:f | r:d | a:ud | <1> | dir |

5 001000000010111011101 r:f | i:vf | a:ud | <1> | dir |

6 001000000011101000001 r:ud | r:f | a:ud | <1> | dir |

7 001000000011101000101 r:d | r:f | a:ud | <1> | dir |

8 001000000011101011101 r:f | r:f | a:ud | <1> | dir |

9 001000001000001000001 r:ud | r:ud | r:ud | <1> | dir |

10 001000011000001000000 a:ud | r:ud | i:ud | <1> | dir |

11 001000011000001000001 r:ud | r:ud | i:ud | <1> | dir |

12 001000101000101000101 r:d | r:d | r:d | <1> | dir |

13 001000111000101000100 a:d | r:d | i:d | <1> | dir |

14 001000111000101000101 r:d | r:d | i:d | <1> | dir |

15 001011100011101011101 r:f | r:f | a:f | <1> | dir |

16 001011101011100011101 r:f | a:f | r:f | <1> | dir |

17 001011101011101011100 a:f | r:f | r:f | <1> | dir |

18 001011101011101011101 r:f | r:f | r:f | <1> | dir |

19 001011111011101011100 a:f | r:f | i:f | <1> | dir |

20 000000000010000001100 a:w | a:ub | a:ud | <0> | dir |

21 001000000000001011101 r:f | r:ud | a:ud | <1> | dir |

22 001000000000101000101 r:d | r:d | a:ud | <1> | dir |

23 001000001000001000000 a:ud | r:ud | r:ud | <1> | dir |

24 001000101000101000100 a:d | r:d | r:d | <1> | dir |

25 001000111000100000100 a:d | a:d | i:d | <1> | dir |

26 001001001001000001001 r:uw | a:uw | r:uw | <1> | dir |

27 001010111011101011101 r:f | r:f | i:vf | <1> | dir |

28 001011111011101011101 r:f | r:f | i:f | <1> | dir |

29 001001111001101001100 a:w | r:w | i:w | <1> | dir |

30 001001001001001001000 a:uw | r:uw | r:uw | <1> | dir |

31 001001011001001001000 a:uw | r:uw | i:uw | <1> | dir |

Doc Ref # IHD-OS-LKF-Vol 9-4.21 501

DataTypeIndex Compact Instruction Field Mappings 1 or 2 Source Operands

DataTypeIndex 21-Bit Mapping Mapped Meaning

0 001000000000000000001 r:ud | a:ud | a:ud | <1> | dir |

1 001000000000001000000 a:ud | r:ud | a:ud | <1> | dir |

2 001000000000001000001 r:ud | r:ud | a:ud | <1> | dir |

3 001000000000011000001 r:ud | i:ud | a:ud | <1> | dir |

4 001000000000101100101 r:f | r:d | a:ud | <1> | dir |

5 001000000101111100101 r:f | i:vf | a:ud | <1> | dir |

6 001000000100101000001 r:ud | r:f | a:ud | <1> | dir |

7 001000000100101000101 r:d | r:f | a:ud | <1> | dir |

8 001000000100101100101 r:f | r:f | a:ud | <1> | dir |

9 001000001000001000001 r:ud | r:ud | r:ud | <1> | dir |

10 001000011000001000000 a:ud | r:ud | i:ud | <1> | dir |

11 001000011000001000001 r:ud | r:ud | i:ud | <1> | dir |

12 001000101000101000101 r:d | r:d | r:d | <1> | dir |

13 001000111000101000100 a:d | r:d | i:d | <1> | dir |

14 001000111000101000101 r:d | r:d | i:d | <1> | dir |

15 001100100100101100101 r:f | r:f | a:f | <1> | dir |

16 001100101100100100101 r:f | a:f | r:f | <1> | dir |

17 001100101100101100100 a:f | r:f | r:f | <1> | dir |

18 001100101100101100101 r:f | r:f | r:f | <1> | dir |

19 001100111100101100100 a:f | r:f | i:f | <1> | dir |

20 000000000010000001100 a:w | a:ub | a:ud | <0> | dir |

21 001000000000001100101 r:f | r:ud | a:ud | <1> | dir |

22 001000000000101000101 r:d | r:d | a:ud | <1> | dir |

23 001000001000001000000 a:ud | r:ud | r:ud | <1> | dir |

24 001000101000101000100 a:d | r:d | r:d | <1> | dir |

25 001000111000100000100 a:d | a:d | i:d | <1> | dir |

26 001001001001000001001 r:uw | a:uw | r:uw | <1> | dir |

27 001101111100101100101 r:f | r:f | i:vf | <1> | dir |

28 001100111100101100101 r:f | r:f | i:f | <1> | dir |

29 001001111001101001100 a:w | r:w | i:w | <1> | dir |

30 001001001001001001000 a:uw | r:uw | r:uw | <1> | dir |

31 001001011001001001000 a:uw | r:uw | i:uw | <1> | dir |

502 Doc Ref # IHD-OS-LKF-Vol 9-4.21

SubRegIndex Compact Instruction Field Mappings 1 or 2 Source Operands

SubRegIndex 15-Bit Mapping Mapped Meaning

0 000000000000000 0 | 0 | 0 |

1 000000000000001 0.x | 0.xx | 0.xx

2 000000000001000 8 | 0 | 0 |

3 000000000001111 0.xyzw | 0.xx | 0.xx

4 000000000010000 16 | 0 | 0 |

5 000000010000000 0 | 4 | 0 |

6 000000100000000 0 | 8 | 0 |

7 000000110000000 0 | 12 | 0 |

8 000001000000000 0 | 16 | 0 |

9 000001000010000 16 | 16 | 0 |

10 000001010000000 0 | 20 | 0 |

11 001000000000000 0 | 0 | 4 |

12 001000000000001 0.x | 0.xx | 0.xy

13 001000010000001 0.x | 0.xy | 0.xy

14 001000010000010 0.y | 0.xy | 0.xy

15 001000010000011 0.xy | 0.xy | 0.xy

16 001000010000100 0.z | 0.xy | 0.xy

17 001000010000111 0.xyz | 0.xy | 0.xy

18 001000010001000 0.w | 0.xy | 0.xy

19 001000010001110 0.yzw | 0.xy | 0.xy

20 001000010001111 0.xyzw | 0.xy | 0.xy

21 001000110000000 0 | 12 | 4 |

22 001000111101000 0.w | 0.ww | 0.xy

23 010000000000000 0 | 0 | 8 |

24 010000110000000 0 | 12 | 8 |

25 011000000000000 0 | 0 | 12 |

26 011110010000111 0.xyz | 0.xy | 0.ww

27 100000000000000 0 | 0 | 16 |

28 101000000000000 0 | 0 | 20 |

29 110000000000000 0 | 0 | 24 |

30 111000000000000 0 | 0 | 28 |

31 111000000011100 28 | 0 | 28 |

Doc Ref # IHD-OS-LKF-Vol 9-4.21 503

Src0Index or Src1Index Compact Instruction Field Mappings 1 or 2 Source Operands

Src0Index or

 Src1Index 12-Bit Mapping Mapped Meaning

0 000000000000 dir | <0;1,0>

1 000000000010 (-) | dir | <0;1,0>

2 000000010000 dir | <0;>.zx

3 000000010010 (-) | dir | <0;>.zx

4 000000011000 dir | <0;>.wx

5 000000100000 dir | <0;>.xy

6 000000101000 dir | <0;>.yy

7 000001001000 dir | <0;4,1>

8 000001010000 dir | <0;>.zz

9 000001110000 dir | <0;>.zw

10 000001111000 dir | <0;8,4> / dir | <0;>.ww

11 001100000000 dir | <4;>.xx

12 001100000010 (-) | dir | <4;>.xx

13 001100001000 dir | <4;>.yx

14 001100010000 dir | <4;>.zx

15 001100010010 (-) | dir | <4;>.zx

16 001100100000 dir | <4;>.xy

17 001100101000 dir | <4;>.yy

18 001100111000 dir | <4;>.wy

19 001101000000 dir | <4;4,0>

20 001101000010 (-) | dir | <4;4,0>

21 001101001000 dir | <4;>.yz

22 001101010000 dir | <4;>.zz

23 001101100000 dir | <4;>.xw

24 001101101000 dir | <4;>.yw

25 001101110000 dir | <4;>.zw

26 001101110001 (abs) | dir | <4;>.zw

27 001101111000 dir | <4;>.ww

28 010001101000 dir | <8;8,1>

29 010001101001 (abs) | dir | <8;8,1>

30 010001101010 (-) | dir | <8;8,1>

31 010110001000 dir | <16;16,1>

The following tables describe the mappings for the ControlIndex and SourceIndex fields in the 3 source

operand compact instruction format.

504 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Opcode Encoding

Byte 0 of the 128-bit instruction word contains the opcode. The opcode uses 7 bits. Bit location 7 in byte

0 is reserved for future opcode extension.

The opcodes are encoded and organized into five groups based on the type of operations: Special

instructions, move/logic instructions (opcode=00xxxxxb), flow control instructions (opcode=010xxxxb),

miscellaneous instructions (opcode=011xxxxb), parallel arithmetic instructions (opcode=100xxxxb), and

vector arithmetic instructions (opcode=101xxxxb). Opcodes 110xxxb are reserved.

Note: Opcodes appear in the overall Instruction Set Summary Table as well. The following subsections

still serve the purpose of describing various instruction groups.

Move and Logic Instructions

This instruction group has an opcode format of 00xxxxxb.

• The opcodes for move instructions (mov, sel and movi) share the common 5 MSBs in the form of

00000xxb.

• The opcodes for logic instructions (not, and, or, and xor) share the common 5 MSBs in the form of

00001xxb.

• The opcodes for shift instructions (shr, shl, asr, ror, and rol) share the common 4 MSBs in the form

of 0001xxxb.

• The opcodes for compare instructions (cmp and cmpn) share the common 6 MSBs in the form of

001000xb. Bit 0 indicates whether it is a normal compare, cmp, or a special compare-NaN, cmpn.

Move and Logic Instructions

Opcode

Instruction Description #src #dst dec hex

1 0x01 mov Component-wise move 1 1

2 0x02 sel Component-wise selective move based on predication 2 1

3 0x03 movi Fast component-wise indexed move 1 1

4 0x04 not Component-wise one's complement (bitwise not) 1 1

5 0x05 and Component-wise logical AND (bitwise and) 2 1

6 0x06 or Component-wise logical OR (bitwise or) 2 1

7 0x07 xor Component-wise logical XOR (bitwise xor) 2 1

8 0x08 shr Component-wise logical shift right 2 1

9 0x09 shl Component-wise logical shift left 2 1

10 0x0A smov Scattered Move 1 1

11 0x0B Reserved

12 0x0C asr Component-wise arithmetic shift right 2 1

13 0x0D Reserved

14 0x0E ror Component-wise logical rotate right 2 1

Doc Ref # IHD-OS-LKF-Vol 9-4.21 505

Opcode Instruction Description #src #dst

15 0x0F rol Component-wise logical rotate left 2 1

16 0x10 cmp Component-wise compare, store condition code in destination 2 1

17 0x11 cmpn Component-wise compare-NaN, store condition code in destination 2 1

18 0x12 csel Component-wise selective move based on result of compare 3 1

19 0x13 Reserved

20 0x14 Reserved

21 0x15 Reserved

22 0x16 Reserved

23 0x17 bfrev Reverse bits 1 1

24 0x18 bfe Bitfield extract 3 1

25 0x19 bfi1 Bitfield insert macro instruction 1, generate mask 2 1

26 0x1A bfi2 Bitfield insert macro instruction 2, insert based on mask 3 1

27-31 0x1B-0x1F Reserved

Flow Control Instructions

This instruction group has an opcode format of 010xxxxb.

Flow Control Instructions

Opcode

dec | hex Instruction Description #src #dst

32 0x20 jmpi Jump indexed 1 0

33 0x21 brd Branch - Diverging 1 0

34 0x22 if If 0/2 0

35 0x23 brc Branch - Converging 1 -

36 0x24 else Else 1 0

37 0x25 endif End if 0 0

38 0x26 Reserved

39 0x27 Reserved

40 0x28 break Break 1 0

41 0x29 cont Continue 1 0

42 0x2A halt Halt 1 0

43 0x2B calla Subroutine call absolute 1 1

44 0x2C call Subroutine call 1 1

45 0x2D return Subroutine return 1 1

46 0x2E goto Goto 2 0

47 0x2F join Join 2 0

506 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Miscellaneous Instructions

This instruction group has an opcode format of 011xxxxb.

Miscellaneous Instructions

Opcode

Instruction Description #src #dst dec hex

48 0x30 wait Wait for (external) notification 1 0

49 0x31 send Send 1 1

50 0x32 sendc Conditional Send (based on TDR) 1 1

51 0x33 sends Split Send 2 1

52 0x34 sendsc Conditional Split Send (based on TDR) 2 1

53-55 0x35-0x37 Reserved

56 0x38 math Math functions for extended math pipeline 1/2 1/2

57-63 0x39-0x3F Reserved

Parallel Arithmetic Instructions

This instruction group has an opcode format of 100xxxxb.

Parallel Arithmetic Instructions

Opcode Instruction Description #src #dst

dec hex

64 0x40 add Component-wise addition 2 1

65 0x41 mul Component-wise multiply 2 1

66 0x42 avg Component-wise average of the two source operands 2 1

67 0x43 frc Component-wise floating point truncate-to-minus-infinity fraction 1 1

68 0x44 rndu Component-wise floating point rounding up (ceiling) 1 1

69 0x45 rndd Component-wise floating point rounding down (floor) 1 1

70 0x46 rnde Component-wise floating point rounding toward nearest even 1 1

71 0x47 rndz Component-wise floating point rounding toward zero 1 1

72 0x48 mac Component-wise multiply accumulate 2 1

73 0x49 mach multiply accumulate high 2 1

74 0x4A lzd leading zero detection 1 1

75 0x4B fbh Find first 1 for UD from msb side, or first 1/0 for D. 1 1

76 0x4C fbl First first 1 for UD from lsb side 1 1

77 0x4D cbit Count bits set 1 1

78 0x4E addc Integer add with carry 2 1 + acc.

79 0x4F subb integer subtract with borrow 2 1 + acc.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 507

Vector Arithmetic Instructions

This instruction group has an opcode format of 101xxxxb.

Vector Arithmetic Instructions

Opcode Instruction Description #src #dst

dec hex

80 0x50 sad2 2-wide sum of absolute difference 2 1

81 0x51 sada2 2-wide sad accumulate 2 1

82-

83

0x52-

0x53

Reserved

88 0x58 Reserved

91 0x5B mad (fma) Component-wise floating point mad computation (a multiple-add) 3 1

92 0x5C lrp Component-wise floating point lrp computation (blend) 3 1

93 0x5D madm

(fmam)

Component-wise floating point fused multiply and add for macro

operations.

3 1

94-

95

0x5E-

0x5F

Reserved

Special Instructions

Instruction

There are two special instructions, namely, nop (opcode = 0x7E) and illegal (opcode = 0x00).

• Nop instruction may be used for instruction padding in memory between two normal instructions to force

alignment or to introduce instruction execution delay. Currently, there is no need for between-instruction

padding.

• Illegal instruction may be used for instruction padding in memory outside the normal instruction sequence

such as before or after the kernel program as well as between subroutines.

• Nop and illegal instructions do not have source operands or destination operand. Therefore, they do not

implicitly update the accumulator register. They cannot be compressed.

Opcode Instruction Description #src #dst

0x00 illegal Illegal instruction 0 0

0x60-0x7B Reserved

0x7C Reserved

0x7D Reserved

0x7E nop No-op 0 0

0x7F Reserved

508 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Native Instruction BNF

The Backus-Naur Form (BNF) grammar identifies the assembly language syntax, which is native to the

hardware. It does not include intelligent defaults, assembler pragmas, etc.

Instruction Groups

<Instruction>::=<UnaryInstruction>

|<BinaryAccInstruction>

|<BinaryInstruction>

|<TriInstruction>

|<JumpInstruction>

|<BranchLoopInstruction>

|<ElseInstruction>

|<BreakInstruction>

|<MaskControlInstruction

|<TriInstruction2>

|<CallInstruction>

|<BranchConvIntruction>

|<BranchDivInstruction>

|<MathInstruction>

|<SyncInstruction>

|<SpecialInstruction>

<UnaryInstruction>::= <Predicate> <UnaryInst> <ExecSize> dst <SrcAccImm> <InstOptions>

<UnaryInst>::= <UnaryOp> <ConditionalModifier> <Saturate>

<UnaryOp>::= “mov” | “frc” | “rndu” | “rndd” | “rnde” | “rndz” | “not” | “lzd”

<BinaryInstruction>::= <Predicate> <BinaryInst> <ExecSize> dst <Src> <SrcImm> <InstOptions>

<BinaryInst>::= <BinaryOp> <ConditionalModifier> <Saturate>

<BinaryOp>::= “mul” | “mac” | “mach” | “line”” | “pln”

|“sad2” | “sada2” | “dp4” | “dph” | “dp3” | “dp2”” | “Irp”” | “bfi1”” | “addc”” | “subb”

<BinaryAccInstruction>::= <Predicate> <BinaryAccInst> <ExecSize> dst <SrcAcc> <SrcImm>

<InstrOptions>

<BinaryAccInst>::= <BinaryAccOp> <ConditionalModifier> <Saturate>

<BinaryAccOp>::= “avg” | “add” | “sel”

|“and” | “or” | “xor”

Doc Ref # IHD-OS-LKF-Vol 9-4.21 509

|“shr” | “shl” | “asr”

|“cmp” | “cmpn”

<TriInstruction>::= <Predicate> <TriInst> <ExecSize> <PostDst> <CurrDst> <TriSrc> <MsgDesc>

<InstOptions>

<TriInst>::= <TriOp> <ConditionalModifier> <Saturate>

<TriOp>::= “send”

<TriInstruction2> ::= <Predicate> <TriInst2> <ExecSize> dst <Src> <Src> <Src><InstOptions>

<TriInst2> ::= <TriOp> <ConditionalModifier><Saturate>

,<TriOp> ::= “bfe”| “bfi2”|”mad”

<BranchConvInstruction> ::= <Predicate> <BranchConvOp> <ExecSize>< RelativeLocation2>

<BranchConvOp> ::= “brc”

<BrancConvInstruction> ::= <Predicate> <BranchDivOp> <ExecSize>< RelativeLocation3>

<BranchDivOp> ::= “brd”

<CallInstruction> ::= <Predicate> <CallOp> <ExecSize>dst< RelativeLocation2>

<CallOp> ::= “call” |”CALLA”

<MathInstruction> ::= <Predicate> <MathInst> <ExecSize>< Dst>< Src>< Src><FC>

<MathInst> ::= <MathOp><Saturate>

<MathOp> ::= “math”

<FC> ::= “INV” | “LOG” | “EXP” | “SQRT” |”RSQ” | “POW” | “SIN” | “COS” | “INT DIV”

<JumpInstruction> ::=<JumpOp> <RelativeLocation2>

<JumpOp>::= “jmpi”

<BranchLoopInstruction>::= <Predicate> <BranchLoopOp> < RelativeLocation>

<BranchLoopOp>::=“if” | “iff” | “while”

<ElseInstruction>::= <ElseOp> < RelativeLocation>

<ElseOp>::=“else”

<BreakInstruction>::= <Predicate> <BreakOp> <LocationStackCtrl>

<BreakOp>::=“break” | “cont” | “halt”

<SyncInstruction>::= <Predicate> <SyncOp> <NotifyReg>

<SyncOp>::=“wait”

<SpecialInstruction>::=“do” | “endif” |“nop” | “illegal”

510 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Destination Register

dst::=<DstOperand>

|<DstOperandEx>

<DstOperand>::=<DstReg> <DstRegion> <WriteMask> <DstType>

<DstOperandEx>::=<AccReg> <DstRegion> <DstType>

|<FlagReg> <DstRegion> <DstType>

|<AddrReg> <DstRegion> <DstType>

|<MaskReg> <DstRegion> <DstType>

|<MaskStackReg>

|<ControlReg>

|<IPReg>

|<NullReg>

| <ChannelEnableReg>

|<ThreadControlReg>

|<PerformanceReg>

<DstReg>::=<DirectGenReg> | <IndirectGenReg>

|<DirectMsgReg> | <IndirectMsgReg>

<PostDst>::=<PostDstReg> <DstRegion> <WriteMask> <DstType>

|<NullReg>

<PostDstReg>::= <DirectGenReg> | <IndirectGenReg>

<CurrDst>::=<DirectAlignedMsgReg>

Doc Ref # IHD-OS-LKF-Vol 9-4.21 511

Source Register

Source with Accumulator Access and with Immediate

<SrcAccImm>::=<SrcAcc>

|<Imm32> <SrcImmType>

<SrcAcc>::=<DirectSrcAccOperand>

|<IndirectSrcOperand>

<DirectSrcAccOperand>::=<DirectSrcOperand>

|<SrcArcOperandEx>

|<AccReg> <SrcType>

<SrcArcOperandEx>::=<FlagReg> <Region> <SrcType>

|<AddrReg> <Region> <SrcType>

|<ControlReg>

|<StateReg>

|<NotifyReg>

|<IPReg>

|<NullReg>

| <ChannelEnableReg>

|<ThreadControlReg>

|<PerformanceReg>

<IndirectSrcOperand>::=<SrcModifier> <IndirectGenReg> <IndirectRegion> <Swizzle > <SrcType>

Source without Accumulator Access

<Src>::=<DirectSrcOperand>

|<IndirectSrcOperand>

< DirectSrcOperand>::=<SrcModifier> <DirectGenReg> <Region> <Swizzle> <SrcType>

|<SrcArcOperandEx>

<TriSrc>::=<SrcModifier> <DirectGenReg> <Region> <Swizzle> <SrcType>

|<NullReg>

<MsgDesc>::=<ImmDesc>

|<Reg32>

<Reg32>::=<DirectGenReg> <Region> <SrcType>

Source without Accumulator Access or IP Access

512 Doc Ref # IHD-OS-LKF-Vol 9-4.21

<SrcImm>::=<DirectSrcOperand>

|<Imm32> <SrcImmType>

Address Registers

<AddrParam>::=<AddrReg> <ImmAddrOffset>

<ImmAddrOffset>::= “”

| “,” <ImmAddrNum>

Register Files and Register Numbers

Note: The recommended instruction syntax uses subregister numbers within the GRF in units of actual

data element size, corresponding to the data type used. For example for the F (Float) type, the assembler

syntax uses subregister numbers 0 to 7, corresponding to subregister byte addresses of 0 to 28 in steps

of 4, the element size.

<DirectGenReg>::=<GenRegFile> <GenRegNum> <GenSubRegNum>

<IndirectGenReg>::=<GenRegFile> “[“ <AddrParam> “]”

<GenRegFile>::=“r”

<GenRegNum>:: =“0”…“127”

<GenSubRegNum>:: = “”

| “.0”…”.3” //incase of DF

| “.0”...“.7”

| “.0”...“.15”

| “.0”...“.31”

<DirectMsgReg>::=<DirectAlignedMsgReg> <MsgSubRegNum>

<DirectAlignedMsgReg>::=<MsgRegFile> <MsgRegNum>

<IndirectMsgReg>::=<MsgRegFile> “[“ <AddrParam> “]”

<MsgRegFile>::=“m”

<MsgRegNum>:: =“0”…“15”

<MsgSubRegNum>:: = <GenSubRegNum>

<AddrReg>::=<AddrRegFile> <AddrSubRegNum>

<AddrRegFile>::=“a0”

<AddrSubRegNum>:: = “”

| “.0” … “.7”

<AccReg>::=“acc” <AccRegNum><AccSubRegNum>

Doc Ref # IHD-OS-LKF-Vol 9-4.21 513

<AccRegNum>:: =“0” | “1”

<AccSubRegNum>:: = <GenSubRegNum>

<FlagReg> ::= “f” <FlagRegNum> <FlagSubRegNum>

<FlagRegNum> :: = “0” | “1”

<FlagReg>::=“f0” <FlagSubRegNum>

<FlagSubRegNum>:: =“”

| “.0”...“.1”

<NotifyReg>::=“n” <NotifyRegNum>

<NotifyRegNum>:: =“0”...“2”

<StateReg>::=“sr0” <StateSubRegNum>

<StateSubRegNum>:: =“.0”... “.1”

<ControlReg>::=“cr0” <ControlSubRegNum>

<ControlSubRegNum>:: =“.0” ...“.2”

<IPReg>::=“ip”

<NullReg>::=“null”

<ThreadControlReg> ::= “tdr0”<ThreadCntrlSubRegNum>

<ThreadCntrlSubRegNum> ::= “.0”…“.7”

<PerformanceReg> ::= “tm0”

<ChannelEnableReg> ::= “ce0.0”

Relative Location and Stack Control

<RelativeLocation>::= <imm16>

<RelativeLocation2>::= <imm32> | <reg32>

<RelativeLocation3> ::= <imm16> | <reg32>

<LocationStackCtrl>::=<imm32>

514 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Regions

<DstRegion>::=“<”<HorzStride> “>”

<IndirectRegion>::=<Region> | <RegionWH> | <RegionV>

<Region>::=“<”<VertStride> “;” <Width> “,” <HorzStride> “>”

<RegionWH>::=“<” <Width> “,” <HorzStride> “>”

<RegionV>::=“<”<VertStride> “>”

<VertStride>::= “0” | “1” | “2” | “4” | “8” | “16” | “32”

<Width>::=“1” | “2” | “4” | “8” | “16”

<HorzStride>::=“0” | “1” | “2” | “4”

Types

SrcType

<SrcType> ::= “:df” | “:f” | “:ud” | “:d” | “:uw” | “:w” | “:ub” | “:b” | “:uq” | “:q” | “:hf”

<SrcImmType> ::= <SrcType> | “:v” | “:vf” | “:uv”

<DstType> ::= <SrcType>

Write Mask

<WriteMask>::= “”

| “.” “x” | “.” “y” | “.” “z” | “.” “w”

| “.” “xy” | “.” “xz” | “.” “xw” | “.” “yz” | “.” “yw” | “.” “zw”

| “.” “xyz” | “.” “xyw” | “.” “xzw” | “.” “yzw”

| “.” “xyzw”

Swizzle Control

<Swizzle>::=“”

| “.” <ChanSel>

| “.” <ChanSel> <ChanSel> <ChanSel> <ChanSel>

<ChanSel>::= “x” | “y” | “z” | “w”

Doc Ref # IHD-OS-LKF-Vol 9-4.21 515

Immediate Values

<ImmAddrNum>::=“-512”… “511”

<Imm64> ::= “0.0”… “±1.0*2-1024…1023” | “0”…”264-1” | “-263”…”263-1”

<Imm32>::=“0.0”… “±1.0*2-128…127” | “0”…”232-1” | “-231”…”231-1”

<Imm16>::=“0”…”216-1” | “-215”…”215-1”

<ImmDesc>::=“0”…”232-1”

Predication and Modifiers

Instruction Predication

<Predicate>::=“”

|“(” <PredState> <FlagReg> <PredCntrl> “)”

<PredState>::=“”

|“+”

|“-“

<PredCntrl>::=“”

|“.x” | “.y” | “.z” | “.w”

|“.any2h” | “.all2h”

|“.any4h” | “.all4h”

|“.any8h” | “.all8h”

|“.any16h” | “.all16h”

|“.anyv” | “.allv”

| “.any32h”| “.all32h”

Source Modification

<SrcModifier>::=“”

|“-”

|“(abs)”

|“-” “(abs)”

Instruction Modification

<ConditionalModifier>::=“”

|<CondMod> “. ” <FlagReg>

<CondMod>::=“.z” | “.e”|“.nz” | “.ne”|“.g”|“.ge”|“.l”|“.le”|“.o” |“.r” |“.u”

<Saturate>::=“”

516 Doc Ref # IHD-OS-LKF-Vol 9-4.21

|“.sat”

Execution Size

<ExecSize>::=“(“ <NumChannels> “)”

<NumChannels>::=“1” | “2” | “4” | “8” | “16” | “32”

Instruction Options

<InstOptions> ::= “”

| “{” <InstOption> “}”

| “{” <InstOption> <InstOptionEx> “}”

<InstOptionEx> ::= “”

| “,” <InstOption> <InstOptionEx>

<InstOption> ::= <AccessMode>

| <AccWrCtrl>

| <ComprCtrl>

| <DependencyCtrl>

| <MaskCtrl>

| <SendCtrl>

| <ThreadCtrl>

<AccessMode> ::= “Align1” | “Align16”

<AccWrCtrl> ::= “AccWrEn”

<ComprCtrl> ::= “SecHalf” | “Compr”

<DependencyCtrl> ::= “NoDDChk” | “NoDDClr”

<MaskCtrl> ::= “NoMask”

<SendCtrl> ::= “EOT”

<ThreadCtrl> ::= “Switch”

| “Atomic”

Note for Assembler: Compression control “Compr” has a direct map to the binary instruction word. It

may be omitted if the Assembler can determine whether an instruction is compressable.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 517

Instruction Set Summary Tables

The columns in the following tables specify instruction mnemonics, hex opcodes, full names, instruction

groups, processor generation (where blank means available), the number of source operands, whether

the instruction supports predication, any support for source modifiers, an indication of supported data

types, whether the instruction supports saturation, and any support for conditional modifiers.

See the separate Accumulator Restrictions table for information about how instructions are allowed to

use accumulators.

N and Y indicate No (no support for a feature) and Yes (full support for a feature) respectively.

A SrcMod (source modifier) value of Y indicates that a numeric source modifier is allowed, optionally

specifying absolute value, negation, or a forced negative value. The value N indicates no source modifier

support.

SrcMod Information

A SrcMod value of ** indicates a logical source modifier is allowed, optionally inverting all source bits (a NOT

operation).

In the Src Types and Dst Type columns, Int means any integer type and * means such an extensive list of

types that you must refer to the detailed instruction description.

Byte (B, UB) and QWord (Q, UQ) integer types cannot be mixed in the same instruction.

Instruction Set Summary Table A to B (Listed by Instruction Mnemonic)

Mnem.

Hex

Opcode Name Group Srcs Pred? SrcMod

Src

Types

Dst

Type Sat? CondMod?

add 40 Addition Parallel

Arithmetic

2 Y Y * * Y Y

addc 4E Integer Addition

with Carry

Parallel

Arithmetic

2 Y N UD UD N Y

and 05 Logic And Move and

Logic

2 Y ** Int Int N Equality

only

asr 0C Arithmetic Shift

Right

Move and

Logic

2 Y Y Int Int Y Y

avg 42 Average Parallel

Arithmetic

2 Y Y B, UB

 W, UW

 D, UD

B, UB

 W,

UW

 D, UD

Y Y

bfe 18 Bit Field Extract Move and

Logic

3 Y N UD, D UD, D N N

bfi1 19 Bit Field Insert 1 Move and

Logic

2 Y N UD, D UD, D N N

bfi2 1A Bit Field Insert 2 Move and

Logic

3 Y N UD, D UD, D N N

518 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Mnem.

Hex

Opcode Name Group Srcs Pred? SrcMod

Src

Types

Dst

Type Sat? CondMod?

bfrev 17 Bit Field Reverse Move and

Logic

1 Y N UD UD N N

brc 23 Branch Converging Flow Control 0 or

1

Y N D N N

brd 21 Branch Diverging Flow Control 0 or

1

Y N D N N

break 28 Break Flow Control 0 Y N N N

Instruction Set Summary Table C to E (Listed by Instruction Mnemonic)

Mnem.

Hex

Opcode Name Group Srcs Pred? SrcMod Src Types

Dst

Type Sat? CondMod?

call 2C Call Flow Control 0 Y N D, UD N N

calla 2B Call Absolute Flow Control 0 Y N D, UD N N

cbit 4D Count Bits Set Move and

Logic

1 Y N UB, UW,

UD

UD N N

cmp 10 Compare Move and

Logic

2 Y Y * * N Y

cmpn 11 Compare NaN Move and

Logic

2 Y Y * * N Y

cont 29 Continue Flow Control 0 Y N N N

csel 12 Conditional

Select

Move and

Logic

3 N Y F F Y Y

else 24 Else Flow Control 0 N N N N

endif 25 End If Flow Control 0 N N N N

Doc Ref # IHD-OS-LKF-Vol 9-4.21 519

Instruction Set Summary Table F to L (Listed by Instruction Mnemonic)

Mnem.

Hex

Opcode Name Group Srcs Pred? SrcMod

Src

Types

Dst

Type Sat? CondMod?

fbh 4B Find First Bit from

MSB Side

Move and

Logic

1 Y N D, UD UD N N

fbl 4C Find First Bit from

LSB Side

Move and

Logic

1 Y N UD UD N N

frc 43 Fraction Parallel

Arithmetic

1 Y Y F F N Y

goto 2E Goto Flow Control 0 Y N N N

halt 2A Halt Flow Control 0 Y N N N

if 22 If Flow Control 0 Y N N N

illegal 00 Illegal Special 0 N N N N

jmpi 20 Jump Indexed Flow Control 1 Y N D N N

join 2F Join Flow Control 0 Y N N N

line 59 Line Vector

Arithmetic

2 Y Y F F Y Y

lzd 4A Leading Zero

Detection

Move and

Logic

1 Y Y D, UD UD Y Y

Instruction Set Summary Table M to P (Listed by Instruction Mnemonic)

Mnem.

Hex

Opcode Name Group Srcs Pred? SrcMod

Src

Types

Dst

Type Sat? CondMod?

mac 48 Multiply

Accumulate

Parallel

Arithmetic

2 Y Y * * Y Y

mach 49 Multiply

Accumulate High

Parallel

Arithmetic

2 Y Y * * Y Y

mad 5B Multiply Add Vector

Arithmetic

3 Y Y * * Y Y

madm 5D Multiply Add for

Macro

Vector

Arithmetic

3 Y Y * * Y Y

math 38 Extended Math

Function

Miscellaneous 2 Y N * * Y N

mov 01 Move Move and Logic 1 Y Y * * Y Y

movi 03 Move Indexed Move and Logic 1 Y Y * * Y N

mul 41 Multiply Parallel

Arithmetic

2 Y Y * * Y Y

nop 7E No Operation Special 0 N N N N

not 04 Logic Not Move and Logic 1 Y ** Int Int N Equality

520 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Mnem.

Hex

Opcode Name Group Srcs Pred? SrcMod

Src

Types

Dst

Type Sat? CondMod?

only

or 06 Logic Or Move and Logic 2 Y ** Int Int N Equality

only

Instruction Set Summary Table R to X (Listed by Instruction Mnemonic)

Mnem.

Hex

Opcode Name Group Srcs Pred? SrcMod

Src

Types

Dst

Type Sat? CondMod?

ret 2D Return Flow Control 1 Y N D, UD N N

rndd 45 Round Down Parallel

Arithmetic

1 Y Y F F Y Y

rnde 46 Round to Nearest or

Even

Parallel

Arithmetic

1 Y Y F F Y Y

rndu 44 Round Up Parallel

Arithmetic

1 Y Y F F Y Y

rndz 47 Round to Zero Parallel

Arithmetic

1 Y Y F F Y Y

sad2 50 Sum of Absolute

Difference 2

Vector

Arithmetic

2 Y Y B, UB W,

UW

Y Y

sada2 51 Sum of Absolute

Difference

Accumulate 2

Vector

Arithmetic

2 Y Y B, UB W,

UW

Y Y

sel 02 Select Move and

Logic

2 Y Y * * Y Y

send 31 Send Message Miscellaneous 1 Y N * * N N

sendc 32 Conditional Send

Message

Miscellaneous 1 Y N * * N N

sends 33 Split Send Message Miscellaneous 2 Y N * * N N

sendsc 34 Conditional Split

Send Message

Miscellaneous 2 Y N * * N N

shl 09 Shift Left Move and

Logic

2 Y Y Int Int Y Y

shr 08 Shift Right Move and

Logic

2 Y Y Int Int Y Y

smov 0A Scattered Move Move and

Logic

1 Y N * * N N

subb 4F Integer Subtraction

with Borrow

Parallel

Arithmetic

2 Y N UD UD N Y

wait 30 Wait Miscellaneous 1 N N UD UD N N

Doc Ref # IHD-OS-LKF-Vol 9-4.21 521

Mnem.

Hex

Opcode Name Group Srcs Pred? SrcMod

Src

Types

Dst

Type Sat? CondMod?

while 27 While Flow Control 0 Y N N N

xor 07 Logic Xor Move and

Logic

2 Y ** Int Int N Equality

only

Accumulator Restrictions

This section describes restrictions on accumulator access: general restrictions, restrictions for specific

instructions, and how those specific restrictions vary for processor generations. See Accumulator

Registers for a description of the accumulator registers.

Accumulator registers can be accessed as explicit source or destination operands, as an implicit source

value when specified for a particular instruction (sada2 for example), and as an implicit destination when

the AccWrEn instruction option is used.

These general rules apply to accumulator access:

1. Flow control, send, sendc, and wait instructions cannot use accumulators.

2. Instructions that use the accumulator as an implicit source value cannot specify an explicit

accumulator source operand.

3. Instructions that specify an implicit accumulator destination (with AccWrEn) cannot specify an

explicit accumulator destination operand.

4. An instruction with both an explicit accumulator source operand and an explicit accumulator

destination operand must specify the same accumulator register as the source and the destination.

These descriptions are frequently used in this table:

• No restrictions.

• No accumulator access, implicit or explicit.

• Source operands cannot be accumulators.

• Source modifier is not allowed if source is an accumulator.

• Accumulator is an implicit source and thus cannot be an explicit source operand.

• Accumulator cannot be destination, implicit or explicit.

• AccWrEn is required. The accumulator is an implicit destination and thus cannot be an explicit

destination operand.

These minor cases occur occasionally in the table:

• Integer source operands cannot be accumulators.

• No explicit accumulator access because this is a three-source instruction. AccWrEn is allowed for

implicitly updating the accumulator.

• An accumulator can be a source or destination operand but not both.

522 Doc Ref # IHD-OS-LKF-Vol 9-4.21

A few instructions use more than one of the listed restrictions.

Accumulator Restrictions

Instructions Accumulator Restrictions

add No restrictions.

addc
AccWrEn is required. The accumulator is an implicit destination and thus cannot be an explicit

destination operand.

Accumulator is not allowed to be explicit source.

and Source modifier is not allowed if source is an accumulator.

asr

avg

No restrictions.

bfe

bfi1

bfi2

bfrev

cbit

No accumulator access, implicit or explicit.

cmp No restrictions.

cmpn No restrictions.

csel No restrictions.

fbh

fbl

No accumulator access, implicit or explicit.

frc No restrictions.

lzd Accumulator cannot be source, implicit or explicit.

mac Accumulator is an implicit source and thus cannot be an explicit source operand.

mach
Accumulator is an implicit source and thus cannot be an explicit source operand.

AccWrEn is required. The accumulator is an implicit destination and thus cannot be an explicit

destination operand.

mad Integer source operands cannot be accumulators.

madm No explicit accumulator access because this is a three-source instruction. AccWrEn is allowed for

implicitly updating the accumulator.

math No accumulator access, implicit or explicit.

mov An accumulator can be a source or destination operand but not both.

movi Source operands cannot be accumulators.

mul Integer source operands cannot be accumulators.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 523

Instructions Accumulator Restrictions

not

or

Source modifier is not allowed if source is an accumulator.

rndd

rnde

rndu

rndz

No restrictions.

sad2

sada2

Source operands cannot be accumulators.

sel No restrictions.

shl Accumulator cannot be destination, implicit or explicit.

shr No restrictions.

smov No restrictions.

subb
AccWrEn is required. The accumulator is an implicit destination and thus cannot be an explicit

destination operand.

Accumulator is not allowed to be explicit source.

xor Source modifier is not allowed if source is an accumulator.

Native Instruction BNF

Describes Syntax supported by IGA.

524 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Grammar

IGA Grammar

A program is a sequence of blocks, where the first block may not have a label

Program → (LabelDefLine? Instruction* (LabelDefLine Instruction))?

LabelDefLine → LabelDef LineTerminator

LabelRef → Ident

LabelDef → Ident :

InstructionLine → Instruction LineTerminator

LineTerminator → \n

 | EOF end of file

The rough layout of a instruction

Instruction → PredWrEn? Mnemonic ExecInfo FlagModifier? Operands

InstOptions?

where

e.g. mov or math.sqrt

Mnemonic → Ident | math . MathFC

e.g. sqrt in math.sqt ... math function controls extend the opcode; e.g. math.inv ...

MathFC → inv

 | log

 | exp

 | sqt

 | rsqt

 | pow

 | sin

 | cos

 | idiv

Doc Ref # IHD-OS-LKF-Vol 9-4.21 525

 | iqot

 | irem

 | fdiv

 | invm

 | rsqtm

Execution mask part e.g. (16|M16)

ExecInfo → (ExecWidth | EMaskOff)

where

ExecWidth → 1 | 2 | 4 | 8 | 16 | 32

the emask

EMaskOff → M0 | M4 | ... | M28

Instruction write-enable (formly NoMask) as well as predication Examples: (W), (f1.0), or (W~f1.1)

PredWrEn → (WrEn) | (Pred) | (WrEn & Pred)

where

WrEn → W

Pred → PredNegate? FlagRegRef PredMask?

PredNegate → ~

see PredCtrl enum 3D-Media-GPGPU Engine EU Overview ISA Introduction Instruction Set
Reference EUISA Enumerations PredCtrl

PredMask → . PredFunc

where

PredFunc → anyv

 | allv

 | any2h

 | all2h

 | any4h

 | all4h

 | any8h

 | all8h

 | any16h

 | all16h

 | any32h

 | all32h

A condition modifier indicates the flag register should be updated with respect to the given relational function. E.g.
[(le)f0.0]

FlagModifier → (Func) FlagRegRef

where

526 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Func → lt

 | le

 | gt

 | ge

 | eq

 | ne

 | ov overflow

 | un unordered (NaN)

 | gz less than 0; only supported on sel instructions

 | lz greather than 0; only supported on sel instructions

Operands → OperandsEmpty e.g. nop, illegal, ...

 | OperandsUnary e.g. mov, not, ... [ERROR: unclosed literal escape with \@]

 | OperandsBinary e.g. and, add, mul, ... [ERROR: unclosed literal escape with \@]

 | OperandsTernary e.g. mad, bfi2

 | OperandsSingleSource e.g. wait, jmpi, ...

 | OperandsDoubleSource e.g. break, cont, if, else (branch control is a sub function)

 | OperandsSend send or sendc

 | OperandsSplitSend sends or sendsc

OperandsEmpty →

OperandsUnary → DstOperand SrcOperand

OperandsBinary → DstOperand SrcOperand SrcOperand

OperandsTernary → DstOperand SrcOperand SrcOperand SrcOperand

OperandsSingleSource → SrcOperand

OperandsDoubleSource → SrcOperand SrcOperand

Doc Ref # IHD-OS-LKF-Vol 9-4.21 527

OperandsSend → DstOperand SrcOperand ExDescOp DescOp

OperandsSplitSend → DstOperand SrcOperand SrcOperand ExDescOp DescOp

ExDescOp → AddrRegRef | IntLit

DescOp → AddrRegRef | IntLit

Destination operands

DstOperand → DstOpDirect direct register access; e.g. r14.3<1> or
sr0.1

 | DstOpIndirect indirect access; e.g. r[a0.4,16]<1>

where

DstOpDirect → DstModif? Register DstRegion?

DstOpIndirect → DstModif? r [AddrRegName .]

DstRegion?

DstModif → (sat) saturation modifier

DstRegion → < DstHzStride >

where

DstHzStride → 1 | 2 | 4

Source operands -- Semantic checks for regioning disallow regions on certain registers (e.g. cannot region ce)

SrcOperand → SrcOpDirect direct register access; e.g. r13.0<8;8,1>

 | SrcOpIndirect indirect register access; e.g. r[a0.0,16]<1,0>

 | SrcOpImm source immediate operand; e.g. 13:ud,
0x155:q, 1.2:f

where

SrcOpDirect → SrcModifier? Register SrcRegion?

SrcRegType?

SrcOpIndirect → SrcModifier? r [IndexReg (, ConstExpr)]

SrcRegion? SrcRegType?

SrcOpImm → ConstExpr SrcImmType

We semantically enforced that ~ applies only to bitwise ops (e.g. and, or, ...)

SrcModifier → ~ bitwise negation for bitwise ops (one's
complement)

 | - signed negation (two's complement)

528 Doc Ref # IHD-OS-LKF-Vol 9-4.21

 | (abs) absolute value

 | - (abs) negation of the absolute value

the source region

SrcRegion → SrcRegionVWH | SrcRegionWH |

SrcRegionVH | SrcRegionH

SrcRegionVWH → < VtStride ; Width , HzStride >

SrcRegionWH → < Width , HzStride > for indirect only (uses VxH/Vx1 mode)

SrcRegionVH → < VtStride ; HzStride > ternary src0 or src1 region

SrcRegionH → < HzStride > ternary src2 region

VtStride → 1

 | 2

 | 4

 | 8

 | 16

 | 32 the number of elements to advance the row
after stepping Width times

Width → 1

 | 2

 | 4

 | 8

 | 16 the number elements per row (before
advancing vert stride)

HzStride → 0

 | 1

 | 2

 | 4 the number of elements to step horizontally

Subregisters are in units of the type of the operand they are applied to. That is 8-byte types only permit subregisters
0-3, 4-byte types permit 0-7, and so forth.

Register → RegName (. SubReg)?

where

GRF and ARF registers. See: BSpec: 3D-Media-GPGPU Engine EU Overview Registers and Register
Regions

RegName → Names

where

Names → AddrRegName address register

 | acc0

 | ...

 | acc11 up to acc9

Doc Ref # IHD-OS-LKF-Vol 9-4.21 529

 | FlagRegName f0 or f1

 | fc0

 | ...

 | fc4 flow control registers

 | ce channel enable register

 | cr0

 | ip instruction pointer

 | n0

 | n1

 | msg0

 | ...

 | msg31

 | null the null register

 | r0

 | ...

 | r127

 | sp stack pointer

 | spl stack-pointer limit (formerly
sp_limit)

 | sr0

 | sr1

 | tdr

 | tm0

The subregister. Various registers support different number of subregisters. Subregister units are in terms of
data type size. E.g. up to: .31 for :b, .15 for :w, .7 for :d, and .3 for :q etc ...

SubReg → IntLit

A reference to a flag register. Examples: f0.0 or f1.1

FlagRegRef → FlagRegName (. FlagSubReg)?

where

FlagSubReg → 0 | 1

FlagRegName → f0 | f1

An address register reference; e.g. a0.3 (sometimes called the "index register")

AddrRegRef → AddrRegName (. AddrSubReg)?

where

530 Doc Ref # IHD-OS-LKF-Vol 9-4.21

AddrSubReg → 0 | ... | 15

AddrRegName → a0

Destination types are a subset of the source types as only the Packed vectors types are not

DstType → :b

 | :ub

 | :w

 | :uw

 | :d

 | :ud

 | :q

 | :uq

 | :hf

 | :f

 | :df

Source types are the same as the destination types with the inclusion of the packed vector types.

SrcType → DstType

 | :uv packed unsigned int

 | :v packed signed int

 | :vf packed float

Expressions. Constant expressions are evaluated by the assembler with host semantics.

ConstExpr → IntLit integer literal

 | FltLit floating point literal

 | Ident reference to a symbolic constant

 | UnOp ConstExpr unary constant expressions (e.g. ~((1NUM_BITS)-1)

 | ConstExpr BinOp ConstExpr binary constant expressions (1+2 or 1BIT_INDEX)

 | (ConstExpr) constant grouping expression (1 + 2)

 | LabelRef a reference to a label definition

Unary operators

UnOp → ~ one's complement

Doc Ref # IHD-OS-LKF-Vol 9-4.21 531

 | - two's complement

Binary operators

BinOp → *

 | /

 | % multiplicative operators

 | +

 | - addative operators

 | «

 | »

 | »> bit-shift operators

 | & bitwise AND

 | | bitwise OR

 | ^ bitwise XOR

Identifiers

Ident → [A-Za-z_][A-Za-z0-9_]*

An integer literal. For each, _ is an optional lexical separator for readability

IntLit → IntLitDec decimal literal e.g. 13, 14, 4000, or 4_000

 | IntLitHex hex literal e.g. 0xFE or 0xABCD_EFGH

 | IntLitBin binary literal e.g. 0b1011 would be 11

where

IntLitDec → [0-9][_0-9]*

IntLitHex → 0x[0-9a-fA-F]?[_0-9a-fA-F]*

IntLitBin → 0b[01][_01]*

A floating point literal

FltLit → FltLitDec decimal 3.1414

 | FltLitSci scientific 6.02e23 or
6.67384e-11

 | inf special symbol for infinity
(0x...)

 | nan special symbol for not a
number

where

FltLitDec → ([0-9][_0-9]*)?.[0-9][_0-9]*|([0-9][_0-

532 Doc Ref # IHD-OS-LKF-Vol 9-4.21

9]*)?.([0-9][_0-9]*)?

FltLitSci → ([0-9][_0-9]*)?.[0-9][_0-9]*e([0-9][_0-9]*)

InstOptions → { (InstOpt (, InstOpt)*)? }

InstOpt → AccWrEn

 | Atomic

 | Breakpoint

 | Compacted

 | EOT

 | NoDDChk

 | NoDDClr

 | NoPreempt

 | NoSrcDep

 | Switch

Doc Ref # IHD-OS-LKF-Vol 9-4.21 533

Load-Store Pseudo Instructions

This page defines the extended load/store syntax that an assembler can use to represent send messages.

In all cases, these forms reduce to the canonical send format with raw hex descriptors. In other words,

these instructions are pseudo-instructions and encode exactly as the old send messages.

Normally send messages are something like the following example:

 sends (8) r12 r13 r14 0xC 0x410214

This encodes a regular ISA instruction with the opcode for sends. However, the two hex fields given as

the final operands of the syntax represent the send message instruction type that the load/store units

(sampler/HDC/etc) decode. Hence, a send is an instruction within an instruction of sorts. However, this

makes it difficult to determine exactly what message represents. This syntax attempts to resolve that with

load and store pseudo-instructions.

The field encoded within those two descriptors are described elsewhere [TODO: link].

Syntax

Syntax is broken down into several categories such as loads, stores, atomics, and perhaps other

operations.

Loads

Loads are generally of the following form.

 ld.OP[.ARGS] (ExecSize|ChOff) LdDst LdSrc LdStInstOpts

where OP[.ARGs] are given in the table Mnemonic column below.

Stores

Stores have the following form.

 st.OP[.ARGS] (ExecSize|ChOff) StDst StSrc LdStInstOpts

534 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Operand Syntax

LdDst → RegRange

LdSrc → AddrOperand

StDst → AddrOperand

StSrc → RegRange

AddrOperand → AddrModel [RegRange

]

e.g. a64[r12-13]

 | AddrModel [RegRange

+ ConstIntExpr]

This for messages that permit a constant offset

AddrModel → a32 Stateless A32 Non-Coherent (bti 0xFD)

 | a32c Stateless A32 Coherent (bti 0xFF)

 | a32o Stateless A32 Surface State Offset Model (bti 0xFC)

 | a64 Stateless A64 Non-Coherent (bti 0xFD)

 | a64c Stateless A64 Coherent (bti 0xFF)

 | a64o Stateless A64 Surface State Offset Model (bti 0xFC)

 | surf [ConstIntExpr] Binding Table Index

 | scratch [ConstIntExpr] Indicates a Scratch Access. The index is in HWords / register units (32

bytes).

RegRange → SingleReg-RegNum Indicates an inclusive register range: e.g. r12-13

 | SingleReg Shorthand for a single register range: e.g. r13 is the same as r13-13

SingleReg → r0 | r1 | ... Maximum value can vary per platform. E.g. r0 up to r127

RegNum → 0 | 1 | ... An integer within the range of registers. Must be greater than or equal

to the base register in the range. The maximum register varies per

platform and configuration.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 535

Examples

 Here are some example messages.

// A SIMD16 (16|M0) byte gathering read (ld.ga8)

 // The 16 addresses are read from r20-21 (wlen=2) and access surface 0 (surf[0]).

 // Each address looks up four bytes (.x4).

 // Output is stored in r10-17 (rlen=8)

 ld.sc8.x4 (16|M0) r10-17 surf[0][r20-21]

// A Dword gathering read (ld.ga32) with one DW per address (.x1)

 // The read is SIMD8 (8|M0) in the A64 stateless model (a64). Addresses are in r20-21.

 ld.sc32.x1 (8|M0) r10-17 a64[r20-21]

Supported Messages

Some basic points apply for tools.

1. The start project for all these messages, if not explicitly defined. BXML may support earlier projects,

but the tables assume that they are working.

2. The table is incomplete, and some message types are omitted from this extended syntax. In these

cases, assemblers may fall back to the canonical send syntax with raw hex descriptors.

3. The table below takes some liberties simplifying the encoding given by the official BXML

structures. For instance, some of these structures show an Invalidate After Read bit (which is always

zero). The formats below might simplify this to just a reserved field with 0. For a second example

consider the message type field, which is sometimes bits [18:14] and sometimes [17:14] with a

reserved or fixed bit value at bit [18] as a separate field. In that case, we present the table with

[18:14] = {[18][17:14]}: a logical fusing of the two fields into one so that more message types can

use [18:14] for the same purpose.

4. In cases where a send instruction uses a register descriptor (a0), we must fall back to the original

send syntax.

5. In the table below the descriptor fields for message length (mlen [28:25]) and writeback length

(rlen [24:20]) are omitted (represented by ... in a middle column). These values are inferred via the

register operand ranges.

6. Reserved fields (R) will typically be 0, but may be ignored.

536 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Vector Messages

Mnemo

nic Name

BXML

Structure

SFI

D

3

1

3

0

2

9

.

.

.

1

9

1

8

1

7

1

6

1

5

1

4

1

3 12

1

1

1

0 9 8 7 6 5 4 3 2 1 0

ld.xga

8.DE
A64 Byte Gathering Re

ad

MSD1R_A6
4_BS

 DC

1

R P

D

0

x

0

..

.

0

x

0

0x10 R S

M

2

DE 0x0 A64

st.xsc

8.DE
A64 Byte Scattering Wr

ite

MSD1W_A6
4_BS

 DC

1

R P

D

0

x

0

..

.

0

x

0

0x1A R S

M

2

DE 0x0 A64

ld.xga

32.DE
A64 DWord Gathering

Read

MSD1R_A6
4_DWS

 DC

1

R P

D

0

x

0

..

.

0

x

0

0x10 R S

M

2

DE 0x1 A64

st.xsc

32.DE
A64 DWord Scattering

Write

MSD1W_A6
4_DWS

 DC

1

R P

D

0

x

0

..

.

0

x

0

0x1A R S

M

2

DE 0x1 A64

ld.xga

64.DE
A64 QWord Gathering

Read

MSD1R_A6
4_QWS

 DC

1

R P

D

0

x

0

..

.

0

x

0

0x10 R S

M

2

DE 0x2 A64

st.xsc

64.DE
A64 QWord Scattering

Write

MSD1W_A6
4_QWS

 DC

1

R P

D

0

x

0

..

.

0

x

0

0x1A R S

M

2

DE 0x2 A64

ld.ga8

.DE
A32 Byte Gathering Re

ad

MSD0R_BS DC

0

R P

D

0

x

0

..

.

H 0x4 R DE R S

M

2

BTS_SLM_A32

st.sc8

.DE
A32 Byte Scattering Wr

ite

MSD0W_BS DC

0

R P

D

0

x

0

..

.

H 0xC R DE R S

M

2

BTS_SLM_A32

ld.ga3

2.DE
A32 DWord Gathering

Read

MSD0R_D
WS

 DC

0

R P

D

0

x

0

..

.

H 0x3 R DE 0

x

1

S

M

2

BTS_SLM_A32

st.sc3

2.DE
A32 DWord Scattering

Write

MSD0W_D
WS

 DC

0

R P

D

0

x

0

..

.

H 0xB R DE 0

x

1

S

M

2

BTS_SLM_A32

ld.ga3

2c.DE
A32 Constant DWord G

athering Read

MSDCR_D
WS

 DC

RO

R P

D

0

x

0

..

.

H 0x3 R DE 0

x

1

S

M

2

BTS

Doc Ref # IHD-OS-LKF-Vol 9-4.21 537

Block Messages

Mnemoni

c Name

BXML

Structure

SFI

D

3

1

3

0

2

9

.

.

.

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0 9 8 7 6 5 4 3 2 1 0

ld.xbl25

6.HW64
A64 HWord Block Read MSD1R_A6

4_HWB
 DC

1

R ..

.

H 0x14 R 0x3 HW6

4

A64

st.xbl25

6.HW64
A64 HWord Block Write MSD1W_A

64_HWB
 DC

1

R ..

.

H 0x15 R 0x3 HW6

4

A64

ld.xbl12

8.OWs
A64 OWord Block Read MSD1R_A6

4_OWB
 DC

1

R ..

.

H 0x14 R 0x0 OWs A64

st.xbl12

8.OWs
A64 OWord Block Write MSD1W_A

64_OWB
 DC

1

R ..

.

H 0x15 R 0x0 OWs A64

ld.xubl1

28.OWs
A64 Unaligned OWord

Block Read

MSD1R_A6
4_OWUB

 DC

1

R ..

.

H 0x15 R 0x1 OWs A64

ld.bl128

.OWs
A32 OWord Block Read MSD0R_O

WB
 DC

0

R ..

.

H 0x0 R OWs BTS_SLM_A32

st.bl128

.OWs
A32 OWord Block Write MSD0W_O

WB
 DC

0

R ..

.

H 0x8 R OWs BTS_SLM_A32

ld.abl12

8.OWs
A32 Aligned OWord Blo

ck Read

MSD0R_O
WAB

 DC

0

R ..

.

H 0x1 R OWs BTS_SLM_A32

ld.cbl12

8.OWs
A32 Constant OWord Bl

ock Read

MSDCR_O
WB

 DC

RO

R ..

.

H 0x0 R OWs BTS

ld.cubl1

28.OWs
A32 Constant Unaligned

 OWord Block Read

MSDCR_O
WUB

 DC

RO

R ..

.

H 0x1 R OWs BTS

ld.sbl25

6.HWSB
A32 Scratch HWord Blo

ck Read

MSD0R_SB DC

0

R ..

.

H 0x10 HWSB ScratchOffset

st.sbl25

6.HWSB
A32 Scratch HWord Blo

ck Write

MSD0W_S
B

 DC

0

R ..

.

H 0x18 HWSB ScratchOffset

538 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Surface Messages

Mnemonic Name

BXML

Structure

SF

ID

3

1

3

0

2

9

.

.

.

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0 9 8 7 6 5 4 3 2 1 0

ld.xus.CMas

k

A64 Untyped Su

rface Read

MSD1R_A
64_US

 D

C1

R 0

x

0

..

.

0

x

0

0x11 SM3 CMask A64

st.xus.CMas

kUW

A64 Untyped Su

rface Write

MSD1W_
A64_US

 D

C1

R 0

x

0

..

.

0

x

0

0x19 SM3 CMaskU

W

A64

ld.us.CMask A32 Untyped Su

rface Read

MSD1R_U
S

 D

C1

R 0

x

0

..

.

H 0x1 SM3 CMask BTS_SLM_A32

st.us.CMask

UW

A32 Untyped Su

rface Write

MSD1W_
US

 D

C1

R 0

x

0

..

.

H 0x9 SM3 CMaskU

W

BTS_SLM_A32

ld.ts.SG3.C

Mask

A32 Typed Surfa

ce Read

MSD1R_T
S

 D

C1

R 0

x

0

..

.

H 0x5 SG3 CMask BTS

st.ts.SG3.C

MaskUW

A32 Typed Surfa

ce Write

MSD1W_
TS

 D

C1

R 0

x

0

..

.

H 0xD SG3 CMaskU

W

BTS

The field in bold red are the fields the assembler uses to decode a descriptor for a given message. The

field indicated with an R indicates a reserved field (0's). The other fields are defined in the tables below.

A64

A64 Stateless Binding Table Entry

Syntax

Mapping

The address model is inferred via a lexeme preceding the address operand.

 E.g. ld... (8) ... a64[...]

 E.g. st... (8) a32[...] ...

Symbol Value Desc.

a64o[...] 0xFC A64 surface state offset

a64[...] 0xFD A64 stateless (non-coherent)

a64c[...] 0xFF A64 stateless (coherent)

BTS

Binding Table Entry

Syntax

Mapping

The address model is inferred via a lexeme preceding the address operand.

 E.g. ld... (8) ... surf[..][...]

Doc Ref # IHD-OS-LKF-Vol 9-4.21 539

 E.g. st... (8) a32[...] ...

Symbol Value Desc.

surf[..][..] 0x0-EF binding table index

a32o 0xFC surface space offset

BTS_SLM_A32

(BTI|SLM|A32)

Syntax

Mapping

The address model is inferred via a lexeme preceding the address operand.

 E.g. ld... (8) ... a32[...]

 E.g. st... (8) a32[...] ...

Symbol Value Desc.

surf[..][..] 0x0-EF binding table index

a32o[..] 0xFC A32 surface state offset

a32[..] 0xFD A32 stateless non-coherent

slm[..] 0xFE shared local memory

a32c[..] 0xFF A32 stateless coherent

CMask

Channel Mask Message Descriptor Control Field

For the read message, indicates that which channels are read from the surface and included in the writeback

message. For the write message, indicates which channels are included in the message payload and written to the

surface.

Syntax

Mapping

This field is determined via an argument [CMask] to the load/store.

 E.g. ld...CMask (8) data ...[addr]

 E.g. st...CMask (8) [addr] data

Symbol Value Desc.

rgba 0x0

gba 0x1

rba 0x2

ba 0x3

rga 0x4

ga 0x5

ra 0x6

a 0x7

rgb 0x8

gb 0x9

rb 0xA

540 Doc Ref # IHD-OS-LKF-Vol 9-4.21

b 0xB

rg 0xC

g 0xD

r 0xE

CMaskUW

Untyped Write Channel Mask Message Descriptor Control Field

For the read message, indicates that which channels are read from the surface and included in the writeback

message. For the write message, indicates which channels are included in the message payload and written to the

surface.

Syntax

Mapping

This field is determined via an argument [CMaskUW] to the load/store.

 E.g. ld...CMaskUW (8) data ...[addr]

 E.g. st...CMaskUW (8) [addr] data

Symbol Value Desc.

rgba 0x0

rgb 0x8

rg 0xC

r 0xE

DE

Data Elements

The number of elements per channel (address). Values are returned in SOA form. E.g. x2 will return all the X's for

each channel followed by the Y's. A SIMD16 message will consume a pair of registers for each element. Byte values

are aligned as the low byte of each Dword (so only 8 per register).

Syntax

Mapping

This field is determined via an argument [DE] to the load/store.

 E.g. ld...DE (8) data ...[addr]

 E.g. st...DE (8) [addr] data

Symbol Value Desc.

x1 0x0 1 element per address

x2 0x1 2 elements per address

x4 0x2 4 elements per address

x8 0x3 8 elements per address

H

Header Optional

Indicates that a header is optional

Syntax

Mapping

The header presence is implied via the number of address registers.

 E.g. ld... (8) ... a32[r12-13]

 Since the message is A32 SIMD8 (1 GRF for addresses), the first of the two address GRFs is

Doc Ref # IHD-OS-LKF-Vol 9-4.21 541

assumed to be a header.

 E.g. ld... (8) ... a32[r12]

 Since the message is A32 SIMD8 (1 GRF for addresses), the first of the two address GRFs is

assumed to be a header.

 E.g. ld... (8) ... a32[r12,r24]

 Since the message is A32 SIMD8 (1 GRF for addresses), and there are two GRF addresses given (as

split arguments), the header is inferred to be included.

 E.g. ld... (16) ... a64[r12-16]

 Since the message is A64 SIMD16 it has 4 GRFs as addresses. Hence given 5 address registers, a

header is inlcuded.

Symbol Value Desc.

N/A 0x0 header omitted

N/A 0x1 header included

HW64

Data Blocks Hex Words

The number of 256b data blocks to fetch for the given address (for A64 HWord messages).

Syntax

Mapping

This field is determined via an argument [HW64] to the load/store.

 E.g. ld...HW64 (8) data ...[addr]

 E.g. st...HW64 (8) [addr] data

Symbol Value Desc.

x1 0x1 1 HWord

x2 0x2 2 HWords

x4 0x3 4 HWords

x8 0x4 8 HWords

HWSB

Data Blocks Hex Words

The number of 256b data blocks to fetch for the given address (for Non-A64 messages).

Syntax

Mapping

This field is determined via an argument [HWSB] to the load/store.

 E.g. ld...HWSB (8) data ...[addr]

 E.g. st...HWSB (8) [addr] data

Symbol Value Desc.

x1 0x0 1 HWord (a full GRF)

x2 0x1 2 HWords

x4 0x2 4 HWords

x8 0x3 8 HWords

OWs

Data Blocks Oct Words

542 Doc Ref # IHD-OS-LKF-Vol 9-4.21

The number of 128b data blocks to fetch for the given address.

Syntax

Mapping

This field is determined via an argument [OWs] to the load/store.

 E.g. ld...OWs (8) data ...[addr]

 E.g. st...OWs (8) [addr] data

Symbol Value Desc.

x1L 0x0 1 OWord accessed in the low half of the GRF

x1H 0x1 1 OWord accessed in the high half of the GRF

x2 0x2 2 OWords (1 full GRF)

x4 0x3 4 OWords (2 full GRF)

x8 0x4 8 OWords (4 full GRF)

PD

Packed Data

A value of one indicates that the data is packed.

Syntax

Mapping

This field is set if the instruction option PackedData.

 E.g. ld... (8) dst ...[src] {PackedData}

Symbol Value Desc.

N/A 0x0 unpacked data

N/A 0x1 packed data

SG3

Slot Group 3

Syntax

Mapping

This field is determined via an argument [SG3] to the load/store.

 E.g. ld...SG3 (8) data ...[addr]

 E.g. st...SG3 (8) [addr] data

Symbol Value Desc.

sg4x2 0x0

sg8l 0x1

sg8h 0x2

SM2

SIMD Mode 2

this value is inferred from the instruction's ExecSize

Syntax

Mapping

This field is inferred via the instruction's execution size. Note: sizes smaller than SIMD8 are

rounded up to SIMD8.

 E.g. ld... (4) ...

 will choose a SIMD8 message size. The instruction's ExecSize will still be SIMD4.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 543

Symbol Value Desc.

SIMD8 0x0 8 addresses are sent out

SIMD16 0x1 16 addresses are sent out

SM3

SIMD Mode 3

this value is inferred from the instruction's ExecSize

Syntax

Mapping

This field is inferred via the instruction's execution size. Note: sizes smaller than SIMD8 are

rounded up to SIMD8.

 E.g. ld... (4) ...

 will choose a SIMD8 message size. The instruction's ExecSize will still be SIMD4.

Symbol Value Desc.

SIMD16 0x1 16 channels (addresses)

SIMD8 0x2 8 channels (addresses)

ScratchOffset

Scratch Offset

In 32B chunks (i.e. the encoded value is scaled by 32; the syntax emits the value in bytes).

Syntax

Mapping

The address model is inferred via a lexeme preceding the address operand.

 E.g. ld... (8) ... scratch[..][...]

 E.g. st... (8) a32[...] ...

Symbol Value Desc.

scratch[..][..] 0x0-FFF scratch offset

544 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Split-Sends and Conditional Sends

A final minor complication to be dealt with involves how we map to specific EU ISA send ops, since there

are several in that family: send, sendc, sends, sendsc. If the underlying send instruction desired is a unary

send, we affix a p or c to the ld/st operand. Hence, the following mapping applies.

Pseduo-Instruction Encodes As

ld sends

ldc sendsc

ldp (p for packed) send (unary)

ldcp sendc

 The intention of the mapping above is to make the common and future cases the most concise.

Operand Mapping

 This section describes how send operands are mapped to load/store syntax.

Load Pseudo-Instructions

Send instructions that representing load operations come in several forms. The figure below illustrates

some examples below. Each box represents a GRF. For the vector messages, assume a 16 x 32-bit

addresses are sent out (without loss of generality).

Scalar (e.g. Block

Messages)

Vector with a Header (e.g. Gathering or Surface Read

messages) Vector (Headerless)

src0 Header src0 Header src0 Addrs0

 src1 Addr0 src0+1 Addrs1

 src1+1 Addr0

Block Messages

Load Syntax Send Encoding Notes

ld.bl256.x2 (1) dst a64[hdr] <====> sends (1) dst hdr null ...

ldc.bl256.x2 (1) dst a64[hdr] <====> sendsc (1) dst hdr null ...

ldp.bl256.x2 (1) dst a64[hdr] <====> send (1) dst hdr ... (Only if

unary
send

supported)

For block messages, only a header is sent (mlen is one with the header-present bit set.) The header/address is held

is src0 and src1 is left null (if applicable). Note that the header (hdr) is the address in block messages.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 545

Vector Messages with a Header

Load Syntax Send Encoding Notes

ld.ga32.x1 (16) dst slm[hdr,addr] <====> sends (16) dst hdr addr ...

ldp.ga32.x1 (16) dst slm[src0] <====> send (16) dst (hdr:addr) (Only if

unary
send

supported)

For vector messsages with a header src0 holds the header and src1 holds the address payloads (the first example

above). The second illustrates that both the header and addresses can be concatenated into one operand (if they

are in successive GRFs).

Headerless Vector Messages

Load Syntax Send Encoding Notes

ld.ga8.x4 (16) dst surf[1][addr] <====> sends (8) dst addr null ...

ldp.ga8.x4 (16) dst surf[1][addr] <====> send (8) dst addr ... (Only if

unary
send

supported)

For vector messsages without a header src0 holds all addresses and src1 is null (if applicable).

Store Pseudo-Instructions

Store instructions are encoded as send instructions. Since there is no return value (rlen = 0), the send's

encoded destination parameter is null. For the example below, assume the vector messages have 16 x

32b addresses to be sent out and 64 bytes of data are being sent out (2 GRFs).

Scalar (e.g. Block

Messages)

Vector with a Header (e.g. Scattering Write or Surface

Write messages) Vector (Headerless)

src0 Header src0 Header src0 Addrs0

src1 Data0 src0+1 Addr0 src0+1 Addrs1

src1+1 Data1 src0+2 Addr0 src1 Data0

 src1 Data0 src1+1 Data1

 src1+1 Data1

546 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Block Messages

Store Syntax Send Encoding Notes

st.bl256.x2 (1) a64[hdr] data <====> sends (8) null hdr data ...

stp.bl256.x2 (1) a64[(hdr:data)]

data
<====> send (1) dst src0 ... Src0 holds

both the

header

(address)

and the

data

registers.

We

replicate

the data

portion in

the store

instruction's

source for

readability,

but it is not

explicitly

encoded

into the

send.

For block messages src0 holds the header/address and src1 holds the data.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 547

Vector Messages with a Header

Store Syntax Send Encoding Notes

st.sc8.x4 (8) slm[(hdr:addr)] data <====> sends (8) null (hdr:addr) data The

header

and

address

are

packed

into src0

(in

successive

GRFs).

stp.sc8.x4 (8)

slm[(hdr:addr:data)] data
<====> send (16) null (hdr:addr:data)

...
src0

holds

both

header

and addrs

For vector messsages with a header src0 holds the header and addresses and src1 holds the data payload. In the

packed version (where supported) everything can be combined into one operand if placed in successive registers of

GRF. We present the data part as an operand in syntax, but it does not get encoded explicitly in the send (mlen is

set accordingly).

548 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Headerless Vector Messages

Load Syntax Send Encoding Notes

st.sc8.x4 (8) slm[addr] data <====> sends (8) null addr data ...

For vector messsages without a header src0 holds the addresses and src1 holds the data.

Instruction Set Reference

This chapter describes the functions of 3D Media GPGPU Execution Units, listed in alphabetical order

according to assembly language mnemonic.

EUISA Instructions List

Conventions

This section describes conventions used in instruction reference pages.

For each instruction that has source or destination types, a table lists the allowed type combinations and

may also indicate the processor generations that support certain combinations. A notation like *W

indicates that UW and W are both allowed. Multiple types listed together mean that any combination

(Cartesian product) of the listed types is allowed.

If a source operand is floating-point, all source operands must have the same floating-point data type.

The Q and UQ types cannot be mixed with the B or UB types, neither as different source types nor as

source type and destination type.

Accumulator restrictions are described in the Accumulator Restrictions section and also appear in

instruction descriptions.

Pseudo Code Format

Instructions are explained in the following pseudo-code format that resembles the assembly instruction

format.

 [(pred)] opcode (exec_size) dst src0 [src1]

Square brackets “[]” indicate that a field is optional. Saturation modifiers and instruction options are

omitted for simplicity.

General Macros and Definitions

INST_MIN_SIZE is defined as a constant of 8 bytes.

 #define INST_MIN_SIZE 8 // Instruction minimum size in bytes (for the compact instruction

format)

The floor function converts a floating point value to an integral floating point value. For a given floating

point value, from its closest two integral float values, floor returns the one that is closer to negative

infinity. For example, floor(1.3f) = 1.0f and floor(-1.3f) = -2.0f.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 549

 float floor(float g)

 {

 return maximum(any integral float f: f <= g)

 }

The Condition function takes the conditional signals {SN, ZR, OF, IN, NC} of result, generates a Boolean

value according to a conditional evaluation controlled by the conditional modifier cmod, and returns the

Boolean.

 Bool Condition(result, cmod)

The ConditionNaN function takes the conditional signals {SN, ZR, OF, IN, NC, NS} of result, generates a

Boolean value according to a conditional evaluation controlled by the conditional modifier cmod, and

returns the Boolean. The only difference between Condition and ConditionNaN is that ConditionNaN

uses the NS (NaN of the second source) signal.

 Bool ConditionNaN(result, cmod)

The Jump function jumps the instruction sequence from the current instruction location by InstCount 8-

byte units, where each 16-byte native instruction is two units and each 8-byte compact instruction is one

unit. If InstCount is positive and greater than zero, is an unconditional jump forward. If InstCount is

negative, is an unconditional jump backward. If InstCount is zero, IP stays on the current instruction in an

infinite loop.

 void Jump(int InstCount)

 {

 IP = IP + (InstCount * INST_MIN_SIZE)

 }

Evaluate Write Enable

The WrEn should be evaluated as below.

Note: MaskCtrl = NoMask (1) skips the check for PcIP[n] == ExIP before enabling a channel.

 if (MaskCtrl == 1) {

 for (n = 0; n < exec_size; n++) {

 WrEn[n] = 1;

 }

 }

 else {

 for (n = 0; n < exec_size; n++) {

 if (PcIP[n] == ExIP) {

 WrEn[n] = 1;

 }

 else {

 WrEn[n] = 0;

 }

 }

 }

 if (PredCtrl != 0000b) {

 for (n = 0; n < exec_size; n++) {

 WrEn[n] = WrEn[n] & PMask[n];

 }

 }

550 Doc Ref # IHD-OS-LKF-Vol 9-4.21

 for (n = exec_size; n < 32; n++) {

 WrEn[n] = 0;

 }

EUISA Instructions

Symbol Name Source

add Addition EUISA

addc Addition with Carry EUISA

asr Arithmetic Shift Right EUISA

avg Average EUISA

bfe Bit Field Extract EUISA

bfi1 Bit Field Insert 1 EUISA

bfi2 Bit Field Insert 2 EUISA

bfrev Bit Field Reverse EUISA

brc Branch Converging EUISA

brd Branch Diverging EUISA

break Break EUISA

call Call EUISA

calla Call Absolute EUISA

cmp Compare EUISA

cmpn Compare NaN EUISA

csel Conditional Select EUISA

sendc Conditional Send Message EUISA

sendsc Conditional Split Send Message EUISA

cont Continue EUISA

cbit Count Bits Set EUISA

else Else EUISA

endif End If EUISA

math Extended Math Function

• INV - Inverse

• LOG – Logarithm

• EXP - Exponent

• SQRT - Square Root

• RSQ - Reciprocal Square

Root

• POW - Power Function

• SIN - SINE

• COS - COSINE

EUISA

Doc Ref # IHD-OS-LKF-Vol 9-4.21 551

Symbol Name Source

• INT DIV - Integer Divide

• INVM/RSQRTM

fbl Find First Bit from LSB Side EUISA

fbh Find First Bit from MSB Side EUISA

frc Fraction EUISA

goto Goto EUISA

halt Halt EUISA

if If EUISA

illegal Illegal EUISA

subb Integer Subtraction with Borrow EUISA

join Join EUISA

jmpi Jump Indexed EUISA

lzd Leading Zero Detection EUISA

and Logic And EUISA

not Logic Not EUISA

or Logic Or EUISA

xor Logic Xor EUISA

mov Move EUISA

movi Move Indexed EUISA

mul Multiply EUISA

mac Multiply Accumulate EUISA

mach Multiply Accumulate High EUISA

mad Multiply Add EUISA

nop No Operation EUISA

ret Return EUISA

rol Rotate Left EUISA

ror Rotate Right EUISA

rndd

rnde

rndu

rndz

Round Instructions

▪ Round Down

▪ Round to Nearest or Even

▪ Round Up

▪ Round to Zero

EUISA

smov Scattered Move EUISA

sel Select EUISA

send Send Message EUISA

552 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Symbol Name Source

shl Shift Left EUISA

shr Shift Right EUISA

sends Split Send Message EUISA

sad EUISA

sada2 EUISA

wait Wait Notification EUISA

while While EUISA

Round Instructions

rndd - Round Down

rndu - Round Up

rnde - Round to Nearest or Even

rndz - Round to Zero

rndd – Round Down

Description:

The rndd instruction takes component-wise floating point downward rounding (to the integral float

number closer to negative infinity) of src0 and storing the rounded integral float results in dst. This is

commonly referred to as the floor() function.

Each result follows the rules in the following tables based on the floating-point mode.

Floating-Point Round Down in IEEE mode

src0 –inf –finite –denorm –0 +0 +denorm +finite +inf NaN

dst –inf -finite ^ –0 +0 +0 ** +inf NaN

Notes:

^ Note

{-1, -0} depending on the Single Precision Denorm

Mode.

** Result may be {+finite, +0}.

Floating-Point Round Down in ALT mode

src0 –fmax –finite –denorm –0 +0 +denorm +finite +fmax ***

dst –fmax -finite –0 –0 +0 +0 ** +fmax

Notes:

** Result may be {+finite, +0}.

*** Result is undefined if src0 is {–inf, +inf, NaN}.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 553

rnde – Round to Nearest or Even

Description:

The rnde instruction takes component-wise floating point round-to-even operation of src0 with results in

two pieces – a downward rounded integral float results stored in dst and the round-to-even increments

stored in the rounding increment bits. The round-to-even increment must be added to the results in dst

to create the final round-to-even values to emulate the round-to-even operation, commonly known as

the round() function. The final results are the one of the two integral float values that is nearer to the

input values. If the neither possibility is nearer, the even alternative is chosen.

Each result follows the rules in the following tables based on the floating-point mode.

Floating-Point Round to Nearest or Even in IEEE mode

src0 –inf –finite –denorm –0 +0 +denorm +finite +inf NaN

dst –inf * –0 –0 +0 +0 ** +inf NaN

Notes:

* Result may be {–finite, –0}.

** Result may be {+finite, +0}.

Floating-Point Round to Nearest or Even in ALT mode

src0 –fmax –finite –denorm –0 +0 +denorm +finite +fmax ***

dst –fmax * –0 –0 +0 +0 ** +fmax

Notes:

* Result may be {–finite, –0}.

** Result may be {+finite, +0}.

*** Result is undefined if src0 is {–inf, +inf, NaN}.

rndu – Round Up

Description:

The rndu instruction takes component-wise floating point upward rounding (to the integral float number

closer to positive infinity) of src0, commonly known as the ceiling() function.

Each result follows the rules in the following tables based on the floating-point mode.

554 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Floating-Point Round Up in IEEE mode

src0 –inf –finite –denorm –0 +0 +denorm +finite +inf NaN

dst –inf * –0 –0 +0 ^ +finite +inf NaN

Notes:

* Result may be {–finite, –0}.

^ Note

{+1, +0} depending on the Single Precision Denorm

Mode.

Floating-Point Round Up in ALT mode

src0 –fmax –finite –denorm –0 +0 +denorm +finite +fmax ***

dst –fmax * –0 –0 +0 +0 +finite +fmax

Notes:

* Result may be {–finite, –0}.

*** Result is undefined if src0 is {–inf, +inf, NaN}.

rndz – Round to Zero

Description:

The rndz instruction takes component-wise floating point round-to-zero operation of src0 with results in

two pieces – a downward rounded integral float results stored in dst and the round-to-zero increments

stored in the rounding increment bits. The round-to-zero increment must be added to the results in dst

to create the final round-to-zero values to emulate the round-to-zero operation, commonly known as

the truncate() function. The final results are the one of the two closest integral float values to the input

values that is nearer to zero.

Floating-Point Round to Zero in IEEE mode

src0 –inf –finite –denorm –0 +0 +denorm +finite +inf NaN

dst –inf * –0 –0 +0 +0 ** +inf NaN

Notes:

* Result may be {–finite, –0}.

** Result may be {+finite, +0}.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 555

Floating-Point Round to Zero in ALT mode

src0 –fmax –finite –denorm –0 +0 +denorm +finite +fmax ***

dst –fmax * –0 –0 +0 +0 ** +fmax

Notes:

* Result may be {–finite, –0}.

** Result may be {+finite, +0}.

*** Result is undefined if src0 is {–inf, +inf, NaN}.

math – Extended Math Function

Function

math - Extended Math Function

Description:

The math instruction performs extended math function on the components in src0, or src0 and src1, and

write the output to the channels of dst. The type of extended math function are based on the FC[3:0]

encoding in the table below.

Function Control[3:0] Function Description

0h Reserved

1h INV (reciprocal)

2h LOG

3h EXP

4h SQRT

5h RSQ

6h SIN

7h COS

8h Reserved

9h FDIV

Ah POW

Bh INT DIV – return quotient and remainder

Ch INT DIV – return quotient only

Dh INT DIV – return remainder

556 Doc Ref # IHD-OS-LKF-Vol 9-4.21

INV - Inverse

Precision:1 ULP

Src-> +inf +0 / +Denorm - 0 / -Denorm -inf NaN

Dest – IEEE mode +0 +inf -inf -0 NaN

Dest – ALT mode +fmax -fmax NaN

Src-> +inf +0 - 0 -inf NaN

Dest – IEEE mode +0 +inf -inf -0 NaN

LOG – Logarithm

Precision:

DirectX 10 and below

If src0 is [0.5..2], absolute error must be no more than 2-21. If src0 is (0..0.5) or (2..+INF], relative error

must be no more than 2-21

Note:In ALT mode log is computed as Log2 (abs (src0))

Src-> +inf +0 / +Denorm -0 / -Denorm -inf -F NaN

Dest – IEEE mode
+inf -inf -inf NaN NaN NaN

Dest – ALT mode
-fmax -fmax

+F NaN

Src-> +inf +0 - 0 -inf -F NaN

Dest – IEEE mode +inf -inf -inf NaN NaN NaN

EXP - Exponent

Precision:

DirectX 10 Relative error <= 3 ULP

GPGPU – Relative error <= 4 ULP

Src-> +inf +0 / +Denorm -0 / -Denorm -inf -F NaN

Dest – IEEE mode
+inf 1 1 0 +F NaN

Dest – ALT mode
1 1

+F NaN

Src-> +inf +0 - 0 -inf -F NaN

Dest – IEEE mode +inf 1 1 0 +F NaN

Doc Ref # IHD-OS-LKF-Vol 9-4.21 557

SQRT - Square Root

Precision:

DirectX 10 (and below) Relative error <= 1 ULP

GPGPU – Relative error <= 4 ULP

Notes:In ALT mode SQRT is computed as SQRT(abs (src0))

Src-> +inf +0 / +Denorm -0 / -Denorm -inf -F NaN

Dest – IEEE mode
+inf 0 -0 NaN NaN NaN

Dest – ALT mode
0 0

+F NaN

Src-> +inf +0 -0 -inf -F NaN

Dest – IEEE mode +inf 0 -0 NaN NaN NaN

RSQ - Reciprocal Square Root

Precision:

DirectX 10 and below Relative error <= 3 ULP

GPGPU – Relative error <= 4 ULP

Notes:In ALT mode RSQ is computed as RSQ(abs (src0))

Src-> +inf +0 / +Denorm -0 / -Denorm -inf -F NaN

Dest – IEEE mode
+0 +inf -inf NaN NaN NaN

Dest – ALT mode
+fmax +fmax

+F NaN

Src-> +inf +0 -0 -inf -F NaN

Dest – IEEE mode +0 +inf -inf NaN NaN NaN

558 Doc Ref # IHD-OS-LKF-Vol 9-4.21

POW - Power Function

Precision:

DirectX 10+ do not have precision requirements for POW.

Half_pow precision for GPGPU; i.e., 8192 ULPs with following exception

POWR, POWN is not supported in hardware.

IEEE Mode:

Src0->

Src1 abs(F > 1) abs(F < 1) abs(+F = = 1) +inf +0 / +Denorm -Denorm / -0 -inf NaN

+inf +inf 0 1 +inf 0 0 +inf NaN

+0 / Denorm 1 1 1 NaN NaN NaN NaN NaN

-0 / Denorm 1 1 1 NaN NaN NaN NaN NaN

-inf 0 +inf 1 0 +inf +inf 0 NaN

-F +F +F +F 0 +inf +inf 0 NaN

NaN NaN NaN NaN NaN NaN NaN NaN NaN

+F +F +inf 0 0 +inf NaN

IEEE Mode:

Src0->

Src1 abs(F > 1) abs(F < 1) abs(+F = = 1) +inf +0 -0 -inf NaN

+inf +inf 0 1 +inf 0 0 +inf NaN

+0 1 1 1 NaN NaN NaN NaN NaN

-0 1 1 1 NaN NaN NaN NaN NaN

-inf 0 +inf 1 0 +inf +inf 0 NaN

-F +F +F +F 0 +inf +inf 0 NaN

NaN NaN NaN NaN NaN NaN NaN NaN NaN

+F +F +inf 0 0 +inf NaN

ALT Mode:

Src0->

Src1 +F +inf +0 / +Denorm -0 / -Denorm -inf -F NaN

+inf

+0 / Denorm 1 1 1 1 NaN

-0 / Denorm 1 1 1 1 NaN

-inf

-F +F +fmax +fmax +F NaN

NaN NaN NaN NaN NaN

Doc Ref # IHD-OS-LKF-Vol 9-4.21 559

+F +F 0 0 +F NaN

SIN - SINE

Precision:

DirectX 10 and below Absolute error <= 0.0008 for the range of +/- 32767* pi

Outside of the above range the function will remain periodic, producing values between -1 and 1.

However, the period of SIN is determined by the internal representation of Pi, meaning that as the

magnitude of input increases the absolute error will, in general, also increase.

Src-> +inf +0 / +Denorm -0 / -Denorm -inf -F NaN

Dest – IEEE mode NaN +0 -0 NaN -1 to 1 NaN

Dest – ALT mode +0 -0 -1 to 1 NaN

Src-> +inf +0 -0 -inf -F NaN

Dest – IEEE mode NaN +0 -0 NaN -1 to 1 NaN

COS - COSINE

Precision:

DirectX 10 and below Absolute error <= 0.0008 for the range of +/- 32767* pi

Outside of the above range the function will remain periodic, producing values between -1 and 1.

However, the period of COS is determined by the internal representation of Pi, meaning that as the

magnitude of input increases the absolute error will, in general, also increase.

Src-> +inf +0 / +Denorm -0 / -Denorm -inf -F NaN

Dest – IEEE mode NaN +0 -0 NaN -1 to 1 NaN

Dest – ALT mode +1 +1 -1 to 1 NaN

Src-> +inf +0 -0 -inf -F NaN

Dest – IEEE mode NaN +0 -0 NaN -1 to 1 NaN

560 Doc Ref # IHD-OS-LKF-Vol 9-4.21

INT DIV - Integer Divide

Precision:32-bit integer

For signed inputs, INT DIV behavior is illustrated by the table below:

Inputs: Numerator + + - -

Denominator + - + -

Outputs: Quotient + - - +

Remainder + + - -

INVM/RSQRTM

These are special opcodes. These two special opcodes INVM and RSQRTM provide the initial

approximation for a macro that finally produces an IEEE compliant FDIV and SQRT respectively. They

perform the same operation as INV and RSQRT. However, the outputs of these opcodes have higher

precision, i.e., 34 bits for single precision and 66 bits for double precision. 32 bits and 64 bits, for single

and double precision respectively are stored in the GRF and the remaining bits are stored in the special

accumulators acc2-acc9. These operations provide the initial approximation for inverse and sqrt

operations. The final IEEE compliant values are derived through a series of special fma operations. The

pseudo code for these macro operations is defined below.

Early Out (math.eo.f0.0) is implicitely set in the instruction when these two special opcodes INVM and RSQRTM are

used.

Programming Notes: The GRF registers and accumulators used in the macros below are merely examples. There

are no restrictions on using these in any specific order as long as the GRF register and the accumulator are paired

correctly in writes and reads. Since early out handling requires flow control to channels that do not require

compute through the macro, Single Program Flow must never be set for a macro operation.

Macro for Single Precision IEEE Compliant fdiv

[Note: Constants are in quotes.]

 Set Rounding Mode in CR to RNE

 GRF are initialized: r2 = 0, r6 = a, r4 = b, r5 = 1

 The default data type for the macro is :f

 math.eo.f0.0 (8) r8.acc2 r6.noacc r4.noacc 0xE

 (-f0.0) if

 madm (8) r9.acc3 r2.noacc r6.noacc r8.acc2 // Step(1), q0=a*y0

 madm (8) r10.acc4 r5.noacc –r4.noacc r8.acc2 // Step(2), e0=(1-b*y0)

 madm (8) r1.acc5 r8.acc2 r10.acc4 r8.acc2 // Step(3), y1=y0+e0*y0

 madm (8) r11.acc6 r6.noacc –r4.noacc r9.acc3 // Step(4), r0=a-b*q0

 madm (8) r9.acc7 r9.acc3 r11.acc6 r1.acc5 // Step(5), q1=q0+r0*y1

 madm (8) r6.acc8 r6.noacc –r4.noacc r9.acc7 // Step(6), r1=a-b*q1

 Change Rounding Mode in CR if required

 Implicit Accumulator for destination is NULL

Doc Ref # IHD-OS-LKF-Vol 9-4.21 561

 madm (8) r8.noacc r9.acc7 r6.acc8 r1.acc5 // Step(7), q=q1+r1*y1

 endif

Macro for Double Precision IEEE Compliant fdiv

 Set Rounding Mode in CR to RNE

 GRF are initialized: r0 = 0, r6 = a, r7 = b, r1 = 1

 The default data type for the macro is :df

 math.eo.f0.0 (4) r8.acc2 r6.noacc r7.noacc 0xE

 (-f0.0) if

 madm (4) r9.acc3 r0.noacc r6.noacc r8.acc2 // Step(1), q0=a*y0

 madm (4) r10.acc4 r1.noacc –r7.noacc r8.acc2 // Step(2), e0=(1-b*y0)

 madm (4) r11.acc5 r6.noacc -r7.noacc r9.acc3 // Step(3), r0=a-b*q0

 madm (4) r12.acc6 r8.acc2 r10.acc4 r8.acc2 // Step(4), y1=y0+e0*y0

 madm (4) r13.acc7 r1.noacc -r7.noacc r12.acc6 // Step(5), e1=(1-b*y1)

 madm (4) r8.acc8 r8.acc2 r10.acc4 r12.acc6 // Step(6), y2=y0+e0*y1

 madm (4) r9.acc9 r9.acc3 r11.acc5 r12.acc6 // Step(7), q1=q0+r0*y1

 madm (4) r12.acc2 r12.acc6 r8.acc8 r13.acc7 // Step(8), y3=y1+e1*y2

 madm (4) r11.acc3 r6.noacc -r7.noacc r9.acc9 // Step(9), r1=a-b*q1

 Change Rounding Mode in CR if required

 Implicit Accumulator for destination is NULL

 madm (4) r8.noacc r9.acc9 r11.acc3 r12.acc2 // Step(10), q=q1+r1*y3

 endif

Macro for Single Precision IEEE Compliant sqrt

 Set Rounding Mode in CR to RNE

 GRF are initialized: r0 = 0, r8 = 1/2, r6 = a

 The default datatype for the macro is :f

 math.eo.f0.0 (8) r7.acc2 r6.noacc null 0xF

 (-f0.0) if

 madm (8) r9.acc3 r0.noacc r8.noacc r7.acc2 // Step(1), H0=1/2*y0

 madm (8) r11.acc4 r0.noacc r6.noacc r7.acc2 // Step(2), S0=a*y0

 madm (8) r10.acc5 r8.noacc -r11.acc4 r9.acc3 // Step(3), d0=1/2-S0*H0

 madm (8) r9.acc6 r9.acc3 r10.acc5 r9.acc3 // Step(4), H1=H0+d0*H0

 madm (8) r7.acc7 r11.acc4 r10.acc5 r11.acc4 // Step(5), S1=S0+d0*S0

 madm (8) r10.acc8 r6.noacc -r7.acc7 r7.acc7 // Step(6), e0=a-S1*S1

 Change Rounding Mode in CR if required

 Implicit Accumulator for destination is NULL

 madm (8) r7.noacc r7.acc7 r9.acc6 r10.acc8 // Step(7), S=S1+e0*H1

 endif

Macro for Double Precision IEEE Compliant sqrt

 Set Rounding Mode in CR to RNE

 GRF are initialized: r0 = 0, r8 = 1/2, r6 = a, r1 = 1

 The default datatype for the macro is :df

 math.eo.f0.0 (4) r7.acc2 r6.noacc null 0xF

 (-f0.0) if

 madm (4) r9.acc3 r0.noacc r8.noacc r7.acc2 // Step(1), H0=1/2*y0

 madm (4) r11.acc4 r0.noacc r6.noacc r7.acc2 // Step(2), S0=a*y0

 madm (4) r10.acc5 r8.noacc -r11.acc4 r9.acc3 // Step(3), d=1/2-S0*H0

562 Doc Ref # IHD-OS-LKF-Vol 9-4.21

 madm (4) r8.acc6 r1.noacc r8.noacc r1.noacc // Step(0'') 3/2=1+1/2

 madm (4) r8.acc7 r1.noacc r8.acc6 r10.acc5 // Step(4), e=1+3/2*d

 madm (4) r7.acc8 r0.noacc r10.acc5 r11.acc4 // Step(5), T0=d*S0

 madm (4) r10.acc9 r0.noacc r10.acc5 r9.acc3 // Step(6), G0=d*H0

 madm (4) r7.acc8 r11.acc4 r8.acc7 r7.acc8 // Step(7), S1=S0+e*T0

 madm (4) r8.acc7 r9.acc3 r8.acc7 r10.acc9 // Step(8), H1=H0+e*G0

 madm (4) r9.acc3 r6.noacc -r7.acc8 r7.acc8 // Step(9), d1=a-S1*S1

 Change Rounding Mode in CR if required

 Implicit Accumulator for destination is NULL

 madm (4) r7.noacc r7.acc8 r9.acc3 r8.acc7 // Step(10), S=S1+d1*H1

 endif

Restrictions for the Use of Macros

1. All operations are in Align 1 mode.

2. SubRegNum is re-purposed for implicit accumulator controls. Hence the default SubRegNum value

is 0. (i.e. GRF aligned).

3. Macro Operations need to be used as special subroutines. Interleaving other operations is not

recommended.

4. Single precision operations must be SIMD8 and double precision operations must be SIMD4.

5. The macro sequences should be used with the Rounding Mode in CR set to RNE. The Rounding Mode may be

changed only for the last madm of the macro depending on the requirement.

Workaround

When both srcs are NAN, FDIV produces denorminator NAN as output.

Send Message

Message

send - Send Message

The following information describes the send message. See above for additional documentation.

Send Message

Instruction Description

send <dst> <src>

<ex_desc> <desc>

Send a message stored in GRF starting at <src> to a shared function identified by

<ex_desc> along with control from <desc> with a GRF writeback location at <dst>.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 563

Pred Sat Cond Mod Src Mod Src Types Dst Type

Y

Format:

 [(pred)] send (exec_size) <dest> <src> <ex_desc> <desc>

Syntax:

Syntax

 [(pred)] send (exec_size) reg greg imm32 reg32a

 [(pred)] send (exec_size) reg greg imm32 imm32

Pseudocode:

 Evaluate(WrEn);

 <MsgChEnable> = WrEn;

 <SourceReg> = <src>.RegNum;

 MessageEnqueue(<MsgChEnable>, <ResponseReg>, <SourceReg>, <ex_dest>, <desc>);

Description:

The send instruction performs data communication between a thread and external function units,

including shared functions (Sampler, Data Port Read, Data Port Write, URB, and Message Gateway) and

some fixed functions (e.g. Thread Spawner, who also have an unique Shared Function ID). The send

instruction adds an entry to the EU’s message request queue. The request message is stored in a block of

contiguous GRF registers. The response message, if present, will be returned to a block of contiguous

GRF registers. The return GRF writes may be in any order depending on the external function units. <src>

is the lead GRF register for request. <dest> is the lead GRF register for response. The message descriptor

field <desc> contains the Message Length (the number of consecutive GRF registers) and the Response

Length (the number of consecutive GRF registers). It also contains the header present bit, and the

function control signals. The extend mesage descriptor field <ex_desc> contains the target function ID.

WrEn is forwarded to the target function in the message sideband.

The extended message descriptor field <ex_desc> also contains the extended function control field to be

sent to the Target Shared Function over message sideband.

The send instruction is the only way to terminate a thread. When the EOT (End of Thread) bit of

<ex_desc> is set, it indicates the end of thread to the EU, the Thread Dispatcher and, in most cases, the

parent fixed function.

Message descriptor field <desc> can be a 32-bit immediate, imm32, or a 32-bit scalar register, <reg32a>.

restricts that the 32-bit scalar register <reg32a> must be the leading dword of the address register. It

should be in the form of a0.0<0;1,0>:ud. When <desc> is a register operand, only the lower 29 bits of

<reg32a> are used.

Syntax

<ex_desc> is a 32-bit immediate, imm32. The lower 4bits of the <ex_desc> specifies the SFID for the message. The

bit5 of the extended message descriptor, the EOT field, always comes from bit 127 of the instruction word. A thread

must terminate with a send instruction with EOT turned on. The higher 16bits, bit31:16 specify the 16bit extended

function control field. Interpretation of the extended function control signals is subject to the target external

564 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Syntax

function.

<src> is a 256-bit aligned GRF register. It serves as the leading GRF register of the request.

The source dependency control, {NoSrcDepSet} is used to control the setting of source dependency for

the source.

<dest> serves for two purposes: to provide the leading GRF register location for the response message if

present, and to provide parameters to form the channel enable sideband signals.

<dest> signals whether there is a response to the message request. It can be either a null register, a

direct-addressed GRF register or a register-indirect GRF register. Otherwise, hardware behavior is

undefined.

If <dest> is null, there is no response to the request. Meanwhile, the Response Length field in <desc>

must be 0. Certain types of message requests, such as memory write (store) through the Data Port, do

not want response data from the function unit. If so, the posted destination operand can be null.

If <dest> is a GRF register, the register number is forwarded to the shared function. In this case, the

target function unit must send one or more response message phases back to the requesting thread. The

number of response message phases must match the Response Length field in <desc>, which of course

cannot be zero. For some cases, it could be an empty return message. An empty return message is

defined as a single-phase message with all channel enables turned off.

The subregister number, horizontal stride, and destination mask of <dest> are always valid and are used

in part to generate on the WrEn. This is true even if <dest> is a null register (this is an exception for null

as for most cases these fields are ignored by hardware). The destination type is not used.

The 16-bit channel enables of the message sideband are formed based on the WrEn. Interpretation of

the channel enable sideband signals is subject to the target external function. In general for a ‘send’

instruction with return messages, they are used as the destination dword write mask for the GRF registers

starting at <dest>. For a message that has multiple return phases, the same set of channel enable signals

applies to all the return phases.

If all the channel enables are zero and if the target external function is not the Render Target function,

then the message is not sent.

Thread managed memory coherency: A special usage of using non-null <dest> is to support write-

commit signaling for memory write service by the Data Port Write unit. If <post_dest> is not null for a

memory write request, the Data Port along with the Data Cache or Render Cache will wait until all the

posted writes for the request have reached the coherent domain before sending back to the requesting

thread an empty message to <dest> register. A memory write reaching the coherent domain, also

referred to as reaching the global observable state, means that subsequent read to the same memory

location, no matter which thread issues the read, must return the data of the write.

NoDDClr and NoDDChk must not be used for send instruction.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 565

Message Descriptor Definition

Bit Description

31 Reserved : MBZ

30 Data Format. This field specifies the width of data read from sampler or written to render target. Format =

U1 0 – Single Precision (32b) 1 – Half Precision (16b)

29 Reserved : MBZ

28:25
Message Length. This field specifies the number of 256-bit GRF registers starting from <src> to be sent out

on the request message payload. Valid value ranges from 1 to 15. A value of 0 is considered erroneous.

Format = U4

Range = [1,15]

24:20
Response Length. This field indicates the number of 256-bit registers expected in the message response.

The valid value ranges from 0 to 16. A value 0 indicates that the request message does not expect any

response. The largest response supported is 16 GRF registers.

Format = U5

Range = [0,31]

19
Header Present. If set, indicates that the message includes a header. Depending on the target shared

function, this field may be restricted to either enabled or disabled. Refer to the specific shared function

section for details.

Format = Enable

18:0
Function Control

This field is intended to control the target function unit. Refer to the section on the specific target function

unit for details on the contents of this field.

Extended Message Descriptor Definition

Bit Description

31:16 Extended Function Control. This field is intended to control the target function unit. Refer to the section on

the specific target function unit for details on the contents of this field.

15:6 reserved

5
End Of Thread

This field, if set, indicates that this is the final message of the thread and the thread’s resources can be

reclaimed.

4 reserved

3:0
Target Function ID

This field indicates the function unit for which the message is intended.

566 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Bit Description

Refer to “GPU Overview” document for the mapping of Shared Function IDs

Restrictions:

Software must obey the following rules in signaling the end of thread using the send instruction:

• When context save and restore of a thread is required, the registers r0-r1 must not be used as dest or src

registers. This is required to provide a grf register space to save sr1.0 by the system interrupt routine in the

event of a mid-thread pre-emption.

• The posted destination operand must be null.

• No acknowledgement is allowed for the send instruction that signifies the end of thread. This is to avoid

deadlock as the EU is expecting to free up the terminated thread’s resource.

• A thread must terminate with a send instruction with message to a shared function on the output message

bus; therefore, it cannot terminate with a send instruction with message to the following shared functions:

Sampler unit, NULL function. For example, a thread may terminate with a URB write message or a render

cache write message.

• Kernel needs to ensure accumulator scoreboard is cleared before EOT.

• A root thread originated from the media (generic) pipeline must terminate with a send instruction with

message to the Thread Spawner unit. A child thread should also terminate with a send to TS. Please refer to

the Media Chapter for more detailed description.

• The send instruction cannot update accumulator registers.

• Saturate is not supported for send instruction.

• ThreadCtrl are not supported for send instruction.

• The send with EOT should use register space R112-R127 for <src>. This is to enable loading of a new thread

into the same slot while the message with EOT for current thread is pending dispatch.

• SEND should not use 64-bit datatype for src or dest register.

Extended Message Descriptor Definition

Bits Description

5 End Of ThreadThis field, if set, indicates that this is the final message of the thread and the

thread’s resources can be reclaimed.

4 reserved

3:0 Target Function ID This field indicates the function unit for which the message is intended.

Refer to volume GPU Overview for GPE Function IDs.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 567

EUISA Structures

Name Source

AddrSubRegNum EuIsa

DstRegNum EuIsa

DstSubRegNum EuIsa

EU_INSTRUCTION_BASIC_ONE_SRC EuIsa

EU_INSTRUCTION_BASIC_THREE_SRC EuIsa

EU_INSTRUCTION_BASIC_TWO_SRC EuIsa

EU_INSTRUCTION_BRANCH_CONDITIONAL EuIsa

EU_INSTRUCTION_BRANCH_ONE_SRC EuIsa

EU_INSTRUCTION_BRANCH_TWO_SRC EuIsa

EU_INSTRUCTION_COMPACT_THREE_SRC EuIsa

EU_INSTRUCTION_COMPACT_TWO_SRC EuIsa

EU_INSTRUCTION_CONTROLS EuIsa

EU_INSTRUCTION_CONTROLS_A EuIsa

EU_INSTRUCTION_CONTROLS_B EuIsa

EU_INSTRUCTION_HEADER EuIsa

EU_INSTRUCTION_ILLEGAL EuIsa

EU_INSTRUCTION_MATH EuIsa

EU_INSTRUCTION_NOP EuIsa

EU_INSTRUCTION_OPERAND_CONTROLS EuIsa

EU_INSTRUCTION_OPERAND_DST_ALIGN1 EuIsa

EU_INSTRUCTION_OPERAND_DST_ALIGN16 EuIsa

EU_INSTRUCTION_OPERAND_SEND_MSG EuIsa

EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN1 EuIsa

EU_INSTRUCTION_OPERAND_SRC_REG_ALIGN16 EuIsa

EU_INSTRUCTION_OPERAND_SRC_REG_THREE_SRC EuIsa

EU_INSTRUCTION_SEND EuIsa

EU_INSTRUCTION_SENDS EuIsa

EU_INSTRUCTION_SOURCES_IMM32 EuIsa

EU_INSTRUCTION_SOURCES_REG EuIsa

EU_INSTRUCTION_SOURCES_REG_IMM EuIsa

EU_INSTRUCTION_SOURCES_REG_REG EuIsa

ExtMsgDescpt EuIsa

FunctionControl EuIsa

MsgDescpt31 EuIsa

SrcRegNum EuIsa

568 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Name Source

SrcSubRegNum EuIsa

EUISA Enumerations

Name Source

AddrMode EuIsa

CondModifier EuIsa

DepCtrl EuIsa

DstType EuIsa

EU_OPCODE EuIsa

ExecSize EuIsa

FC EuIsa

HorzStride EuIsa

PredCtrl EuIsa

QtrCtrl EuIsa

RegFile EuIsa

SFID EuIsa

SrcImmType EuIsa

SrcIndex EuIsa

SrcMod EuIsa

SrcType EuIsa

ThreadCtrl EuIsa

VertStride EuIsa

Width EuIsa

EU Programming Guide

Describes they syntax, gives examples, and provides fulsim extensions.

Fulsim Extenstions

A register can be declared as a symbol using the following form

.declare <symbol>Base=RegFile RegBase {.SubRegBase} ElementSize=ElementSize

{SrcRegion=DefaultSrcRegion} {DstRegion=DefaultDstRegion} {Type=DefaultType}

The register file, the base of the register origin and the element size (in unit of bytes) are the mandatory

parameters for a declared register region. Optionally, the base of the sub-register address, the default

source region, the default destination region and the default type can be provided in the declaration for

the symbol.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 569

For immediate register addressing mode, the declared symbol can be used in the following Cartesian

form

<symbol>(RegOff, SubRegOff)<=RegNum = RegBase+ RegOff; SubRegNum = SubRegBase+

SubRegOff

or in the following simplified row-aligned form

<symbol>(RegOff)<=RegNum = RegBase+ RegOff; SubRegNum = SubRegBase

Example Declare:

.declare uwPAKMBA Base=r48 ElementSize=2 Type=uw

 .declare wINTRAMB_FLAG_B Base=r8.1 ElementSize=2 Type=w

Example Use:

and (1|M0) (eq)f0.0 wINTRAMB_FLAG_B(0)<1>:w uwPAKMBA(1,0)<0;1,0>:w 0x2000:w

.default_execution_size (EXEC_SIZE)

Where executions size is :1, 4, 8, 16

Example:

.default_execution_size (16)

mov (M0) r45.0<8;8,1>:d 0:d

.default_register_type <type>

Example:

.default_register_type :d

mov (16|M0) r45.0<8;8,1> 0

Usage Examples

Examples of various instructions use.

570 Doc Ref # IHD-OS-LKF-Vol 9-4.21

EU Instructions

Execution Mask

M0 N1/Q1/H1

M4 N2

M8 N3/Q2

M12 N4

M16 N5/Q3/H2

M20 N6

M24 N7/Q4

M28 N8

(W) add (1|M0) a0.0<1>:ud r1.0<0;1,0>:ud 0x2190000:ud

(W) Write Enable is ON

add opcode add

(1|M0) Execution size: 1. Execution Mask Offset: 0.

a0.0<1>:ud Architecture Register File (ARF) registers: address. Register Number: 0. SubRegister Number 0.

Destination stride: 1. Type: UD.

r1.0<0;1,0>:ud GRF Register. Register Number: 1. SubRegister Number 0. Scalar access.

madm (4|M0) r46.acc3:df r38.noacc:df r36.noacc:df r32.acc2:df

 Write Enable is OFF

madm opcode madm

(4|M0) Execution size: 4. Execution Mask Offset: 0.

r46.acc3:df GRF register. Register Number: 46. SubRegister Number: 0. ACC3 is updated to accumulate

precision. See MADM for more information. Type: DF.

r38.noacc:df GRF register. Register Number: 38. SubRegister Number: 0. No ACC register is upated. See

Acumulator register for more information. Type DF.

r32.acc2:df GRF register. Register Number: 32. SubRegister Number: 0. ACC2 is used for extra precision.

math.invm (4|M4) (eo)f0.0 r8.acc2:df r36.noacc:df r34.noacc:df

 Write enable is OFF

math.invm opcode MATH, Extended Math Function INVM (Inverse with higher precision).

(4|M0) Execution Size: 4. Execution Mask Offset: 4:

(eo)f0.0 Flag register as implicit destination, with a flag modifier. See math instruction for more information.

cmp (1|M0) (lt)f0.0 null.0<1>:d r35.0<0;1,0>:d r1.7<0;1,0>:d

 Write enable is OFF

cmp Opcode compare

(1|M0) Execution Size: 1. Execution Mask Offset: 0.

(lt)f0.0 Flag register as implicit destination, with Lest Then flag modifier. See cmp instruction for more

information.

r35.0<0;1,0>:d GRF register type. Register Number: 35. SubRegister Number: 0. Region: <0;1,0>, Scalar. vStride: 0.

Width: 1. hStride: 0.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 571

sel (1|M0) (lt)f0.0 r2.4<1>:d r2.4<0;1,0>:d r1.2<0;1,0>:d

 Write enable is OFF

sel Opcode select.

(1|M0) Execution Size: 1. Execution Mask Offset: 0.

(lt)f0.0 Flag register as implicit destination, with Lest Then flag modifier. See sel instruction for more

information.

(W&~f0.0) sel (8|M0) r2.0<1>:f r2.0<8;8,1>:f 0xBF800000:f

(W&~f0.0) Write Enable is ON. This instruction is predicated. Flag register f0.0 is used, and it's values are

negated. See select instruction for more information.

mad (8|M0) r15.0<1>:f r14.0<0;0>:f r3.0<8;1>:f r10.0<0>:f

 Write enable is OFF

mad Opcode: mad.

(8|M0) Execution Size: 8. Execution Mask Offset: 0.

r15.0<1>:f Destination. Horizontal Stride: 1. Type: Float.

r14.0<0;0>:f Src0. vStride: 0. hStride: 0. Scalar.

r3.0<8;1>:f Src1. vStride: 1. hStride: 1. Vector.

r10.0<0>:f Src2. hStride: 0. Scalar

mad (8|M0) r15.0<1>:f r14.0<0;0>:f r3.0<8;1>:f r10.0<1>:f

r10.0<1>:f Src2. hStride: 1. Vector.

572 Doc Ref # IHD-OS-LKF-Vol 9-4.21

SEND Instructions

Sends (8|M0) r3:f r0 r38 0x82 0x02127019

Sends Split Send. Two Sources.

(8|M0) ExecSize: 8. Excution Mask Offset: 0.

r3:f Destination. GRF Register type. Register Number: 3. Type: Float.

r0 Source 0. GRF Register type. Register Number: 0. Type: None.

r38 Source 1. GRF Register type. Register NUmber: 38. Type: None.

0x82 Extended Message Descriptor. See SEND message for more information.

0x02127019 Message Descriptor. See SEND message for more information.

Send (8|M0) r0:f r37:d 0x2 0x08127019

Send Send instruction. One Source.

(8|M0) ExecSize: 8. Excution Mask Offset: 0.

r0:f Destination. GRF Register Type. Register Number: 0. Type: Float.

r37:d Source 0. GRF Register Type. Register Number: 0. Type: D.

0x2 Extended Message Descriptor.

0x08127019 Message Descriptor.

Send (16|M0) r3:w r23:ud 0x2 a0.0

Send Send instruction. One source.

(16|M0) ExecSize: 16. Excution Mask Offset: 0.

r3:w Destination.

r23:ud Source 0.

0x2 Extended Message Descriptor

a0.0 Message Descriptor. Indirect. Value stored in ARF address register a0.0.

(W) sends (8|M0) null:ud r25 r19 0x10c a0.0

(W) Write Enable is ON.

sends Split Send.

(8|M0) ExecSize: 8. Excution Mask Offset: 0.

null:ud Destination. ARF NULL Register. Type: UD. This instruction does not return any values.

r25 Source 0.

r19 Source 1.

0x10C Extended Message Descriptor.

a0.0 Message Descriptor. Indirect. Value stored in ARF address register a0.0.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 573

Control Flow Instructions

(W) jmpi (1|M0) L1320

(W) Write Enable is ON.

jmpi. Jump Immediate.

(1|M0) Execution Size: 1. Execution Mask Offset: 0.

L130 Label to jump to.

(W&~f0.1) jmpi (1|M0) L904

(W&~f0.1) Write Enable is ON. ARF flag register used as Predicate. SubRegister: 1. Values are inverted.

(~f0.0) if (4|M0) L4744 L4760

// (4|M0) instructions

L4744:

// (4|M0) instructions

L4760:

endif (4|M0) L4776

L4776:

(~f0.0) ARF Flag register used as a predicate. SubRegister: 0. Values are inverted.

if IF

(4|M0) Execution Size: 4. Execution Mask Offset: 0.

L4744 JIP

L4760 UIP

L4776 JIP

574 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Shared Functions

Shared Functions are hardware units that perform operations on behalf a thread running in an EU.

Shared Functions are sent a message payload by the thread, and optionally return results to the thread.

The most common shared function operations are memory surface read and write messages performed

by the Sampler, the Pixel Port, and the Data Port. The following sections describe each of the shared

function operations in detail.

Shared functions are identified by their Shared Function ID (SFID), which is one of the parameters to the

EU send instruction.

List of Shared Function Identifiers

Programming Note

Context: Shared Function ID

SFID_DP_DC1 is an extension of SFID_DP_DC0 to allow for more messages types. They act as a single logical entity.

Programming Note

Context:
Shared Function ID

SFID_DP_DC1 , SFID_DP_DC2, and SFID_P_DC3 are extensions of SFID_DP_DC0 to allow for more messages types.

They act as a single logical entity.

Binding Table

The surface state model is intended to be used for constant buffers, render target surfaces, and media

surfaces.

Below is a table specifying the different configuration of the Binding Table Pointers and the

BINDING_TABLE_STATE. This table applies for render, position and compute engines. Each engine

supports a separate address.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 575

Binding Table Entry Format Binding Table Pointer Base Address

32 bit size/[31:6] 20:5 Binding Table Pool Address

Below is a table of the different entries and poitner offsets based on the Binding Table Pool and 18:8

Mode:

Render Pipe:

RCS Binding Table

Pool Enable

HW Alignment 256B

Mode

Binding Table Entry

Format

Binding Table

Pointer Base Address

0 0 32 bit size/[31:6] 15:5
RCS Surface State Base

Address

1 0 16 bit size/[21:6] 16:6 RCS Binding Table Pool

Address

0 1 32 bit size/[31:6] 18:8 RCS Surface State Base

Address

1 1 32 bit size/[31:6] 18:8 RCS Binding Table Pool

Address

POSH Pipe(Note that the Pool Enable and 256B mode is shared with Render Pipe):

RCS Binding Table

Pool Enable*

HW Alignment 256B

Mode*

Binding Table Entry

Format

Binding Table

Pointer Base Address

0 0 32 bit size/[31:6] 15:5 POCS Surface State

Base Address

1 0 16 bit size/[21:6] 16:6 POCS Binding Table

Pool Address

0 1 32 bit size/[31:6] 18:8 POCS Surface State

Base Address

1 1 32 bit size/[31:6] 18:8 POCS Binding Table

Pool Address

* SW must sync between the POCS and RCS prior to changing the binding table pool enable and 256B alignment

mode.

The data port uses the binding table to retrieve surface state when the Binding Table Index is less than

240. See the following for a definition of the binding table:

• SW Generated BINDING_TABLE_STATE

• HW Generated

• BINDING_TABLE_STATE

576 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Fused Send Message Handling

Shared Functions receive messages from the EU. The EU kernel executes a SEND instruction to transmit

the message payload to the Shared Function. The message payload contains a Message Descriptor, an

optional Message Header, and a message-specific Address and Data Payload.

The EU can mark two SEND messages to be combined together as a single operation.

Combine

Type Behavioral Description and Restrictions

Atomic Send

Message

A single thread issues back-to-back SEND messages. The two messages are sent as an indivisible pair

to the shared function. The shared function processes the pair of messages sequentially. There is no

guarantee that the two messages are executed back-to-back by the shared function: another EU's

send message may execute between the two messages.

3D Sampler

The 3D Sampling Engine provides the capability of advanced sampling and filtering of surfaces in

memory.

The sampling engine function is responsible for providing filtered texture values to the EU in response to

sampling engine messages. The sampling engine uses SAMPLER_STATE to control filtering modes,

address control modes, and other features of the sampling engine. A pointer to the sampler state is

delivered with each message, and an index selects one of 16 states pointed to by the pointer. Some

messages do not require SAMPLER_STATE. In addition, the sampling engine uses SURFACE_STATE to

define the attributes of the surface being sampled. This includes the location, size, and format of the

surface as well as other attributes.

Although data is commonly used for “texturing” of 3D surfaces, the data can be used for any purpose

once returned to the execution core. The 3D Sampler can be used to assist the media sampler in specific

operations such as video scaling.

The following table summarizes the various subfunctions provided by the Sampling Engine. After the

appropriate subfunctions are complete, the 4-component (reduced to fewer components in some cases)

filtered texture value is provided to the EU to complete the sample instruction.

Subfunction Description

Texture

Coordinate

Processing

Any required operations are performed on the incoming pixel's interpolated internal texture

coordinates. These operations may include cube map intersection.

Texel Address

Generation

The Sampling Engine determines the required set of texel samples (specific texel values from

specific texture maps), as defined by the texture map parameters and filtering modes. This

includes coordinate wrap/clamp/mirror control, mipmap LOD computation and sample and/or

miplevel weighting factors to be used in the subsequent filtering operations.

Texel Fetch The required texel samples are read from the texture map. This step may require decompression

of texel data. The texel sample data is converted to an internal format.

Texture Palette

Lookup

For streams which have “paletted” texture surface formats, this function uses the “index” values

read from the texture map to look up texel color data from the texture palette.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 577

Subfunction Description

Shadow Pre-

Filter Compare

For shadow mapping, the texel samples are first compared to the 3rd (R) component of the

pixel’s texture coordinate. The boolean results are used in the texture filter.

Texel Filtering Texel samples are combined using the filter weight coefficients computed in the Texture Address

Generation function. This “combination” ranges from simply passing through a “nearest” sample

to blending the results of anisotropic filters performed on two mipmap levels. The output of this

function is a single 4-component texel value.

Texel Color

Gamma

 Linearization

Performs optional gamma decorrection on texel RGB (not A) values.

8x8 Video Scaler Performs scaling using an 8x8 filter.

Sampling Engine

3D Sampler Theory of Operation

The 3D sampler (sometimes referred to as texture sampler) is a self-contained functional block within the

Graphics Core which receives messages from other agents in the Graphics Core, fetches data from

external memory sources typically referred to as “surfaces”, performs operations on the data and returns

the results in standard formats to the requester (or directly to a Render Target is requested). One of the

most common applications of the 3D sampler is to return a filtered/blended pixel from a location in a

texture map.

578 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Doc Ref # IHD-OS-LKF-Vol 9-4.21 579

Sampler Inputs Messages

Input requests to the 3D Sampler are in the form of messages (see Messages sub-section for a

description of message types and formats). A pixel shader kernal executing on the Graphics Core is an

example of an agent which is capable of sending sample messages to the 3D Sampler.

In its most basic form, the sampler receives coordinates to a location within a field of data (often a

texture map or depth map) and returns a value which represents the pixel color or depth which may be

filtered/blended as defined by associated surface and sampler state objects. Sampler can also work on

un-typed data structures called buffers.

Messages are sent in SIMD (Single Instruction Multiple Data) format where there are 8, 16, 32 or 64

coordinate tuples to be processed (i.e. SIMD8, SIMD16 etc.) in the same manner. Some message types

are restricted to SIMD8 and SIMD16 varieties and other are restricted to SIMD32 or SIMD64. See the

section on Texture Coordinate Processing more details on texture coordinate requirements.

SIMD8 and SIMD16 messages are further organized into groups of 4 sets of coordinates which generally

form a 2x2 “subspan” of texel locations. The spatial locality of the texel locations within a sub-span

improves the performance of the sampler and allows the processing of the 4 texel locations in parallel. A

SIMD8 message contains two subspans and a SIMD16 contains 4 subspans.

Sampler Data Fetches

The 3D sampler will automatically fetch required data from surfaces in system memory as needed to

perform each sample operation. Fetched data may be stored in an internal cache to reduce latency for

subsequent fetch operations.

The sampler calculates the address into a surface and uses RENDER_SURFACE_STATE state objects to

determine the location within system memory and the format of the surface being fetched. Sampler can

also receive or calculate the LOD (Level of Detail) of a surface if the surface supports multiple Mips and

will fetch from the correct Mip in this case. See Texture Address Calculation sub-section for more detail

on addresses and LOD calculation.

The sampler will also automatically decompress any supported compression format once data has been

fetched. See the subsection Surface State for a list of supported surface formats, including compressed

formats. Likewise, the sampler can linearize (inverse Gamma) sRGB formats prior to filtering.

Sampler Filtering and Processing

The sampler is capable of performing all basic filtering operations (point, bilinear, trilinear, anisotropic,

cube etc.) based on the SAMPLER_STATE state object associated with the sample operation being

requested.

In most cases, data returned is in the form of 32-bit or 16-bit IEEE floating-point per channel to ensure

maximum precision. See Writeback Message section for a description of the format of returned data.

Output Data is only returned to the requesting agent or written to a designated Render Target (RT).

Sample results are never cached within the sampler or written to system memory.

580 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Sampler Caching Policies

Sampler State and Texture Caches

The 3D sampler caches both texture and state to improve performance. These read-only caches are

referred to as the L1 Texture cache and L1 State cache. The L1 State cache

 contains both RENDER_SURFACE_STATE and SAMPLER_STATE entries. The L1 Texture cache contains

data from any surface which was sampled. It is assumed that this state and texture data, when fetched, is

also cached in the L3 cache for performance reasons.

Cache Replacement and Retention Policy

Both the L1 State and L1 Texture cache will replace a cached entry only when no invalid entries are

available. A line is only replaced when no on-going sample operations are using the information of that

cache-entry. If all entries are currently being used, the sampler will automatically wait until one or more

lines become available. Replaced lines, since they are read-only, are invalidated.

Coherency Mechanisms

Coherency of these caches to memory must be maintained by software. There are 3 mechanisms by

which the contents of the L1 State and/or L1 Texture cache are invalidated. The three possible sources for

invalidation are:

• Command Streamer: Command stream can issue invalidations for state and texture independently.

• System: In cases where sampler is referencing memory which is coherent with system memory it is

possible to receive an invalidation due to a snoop/invalidation from an external agent.

 This will invalidate BOTH L1 State and L1 Texture caches.

• Shader: The CACHE_FLUSH message can be generated by the shader which will invalidate BOTH

the L1 State and L1 Texture caches.

From the Command Streamer it is possible to invalidate either L1 State or L1 Texture caches

independently. However, invalidating only state may lead to unexpected behavior where old texture data

related to an old surface or sampler state are used. It is strongly recommended that a Texture cache

invalidation be done whenever a State cache invalidation is done.

See the section on 3D Sampler State for more details on how state is referenced in memory and specific

programming notes.

Texture Coordinate Processing

The Texture Coordinate Processing function of the Sampling Engine performs any operations on the

texture coordinates that are required before physical addresses of texel samples can be generated.

Texture Coordinate Normalization

A texture coordinate may have normalized or unnormalized values. In this function, unnormalized

coordinates are normalized.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 581

Normalized coordinates are specified in units relative to the map dimensions, where the origin is located

at the upper/left edge of the upper left texel, and the value 1.0 coincides with the lower/right edge of the

lower right texel . 3D rendering typically utilizes normalized coordinates.

Unnormalized coordinates are in units of texels and have not been divided (normalized) by the

associated map’s height or width. Here the origin is the located at the upper/left edge of the upper left

texel of the base texture map.

Normalized vs. Unnormalized Texture Coordinates

Texture Coordinate Computation

Cartesian (2D) and homogeneous (projected) texture coordinate values are projected from (interpolated)

screen space back into texture coordinate space by dividing the pixel’s S and T components by the Q

component. This operation is done prior to sending sample operations to the 3D sampler.

Vector (cube map) texture coordinates are generated by first determining which of the 6 cube map faces

(+X, +Y, +Z, -X, -Y, -Z) the vector intersects. The vector component (X, Y or Z) with the largest absolute

value determines the proper (major) axis, and then the sign of that component is used to select between

the two faces associated with that axis. The coordinates along the two minor axes are then divided by the

coordinate of the major axis, and scaled and translated, to obtain the 2D texture coordinate ([0,1]) within

the chosen face. Note that the coordinates delivered to the sampling engine must already have been

divided by the component with the largest absolute value.

An illustration of this cube map coordinate computation, simplified to only two dimensions, is provided

below:

582 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Cube Map Coordinate Computation Example

Sampler SW performance hints

This is a section describing things that SW can do to get better performance out of sampler hardware.

I,L,LA,A formats

These are expanded to RGBA formats in sampler and as result are treated as larger texel sizes in sampler and have

worse performance. Most of the time it is better to use the Shader Channel Select signals in

RENDER_SURFACE_STATE to emulate them using R or RG formats.

 Channel select

Base format New format R G B A

I* R* R R R R

L* R* R R R 1.0

LA* RG* R R R G

A* R* 0.0 0.0 0.0 R

Issues with this where result can be different. The A channel for LA and A format will be 0.0 rather than 1.0.

The table below shows the mapping requires for all Luminance, Intensity and Transparency formats:

Doc Ref # IHD-OS-LKF-Vol 9-4.21 583

584 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Tile Mode

If in TILEMODE_LINEAR and the base_address is NOT cacheline aligned there will be a very large performance hit in

addition to the one that is already on linear.

Write channel mask

A header is no longer needed to specify a channel mask other than all enabled. If head is disabled the response

length is used to determine a default channel mask. See message format section for more details.

Legacy Features

This is a list of legacy sampler features. Many new sampler features will not be validated with these

features and they will be labeled as not supporting legacy sampler features.

The features in this list are not supported in many new modes. If something has a programing note that

says "SET0_LEGACY:" the behavor with any of these is undefined.

Surface format equal to any of:

R1_UNORM (same as R1_UINT)

MONO8

FXT1

Min or Mag Mode filter = MAPFILTER_MONO

Texture Border Color Mode = 8BIT

Texel Address Generation

To better understand texture mapping, consider the mapping of each object (screen-space) pixel onto

the textures images. In texture space, the pixel becomes some arbitrarily sized and aligned quadrilateral.

Any given pixel of the object may “cover” multiple texels of the map, or only a fraction of one texel. For

each pixel, the usual goal is to sample and filter the texture image in order to best represent the covered

texel values, with a minimum of blurring or aliasing artifacts. Per-texture state variables are provided to

allow the user to employ quality/performance/footprint tradeoffs in selecting how the particular texture

is to be sampled.

The Texel Address Generation function of the Sampling Engine is responsible for determining how the

texture maps are to be sampled. Outputs of this function include the number of texel to be fetched,

along with the physical addresses of the samples and the filter weights to be applied to the samples after

they are read. This information is computed given the incoming texture coordinate and gradient values,

and the relevant state variables associated with the sampler and surface. This function also applies the

texture coordinate address controls when converting the sample texture coordinates to map addresses.

Level of Detail Computation (Mipmapping)

Due to the specification and processing of texture coordinates at object vertices, and the subsequent

object warping due to a perspective projection, the texture image may become magnified (where a texel

Doc Ref # IHD-OS-LKF-Vol 9-4.21 585

covers more than one pixel) or minified (a pixel covers more than one texel) as it is mapped to an object.

 In the case where an object pixel is found to cover multiple texels (texture minification), merely

choosing one (e.g., the texel sample nearest to the pixel’s texture coordinate) will likely result in severe

aliasing artifacts.

Mipmapping and texture filtering are techniques employed to minimize the effect of undersampling

these textures. With mipmapping, software provides mipmap levels, a series of pre-filtered texture maps

of decreasing resolutions that are stored in a fixed (monolithic) format in memory. When mipmaps are

provided and enabled, and an object pixel is found to cover multiple texels (e.g., when a textured object

is located a significant distance from the viewer), the device will sample the mipmap level(s) offering a

texel/pixel ratio as close to 1.0 as possible.

The device supports up to 14 mipmap levels per map surface, ranging from 16384 x 16384 texels to a 1 X

1 texel. Each successive level has ½ the resolution of the previous level in the U and V directions (to a

minimum of 1 texel in either direction) until a 1x1 texture map is reached. The dimensions of mipmap

levels need not be a power of 2.

Each mipmap level is associated with a Level of Detail (LOD) number. LOD is computed as the

approximate, log2 measure of the ratio of texels per pixel. The highest resolution map is considered LOD

0. A larger LOD number corresponds to lower resolution mip level.

The Sampler[]BaseMipLevel state variable specifies the LOD value at which the minification filter vs. the

magnification filter should be applied.

When the texture map is magnified (a texel covers more than one pixel), the base map (LOD 0) texture

map is accessed, and the magnification mode selects between the nearest neighbor texel or bilinear

interpolation of the 4 neighboring texels on the base (LOD 0) mipmap.

Base Level Of Detail (LOD)

The per-pixel LOD is computed in an implementation-dependent manner and approximates the log2 of

the texel/pixel ratio at the given pixel. The computation is typically based on the differential texel-space

distances associated with a one-pixel differential distance along the screen x- and y-axes. These texel-

space distances are computed by evaluating neighboring pixel texture coordinates, these coordinates

being in units of texels on the base MIP level (multiplied by the corresponding surface size in texels). The

q coordinates represent the third dimension for 3D (volume) surfaces, this coordinate is a constant 0 for

2D surfaces.

The ideal LOD computation is included below.

586 Doc Ref # IHD-OS-LKF-Vol 9-4.21

LOD Bias

A biasing offset can be applied to the computed LOD and used to artificially select a higher or lower

miplevel and/or affect the weighting of the selected mipmap levels. Selecting a slightly higher mipmap

level will trade off image blurring with possibly increased performance (due to better texture cache

reuse). Lowering the LOD tends to sharpen the image, though at the expense of more texture aliasing

artifacts.

The LOD bias is defined as sum of the LODBias state variable and the pixLODBias input from the input

message (which can be non-zero only for sample_b messages). The application of LOD Bias is

unconditional, therefore these variables must both be set to zero in order to prevent any undesired

biasing.

Note that, while the LOD Bias is applied prior to clamping and min/mag determination and therefore can

be used to control the min-vs-mag crossover point, its use has the undesired effect of actually changing

the LOD used in texture filtering.

LOD Pre-Clamping

LOD Pre-Clamping

The LOD Pre-Clamping function can be enabled or disabled via the LODPreClampEnable state variable.

After biasing and/or adjusting of the LOD , the computed LOD value is clamped to a range specified by

the (integer and fractional bits of) MinLOD and MaxLOD state variables prior to use in Min/Mag

Determination.

MaxLOD specifies the lowest resolution mip level (maximum LOD value) that can be accessed, even when

lower resolution maps may be available. Note that this is the only parameter used to specify the number

of valid mip levels that be can be accessed, i.e., there is no explicit “number of levels stored in memory”

parameter associated with a mip-mapped texture. All mip levels from the base mip level map through

the level specified by the integer bits of MaxLOD must be stored in memory, or operation is UNDEFINED.

MinLOD specifies the highest resolution mip level (minimum LOD value) that can be accessed, where

LOD==0 corresponds to the base map. This value is primarily used to deny access to high-resolution mip

levels that have been evicted from memory when memory availability is low.

MinLOD and MaxLOD have both integer and fractional bits. The fractional parts will limit the inter-level

filter weighting of the highest or lowest (respectively) resolution map. For example if MinLOD is 4.5 and

MipFilter is LINEAR, LOD 4 can contribute only up to 50% of the final texel color.

Min/Mag Determination

The biased and clamped LOD is used to determine whether the texture is being minified (scaled down) or

magnified (scaled up).

The BaseMipLevel state variable is subtracted from the biased and clamped LOD. The BaseMipLevel state

variable therefore has the effect of selecting the “base” mip level used to compute Min/Mag

Determination. (This was added to match OpenGL semantics). Setting BaseMipLevel to 0 has the effect of

using the highest-resolution mip level as the base map.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 587

If the biased and clamped LOD is non-positive, the texture is being magnified, and a single (high-

resolution) miplevel will be sampled and filtered using the MagFilter state variable. At this point the

computed LOD is reset to 0.0. Note that LOD Clamping can restrict access to high-resolution miplevels.

If the biased LOD is positive, the texture is being minified. In this case the MipFilter state variable

specifies whether one or two mip levels are to be included in the texture filtering, and how that (or those)

levels are to be determined as a function of the computed LOD.

LOD Computation Pseudocode

This section illustrates the LOD biasing and clamping computation in pseudocode, encompassing the

steps described in the previous sections. The computation of the initial per-pixel LOD value LOD is not

shown.

Bias: S4.8

 MinLod: U4.8

 MaxLod: U4.8

 Base: U4.1

 MIPCnt: U4

 SurfMinLod: U4

 ResMinLod: U4.8

 PerSampleMinLOD: float32

 MinLod = max(MinLod, PerSampleMinLOD)

 AdjMaxLod = min(MaxLod, MIPCnt)

 AdjMinLod = min(MinLod, MIPCnt)

 AdjPR_minLOD = ResMinLod – SurfMinLod

 AdjMinLod = max(AdjMinLod, AdjPR_minLOD)

 Out_of_Bounds = AdjPR_minLOD > MIPCnt

 if (sample_b)

 LOD += Bias + bias_parameter

 else if (sample_l or ld)

 LOD = Bias + lod_parameter

 else

 LOD += Bias

Pseudocode

 PreClamp = LODPreClampMode != PRECLAMP_NONE

 if (PreClamp)

 if (PRECLAMP_D3D)

 LOD = min(LOD, AdjMaxLod)

 LOD = max(LOD, AdjMinLod)

 else

 LOD = min(LOD, MaxLod)

 LOD = max(LOD, MinLod)

 MagMode = (LOD - Base <= 0)

588 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Pseudocode

 MagClampMipNone = LODClampMagnificationMode == MAG_CLAMP_MIPNONE

 if ((MagMode && MagClampMipNone) or MipFlt == None)

 LOD = 0

 LOD = min(LOD, ceil(AdjMaxLod))

 LOD = max(LOD, floor(AdjMinLod))

 else if (MipFlt == Nearest)

Pseudocode

 LOD = min(LOD, ceil(AdjMaxLod))

 LOD = max(LOD, floor(AdjMinLod))

 LOD += 0.5

 LOD = floor(LOD)

 else

 // MipFlt = Linear

 LOD = min(LOD, AdjMaxLod)

 LOD = max(LOD, AdjMinLod)

 TriBeta = frac(LOD)

 LOD0 = floor(LOD)

 LOD1 = LOD0 + 1

 if (! lod) // “LOD” message type

 Lod += SurfMinLod

If Out_of_Bounds is true, LOD is set to zero and instead of sampling the surface the texels are replaced

with zero in all channels, except for surface formats that don’t contain alpha, for which the alpha channel

is replaced with one. These texels then proceed through the rest of the pipeline.

Intra-Level Filtering Setup

Depending on whether the texture is being minified or magnified, the MinFilter or MagFilter state

variable (respectively) is used to select the sampling filter to be used within a mip level (intra-level, as

opposed to any inter-level filter). Note that for volume maps, this selection also applies to filtering

between layers.

The processing at this stage is restricted to the selection of the filter type, computation of the number

and texture map coordinates of the texture samples, and the computation of any required filter

parameters. The filtering of the samples occurs later on in the Sampling Engine function.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 589

The following table summarizes the intra-level filtering modes.

Sampler[]Min/MagFilter

value Description

MAPFILTER_NEAREST Supported on all surface types. The texel nearest to the pixel’s U,V,Q coordinate is

read and output from the filter.

MAPFILTER_LINEAR Not supported on buffer surfaces. The 2, 4, or 8 texels (depending on 1D, 2D/CUBE, or

3D surface, respectively) surrounding the pixel’s U,V,Q coordinate are read and a linear

filter is applied to produce a single filtered texel value.

MAPFILTER_ANISOTROPIC Not supported on buffer or 3D surfaces. A projection of the pixel onto the texture map

is generated and “subpixel” samples are taken along the major axis of the projection

(center axis of the longer dimension). The outermost subpixels are weighted according

to closeness to the edge of the projection, inner subpixels are weighted equally. Each

subpixel samples a bilinear 2x2 of texels and the results are blended according to

weights to produce a filtered texel value.

MAPFILTER_MONO Supported only on 2D surfaces. This filter is only supported with the monochrome

(MONO8) surface format. The monochrome texel block of the specified size

surrounding the pixel is selected and filtered.

MAPFILTER_NEAREST

When the MAPFILTER_NEAREST is selected, the texel with coordinates nearest to the pixel’s texture

coordinate is selected and output as the single texel sample coordinates for the level. This is a form of

"Point Sampling".

Corner Texel Mode

When Corner Texel Mode is enabled in the RENDER_SURFACE_STATE the definition of how the texel

location is calculated is modifed. Corner Texel Mode shifts the edge of the map to be coincident with the

center of the edge texels. The 3D Sampler will handle this shift when sampling the texel.

MAPFILTER_LINEAR

The following description indicates behavior of the MIPFILTER_LINEAR filter for 2D and CUBE surfaces. 1D

and 3D surfaces follow a similar method but with a different number of dimensions available.

When the MAPFILTER_LINEAR filter is selected on a 2D surface, the 2x2 region of texels surrounding the

pixel’s texture coordinate are sampled and later bilinearly filtered. The filter weights each texel’s

contribution according to its distance from the pixel center. Texels further from the pixel center receive a

smaller weight.

590 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Bilinear Filter Sampling

Corner Texel Mode

The Corner Texel Mode bit in surface state changes the linear filtering, by shifting the edges of the map to the

center of the texel. Effectively, this means

 that the edge of the map no coicides with the center of the texel, hence the name "Corner Texel Mode". The

diagram below shows this.

When doing linear filtering, the 3D sampler will treat a surface as being 1 texel less in each dimension when

calculating texel location from the sample coordinates.

The benefit of this mode is that it is guaranteed that all the texels which contribute to the linear filter of a

sample will be on the map if the sample point is on the map.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 591

MAPFILTER_ANISOTROPIC

The MAPFILTER_ANISOTROPIC texture filter attempts to compensate for the anisotropic mapping of

pixels into texture map space. A possibly non-square set of texel sample locations will be sampled and

later filtered. The MaxAnisotropy state variable is used to select the maximum aspect ratio of the filter

employed, up to 16:1.

The algorithm employed first computes the major and minor axes of the pixel projection onto the texture

map. LOD is chosen based on the minor axis length in texel space. The anisotropic “ratio” is equal to the

ratio between the major axis length and the minor axis length. The next larger even integer above the

ratio determines the anisotropic number of “ways”, which determines how many subpixels are chosen. A

line along the major axis is determined, and “subpixels” are chosen along this line, spaced one texel

apart, as shown in the diagram below. In this diagram, the texels are shown in light blue, and the pixels

are in yellow.

Each subpixel samples a bilinear 2x2 around it just as if it was a single pixel. The result of each subpixel is

then blended together using equal weights on all interior subpixels (not including the two endpoint

subpixels). The endpoint subpixels have lesser weight, the value of which depends on how close the

“ratio” is to the number of “ways”. This is done to ensure continuous behavior in animation.

592 Doc Ref # IHD-OS-LKF-Vol 9-4.21

MAPFILTER_MONO

When the MAPFILTER_MONO filter is selected, a block of monochrome texels surrounding the pixel

sample location are read and filtered using the kernel described below. The size of this block is

controlled by Monochrome Filter Height and Width (referred to here as Nv and Nu, respectively) state.

Filters from 1x1 to 7x7 are supported (not necessarily square).

The figure below shows a 6x5 filter kernel as an example. The footprint of the filter (filter kernel samples)

is equal to the size of the filter and the pixel center lies at the exact center of this footprint. The position

of the upper left filter kernel sample (uf, vf) relative to the pixel center at (u, v) is given by the following:

bu and bv are the fractional parts of uf and vf, respectively. The integer parts select the upper left texel for

the kernel filter, given here as T0,0.

Sampling Using MAPFILTER_MONO

The formula for the final filter output F is given by the following. Since this is a monochrome filter, each

texel value (T) is a single bit, and the output F is an intensity value that is replicated across the color and

alpha channels.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 593

Inter-Level Filtering Setup

The MipFilter state variable determines if and how texture mip maps are to be used and combined. The

following table describes the various mip filter modes:

MipFilter Value Description

MIPFILTER_NONE Mipmapping is DISABLED. Apply a single filter on the highest resolution map available (after

LOD clamping).

MIPFILTER_NEAREST Choose the nearest mipmap level and apply a single filter to it. Here the biased LOD will be

rounded to the nearest integer to obtain the desired miplevel. LOD Clamping may further

restrict this miplevel selection.

MIPFILTER_LINEAR Apply a filter on the two closest mip levels and linear blend the results using the distance

between the computed LOD and the level LODs as the blend factor. Again, LOD Clamping

may further restrict the selection of miplevels (and the blend factor between them).

When minifying and MIPFILTER_NEAREST is selected, the computed LOD is rounded to the nearest mip

level.

When minifying and MIPFILTER_LINEAR is selected, the fractional bits of the computed LOD are used to

generate an inter-level blend factor. The LOD is then truncated. The mip level selected by the truncated

LOD, and the next higher (lower resolution) mip level are determined.

Regardless of MipFilter and the min/mag determination, all computed LOD values (two for

MIPFILTER_LINEAR, otherwise one) are then unconditionally clamped to the range specified by the

(integer bits of) MinLOD and MaxLOD state variables.

Texture Address Control

The [TCX,TCY,TCZ]ControlMode state variables control the access and/or generation of texel data when

the specific texture coordinate component falls outside of the normalized texture map coordinate range

[0,1).

594 Doc Ref # IHD-OS-LKF-Vol 9-4.21

The table below provides all the supported Address Control modes for each direction.

TC[X,Y,Z] Control Operation

TEXCOORDMODE_CLAMP Clamp to the texel value at the edge of the map.

TEXCOORDMODE_CLAMP_BORDER Use the texture map’s border color for any texel samples falling outside the

map. The border color is specified via a pointer in SAMPLER_STATE.

TEXCOORDMODE_HALF_BORDER Similar to CLAMP_BORDER except texels outside of the map are clamped to a

value halfway between the edge texel and the border color.

TEXCOORDMODE_WRAP Upon crossing an edge of the map, repeat at the other side of the map in the

same dimension.

TEXCOORDMODE_CUBE Only used for cube maps. Here texels from adjacent cube faces can be

sampled along the edges of faces. This is considered the highest quality mode

for cube environment maps.

TEXCOORDMODE_MIRROR Similar to the wrap mode, though reverse direction through the map each

time an edge is crossed. INVALID for use with unnormalized texture

coordinates.

TEXCOORDMODE_MIRROR_ONCE Similar to the wrap mode, though reverse direction through the map each

time an edge is crossed. INVALID for use with unnormalized texture

coordinates.

TEXCOORDMODE_MIRROR_101 Similar to MIRROR_ONCE in that it only reflects once in each direction, the

difference is that it will skip the first pixel of the reflected image.

Separate controls are provided for texture TCX, TCY, TCZ coordinate components so, for example, the

TCX coordinate can be wrapped while the TCY coordinate is clamped. Note that there are no controls

provided for the TCW component as it is only used to scale the other 3 components before addressing

modes are applied.

Programming Note

Context: Texture Address Control

TEXCOORDMODE_CUBE can only be used with SURFTYPE_CUBE

Maximum Wraps/Mirrors

The number of map wraps on a given object is limited to 32. Going beyond this limit is legal, but may

result in artifacts due to insufficient internal precision, especially evident with larger surfaces. Precision

loss starts at the subtexel level (slight color inaccuracies) and eventually reaches the texel level (choosing

the wrong texels for filtering).

Note: For Wrap Shortest mode, the setup kernel has already taken care of correctly interpolating the

texture coordinates. Software needs to specify TEXCOORDMODE_WRAP mode for the sampler that is

provided with wrap-shortest texture coordinates, or artifacts may be generated along map edges.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 595

TEXCOORDMODE_MIRROR Mode

TEXCOORDMODE_MIRROR addressing mode is similar to Wrap mode, though here the base map is

flipped at every integer junction. For example, for U values between 0 and 1, the texture is addressed

normally, between 1 and 2 the texture is flipped (mirrored), between 2 and 3 the texture is normal again,

and so on. The second row of pictures in the figure below indicate a map that is mirrored in one

direction and then both directions. You can see that in the mirror mode every other integer map wrap

the base map is mirrored in either direction.

The example below shows how a simple 2D map with TEXCOORDMODE_MIRROR for both TCX and TCY

is mapped.

596 Doc Ref # IHD-OS-LKF-Vol 9-4.21

TEXCOORDMODE_MIRROR_ONCE Mode

The TEXCOORDMODE_MIRROR_ONCE addressing mode is a combination of Mirror and Clamp modes.

The absolute value of the texture coordinate component is first taken (thus mirroring about 0), and then

the result is clamped to 1.0. The map is therefore mirrored once about the origin, and then clamped

thereafter. This mode is used to reduce the storage required for symmetric maps.

The example below shows how a simple 2D map with TEXCOORDMODE_MIRROR_ONCE for both TCX

and TCY is mapped.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 597

TEXCOORDMODE_WRAP Mode

In TEXCOORDMODE_WRAP addressing mode, the integer part of the texture coordinate is discarded,

leaving only a fractional coordinate value. This results in the effect of the base map ([0,1)) being

continuously repeated in all (axes-aligned) directions. Note that the interpolation between coordinate

values 0.1 and 0.9 passes through 0.5 (as opposed to WrapShortest mode which interpolates through

0.0).

The example below shows how a simple 2D map with TEXCOORDMODE_WRAP for both TCX and TCY is

mapped.

598 Doc Ref # IHD-OS-LKF-Vol 9-4.21

TEXCOORDMODE_CLAMP Mode

The TEXCOORDMODE_CLAMP addressing mode repeats the “edge” texel when the texture coordinate

extends outside the [0,1) range of the base texture map. This is contrasted to

TEXCOORDMODE_CLAMPBORDER mode which defines a separate texel value for off-map samples.

TEXCOORDMODE_CLAMP is also supported for cube maps, where texture samples will only be obtained

from the intersecting face (even along edges).

The figure below illustrates the effect of clamp mode. The base texture map is shown, along with a

texture mapped object with texture coordinates extending outside of the base map region.

Texture Clamp Mode

Doc Ref # IHD-OS-LKF-Vol 9-4.21 599

TEXCOORDMODE_CLAMPBORDER Mode

For non-cube map textures, TEXCOORDMODE_CLAMPBORDER addressing mode specifies that the

texture map’s border value BorderColor is to be used for any texel samples that fall outside of the base

map. The border color is specified via a pointer in SAMPLER_STATE.

The example below shows how a simple 2D map with TEXCOORDMODE_CLAMPBORDER for both TCX

and TCY is mapped.

TEXCOORDMODE_HALF_BORDER Mode

For non-cube map textures, TEXCOORDMODE_HALF_BORDER addressing mode is similar to the

TEXCOORDMODE_CLAMPBORDER in that it specifies that the texture map’s border value BorderColor.

However, this value is blended with the edge texel color and used for any texel samples that fall outside

of the base map. The border color is specified via a pointer in SAMPLER_STATE.

TEXCOORDMODE_CUBE Mode

For cube map textures TEXCOORDMODE_CUBE addressing mode can be set to allow inter-face filtering.

When texel sample coordinates that extend beyond the selected cube face (e.g., due to intra-level

filtering near a cube edge), the correct sample coordinates on the adjoining face will be computed. This

will eliminate artifacts along the cube edges, though some artifacts at cube corners may still be present.

600 Doc Ref # IHD-OS-LKF-Vol 9-4.21

TEXCOORDMODE_MIRROR_101

The MIRROR_101 address control mode is similar to the MIRROR_ONCE. The difference is that it will skip

the first pixel of the reflected image. Effectively, this means that the reflected images (in both directions)

are one pixel smaller in size.

Programming Note

Context: MIRROR_101 and Quilted Surfaces

MIRROR_101 is not supported for Quilted Surfaces.

Programming Note

Context: MIRROR_101 and Corner Texel Mode

When Corner Texel Mode is enabled for a surface, selection of TEXCOORDMODE_MIRROR_101 is ignored and

changed to TEXCOORDMODE_MIRROR instead.

Programming Note

Context: Fast Anisotropic Filtering

MIROR_101 Texture Coordinate Mode cannot be used with Anisotropic Filtering.

Texel Fetch

The Texel Fetch function of the Sampling Engine reads the texture map contents specified by the texture

addresses associated with each texel sample. The texture data is read either directly from the memory-

resident texture map, or from internal texture caches. The texture caches can be invalidated by the

Sampler Cache Invalidate field of the MI_FLUSH instruction or via the Read Cache Flush Enable bit of

PIPE_CONTROL. Except for consideration of coherency with CPU writes to textures and rendered textures,

the texture cache does not affect the functional operation of the Sampling Engine pipeline.

When the surface format of a texture is defined as being a compressed surface, the Sampler will

automatically decompress from the stored format into the appropriate [A]RGB values. The compressed

texture storage formats and decompression algorithms can be found in the Memory Data Formats

chapter. When the surface format of a texture is defined as being an index into the texture palette

(format names includiong “Px”), the palette lookup of the index determines the appropriate RGB values.

Texel Chroma Keying

ChromaKey is a term used to describe a method of effectively removing or replacing a specific range of

texel values from a map that is applied to a primitive, e.g., in order to define transparent regions in an

RGB map. The Texel Chroma Keying function of the Sampling Engine pipeline conditionally tests texel

samples against a “key” range and takes certain actions if any texel samples are found to match the key.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 601

Chroma Key Testing

ChromaKey refers to testing the texel sample components to see if they fall within a range of texel

values, as defined by ChromaKey[][High,Low] state variables. If each component of a texel sample is

found to lie within the respective (inclusive) range and ChromaKey is enabled, then an action will be

taken to remove this contribution to the resulting texel stream output. Comparison is done separately on

each of the channels and only if all 4 channels are within range the texel will be eliminated.

The Chroma Keying function is enabled on a per-sampler basis by the ChromaKeyEnable state variable.

The ChromaKey[][High,Low] state variables define the tested color range for a particular texture map.

Chroma Key Effects

There are two operations that can be performed to “remove” matching texel samples from the image.

The ChromaKeyEnable state variable must first enable the chroma key function. The ChromaKeyMode

state variable then specifies which operation to perform on a per-sampler basis.

The ChromaKeyMode state variable has the following two possible values:

KEYFILTER_KILL_ON_ANY_MATCH: Kill the pixel if any contributing texel sample matches the key.

KEYFILTER_REPLACE_BLACK: Here the sample is replaced with (0,0,0,0).

The Kill Pixel operation has an effect on a pixel only if the associated sampler is referenced by a sample

instruction in the pixel shader program. If the sampler is not referenced, the chroma key compare is not

done and pixels cannot be killed based on it.

Shadow Prefilter Compare

When a sample_c message type is processed, a special shadow-mapping precomparison is performed on

the texture sample values prior to filtering. Specifically, each texture sample value is compared to the

“ref” component of the input message, using a compare function selected by ShadowFunction, and

described in the table below. Note that only single-channel texel formats are supported for shadow

mapping, and so there is no specific color channel on which the comparison occurs.

ShadowFunction Result

PREFILTEROP_ALWAYS 0.0

PREFILTEROP_NEVER 1.0

PREFILTEROP_LESS (texel < ref) ? 0.0 : 1.0

PREFILTEROP_EQUAL (texel == ref) ? 0.0 : 1.0

PREFILTEROP_LEQUAL (texel <= ref) ? 0.0 : 1.0

PREFILTEROP_GREATER (texel > ref) ? 0.0 : 1.0

PREFILTEROP_NOTEQUAL (texel != ref) ? 0.0 : 1.0

PREFILTEROP_GEQUAL (texel >= ref) ? 0.0 : 1.0

The binary result of each comparison is fed into the subsequent texture filter operation (in place of the

texel’s value which would normally be used).

602 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Software is responsible for programming the ”ref” component of the input message such that it

approximates the same distance metric programmed in the texture map (e.g., distance from a specific

light to the object pixel). In this way, the comparison function can be used to generate “in shadow” status

for each texture sample, and the filtering operation can be used to provide soft shadow edges.

Texel Filtering

The Texel Filtering function of the Sampling Engine performs any required filtering of multiple texel values on and

possibly between texture map layers and levels. The output of this function is a single texel color value.

The state variables MinFilter, MagFilter, and MipFilter are used to control the filtering of texel values. The

MipFilter state variable specifies how many mipmap levels are included in the filter, and how the results of

any filtering on these separate levels are combined to produce a final texel color. The MinFilter and

MagFilter state variables specify how texel samples are filtered within a level.

Texel Color Gamma Linearization

This function is supported to allow pre-gamma-corrected texel RGB (not A) colors to be mapped back

into linear (gamma=1.0) gamma space prior to (possible) blending with, and writing to the Color Buffer.

This permits higher quality image blending by performing the blending on colors in linear gamma space.

This function is enabled on a per-texture basis by use of a surface format with “_SRGB” in its name. If

enabled, the pre-filtered texel RGB color to be converted to gamma=1.0 space by applying a ^(2.4)

exponential function.

Multisampled Surface Behavior

Multisampled surfaces are sampled using a dedicated point-sample message ld2dms or l2dms_w. These

messages contain Si (sample index) which is used to sample from a specific subsample plane. Each texel

of a multi-sampled surface has 1,2,4,8 or 16 "subsamples" per texel.

The sampleinfo message returns specific parameters associated with a multisample surface such as the

number of subsamples per texel. The resinfo message returns the height, width, depth (in units of pixels,

not samples), and MIP count of the surface .

Multisampled surfaces typically have an associated MCS control surface which contains information

about which indicates which sample index contains the color data for a specific subample. The control

surface can be accessed using the ld_mcs message, which returns the information for all subsamples for

a given texel.

From an optimization perspective there are two different approaches which can be used to resolver a

multisampled surface:

A shader can fetch ld_mcs to determine which subsamples need to be fetched using ld2dms or

ld2dms_w. In general, it is expected that most subsamples will reference Sample index zero for it's color

by default. It may be optimal for the shader to always fetch to sample index 0 unconditionally, and only

fetch to other sample indices based on the fetched MCS. Resolve can then be done with the minimumal

number of point-sample operations.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 603

Alternatively, a shader can unconditionally fetch all subsamples to minimize dependencies. In this case

the MCS data returned from the ld_mcs is simply passsed to the ld2dms message.

Multisample Control Surface

Four messages have been defined for the sampling engine, ld_mcs, ld2dms, ld2dms_w and ld2dss. A pixel

shader kernel sampling from an multisampled surface using an MCS must first sample from the MCS

surface using the ld_mcs message. This message behaves like the ld message, except that the surface is

defined by the MCS fields of SURFACE_STATE rather than the normal fields. The surface format is

effectively R8_UINT for 4x surfaces, R32_UINT for 8x surfaces, and two R32_UNIT for x16 surfaces thus

data is returned in unsigned integer format. Following the ld_mcs, the kernel issues a ld2dms or

ld2dms_w message to sample the surface itself. The integer value from the MCS surface is delivered in

the mcs parameter of this messages as the sample index.

Since sample is no longer supported on multisampled surfaces, the multisample resolve must be done

using ld2dms or ld2dms_w. For surfaces with Multisampled Surface Storage Format set to MSFMT_MSS

and MCS Enable set to enabled, an optimization is available to enable higher performance for

compressed pixels. The ld2dss message can be used to sample from a particular sample slice on the

surface. By examining the MCS value, software can determine which sample slices to sample from. A

simple optimization with probable large return in performance is to compare the MCS value to zero

(indicating all samples are on sample slice 0), and sample only from sample slice 0 using ld2dss if MCS is

zero. Sample slice 0 is the pixel color in this case. If MCS is not zero, each sample is then obtained using

ld2dms messages and the results are averaged in the kernel after being returned. Refer to the

multisample storage format in the GPU Overview volume for more details.

Quilted Textures

Quilted textures allow very large 2D textures, up to 512K x 512K texels. Rather than simply increasing the

height and width ranges, a quilted texture is stored in memory as a 2D array. (Refer to the GPU Overview

volume for details on 2D array storage.) Each array slice has a maximum size of 16K x 16K texels, and

these slices are referred to as “quilt slices.” Two fields in SURFACE_STATE, Quilt Width and Quilt Height,

define the size of the quilt in units of quilt slices. A surface is defined as a quilted texture if either one of

the above fields are set to a value other than 1. Quilted textures are supported with all address control

modes, and with all sample* messages that support 2D arrays and use the SURFACE_STATE “for most

messages.” In general, whether the surface is quilted or not is orthogonal to the message definition.

MIP maps are supported with quilted textures, with the quilt slices being reduced by a factor of 2 in each

dimension for each increment in LOD. The minimum size MIP is where the quilt slice is a 1x1. Effective

QuiltWidth and QuiltHeight are not reduced with increasing LOD which would cause the smallest mip to

be QuiltWidth x QuiltHeight rather than the typical 1x1.

Refer to the Quilted Textures section of Common Surface Formats, Surface Layout and Tiling for details

on how quilted textures are mapped into the 2D array storage layout.

The “u” and “v” parameters must be normalized, interpreted as coordinates across the entire quilt, thus

software doesn’t determine which quilt slices need to be accessed.

604 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Programming Note

Context: Corner Texel Mode and Quilted Surfaces

Corner Texel Mode is not supported for Quilted Surfaces.

State

State

SW Generated BINDING_TABLE_STATE

For SAMPLER_STATE for Sample_8X8 see 3D-Media-GPGPU Engine > Shared Functions > Media

Sampler > Sample_8x8 State > SAMPLER_STATE

The 3D sampler uses both surface state objects (RENDER_SURFACE_STATE) as well as sampler state

objects (SAMPLER_STATE). These objects are cached locally in the sampler state cache

 for improved performance as it is assumed that many sampler messages will utilize the same surface

and sampler states.

Programming Note

Context: Out of Bounds Handling

If a pointer to sampler or surface state goes beyond the end of the sampler or surface state buffer (as defined by

the associated size field of the STATE_BASE_ADDRESS command) the sampler will force the address offset to cache-

line 0 from the defined Base Address. The result of this state fetch is undefined and depends on how the state

buffer has been populated.

Surface State Fetch

Surface state is fetched from system memory using a Binding Table Pointer (BTP). The BTP is a 16-bit

value provided by the command stream (not directly by the shader) which determines the binding-table

to be used. An 8-bit Binding Table Index (BTI) is then provided by the shader via the message

descriptor, which indicates the offset into the Binding Table. The BTP and BTI are relative to the Surface

State Base Address and the binding table itself resides in system memory. The contents of the Binding

Table is a list of pointers to surface state objects. The pointer from the Binding Table is also relative to

the Sampler State Base Address, and points directly to a 256-bit RENDER_SURFACE_STATE object

which sampler will fetch and store in its internal state cache.

Bindless Surface State Fetch

The sampler supports a "Bindless" surface model. Bindless refers to the fact that a Binding table is not

required for this mode. Instead, the shader sets the BTI to 253 in the descriptor to indicate Bindless and

provides a 20-bit Surface State Offset (SSO) from the Bindless Surface State Base Address. This SSO directly

selects a specific surface state object which is cached by the 3D Sampler in local State Cache. Both

bindless and non-bindless (legacy) modes can be operated at the same time by the sampler.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 605

For Positional Shaing (POSH) there is a separate set of base addresses for Bindless and Non-Bindless

Surface State called POSH Surface State Offset and POSH Bindless Surface State Base Address. They work

exactly the same but allow different base addresses for positional shading.

Sampler State Fetch

SAMPLER_STATE objects are fetched independently of surface state and cached locally in the 3D

sampler independently (there may one or more SAMPLER_STATE objects associates with one or more

RENDER_SURFACE_STATE objects). The sampler state is fetched using the Sampler State Pointer (SSP)

which is provided either in the message header or directly from the command stream (message headers

are not required). The SSP is an offset relative to the Dynamic_State_Base_Address and selects a table

of 16 sampler states. The 4-bit Sampler Index (SI) in the message descriptor is used to select the specific

SAMPLER_STATE object to be fetched from system memory and cached locally in the 3D sampler.

Bindless Sampler State

The sampler supports a "Bindless" sampler model. Bindless in this case does not actually refer to the lack

of a Binding table since the legacy Sampler State model also did not have a Binding Table. However, the

mechanism is similar to bindless surfaces in that the pointer provided directly selects a SAMPLER_STATE

object. The sampler uses the same Sampler State Pointer (SSP), but it is relative to the

Bindless_Sampler_Base_Address. The Sampler Index (SI) in the message descriptor is not used and can be

set to 0. The SAMPLER_STATE object is cached locally in the 3D sampler.

For Positional Shading (POSH) there is a separate set of base addresses available for fetching sampler

state called POSH Bindless Surface State Base Address and POSH Dynamic State Base Address.

State Caching

As mentioned above, the 3D Sampler allows for automatic caching of RENDER_SURFACE_STATE objects

and SAMPLER_STATE objects to provide higher performance. Coherency with system memory in the

state cache, like the texture cache is handled partially by software. It is expected that the command

stream or shader will issue Cache Flush operation or Cache_Flush sampler message to ensure that the L1

cache remains coherent with system memory.

Programming Note

Context: State Cache Coherency

Whenever the value of the Dynamic_State_Base_Addr, Surface_State_Base_Addr, or Binding_Table_Pool_Base_Addr

(if Binding Table Pool is enabled) are altered, the L1 state cache and L1 texture cache must be invalidated to ensure

the new surface or sampler state is fetched from system memory.

Whenever the RENDER_SURFACE_STATE object in memory pointed to by the Binding Table Pointer (BTP) and

Binding Table Index (BTI) is modified or SAMPLER_STATE object pointed to by the Sampler State Pointer (SSP)

and Sampler Index (SI) is modified, the L1 state cache and L1 texture cache must be invalidated to ensure the new

surface or sampler state is fetched from system memory.

606 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Programming Note

Context: Bindless Surface State Cache Coherency

Whenever the value of the Bindless_Surface_State_Base_Addr is altered, the L1 state cache, and L1 texture cache

must be invalidated to ensure the new surface or sampler state is fetched from system memory.

Whenever the RENDER_SURFACE_STATE object in memory pointed to by the Surface State Offset (SSO) is

modified, the L1 state cache must be invalidated to ensure the new surface or sampler state is fetched from system

memory.

Programming Note

Context: Bindless Sampler State Cache Coherency

Whenever the value of the Bindless_Sampler_State_Base_Addr is altered, the L1 state cache and L1 texture cache

must be invalidated to ensure the new surface or sampler state is fetched from system memory.

Whenever the SAMPLER_STATE object pointed to by the Sampler State Pointer (SSP) is modified, the L1 state

cache must be invalidated to ensure the new surface or sampler state is fetched from system memory.

Programming Note

Context: State Coherency for indirect values

Any values referenced by pointers within the RENDER_SURFACE_STATE or SAMPLER_STATE (e.g. Clear Color Pointer,

Border Color or Indirect State Pointer) are considered to be part of that state and any changes to these referenced

values requires an invalidation of the L1 state cache to ensure the new values are being used as part of the state. In

the case of surface data pointed to by the Surface Base Address in RENDER SURFACE STATE, the Texture Cache

must be invalidated if the surface data changes.

SURFACE_STATE

The surface state is stored as individual elements, each with its own pointer in the binding table or its

own entry in a memory heap in memory. Each surface state element is aligned to a 32-byte boundary.

Surface state defines the state needed for the following objects:

• texture maps (1D, 2D, 3D, cube) read by the sampling engine

• buffers read by the sampling engine

• constant buffers read by the data cache via the data port

• render targets read/written by the render cache via the data port

• streamed vertex buffer output written by the render cache via the data port

• media surfaces read from the texture cache or render cache via the data port

• media surfaces written to the render cache via the data port

Doc Ref # IHD-OS-LKF-Vol 9-4.21 607

The surface state definition can be found in the following section:

Section

RENDER_SURFACE_STATE

Surface Formats

The RENDER_SURFACE_STATE contains a 9-bit field called Surface Format, which defines the exact format of the

surface being sampled. The definition of the encodings for each supported format, including compressed formats,

can be found in the following section:

SURFACE_FORMAT [All]

For ASTC formats, the ASTC Enable bit in the RENDER_SURFACE_STATE must be set to 1. When set, the definition

of the 9-bit Surface Format changes. The following table describes all supported formats for block-based ASTC

textures.

SURFACE_FORMAT for All ASTC Formats

Value

[8] LDR/Full [7] 2D/3D

[6] U8srgb /FLT16

Width 2D [5:3]

3D [5:4]

Height 2D [2:0]

3D [3:2]

Depth

2D:

N/A

 3D:

[1:0]

Binary

Form Name (BPE)

000h 000 0 0 000 000

000

ASTC_LDR_2D_4x4_U8sRGB 8.00

008h 000 1 0 000 001

000

ASTC_LDR_2D_5x4_U8sRGB 6.40

009h 000 1 1 000 001

001

ASTC_LDR_2D_5x5_ U8sRGB 5.12

011h 000 2 1 000 010

001

ASTC_LDR_2D_6x5_ U8sRGB 4.27

012h 000 2 2 000 010

010

ASTC_LDR_2D_6x6_ U8sRGB 3.56

021h 000 4 1 000 100

001

ASTC_LDR_2D_8x5_ U8sRGB 3.20

022h 000 4 2 000 100

010

ASTC_LDR_2D_8x6_ U8sRGB 2.67

031h 000 6 1 000 110

001

ASTC_LDR_2D_10x5_

U8sRGB

2.56

032h 000 6 2 000 110

010

ASTC_LDR_2D_10x6_

U8sRGB

2.13

024h 000 4 4 000 100

100

ASTC_LDR_2D_8x8_ U8sRGB 2.00

034h 000 6 4 000 110

100

ASTC_LDR_2D_10x8_

U8sRGB

1.60

036h 000 6 6 000 110

110

ASTC_LDR_2D_10x10_

U8sRGB

1.28

03eh 000 7 6 000 111 ASTC_LDR_2D_12x10_ 1.07

608 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Value

[8] LDR/Full [7] 2D/3D

[6] U8srgb /FLT16

Width 2D [5:3]

3D [5:4]

Height 2D [2:0]

3D [3:2]

Depth

2D:

N/A

 3D:

[1:0]

Binary

Form Name (BPE)

110 U8sRGB

03fh 000 7 7 000 111

111

ASTC_LDR_2D_12x12_

U8sRGB

0.89

040h 001 0 0 001 000

000

ASTC_LDR_2D_4x4_FLT16 8.00

048h 001 1 0 001 001

000

ASTC_LDR_2D_5x4_FLT16 6.40

049h 001 1 1 001 001

001

ASTC_LDR_2D_5x5_FLT16 5.12

051h 001 2 1 001 010

001

ASTC_LDR_2D_6x5_FLT16 4.27

052h 001 2 2 001 010

010

ASTC_LDR_2D_6x6_FLT16 3.56

061h 001 4 1 001 100

001

ASTC_LDR_2D_8x5_FLT16 3.20

062h 001 4 2 001 100

010

ASTC_LDR_2D_8x6_FLT16 2.67

071h 001 6 1 001 110

001

ASTC_LDR_2D_10x5_FLT16 2.56

072h 001 6 2 001 110

010

ASTC_LDR_2D_10x6_FLT16 2.13

064h 001 4 4 001 100

100

ASTC_LDR_2D_8x8_FLT16 2.00

074h 001 6 4 001 110

100

ASTC_LDR_2D_10x8_FLT16 1.60

076h 001 6 6 001 110

110

ASTC_LDR_2D_10x10_FLT16 1.28

07eh 001 7 6 001 111

110

ASTC_LDR_2D_12x10_FLT16 1.07

07fh 001 7 7 001 111

111

ASTC_LDR_2D_12x12_FLT16 0.89

Sampler Output Channel Mapping

The following table indicates the mapping of the channels from the surface to the channels output from

the sampling engine.

Programming Note

Context: Luminance, Intensity and Transparency Formats

Luminance, Intensity and Opacity formats can be more efficiently supported with higher performance by mapping

them to their equivalent RGB format and programming the Shader Channel selects in the RENDER_SURFACE_STATE.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 609

Programming Note

Context: Luminance, Intensity and Transparency Formats

See SW Performance Hints for a detailed description of this usage model.

There are further restrictions listed after the table below on the use of specific surfaces.

The table below lists all the surface formats which are supported by the Sampler.

All Surface formats are supported for filtering.

Some formats are supported only in DX10/OGL Border Color Mode. Those formats have only that mode

indicated. Formats that behave the same way in both Border Color Modes are indicated by that column

being blank.

Surface Format Name Filtering

Shadow

Map

Chroma

Key

Border

Color Mode R G B A

Border

Color

Mode R G B A

R32G32B32A32_FLOAT R G B A

R32G32B32A32_SINT DX10/OGL R G B A

R32G32B32A32_UINT DX10/OGL R G B A

R32G32B32X32_FLOAT R G B 1.0

R32G32B32_FLOAT R G B 1.0

R32G32B32_SINT DX10/OGL R G B 1.0

R32G32B32_UINT DX10/OGL R G B 1.0

R16G16B16A16_UNORM R G B A

R16G16B16A16_SNORM R G B A

R16G16B16A16_SINT DX10/OGL R G B A

R16G16B16A16_UINT DX10/OGL R G B A

R16G16B16A16_FLOAT R G B A

R32G32_FLOAT DX10/OGL R G 0.0 1.0 R G 1.0 1.0

R32G32_SINT DX10/OGL R G 0.0 1.0

R32G32_UINT DX10/OGL R G 0.0 1.0

R32_FLOAT_X8X24_TYPELESS Yes DX10/OGL R 0.0 0.0 1.0

X32_TYPELESS_G8X24_UINT DX10/OGL 0.0 G 0.0 1.0

L32A32_FLOAT DX10/OGL L L L A

R16G16B16X16_UNORM R G B 1.0

R16G16B16X16_FLOAT R G B 1.0

A32X32_FLOAT 0.0 0.0 0.0 A

L32X32_FLOAT L L L 1.0

I32X32_FLOAT I I I I

B8G8R8A8_UNORM Yes R G B A

B8G8R8A8_UNORM_SRGB R G B A

R10G10B10A2_UNORM R G B A

R10G10B10A2_UINT DX10/OGL R G B A

610 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Surface Format Name Filtering

Shadow

Map

Chroma

Key

Border

Color Mode R G B A

Border

Color

Mode R G B A

R10G10B10_SNORM_A2_UNORM R G B A

R8G8B8A8_UNORM R G B A

R8G8B8A8_UNORM_SRGB R G B A

R8G8B8A8_SNORM R G B A

R8G8B8A8_SINT DX10/OGL R G B A

R8G8B8A8_UINT DX10/OGL R G B A

R16G16_UNORM DX10/OGL R G 0.0 1.0 R G 1.0 1.0

R16G16_SNORM DX10/OGL R G 0.0 1.0 R G 1.0 1.0

R16G16_SINT DX10/OGL R G 0.0 1.0

R16G16_UINT DX10/OGL R G 0.0 1.0

R16G16_FLOAT DX10/OGL R G 0.0 1.0 DX9 R G 1.0 1.0

B10G10R10A2_UNORM R G B A

R11G11B10_FLOAT R G B 1.0

R32_SINT DX10/OGL R 0.0 0.0 1.0

R32_UINT DX10/OGL R 0.0 0.0 1.0

R32_FLOAT Yes DX10/OGL R 0.0 0.0 1.0 R 1.0 1.0 1.0

R24_UNORM_X8_TYPELESS Yes DX10/OGL R 0.0 0.0 1.0

X24_TYPELESS_G8_UINT DX10/OGL 0.0 G 0.0 1.0

L16A16_UNORM L L L A

I24X8_UNORM Yes I I I I

L24X8_UNORM Yes L L L 1.0

A24X8_UNORM Yes 0.0 0.0 0.0 A

I32_FLOAT Yes I I I I

L32_FLOAT Yes L L L 1.0

A32_FLOAT Yes 0.0 0.0 0.0 A

B8G8R8X8_UNORM Yes R G B 1.0

B8G8R8X8_UNORM_SRGB R G B 1.0

R8G8B8X8_UNORM R G B 1.0

R8G8B8X8_UNORM_SRGB R G B 1.0

R9G9B9E5_SHAREDEXP R G B 1.0

B10G10R10X2_UNORM R G B 1.0

L16A16_FLOAT L L L A

B5G6R5_UNORM Yes R G B 1.0

B5G6R5_UNORM_SRGB R G B 1.0

B5G5R5A1_UNORM Yes R G B A

B5G5R5A1_UNORM_SRGB R G B A

B4G4R4A4_UNORM Yes R G B A

B4G4R4A4_UNORM_SRGB R G B A

Doc Ref # IHD-OS-LKF-Vol 9-4.21 611

Surface Format Name Filtering

Shadow

Map

Chroma

Key

Border

Color Mode R G B A

Border

Color

Mode R G B A

R8G8_UNORM DX10/OGL R G 0.0 1.0 DX9 R G 1.0 1.0

R8G8_SNORM Yes DX10/OGL R G 0.0 1.0 DX9 R G 1.0 1.0

R8G8_SINT DX10/OGL R G 0.0 1.0

R8G8_UINT DX10/OGL R G 0.0 1.0

R16_UNORM Yes DX10/OGL R 0.0 0.0 1.0

R16_SNORM DX10/OGL R 0.0 0.0 1.0

R16_SINT DX10/OGL R 0.0 0.0 1.0

R16_UINT DX10/OGL R 0.0 0.0 1.0

R16_FLOAT DX10/OGL R 0.0 0.0 1.0 R 1.0 1.0 1.0

I16_UNORM Yes I I I I

L16_UNORM Yes L L L 1.0

A16_UNORM Yes 0.0 0.0 0.0 A

L8A8_UNORM Yes L L L A

I16_FLOAT Yes I I I I

L16_FLOAT Yes L L L 1.0

A16_FLOAT Yes 0.0 0.0 0.0 A

L8A8_UNORM_SRGB L L L A

R5G5_SNORM_B6_UNORM Yes R G B 1.0

A1B5G5R5_UNORM R G B A

A4B4G4R4_UNORM R G B A

R8_UNORM Yes DX10/OGL R 0.0 0.0 1.0

R8_SNORM DX10/OGL R 0.0 0.0 1.0

R8_SINT DX10/OGL R 0.0 0.0 1.0

R8_UINT DX10/OGL R 0.0 0.0 1.0

A8_UNORM Yes 0.0 0.0 0.0 A

I8_UNORM I I I I

L8_UNORM Yes L L L 1.0

Y8_UNORM Yes Y Y Y 1.0

L8_UNORM_SRGB L L L 1.0

DXT1_RGB_SRGB R G B 1.0

R1_UNORM R 0.0 0.0 1.0

YCRCB_NORMAL Yes Cr Y Cb 1.0

YCRCB_SWAPUVY Yes Cr Y Cb 1.0

BC1_UNORM Yes R G B A

BC2_UNORM Yes R G B A

BC3_UNORM Yes R G B A

BC4_UNORM DX10/OGL R 0.0 0.0 1.0

BC5_UNORM DX10/OGL R G 0.0 1.0

612 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Surface Format Name Filtering

Shadow

Map

Chroma

Key

Border

Color Mode R G B A

Border

Color

Mode R G B A

BC1_UNORM_SRGB R G B A

BC2_UNORM_SRGB R G B A

BC3_UNORM_SRGB R G B A

YCRCB_SWAPUV Cr Y Cb 1.0

YCRCB_SWAPY Cr Y Cb 1.0

DXT1_RGB R G B 1.0

R8G8B8_UNORM R G B 1.0

R8G8B8_SNORM R G B 1.0

BC4_SNORM DX10/OGL R 0.0 0.0 1.0

BC5_SNORM DX10/OGL R G 0.0 1.0

R16G16B16_FLOAT R G B 1.0

R16G16B16_UNORM R G B 1.0

R16G16B16_SNORM R G B 1.0

BC6H_SF16 R G B 1.0*

BC7_UNORM R G B A

BC7_UNORM_SRGB R G B A

BC6H_UF16 R G B 1.0*

PLANAR_420_8 Cr Y Cb 1.0

PLANAR_420_16 Yes Cr Y Cb 1.0

R8G8B8_UNORM_SRGB R G B 1.0

ETC1_RGB8 R G B 1.0

ETC2_RGB8 R G B 1.0

EAC_R11 R 0.0 0.0 1.0

EAC_RG11 R G 0.0 1.0

EAC_SIGNED_R11 R 0.0 0.0 1.0

EAC_SIGNED_RG11 R G 0.0 1.0

ETC2_SRGB8 R G B 1.0

R16G16B16_UINT DX10/OGL R G B 1.0

R16G16B16_SINT DX10/OGL R G B 1.0

ETC2_RGB8_PTA R G B A

ETC2_SRGB8_PTA R G B A

ETC2_EAC_RGBA8 R G B A

ETC2_EAC_SRGB8_A8 R G B A

R8G8B8_UINT DX10/OGL R G B 1.0

R8G8B8_SINT DX10/OGL R G B 1.0

ASTC R G B A

L8A8_UINT DX10/OGL L L L A

L8A8_SINT DX10/OGL L L L A

Doc Ref # IHD-OS-LKF-Vol 9-4.21 613

Surface Format Name Filtering

Shadow

Map

Chroma

Key

Border

Color Mode R G B A

Border

Color

Mode R G B A

L8_UINT DX10/OGL L L L 1.0

L8_SINT DX10/OGL L L L 1.0

I8_UINT DX10/OGL I I I I

I8_SINT DX10/OGL I I I I

Programming Note

Context: SURFACE_STATE

Any surface format not supported by the 3D sampler except Raw Buffer format will return undefined results. The

Unsupported Raw Buffer format will be treated as RGBA8888 by default.

Programming Note

Context: 1D Surfaces

1D Surfaces must be defined as linear (not tiled).

Programming Note

Context: SURFACE_STATE

Surface formats PLANAR_420_8 and PLANAR_420_16 which require half-pitch chroma planes (e.g. YV12) cannot

support fenced tiling.

Programming Note

Context: Chroma Key and sample_unorm

The surface formats PLANAR_420_16, R16_UNORM, R16G16B16A16_UNORM, and R16G16_UNORM are only

supported for sample_unorm with Chroma Key enabled.

It is recommended, for performance reasons, to never use any format of the type L*A*, I* or A*. Instead

use R* or RG* in combination with Shader Channel Select.

614 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Programming Note

Context: Anisotropic Filtering with 128bpt and Border Color Mode

Anisotropic Filtering of 128bpt surfaces, when Sampler State Texture Border Color Mode is set to DX9, is not

supported

Programming Note

Context: NULL Surfaces and Shader Channel Select

Is SURFTYPE_NULL is selected, Shader Channel Select Alpha must be programmed to SCS_ZERO.

Programming Note

Context: HiZ Surfaces

HiZ Auxiliary surfaces are not supported for surfaces which are sampled by the 3D sampler. If an Auxiliary surface is

programmed into the RENDER_SURFACE_STATE it will be ignored by the 3D sampler and interpreted as

AUX_NONE.

Programming Note

Context: Vertical Stride and DFR Power Management

If RENDER_SURFACE_STATE field Vertical Line Stride is programmed to 1 (a non-zero stride), then the Sampler

DFR must be disabled by programming bit 0 of MMIO register E190h to 1h.

Programming Note

Context: Re-described surfaces

If two surface states reference the same texture with different Surface Format fields there is a possibility that the

sampler will return incorrect pixels unless a texture cache invalidate is done between accesses using different

surface state.

Programming Note

Context: Planar Surfaces with Disabed Sampler

A sample to a YUV Planar surface (e.g. PLANAR_420_8) when the Sampler State has been disabled by setting the

Sampler Disable bit, will not return 0's.

SURFACE_STATE for Deinterlace sample_8x8 and VME

This section contains media surface state definitions.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 615

Cr(V)/Cb(U) Pixel Offset V Direction

The position of Y is brown and the position of Cr(V)/Cb(U) is blue.

Full Frame Top Field Bottom Field

V Offset 0.5 V Offset 0.25 V Offset 0.75

MEDIA_SURFACE_STATE

Programming Note

Context: SURFACE_STATE for Deinterlace sample_8x

The Faulting modes described in the MEMORY_OBJECT_CONTROL_STATE should be set to the same for the multi-

surface Video Analytics functions like “LBP Correlation” and “Correlation Search” for both the surfaces.

SAMPLER_STATE

SAMPLER_STATE has different formats, depending on the message type used. The sample_8x8 and

deinterlace messages use a different format of SAMPLER_STATE as detailed in the corresponding

sections.

Restriction: The Min LOD and Max LOD fields need range increased from [0.0,13.0] to [0.0,14.0] and

fractional bits increased from six to eight. This requires a few fields to be moved as indicated in the text.

All 16-byte sampler states in a 64-byte aligned cache-line must be programmed with a valid sampler

state.

Sampler State

SAMPLER STATE

SAMPLER_BORDER_COLOR_STATE

../../../../Content/BXmlSnippets/Structure_SAMPLER_STATE_IVB+REMOVEDBYGEN12HAS1209977545_BSpec.html

616 Doc Ref # IHD-OS-LKF-Vol 9-4.21

If border color is used, all formats must be provided. Hardware will choose the appropriate format based on

Surface Format and Texture Border Color Mode. The values represented by each format should be the same

(other than being subject to range-based clamping and precision) to avoid unexpected behavior.

DWord Bits Description

0 31:24 Border Color Alpha

 Format = UNORM8

23:16 Border Color Blue

 Format = UNORM8

15:8 Border Color Green

 Format = UNORM8

7:0 Border Color Red

 Format = UNORM8

1 31:0 Border Color Red

 Format = IEEE_FP

2 31:0 Border Color Green

 Format = IEEE_FP

3 31:0 Border Color Blue

 Format = IEEE_FP

4 31:0 Border Color Alpha

 Format = IEEE_FP

5 31:16 Border Color Green

 Format = FLOAT16

15:0 Border Color Red

 Format = FLOAT16

6 31:16 Border Color Alpha

 Format = FLOAT16

15:0 Border Color Blue

 Format = FLOAT16

7 31:16 Border Color Green

 Format = UNORM16

15:0 Border Color Red

 Format = UNORM16

8 31:16 Border Color Alpha

 Format = UNORM16

15:0 Border Color Blue

 Format = UNORM16

9 31:16 Border Color Green

 Format = SNORM16

15:0 Border Color Red

 Format = SNORM16

10 31:16 Border Color Alpha

Doc Ref # IHD-OS-LKF-Vol 9-4.21 617

DWord Bits Description

 Format = SNORM16

15:0 Border Color Blue

 Format = SNORM16

11 31:24 Border Color Alpha

 Format = SNORM8

23:16 Border Color Blue

 Format = SNORM8

15:8 Border Color Green

 Format = SNORM8

7:0 Border Color Red

 Format = SNORM8

Border Color Programming for Integer Surface Formats

For integer formats, there are different possible cases depending on the bits per channel (bpc) and bits per texel

(bpt) of the surface format.

Integer Surface Format – Different Types Surface formats

32 bpc, 128 bpt case (4 types)
R32G32B32A32_UINT

R32G32B32_UINT

R32G32B32A32_SINT

R32G32B32_SINT

16 bpc, 64 bpt case (5 types)
R16G16B16A16_UINT, R10G10B10A2_UINT

X32_TYPELESS_G8X24_UINT

R16G16B16_UINT

R16G16B16A16_SINT

R16G16B16_SINT

32 bpc, 64 bpt case (2 types) R32G32_UINT

 R32G32_SINT

8 bpc, 32 bpt cases (9 types)
R8G8B8A8_UINT

R8G8_UINT

R8_UINT

X24_TYPELESS_G8_UINT

R8G8B8_UINT

R8G8B8A8_SINT

R8G8_SINT

618 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Integer Surface Format – Different Types Surface formats

R8_SINT

R8G8B8_SINT

16 bpc, 32 bpt cases (4 types)
R16G16_UINT

R16_UINT

R16G16_SINT

R16_SINT

32 bpc, 32 bpt case (2 types) R32_UINT

 R32_SINT

HW supports only 1 index for a given Sampler Border Color state and Sampler State. So, SW will have to program

the table in SAMPLER_BORDER_COLOR_STATE at DWord offsets 16 to 19, as per the integer surface format type

(depends on the bits per channel and bits per texel of the surface format). If any color channel is missing from the

surface format, the corresponding border color should be programmed as zero; if the alpha channel is missing, the

corresponding Alpha border color should be programmed as 1. Some of the representative cases are listed below:

Case 2: R32G32B32A32_SINT (32 bpc, 128 bpt, 4 channel, SINT)

Each of the values in the above table would have be to programmed as sint32 value.

Case 3: R32G32B32_UINT (32 bpc, 128 bpt, 3 channel)

R/G/B values would be programmed like in Case1. Alpha channel value at DWORDN+3 would have to be

programmed as Integer 1.

Sampler State

3DSTATE_CHROMA_KEY

3DSTATE_MONOFILTER_SIZE

SAMPLER_INDIRECT_STATE

Programming Note

Context: Wrap with very small negative coordinates

If the input coordinate is negative and very small (< 2^-25) and the TEXCOORDMODE_WRAP is selected for that

coordinate, the sampler will truncate the texel coordinate to 0.0 and return the wrong texel.

Messages

The sampler receives messages from shader clients. These messages contain information to allow the

sampler to perform sample operations and return results. A message consists of four components:

• Execution Mask: Indicates, for a given SIMD, which pixels are valid.

• Message Descriptor: Required information including length of the message, and the length of the

response.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 619

• Message Header: Optional information which may be required for certain operations (e.g. Direct

Write to Render Target).

• Message Payload: Specific data for each sampler operation including coordinates and other

message parameters.

Programming Notes

Programming Note

Context: 3D Sampler Messages

Write back messages can return erroneous information in the Pixel Null Mask field for sample_c messages on a 64-

bit surface format (e.g. R16G16B16A16_UNORM)

Programming Note

Context: Message Headers and Mid-Thread Pre-Emption

A message header is required for GPGPU kernels for all sample_8x8 and sample_unorm messages to allow

save/restore mechanisms to work correctly.

Message Descriptor and Execution Mask

Execution Mask

SIMD16. The 16-bit execution mask forms the valid pixel signals. This determines which pixels are

sampled and results returned to the GRF registers. Samples for invalid pixels are not overwritten in the

GRF. However, if LOD needs to be computed for a subspan based on the message type and MIP filter

mode and at least one pixel in the subspan being valid, the sampling engine assumes that the

parameters for the upper left, upper right, and lower left pixels in the subspan are valid regardless of the

execution mask, as these are needed for the LOD computation.

SIMD8. The low 8 bits of the execution mask form the valid pixel signals. If LOD needs to be computed

based on MIP filter mode and at least one pixel in the subspan being valid, the sampling engine assumes

that the parameters for the upper left, upper right, and lower left pixels in the subspan are valid

regardless of the execution mask, since these are needed for the LOD computation.

SIMD32. The execution mask is ignored, all pixels are considered valid, and all channels are returned

regardless of the execution mask.

Message Descriptor

The Sampler Message Descriptor is composed of a 32-bit Message Descriptor and a 32-bit Extended Message

Descriptor (used for support Bindless resources, CPS etc.). The lower 11 bits of the Extended Message Descriptor

are defined by the Extended Message Descriptor for the Execution Unit.

The message descriptor is sent in parallel with the message payload (and header if used).

Descriptor

Message Descriptor - Sampling Engine

Extended Message Descriptor - Sampling Engine

620 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Descriptor

Extended Message Descriptor - Execution Unit

Programming Note

Context: 3D Sampler Messages

Restrictions for Message Descriptors

Use of any message to the Sampling Engine function with the End of Thread bit set in the message descriptor is

not allowed.

Message Header

The message header for the sampling engine is the same regardless of the message type. The message

header is optional. If the header is not present, the behavior is as if the message was sent with all fields in

the header set to zero and the write channel masks are all enabled and offsets are zero. However, if the

header is not included in the message, the Sampler State Pointer will be obtained from the command

stream input for the given thread.

DWord Bits Description

M0.5 31:0 Reserved

M0.4 31:0 Reserved

M0.3 31:4
Sampler State Pointer: Specifies the 16-byte aligned pointer to the sampler state table. This field is

ignored for ld and resinfo message types. This pointer is relative to the Dynamic State Base

Address or Bindless Sampler State Base Address depending on the setting of Sampler State

Base Address Select field below.

Format = StateOffset[31:4]

The Sampler State Pointer does not have to be defined by the Message Header (many messages do

not require a message header). The Sampler State Pointer may be delivered from the Command

Streamer without the need for a Message Header.

M0.3 3:1 Ignored

M0.3 0
Sampler State Base Address Select: Selects which base address is used for sampler state accesses.

Format = 1-bit enumerated value

Value Name Description

0 SAMP_DYNAMIC use Dynamic State Base Address

1 SAMP_BINDLESS use Bindless Sampler State Base Address

The Sampler State Base Address Select does not have to be defined by the Message Header (many

messages do not require a message header). The Sampler State Base Address Select may be

delivered from the Command Streamer without the need for a Message Header.

M0.2 31:24 Reserve

Doc Ref # IHD-OS-LKF-Vol 9-4.21 621

DWord Bits Description

M0.2 23
Pixel Null Mask Enable

Specifies whether the writeback message includes an extra phase indicating the pixel null mask.

Refer to the Writeback Message section for details on format. This field must be disabled for

sample+killpix and all SIMD32/64 messages.

Format = Enable

Ignored for

Sample_8x8 message

M0.2 22 Reserved

M0.2 21
Slot Group Select

This field selects whether slots 7:0 or slots 15:8 are used for bypassed data.

Bypassed data only includes the scale factors for CPS LOD Compensation. This field is ignored if

CPS Message LOD Compensation Enable is disabled.

For 8-pixel dispatches, SLOTGRP_0 must be selected on every message. For 16-pixel dispatches, this

field must be set correctly for each SIMD8* message based on which slots are currently being

processed. For SIMD16* messages, SLOTGRP_0 must be selected.

Value Name Description

0 SLOTGRP_0 Choose bypassed data for slots 7:0.

1 SLOTGRP_1 Choose bypassed data for slots 15:8.

M0.2 20 Reserved

M0.2 19:18
SIMD32/64 Output Format Control

Specifies the output format of SIMD32/64 messages (sample_unorm* and sample_8x8). Ignored for

other message types. Refer to the writeback message formats for details on how this field affects

returned data.

This field is ignored for sample_8x8 messages if the Function is not AVS and MinMaxFilter. For

MinMaxFilter only 16bit Full and 8bit Full modes are supported.

This field is ignored and not used for HDC write message.

0: 16 bit Full

1: 16 bit Chrominance Downsampled

2: 8 bit Full

3: 8 bit Chrominance Downsampled

622 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bits Description

M0.2 17:16
Gather4 Source Channel Select: Selects the source channel to be sampled in the gather4*

messages. Ignored for other message types.

0: Red channel

1: Green channel

2: Blue channel

3: Alpha channel

For gather4*_c messages, this field must be set to 0 (Red channel).

M0.2 17:16 Reserved

M0.2 15
Alpha Write Channel Mask: Enables the alpha channel to be written back to the originating

thread.

0: Alpha channel is written back.

1: Alpha channel is not written back.

Programming Note

Context: 3D Sampler Messages

• A message with all four channels masked is not allowed.

• This field is ignored for the deinterlace message.

• This field must be set to zero for sample_8x8 in VSA mode.

• For Sample_8x8 messages, Alpha/Blue/Red channels should be always masked (set to 1)

and only Green channel is enabled (set to 0).

• This field must be set to zero for all gather4* messages.

M0.2
14 Blue Write Channel Mask: See Alpha Write Channel Mask.

M0.2 13 Green Write Channel Mask: See Alpha Write Channel Mask.

M0.2 12 Red Write Channel Mask: See Alpha Write Channel Mask.

M0.2 11:8
U Offset: The u offset from the _aoffimmi modifier on the sample or ld instruction in DX10. Must be

zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER. Must be set to zero if _aoffimmi

is not specified. Format is S3 2’s complement.

Programming Note

Context: 3D Sampler Messages

• This field is ignored for the sample_unorm*, sample_8x8, and deinterlace messages.

• This field is ignored if the offu parameter is included in the gather4* messages.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 623

DWord Bits Description

M0.2 7:4
V Offset: The v offset from the _aoffimmi modifier on the sample or ld instruction in DX10. Must be

zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER. Must be set to zero if _aoffimmi

is not specified. Format is S3 2’s complement.

Programming Note

Context: 3D Sampler Messages

• This field is ignored for the sample_unorm*, sample_8x8, and deinterlace messages.

• This field is ignored if the offu parameter is included in the gather4* messages.

M0.2 3:0
R Offset: The r offset from the _aoffimmi modifier on the sample or ld instruction in DX10. Must be

zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER. Must be set to zero if _aoffimmi

is not specified. Format is S3 2’s complement.

Programming Note

Context: 3D Sampler Messages

This field is ignored for the sample_unorm*, sample_8x8, and deinterlace messages.

Programming Note

Context: Non-Normalized Floating-Point Coordinates

Texel offsets can only be applied to messages with floating-point normalized coordinates or

integer non-normalized coordinates.

M0.2 11:0 Reserved

M0.1 31:0 Reserved

M0.0 31:0 Reserved

Message Types

3D Sampler Message Types

The 3D sampler supports multiple message types with different types of behaviors being supported. Each

message can be supported with multiple SIMD forms (e.g. SIMD8, SIMD16 etc). See the section Message

Formats for which SIMD forms are supported as well as the specific parameters and order of parameters

for each message.

Below is a complete list of supported 3D Sampler message types:

Message Types

sample_*

ld_*

gather4_*

624 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Message Types

LOD

sampleinfo

resinfo

cache_flush

sample_unorm1

sample_8x81

1 For SIMD32/SIMD64 Media-type messages such as sample_unorm, sample_8X8 and deinterlace see the

Media Sampler SIMD32/64 section for a description of the payloads of these messages and the expected

behavior.

Common Message Variants

Many message types have multiple variants which provide for different sampling behaviors. The variants

of a message type are named by appending a suffix to the base message.

Variant

Suffix Definition

_l LOD Override: The LOD is provided in the message rather than being calculated from the gradients of

the sub-span pixel coordinates.

_b LOD Bias: A floating-point value between +16.0 and -16.0 is added to the LOD based on gradients of

the sub-span pixel coordinates.

_c Compare: Returns a white or black result depending on the comparison of a Ref parameter to the

resulting red-channel of the sample. Comparison type is defined by the Shadow Function field in the

SAMPLER_STATE

_lz LOD=0 Override: LOD is forced to 0. No LOD is calculated or provided in the message

_d Gradient: Rather than receiving absolute texel coordinates for all pixels of sub-span, a single pixel

coordinate tuple is provided and a set of floating-point gradient values with respect to those pixel

coordinates. This is then used to calculate other pixel coodinates and the LOD

_po Pixel Offset: Used only with gather4-type messages, it means the message provides a set of non-

normalized integer texel offsets between +31 and -32 which are added to the calculated surface

position.

_killpix Kill Pixel: Used in conjunction with the Chroma Key mode enabled by the Sampler State Field

CHROMA_KEY_ENABLE. It causes the associated sampler result to include a “Kill Pixel Mask” where 0’s

indicate pixels which matched a particular Chroma Key Mode.

_min Minimum Value: Forces return of the minimum channel value for all contributing texels a filter

operation.

_max Maximum Value: Forces return of the maximum channel value for all contributing texels a filter

operation.

See the subsections for each message type for a description of the behaviors and programming

restrictions.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 625

Restrictions and Programming Notes for All Message Types

Programming Note

Context: Message Types

For surfaces of type SURFTYPE_CUBE, the sampling engine requires u, v, and r parameters that have already been

divided by the absolute value of the parameter (u, v, or r) with the largest absolute value.

Programming Note

Context: Reduction Filter and *_c message variants.

Programming restrictions defined for *_c variants of all message types will not apply if the reduction filter is

enabled via the Reduction Type Enable field in the SAMPLER_STATE and a Reduction Type that is NOT

COMPARISON is selected. The restrictions of the non *_c variant will apply instead.

Sample Message Types

Sample Message Definition

Message

Type Description

sample_*
The surface is sampled using the indicated sampler state. LOD is computed using calculated gradients

between adjacent pixels. One, two, or three floating-point coordinate parameters may be specified

depending on how many dimensions the indicated surface type uses. Extra parameters specified are

ignored. Missing parameters are defaulted to 0.

The sample message enables filtering/blending operations (e.g. MAP_LINEAR) and addressing modes

(e.g. Mirror) which are controlled by SAMPLER_STATE.

Supported Variants

Message Description

sample Basic sample operation as described above.

sample_l Basic sample with LOD in message, not computed

sample_b Basic sample with Bias in messaged added to computed LOD.

sample_c Basic sample with Reference value in message and comparison against Red channel of the sampled

surface returned. Used primarily for shadow maps. Comparison type is defined by the Shadow

Function field in the SAMPLER_STATE.

sample_lz Basic sample with LOD forced to 0. Possibly higher performance than sample_l for cases where the

surface has MIP_COUNT=1 because the LOD does not need to be computed or sent in message.

sample_l_c sample_c with LOD override in message, not computed.

sample_b_c sample_c with LOD Bias

sample_c_lz Similar to sample_c with LOD forced to 0. Possibly higher performance than sample_c or sample_l_c

for cases where the surface has MIP_COUNT=1 because the LOD does not need to be computed.

sample_d
The surface is sampled using the indicated sampler state. LOD is computed using the gradients

626 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Message Description

present in the message. The r coordinate and its gradients are required only for surface types that

use the third coordinate. Usage of this message type on cube surfaces assumes that the u, v, and

gradients have already been transformed onto the appropriate face, but still in [-1,+1] range. The r

coordinate contains the faceid, and the r gradients are ignored by hardware.

Previously known as sample_g.

sample_d_c
Same as sample_d, but returns comparison against Red Channel of sampled surface like sample_c.

Previously known as sample_g_c.

sample_killpix Basic sample but returns a Kill Pixel Mask based on Chroma Key sampler comparison results. An

additional register is returned after the sample results which contains the kill pixel mask. This

message type is required to allow the result of a chroma key enabled sampler in

KEYFILTER_KILL_ON_ANY_MATCH mode to affect the final pixel mask.

sample_min Basic sample, but returns minimum value of all contributing texels for each individual color channel.

sample_max Basic sample, but returns maximum value of all contributing texels for each individual color channel.

Restrictions and Programming Notes for Sample

Programming Note

sample:

The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D, SURFTYPE_3D, or

SURFTYPE_CUBE.

sample: Number of Multisamples on the associated surface must be MULTISAMPLECOUNT_1.

sample: The mlod parameter specifies the per-pixel MinLOD.

Restrictions and Programming Notes for sample_b

Programming Note

sample_b:

The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D, SURFTYPE_3D, or

SURFTYPE_CUBE.

Number of Multisamples on the associated surface must be MULTISAMPLECOUNT_1.

The LOD bias delivered in the bias parameter is restricted to a range of [-16.0, +16.0). Values outside this range

produce undefined results.

sample_b: The mlod parameter specifies the per-pixel MinLOD.

Restrictions and Programming Notes for sample_l and sample_lz

Programming Note

sample_l and sample_lz:

The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D, SURFTYPE_3D, or

SURFTYPE_CUBE.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 627

Programming Note

 Number of Multisamples on the associated surface must be MULTISAMPLECOUNT_1.

sample_l and sample_lz: The ld_lz message is the same as ld except the lod parameter is set to zero instead of

being delivered.

Restrictions and Programming Notes for sample_c and sample_c_lz

Programming Note

sample_c and sample_c_lz:

The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D, or SURFTYPE_CUBE.

The Surface Format of the associated surface must be indicated as supporting shadow mapping as indicated in the

surface format table.

MIPFILTER_LINEAR, MAPFILTER_LINEAR, MAPFILTER_ANISOTROPIC are allowed even for surface formats that are

listed as not supporting filtering in the surface formats table.

Use of the SIMD4x2 form of sample_c without Force LOD to Zero enabled in the message header is not allowed, as

it is not possible for the hardware to compute LOD for SIMD4x2 messages.

Using SURFTYPE_CUBE surfaces is undefined with the following surface formats: I24X8_UNORM, L24X8_UNORM,

A24X8_UNORM, I32_FLOAT, L32_FLOAT, and A32_FLOAT.

Number of Multisamples on the associated surface must be MULTISAMPLECOUNT_1.

Using DX9 Texture Border Color Mode and either of the following is undefined:

• Any applicable Address Control Mode (depending on Surface Type) is set to

TEXCOORDMODE_CLAMP_BORDER or TEXCOORDMODE_HALF_BORDER.

• Surface Type is SURFTYPE_CUBE and any Cube Face Enable is disabled.

sample_c and sample_c_lz: Must use the DX10 BORDER_COLOR_MODE (selected in sampler state) when using

CLAMP_BORDER addressing mode.

sample_c: The mlod parameter specifies the per-pixel MinLOD.

Restrictions and Programming Notes for sample_l_c

Programming Note

sample_l_c: All restrictions applying to both sample_l and sample_c must be honored.

sample_l_c: Must use the DX10 BORDER_COLOR_MODE (selected in sampler state) when using CLAMP_BORDER

addressing mode.

Restrictions and Programming Notes for sample_b_c

Programming Note

sample_b_c: All restrictions applying to both sample_bl and sample_c must be honored.

sample_b_c: All variations of the sample_c, must use the DX10 BORDER_COLOR_MODE (selected in sampler state)

when using CLAMP_BORDER addressing mode.

628 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Restrictions and Programming Notes for sample_d

Programming Note

sample_d:

The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D, SURFTYPE_3D, or

SURFTYPE_CUBE.

Number of Multisamples on the associated surface must be MULTISAMPLECOUNT_1.

sample_d: The mlod parameter specifies the per-pixel MinLOD.

Restrictions and Programming Notes for sample_d_c

Programming Note

sample_d_c:

All restrictions applying to both sample_d and sample_c must be honored.

Restrictions and Programming Notes for sample_killpix

Programming Note

sample_killpix:

The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D, SURFTYPE_3D, or

SURFTYPE_CUBE.

sample_killpix is supported only in SIMD8 mode.

Number of Multisamples on the associated surface must be MULTISAMPLECOUNT_1.

sample_killpix:

If the sampler is disable via the Sampler Disable bit in the SAMPLER_STATE, the Kill Pixel Mask returned will be

undefined.

Restrictions and Programming Notes for sample_min, sample_max

Programming Note

The Surface Type of the associated surface must be SURFTYPE_2D and Surface Array must be disabled.

Number of Multisamples on the associated surface must be MULTISAMPLECOUNT_1

If sampling on a 3D surface (Volumetric), the following two conditions cannot be supported on a sample_min or

sample_max at the same time:

• Sampler state addresse mode for q direction specifies D3D11_TEXADDRESS_BORDER

• Address mode for U and V do not specify D3D11_TEXADDRESS_BORDER

Doc Ref # IHD-OS-LKF-Vol 9-4.21 629

Programming Note

If Null and/or Border Texels are being excluded by using the Return Filter Weight fields in the SAMPLER_STATE, and

the surface type includes an Alpha Channel,

 the Alpha channel must be obtained separately by having the Return Filter Weight fields cleared, and the resulting

Alpha will still contain contributions from NULL or Border Texels.

ld Message Types

ld Message Definition

Message

Type Description

ld_*
The surface is sampled using a default sampler state.

It performs a “point sample” with the LOD provided in the message rather than being calculated by

gradients and the coordinates are non-normalized integers rather than normalized floating-point

values.

If the message doesn’t include an LOD parameter, the message samples from LOD 0.

For ld_* message types, the sampler state is defaulted as follows:

• min, mag, and mip filter modes are “nearest”.

• All address control modes are “zero”, a special mode in which any texel off the map or outside

the MIP range of the surface has a value of zero in all channels, except for surface formats

without an alpha channel, which return a value of one in the alpha channel.

The ld* family of messages do not perform any blending operation.

Additional parameters are needed for the variants of ld defined below.

Potentially lower power than using sample_l with Filter Mode=MAP_NEAREST because coordinates do

not need to be converted from floating-point.

Supported Variants

Message Description

ld Basic ld operation as described above.

ld_lz Basic ld with LOD forced to 0. Reduces the size of the message with potential performance and power

advantage because LOD is not sent as part of the message.

ld2dms Basic ld operation but to a multi-sampled surface. Includes additional parameters for MCS values (see

ld_mcs below) and Si (sample index) for each pixel in the message. Can be used for all multi-sampled

surfaces up to X8 MSAA amd for X16 MSAA in cases where the upper half of the sub-samples (planes 8

thru 15) all reference plane0 (see ld_mcs to see how determining X16 MSAA viability is determined).

ld2dms_w
Same as ld2dms but provides more bits for MCS to support multi-sampled surfaces which are X16

MSAA. Therefore, the ld2dms_w message has two MCS parameters, named mcsl and mcsh. These

parameters contain the low and high halves of the 64-bit MCS value, respectively. However, use of the

ld2dms_w message is allowed with Number of Multisamples set to 2, 4, 8, or 16. With this message, if

Number of Multisamples is 2, 4 or 8, the ld2dms_w message behaves the same as ld2dms, with mcsl

630 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Message Description

used for mcs, and mcsh ignored.

For SIMD8/SIMD16 the mcsh parameters is only used for X16 MSAA, and should be all 0's for X8 MSAA

or lower depth.

ld2dss
Same as ld2dms, but does not require MCS, and uses only ssi parameter to pick same sub-slice for all

pixels. The ssi parameter defines the sample slice that will be sampled from. Refer to the multisample

storage format in the GPU Overview volume for more details.

ld_mcs Basic ld operation but used to fetch the MCS auxiliary surface data rather than pixels from the surface

itself. The returned MCS data is used to construct the ld2dms/ld2dms_w/ld2dss message to sample

from the multi-sampled surface.

Restrictions and Programming Notes for ld

Programming Note

ld:

The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D, SURFTYPE_3D, or

SURFTYPE_BUFFER for the ld message.

The Surface Format of the associated surface cannot be MONO8.

 Number of Multisamples on the associated surface must be MULTISAMPLECOUNT_1

Restrictions and Programming Notes for ld_lz

Programming Note

ld_lz:

The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D, SURFTYPE_3D, or

SURFTYPE_BUFFER for the ld message.

ld_lz: The Surface Format of the associated surface cannot be MONO8.

Restrictions and Programming Notes for ld_mcs

Programming Note

ld_mcs:

The Surface Type of the surface associated with the auxiliary surface must be SURFTYPE_2D.

ld_mcs:

The ld_mcs message uses the Auxiliary Surface Base Address and Auxiliary Surface Pitch fields in

SURFACE_STATE to determine the base address and pitch of the surface. Surface Format is overridden to

R8_UINT if Number of Multisamples is 2 or 4, R32_UINT if Number of Multisamples is 8, or R32G32_UINT

if Number of Multisamples is 16. This message cannot be used on a non-multisampled surface.

Otherwise, ld_mcs behaves like the ld message. If ld_mcs is issued on a surface withAuxiliarySurface

Mode not set to AUX_MCS, this message returns zeros in all channels.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 631

Programming Note

ld_mcs:

If ld_mcs is issued on a surface with Auxiliary Surface Mode not set to AUX_CCS_D, this message returns

zeros in all channels. Ld_mcs always returns 512 bits of data for SIMD8 and 1024 bits of data for SIMD16

regardless of the MSAA depth of the surface. If ld_mcs is issued on an auxiliary surface associated with a

X8 MSAA or lower depth, the upper-half of the return data will be 0’s.

ld_mcs:

All LOD parameters must be the same value within a single message (i.e. all samples returned for

message must be from a single MIP).

Restrictions and Programming Notes for ld2dms

Programming Note

ld2dms:

The sampled surface type must not be MULTISAMPLECOUNT_1

The sample surface type must not be MULTISAMPLECOUNT_16 any of the upper 8 planes contain valid

data. The Surface Type of the associated surface must be SURFTYPE_2D.

ld2dms:

The Surface Format of the associated surface cannot be MONO8.

ld_2dms:

All LOD parameters must be the same value within a single message (i.e. all samples returned for

message must be from a single MIP).

Restrictions and Programming Notes for ld_2dms_w

Programming Note

ld_2dms_w:

The Surface type must not be MULTISAMPLECOUNT_1.

The Surface Type of the associated surface must be SURFTYPE_2D.

ld_2dms_w:

The Surface Format of the associated surface cannot be MONO8.

ld_2dms_w:

All LOD parameters must be the same value within a single message (i.e. all samples returned for message must be

from a single MIP).

632 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Programming Note

ld_2dms_w:

The MCS parameter is ignored for UMS (uncompressed MSAA) surfaces which do not have an Auxiliary MCS

surface. In this case, the ssi parameter provided in the message is used to determine which sub-pixel to fetch.

Restrictions and Programming Notes for ld_2dss_w

Programming Note

ld_2dss:

All LOD parameters must be the same value within a single message (i.e. all samples retured for message must be

from a single MIP).

Restrictions and Programming Notes for ld

Programming Note

ld:

The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D, SURFTYPE_3D, or

SURFTYPE_BUFFER for the ld message.

The Surface Format of the associated surface cannot be MONO8.

Number of Multisamples on the associated surface must be MULTISAMPLECOUNT_1

Restrictions and Programming Notes for ld_lz

Programming Note

ld_lz:

The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D, SURFTYPE_3D, or

SURFTYPE_BUFFER for the ld message.

ld_lz: The Surface Format of the associated surface cannot be MONO8.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 633

Restrictions and Programming Notes for ld_mcs

Programming Note

ld_mcs:

The Surface Type of the surface associated with the auxiliary surface must be SURFTYPE_2D.

ld_mcs:

 The ld_mcs message uses the Auxiliary Surface Base Address and Auxiliary Surface Pitch fields in SURFACE_STATE

to determine the base address and pitch of the surface. Surface Format is overridden to R8_UINT if Number of

Multisamples is 2 or 4, R32_UINT if Number of Multisamples is 8, or R32G32_UINT if Number of Multisamples is 16.

This message cannot be used on a non-multisampled surface. Otherwise, ld_mcs behaves like the ld message. If

ld_mcs is issued on a surface with Auxiliary Surface Mode not set to AUX_MCS, this message returns zeros in all

channels.

ld_mcs:

If ld_mcs is issued on a surface with Auxiliary Surface Mode not set to AUX_CCS_D, this message returns zeros in all

channels.

 Ld_mcs always returns 512 bits of data for SIMD8 and 1024 bits of data for SIMD16 regardless of the MSAA depth

of the surface. If ld_mcs is issued on an auxiliary surface associated with a X8 MSAA or lower depth, the upper-half

of the return data will be 0’s.

ld_mcs:

 All LOD parameters must be the same value within a single message (i.e. all samples returned for message must be

from a single MIP).

Restrictions and Programming Notes for ld2dms

Programming Note

ld2dms:

The sampled surface type must not be MULTISAMPLECOUNT_1

The sample surface type must not be MULTISAMPLECOUNT_16 any of the upper 8 planes contain valid data.

The Surface Type of the associated surface must be SURFTYPE_2D.

ld2dms:

The Surface Format of the associated surface cannot be MONO8.

ld_2dms:

All LOD parameters must be the same value within a single message (i.e. all samples returned for message must be

from a single MIP).

Restrictions and Programming Notes for ld_2dms_w

634 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Programming Note

ld_2dms_w:

The Surface type must not be MULTISAMPLECOUNT_1.

The Surface Type of the associated surface must be SURFTYPE_2D.

ld_2dms_w:

The Surface Format of the associated surface cannot be MONO8.

ld_2dms_w:

All LOD parameters must be the same value within a single message (i.e. all samples returned for message must be

from a single MIP).

ld_2dms_w:

The MCS parameter is ignored for UMS (uncompressed MSAA) surfaces which do not have an Auxiliary MCS

surface. In this case, the ssi

 parameter provided in the message is used to determine which sub-pixel to fetch.

Restrictions and Programming Notes for ld_2dss_w

Programming Note

ld_2dss:

All LOD parameters must be the same value within a single message (i.e. all samples retured for message must be

from a single MIP).

Doc Ref # IHD-OS-LKF-Vol 9-4.21 635

gather4 Message Types

Definitions

Message

Type Description

gather4_*
The surface is sampled using MAP_LINEAR filtering, regardless of the filtering mode specified in the

sampler state and with LOD forced to zero of the visible resource.

However, the samples are not filtered. Instead, the selected color channel the four contributing texels

are returned directly in the sample’s corresponding four channels as follows:

upper left sample = alpha

channel

upper right sample = blue

channel

lower left sample = red

channel

lower right sample = green

channel

Returned color channel is selected through a message field: Gather4 Source Channel Select

Two or three floating-point coordinates may be specified depending on how many coordinate

dimensions the indicated surface type uses. Extra parameters specified are ignored. Missing

parameters default to 0.

gather4_* If the Return Filter Weight fields in SAMPLER_STATE are set, any texel which is NULL and/or Border will

be set to 0.0 in the returned result.

Supported Variants:

Message Description

gather4 Basic gather4 behavior as described above.

gather4_c Similar to basic gather4 but performs a compare between a Reference parameters and the gathered

pixels and returns a white or black (1 or 0). In addition, like sample_c, it only returns data on the Red

channel, so the Gather4 Source Channel Select must be set to Red.

gather4_po
Similar to gather4, but includes offu and offv parameters, which contain texel-space offsets that

override the U/V Offset fields in the message header. Unlike the message header fields however,

these offsets have a wider range [-32,+31], and can differ per pixel or sample. The format of the

data is 32-bit 2’s complement signed integer, but hardware only interprets the least significant 6

bits of each value, treating it as a 6-bit 2’s complement signed integer

gather4_po_c This is a combination of gather4_c and gather4_po, and will return data only on the Red Channel

(Gather4 Source Channel Select must be set to Red), but uses offu and offv to shift the position on

the surface.

636 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Restrictions and Programming Notes for gather4:

Programming Note

gather4: The Surface Type of the associated surface must be SURFTYPE_2D or SURFTYPE_CUBE.

Number of Multisamples on the associated surface must be MULTISAMPLECOUNT_1.

Using DX9 Border Color Mode when either of the following is true will yield undefined results:

• Any applicable Address Control Mode (depending on Surface Type) is set to

TEXCOORDMODE_CLAMP_BORDER or TEXCOORDMODE_HALF_BORDER.

• Surface Type is SURFTYPE_CUBE and any Cube Face Enable is disabled.

gather4:

The Surface Format of the associated surface cannot be MONO8.

gather4: If Surface Format is R10G10B10_SNORM_A2_UNORM and Gather4 Source Channel Select is alpha channel,

the returned value may be incorrect.

gather4: When using gather4 type messages on CUBEMAP surfaces with SINT* surface formats the

ChromaKeyEnable state bit should be set and the ChromaKeyMode state set to KEYFILTER_KILL_ON_ANY_MATCH.

Restrictions and Programming Notes for gather4_c:

Programming Note

gather4_c: The Surface Type of the associated surface must be SURFTYPE_2D or SURFTYPE_CUBE.

The Surface Format of the associated surface must be one of the following: R32_FLOAT_X8X24_TYPELESS,

R32_FLOAT, R24_UNORM_X8_TYPELESS, or R16_UNORM.

The channel selected by the Gather4 Source Channel Select field in the message header must be set to Red.

Number of Multisamples on the associated surface must be MULTISAMPLECOUNT_1.

Using DX9 Border Color Mode and either of the following is undefined:

• Any applicable Address Control Mode (depending on Surface Type) is set to

TEXCOORDMODE_CLAMP_BORDER or TEXCOORDMODE_HALF_BORDER.

• Surface Type is SURFTYPE_CUBE and any Cube Face Enable is disabled.

gather4_c:

The Surface Format of the associated surface cannot be MONO8.

gather4_c: When using gather4 type messages on CUBEMAP surfaces with SINT* surface formats the

ChromaKeyEnable state bit should be set and the ChromaKeyMode state set to KEYFILTER_KILL_ON_ANY_MATCH.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 637

Restrictions and Programming Notes for gather4_po:

Programming Note

gather4_po: The Surface Type of the associated surface must be SURFTYPE_2D.

Number of Multisamples on the associated surface must be MULTISAMPLECOUNT_1.

Using DX9 Border Color Mode and either of the following is undefined:

• Any applicable Address Control Mode (depending on Surface Type) is set to

TEXCOORDMODE_CLAMP_BORDER or TEXCOORDMODE_HALF_BORDER.

Surface Type is SURFTYPE_CUBE and any Cube Face Enable is disabled.

gather4_po:

The Surface Format of the associated surface cannot be MONO8.

gather4_po: When using gather4 type messages on CUBEMAP surfaces with SINT* surface formats the

ChromaKeyEnable state bit should be set and the ChromaKeyMode state set to KEYFILTER_KILL_ON_ANY_MATCH.

Restrictions and Programming Notes for gather4_po_c:

Programming Note

gather4_po_c: The Surface Type of the associated surface must be SURFTYPE_2D.

The Surface Format of the associated surface must be one of the following: R32_FLOAT_X8X24_TYPELESS,

R32_FLOAT, R24_UNORM_X8_TYPELESS, or R16_UNORM

The channel selected by the Gather4 Source Channel Select field in the message header must be set to Red.

Number of Multisamples on the associated surface must be MULTISAMPLECOUNT_1.

Using DX9 Border Color Mode and either of the following is undefined:

• Any applicable Address Control Mode (depending on Surface Type) is set to

TEXCOORDMODE_CLAMP_BORDER or TEXCOORDMODE_HALF_BORDER.

• Surface Type is SURFTYPE_CUBE and any Cube Face Enable is disabled.

gather4_po_c:

The Surface Format of the associated surface cannot be MONO8.

gather4_po_c: When using gather4 type messages on CUBEMAP surfaces with SINT* surface formats the

ChromaKeyEnable state bit should be set and the ChromaKeyMode state set to KEYFILTER_KILL_ON_ANY_MATCH.

sampleinfo Message Type

638 Doc Ref # IHD-OS-LKF-Vol 9-4.21

sampleinfo Message Definition

Message

Type Description

sampleinfo
The surface indicated in the surface state is not sampled. Instead, the number of samples (UINT32)

and the sample position palette index (UINT32) for the surface are returned in the red and alpha

channels respectively as UINT32 values. The sample position palette index returned in alpha is

incremented by one from its value in the surface state. The Sampler State Pointer and Sampler

Index are ignored.

The Surface Type of the associated surface must be SURFTYPE_2D or SURFTYPE_NULL.

Supported Variants:

None

Restrictions and Programming Notes for sampleinfo:

Programming Note

sampleinfo:

 The return format for sampleinfo message must be 32-bits.

LOD Message Type

LOD Message Definition

Message

Type Description

LOD
The surface indicated in the surface state is not sampled. Instead, LOD is computed as if the surface will

be sampled, using the indicated sampler state, and the clamped and unclamped LOD values are

returned in the red and green channels, respectively, in FLOAT32 format. The blue and alpha channels

are undefined, and can be masked to avoid returning them. LOD is computed using gradients between

adjacent pixels. Three parameters are always specified, with extra parameters not needed for the

surface being ignored.

Supported Variants:

None

Doc Ref # IHD-OS-LKF-Vol 9-4.21 639

Restrictions and Programming Notes for LOD:

Programming Note

LOD:

The Surface Type of the associated surface must be SURFTYPE_1D, SURFTYPE_2D, SURFTYPE_3D, or

SURFTYPE_CUBE.

Number of Multisamples on the associated surface must be MULTISAMPLECOUNT_1.

LOD:

The Surface Format of the associated surface cannot be MONO8.

LOD:

 The return format for LOD message must be 32-bits.

resinfo Message Type

resinfo Message Definition

Message

Type Description

resinfo
The surface indicated in the surface state is not sampled. Instead, the width, height, depth, and MIP

count of the surface are returned as indicated in the table below. The format of the returned data is

UINT32.

In the case of a 1D or 2D surfaces, the depth value returned is the number of array slices. For non-

arrayed 1D and 2D surfaces the value returned will be 1.

The width, height, and depth may be scaled by the LOD parameter provided in the message to give the

correct dimensions of the specified mip level. The LOD parameter is an unsigned 32-bit integer in this

mode (note that negative values are out-of-range when interpreted as unsigned integers).

The Sampler State Pointer and Sampler Index are always ignored.

For SURFTYPE_1D, 2D, 3D, and CUBE surfaces, if the delivered LOD is outside of the range

[0..MipCount-1], the returned values in the red, green, and blue channels are 0s.

Returned Parameters for resinfo:

640 Doc Ref # IHD-OS-LKF-Vol 9-4.21

For the resinfo message the Red, Green and Blue channels returned contain the following specialized

information.

Surface Type Red Green Blue Alpha

SURFTYPE_1D (Width+1)»LOD Surface Array ? Depth+1 : 0 0 MIP Count

SURFTYPE_2D (Width+1)»LOD) *

 (QuiltWidth+1)
((Height+1)»LOD)*

 (QuiltHeight+1)

Surface Array ? Depth+1 : 0 MIP Count

SURFTYPE_3D (Width+1)»LOD (Height+1)»LOD (Depth+1)»LOD MIP Count

SURFTYPE_CUBE (Width+1)»LOD (Height+1)»LOD Surface Array ? Depth+1 : 0 MIP Count

SURFTYPE_BUFFER

 SURFTYPE_STRBUF

Buffer size (from combined

Depth/Height/Width)

If buffer size is exactly 2^32,

zero is returned in this field.

Undefined Undefined Undefined

SURFTYPE_NULL 0 0 0 0

Supported Variants:

None

Restrictions and Programming Notes for resinfo:

Programming Note

resinfo: The return format of resinfo message must be 32-bits.

cache_flush Message Type

cache_flush Message Definition

Message

Type Description

cache_flush
The texture caches in the sampling engine are invalidated. This includes all levels of texture cache,

however the state caches are not invalidated.

Any outstanding sample operations which arrive at the texture sampler prior to the cache_flush

message are completed normally. Any sample operations which arrive after the cache_flush message

will cause texture cache-misses and sampler will fetch textures from memory.

Supported Variants:

None

Doc Ref # IHD-OS-LKF-Vol 9-4.21 641

Restrictions and Programming Notes for cache_flush:

Programming Note

cache_flush:

Software must ensure that this message is ordered appropriately with other messages. Hardware ensures only that

this message is processed in the same order as the messages are received. The message causes a write back

message to indicate that the flush has been completed.

This message must be sent as a SIMD32/64 type message with header only (no additional message contents)

Media Message Types

The 3D sampler supports specific message types which are intended for use by the Media sampler. These

messages include:

Message

sample_unorm

sample_8X8

Media message types are described in more detail, with payload information defined in the Media

Sampler Section.

sample_unorm Message Types

sample_unorm Message Definition

Message Type Description

sample_unorm_*
The surface is sampled using the indicated sampler state. 32 contiguous pixels in a 8-wide by 4-

high block are sampled. The U and V addresses for the upper left pixel are delivered in this

message along with Delta U and Delta V floating-point parameters and Given a pixel at (x,y)

relative to the upper left pixel (where (0,0) is the upper left pixel), the U and V for that pixel are

computed as follows:

U(x,y) = U(0,0) + DeltaU * x

V(x,y) = V(0,0) + DeltaV * y

Typically, this message and its variants are used for media applications.

642 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Supported Variants:

Message Description

sample_unorm Basic sample_unorm behavior as described above.

sample_unorm_RG Similar to sample_unorm, but only the Red and Green Channels are returned because

there is an implied write mask.

sample_unorm_killpix This message is identical to the sample_unorm message except it returns a kill pixel

mask in addition to the selected channels in the writeback message. This message type

is required to allow the result of a chroma key enabled sampler in

KEYFILTER_KILL_ON_ANY_MATCH mode to affect the final pixel mask. All restrictions of

the sample_unorm message apply to this message also.

sample_unorm_RG_killpix This message is identical to the sample_unorm_RG message except it returns a kill pixel

mask in addition to the selected channels in the writeback message. This message type

is required to allow the result of a chroma key enabled sampler in

KEYFILTER_KILL_ON_ANY_MATCH mode to affect the final pixel mask. All restrictions of

the sample_unorm message apply to this message also.

Restrictions and Programming Notes for sample_unorm, sample_unorm_RG,

sample_unorm_killpix, sample_unorm_RG_killpix:

Programming Note

The Surface Type of the associated surface must be SURFTYPE_2D.

The Surface Format of the associated surface must be UNORM with <= 8 bits per channel.

The MIP Count, Depth, Surface Min LOD, Resource Min LOD, and Min Array Element of the associated surface must

be 0.

The Min and Mag Mode Filter must be MAPFILTER_NEAREST or MAPFILTER_LINEAR.

The Mip Mode Filter must be MIPFILTER_NONE.

The TCX and TCY Address Control Mode cannot be any of:

• TEXCOORDMODE_CLAMP_BORDER

• TEXCOORDMODE_HALF_BORDER

• TEXCOORDMODE_MIRROR_ONCE

• TEXCOORDMODE_WRAP

Map Width must be >= 4.

Map Height must be >= 4

• Number of Multisamples on the associated surface must be MULTISAMPLECOUNT_1.

Supports additional Surface formats: PLANAR_420_16, R16_UNORM, R16G16_UNORM, R16G16B16A16_UNORM

Map Width must be >=16

 Map Height must be >=16

Doc Ref # IHD-OS-LKF-Vol 9-4.21 643

sample_8x8 Message Type

sample_8x8 Message Definition

Message

Type Description

sample_8x8
The surface is sampled using an optional 8x8 filter, using state defined in SAMPLER_STATE and

SAMPLER_8x8_STATE.

The input consists of 64 contiguous pixels in a 16-wide by 4-high arrangement. The address control

mode behaves as clamp mode. The U and V addresses for the upper left pixel are delivered in this

message along with a Delta U and Delta V parameter. Given a pixel at (x,y) relative to the upper left

pixel (where (0,0) is the upper left pixel), the U and V for that pixel are computed as follows:

U(x,y) = U(0,0) + DeltaU * x + U_2nd_Derivative * x * (x - 1)/2

V(x,y) = V(0,0) + DeltaV * y + V_2nd_Derivative * y * (y - 1)/2

Supported Variants:

None.

Restrictions and Programming Notes for sample_8x8:

Programming Note

The Surface Type of the associated surface must be SURFTYPE_2D.

The Surface Format of the associated surface must be UNORM with <= 10 bits per channel.

DeltaV * Height of the associated surface must be less than 16.0.

• Map Width must be >= 4.

Supports functionality such as convolve, MinMax, MinMaxFilter, Dilate, Erode, BoolCentroid, and Centroid have

been added on top of the existing sample_8x8. The convolve, MinMax, and MinMaxFilter are 16-wide X 4-high; the

rest have variable size depending on the message. See Media Sampler section for a description of how these

modes work.

Message Format

The following section describes how messages are formatted, including how message length and

response length are calculated. The sampler supports a variety of different message types which perform

different sampling and filtering operations (see Message Types section for a description of these sampler

and filtering operations). For each message type, different SIMD modes are supported which determines

how many pixels the sampler performs the specified operation on in parallel. The precision of the input

parameters and resulting samples can also be controlled by programming the Return Format bit in the

message descriptor (for sample precision) and using SIMD8H/SIMD8 and SIMD16H/SIMD16 message

types (for coordinate precision).

644 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Supported SIMD Types

The table below describes the SIMD modes which are supported. SIMD32 and SIMD64 are used for

media-type operations only.

List of Supported Message SIMD Types

SIMD Modes Description

SIMD8 8 samples with 32-bit Coordinates

SIMD16 16 samples with 32-bit coordinates

SIMD32/64 Media Operations on 32 or 64 pixels

SIMD8H 8 samples with Floating-Point 16-bit Coordinates

SIMD16H 16 samples with 16-bit coordinates

Message Length

The SIMD Mode field determines the number of instances (i.e. pixels) to be sampled and the formatting

of messages. The Message Length field indicates the number of parameters sent with the message.

Higher-numbered parameters are optional, and default to a value of 0 if not sent but needed for the

surface being sampled. The Header Present field determines whether a header is delivered as the first

phase of the message or the default header from R0 of the thread’s dispatch is used. A header will

increase the length of the message by 1. Note that messages with more than 4 parameters will perform

lower due to the additional information being sent to the sampler than messages with 4 or fewer

parameters. For example, a sample message using 5 parameters will not be able to sustain the same

throughput as a sample message with only 4 valid parameters.

The table below shows all of the SIMD modes supported by the sampling engine and how the Message

Length is calculated for each. The variable “N” is the number of valid parameters, and “H” is 1 if the

header is present, 0 otherwise. The maximum message length allowed to the sampler is 11. The

sample_d, sample_b_c, and sample_l_c messages are not allowed with a SIMD Mode of SIMD16 because

the message length is greater than 11.

Message Lengths for Supported SIMD Modes

SIMD Mode Message Length

SIMD8 H+N

SIMD8H H+N

SIMD16 H+(2*N)

SDIM16H H+N

Doc Ref # IHD-OS-LKF-Vol 9-4.21 645

Programming Note

Context: 3D Sampler Messages - Message Format

The Cache_Flush message is SIMD32, but has no payload, only a header. So, the length is 1 for Cache_Flush

Response Length

The Response Length field determines the number of 256-bit registers which are used to receive the

result of each message type for each SIMD mode. The value of k shown in the response length is 1 if

killpix is enabled and 0 otherwise.

SIMD Mode Return Precision (bits per channel) Response Length

SIMD8 32 4+k

SIMD8 16 2**

SIMD8H 32 4+k

SIMD8H 16 2**

SIMD16 32 8*

SIMD16 16 4*

SIMD16H 32 8***

SIMD16H 16 4***

Notes for Determining Response Lengths Table

Symbol Note

*
For SIMD16, phases in the response length are reduced by 2 for each channel that is masked.

SIMD16 messages with six or more parameters exceed the maximum message length allowed, in which

case they are not supported. This includes some forms of sample_b_c, sample_l_c, and gather4_po_c

message types. Note that even for these messages, if 5 or fewer parameters are included in the message,

the SIMD16 form of the message is allowed. SIMD16 forms of sample_d and sample_d_c are not allowed,

regardless of the number of parameters sent.

** For SIMD8*, phases in the response length are reduced by 1 for each channel that is masked.

*** All SIMD16H messages have the same limitations as the corresponding SIMD16 message would, even

though maximum message length is not exceeded. The SIMD16H version of ld2dms_w is an exception. It

allows up to 7 parameters.

SIMD32/SIMD64 Special Cases for Response Length

The SIMD32/SIMD64 modes have special response lengths depending on the message type.

Mnemonic Payload Layout Response Length

sample_unorm Pixel Shader 8**

sample_unorm + killpix Pixel Shader 9**

646 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Mnemonic Payload Layout Response Length

deinterlace Pixel Shader †

sample_unorm Media 8**

sample_unorm + killpix Media 9**

sample_8X8 Media 16*

cache_flush no payload 1

** For sample_unorm, phases in the response length are reduced by 2 for each channel that is masked.

Sample8x8 Footnote

* For sample_8x8, phases in the response length are reduced by 4 for each channel that is masked.

† For deinterlace, response length depending on certain state fields. Refer to writeback message

definition for details.

If Header Present is disabled, Response Length can be set to values in the table below for SIMD8 and

SIMD16 messages other than sample+killpix. The setting of Response Length determines the Write Channel

Mask fields that are used by the hardware according to the table below. Response Length values not

indicated in the table are not valid.

SIMD

Mode

Return

Format

Response

Length

Alpha Write

Channel Mask

Blue Write

Channel Mask

Green Write

Channel Mask

Red Write

Channel Mask

SIMD8*

32-bit/

 16-bit

1 1 1 1 0

32-bit/

 16-bit

2 1 1 0 0

32-bit/

 16-bit

3 1 0 0 0

32-bit/

 16-bit

4 0 0 0 0

SIMD16*

32-bit 2 1 1 1 0

16-bit 1 1 1 1 0

32-bit 4 1 1 0 0

16-bit 2 1 1 0 0

32-bit 6 1 0 0 0

16-bit 3 1 0 0 0

16-bit 4 0 0 0 0

32-bit 8 0 0 0 0

If Pixel Fault Mask Enable is enabled, response length must be set to a value one larger than that indicated in the

tables above.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 647

Programming Note

Context: 3D Sampler Messages - Message Format

Parameter 0 is required.

Message Formats

The table below describes the format of each message type for every supported SIMD type.

=The Message Type field in the message descriptor in combination with the Message Length to

determine which message is being sent. The table defines all of the parameters sent for each message

type. The position of the parameters in the payload is given in the section following corresponding to the

SIMD mode given in the table. The Mnemonic column specifies the DX10-equivalent shader instructions

expected to be translated to each message type.

Message parameters are typically formed in sequential 256-bit registers and sent in order to the sampler

to form a complete message. All parameters are of type IEEE_Float, except those in the The ld*, resinfo,

bufferinfo, and the offu, offv of the gather4_po[_c] instruction message types, which are of type signed

integer. Any parameter indicated with a blank entry in the table is unused. A message register containing

only unused parameters is not included as part of the message.

Parameter Types

sample*, LOD, and gather4 messages

For all of the sample*, LOD, and gather4 message types, all parameters are 32-bit floating point, except

the ‘mcs’, ‘offu’, and ‘offv’ parameters. Usage of the u, v, and r parameters is as follows based on Surface

Type. Normalized values range from [0,1] across the surface, with values outside the surface behaving as

specified by the Address Control Mode in that dimension. Unnormalized values range from [0,n-1]

across the surface, where n is the size of the surface in that dimension, with values outside the surface

being clamped to the surface.

Surface Type u v r ai

SURFTYPE1D normalized ‘x’

coordinate

unnormalized array

index

ignored ignored

SURFTYPE_2D normalized ‘x’

coordinate

normalized ‘y’

coordinate

unnormalized array

index

ignored

SURFTYPE_3D normalized ‘x’

coordinate

normalized ‘y’

coordinate

normalized ‘z’

coordinate

ignored

SURFTYPE_CUBE normalized ‘x’

coordinate

normalized ‘y’

coordinate

normalized ‘z’

coordinate

unnormalized array

index

648 Doc Ref # IHD-OS-LKF-Vol 9-4.21

mcs parameter

The ‘mcs’ parameter delivers the multisample control data. The format of this parameter is always a 32-

bit unsigned integer. Refer to the section titled “Multisampled Surface Behavior” for details on this

parameter.

Ld* messages

For the ld message types, all parameters are 32-bit unsigned integers, except the ‘mcs’ parameter. Usage

of the u, v, and r parameters is as follows based on Surface Type. Unnormalized values range from [0,n-

1] across the surface, where n is the size of the surface in that dimension. Input of any value outside of

the range returns zero.

Surface Type u v r

SURFTYPE1D unnormalized ‘x’ coordinate unnormalized array index ignored

SURFTYPE_2D unnormalized ‘x’ coordinate unnormalized ‘y’ coordinate unnormalized array index

SURFTYPE_3D unnormalized ‘x’ coordinate unnormalized ‘y’ coordinate unnormalized ‘z’ coordinate

SURFTYPE_BUFFER unnormalized ‘x’ coordinate ignored ignored

SIMD Payloads

This section contains the SIMD payload definitions.

SIMD16 Payload

The payload of a SIMD16 message provides addresses for the sampling engine to process 16 entities

(examples of an entity are vertex and pixel). The number of parameters required to sample the surface

depends on the state that the sampler/surface is in. Each parameter takes two message registers, with 8

entities, each a 32-bit floating point value, being placed in each register. Each parameter always takes a

consistent position in the input payload. The length field can be used to send a shorter message, but

intermediate parameters cannot be skipped as there is no way to signal this. For example, a 2D map

using “sample_b” needs only u, v, and bias, but must send the r parameter as well.

DWord Bits Description

M1.7 31:0
Subspan 1, Pixel 3 (lower right) Parameter 0

Specifies the value of the pixel’s parameter 0. The actual parameter that maps to parameter 0 is

given in the table in the Payload Parameter Definition section.

Format = IEEE Float for all sample* message types, U32 for ld and resinfo message types.

M1.6 31:0
Subspan 1, Pixel 2 (lower left) Parameter 0

M1.5 31:0
Subspan 1, Pixel 1 (upper right) Parameter 0

M1.4 31:0
Subspan 1, Pixel 0 (upper left) Parameter 0

M1.3 31:0
Subspan 0, Pixel 3 (lower right) Parameter 0

Doc Ref # IHD-OS-LKF-Vol 9-4.21 649

DWord Bits Description

M1.2 31:0
Subspan 0, Pixel 2 (lower left) Parameter 0

M1.1 31:0
Subspan 0, Pixel 1 (upper right) Parameter 0

M1.0 31:0
Subspan 0, Pixel 0 (upper left) Parameter 0

M2.7 31:0
Subspan 3, Pixel 3 (lower right) Parameter 0

M2.6 31:0
Subspan 3, Pixel 2 (lower left) Parameter 0

M2.5 31:0
Subspan 3, Pixel 1 (upper right) Parameter 0

M2.4 31:0
Subspan 3, Pixel 0 (upper left) Parameter 0

M2.3 31:0
Subspan 2, Pixel 3 (lower right) Parameter 0

M2.2 31:0
Subspan 2, Pixel 2 (lower left) Parameter 0

M2.1 31:0
Subspan 2, Pixel 1 (upper right) Parameter 0

M2.0 31:0
Subspan 2, Pixel 0 (upper left) Parameter 0

M3 –

Mn

 Repeat packets 1 and 2 to cover all required parameters.

SIMD8 Payload

This message is intended to be used in a SIMD8 thread, or in pairs from a SIMD16 thread. Each message

contains sample requests for just 8 pixels.

DWord Bits Description

M1.7 31:0
Subspan 1, Pixel 3 (lower right) Parameter 0

Specifies the value of the pixel’s parameter 0. The actual parameter that maps to parameter 0 is

given in the table in the Payload Parameter Definition section.

Format = IEEE Float for all sample* message types, U32 for ld and resinfo message types.

M1.6 31:0
Subspan 1, Pixel 2 (lower left) Parameter 0

M1.5 31:0
Subspan 1, Pixel 1 (upper right) Parameter 0

M1.4 31:0
Subspan 1, Pixel 0 (upper left) Parameter 0

M1.3 31:0
Subspan 0, Pixel 3 (lower right) Parameter 0

650 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bits Description

M1.2 31:0
Subspan 0, Pixel 2 (lower left) Parameter 0

M1.1 31:0
Subspan 0, Pixel 1 (upper right) Parameter 0

M1.0 31:0
Subspan 0, Pixel 0 (upper left) Parameter 0

M2 –

Mn

 Repeat packet 1 to cover all required parameters.

SIMD16H Payload

The payload of a SIMD16H message provides addresses for the sampling engine to process 16 entities

(examples of an entity are vertex and pixel). The number of parameters required to sample the surface

depends on the state that the sampler/surface is in. Each parameter takes one message register, with 16

entities, each a 16-bit floating point or integer value, being placed in each register. Each parameter

always takes a consistent position in the input payload. The length field can be used to send a shorter

message, but intermediate parameters cannot be skipped as there is no way to signal this.

DWord Bits Description

M1.7 31:16
Subspan 3, Pixel 3 (lower right) Parameter 0

Specifies the value of the pixel’s parameter 0. The actual parameter that maps to parameter 0 is

given in the table in the Payload Parameter Definition section.

Format = IEEE Half Float for all sample* message types, U16 for ld and resinfo message types.

15:0 Subspan 3, Pixel 2 (lower left) Parameter 0

M1.6 31:16 Subspan 3, Pixel 1 (upper right) Parameter 0

15:0 Subspan 3, Pixel 0 (upper left) Parameter 0

M1.5 31:16 Subspan 2, Pixel 3 (lower right) Parameter 0

15:0 Subspan 2, Pixel 2 (lower left) Parameter 0

M1.4 31:16 Subspan 2, Pixel 1 (upper right) Parameter 0

15:0 Subspan 2, Pixel 0 (upper left) Parameter 0

M1.3 31:16 Subspan 1, Pixel 3 (lower right) Parameter 0

15:0 Subspan 1, Pixel 2 (lower left) Parameter 0

M1.2 31:16 Subspan 1, Pixel 1 (upper right) Parameter 0

15:0 Subspan 1, Pixel 0 (upper left) Parameter 0

M1.1 31:16 Subspan 0, Pixel 3 (lower right) Parameter 0

15:0 Subspan 0, Pixel 2 (lower left) Parameter 0

M1.0 31:16 Subspan 0, Pixel 1 (upper right) Parameter 0

15:0 Subspan 0, Pixel 0 (upper left) Parameter 0

M2 –

Mn

 Repeat packets 1 and 2 to cover all required parameters.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 651

SIMD8H Payload

This message is intended to be used in a SIMD8 thread, or in pairs from a SIMD16 thread. Each message

contains sample requests for just 8 pixels.

DWord Bits Description

M1.7:4 Reserved

M1.3 31:16
Subspan 1, Pixel 3 (lower right) Parameter 0

Specifies the value of the pixel’s parameter 0. The actual parameter that maps to parameter 0 is

given in the table in the Payload Parameter Definition section.

Format = IEEE Half Float for all sample* message types, U16 for ld and resinfo message types.

15:0 Subspan 1, Pixel 2 (lower left) Parameter 0

M1.2 31:16 Subspan 1, Pixel 1 (upper right) Parameter 0

15:0 Subspan 1, Pixel 0 (upper left) Parameter 0

M1.1 31:16 Subspan 0, Pixel 3 (lower right) Parameter 0

15:0 Subspan 0, Pixel 2 (lower left) Parameter 0

M1.0 31:16 Subspan 0, Pixel 1 (upper right) Parameter 0

15:0 Subspan 0, Pixel 0 (upper left) Parameter 0

M2 –

Mn

 Repeat packet 1 to cover all required parameters.

Writeback Message

Corresponding to the four input message definitions are four writeback messages. Each input message

generates a corresponding writeback message of the same type.

Programming Note

Context: 3D Sampler Writeback Message

The Pixel Null Mask field, when enabled via the Pixel Null Mask Enable will be incorrect for sample_c when applied

to a surface with 64-bit per texel format such as R16G16BA16_UNORM. Pixel Null mask Enable may incorrectly

report pixels as referencing a Null surface.

652 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Programming Note

Context: Returning Filter Weights

When the Return Filter Weight for Border Texels or the Return Filter Weight for Null Texels bits in

SAMPLER_STATE are set, the 3D Sampler will return a filter weight in the Alpha Channel.

See the definition of the Return Filter Weight for Border Texels and the Return Filter Weight for Null Texels

fields in the SAMPLER_STATE for a complete description of what is returned.

SIMD16

Return Format = 32-bit

A SIMD16 writeback message consists of up to 8 destination registers. Which registers are returned is

determined by the write channel mask received in the corresponding input message. Each asserted write

channel mask results in both destination registers of the corresponding channel being skipped in the

writeback message, and all channels with higher numbered registers being dropped down to fill in the

space occupied by the masked channel. For example, if only red and alpha are enabled, red is sent to

regid+0 and regid+1, and alpha to regid+2 and regid+3. The pixels written within each destination

register is determined by the execution mask on the “send” instruction.

If Pixel Null Mask Enable is enabled an additional register is included after the last channel register.

Behavior of pixels that had a null texel contribution depends on the setting of Null Pixel Behavior.

DWord Bit Description

W0.7 31:0
Subspan 1, Pixel 3 (lower right) Red: Specifies the value of the pixel’s red channel.

Format = IEEE Float, S31 signed 2’s comp integer, or U32 unsigned integer.

W0.6 31:0
Subspan 1, Pixel 2 (lower left) Red

W0.5 31:0
Subspan 1, Pixel 1 (upper right) Red

W0.4 31:0
Supspan 1, Pixel 0 (upper left) Red

W0.3 31:0
Subspan 0, Pixel 3 (lower right) Red

W0.2 31:0
Subspan 0, Pixel 2 (lower left) Red

W0.1 31:0
Subspan 0, Pixel 1 (upper right) Red

W0.0 31:0
Supspan 0, Pixel 0 (upper left) Red

W1.7 31:0
Subspan 3, Pixel 3 (lower right) Red

Doc Ref # IHD-OS-LKF-Vol 9-4.21 653

DWord Bit Description

W1.6 31:0
Subspan 3, Pixel 2 (lower left) Red

W1.5 31:0
Subspan 3, Pixel 1 (upper right) Red

W1.4 31:0
Supspan 3, Pixel 0 (upper left) Red

W1.3 31:0
Subspan 2, Pixel 3 (lower right) Red

W1.2 31:0
Subspan 2, Pixel 2 (lower left) Red

W1.1 31:0
Subspan 2, Pixel 1 (upper right) Red

W1.0 31:0
Supspan 2, Pixel 0 (upper left) Red

W2
Subspans 1 and 0 of Green: See W0 definition for pixel locations

W3
Subspans 3 and 2 of Green: See W1 definition for pixel locations

W4
Subspans 1 and 0 of Blue: See W0 definition for pixel locations

W5
Subspans 3 and 2 of Blue: See W1 definition for pixel locations

W6
Subspans 1 and 0 of Alpha: See W0 definition for pixel locations

W7
Subspans 3 and 2 of Alpha: See W1 definition for pixel locations

W8.7:1 Reserved (not written): W8 is only delivered when Pixel Fault Mask Enable is enabled.

W8.0 31:16 Border Color Mask: This field has the bits for all pixels set to 1 except those pixels in which a

border color was source for at least one texel.

W8.0 15:0 Pixel Null Mask: This field has the bit for all pixels set to 1 except those pixels in which a null page

was source for at least one texel.

Return Format = 16-bit

A SIMD16 writeback message with Return Format of 16-bit consists of up to 4 destination registers. Which

registers are returned is determined by the write channel mask received in the corresponding input message. Each

asserted write channel mask results in both destination registers of the corresponding channel being skipped in the

writeback message, and all channels with higher numbered registers being dropped down to fill in the space

occupied by the masked channel. For example, if only red and alpha are enabled, red is sent to regid+0, and alpha

to regid+1. The pixels written within each destination register is determined by the execution mask on the “send”

instruction.

If Pixel Null Mask Enable is enabled an additional register is included after the last channel register.

Behavior of pixels that had a null texel contribution depends on the setting of Null Pixel Behavior.

654 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bit Description

W0.7 31:16
Subspan 3, Pixel 3 (lower right) Red: Specifies the value of the pixel’s red channel.

Format = IEEE Half Float, S15 signed 2’s comp integer, or U16 unsigned integer.

15:0 Subspan 3, Pixel 2 (lower left) Red

W0.6 31:16 Subspan 3, Pixel 1 (upper right) Red

15:0 Supspan 3, Pixel 0 (upper left) Red

W0.5 31:16 Subspan 2, Pixel 3 (lower right) Red

15:0 Subspan 2, Pixel 2 (lower left) Red

W0.4 31:16 Subspan 2, Pixel 1 (upper right) Red

15:0 Supspan 2, Pixel 0 (upper left) Red

W0.3 31:16 Subspan 1, Pixel 3 (lower right) Red

15:0 Subspan 1, Pixel 2 (lower left) Red

W0.2 31:16 Subspan 1, Pixel 1 (upper right) Red

15:0 Supspan 1, Pixel 0 (upper left) Red

W0.1 31:16 Subspan 0, Pixel 3 (lower right) Red

15:0 Subspan 0, Pixel 2 (lower left) Red

W0.0 31:16 Subspan 0, Pixel 1 (upper right) Red

15:0 Supspan 0, Pixel 0 (upper left) Red

W1 Green: See W0 definition for pixel locations

W2 Blue: See W0 definition for pixel locations

W3 Alpha: See W0 definition for pixel locations

W4.7:1 Reserved (not written): W4 is only delivered when Pixel Fault Mask Enable is enabled.

W4.0 31:16 Border Color Mask: This field has the bits for all pixels set to 1 except those pixels in which a

border color was source for at least one texel.

W4.0 15:0 Pixel Null Mask: This field has the bit for all pixels set to 1 except those pixels in which a null page

was source for at least one texel.

SIMD8

Return Format = 32-bit

A SIMD8* writeback message consists of up to 4 destination registers (5 in the case of sample+killpix).

Which registers are returned is determined by the write channel mask received in the corresponding

input message. Each asserted write channel mask results in the destination register of the corresponding

channel being skipped in the writeback message, and all channels with higher numbered registers being

dropped down to fill in the space occupied by the masked channel. For example, if only red and alpha

are enabled, red is sent to regid+0, and alpha to regid+1. The pixels written within each destination

register is determined by the execution mask on the send instruction.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 655

For the sample+killpix message types, an additional register (W4) is included after the last channel

register.

If Pixel Null Mask Enable is enabled an additional register is included after the last channel register.

Behavior of pixels that had a null texel contribution depends on the setting of Null Pixel Behavior.

DWord Bits Description

W0.7 31:0
Subspan 1, Pixel 3 (lower right) Red: Specifies the value of the pixel’s red channel.

Format = IEEE Float, S31 signed 2’s comp integer, or U32 unsigned integer.

W0.6 31:0
Subspan 1, Pixel 2 (lower left) Red

W0.5 31:0
Subspan 1, Pixel 1 (upper right) Red

W0.4 31:0
Supspan 1, Pixel 0 (upper left) Red

W0.3 31:0
Subspan 0, Pixel 3 (lower right) Red

W0.2 31:0
Subspan 0, Pixel 2 (lower left) Red

W0.1 31:0
Subspan 0, Pixel 1 (upper right) Red

W0.0 31:0
Supspan 0, Pixel 0 (upper left) Red

W1
Subspans 1 and 0 of Green: See W0 definition for pixel locations

W2
Subspans 1 and 0 of Blue: See W0 definition for pixel locations

W3
Subspans 1 and 0 of Alpha: See W0 definition for pixel locations

W4.7:1
Reserved (not written) : This W4 is only delivered for the sample+killpix message or when Pixel

Null Mask Enable in Message Header is set.

W4.0 31:16
Dispatch Pixel Mask: For his field is always 0xffff to allow dword-based ANDing with the R0 header

in the pixel shader thread for sample+killpix messages.

W4.0 15:0
Active Pixel Mask: For sample+killpix messages this field has the bit for all pixels set to 1 except

those pixels that have been killed as a result of chroma key with kill pixel mode. Since the SIMD8

message applies to only 8 pixels, only the low 8 bits within this field are used. The high 8 bits are

always set to 1.

W4.0 31:24 Reserved: always written as 0xff when Pixel Null Mask Enable in Message Header is set.

W4.0 23:16 Border Color Mask: This field has the bits for all pixels set to 1 except those pixels in which a

border color was source for at least one texel.

W4.0 15:8 Reserved: always written as 0xff when Pixel Null Mask Enable in Message Header is set.

656 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bits Description

W4.0 7:0 Pixel Null Mask: This field has the bit for all pixels set to 1 except those pixels in which a null page

was source for at least one texel when Pixel Null Mask Enable in Message Header is set.

Return Format = 16-bit

A SIMD8* writeback message with Return Format of 16-bit consists of up to 4 destination registers).

Which registers are returned is determined by the write channel mask received in the corresponding

input message. Each asserted write channel mask results in the destination register of the corresponding

channel being skipped in the writeback message, and all channels with higher numbered registers being

dropped down to fill in the space occupied by the masked channel. For example, if only red and alpha

are enabled, red is sent to regid+0, and alpha to regid+1. The pixels written within each destination

register is determined by the execution mask on the send instruction.

If Pixel Null Mask Enable is enabled an additional register is included after the last channel register.

Behavior of pixels that had a null texel contribution depends on the setting of Null Pixel Behavior.

DWord Bits Description

W0.7:4 Reserved

W0.3 31:16
Subspan 1, Pixel 3 (lower right) Red: Specifies the value of the pixel’s red channel.

Format = IEEE Half Float, S15 signed 2’s comp integer, or U16 unsigned integer.

15:0 Subspan 1, Pixel 2 (lower left) Red

W0.2 31:16 Subspan 1, Pixel 1 (upper right) Red

15:0 Supspan 1, Pixel 0 (upper left) Red

W0.1 31:16 Subspan 0, Pixel 3 (lower right) Red

15:0 Subspan 0, Pixel 2 (lower left) Red

W0.0 31:16 Subspan 0, Pixel 1 (upper right) Red

15:0 Supspan 0, Pixel 0 (upper left) Red

W1 Subspans 1 and 0 of Green: See W0 definition for pixel locations

W2 Subspans 1 and 0 of Blue: See W0 definition for pixel locations

W3 Subspans 1 and 0 of Alpha: See W0 definition for pixel locations

W4.7:1 Reserved (not written): This W4 is only delivered when Pixel Fault Mask Enable is enabled.

W4.0 31:24 Reserved: always written as 0xffff

W4.0 23:16 Border Color Mask: This field has the bits for all pixels set to 1 except those pixels in which a

border color was source for at least one texel.

W4.0 15:8 Reserved: always written as 0xff

W4.0 7:0 Pixel Null Mask: This field has the bit for all pixels set to 1 except those pixels in which a null page

was source for at least one texel.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 657

Data Port

The Data Port provides all memory accesses for the subsystem other than those provided by the

sampling engine. These include constant buffer reads, scratch space reads/writes, and media surface

accesses. Render Target accesses to the Render Cache are described in the Shared Functions Render

Target chapter.

The diagram below shows how the Read-Only and Read/Write Data Ports connect with the caches and

memory subsystem. The execution units and sampling engine are shown for clarity.

Data Port Connections to Caches and Memory

The kernel programs running in the execution units communicate with the data port via messages, the

same as for the other shared function units. The data ports are considered to be separate shared

functions, each with its own shared function identifier.

658 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Read/Write Ordering

Memory access ordering in hp bsystem programs is managed inside of each thread. Memory access

ordering between threads is managed by software because threads can be run in any order, and another

thread can run when a thread is blocked waiting for data.

Ordering Conditions

Read, write, and atomic operations issued from the same thread to the same address, using the same data port, the

same cache coherency type, and the same page faulting mode, are guaranteed to be processed in the same order

as they are issued. Software mechanisms are used to ensure ordering of accesses when issued from different

threads, to different addresses, with different data ports, with different cache coherency types, or with different

page faulting modes.

So within the same thread, memory accesses may not be ordered under some circumstances. For example:

• The order that a single SIMD data port read or write message performs its multiple memory accesses is not

guaranteed.

• If two different virtual addresses map to the same physical memory address, the order of the operations is

not guaranteed.

• If a read misses a data cache and needs to fetch data from system memory, an access to a different address

can complete earlier if it hits a data cache.

• If a virtual address faults, a different memory page access can proceed while the faulted access is handled.

Compared to the Fault-and-Halt page fault mode, the Fault-and-Stream page fault mode is a

performance optimization that sometimes enables different order of accesses to continue after a page

fault, and still guarantee the order of accesses to the same address within the same thread. Under some

circumstances, the hardware automatically treats a Fault-and-Stream page fault as a Fault-and-Halt page

fault. See Page Faults in Memory Views for more details on the behaviors of these modes. The Memory

Fence message is used to block a thread until all pending Fault-and-Stream page faults are handled

when ordering is required.

 When memory access ordering is required and not guaranteed, either in the same thread or with

different threads, software must ensure the ordering using fence operations or atomic operations. The

Memory Fence message can be used to block a thread until all previous messages issued to that data

port cache agent have been globally observed from the point of view of other threads in the system.

Different threads in the same thread group can use a Memory Fence message guarantee either global

memory ordering or SLM memory ordering at the point when all the threads have reached a thread

group barrier. Software can use the results of atomic operations to implement in programs a memory

ordering between threads using exclusion locks or other protocols.

Address Models

Data structures accessed by the data port are called “surfaces”. There are four different Address Models

used by the data port to access these surfaces: Binding Table State model (BTS), Shared Local Memory

model (SLM), 32-bit Stateless model (A32), and 64-bit Stateless model (A64).

Most messages support only a subset of the Address Models.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 659

Address Models

Surface State Addresses and General State Addresses are translated to virtual Graphics Addresses using

the corresponding Base Address in the STATE_BASE_ADDRESS pointers, along with additional base

address offset information provided with the Data Port message. SLM addresses are offset by the SLM

Base Address that is set with each thread dispatch.

The sections below explain how the Base address is calculated for each Address Model. The Data Port

messages then combine that Base address with multiple SIMD offsets for the message’s memory

operations.

Each calculated memory address is bounds-checked against the Address Model’s boundaries. Out-of-

bounds read accesses return zero and out-of-bounds write accesses are dropped.

Binding Table Surface State Model (SSM and BTS)

The data port uses the binding table to bind indices to surface state, using the same mechanism used by

the sampling engine.

Surface State Address Model Description

The surface state model is used when a Binding Table Index (specified in the message descriptor) of less than 240 is

specified, or with the value of 252. When the Binding Table Index is less than 240, the Binding Table Index is used to

index into the active binding table, and the binding table entry contains a pointer to the SURFACE_STATE. When the

Binding Table Index is 252, the pointer to the SURFACE_STATE is the value of the Surface State Offset (specified in

the extended message descriptor).

A Surface State Offset may be used in place of the Binding Table Index and Binding Table Pointer to form

what is called a Bindless Surface State address. Throughout this volume, the shorthand terms SSM

(Surface State Address Model) and BTS (Binding Table Surface Address Model) are used interchangeably.

660 Doc Ref # IHD-OS-LKF-Vol 9-4.21

A32 Stateless Model

In the A32 model, the binding table is not accessed, and the parameters that define the surface state are

overloaded as follows:

• Surface Type = SURFTYPE_BUFFER

• Surface Format = RAW

• Vertical Line Stride = 0

• Surface Base Address = General State Base Address + Buffer Base Address

• Buffer Size = compared against General State Buffer Size for bounds checking

• Surface Pitch = 1 byte

• Utilize Fence = false

• Tiled = false

This model is primarily intended for scratch space buffers and for GPGPU global memory accesses.

A32 Stateless Memory Characteristics

Stateless Model Aliases

The stateless aliases 255 and 253 provide a means of SW controlling the coherency properties of an

access. The coherency property is ensured for that access only. Typically, SW uses the same coherency

type for all access to the same address. Proper fencing is required to ensure that reads and writes are

visible. L3UC forces the addressed cache lines out of L3 and the cycles are directly conducted to LLC. This

provides a capability for ensuring coherency on a particular location without having to fence all the other

cycles.

Binding Table Index Type Description

Doc Ref # IHD-OS-LKF-Vol 9-4.21 661

Binding Table Index Type Description

255 IA Coherent Coherent within the entire IA cache memory hierarchy.

253 Non-Coherent Coherent for the same cache type (L3, Sampler, or Render).

Programming Note

Context: A32 Stateless Model

• The constant, sampler, and render caches are always non-coherent.

• A32 messages that are stateless and specified without a BTI (Hword Read/Write and all messages on

SFID_DP_DC2) are IA coherent.

A64 Stateless Model

In the A64 model, the binding table is not accessed, and the parameters that define the surface state are

overloaded as follows:

• Surface Type = SURFTYPE_BUFFER

• Surface Format = RAW

• Vertical Line Stride = 0

• Surface Base Address = Graphics Address

• Buffer Size = not checked

• Surface Pitch = 1 bytes

• Utilize Fence = false

• Tiled = false

This model is primarily intended for programmable shader programs.

662 Doc Ref # IHD-OS-LKF-Vol 9-4.21

A64 Stateless Memory Characteristics

Programming Note

Context: A64 Stateless Model

A64 messages that are stateless and specified without a BTI (Hword Read/Write and all messages on SFID_DP_DC2)

are IA coherent.

Shared Local Memory (SLM)

Shared local memory (SLM) is a high bandwidth memory that is not backed up by system memory. The

SLM contents are shared between all active threads in the same thread group. Its contents are

uninitialized after creation, and its contents disappear when deallocated.

In the SLM model, the binding table is not accessed, and the parameters that define the surface state are

overloaded as follows:

• Surface Type = SURFTYPE_BUFFER

• Surface Format = RAW

• Surface Base Address = points to the start of the internal SLM (no memory address is applicable)

• Surface Pitch = 1 byte

Due to the predefined surface state attributes for the SLM, only a subset of the data port messages can

be used.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 663

SLM Memory Characteristics

SLM is accessed when a Binding Table Index (specified in the message descriptor) of 254 is specified, or

by Data Port 2 messages that are not accessing A32 or A64 memory. Only the data cache data port is

supported for SLM, the other data ports treat Binding Table Index 254 as a normal surface state access.

Programming Note

Accesses to SLM do not have any bounds checking. Addresses beyond the size (64 KB) of the SLM wrap around.

SLM should not be accessed through threads dispatched by the 3D pipe.

Unified Return Buffer Memory

Unified Return Buffer memory (URB) is a high bandwidth memory that is not backed up by system

memory. The URB contents are shared between all active threads in the same context. Its contents are

uninitialized after creation, and its contents disappear when deallocated.

URB memory is read and written with specialized messages sent to URB Shared Function data port

SFID_URB.

Address Models during SIP

When the SIP routine for the thread is running, only the stateless and SLM address models are supported

with Data Port messages.

Address Models during SIP

664 Doc Ref # IHD-OS-LKF-Vol 9-4.21

The A32 base address is overridden during the SIP execution to be Dual Subslice's context save area. The SLM base

is overridden during the SIP execution to be the Dual Subslice's SLM region.

Stateless A32 and A64 memory accesses are overridden to be non-coherent (L3 cache stores them as

virtual addresses).

In addition to the address model restrictions during the SIP execution, only a subset of Data Port

messages are defined for use during the SIP execution.

Context Save and Restore Supported Messages for SIP

All A32 stateless messages with BTI =253 override A32 base address with the Context Save area's base address

during SIP. This includes the Oword Block and Oword Aligned Block messages, and the Atomic Integer Operation

messages.

However, Hword Scratch Read/Write messages do not override the A32 base address and should not be used

during SIP.

Overview of Memory Accesses

The specific message operation modifies the characteristics of the Address Model to determine the

behaviors of each Data Port memory access. An overview of the characteristics is provided in the table

below, and then explained in more detail in the following sections.

Characteristic Overview

Surface Type
Each message has its own requirements for which surface types are supported. Most messages

only operate on a restricted subset of surface types. Most Data Port messages only operate on

the SURFTYPE_BUFFER surface type, but some specific messages operate on other structured

surface types.

Address

Alignment

Each message has its own requirements for address alignment. Most messages require an

address that is aligned on a natural boundary for the width of the data item being accessed.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 665

Characteristic Overview

Address

Calculation

Each message calculates one common Base Offset, and multiple additional Offsets for the SIMD

operation.

Depending on the message, the SIMD Offsets can be byte address offsets, or indices that select

an address aligned by the message operation’s data width.

Bounds

Checking

The per-message Base Address Offset is added to each of the message’s additional SIMD Offsets

to form offsets. Those offsets are each checked that they are within the surface’s and message’s

boundaries before a memory access is made.

If a memory access is within bounds, each calculated offset is added to the Address model’s Base

Address to form a virtual, physical, or SLM address that is accessed through the L3 cache

structure. If a memory access is out-of-bounds, then the message-specific action occurs (see

Bounds Checking in this volume).

Canonical

Address

Checking

The calculated virtual memory address, formed from each calculated offset and the Address

model’s Base Address, could cross the canonical address boundary.

Messages using Binding Table State and A32 stateless address models require the graphics

driver to correctly set up the base and bounds parameters so that every in-bounds access does

not cross the canonical address boundary.

Messages using A64 Stateless address models detect any calculated offsets that cross the

canonical address boundary, either as a fault or as an out-of-bounds access.

Tiled Resources

Checking
The virtual memory address for a data port access may be in the range of addresses that are

recognized as Tiled Resources, and that are translated through the TRTT (Tiled Resources

Translation Table).

Sparse Tiled Resources support a kind of application-managed virtual memory scheme, where

the application tells the driver to map specified 64KB address regions within the surface to

memory resources called Tile Pools. Tiles that are not mapped to a Tile Pool are either:

• Null tiles, which are treated as Out-of-Bounds

• Invalid tiles, which are treated as page faults

Tiles that are mapped to a Tile Pool have a virtual address that is handled like any virtual address

that is outside of the Tiled Resources address range.

Fault Handling Virtual memory addresses for data ports are translated through the PPGTT. If a fault occurs in

either the fault-and-stream or fault-and-halt page fault modes, a fault handler is invoked on the

IA processor to potentially correct the fault condition and retry the access. Execution of a faulted

thread is suspended until the IA driver signals the GPU to restart all faulted threads and replay

the faulted memory accesses.

SLM accesses do not fault.

See Read/Write Ordering in this volume for a description of how memory ordering is impacted

by a page fault.

666 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Characteristic Overview

Out-of-Bounds

handling

If a memory access is marked as out of bounds for the surface or the message, or if a virtual

address maps to a Tiled Resource Null page, then a read operation returns 0 and a write

operation is dropped.

Cache Behavior Data port memory values can be cached both inside or outside the GPU. The primary GPU data

cache can either be kept coherent with the IA processor with every memory access, or left non-

coherent where software protocols manage the coherency.

Each Address Model specifies the coherency model for the read/write data cache ports.

• For Surface State accesses: the surface's RENDER_SURFACE_STATE Coherency Type field

• For A32 and A64 Stateless accesses: the 253 and 255 aliases (see Stateless Model Aliases

in A32 Stateless Model in this volume for details)

• SLM accesses are localized and not cached

The behavior of writing cache data to memory (e.g. write back or write through modes) is

specified by the MEMORY_OBJECT_CONTROL_STATE.

• For Surface State accesses: the surface's RENDER_SURFACE_STATE Surface Object

Control State

• For A32 and A64 Stateless accesses: the STATE_BASE_ADDRESS Stateless Data Port

Access Memory Object Control

When PPGTT is enabled, the page table entry overrides the LLC/eDRAM cache controls supplied

by the MEMORY_OBJECT_CONTROL_STATE.

Surfaces Types

Each message has its own requirements for which surface types are supported. Most messages only

operate on a limited subset of surface types. The BUFFER surface type is supported by all the address

models. All other surface types are only supported by the BTS address model.

The stateless and SLM address models have a pre-defined surface type, format, and layout. Untyped

messages are used with these address models.

The BTS address model is used with either typed or untyped messages. The BTS surface type must be

compatible with the expected surface type, format, and layout of the message operation. Untyped

messages override the surface format with their specific data type and size. Typed messages require the

surface characteristics expected by the message, or the message results are undefined (accesses may be

dropped or may return random data).

Surface Types used by Data Port Messages

Message Category BTS SLM A32 A64

Render Target 1D, 2D, 3D, CUBE, NULL N/A N/A N/A

Media 2D, NULL N/A N/A N/A

Typed Surface or Atomic 1D, 2D, 3D, CUBE, BUFFER, NULL N/A N/A N/A

Doc Ref # IHD-OS-LKF-Vol 9-4.21 667

Message Category BTS SLM A32 A64

Untyped Surface or Atomic BUFFER, STRBUF, NULL BUFFER BUFFER BUFFER

Untyped Scattered or Block BUFFER, NULL BUFFER BUFFER BUFFER

Scaled Untyped Scattered or Surface N/A BUFFER BUFFER BUFFER

When a surface state is present, untyped messages ignore the surface format and treat the data as RAW.

For example, data is returned from the constant buffer to the GRF without format conversion.

2D, 3D, CUBE and NULL surfaces support YMAJOR tile modes to improve memory locality of nearby

accesses. All surface types support LINEAR tile mode. Surfaces with type BUFFER and STRBUF cannot be

tiled. 2D surfaces support XMAJOR tile mode for the Display engine. Stencil format is supported in

WMAJOR tile mode for 2D, 3D and CUBE tile formats.

Tile Modes supported by Data Port Surface Types

Surface Type Linear Y Major W Major X Major

BUFFER Yes

STRBUF Yes

1D Yes

2D Yes Yes Yes Yes

CUBE Yes Yes Yes

3D Yes Yes Yes

NULL Yes Yes Yes Yes

See Surface Layout and Tiling in the Memory Views volume for more information about tile layouts.

Programming Note

Context: Surfaces Types

For data port messages, compressed surface formats for MSAA and Media surfaces must be Y Major tiled (not

Linear, X Major, or W major).

Addressing Buffers (SURFTYPE_BUFFER)

Most data port messages operate on BUFFER surface types. The figure below illustrates how the base

address and bounds calculations are performed on BUFFER surface types.

668 Doc Ref # IHD-OS-LKF-Vol 9-4.21

BUFFER: Array of Structures

For untyped messages accessing SURFTYPE_BUFFER surface types, the U address (byte offset) must be

aligned to the data access width (for example, DWords must have the low 2 bits as zeros).

Addressing Structured Buffers (SURFTYPE_STRBUF)

Some data port messages operate on STRBUF surface types. The figure below illustrates how the base

address and bounds calculations are performed on BUFFER surface types.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 669

STRBUF: Array of Structures

Programming Note

Context: Addressing Structured Buffers (SURFTYPE_STRBUF)

Read/Write Data Ports only support linear tiled STRBUF.

For untyped messages accessing SURFTYPE_STRBUF surface types, both the V address and Surface

Pitch must be aligned to the data access width (for example, DWords must have the low 2 bits as zeros).

Addressing 1D, 2D, 3D, CUBE Surfaces

Some data port messages operate on various BTS surface types. The addressing and bounds checking for

the 1D, 2D, 3D, and CUBE surface types is fully explained in other chapters. See SURFACE_STATE in the

Shared Functions volume and Surface Layout and Tiling in the GPU Overview volume.

The figure below illustrates the differences in addressing and bound checking between these surface

types and the BUFFER and STRBUF surface types.

670 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Multi-Dimensional Surface Buffers

The following table indicates the hardware interpretation of each input address parameter based on

surface type. If LOD is specified, then both V and R parameters must also be included, even if they are

ignored. If LOD is not specified, then unused V and R parameters are optional in the address payload. If

LOD is not present in the address payload, then it has the default value of 0. If the surface state indicates

the Number of Multisamples > 1, then the sample number is the first parameter in the address payload.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 671

Address Parameters Used by Surface Type

SURFACE_STATE Fields Address Payload

Surface Type

Surface

Array

Number of

Multisamples MSAA

U

Address V Address R Address LOD

SURFTYPE_1D disabled Must be

MULTISAMPLECOUNT_1

Never

Present

X pixel

address

(ignored if

present)

(ignored if

present)

Optional

LOD

enabled X pixel

address

array

index

(ignored if

present)

Optional

LOD

SURFTYPE_2D disabled MULTISAMPLECOUNT_1 Never

Present

X pixel

address

Y pixel

address

(ignored if

present)

Optional

LOD

enabled X pixel

address

Y pixel

address

array

index

Optional

LOD

disabled Not

MULTISAMPLECOUNT_1

Sample

Number

X pixel

address

Y pixel

address

(ignored if

present)

Optional

LOD

enabled X pixel

address

Y pixel

address

array

index

Optional

LOD

SURFTYPE_CUBE disabled Must be

MULTISAMPLECOUNT_1

Never

Present

X pixel

address

Y pixel

address

array

index

Optional

LOD

enabled X pixel

address

Y pixel

address

array

index

Optional

LOD

SURFTYPE_3D disabled Must be

MULTISAMPLECOUNT_1

Never

Present

X pixel

address

Y pixel

address

Z pixel

address

Optional

LOD

SURFTYPE_BUFFER disabled Must be

MULTISAMPLECOUNT_1

Never

Present

buffer

index

SURFTYPE_STRBUF disabled buffer

index

byte offset

Programming Note

Context: Addressing 1D, 2D, 3D, CUBE Surfaces

• Vertical stride & Vertical Offset fields of the surface state object are only supported for 2D non-array

surfaces.

• Tile W surfaces must be of format R8_UINT and only support SIMD8.

Surface Formats

Untyped messages allow direct read and write access to untyped surfaces. Untyped surfaces are always

type BUFFER or STRBUF, and are assumed to be surface format RAW.

Typed messages allow direct read and write accesses to typed surfaces. Typed surfaces are of type

SURFTYPE_1D, 2D, 3D, CUBE, or BUFFER and have a supported surface format other than RAW.

Read and write messages for typed surfaces convert the message's data type to/from the selected

surface's format. The conversion rules are listed in a table below. Some surface formats are supported for

672 Doc Ref # IHD-OS-LKF-Vol 9-4.21

typed surface writes but are indirectly supported for typed surface reads. Indirectly supported surface

formats provide the RAW pixel data in UINT formats, which enables software to complete the conversion

to their defined format.

The read conversion of typed surface format to a register data format is always exact. If the destination

precision is less than the source precision, a write conversion from a register data format to a typed

surface format may be rounded, and denormalized or clamped.

Conversion Rules for Typed Surface Dataport Messages

Register

Data Type

Surface

Format

Type

Read Conversion

 (Surface to Register)

Write Conversion

 (Register to Surface)

F32 FLOAT IEEE float conversion. Normalize

denorms if source is narrower. Convert

SNan to QNan quietly.

IEEE float conversion. Round to even and

denormalize if destination is narrower.

Convert SNan to QNan quietly.

F32 SNORM,

UNORM

Convert fixed point to IEEE float Convert IEEE float to fixed point. Round to

even and clamp to min/max if destination is

narrower.

S31 SINT Sign extend MSBs if source is narrower Clamp to min/max if destination is narrower.

U32 UINT Zero extend MSBs if source is narrower Clamp to min/max if destination is narrower.

RAW32 Any 32 bit copy Not supported

RAW16 Any 16 bit copy, zero extend MSBs Not supported

RAW8 Any 8 bit copy, zero extend MSBs Not supported

Typed dataport messages support a subset of all surface state formats. The formats supported by typed

surface reads and writes are listed in the table below. The table shows what values and formats are

returned for the components when read.

Typed surface formats with UINT require the message data in U32 format. Surface formats with SINT

require the message data in S32 format. All other typed surface formats require the message data in

FLOAT32 format. The surface format for the typed atomic integer operations must be R32_UINT or

R32_SINT.

All typed surface formats are supported for writes, as long as the Bits Per Element is a multiple of 8

(byte). This includes all the surface formats excluding SRGB and YCRV formats. The table shows the full

list of supported surface formats for writes.

For typed surface writes where the Surface Format has components that are not byte-aligned, each

shader channel select in the surface state must be set to a unique surface channel (SCS_RED, SCS_GREEN,

SCS_BLUE, SCS_ALPHA) and the value of (SCS_ZERO, SCS_ONE) cannot be selected.

For typed surface writes where the Surface Format has components that are not byte-aligned, all

channels must be enabled for writing.

Reads to an unsupported surface format return undefined results. Writes to an unsupported surface

format have undefined results.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 673

When an out-of-bounds location is read by typed dataport message, a 0 is returned for any component

that is present in the surface format, and the default value is returned for any component that is missing

in the surface format. The default value for missing components is 0 for RGB, and either 1 or 1.0 for A.

Supported Typed Surface Read Formats

Surface Format Encoding

(Hex) Format Name

Bits Per Element

(BPE) Data Returned By Typed Read

 R G B A

000 R32G32B32A32_FLOAT 128 F32 F32 F32 F32

001 R32G32B32A32_SINT 128 S31 S31 S31 S31

002 R32G32B32A32_UINT 128 U32 U32 U32 U32

080 R16G16B16A16_UNORM 64 F32 F32 F32 F32

081 R16G16B16A16_SNORM 64 F32 F32 F32 F32

082 R16G16B16A16_SINT 64 S31 S31 S31 S31

083 R16G16B16A16_UINT 64 U32 U32 U32 U32

084 R16G16B16A16_FLOAT 64 F32 F32 F32 F32

085 R32G32_FLOAT 64 F32 F32 0.0 1.0

086 R32G32_SINT 64 S31 S31 0 1

087 R32G32_UINT 64 U32 U32 0 1

0C0 B8G8R8A8_UNORM 32 RAW32 0 0 1

0C2 R10G10B10A2_UNORM 32 RAW32 0 0 1

0C4 R10G10B10A2_UINT 32 RAW32 0 0 1

0C7 R8G8B8A8_UNORM 32 F32 F32 F32 F32

0C9 R8G8B8A8_SNORM 32 F32 F32 F32 F32

0CA R8G8B8A8_SINT 32 S31 S31 S31 S31

0CB R8G8B8A8_UINT 32 U32 U32 U32 U32

0CC R16G16_UNORM 32 F32 F32 0.0 1.0

0CD R16G16_SNORM 32 F32 F32 0.0 1.0

0CE R16G16_SINT 32 S31 S31 0 1

0CF R16G16_UINT 32 U32 U32 0 1

0D0 R16G16_FLOAT 32 F32 F32 0.0 1.0

0D1 B10G10R10A2_UNORM 32 RAW32 0 0 1

0D3 R11G11B10_FLOAT 32 RAW32 0 0 1

0D6 R32_SINT 32 S31 0 0 1

0D7 R32_UINT 32 U32 0 0 1

0D8 R32_FLOAT 32 F32 0.0 0.0 1.0

100 B5G6R5_UNORM 16 RAW16 0 0 1

102 B5G5R5A1_UNORM 16 RAW16 0 0 1

674 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Surface Format Encoding

(Hex) Format Name

Bits Per Element

(BPE) Data Returned By Typed Read

104 B4G4R4A4_UNORM 16 RAW16 0 0 1

106 R8G8_UNORM 16 F32 F32 0.0 1.0

107 R8G8_SNORM 16 F32 F32 0.0 1.0

108 R8G8_SINT 16 S31 S31 0 1

109 R8G8_UINT 16 U32 U32 0 1

10A R16_UNORM 16 F32 0.0 0.0 1.0

10B R16_SNORM 16 F32 0.0 0.0 1.0

10C R16_SINT 16 S31 0 0 1

10D R16_UINT 16 U32 0 0 1

10E R16_FLOAT 16 F32 0.0 0.0 1.0

11A B5G5R5X1_UNORM 16 RAW16 0 0 1

140 R8_UNORM 8 F32 0.0 0.0 1.0

141 R8_SNORM 8 F32 0.0 0.0 1.0

142 R8_SINT 8 S31 0 0 1

143 R8_UINT 8 U32 0 0 1

144 A8_UNORM 8 0.0 0.0 0.0 F32

Supported Typed Surface Write Formats

Surface Format Encoding

(Hex) Format Name

Bits Per Element

(BPE)

000 R32G32B32A32_FLOAT 128

001 R32G32B32A32_SINT 128

002 R32G32B32A32_UINT 128

080 R16G16B16A16_UNORM 64

081 R16G16B16A16_SNORM 64

082 R16G16B16A16_SINT 64

083 R16G16B16A16_UINT 64

084 R16G16B16A16_FLOAT 64

085 R32G32_FLOAT 64

086 R32G32_SINT 64

087 R32G32_UINT 64

0C0 B8G8R8A8_UNORM 32

0C2 R10G10B10A2_UNORM 32

0C4 R10G10B10A2_UINT 32

0C7 R8G8B8A8_UNORM 32

Doc Ref # IHD-OS-LKF-Vol 9-4.21 675

Surface Format Encoding

(Hex) Format Name

Bits Per Element

(BPE)

0C8 R8G8B8A8_UNORM_SRGB 32

0C9 R8G8B8A8_SNORM 32

0CA R8G8B8A8_SINT 32

0CB R8G8B8A8_UINT 32

0CC R16G16_UNORM 32

0CD R16G16_SNORM 32

0CE R16G16_SINT 32

0CF R16G16_UINT 32

0D0 R16G16_FLOAT 32

0D1 B10G10R10A2_UNORM 32

0D3 R11G11B10_FLOAT 32

0D6 R32_SINT 32

0D7 R32_UINT 32

0D8 R32_FLOAT 32

100 B5G6R5_UNORM 16

102 B5G5R5A1_UNORM 16

104 B4G4R4A4_UNORM 16

106 R8G8_UNORM 16

107 R8G8_SNORM 16

108 R8G8_SINT 16

109 R8G8_UINT 16

10A R16_UNORM 16

10B R16_SNORM 16

10C R16_SINT 16

10D R16_UINT 16

10E R16_FLOAT 16

11A B5G5R5X1_UNORM 16

140 R8_UNORM 8

141 R8_SNORM 8

142 R8_SINT 8

143 R8_UINT 8

144 A8_UNORM 8

676 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Programming Note

Context: Surface Formats

Indirectly supported surface formats are treated as R8_UINT for the 8 BPE formats, R16_UINT for 16 BPE formats,

R32_UINT for 32 BPE formats, and R32G32_UINT for 64 BPE formats. And the Channel Mask for surface write

messages, and the Shader Channel Select fields from the surface state, are interpreted with these same substitute

formats.

Programming Note

Context: Surface Formats

Indirectly supported surface formats are treated as R8_UINT for the 8 BPE formats, R16_UINT for 16 BPE formats,

R32_UINT for 32 BPE formats, and R32G32_UINT for 64 BPE formats. And the Channel Mask for surface

read messages, and the Shader Channel Select fields from the surface state, are interpreted with these same

substitute formats.

Addressing 2D Media Surfaces

Some data port messages operate on rectangular blocks of 2D surfaces using the BTS address model.

These messages are typically used in media image processing. The rectangular block is specified in media

messages as a signed (X, Y) offset from the surface’s origin, and by the block’s width and height.

The rectangular block specified in a media message could be partially (or fully) out-of-bounds of the

surface. Some media data port messages perform pixel replication to supply values for out-of-bounds

pixels. The figure below illustrates how the boundary pixel values are calculated from an in-bounds pixel

value.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 677

Media Surface Boundary Pixel Handling

The addressing of 2D Media surfaces is subset of the generalized surface state addressing model. For

more information, see SURFACE_STATE in the Shared Functions volume and Surface Layout and Tiling

in the GPU Overview volume.

The Vertical Stride and Vertical Stride Offset fields of the surface state object are used for 2D media

surfaces to support interlaced formats in a full frame.

The surface’s tile mode specifies how the 2D surface is laid out in the linear virtual address space. The

figure below illustrates how pixel’s byte address is calculated in a 2D media surface. The table lists how

the surface’s linear virtual address offset A[38:0] is calculated.

678 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Media Surface Addressing

2D Media surfaces can be set up to be compressible using the Memory Compression Enable surface

state field. Some media hardware will write blocks in a compressed format. The media dataport

messages will read those compressed formats and automatically decompress a compressed location

when read. The tag information needed to interpret and decompress data is stored in the memory

region between the surface width and pitch.

Programming Note

Context: Addressing 2D Media Surfaces

If the surface state field Memory Compression Enable is set, then the surface state field Coherency Type must be set

to GPU Coherent (not IA coherent).

Doc Ref # IHD-OS-LKF-Vol 9-4.21 679

Programming Note

Context: Addressing 2D Media Surfaces

Writing a compressible media surface with any dataport message is not supported and produces undefined results.

Reading a compressible media surface using any dataport message other than Media Block Read is not supported

and produces undefined results.

Programming Note

Context: Addressing 2D Media Surfaces

• The surface base address must be 32-byte aligned.

• The surface width must a multiple of DWords.

• Pitch must be a multiple of 64 bytes when the surface is Linear.

• Media block writes to Linear or TileX surfaces must have a height of 16 or less.

• For YUV422 formats, the block width and offset must be pixel pair aligned (i.e. DWord-aligned).

• For media block writes, both X Offset and Block Width must be DWord-aligned.

• The block width and offset must be aligned to the size of pixels stored in the surface. For a surface with 8bpe

pixels for example, the block width and offset can be byte-aligned. For a surface with 16bpe pixels, it is

word-aligned.

2D Media Surface Formats

Media dataport messages allow direct read and write accesses to media surfaces. Media surfaces are only

type SURFTYPE_2D.

Read and write messages for media surfaces never convert the data type of the selected surface's format.

If the media surface state is set up as not compressible, the formats supported are listed in the table

below. Reads or writes to an unsupported surface format have undefined results. The surface format is

only used to determine out-of-bounds pixel replication.

If the media surface state is set up as compressible, then only a small subset of surface state formats are

supported by the media data port message. The formats supported by compressible media surface reads

are listed in the table below. Reads to an unsupported surface format return undefined results. Writes to

a compressible surface format have undefined results. The surface format is used to determine out-of-

bounds pixel replication and to determine compression type.

680 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Supported Media Surface Formats

Surface Format

Encoding (Hex) Format Name

Bits Per

Element(BPE)

Supported Compressible Media

Surface Formats

0C0 B8G8R8A8_UNORM 32 Not supported

0C2 R10G10B10A2_UNORM 32 Not supported

0C4 R10G10B10A2_UINT 32 Not supported

0C7 R8G8B8A8_UNORM 32 Not supported

0C9 R8G8B8A8_SNORM 32 Not supported

0CA R8G8B8A8_SINT 32 Not supported

0CB R8G8B8A8_UINT 32 Not supported

0CC R16G16_UNORM 32 Not supported

0CD R16G16_SNORM 32 Not supported

0CE R16G16_SINT 32 Not supported

0CF R16G16_UINT 32 Not supported

0D0 R16G16_FLOAT 32 Not supported

0D1 B10G10R10A2_UNORM 32 Not supported

0D3 R11G11B10_FLOAT 32 Not supported

0D6 R32_SINT 32 Not supported

0D7 R32_UINT 32 Not supported

0D8 R32_FLOAT 32 Not supported

100 B5G6R5_UNORM 16 Not supported

102 B5G5R5A1_UNORM 16 Not supported

104 B4G4R4A4_UNORM 16 Not supported

106 R8G8_UNORM 16 NV12 (UV 8bpe)

107 R8G8_SNORM 16 Not supported

108 R8G8_SINT 16 Not supported

109 R8G8_UINT 16 NV12 (UV 8bpe)

10A R16_UNORM 16 Y16

10B R16_SNORM 16 Not supported

10C R16_SINT 16 Not supported

10D R16_UINT 16 Y16

10E R16_FLOAT 16 Not supported

113 A16_UNORM 16 Y16

11A B5G5R5X1_UNORM 16 Not supported

140 R8_UNORM 8 NV12 (Y), Y8, IMC1 (YUV), IMC3 (YUV)

141 R8_SNORM 8 Not supported

142 R8_SINT 8 Not supported

Doc Ref # IHD-OS-LKF-Vol 9-4.21 681

Surface Format

Encoding (Hex) Format Name

Bits Per

Element(BPE)

Supported Compressible Media

Surface Formats

143 R8_UINT 8 NV12 (Y), Y8, IMC1 (YUV), IMC3 (YUV)

144 A8_UNORM 8 NV12 (Y), Y8, IMC1 (YUV), IMC3 (YUV)

182 YCRCB_NORMAL 16 YUYV

183 YCRCB_SWAPUVY 16 VYUY

18F YCRCB_SWAPUV 16 YVYU

190 YCRCB_SWAPY 16 UYVY

Slots and Elements

Data Port messages are SIMD operations: a single instruction operating over multiple data operands.

Data operands are addressed either as: consecutive offsets (“elements”), with arbitrary offsets (“slots”), or

in a combination of both slots and elements.

Slots and Elements

Each data port message supports a restricted subset of all possible combinations of slots and elements.

The details of which combinations are supported are listed for each message in the Messages section of

this volume.

The Offset in slots can be in any order and may be duplicates. The data port hardware attempts to

minimize memory accesses and optimize for cache line efficiency. The hardware issues in parallel the

682 Doc Ref # IHD-OS-LKF-Vol 9-4.21

data operations in parallel for each slot and data element pair, up to the limits of the hardware

implementation. Bounds checking is performed independently on each access.

Programming Note

Context: Slots and Elements

Writes to overlapping addresses have undefined write ordering.

For A32 messages, a base address offset is provided in the message header and added to each offset.

The base address offset in the message header is always ignored for BTS, SLM, and A64 messages.

Typed messages always use the BTS address model and can use multiple address components to

calculate the address offset for each slot. The Surface Type determines which address components are

present and how the address offset is calculated.

Base Address Offsets in SIMD

Slots SIMD Name

Location of Slot

Address Offset Description

1 Block Message Header
Message header provides 1 address offset in that is used as the

address offset of a block of data elements.

Untyped blocks use 1 address. Typed blocks such as Media Block use

X/Y coordinates.

2 Dual Block or

SIMD4x2

Address Payload Message address payload provides 2 address offsets which are used

as the base address offset of 2 sets of data elements.

8 SIMD8 Address Payload Message address payload provides 8 address offsets which are used

as the address offset of 8 sets of data.

16 SIMD16 Address Payload
Message address payload provides 16 address offsets which are

used as the address offset of 16 sets of data.

Typed messages process either the upper or lower 8 slots at a time,

so two messages must be used for SIMD16 operations.

Programming Note

Context: Slots and Elements

The current implementation limits the maximum data payload for a message to 256 bytes. Depending on the

number of slots and the data width specified by the operation, some messages restrict the number of elements

supported in a single SIMD operation.

Execution Masks

Every data port message is sent with a 16-bit execution mask. The Execution Mask is used by the data

port to enable the read or write operation on the mask’s corresponding SIMD channel. The channel is

considered active if the mask bit is set.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 683

The execution mask is used to ensure that data associated with an inactive channel are not overwritten in

the GRF (read operations) or memory (write operations).

If all execution masks are clear on the SEND instruction, the send message instruction becomes a noop

and the message is not sent to the data port.

Data port messages have different semantics on how the execution mask controls the read or write

accesses. The table below summarizes the semantics for all the data ports. The details of which semantics

are used by each individual message is described in the Messages section of this volume.

Description of SIMD Execution Mask Semantics

Execution

Mask Name

SIMD Mode

and Data Type How Execution Mask is Used

SM SIMD8 or

SIMD16
For SIMD16, the 16 bits of the execution mask control the 16 SIMD channels.

For SIMD8, the lower 8 bits of the execution mask control the 8 SIMD channels,

and the upper 8 bits of the execution mask are ignored.

SMBLK SIMD8 or

SIMD16 With

Data Elements

For SIMD16, the 16 bits of the execution mask control the 16 SIMD channels.

For SIMD8, the lower 8 bits of the execution mask control the 8 SIMD channels,

and the upper 8 bits of the execution mask are ignored.

If the date elements > 1, then the execution mask bits are reused for the

additional data elements.

SG SIMD8 Slot

Group

Either the lower 8 bits or the upper 8 bits of the execution mask are used to

control the 8 SIMD channels, based on the slot group specified in the message

descriptor.

BLK Block
The lower 8 bits of the execution mask control the first 8 DWords, and the upper

8 bits control the second 8 DWords.

The DWords are accessed if the corresponding DWord’s execution mask bit is set.

If the block is 1 OWord size, then either the lower or upper nibbles of the lower 8

bits control the corresponding DWords in that lower or upper OWord. If the block

is 8 OWords or 16 OWords, then the execution mask bits are reused for the

additional channels.

BLKCM Block with

Channel Mode
The lower 8 bits of the execution mask control the first 8 DWords, and the upper

8 bits control the second 8 DWords.

If the block is 1 OWord size, then either the lower or upper nibbles of the lower 8

bits control the corresponding DWords in that lower or upper OWord. If the block

is 8 OWords or 16 OWords, then the execution mask bits are reused for the

additional blocks.

Ignored Not Used
The execution mask bits are ignored by this message operation. The data is

controlled by other parameters to this message.

684 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Execution

Mask Name

SIMD Mode

and Data Type How Execution Mask is Used

The execution mask bits must be non-zero for the message to be sent to the data

port.

Address Alignment and Data Widths

Data Port messages calculate multiple data operand addresses using offsets from the message’s

common base address. The details of how each message calculates its address is described in the

Messages section.

The address calculations are described using the following notational convention:

(Base + BaseOffset) → DataType[Offset]

This notation refers to the byte-aligned address (Base + BaseOffset), which is used as the address of a

linear array of DataType operands. The Offset is the index into the DataType array with that data width.

Address Calculation

Notation Description

Base
Each Address Model has its own base address source, illustrated in the Surfaces Types

section of this volume.

The Base address is architecturally defined to always be aligned at a valid address boundary

for the message.

The notational convention in this chapter labels this calculated base address the Base.

Buffer, BaseOffset
The offsets from some messages are specified as byte offsets, and others are DWord (or

other DataType) offsets.

Buffer is shorthand for Buffer Base Address offset that is specified in A32 message headers.

The notation in this chapter shows byte offsets as being added to the Base on the left side

of the pointer (→), and the DataType-sized offsets as being indices to the array on the right

of the pointer.

Each message defines the address alignment it operates on. Base address offsets are forced

to be aligned for the message’s DataType by treating any unaligned low address bits as

zero.

For most messages (except media block messages), the Buffer or BaseOffset value is always

an unsigned (positive) value.

B[], W[], DW[],

QW[], OW[], HW[]
The DataType array is a linear array of Bytes (B), Words (W), DWords (DW), QWords (QW),

OWords (OW), or HWords (HW). The index of the array is multiplied by the width of the

data type, to form a byte offset to be added to the base address.

Each message defines the data type it operates on. The array’s byte offset is architecturally

defined to always be aligned at a valid address boundary for the message.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 685

Notation Description

Offset{Slot}, U{Slot},

V{Slot}
Offset{Slot} is shorthand for Offset0, Offset1, … in a SIMD8 or SIMD16 address payload.

U{Slot} and V{Slot} are shorthand for saying U.Offset{Slot} and V.Offset{Slot}, where U and

V are SIMD8 or SIMD16 address payloads.

For most messages (except media block messages), the Offset is always an unsigned

(positive) value.

Elem, Chan
Elem represents the index into an array of consecutive data operands.

Chan represents the 32-bit Red, Green, Blue, or Alpha channels of color item. These values

are sequentially stored in memory as a 4 item DW block.

(Surface[U, V, R,

LOD])
The notation Surface[U, V, R, LOD] refers to a typed surface which, depending on the

surface type, may use the U, V, R, and LOD parameters to calculate the offsets from the

surface’s state base address for the operands.

Bounds Checking and Faulting

Bounds checking is a programming safety feature of the architecture. If a data port access is outside the

boundaries of the surface, that memory operation is dropped before accessing the L3 cache. Out-of-

bounds read operations return zero for the data. Each SIMD memory access is individually checked in a

message operation, so some accesses could be in-bounds and while others are out-of-bounds.

Out-of-bounds checking is always performed at a DWord granularity. If any part of the DWord is out-of-

bounds then the whole DWord is considered out-of-bounds.

The bounds check is performed on the Address Offset portion of the message operation. It is designed

to catch user mode programming mistakes. The bounds check assumes that the surface’s base address is

properly aligned and that the surface’s boundary limits are properly configured by the trusted kernel

mode graphics driver.

The bounds check does not replace the data security features of the page tables (PPGTT). The page

tables are used to protect other memory areas from accesses outside of this program’s memory space.

Virtual memory addresses for data ports are translated through the PPGTT, and follow that translation

table’s faulting model. In all page fault modes, either the fault condition is corrected, and the memory

access is completed, or the entire program is terminated.

Tiled Resources

If a data port access is made to a TRTT Null tile, then that access behaves like an out-of-bounds access.

The bounds checks performed are specific to the address model and surface type of the message. See

the figures in the Surfaces Types section of this volume for more information about the boundary

conditions for the surfaces.

686 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Description of Boundary Check Semantics

Bounds

Check

Address

Model

Surface

Type Description

Surface BTS BUFFER Messages using the BTS address model detect any address offsets that, either

directly or through the offset calculations, exceed the offset size of the buffer as

specified in the SURFACE_STATE. When bounds checks are performed on a BTS

BUFFER, Untyped Messages use the data size of the Surface element as the pitch,

whereas Typed messages use the programmed surface pitch.

Surface BTS STRBUF Messages using the BTS address model detect any U address component that

exceeds the U size of the structured buffer, or a V address component that

exceeds the Pitch of the structured buffer, as specified in the SURFACE_STATE.

Surface BTS 1D, 2D,

3D, CUBE

Messages using the BTS address model detect any U, V, or R address

components that exceed the Width, Height, and Depth sizes of the surface, as

specified in the SURFACE_STATE.

Media BTS 2D Some media-oriented messages using the BTS address model detect X or Y

address components that exceed the Width and Height of the surface, as

specified in the SURFACE_STATE. If a read access is outside of the surface

boundaries, the read access is treated as an in-bounds access and returns the

value of the nearest pixel. Write accesses outside of the surface boundaries are

dropped.

GenState A32 BUFFER Messages using the A32 Stateless address model detect any address offsets that,

either directly or through the offset calculations, exceed the General State Buffer

Size specified in the STATE_BASE_ADDRESS.

 If General State Buffer Size is zero, then any A32 Stateless access is out-of-

bounds.

PTSS A32 BUFFER
Some A32 messages specify a Per Thread Scratch Space Size in their message

header. When that message header is present and Local Thread Checking is

enabled in GT Mode Register, the A32 message detects any address offsets that,

directly or through the offset calculations, exceed the Per Thread Scratch Space

Size.

These A32 messages must additionally perform the GenState boundary check

because the PTSS value is not guaranteed by trusted software to be within the

GenState boundary limits.

Canonical A64 BUFFER
Messages using A64 Stateless address model detect any calculated address

offsets that cross the canonical address boundary as out-of-bounds. Any A64

offsets that are used directly as the byte address without scaling do not require a

bounds check.

Messages using non-A64 address models do not need to check for crossing the

canonical address boundary because their surface and boundaries are assumed

to be properly configured by the graphics driver.

Shared SLM BUFFER
Messages using the SLM address model do not detect any address offsets that,

either directly or through the offset calculations, exceed the SLM memory size.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 687

Bounds

Check

Address

Model

Surface

Type Description

If the SLM memory size is exceeded, the SLM address wraps around in the SLM

memory and is treated as an in-bounds access.

Message Formats

Message operations on data ports are described using five standard parts. The message’s Descriptor is

sent to the target data port on a message sideband bus, and the other four parts are sequentially

transmitted between the data port and EU registers across a message data bus. The total number of

registers sent and received by the data port is provided to the data port on the message sideband bus.

Descriptor Describes the Message Type, the Message Specific Controls, and whether a Message

Header is present. The Message Descriptor and the destination Data Port (SFID) is

encoded as part of the SEND instruction.

Header When present, provides additional Message specific controls. Some messages disallow

(forbid) a Header, some require a Header, and some permit an optional Header to

specify additional non-default-valued parameters.

Address Payload Provides the slot address offsets for those messages that support scattered operations.

Source Payload Provides source data for write operations and atomic operations.

Writeback Payload Returns result data for read operations and for atomic operations.

Most messages do not use (and therefore do not send or receive) all five parts of a message. The specific

message encoded in the Message Descriptor determines which of the other four parts of the message

sequence are present.

The next sections describe all of the supported formats for the Source and Writeback Data Payloads, the

Address Payloads, the Message Descriptors, and their Message Headers.

End of Thread Usage

Read/Write data port messages may not have the End of Thread bit set in the message descriptor other

than the following exceptions:

• The URB Write message may have End of Thread set for threads dispatched by the 3D Geometry

pipe fixed functions.

Message Description Conventions

Message operations with common semantics and limitations are grouped together and described in the

same section. These common characteristics are summarized in the first table in each section:

688 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Common Characteristics of a Message Grouping

Addr

Align

Data

Width R/W

Address

Model Surface Type

SIMD

Slots Data Elements SIMD Address Calculation Bounds Check

Execution

Mask

Although multiple messages are described in the same section, they frequently perform their similar

functions using different data ports, address models, and with different SIMD combinations of slots and

blocks. The second table in each message section lists all the valid combinations of message parameters

and payloads for the messages:

Valid Message Parameters and Payloads

R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

Message Specific

Descriptor

Message

Header

Address

Payload

Source

Payload

Writeback

Payload

Description of Message Summary Tables

Column

Heading Description

Addr Align Specifies the required address alignment of the operation. This can be byte (B), DWord (DW),

QWord (QW), OWord (OW), or HWord (HW). In most cases, the address must be aligned for the

data width of the operation.

Data Width Specifies the width of the data operation. This can be byte (B), DWord (DW), QWord (QW), OWord

(OW), or HWord (OW).

R/W Specifies if the operation is a Read or Write (R or W). Atomic operations that return data are

classified here as reads, and ones that don’t are classified here as writes.

Address Model Specifies the address model used by this message operation: BTS, SLM, A32, or A64. Read-only

data port accesses to the constant cache or sampler cache are labeled “CC BTS” or “SC BTS”.

Surface Type Specifies the supported surface type. See the Surfaces Types section of this volume.

SIMD Slots
In the first table, this summarizes all the SIMD slot configurations supported for this operation and

address model.

In the second table, this specifies the specific SIMD slot configuration supported by the specific

message operation.

Data Elements Specifies all the sizes of data elements supported by the message operation. For blocks, this is the

number of blocks. For surfaces, this is the list of channels that are enabled in the message

descriptor.

SIMD Address

Calculation

Describes the address calculation performed by this message operation. The calculation is usually

related to the others in this section, but the details can change due to the address model used. See

Address Alignment and Data Widths for an explanation of the notation used here.

Bounds Check Specifies the bounds check performed by this message operation. The bounds check is generally

determined by the address model used, but some message change the checking. See Bounds

Checking and Faulting for an explanation of the notation used here.

Execution

Mask

Most message operations perform their operation on a data channel only when the corresponding

execution mask is set. See Execution Masks for an explanation of the notation used here.

Message

Specific

Each data port specifies a unique encoding for its message operations and its parameters. See

Message Specific Descriptors for the full list of specific message descriptors used by the data ports.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 689

Column

Heading Description

Descriptor In each section, all the legal combinations of messages and parameters are listed. In some cases,

there are multiple message operations that perform the same function.

Message

Header

Many messages use a message heder to provide additional parameters to control their operation,

in addition to the parameters in the message descriptor. Each section’s table lists which message

headers are legal to use. See Message Headers for a full list of the message headers that are

supported by all the messages.

Address

Payload

Most messages perform SIMD operations using address offsets for the operation from the address

payload. See Message Address Payloads for a full list of the message address payloads that are

supported by all the messages. Each section’s table lists which message headers are legal to use.

Source

Payload

Write messages and atomic messages generally provide data in a source data payload. See

Message Data Payloads for a full list of the message data payloads that are supported by all the

messages. Each section’s table lists which message source payloads are legal to use.

Writeback

Payload

Read messages generally return data in a writeback data payload. See Message Data Payloads for a

full list of the message data payloads that are supported by all the messages. Each section’s table

lists which message writeback payloads are used.

Messages

The message operations on data ports are described this section. The operations are organized into

subsections by their addressing operation group (blocks, scattered, surfaces, atomic operations), and

then by their data width and type. Each subsection describes the messages that have common semantics

and limitations. (For example, read and write operations are described in the same subsection.)

690 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Summary of Message Groups

Operation

Addr

Align

Data

Width

Address

Model Surface Type

SIMD

Slots

Data

Elements

Bounds

Check

Execution

Mask

Scattered and

Block R/W

 1, 2 1, 2, 4, 8

Byte Scattered

R/W

B B BTS BUFFER, NULL 8, 16 1, 2, 4 Surface SMBLK

B B SLM BUFFER 8, 16 1, 2, 4 Shared SMBLK

B B A32 BUFFER 8, 16 1, 2, 4 PTSS SMBLK

B B A64 BUFFER 8, 16 1, 2, 4 Canonical SMBLK

Byte Scaled R/W B B SLM BUFFER 8, 16 1, 2, 4 Shared SMBLK

DW Scattered R/W DW DW BTS BUFFER, NULL 8, 16 1 Surface SM

DW DW A32 BUFFER 8, 16 1 PTSS SM

DW DW A64 BUFFER 8, 16 1, 2, 4, 8 Canonical SMBLK

QW Scattered R/W QW QW A64 BUFFER 8, 16 1, 2, 4 Canonical SMBLK

OW Block R/W OW OW BTS BUFFER, NULL 1 1, 2, 4, 8 Surface BLK

OW OW SLM BUFFER 1 1, 2, 4, 8 Shared SMBLK

OW OW A32 BUFFER 1 1, 2, 4, 8 PTSS BLK

OW OW A64 BUFFER 1 1, 2, 4, 8 Canonical BLK

OW Aligned Block

R/W

DW OW BTS BUFFER, NULL 1 1, 2, 4, 8 Surface Ignored

DW OW A32 BUFFER 1 1, 2, 4, 8 PTSS Ignored

DW OW A64 BUFFER 1 1, 2, 4, 8 Canonical Ignored

HW Block R/W HW HW A32 BUFFER 1 1, 2, 4, 8 PTSS BLKCM

HW Aligned Block

R/W

HW HW A64 BUFFER 1 1, 2, 4, 8 Canonical BLKCM

Surface R/W 2, 8, 16 1

Scattered Untyped

Surface R/W

DW DW BTS BUFFER, NULL 8, 16 {Chan 1-4} Surface SM

DW DW BTS STRBUF, NULL 8, 16 {Chan 1-4} Surface SM

DW DW SLM BUFFER 8, 16 {Chan 1-4} Shared SM

DW DW A32 BUFFER 8, 16 {Chan 1-4} GenState SM

DW DW A64 BUFFER 8, 16 {Chan 1-4} Canonical SM

Scaled Untyped

Surface R/W

DW DW SLM BUFFER 8, 16 {Chan 1-4} Shared SM

Scattered Typed

Surface R/W

B DW BTS 1D, 2D, 3D,

CUBE, BUFFER,

NULL

8 {Chan 1-4} Surface SG

Scattered MSAA

Typed Surface

R/W

B DW BTS 1D, 2D, 3D,

CUBE, BUFFER,

NULL

8 {Chan 1-4} Surface SG

Atomic Operations 2, 8, 16 1

Doc Ref # IHD-OS-LKF-Vol 9-4.21 691

Operation

Addr

Align

Data

Width

Address

Model Surface Type

SIMD

Slots

Data

Elements

Bounds

Check

Execution

Mask

DW Untyped

Atomic Integer

DW DW BTS BUFFER, NULL 8, 16 1 Surface SM

DW DW BTS STRBUF, NULL 8, 16 1 Surface SM

DW DW SLM BUFFER 8, 16 1 Shared SM

DW DW A32 BUFFER 8, 16 1 GenState SM

DW DW A64 BUFFER 8 1 Canonical SM

QW Untyped

Atomic Integer

QW QW BTS BUFFER, NULL 8, 16 1 Surface SM

QW QW BTS STRBUF, NULL 8, 16 1 Surface SM

QW QW A32 BUFFER 8, 16 1 GenState SM

QW QW A64 BUFFER 8 1 Canonical SM

DW Untyped

Atomic Float

DW DW BTS BUFFER, NULL 8, 16 1 Surface SM

DW DW BTS STRBUF, NULL 8, 16 1 Surface SM

DW DW SLM BUFFER 8, 16 1 Shared SM

DW DW A32 BUFFER 8, 16 1 GenState SM

DW DW A64 BUFFER 8 1 Canonical SM

DW Typed Atomic

Integer

DW DW BTS 1D, 2D, 3D,

CUBE, BUFFER,

NULL

8 1 Surface SG

DW Atomic

Counter

DW DW BTS Any 8 1 Ignored SG

Media Block R/W

Transpose Read DW DW BTS 2D, NULL 1, 2, 4,

8

{1, 2, 4, 8} Media Ignored

Media Block R/W DW DW BTS 2D, NULL 1 Height x

Width

Media Ignored

Others

Read Surface Info B B BTS Any 1 1 Ignored Ignored

Memory Fence N/A N/A N/A N/A N/A N/A Ignored Ignored

Scattered and Block Read/Write Messages

This section lists the read and write messages that support scattered and block accesses of the standard

untyped data: Byte, Word, DWord, QWord, OWords, and HWords.

692 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Byte Scattered ReadWrite Messages

Addr

Align

Data

Width R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

SIMD Address

Calculation

Bounds

Check

Execution

Mask

B B R/W BTS BUFFER,

NULL

8, 16 1, 2, 4 (Base + GlobalOffset +

Offset{Slot})→B[Elem]

Surface SMBLK

B B R/W SLM BUFFER 8, 16 1, 2, 4 (Base +

Offset{Slot})→B[Elem]

Shared SMBLK

B B R/W A32 BUFFER 8, 16 1, 2, 4 (Base + Buffer +

GlobalOffset +

Offset{Slot})→B[Elem]

PTSS SMBLK

B B R/W A64 BUFFER 8, 16 1, 2, 4 (0 + Offset{Slot})→B[Elem] Canonical SMBLK

This message reads or writes 8 or 16 scattered and possibly misaligned Bytes, Words, or DWords, starting

at each Offset. The offsets are byte-aligned. The Global Offset is added to each of the specific offsets

when the message header is present.

A BTS surface is interpreted as a RAW BUFFER regardless of the surface format. The pitch is 1 byte and

data is returned from the buffer to the GRF without format conversion.

For BTS addressing model, the Surface Base Address must be DW aligned.

The execution mask bits may disable accesses on the corresponding SIMD slots. Out-of-bounds accesses

are dropped or return zero. The semantics depend on the address model, as listed in the above table.

Applications:

• Byte aligned buffer accesses in programmable shaders

R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

Message Specific

Descriptor

Message

Header Address Payload Source Payload

Writeback

Payload

R BTS BUFFER,

NULL

SIMD8 {1, 2, 4} MSD0R_BS {Opt}

MH_BTS_GO

MAP32B_SIMD8 {Forbidden} {1, 1, 1}

MDP_DW_SIMD8

W BTS BUFFER,

NULL

SIMD8 {1, 2, 4} MSD0W_BS {Opt}

MH_BTS_GO

MAP32B_SIMD8 {1, 1, 1}

MDP_DW_SIMD8

{Forbidden}

R BTS BUFFER,

NULL

SIMD16 {1, 2, 4} MSD0R_BS {Opt}

MH_BTS_GO

MAP32B_SIMD16 {Forbidden} {1, 1, 1}

MDP_DW_SIMD16

W BTS BUFFER,

NULL

SIMD16 {1, 2, 4} MSD0W_BS {Opt}

MH_BTS_GO

MAP32B_SIMD16 {1, 1, 1}

MDP_DW_SIMD16

{Forbidden}

R SLM BUFFER SIMD8 {1, 2, 4} MSD0R_BS {Forbidden} MAP32B_SIMD8 {Forbidden} {1, 1, 1}

MDP_DW_SIMD8

W SLM BUFFER SIMD8 {1, 2, 4} MSD0W_BS {Forbidden} MAP32B_SIMD8 {1, 1, 1}

MDP_DW_SIMD8

{Forbidden}

R SLM BUFFER SIMD16 {1, 2, 4} MSD0R_BS {Forbidden} MAP32B_SIMD16 {Forbidden} {1, 1, 1}

MDP_DW_SIMD16

W SLM BUFFER SIMD16 {1, 2, 4} MSD0W_BS {Forbidden} MAP32B_SIMD16 {1, 1, 1}

MDP_DW_SIMD16

{Forbidden}

R A32 BUFFER SIMD8 {1, 2, 4} MSD0R_BS {Opt}

MH_A32_GO

MAP32B_SIMD8 {Forbidden} {1, 1, 1}

MDP_DW_SIMD8

W A32 BUFFER SIMD8 {1, 2, 4} MSD0W_BS {Opt}

MH_A32_GO

MAP32B_SIMD8 {1, 1, 1}

MDP_DW_SIMD8

{Forbidden}

Doc Ref # IHD-OS-LKF-Vol 9-4.21 693

R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

Message Specific

Descriptor

Message

Header Address Payload Source Payload

Writeback

Payload

R A32 BUFFER SIMD16 {1, 2, 4} MSD0R_BS {Opt}

MH_A32_GO

MAP32B_SIMD16 {Forbidden} {1, 1, 1}

MDP_DW_SIMD16

W A32 BUFFER SIMD16 {1, 2, 4} MSD0W_BS {Opt}

MH_A32_GO

MAP32B_SIMD16 {1, 1, 1}

MDP_DW_SIMD16

{Forbidden}

R A64 BUFFER SIMD8 {1, 2, 4} MSD1R_A64_BS {Forbidden} MAP64B_SIMD8 {Forbidden} {1, 1, 1}

MDP_DW_SIMD8

W A64 BUFFER SIMD8 {1, 2, 4} MSD1W_A64_BS {Forbidden} MAP64B_SIMD8 {1, 1, 1}

MDP_DW_SIMD8

{Forbidden}

R A64 BUFFER SIMD16 {1, 2, 4} MSD1R_A64_BS {Forbidden} MAP64B_SIMD16 {Forbidden} {1, 1, 1}

MDP_DW_SIMD16

W A64 BUFFER SIMD16 {1, 2, 4} MSD1W_A64_BS {Forbidden} MAP64B_SIMD16 {1, 1, 1}

MDP_DW_SIMD16

{Forbidden}

Programming Note

Context: Byte Scattered ReadWrite Messages

While the hardware does check for and optimize for cases where offsets are equal or contiguous, for optimal

performance in some cases an aligned message with aligned data offsets may provide higher performance.

Programming Note

Context: Byte Scattered ReadWrite Messages

For bounds checking the byte scattered read and write messages, the buffer size must be a multiple of 4 bytes.

Byte Scaled Read/Write Messages

Addr

Align

Data

Width R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements SIMD Address Calculation

Bounds

Check

Execution

Mask

B B R/W SLM BUFFER 8, 16 1, 2, 4 (Base + Sideband + (Offset{Slot} *

(Pitch+1)))→B[Elem]

Shared SMBLK

This message reads or writes 8 or 16 scattered and possibly misaligned Bytes, Words, or DWords, starting

at each Offset. The offsets are scaled by the Pitch. The Global Offset is added to each of the specific

offsets when the message header is present. The surface format is ignored, data is returned from the

buffer to the GRF without format conversion.

694 Doc Ref # IHD-OS-LKF-Vol 9-4.21

The execution mask bits may disable accesses on the corresponding SIMD slots. Out-of-bounds accesses

are dropped or return zero. The semantics depend on the address model, as listed in the above table.

R/

W

Addres

s

Model

Surfac

e Type

SIMD

Slots

Data

Element

s

Message

Specific

Descriptor

Message

Header

Address

Payload Source Payload

Writeback

Payload

R SLM BUFFER SIMD8 {1, 2, 4} MSD2R_BS {Forbidden

}

MAP32B_SIMD8 {Forbidden} {1, 1, 1}

MDP_DW_SIMD8

W SLM BUFFER SIMD8 {1, 2, 4} MSD2W_B
S

{Forbidden

}

MAP32B_SIMD8 {1, 1, 1}

MDP_DW_SIMD8

{Forbidden}

R SLM BUFFER SIMD1

6

{1, 2, 4} MSD2R_BS {Forbidden

}

MAP32B_SIMD1
6

{Forbidden} {1, 1, 1}

MDP_DW_SIMD1
6

W SLM BUFFER SIMD1

6

{1, 2, 4} MSD2W_B
S

{Forbidden

}

MAP32B_SIMD1
6

{1, 1, 1}

MDP_DW_SIMD1
6

{Forbidden}

Programming Note

Context: Byte Scaled Read/Write Messages

For byte scattered read and write the buffer size must be a multiple of 4 bytes.

DWord Scattered Read/Write Messages

Add

r

Alig

n

Data

Widt

h

R/

W

Addres

s

Model

Surface

Type

SIM

D

Slots

Data

Element

s SIMD Address Calculation

Bounds

Check

Executio

n Mask

DW DW R/W BTS BUFFER,NUL

L

8, 16 1 Base→DW[GlobalOffset+Offset{Slot}+0] Surface SM

DW DW R/W A32 BUFFER 8, 16 1 (Base+Buffer)→DW[GlobalOffset+Offset{Slot}

+0]

PTSS SM

DW DW R/W A64 BUFFER 8, 16 1, 2, 4, 8 (0+Offset{Slot})→DW[Elem] Canonic

al

SMBLK

This message reads or writes 8 or 16 scattered DWords starting at each offset. The Global Offset is

added to each of the specific offsets when it is provided in the message header.

A BTS surface is interpreted as a RAW BUFFER regardless of the surface format. The pitch is 1 byte and

data is returned from the buffer to the GRF without format conversion.

For BTS addressing model, the Surface Base Address must be DW aligned.

The execution mask bits may disable accesses on the corresponding SIMD slots. Out-of-bounds accesses

are dropped or return zero. The semantics depend on the address model, as listed in the above table.

Applications:

• SIMD8/16 constant buffer reads where the indices of each pixel are different (read one channel per

message)

Doc Ref # IHD-OS-LKF-Vol 9-4.21 695

• SIMD8/16 scratch space reads/writes where the indices are different (read/write one channel per

message)

• General purpose DWord scatter/gathering, used by media

R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

Message Specific

Descriptor

Message

Header Address Payload Source Payload Writeback Payload

R BTS BUFFER,NULL SIMD8 1 MSD0R_DWS {Opt}

MH_BTS_GO

MAP32B_SIMD8 {Forbidden} MDP_DW_SIMD8

W BTS BUFFER,NULL SIMD8 1 MSD0W_DWS {Opt}

MH_BTS_GO

MAP32B_SIMD8 MDP_DW_SIMD8 {Forbidden}

R BTS BUFFER,NULL SIMD16 1 MSD0R_DWS {Opt}

MH_BTS_GO

MAP32B_SIMD16 {Forbidden} MDP_DW_SIMD16

W BTS BUFFER,NULL SIMD16 1 MSD0W_DWS {Opt}

MH_BTS_GO

MAP32B_SIMD16 MDP_DW_SIMD16 {Forbidden}

R A32 BUFFER SIMD8 1 MSD0R_DWS {Opt}

MH_A32_GO

MAP32B_SIMD8 {Forbidden} MDP_DW_SIMD8

W A32 BUFFER SIMD8 1 MSD0W_DWS {Opt}

MH_A32_GO

MAP32B_SIMD8 MDP_DW_SIMD8 {Forbidden}

R A32 BUFFER SIMD16 1 MSD0R_DWS {Opt}

MH_A32_GO

MAP32B_SIMD16 {Forbidden} MDP_DW_SIMD16

W A32 BUFFER SIMD16 1 MSD0W_DWS {Opt}

MH_A32_GO

MAP32B_SIMD16 MDP_DW_SIMD16 {Forbidden}

R A64 BUFFER SIMD8 {1, 2, 4, 8} MSD1R_A64_DWS {Forbidden} MAP64B_SIMD8 {Forbidden} {1, 2, 4, 8}

MDP_DW_SIMD8

W A64 BUFFER SIMD8 {1, 2, 4, 8} MSD1W_A64_DWS {Forbidden} MAP64B_SIMD8 {1, 2, 4, 8}

MDP_DW_SIMD8

{Forbidden}

R A64 BUFFER SIMD16 {1, 2, 4} MSD1R_A64_DWS {Forbidden} MAP64B_SIMD16 {Forbidden} {1, 2, 4}

MDP_DW_SIMD16

W A64 BUFFER SIMD16 {1, 2, 4} MSD1W_A64_DWS {Forbidden} MAP64B_SIMD16 {1, 2, 4}

MDP_DW_SIMD16

{Forbidden}

R CC BTS BUFFER,NULL SIMD8 1 MSD_CC_DWS {Opt}

MH_BTS_GO

MAP32B_SIMD8 {Forbidden} MDP_DW_SIMD8

R CC BTS BUFFER,NULL SIMD16 1 MSD_CC_DWS {Opt}

MH_BTS_GO

MAP32B_SIMD16 {Forbidden} MDP_DW_SIMD16

Programming Note

Context: DWord Scattered Read/Write Messages

For BTS and A32 address models, the offsets in the address payload must in the range 0 - 3FFFFFFFh. If the upper 2

bits are non-zero, the result is undefined.

QWord Scattered Read/Write Messages

Addr

Align

Data

Width R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

SIMD Address

Calculation

Bounds

Check

Execution

Mask

QW QW R/W A64 BUFFER 8, 16 1, 2, 4 (0+Offset{Slot})→QW[Elem] Canonical SMBLK

This message reads or writes 8 or 16 scattered QWords starting at each offset. The Global Offset is

added to each of the specific offsets when it is provided in the message header.

A BTS surface is interpreted as a RAW BUFFER regardless of the surface format. The pitch is 1 byte and

data is returned from the buffer to the GRF without format conversion.

For BTS addressing model, the Surface Base Address must be QW aligned.

696 Doc Ref # IHD-OS-LKF-Vol 9-4.21

The execution mask bits may disable accesses on the corresponding SIMD slots. Out-of-bounds accesses

are dropped or return zero. The semantics depend on the address model, as listed in the above table.

Applications:

SIMD8/16 writes where the indices differ (write one channel per message).

General purpose QWord scatter/gathering, used by double precision compute.

R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

Message Specific

Descriptor

Message

Header Address Payload Source Payload

Writeback

Payload

R A64 BUFFER SIMD8 {1, 2, 4} MSD1R_A64_QWS {Forbidden} MAP64B_SIMD8 {Forbidden} {1, 2, 4}

MDP_QW_SIMD8

W A64 BUFFER SIMD8 {1, 2, 4} MSD1W_A64_QWS {Forbidden} MAP64B_SIMD8 {1, 2, 4}

MDP_QW_SIMD8

{Forbidden}

R A64 BUFFER SIMD16 {1, 2} MSD1R_A64_QWS {Forbidden} MAP64B_SIMD16 {Forbidden} {1, 2}

MDP_QW_SIMD16

W A64 BUFFER SIMD16 {1, 2} MSD1W_A64_QWS {Forbidden} MAP64B_SIMD16 {1, 2}

MDP_QW_SIMD16

{Forbidden}

OWord Block Read/Write Messages

Addr

Align

Data

Width R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements SIMD Address Calculation

Bounds

Check

Execution

Mask

OW OW R/W BTS BUFFER,NULL 1 1, 2, 4, 8 Base→OW[GlobalOffset+Elem] Surface BLK

OW OW R/W SLM BUFFER 1 1, 2, 4, 8 Base→OW[GlobalOffset+Elem] Shared BLK

OW OW R/W A32 BUFFER 1 1, 2, 4, 8 (Base+Buffer)→OW[GlobalOffset+Elem] PTSS BLK

OW OW R/W A64 BUFFER 1 1, 2, 4, 8 (Base+BlockOffset0)→OW[Elem] Canonical BLK

This message takes one offset (Global Offset), and reads or writes 1, 2, 4, or 8 contiguous OWords

starting at that offset.

A BTS surface is interpreted as a RAW BUFFER regardless of the surface format, and the Surface Base

Address must be OW aligned.

For BUFFER accesses, the pitch is 1 byte and data is returned from the buffer to the GRF without format

conversion.

For SCRATCH accesses, the pitch is from the surface state and the data is returned from the buffer to the

GRF without format conversion.

The execution mask bits may disable accesses on the corresponding blocks. Out-of-bounds accesses are

dropped or return zero. The semantics depend on the address model, as listed in the above table.

Applications:

• Constant buffer reads of a single constant or multiple contiguous constants.

• Scratch space reads/writes.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 697

R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

Message Specific

Descriptor

Message

Header

Address

Payload Source Payload

Writeback

Payload

R BTS BUFFER,NULL 1 {1, 2, 4, 8} MSD0R_OWB MH_BTS_GO {Forbidden} {Forbidden} MDP_OW1L,

MDP_OW1U,

MDP_OW2,

MDP_OW4

W BTS BUFFER,NULL 1 {1, 2, 4, 8} MSD0W_OWB MH_BTS_GO {Forbidden} MDP_OW1L,

MDP_OW1U,

MDP_OW2,

MDP_OW4

R SLM BUFFER 1 {1, 2, 4, 8} MSD0R_OWB MH_SLM_GO {Forbidden} {Forbidden} MDP_OW1L,

MDP_OW1U,

MDP_OW2,

MDP_OW4

W SLM BUFFER 1 {1, 2, 4, 8} MSD0W_OWB MH_SLM_GO {Forbidden} MDP_OW1L,

MDP_OW1U,

MDP_OW2,

MDP_OW4

R A32 BUFFER 1 {1, 2, 4, 8} MSD0R_OWB MH_A32_GO {Forbidden} {Forbidden} MDP_OW1L,

MDP_OW1U,

MDP_OW2,

MDP_OW4

W A32 BUFFER 1 {1, 2, 4, 8} MSD0W_OWB MH_A32_GO {Forbidden} MDP_OW1L,

MDP_OW1U,

MDP_OW2,

MDP_OW4

R A64 BUFFER 1 {1, 2, 4, 8} MSD1R_A64_OWB MH_A64_OWB {Forbidden} {Forbidden} MDP_OW1L,

MDP_OW1U,

MDP_OW2,

MDP_OW4

W A64 BUFFER 1 {1, 2, 4, 8} MSD1W_A64_OWB MH_A64_OWB {Forbidden} MDP_OW1L,

MDP_OW1U,

MDP_OW2,

MDP_OW4

R CC BTS BUFFER,NULL 1 {1, 2, 4, 8} MSD_CC_OWB MH_BTS_GO {Forbidden} {Forbidden} MDP_OW1L,

MDP_OW1U,

MDP_OW2,

MDP_OW4

For the one-constant case, either the high or low half of the payload register is used depending on the

half selected in Block Size, and the other half of the payload register is ignored.

Programming Note

Context: OWord Block Read/Write Messages

For the BTS and A32 address models, the offsets in the address payload must be in the range 0 - 0FFFFFFFh. If the

upper 4 bits are non-zero, the result is undefined.

698 Doc Ref # IHD-OS-LKF-Vol 9-4.21

OWord Aligned Block Read/Write Messages

Addr

Align

Data

Width R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements SIMD Address Calculation

Bounds

Check

Execution

Mask

DW OW R BTS BUFFER,

NULL

1 1, 2, 4, 8 (Base+GlobalOffset)→OW[Elem] Surface Ignored

DW OW R A32 BUFFER 1 1, 2, 4, 8 (Base+Buffer+GlobalOffset)→OW[Elem] PTSS Ignored

DW OW R A64 BUFFER 1 1, 2, 4, 8 (0+BlockOffset0)→OW[Elem] Canonical Ignored

Functional Description

This message takes one DWord-aligned offset (Global Offset), and reads 1, 2, 4, or 8 contiguous OWords starting at

that offset.

A BTS surface is interpreted as a RAW BUFFER regardless of the surface format.

For BTS BUFFER accesses, the pitch is 1 byte and data is returned from the buffer to the GRF without

format conversion.

For BTS SCRATCH accesses, the pitch is from the surface state and data is returned from the buffer to the

GRF without format conversion.

For BTS address mode, the Surface Base Address must be DW aligned.

This message is identical to the OWord Block Read/Write message except the offset alignment. The

Global Offset is specified in bytes, and must be aligned to the Addr Align entry in table.

The execution mask is ignored for this message. Out-of-bounds accesses are dropped or return zero.

Applications:

Block accesses directly using a byte offset instead of an Oword index.

R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

Message Specific

Descriptor

Message

Header

Address

Payload

Source

Payload

Writeback

Payload

R BTS BUFFER,NULL 1 {1, 2, 4, 8} MSD0R_OWAB MH_BTS_GO {Forbidden} {Forbidden} MDP_OW1L,

MDP_OW1U,

MDP_OW2,

MDP_OW4

R SLM BUFFER 1 {1, 2, 4, 8} MSD0R_OWAB MH_SLM_GO {Forbidden} {Forbidden} MDP_OW1L,

MDP_OW1U,

MDP_OW2,

MDP_OW4

R A32 BUFFER 1 {1, 2, 4, 8} MSD0R_OWAB MH_A32_GO {Forbidden} {Forbidden} MDP_OW1L,

MDP_OW1U,

MDP_OW2,

MDP_OW4

R A64 BUFFER 1 {1, 2, 4, 8} MSD1R_A64_OWAB MH_A64_OWB {Forbidden} {Forbidden} MDP_OW1L,

MDP_OW1U,

MDP_OW2,

MDP_OW4

R CC BTS BUFFER,NULL 1 {1, 2, 4, 8} MSD_CC_OWAB MH_BTS_GO {Forbidden} {Forbidden} MDP_OW1L,

MDP_OW1U,

MDP_OW2,

MDP_OW4

Doc Ref # IHD-OS-LKF-Vol 9-4.21 699

R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

Message Specific

Descriptor

Message

Header

Address

Payload

Source

Payload

Writeback

Payload

R SC BTS BUFFER,NULL 1 {1, 2, 4, 8} MSD_SC_OWAB MH_BTS_GO {Forbidden} {Forbidden} MDP_OW1L,

MDP_OW1U,

MDP_OW2,

MDP_OW4

Programming Note

For read/write cache, only the read path supports the unaligned OWord Block access.

HWord Scratch Block Read/Write Messages

Addr

Align

Data

Width R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements SIMD Address Calculation

Bounds

Check

Execution

Mask

HW HW R/W A32 BUFFER 1 1, 2, 4, 8 (Base+Buffer)→HW[SB_Offset+Elem] PTSS BLKCM

This message performs a read or write operation of between 1 and 8 registers to an HWord-aligned

offset. The required message header payload matches the thread payload R0.

The execution mask bits may disable accesses on the corresponding blocks. Out-of-bounds accesses are

dropped or return zero.

Applications:

Scratch space reads/writes for register spill/fill operations.

R/

W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

Message

Specific

Descriptor

Message

Header

Address

Payload Source Payload Writeback Payload

R A32 BUFFER 1 {1, 2, 4, 8} MSD0R_SB MH_A32_H
WB

{Forbidden} {Forbidden} MDP_HW1, MDP_HW2,

 MDP_HW4, MDP_HW8

W A32 BUFFER 1 {1, 2, 4, 8} MSD0W_SB MH_A32_H
WB

{Forbidden} MDP_HW1, MDP_H

W2, MDP_HW4, M
DP_HW8

{Forbidden}

Channel Mode Interpretation

Channel-enable interpretation is fixed (not programmable):

• DWord, which supports a SIMD8 or SIMD16 DWord channel-serial view of a

register

Programming Note

For the MSD0R_SB and MSD0W_SB messages, the HWord offset into the A32 memory is provided in the message

descriptor and communicated to the data port on the Sideband. This allows a single instruction read or write block

operation in a single source instruction. The message descriptor provides 12 bits for the HWord offset, allowing

addressing of 4K HWord locations (128KB) based from the A32 general state base address.

Scratch Block messages are always used inside a thread's local scratch space, and they are assumed to be non-

700 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Programming Note

coherent memory accesses (MDC_STATELESS A32_A64_NC).

HWord Aligned Block Read/Write Messages

Addr

Align

Data

Width R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements SIMD Address Calculation

Bounds

Check

Execution

Mask

DW HW R/W A64 BUFFER 1 1, 2, 4, 8 (0+BlockOffset0)→HW[Elem] Canonical BLKCM

Functional Description

This message takes one DWord-aligned offset (Global Offset), and reads 1, 2, 4, or 8 contiguous HWords starting at

that offset.

A BTS surface is interpreted as a RAW BUFFER regardless of the surface format.

For BTS BUFFER accesses, the pitch is 1 byte and data is returned from the buffer to the GRF without

format conversion.

For BTS SCRATCH accesses, the pitch is from the surface state and data is returned from the buffer to the

GRF without format conversion.

This message is identical to the HWord Block message except the offset alignment. The Global Offset is

specified in bytes, and must be aligned to the Addr Align entry in the table.

The execution mask is ignored for this message. Out-of-bounds accesses are dropped or return zero.

Applications:

Block accesses directly using a byte offset instead of an Hword index.

R/

W

Address

Model Surface Type

SIMD

Slots

Data

Elements

Message

Specific

Descriptor

Message

Header

Address

Payload

Source

Payload Writeback Payload

R BTS BUFFER,NULL 1 {1, 2, 4, 8} MH_SLM_GO {Forbidden} {Forbidden} MDP_HW1, MDP_HW2,

MDP_HW4, MDP_HW8

R BTS SCRATCH,NULL 1 {1, 2, 4, 8} MH_SLM_GO {Forbidden} {Forbidden} MDP_HW1, MDP_HW2,

MDP_HW4, MDP_HW8

R SLM BUFFER 1 {1, 2, 4, 8} MH_SLM_GO {Forbidden} {Forbidden} MDP_HW1, MDP_HW2,

MDP_HW4, MDP_HW8

R A32 BUFFER 1 {1, 2, 4, 8} MH_A32_GO {Forbidden} {Forbidden} MDP_HW1, MDP_HW2,

MDP_HW4, MDP_HW8

R A64 BUFFER 1 {1, 2, 4, 8} MSD1R_A64_H
WB

MH_A64_HWB {Forbidden} {Forbidden} MDP_HW1, MDP_HW2,

MDP_HW4, MDP_HW8

W A64 BUFFER 1 {1, 2, 4, 8} MSD1W_A64_H
WB

MH_A64_HWB {Forbidden} MDP_HW1, MD

P_HW2, MDP_

HW4, MDP_H
W8

Channel Mode Interpretation

Channel-enable interpretation is fixed (not programmable):

• DWord, which supports a SIMD8 or SIMD16 DWord channel-serial view of a register

Doc Ref # IHD-OS-LKF-Vol 9-4.21 701

Surface ReadWrite Messages

The surface read and write messages allow direct read/write accesses to untyped and typed surfaces.

Untyped surfaces are either SURFTYPE_BUFFER (format RAW, pitch 1) or SURFTYPE_STRBUF (format RAW,

pitch from the surface state). SLM and Stateless messages are always untyped BUFFER accesses.

Typed surfaces are 1D, 2D, 3D, CUBE, or BUFFER types. The surface state specifies all the

parameters.There are some limitations on what typed data surface formats are supported by data ports;

see the specific messages and Surfaces Types for more details.

Untyped Surface ReadWrite Messages

Addr

Align

Data

Width R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements SIMD Address Calculation

Bounds

Check

Execution

Mask

DW DW R/W BTS BUFFER,NULL 8, 16 {Chan 1-4} (Base+U{Slot})→DW[Chan] Surface SM

DW DW R/W BTS STRBUF,NULL 8, 16 {Chan 1-4} (Base+(U{Slot}*Pitch)+V{Slot})→DW[Chan] Surface SM

DW DW R/W SLM BUFFER 8, 16 {Chan 1-4} (Base+U{Slot})→DW[Chan] Shared SM

DW DW R/W A32 BUFFER 8, 16 {Chan 1-4} (Base+Buffer+U{Slot})→DW[Chan] GenState SM

DW DW R/W A64 BUFFER 8, 16 {Chan 1-4} (0+U{Slot})→DW[Chan] Canonical SM

This message allows direct read/write accesses to untyped surfaces using 8 or 16 offsets. Up to 4 DWords

are accessed beginning at the byte addresses determined. These 4 DWords correspond to the red, green,

blue, and alpha channels, in that order and with red mapping to the lowest order DWord.

For BUFFER accesses, if the U offset is not DWord-aligned, the results are undefined.

For STRBUF accesses, after the U offset and the scaling pitch, the byte offset must be DWord-aligned.

For BTS addressing model, the Surface Base Address must be DW aligned.

The execution mask bits may disable accesses on the corresponding SIMD slots. Out-of-bounds accesses

are dropped or return zero. The semantics depend on the address model, as listed in the above table.

R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

Message Specific

Descriptor

Message

Header Address Payload Source Payload Writeback Payload

R BTS BUFFER,NULL SIMD8 {Chan 1-4} MSD1R_US {Forbidden} MAP32b_USU_SIMD8 {Forbidden} {Chan1-4}

MDP_DW_SIMD8

W BTS BUFFER,NULL SIMD8 {Chan 1-4} MSD1W_US {Forbidden} MAP32b_USU_SIMD8 {Chan1-4}

MDP_DW_SIMD8

{Forbidden}

R BTS BUFFER,NULL SIMD16 {Chan 1-4} MSD1R_US {Forbidden} MAP32b_USU_SIMD16 {Forbidden} {Chan1-4}

MDP_DW_SIMD16

W BTS BUFFER,NULL SIMD16 {Chan 1-4} MSD1W_US {Forbidden} MAP32b_USU_SIMD16 {Chan1-4}

MDP_DW_SIMD16

{Forbidden}

R BTS STRBUF,NULL SIMD8 {Chan 1-4} MSD1R_US {Forbidden} MAP32b_USUV_SIMD8 {Forbidden} {Chan1-4}

MDP_DW_SIMD8

W BTS STRBUF,NULL SIMD8 {Chan 1-4} MSD1R_US {Forbidden} MAP32b_USUV_SIMD8 {Chan1-4}

MDP_DW_SIMD8

{Forbidden}

R BTS STRBUF,NULL SIMD16 {Chan 1-4} MSD1W_US {Forbidden} MAP32b_USUV_SIMD16 {Forbidden} {Chan1-4}

MDP_DW_SIMD16

W BTS STRBUF,NULL SIMD16 {Chan 1-4} MSD1W_US {Forbidden} MAP32b_USUV_SIMD16 {Chan1-4}

MDP_DW_SIMD16

{Forbidden}

R SLM BUFFER SIMD8 {Chan 1-4} MSD1R_US {Forbidden} MAP32b_USU_SIMD8 {Forbidden} {Chan1-4}

MDP_DW_SIMD8

W SLM BUFFER SIMD8 {Chan 1-4} MSD1W_US {Forbidden} MAP32b_USU_SIMD8 {Chan1-4}

MDP_DW_SIMD8

{Forbidden}

702 Doc Ref # IHD-OS-LKF-Vol 9-4.21

R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

Message Specific

Descriptor

Message

Header Address Payload Source Payload Writeback Payload

R SLM BUFFER SIMD8 {Chan 1-4} MSD2R_US {Forbidden} MAP32b_USU_SIMD8 {Forbidden} {Chan1-4}

MDP_DW_SIMD8

W SLM BUFFER SIMD8 {Chan 1-4} MSD2W_US {Forbidden} MAP32b_USU_SIMD8 {Chan1-4}

MDP_DW_SIMD8

{Forbidden}

R SLM BUFFER SIMD16 {Chan 1-4} MSD1R_US {Forbidden} MAP32b_USU_SIMD16 {Forbidden} {Chan1-4}

MDP_DW_SIMD16

W SLM BUFFER SIMD16 {Chan 1-4} MSD1W_US {Forbidden} MAP32b_USU_SIMD16 {Chan1-4}

MDP_DW_SIMD16

{Forbidden}

R SLM BUFFER SIMD16 {Chan 1-4} MSD2R_US {Forbidden} MAP32b_USU_SIMD16 {Forbidden} {Chan1-4}

MDP_DW_SIMD16

W SLM BUFFER SIMD16 {Chan 1-4} MSD2W_US {Forbidden} MAP32b_USU_SIMD16 {Chan1-4}

MDP_DW_SIMD16

{Forbidden}

R A32 BUFFER SIMD8 {Chan 1-4} MSD1R_US {Opt}

MH1_A32

MAP32b_USU_SIMD8 {Forbidden} {Chan1-4}

MDP_DW_SIMD8

W A32 BUFFER SIMD8 {Chan 1-4} MSD1W_US {Opt}

MH1_A32

MAP32b_USU_SIMD8 {Chan1-4}

MDP_DW_SIMD8

{Forbidden}

R A32 BUFFER SIMD16 {Chan 1-4} MSD1R_US {Opt}

MH1_A32

MAP32b_USU_SIMD16 {Forbidden} {Chan1-4}

MDP_DW_SIMD16

W A32 BUFFER SIMD16 {Chan 1-4} MSD1W_US {Opt}

MH1_A32

MAP32b_USU_SIMD16 {Chan1-4}

MDP_DW_SIMD16

{Forbidden}

R A64 BUFFER SIMD8 {Chan 1-4} MSD1R_A64_US {Forbidden} MAP64b_USU_SIMD8 {Forbidden} {Chan1-4}

MDP_DW_SIMD8

W A64 BUFFER SIMD8 {Chan 1-4} MSD1W_A64_US {Forbidden} MAP64b_USU_SIMD8 {Chan1-4}

MDP_DW_SIMD8

{Forbidden}

R A64 BUFFER SIMD16 {Chan 1-4} MSD1R_A64_US {Forbidden} MAP64b_USU_SIMD16 {Forbidden} {Chan1-4}

MDP_DW_SIMD16

W A64 BUFFER SIMD16 {Chan 1-4} MSD1W_A64_US {Forbidden} MAP64b_USU_SIMD16 {Chan1-4}

MDP_DW_SIMD16

{Forbidden}

The number of message registers in the write data payload is determined by the number of channel

mask bits that are enabled.

The Channel Mask in the message descriptor identifies whether the corresponding channel access is

disabled. For BTS surfaces, the surface state Shader Channel Select fields identify whether the channels

are swizzled for the access.

Scaled Untyped Surface Read/Write Messages

Addr

Alig

n

Data

Widt

h

R/

W

Addres

s

Model

Surfac

e Type

SIM

D

Slots

Data

Element

s SIMD Address Calculation

Bound

s

Check

Executio

n Mask

DW DW R/W SLM BUFFER 8, 16 {Chan 1-

4}

(Base+Sideband+(U{Slot}*(Pitch+1)))→DW[Chan

]

Shared SM

This message allows scaled read/write accesses to untyped scaled surfaces using 8 or 16 offsets. Up to 4

DWords are accessed beginning at the byte address determined by the U offset and the scaling pitch.

These 4 DWords correspond to the red, green, blue, and alpha channels, in that order and with red

mapping to the lowest order DWord. After scaling calculation, the offset must be DWord-aligned.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 703

The execution mask bits may disable accesses on the corresponding SIMD slots. Out-of-bounds accesses

are dropped or return zero. The semantics depend on the address model, as listed in the above table.

R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

Message Specific

Descriptor

Message

Header Address Payload Source Payload Writeback Payload

R SLM BUFFER SIMD8 {Chan 1-4} MSD2R_US {Forbidden} MAP32b_USU_SIMD8 {Forbidden} {Chan1-4}

MDP_DW_SIMD8

W SLM BUFFER SIMD8 {Chan 1-4} MSD2W_US {Forbidden} MAP32b_USU_SIMD8 {Chan1-4}

MDP_DW_SIMD8

{Forbidden}

R SLM BUFFER SIMD16 {Chan 1-4} MSD2R_US {Forbidden} MAP32b_USU_SIMD16 {Forbidden} {Chan1-4}

MDP_DW_SIMD16

W SLM BUFFER SIMD16 {Chan 1-4} MSD2W_US {Forbidden} MAP32b_USU_SIMD16 {Chan1-4}

MDP_DW_SIMD16

{Forbidden}

Typed Surface Read/Write Messages

Addr

Align

Data

Width R/W

Address

Model Surface Type

SIMD

Slots

Data

Elements

SIMD Address

Calculation

Bounds

Check

Execution

Mask

B DW R/W BTS 1D, 2D, 3D,

CUBE, BUFFER,

NULL

8 {Chan 1-4} (Surface[U, V, R,

LOD])→DW[Chan]

Surface SG

This message allows direct read/write accesses to typed surfaces using 8 offsets. Up to 4 channels are

accessed beginning at the byte address determined: red, green, blue, and alpha channels, in that order.

The execution mask bits may disable accesses on the corresponding SIMD slots. Out-of-bounds accesses

are dropped or return zero.

R/W

Address

Model Surface Type

SIMD

Slots

Data

Elements

Message

Specific

Descriptor

Message

Header Address Payload Source Payload Writeback Payload

R BTS 1D, 2D, 3D,

CUBE, BUFFER,

NULL

SIMD8 {Chan 1-4} MSD1R_TS {Forbidden} MAP32b_TS_SIMD8 {Forbidden} {Chan1-4}

MDP_DW_SIMD8

W BTS 1D, 2D, 3D,

CUBE, BUFFER,

NULL

SIMD8 {Chan 1-4} MSD1W_TS {Forbidden} MAP32b_TS_SIMD8 {Chan1-4}

MDP_DW_SIMD8

{Forbidden}

R BTS 1D, 2D, 3D,

CUBE, BUFFER,

NULL

SIMD8 1 MSD1R_TS {Forbidden} MAP32b_TS_SIMD8 {Forbidden} MDP_TileW_SIMD8

W BTS 1D, 2D, 3D,

CUBE, BUFFER,

NULL

SIMD8 1 MSD1W_TS {Forbidden} MAP32b_TS_SIMD8 MDP_TileW_SIMD8 {Forbidden}

The number of message registers in the write data payload is determined by the number of channel

mask bits that are enabled.

The Channel Mask in the message descriptor identifies whether the corresponding channel access is

disabled. The surface state Shader Channel Select fields identify whether the channels are swizzled for

the access.

See Surface Formats for the description of how the data is formatted for Typed Surface read and write

operations.

704 Doc Ref # IHD-OS-LKF-Vol 9-4.21

MSAA Typed Surface ReadWrite Messages

Addr

Align

Data

Width R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements SIMD Address Calculation

Bounds

Check

Execution

Mask

B DW R/W BTS 2D, NULL 8 {Chan 1-4} (Surface[U, V, R, LOD,

MSAA])→DW[Chan]

Surface SG

This message allows direct read/write accesses of multi-sample typed surfaces using 8 offsets. Up to 4

channels are accessed beginning at the byte address determined: red, green, blue, and alpha channels, in

that order.

The 2D surface can be either a normal 2D surface, a 2D Array surface, or a 2D mip-mapped surface.

Sample planes are laid out sequentially for each array element or mip-mapped surface.

The execution mask bits may disable accesses on the corresponding SIMD slots. Out-of-bounds accesses

are dropped or return zero. If the MSAA sample number is larger than Number of Multisamples in the

surface state, the access is out of bounds.

R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

Message

Specific

Descriptor

Message

Header Address Payload Source Payload Writeback Payload

R BTS 2D, NULL SIMD8 {Chan 1-4} MSD1R_TS {Opt}

MH1_BTS_PSM

MAP32b_MSAA_TS_SIMD8 {Forbidden} {Chan1-4}

MDP_DW_SIMD8

W BTS 2D, NULL SIMD8 {Chan 1-4} MSD1W_TS {Opt}

MH1_BTS_PSM

MAP32b_MSAA_TS_SIMD8 {Chan1-4}

MDP_DW_SIMD8

{Forbidden}

The number of message registers in the write data payload is determined by the number of channel

mask bits that are enabled.

The Channel Mask in the message descriptor identifies whether the corresponding channel access is

disabled. The surface state Shader Channel Select fields identify whether the channels are swizzled for

the access.

See Surface Formats for the description of how the data is formatted for Typed Surface read and write

operations.

Programming Note

Context: MSAA Typed Surface ReadWrite Messages

This message only supports PLANAR multi-sample surfaces (surface state Multisample Surface Storage Format

MSS), without a color control auxillary surface (surface state Auxillary Surface Mode NONE) and without color

compression (surface state Render Target Compression Enable FALSE).

Atomic Operation Messages

Atomic operation messages cause atomic read-modify-write operations on the destination locations

addressed. Atomic operations guarantee that no read or write to the same memory location from this

thread or any other thread can occur between the read and the write. There is no guarantee on the write

ordering of the individual operations in one SIMD message.

Out-of-bounds atomic accesses are dropped without writing data, and return zero for read data. Atomic

accesses to pages in Tiled Resources Translation Tables are required to be IA-coherent. NULL Tiled

Resources pages are handled as out-of-bounds accesses.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 705

Untyped atomic messages use the RAW format, with surface type BUFFER or STRBUF, and perform no

type conversion. These messages use the U address parameter, which specifies the byte offset, which

must be aligned on the data width (multiple of 8 for QWord, a multiple of 4 for DWord, or a multiple of 2

for Word).

Typed atomic messages use surface types SURFTYPE_1D, 2D, 3D, or BUFFER.

For atomic operations, only the red surface channel is used (the first DWord). The red surface channel

select must be set to SCS_RED, in addition to all shader channel selects in the surface state following the

rules for the surface format in RENDER_SURFACE_STATE.

The MDC_AOP and MDC_FOP are specified in the Atomic Operation Message Descriptor Control Fields

section.

The new value of the destination is computed based on the old value of the destination, and up to two

additional sources included in the message (src0 and src1). The sources used by the specific operations

are described in the MDC_AOP and MDC_FOP tables. The AOP operations are subdivided into unary,

binary, and trinary operand groupings. Source data payload are only sent for the binary and trinary

operations.

The double-width AOP operation CMPWR_2W, also known as CMPRW8B on DWords and CMPWR16B on

QWords, require the read-modify-write address offsets to be naturally aligned (QWord and OWord

respectively).

The MDC_RDC message-specific control field controls whether a value is returned by the atomic

message. The value returned depends on the message specific operation (see MDC_AOP and

MDC_FOP).

DWord Untyped Atomic Integer Messages

Addr

Align

Data

Width R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements SIMD Address Calculation

Bounds

Check

Execution

Mask

DW DW R/W BTS BUFFER,NULL 8, 16 1 (Base+U{Slot})→DW[0] Surface SM

DW DW R/W BTS STRBUF,NULL 8, 16 1 (Base+(U{Slot}*Pitch)+V{Slot})→DW[0] Surface SM

DW DW R/W SLM BUFFER 8, 16 1 (Base+U{Slot})→DW[0] Shared SM

DW DW R/W A32 BUFFER 8, 16 1 (Base+Buffer+U{Slot})→DW[0] GenState SM

DW DW R/W A64 BUFFER 8 1 (0+U{Slot})→DW[0] Canonical SM

This message performs atomic integer operations on untyped surfaces using 8 or 16 offsets. One DWord

is accessed beginning at the byte address determined.

For BUFFER accesses, each U offset must be DWord-aligned.

For STRBUF accesses, each U offset is scaled by Pitch and both the Surface Pitch and V offset must be

DWord-aligned.

For BTS addressing model, the Surface Base Address must be DW aligned.

The execution mask bits may disable accesses on the corresponding SIMD slots. Out-of-bounds accesses

are dropped or return zero. The semantics depend on the address model, as listed in the above table.

706 Doc Ref # IHD-OS-LKF-Vol 9-4.21

R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

Message Specific

Descriptor

Message

Header Address Payload Source Payload

Writeback

Payload

R BTS BUFFER,NULL SIMD8 1 MSD1R_DWAI1 {Forbidden} MAP32b_USU_SIMD8 {Forbidden} MDP_DW_SIMD8

W BTS BUFFER,NULL SIMD8 1 MSD1W_DWAI1 {Forbidden} MAP32b_USU_SIMD8 {Forbidden} {Forbidden}

R BTS BUFFER,NULL SIMD16 1 MSD1R_DWAI1 {Forbidden} MAP32b_USU_SIMD16 {Forbidden} MDP_DW_SIMD16

W BTS BUFFER,NULL SIMD16 1 MSD1W_DWAI1 {Forbidden} MAP32b_USU_SIMD16 {Forbidden} {Forbidden}

R BTS BUFFER,NULL SIMD8 1 MSD1R_DWAI2 {Forbidden} MAP32b_USU_SIMD8 MDP_DW_SIMD8 MDP_DW_SIMD8

W BTS BUFFER,NULL SIMD8 1 MSD1W_DWAI2 {Forbidden} MAP32b_USU_SIMD8 MDP_DW_SIMD8 {Forbidden}

R BTS BUFFER,NULL SIMD16 1 MSD1R_DWAI2 {Forbidden} MAP32b_USU_SIMD16 MDP_DW_SIMD16 MDP_DW_SIMD16

W BTS BUFFER,NULL SIMD16 1 MSD1W_DWAI2 {Forbidden} MAP32b_USU_SIMD16 MDP_DW_SIMD16 {Forbidden}

R BTS BUFFER,NULL SIMD8 1 MSD1R_DWAI3 {Forbidden} MAP32b_USU_SIMD8 MDP_AOP8_DW2 MDP_DW_SIMD8

W BTS BUFFER,NULL SIMD8 1 MSD1W_DWAI3 {Forbidden} MAP32b_USU_SIMD8 MDP_AOP8_DW2 {Forbidden}

R BTS BUFFER,NULL SIMD16 1 MSD1R_DWAI3 {Forbidden} MAP32b_USU_SIMD16 MDP_AOP16_DW2 MDP_DW_SIMD16

W BTS BUFFER,NULL SIMD16 1 MSD1W_DWAI3 {Forbidden} MAP32b_USU_SIMD16 MDP_AOP16_DW2 {Forbidden}

R BTS STRBUF,NULL SIMD8 1 MSD1R_DWAI1 {Forbidden} MAP32b_USUV_SIMD8 {Forbidden} MDP_DW_SIMD8

W BTS STRBUF,NULL SIMD8 1 MSD1W_DWAI1 {Forbidden} MAP32b_USUV_SIMD8 {Forbidden} {Forbidden}

R BTS STRBUF,NULL SIMD16 1 MSD1R_DWAI1 {Forbidden} MAP32b_USUV_SIMD16 {Forbidden} MDP_DW_SIMD16

W BTS STRBUF,NULL SIMD16 1 MSD1W_DWAI1 {Forbidden} MAP32b_USUV_SIMD16 {Forbidden} {Forbidden}

R BTS STRBUF,NULL SIMD8 1 MSD1R_DWAI2 {Forbidden} MAP32b_USUV_SIMD8 MDP_DW_SIMD8 MDP_DW_SIMD8

W BTS STRBUF,NULL SIMD8 1 MSD1W_DWAI2 {Forbidden} MAP32b_USUV_SIMD8 MDP_DW_SIMD8 {Forbidden}

R BTS STRBUF,NULL SIMD16 1 MSD1R_DWAI2 {Forbidden} MAP32b_USUV_SIMD16 MDP_DW_SIMD16 MDP_DW_SIMD16

W BTS STRBUF,NULL SIMD16 1 MSD1W_DWAI2 {Forbidden} MAP32b_USUV_SIMD16 MDP_DW_SIMD16 {Forbidden}

R BTS STRBUF,NULL SIMD8 1 MSD1R_DWAI3 {Forbidden} MAP32b_USUV_SIMD8 MDP_AOP8_DW2 MDP_DW_SIMD8

W BTS STRBUF,NULL SIMD8 1 MSD1W_DWAI3 {Forbidden} MAP32b_USUV_SIMD8 MDP_AOP8_DW2 {Forbidden}

R BTS STRBUF,NULL SIMD16 1 MSD1R_DWAI3 {Forbidden} MAP32b_USUV_SIMD16 MDP_AOP16_DW2 MDP_DW_SIMD16

W BTS STRBUF,NULL SIMD16 1 MSD1W_DWAI3 {Forbidden} MAP32b_USUV_SIMD16 MDP_AOP16_DW2 {Forbidden}

R SLM BUFFER SIMD8 1 MSD1R_DWAI1 {Forbidden} MAP32b_USU_SIMD8 {Forbidden} MDP_DW_SIMD8

W SLM BUFFER SIMD8 1 MSD1W_DWAI1 {Forbidden} MAP32b_USU_SIMD8 {Forbidden} {Forbidden}

R SLM BUFFER SIMD16 1 MSD1R_DWAI1 {Forbidden} MAP32b_USU_SIMD16 {Forbidden} MDP_DW_SIMD16

W SLM BUFFER SIMD16 1 MSD1W_DWAI1 {Forbidden} MAP32b_USU_SIMD16 {Forbidden} {Forbidden}

R SLM BUFFER SIMD8 1 MSD1R_DWAI2 {Forbidden} MAP32b_USU_SIMD8 MDP_DW_SIMD8 MDP_DW_SIMD8

W SLM BUFFER SIMD8 1 MSD1W_DWAI2 {Forbidden} MAP32b_USU_SIMD8 MDP_DW_SIMD8 {Forbidden}

R SLM BUFFER SIMD16 1 MSD1R_DWAI2 {Forbidden} MAP32b_USU_SIMD16 MDP_DW_SIMD16 MDP_DW_SIMD16

W SLM BUFFER SIMD16 1 MSD1W_DWAI2 {Forbidden} MAP32b_USU_SIMD16 MDP_DW_SIMD16 {Forbidden}

R SLM BUFFER SIMD8 1 MSD1R_DWAI3 {Forbidden} MAP32b_USU_SIMD8 MDP_AOP8_DW2 MDP_DW_SIMD8

W SLM BUFFER SIMD8 1 MSD1W_DWAI3 {Forbidden} MAP32b_USU_SIMD8 MDP_AOP8_DW2 {Forbidden}

R SLM BUFFER SIMD16 1 MSD1R_DWAI3 {Forbidden} MAP32b_USU_SIMD16 MDP_AOP16_DW2 MDP_DW_SIMD16

W SLM BUFFER SIMD16 1 MSD1W_DWAI3 {Forbidden} MAP32b_USU_SIMD16 MDP_AOP16_DW2 {Forbidden}

R A32 BUFFER SIMD8 1 MSD1R_DWAI1 {Opt}

MH1_A32

MAP32b_USU_SIMD8 {Forbidden} MDP_DW_SIMD8

W A32 BUFFER SIMD8 1 MSD1W_DWAI1 {Opt}

MH1_A32

MAP32b_USU_SIMD8 {Forbidden} {Forbidden}

R A32 BUFFER SIMD16 1 MSD1R_DWAI1 {Opt}

MH1_A32

MAP32b_USU_SIMD16 {Forbidden} MDP_DW_SIMD16

W A32 BUFFER SIMD16 1 MSD1W_DWAI1 {Opt}

MH1_A32

MAP32b_USU_SIMD16 {Forbidden} {Forbidden}

R A32 BUFFER SIMD8 1 MSD1R_DWAI2 {Opt}

MH1_A32

MAP32b_USU_SIMD8 MDP_DW_SIMD8 MDP_DW_SIMD8

W A32 BUFFER SIMD8 1 MSD1W_DWAI2 {Opt}

MH1_A32

MAP32b_USU_SIMD8 MDP_DW_SIMD8 {Forbidden}

R A32 BUFFER SIMD16 1 MSD1R_DWAI2 {Opt}

MH1_A32

MAP32b_USU_SIMD16 MDP_DW_SIMD16 MDP_DW_SIMD16

Doc Ref # IHD-OS-LKF-Vol 9-4.21 707

R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

Message Specific

Descriptor

Message

Header Address Payload Source Payload

Writeback

Payload

W A32 BUFFER SIMD16 1 MSD1W_DWAI2 {Opt}

MH1_A32

MAP32b_USU_SIMD16 MDP_DW_SIMD16 {Forbidden}

R A32 BUFFER SIMD8 1 MSD1R_DWAI3 {Opt}

MH1_A32

MAP32b_USU_SIMD8 MDP_AOP8_DW2 MDP_DW_SIMD8

W A32 BUFFER SIMD8 1 MSD1W_DWAI3 {Opt}

MH1_A32

MAP32b_USU_SIMD8 MDP_AOP8_DW2 {Forbidden}

R A32 BUFFER SIMD16 1 MSD1R_DWAI3 {Opt}

MH1_A32

MAP32b_USU_SIMD16 MDP_AOP16_DW2 MDP_DW_SIMD16

W A32 BUFFER SIMD16 1 MSD1W_DWAI3 {Opt}

MH1_A32

MAP32b_USU_SIMD16 MDP_AOP16_DW2 {Forbidden}

R A64 BUFFER SIMD8 1 MSD1R_A64_DWAI1 {Forbidden} MAP64b_USU_SIMD8 {Forbidden} MDP_DW_SIMD8

W A64 BUFFER SIMD8 1 MSD1W_A64_DWAI1 {Forbidden} MAP64b_USU_SIMD8 {Forbidden} {Forbidden}

R A64 BUFFER SIMD8 1 MSD1R_A64_DWAI2 {Forbidden} MAP64b_USU_SIMD8 MDP_DW_SIMD8 MDP_DW_SIMD8

W A64 BUFFER SIMD8 1 {Forbidden} MAP64b_USU_SIMD8 MDP_DW_SIMD8 {Forbidden}

R A64 BUFFER SIMD8 1 {Forbidden} MAP64b_USU_SIMD8 MDP_AOP8_DW2 MDP_DW_SIMD8

W A64 BUFFER SIMD8 1 MSD1W_A64_DWAI3 {Forbidden} MAP64b_USU_SIMD8 MDP_AOP8_DW2 {Forbidden}

Programming Note

Context: DWord Untyped Atomic Integer Messages

AOP imax/imin assume operands are signed 32-bit integers, umax/umin assume operands are unsigned integers.

All other operations treat all values as 32-bit unsigned integers. Add and subtract operations wrap without any

special indication.

QWord Untyped Atomic Integer Messages

Addr

Align

Data

Width R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

SIMD Address

Calculation

Bounds

Check

Execution

Mask

QW QW R/W A64 BUFFER 8 1 (0+U{Slot})→QW[0] Canonical SM

This message performs QWord atomic integer operations on untyped surfaces using 8 or 16 offsets. The

surface format is RAW. One QWord is accessed beginning at the byte address determined.

For BUFFER accesses, each U offset must be QWord-aligned.

For STRBUF accesses, each U offset is scaled by Pitch. Both the Surface Pitch and V must be QWord-

aligned.

For BTS addressing model, the Surface Base Address must be QW aligned.

The execution mask bits may disable accesses on the corresponding SIMD slots. Out-of-bounds accesses

are dropped or return zero. The semantics depend on the address model, as listed in the above table.

R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

Message Specific

Descriptor

Message

Header Address Payload Source Payload

Writeback

Payload

R A64 BUFFER SIMD8 1 MSD1R_A64_QWAI1 {Forbidden} MAP64b_USU_SIMD8 {Forbidden} MDP_QW_SIMD8

W A64 BUFFER SIMD8 1 MSD1W_A64_QWAI1 {Forbidden} MAP64b_USU_SIMD8 {Forbidden} {Forbidden}

R A64 BUFFER SIMD8 1 MSD1R_A64_QWAI2 {Forbidden} MAP64b_USU_SIMD8 MDP_QW_SIMD8 MDP_QW_SIMD8

W A64 BUFFER SIMD8 1 MSD1W_A64_QWAI2 {Forbidden} MAP64b_USU_SIMD8 MDP_QW_SIMD8 {Forbidden}

R A64 BUFFER SIMD8 1 MSD1R_A64_QWAI3 {Forbidden} MAP64b_USU_SIMD8 MDP_A64_AOP8_QW2 MDP_QW_SIMD8

W A64 BUFFER SIMD8 1 MSD1W_A64_QWAI3 {Forbidden} MAP64b_USU_SIMD8 MDP_A64_AOP8_QW2 {Forbidden}

708 Doc Ref # IHD-OS-LKF-Vol 9-4.21

R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

Message Specific

Descriptor

Message

Header Address Payload Source Payload

Writeback

Payload

R A64 BUFFER SIMD8 1 {Forbidden} MAP64b_USU_SIMD8 MDP_A64_AOP8_QW2 MDP_QW_SIMD8

W A64 BUFFER SIMD8 1 MSD1W_A64_DWAI3 {Forbidden} MAP64b_USU_SIMD8 MDP_A64_AOP8_QW2 {Forbidden}

Programming Note

Context: QWord Untyped Atomic Integer Messages

AOP imax/imin assume operands are signed 64-bit integers; umax/umin assume operands are unsigned integers.

All other operations treat all values as 64-bit unsigned integers. Add and subtract operations wrap without any

special indication.

DWord Untyped Atomic Float Messages

Addr

Align

Data

Width R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements SIMD Address Calculation

Bounds

Check

Execution

Mask

DW DW R/W BTS BUFFER,NULL 8, 16 1 (Base+U{Slot})→DW[0] Surface SM

DW DW R/W BTS STRBUF,NULL 8, 16 1 (Base+(U{Slot}*Pitch)+V{Slot})→DW[0] Surface SM

DW DW R/W SLM BUFFER 8, 16 1 (Base+U{Slot})→DW[0] Shared SM

DW DW R/W A32 BUFFER 8, 16 1 (Base+Buffer+U{Slot})→DW[0] GenState SM

DW DW R/W A64 BUFFER 8 1 (0+U{Slot})→DW[0] Canonical SM

This message performs atomic float operations on untyped surfaces using 8 or 16 offsets. One DWord is

accessed beginning at the byte address determined.

For BUFFER accesses, each U offset must be DWord-aligned.

For STRBUF accesses, cach U offset is scaled by Pitch and both Surface Pitch and V offset must be

DWord-aligned.

For BTS addressing model, the Surface Base Address must be DW aligned.

The execution mask bits may disable accesses on the corresponding SIMD slots. Out-of-bounds accesses

are dropped or return zero. The semantics depend on the address model, as listed in the above table.

R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

Message Specific

Descriptor

Message

Header Address Payload Source Payload

Writeback

Payload

R BTS BUFFER,NULL SIMD8 1 MSD1R_DWAF2 {Forbidden} MAP32b_USU_SIMD8 MDP_DW_SIMD8 MDP_DW_SIMD8

W BTS BUFFER,NULL SIMD8 1 MSD1W_DWAF2 {Forbidden} MAP32b_USU_SIMD8 MDP_DW_SIMD8 {Forbidden}

R BTS BUFFER,NULL SIMD16 1 MSD1R_DWAF2 {Forbidden} MAP32b_USU_SIMD16 MDP_DW_SIMD16 MDP_DW_SIMD16

W BTS BUFFER,NULL SIMD16 1 MSD1W_DWAF2 {Forbidden} MAP32b_USU_SIMD16 MDP_DW_SIMD16 {Forbidden}

R BTS BUFFER,NULL SIMD8 1 MSD1R_DWAF3 {Forbidden} MAP32b_USU_SIMD8 MDP_AOP8_DW2 MDP_DW_SIMD8

W BTS BUFFER,NULL SIMD8 1 MSD1W_DWAF3 {Forbidden} MAP32b_USU_SIMD8 MDP_AOP8_DW2 {Forbidden}

R BTS BUFFER,NULL SIMD16 1 MSD1R_DWAF3 {Forbidden} MAP32b_USU_SIMD16 MDP_AOP16_DW2 MDP_DW_SIMD16

W BTS BUFFER,NULL SIMD16 1 MSD1W_DWAF3 {Forbidden} MAP32b_USU_SIMD16 MDP_AOP16_DW2 {Forbidden}

R BTS STRBUF,NULL SIMD8 1 MSD1R_DWAF2 {Forbidden} MAP32b_USUV_SIMD8 MDP_DW_SIMD8 MDP_DW_SIMD8

W BTS STRBUF,NULL SIMD8 1 MSD1W_DWAF2 {Forbidden} MAP32b_USUV_SIMD8 MDP_DW_SIMD8 {Forbidden}

R BTS STRBUF,NULL SIMD16 1 MSD1R_DWAF2 {Forbidden} MAP32b_USUV_SIMD16 MDP_DW_SIMD16 MDP_DW_SIMD16

W BTS STRBUF,NULL SIMD16 1 MSD1W_DWAF2 {Forbidden} MAP32b_USUV_SIMD16 MDP_DW_SIMD16 {Forbidden}

R BTS STRBUF,NULL SIMD8 1 MSD1R_DWAF3 {Forbidden} MAP32b_USUV_SIMD8 MDP_AOP8_DW2 MDP_DW_SIMD8

Doc Ref # IHD-OS-LKF-Vol 9-4.21 709

R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

Message Specific

Descriptor

Message

Header Address Payload Source Payload

Writeback

Payload

W BTS STRBUF,NULL SIMD8 1 MSD1W_DWAF3 {Forbidden} MAP32b_USUV_SIMD8 MDP_AOP8_DW2 {Forbidden}

R BTS STRBUF,NULL SIMD16 1 MSD1R_DWAF3 {Forbidden} MAP32b_USUV_SIMD16 MDP_AOP16_DW2 MDP_DW_SIMD16

W BTS STRBUF,NULL SIMD16 1 MSD1W_DWAF3 {Forbidden} MAP32b_USUV_SIMD16 MDP_AOP16_DW2 {Forbidden}

R SLM BUFFER SIMD8 1 MSD1R_DWAF2 {Forbidden} MAP32b_USU_SIMD8 MDP_DW_SIMD8 MDP_DW_SIMD8

W SLM BUFFER SIMD8 1 MSD1W_DWAF2 {Forbidden} MAP32b_USU_SIMD8 MDP_DW_SIMD8 {Forbidden}

R SLM BUFFER SIMD16 1 MSD1R_DWAF2 {Forbidden} MAP32b_USU_SIMD16 MDP_DW_SIMD16 MDP_DW_SIMD16

W SLM BUFFER SIMD16 1 MSD1W_DWAF2 {Forbidden} MAP32b_USU_SIMD16 MDP_DW_SIMD16 {Forbidden}

R SLM BUFFER SIMD8 1 MSD1R_DWAF3 {Forbidden} MAP32b_USU_SIMD8 MDP_AOP8_DW2 MDP_DW_SIMD8

W SLM BUFFER SIMD8 1 MSD1W_DWAF3 {Forbidden} MAP32b_USU_SIMD8 MDP_AOP8_DW2 {Forbidden}

R SLM BUFFER SIMD16 1 MSD1R_DWAF3 {Forbidden} MAP32b_USU_SIMD16 MDP_AOP16_DW2 MDP_DW_SIMD16

W SLM BUFFER SIMD16 1 MSD1W_DWAF3 {Forbidden} MAP32b_USU_SIMD16 MDP_AOP16_DW2 {Forbidden}

R A32 BUFFER SIMD8 1 MSD1R_DWAF2 {Opt}

MH1_A32

MAP32b_USU_SIMD8 MDP_DW_SIMD8 MDP_DW_SIMD8

W A32 BUFFER SIMD8 1 MSD1W_DWAF2 {Opt}

MH1_A32

MAP32b_USU_SIMD8 MDP_DW_SIMD8 {Forbidden}

R A32 BUFFER SIMD16 1 MSD1R_DWAF2 {Opt}

MH1_A32

MAP32b_USU_SIMD16 MDP_DW_SIMD16 MDP_DW_SIMD16

W A32 BUFFER SIMD16 1 MSD1W_DWAF2 {Opt}

MH1_A32

MAP32b_USU_SIMD16 MDP_DW_SIMD16 {Forbidden}

R A32 BUFFER SIMD8 1 MSD1R_DWAF3 {Opt}

MH1_A32

MAP32b_USU_SIMD8 MDP_AOP8_DW2 MDP_DW_SIMD8

W A32 BUFFER SIMD8 1 MSD1W_DWAF3 {Opt}

MH1_A32

MAP32b_USU_SIMD8 MDP_AOP8_DW2 {Forbidden}

R A32 BUFFER SIMD16 1 MSD1R_DWAF3 {Opt}

MH1_A32

MAP32b_USU_SIMD16 MDP_AOP16_DW2 MDP_DW_SIMD16

W A32 BUFFER SIMD16 1 MSD1W_DWAF3 {Opt}

MH1_A32

MAP32b_USU_SIMD16 MDP_AOP16_DW2 {Forbidden}

R A64 BUFFER SIMD8 1 MSD1R_A64_DWAF2 {Forbidden} MAP64b_USU_SIMD8 MDP_DW_SIMD8 MDP_DW_SIMD8

W A64 BUFFER SIMD8 1 MSD1W_A64_DWAF2 {Forbidden} MAP64b_USU_SIMD8 MDP_DW_SIMD8 {Forbidden}

R A64 BUFFER SIMD8 1 MSD1R_A64_DWAF3 {Forbidden} MAP64b_USU_SIMD8 MDP_AOP8_DW2 MDP_DW_SIMD8

W A64 BUFFER SIMD8 1 MSD1W_A64_DWAF3 {Forbidden} MAP64b_USU_SIMD8 MDP_AOP8_DW2 {Forbidden}

DWord Typed Atomic Integer Messages

Addr

Align

Data

Width R/W

Address

Model Surface Type

SIMD

Slots

Data

Elements

SIMD Address

Calculation

Bounds

Check

Execution

Mask

DW DW R/W BTS 1D, 2D, 3D,

CUBE

8 1 (Surface[U, V, R,

LOD])→DW[0]

Surface SG

DW DW R/W BTS BUFFER, NULL 8 1 (Surface[U])→DW[0] Surface SG

This message performs atomic integer operations on typed surfaces using 8 offsets. The surface format

must be one of R32_UINT, R32_SINT or R32_FLOAT, and the surface type must be SURFTYPE_1D,

SURFTYPE_2D, SURFTYPE_3D, SURFTYPE_CUBE, or SURFTYPE_BUFFER. One DWord is accessed beginning

at the byte address determined by the address payload and the surface format. Each access is a DWord

and must be DWord-aligned.

710 Doc Ref # IHD-OS-LKF-Vol 9-4.21

The execution mask bits may disable accesses on the corresponding SIMD slots. Out-of-bounds accesses

are dropped or return zero. The semantics depend on the address model, as listed in the above table.

R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

Message Specific

Descriptor

Message

Header Address Payload Source Payload

Writeback

Payload

R BTS 1D, 2D, 3D,

CUBE

SIMD8 1 MSD1R_DWTAI1 {Forbidden} MAP32b_TS_SIMD8 {Forbidden} MDP_DW_SIMD8

W BTS 1D, 2D, 3D,

CUBE

SIMD8 1 MSD1W_DWTAI1 {Forbidden} MAP32b_TS_SIMD8 {Forbidden} {Forbidden}

R BTS BUFFER,

NULL

SIMD8 1 MSD1R_DWTAI1 {Forbidden} MAP32b_USU_SIMD8 {Forbidden} MDP_DW_SIMD8

W BTS BUFFER,

NULL

SIMD8 1 MSD1W_DWTAI1 {Forbidden} MAP32b_USU_SIMD8 {Forbidden} {Forbidden}

R BTS 1D, 2D, 3D,

CUBE

SIMD8 1 MSD1R_DWTAI2 {Forbidden} MAP32b_TS_SIMD8 MDP_DW_SIMD8 MDP_DW_SIMD8

W BTS 1D, 2D, 3D,

CUBE

SIMD8 1 MSD1W_DWTAI2 {Forbidden} MAP32b_TS_SIMD8 MDP_DW_SIMD8 {Forbidden}

R BTS BUFFER,

NULL

SIMD8 1 MSD1R_DWTAI2 {Forbidden} MAP32b_USU_SIMD8 MDP_DW_SIMD8 MDP_DW_SIMD8

W BTS BUFFER,

NULL

SIMD8 1 MSD1W_DWTAI2 {Forbidden} MAP32b_USU_SIMD8 MDP_DW_SIMD8 {Forbidden}

R BTS 1D, 2D, 3D,

CUBE

SIMD8 1 MSD1R_DWTAI3 {Forbidden} MAP32b_TS_SIMD8 MDP_AOP8_DW2 MDP_DW_SIMD8

W BTS 1D, 2D, 3D,

CUBE

SIMD8 1 MSD1W_DWTAI3 {Forbidden} MAP32b_TS_SIMD8 MDP_AOP8_DW2 {Forbidden}

R BTS BUFFER,

NULL

SIMD8 1 MSD1R_DWTAI3 {Forbidden} MAP32b_USU_SIMD8 MDP_AOP8_DW2 MDP_DW_SIMD8

W BTS BUFFER,

NULL

SIMD8 1 MSD1W_DWTAI3 {Forbidden} MAP32b_USU_SIMD8 MDP_AOP8_DW2 {Forbidden}

Programming Note

Context: DWord Typed Atomic Integer Messages

The U address payload specifies a pixel index into the surface, which is multiplied by the Surface Pitch from the

Surface State to generate the byte address. That final byte address must be Dword aligned.

DWord Atomic Counter Messages

Addr

Align

Data

Width R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

SIMD Address

Calculation

Bounds

Check

Execution

Mask

DW DW R/W BTS Any 8 1 (Surface Append

Buffer)→DW[0]

Ignored SG

This message performs atomic integer operations on the “Append Counter” associated with the surface,

using 8 offsets. One DWord is accessed beginning at the byte address of the surface’s auxiliary buffer

address, which must be DWord-aligned.

For Append Counter Operations there is no address payload: the address is provided by the append

counter field in the surface state. The data payloads are the same as untyped atomic integer operations.

When accessing a surface with this message, if the Auxiliary Surface Mode of the surface state is not

AUX_APPEND, the access is treated as out of bounds with the writes being ignored and the reads

returning 0.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 711

The execution mask bits may disable accesses on the corresponding SIMD slots.

R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

Message Specific

Descriptor

Message

Header

Address

Payload Source Payload

Writeback

Payload

R BTS Any SIMD8 1 MSD1R_DWAC1 MH1_BTS_PSM {Forbidden} {Forbidden} MDP_DW_SIMD8

W BTS Any SIMD8 1 MSD1W_DWAC1 MH1_BTS_PSM {Forbidden} {Forbidden} {Forbidden}

R BTS Any SIMD8 1 MSD1R_DWAC2 {Forbidden} {Forbidden} MDP_DW_SIMD8 MDP_DW_SIMD8

W BTS Any SIMD8 1 MSD1W_DWAC2 {Forbidden} {Forbidden} MDP_DW_SIMD8 {Forbidden}

Programming Note

Context: DWord Atomic Counter Messages

• The unary atomic integer operations require a message header (so that the message data on the OBUS is not

empty).

• The current implementation of the binary atomic integer operations forbids a message header, so the Pixel

Sample Mask is defaulted to be fully enabled.

• The Append Counter cannot be used with an MSAA auxiliary surface.

Media Surface Read/Write Messages

The media block and transpose messages allow direct read/write accesses to media surfaces. These

messages operate on rectangular blocks of pixel data.

Media surfaces are 2D types with some media-specific characteristics (for example, vertical offset

handling for interlaced frames). The surface state specifies all the parameters. There are some limitations

on what data surface formats are supported by data ports, when compared to the Sampler, Render

Cache, and the fixed function Video encode and decode engines. See the specific messages and

Addressing 2D Media Surfaces in this volume for more details.

Transpose Read Message

Addr

Align

Data

Widt

h R/W

Address

Model Surface Type

SIMD

Slots

Data

Eleme

nts SIMD Address Calculation

Bounds

Check

Executio

n Mask

DW DW R BTS 2D, NULL Height Width (Surface[X, Y])→DW[0] Media Ignored

This message enables a rectangular block of DWords to be read from the source surface and written in

transposed order into the GRF. The message specifies as inputs a signed (X, Y) coordinate into the 2D

surface and a block size (Width, Height).

The execution mask is ignored. Out-of-bounds reads return a replicated boundary pixel. More details on

bounds checking is described in Addressing 2D Media Surfaces in this volume.

712 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Applications:

Transpose a 2D media block of 32bpe pixels.

R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

Message Specific

Descriptor

Message

Header

Address

Payload

Source

Payload

Writeback

Payload

R BTS 2D, NULL 1, 2, 4, 8

Rows

{1, 2, 4, 8}

Width

MSD1R_TT MH_T {Forbidden} {Forbidden} {1, 2, 4, 8}

MDP_DW_SIMD8

The only surface type allowed is non-arrayed, non-mipmapped SURFTYPE_2D. Accesses are allowed to

SURFTYPE_NULL and will return 0. More details on 2D surfaces used by this message is described in

Addressing 2D Media Surfaces in this volume

Vertical stride, offset, and boundary clamping media surface state parameters are supported. The surface

format must be 32bpe (Dword size) as described in 2D Media Surface Formats. The raw data from the

surface is returned to the thread without any format conversion operation.

Block Width and Block Height

The Block Width (in Dwords) and Block Height (in rows) are specified in the message header.

The layout of the data payload depends on the Block Height and Block Width. Each row’s first Dword is

aligned to the corresponding Dword of the first register, and every next Dword in the X dimension of the

block is aligned to the corresponding Dword of the next register. The figure below illustrates the layout

of the data returned in the register in (x,y) offsets from the (X,Y) start of the block. Dwords not used in a

GRF are not modified.

Layout of Transposed Rows in Registers

Doc Ref # IHD-OS-LKF-Vol 9-4.21 713

Programming Note

Context: Transpose Read Message

• Tile X is not supported: the supported tiling modes are Linear and Tile Y/YF/YS.

• The surface base address must be 32-byte aligned.

• The surface width must be a multiple of DWords.

• Pitch must be a multiple of 64 bytes when the surface is linear.

• The X Offset must be a multiple of the block width in bytes. The Y Offset must be a multiple of the block

height.

• Transpose Read is not supported on compressible media surfaces.

Media Block Read/Write Messages

Addr

Align

Data

Widt

h R/W

Address

Model Surface Type

SIMD

Slots

Data

Eleme

nts SIMD Address Calculation

Bounds

Check

Executio

n Mask

DW DW R/W BTS 2D, NULL 1 block Width

x

Height

(Surface[X, Y])→DW[0] Media Ignored

The read form of this message enables a rectangular block of data samples to be read from the source

surface and written into the GRF. The write form enables data from the GRF to be written to a rectangular

block. The message specifies as inputs a signed (X, Y) coordinate into the 2D surface and a block size

(Width, Height).

The execution mask is ignored. Out-of-bounds writes are dropped. Out-of-bounds reads return a

replicated boundary pixel. More details on bounds checking is described in Addressing 2D Media

Surfaces in this volume.

Applications:

Block reads/writes for media

R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

Message

Specific

Descriptor

Message

Header

Address

Payload Source Payload Writeback Payload

R BTS 2D, NULL 1 block Height rows x

Width bytes

MSD1R_MB MH_MB {Forbidden} {Forbidden} MDP_HW1,

MDP_HW2,

MDP_HW4,

MDP_HW8

W BTS 2D, NULL 1 block Height rows x

Width bytes

MSD1W_MB MH_MB {Forbidden} MDP_HW1,

MDP_HW2,

MDP_HW4,

MDP_HW8

{Forbidden}

R BTS 2D, NULL 1 block Height rows x

Width bytes

MSD_SC_MB MH_MB {Forbidden} {Forbidden} MDP_HW1,

MDP_HW2,

MDP_HW4,

MDP_HW8

The only surface type allowed is non-arrayed, non-mipmapped SURFTYPE_2D. Accesses are allowed to

SURFTYPE_NULL, reads will return 0 and writes will be ignored. Only non-IA-coherent surfaces may be

714 Doc Ref # IHD-OS-LKF-Vol 9-4.21

used with compressed media surfaces. More details on 2D surfaces used by this message is described in

Addressing 2D Media Surfaces in this volume.

See 2D Media Surface Formats in this volume for limitations on surface formats supported by this

message.

Block Width and Block Height

The maximum Block Height is limited by the Block Width. The maximum data size supported in this

message is 64 Dwords (256 Bytes). Block reads and writes wider than 32 bytes are supported only with

either linear and Tile X surfaces.

Block Width (bytes) Block Height (rows) Tile Modes Supported

1-4 1-64 Linear, TileX, TileY/YF/YS

5-8 1-32 Linear, TileX, TileY/YF/YS

9-16 1-16 Linear, TileX, TileY/YF/YS

17-32 1-8 Linear, TileX, TileY/YF/YS

33-64 1-4 Linear, TileX

The layout of the read and write data payload depends on the Block Height and Block Width. The data is

aligned to the least significant bits of the first register, and the register pitch is equal to the next power-

of-2 that is greater than or equal to the Block Width. The figure below illustrates the layout of the rows in

the registers.

Media Block Row Layout in Registers

Programming Note

Context: Media Block Read/Write Messages

Restrictions Media Block Read and Write:

• The surface base address must be 32-byte aligned.

• Pitch must be a multiple of 64 bytes when the surface is linear.

• For YUV422 formats, the block width and offset must be pixel pair aligned (i.e. DWord-aligned).

• The block width and offset must be aligned to the size of pixels stored in the surface. For a surface with 8bpe

pixels for example, the block width and offset can be byte-aligned. For a surface with 16bpe pixels, it is

Doc Ref # IHD-OS-LKF-Vol 9-4.21 715

Programming Note

Context: Media Block Read/Write Messages

word-aligned.

Restrictions Media Block Read:

• For media block reads, the Block Width must be 32 or less.

Restrictions Media Block Write:

• For media block writes, both X Offset and Block Width must be DWord-aligned.

• Media block writes to Linear or TileX surfaces must have a height of 16 or less.

• Media block writes are not supported on compressible media surfaces.

Byte Masked Media Block Write Message

Addr

Align

Data

Width

R/

W

Address

Model Surface Type

SIMD

Slots

Data

Elements SIMD Address Calculation

Bounds

Check

Execution

Mask

DW DW W BTS 2D, NULL 1 block Width x

Height

(Surface[X, Y])→DW[0] Media Ignored

This message conditionally writes a rectangular block of pixels from GRF data. The message specifies as

inputs a signed (X, Y) coordinate into the 2D surface with block size (Width, Height), and a Byte Mask to

enable writing of the individual bytes.

The execution mask is ignored. Out-of-bounds writes are dropped. Media bounds checking is more fully

described in Addressing 2D Media Surfaces in this volume.

Applications:

Block writes for media

R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

Message

Specific

Descriptor

Message

Header

Address

Payload Source Payload

Writeback

Payload

W BTS 2D,

NULL

1 block Height

rows x

Width

bytes

MSD1W_MB MH_MBBM {Forbidden} MDP_HW1, MDP_HW2, MDP_HW4, MDP_HW8 {Forbidden}

The only surface type allowed is non-arrayed, non-mipmapped SURFTYPE_2D. Accesses are allowed to

SURFTYPE_NULL, writes will be ignored. More details on 2D surfaces used by this message is described in

Addressing 2D Media Surfaces in this volume.

See 2D Media Surface Formats in this volume for limitations on surface formats supported by this

message.

Block Width and Block Height

The maximum Block Height is limited by the Block Width. The maximum data size supported in this

message is 64 Dwords (256 Bytes).

716 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Block Width (bytes) Block Height (rows) Tile Modes Supported

1-4 1-64 Linear, TileX, TileY/YF/YS

5-8 1-32 Linear, TileX, TileY/YF/YS

9-16 1-16 Linear, TileX, TileY/YF/YS

17-32 1-8 Linear, TileX, TileY/YF/YS

The data payload is aligned with the upper left pixel going into the least significant bits of the first

register, and the register pitch is equal to the next power-of-2 that is greater than or equal to the Block

Width. The Byte Mask applies horizontally to each row of output. When the Byte Mask bit is set, the byte

is written. The figure below illustrates the layout of the row data and corresponding mask bits.

Row and Byte Mask Layout

Programming Note

Context: Byte Masked Media Block Write Message

• Linear or TileX surfaces must have a block height <= 16.

• Both X Offset and Block Width must be DWord-aligned.

• The surface base address must be 32-byte aligned.

• Pitch must be a multiple of 64 bytes when the surface is linear.

• Media block writes are not supported on compressible media

surfaces.

Merged Media Block Read/Write Messages

Addr

Align

Data

Width R/W

Address

Model Surface Type

SIMD

Slots

Data

Element

s SIMD Address Calculation

Bounds

Check

Execution

Mask

DW DW R BTS 2D, NULL 1 block Width x

Height

(Surface[X, Y])→DW[0] Media Ignored

This message enables a rectangular block of data samples to be read from the source surface, and

written into the GRF in a spread-out form without modifying any other portions of the GRF. The message

Doc Ref # IHD-OS-LKF-Vol 9-4.21 717

specifies as inputs a signed (X, Y) coordinate into the 2D surface, a block size (Width, Height), a Register

Pitch Control, and a Sub-Register Offset.

The execution mask is ignored. Out-of-bounds reads return a replicated boundary pixel. Media bounds

checking is described in Addressing 2D Media Surfaces in this volume.

Applications:

Allow software to assemble multiple media block reads directly into a shared GRF register set. Multiple

media block read messages sharing the same Register Pitch Control but with different Sub-Register

Offset can fill in the same set of GRF registers with interleaved rows of media blocks.

R/W

Address

Model

Surface

Type

SIMD

Slots Data Elements

Message Specific

Descriptor

Message

Header

Address

Payload

Source

Payload

Writeback

Payload

R BTS 2D, NULL 1 block Height rows x

Width bytes

MSD1R_MB MH_MBM {Forbidden} {Forbidden} {1-31}

MDP_HW

The only surface type allowed is non-arrayed, non-mipmapped SURFTYPE_2D. Reads are allowed to

SURFTYPE_NULL and will return 0. More details on 2D surfaces used by this message are described in

Addressing 2D Media Surfaces in this volume.

See 2D Media Surface Formats in this volume for limitations on surface formats supported by this

message.

Block Width and Block Height

The layout of the read data payload depends on the Block Height, Block Width, Register Pitch, and Sub-

Register Offset. The upper left pixel is aligned to the least significant bits of the first register, and the

register pitch is equal to the next multiple of the Register Pitch Control and Data Width. Finally, the data

is aligned to the Sub-Register Offset of the first register.

The maximum Block Height is limited by the Block Width. The maximum packed data size supported in

this message is 64 Dwords (256 Bytes).When Register Pitch Control is 4 rows and the Block Width <= 8,

the maximum Block Height is additionally limited by the maximum allowed message response of 31 GRF

registers.

Block Width

(bytes)

Register Pitch

Control

Sub-Register

Offset

Block Height (rows)

Supported

Tile Modes

Supported

1-4 0 0,4,8,12,16,20,24,28 1 Linear, TileX,

TileY/YF/YS

2 0,4 1-64 Linear, TileX,

TileY/YF/YS

2 16,20 1-2 Linear, TileX,

TileY/YF/YS

4 0,4,8,12 1-62 Linear, TileX,

TileY/YF/YS

5-8 0 0,8,16,24 1 Linear, TileX,

TileY/YF/YS

2 0,8 1-32 Linear, TileX,

TileY/YF/YS

718 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Block Width

(bytes)

Register Pitch

Control

Sub-Register

Offset

Block Height (rows)

Supported

Tile Modes

Supported

4 0,8 1-31 Linear, TileX,

TileY/YF/YS

9-16 0 0,16 1 Linear, TileX,

TileY/YF/YS

2 16 1-16 Linear, TileX,

TileY/YF/YS

4 16 1-16 Linear, TileX,

TileY/YF/YS

17-32 2 0 1-8 Linear, TileX,

TileY/YF/YS

4 0 1-8 Linear, TileX,

TileY/YF/YS

Certain combinations of Register Pitch and Sub-Register Offset allow interleaving multiple rows into one

block. When only 1 GRF is being updated, then additional Sub-Register Offset combinations are

supported. The figures below illustrate for each of the block width cases, the layout of the rows in the

registers and which combinations of Register Pitch Control and Sub-Register Offset are supported.

Two-way Row Interleave into Registers

Doc Ref # IHD-OS-LKF-Vol 9-4.21 719

Four-way Row Interleave into Registers

720 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Merging Rows into 1 Register

Programming Note

Merged Media Block Read/Write Messages

• The surface base address must be 32-byte aligned.

• Pitch must be a multiple of 64 bytes when the surface is linear.

• For YUV422 formats, the block width and offset must be pixel pair aligned (i.e. DWord-aligned).

• The block width and offset should be aligned to the size of pixels stored in the surface. For a surface with

8bpp pixels for example, the block width and offset can be byte-aligned. For a surface with 16bpp pixels, it is

word-aligned.

Other Data Port Messages

This section describes the remaining data port messages that do not fit into one of the other groupings.

Read Surface Info Message

Addr

Align

Data

Widt

h R/W

Address

Model Surface Type

SIMD

Slots

Data

Eleme

nts SIMD Address Calculation

Bounds

Check

Execution

Mask

B B R BTS Any 1 1 Ignored Ignored

This message is used to determine information about a surface MIP level. It returns the surface format,

type, width, depth, height of the specified surface address.

The LOD is in-bounds if address payload's LOD < surface's MIPCount and if the surface's MinLOD +

address payload's LOD < 15. If the LOD is not in-bounds then 0 is returned for the width, height, and

depth values.

The execution mask is ignored. No bounds checking is performed on the U, V, or R address components

in the address payload.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 721

R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

Message

Specific

Descriptor

Message

Header

Address

Payload

Source

Payload

Writeback

Payload

R BTS Any 1 1 MSD_RSI {Forbidden} MAP32b_RSI {Forbidden} MDP_RSI

There is no message header for this message type.

The 64-bit Instruction Base Address returned in the Writeback Payload is specified as a 48-bit state base

address and is extended to 64 bits in HW, so SW can read it for conversion of 64-bit instruction pointers.

Memory Fence Message

Addr

Align

Data

Width R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

SIMD Address

Calculation

Bounds

Check

Execution

Mask

N/A N/A N/A BTS N/A N/A N/A N/A Ignored Ignored

N/A N/A N/A SLM N/A N/A N/A N/A Ignored Ignored

A memory fence message issued by a thread causes further messages issued by the thread to be blocked

until all previous data port messages have completed, or the results can be globally observed from the

point of view of other threads in the system. This includes both read and write messages.

The execution mask is ignored. No bounds checking is performed.

R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

Message Specific

Descriptor

Message

Header

Address

Payload

Source

Payload

Writeback

Payload

N/A BTS N/A N/A N/A MSD_MEMFENCE MH_IGNORE {Forbidden} {Forbidden} MDP_DW_SIMD8

N/A SLM N/A N/A N/A MSD_MEMFENCE MH_IGNORE {Forbidden} {Forbidden} MDP_DW_SIMD8

The memory fence message signals completion by returning data into the writeback register. The data

returned in the writeback register is undefined. When an instruction reads the writeback register value,

then this thread is blocked until all previous data port messages are globally observable. The writeback

register must be read before this thread sends another data port message.

A memory fence memory is typically performed prior to a Gateway Barrier message (which synchronizes

threads in a group) so that when the barrier releases the threads, each thread is ensured its next data

port message is ordered after the memory fence. See Read/Write Ordering in this volume for more

details.

Global observability of SLM memory means the SLM memory is visible to all the threads in the thread

group that have access to that memory. Global observability of the coherent L3 cache means that those

portions of the L3 cache are observable both to graphics threads and to the rest of the system. Global

observability of non-coherent L3 cache means those portions of the L3 cache are observable to graphics

threads but not necessarily to the rest of the system.

The memory fence message descriptor also has controls to flush (invalidate) various caches. These

controls are generally not used.

722 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Programming Note

Context: Memory Fence Message

• The L3 has a few different partitioning schemes. In some cases, RW data, Constant data and/or texture data

can be mixed in the same partition. If a flush is needed for any data type in the partition the entire partition

is flushed.

• When a cache flush control is specified to the L3 cache, the completion of the memory fence message does

not mean that the cache flush has completed. When a thread needs the flush to be completed before

continuing execution, the thread should issue a data port read or atomic operation (to any global address)

after the cache flush. The cache flush will be completed when this global memory read or atomic operation

completes.

URB Read/Write Messages

The URB read and write messages allow direct read/write accesses to the Unified Return Buffer used by

the 3D pipeline.

DWord URB Read/Write Messages

Addr

Align

Data

Width R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements SIMD Address Calculation

Bounds

Check

Execution

Mask

OW DW R/W URB BUFFER 8 {Chan 1-

16}

Handle→OW[GlobalOffset+Offset{Slot}].DW[chan] NA SM

For each SIMD8 slot, this message reads or writes up to 8 or 16 contiguous DWords starting at each

slot's offset.

The number of DWords to read is specified by RLEN in the message descriptor. The number of DWords

to write is specified by the MLEN in the message descriptor, after accounting for the message header

and address payloads.

The per-slot message offset address payload is optional. If present, it is added to the Global Offset in

the message descriptor to calculate the offset from the handle specified in the message header.

Masked write messages supply an additional address payload: the per-slot Channel Masks that control

which URB Dwords are written. The unmasked read and write messages do not supply a Channel Mask

address payload and access all the channels in the message.

The execution mask bits may disable all channel accesses on the corresponding SIMD slots.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 723

Applications:

• Write 3D shader kernel results to URB for next phase of 3D pipeline

• Read 3D attributes from URB for this 3D shader kernel

R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

Message

Specific

Descriptor Message Header Address Payload Source Payload

Writeback

Payload

R URB BUFFER SIMD8 {Chan 1-

8}

MSDUR_DWS MH_URB_HANDLE {opt} MAPU_SIMD8 {Forbidden} {Chan 1-8}

MDP_DW_SIMD8

W URB BUFFER SIMD8 {Chan 1-

8}

MSDUR_DWS MH_URB_HANDLE {opt} MAPU_SIMD8 {Chan 1-8}

MDP_DW_SIMD8

{Forbidden}

W URB BUFFER SIMD8 {Chan 1-

8)

MSDUW_MDWS MH_URB_HANDLE {opt} MAPU_SIMD8 +

MAPU_CMASK_SIMD8

{Chan 1-8}

MDP_DW_SIMD8

{Forbidden}

Message-Specific Descriptors

All the operations supported on the 4 data ports (Data Port 0, 1, 2, and RO), and over the 4 address

models (BTS, SLM, A32, A64) are described by the Message Descriptors.

All the message descriptors indicate whether a Message Header is present, and the Message Type. The

decoding of each message descriptor is specific to the message type and the data port it is sent to.

Data Port 0, 1, and RO usually provide a Binding Table Index (BTI) to specify a surface in the BTS address

model. The special entry 255 is used to reference Stateless A32 or A64 address model, and the special

entry 254 is used to reference the SLM address model.

The special entry 252 is used to reference bindless resource operation. When 252 is used, the surface is

identified by the SSO (Surface State Offset) field. That field is encoded in the SENDS instruction's

extended descriptor using indirect register addressing.

Data Port Bindless Surface Extended Message Descriptor

Entries 240-251 are reserved for future use.

Data Port 2 Message Descriptors

Data Port 2 messages do not have a BTI field, and encode that the access is to SLM based on the settings Message

Descriptor settings of the Message Header Present and SBSO (Sideband Scaled Offset) fields. The SBSO field is

encoded in the SENDS instruction's extended descriptor on bits [31:16].

Programming Restriction: The Sideband Scaled Offset must be zero. See Data Port 2 Sideband Scaled Offset

Workaround.

Data Port 2 Extended Message Descriptor

Data Port 0 Message Specific Descriptors

This section contains the message specific descriptors for Data Port 0.

MT_DP0 - Data Port 0 Message Types

724 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Scattered Read/Write Messages

Message Descriptor

MSD0R_BS - Byte Scattered Read MSD

MSD0W_BS - Byte Scattered Write MSD

MSD0R_DWS - Dword Scattered Read MSD

MSD0W_DWS - Dword Scattered Write MSD

Block Read/Write Messages

Message Descriptor

MSD0R_OWB - Oword Block Read MSD

MSD0W_OWB - Oword Block Write MSD

MSD0R_OWAB - Oword Aligned Block Read MSD

MSD0R_HWB - Scratch Block Read MSD

MSD0W_HWB - Scratch Block Write MSD

Other Data Port Messages

Message Descriptor

MSD_MEMFENCE - Memory Fence MSD

Data Port 1 Message Specific Descriptors

This section contains the message specific descriptors for Data Port 1.

MT_DP1 - Data Port 1 Message Types

A64 Scattered Read/Write

Descriptor

MSD1R_A64_BS - A64 Byte Scattered Read MSD

MSD1W_A64_BS - A64 Byte Scattered Write MSD

MSD1R_A64_DWS - A64 Dword Scattered Read MSD

MSD1W_A64_DWS - A64 Dword Scattered Write MSD

MSD1R_A64_QWS - A64 Qword Scattered Read MSD

MSD1W_A64_QWS - A64 Qword Scattered Write MSD

Doc Ref # IHD-OS-LKF-Vol 9-4.21 725

A64 Block Read/Write

Descriptor

MSD1R_A64_OWB - A64 Oword Block Read MSD

MSD1W_A64_OWB - A64 Oword Block Write MSD

MSD1R_A64_OWUB - A64 Oword Unaligned Block Read MSD

MSD1R_A64_HWB - A64 Hword Block Read MSD

MSD1W_A64_HWB - A64 Hword Block Write MSD

Surface Read/Write

Descriptor

MSD1R_US - Untyped Surface Read MSD

MSD1W_US - Untyped Surface Write MSD

MSD1R_A64_US - A64 Untyped Surface Read MSD

MSD1W_A64_US - A64 Untyped Surface Write MSD

MSD1R_TS - Typed Surface Read MSD

MSD1W_TS - Typed Surface Write MSD

Media Messages

Descriptor

MSD1R_TT - Media Transpose Read MSD

MSD1R_MB - Media Block Read MSD

MSD1W_MB - Media Block Write MSD

A32 Dword Untyped Atomic Operations

Descriptor

MSD1R_DWAI1 - Dword Untyped Atomic Integer Unary with Return Data Operation MSD

MSD1R_DWAI2 - Dword Untyped Atomic Integer Binary with Return Data Operation MSD

MSD1R_DWAI3 - Dword Untyped Atomic Integer Ternary with Return Data Operation MSD

MSD1W_DWAI1 - Dword Untyped Atomic Integer Unary Write Only Operation MSD

MSD1W_DWAI2 - Dword Untyped Atomic Integer Binary Write Only Operation MSD

MSD1R_DWAF2 - Dword Untyped Atomic Float Binary with Return Data Operation MSD

MSD1R_DWAF3 - Dword Untyped Atomic Float Ternary with Return Data Operation MSD

MSD1W_DWAF2 - Dword Untyped Atomic Float Binary Write Only Operation MSD

MSD1W_DWAF3 - Dword Untyped Atomic Float Ternary Write Only Operation MSD

726 Doc Ref # IHD-OS-LKF-Vol 9-4.21

A32 Dword Untyped Atomic Operations

A64 Dword Untyped Atomic Operations

Descriptor

MSD1R_A64_DWAI1 - A64 Dword Untyped Atomic Integer Unary with Return Data Operation MSD

MSD1R_A64_DWAI2 - A64 Dword Untyped Atomic Integer Binary with Return Data Operation MSD

MSD1R_A64_DWAI3 - A64 Dword Untyped Atomic Integer Ternary with Return Data Operation MSD

MSD1W_A64_DWAI1 - A64 Dword Untyped Atomic Integer Unary Write Only Operation MSD

MSD1W_A64_DWAI2 - A64 Dword Untyped Atomic Integer Binary Write Only Operation MSD

MSD1W_A64_DWAI3 - A64 Dword Untyped Atomic Integer Ternary Write Only Operation MSD

MSD1R_A64_DWAF2 - A64 Dword Untyped Atomic Float Binary with Return Data Operation MSD

MSD1R_A64_DWAF3 - A64 Dword Untyped Atomic Float Ternary with Return Data Operation MSD

MSD1W_A64_DWAF2 - A64 Dword Untyped Atomic Float Binary Write Only Operation MSD

MSD1W_A64_DWAF3 - A64 Dword Untyped Atomic Float Ternary Write Only Operation MSD

A64 Qword Untyped Atomic Operations

Descriptor

MSD1R_A64_QWAI1 - A64 Qword Untyped Atomic Integer Unary with Return Data Operation MSD

MSD1R_A64_QWAI2 - A64 Qword Untyped Atomic Integer Binary with Return Data Operation MSD

MSD1R_A64_QWAI3 - A64 Qword Untyped Atomic Integer Ternary with Return Data Operation MSD

MSD1W_A64_QWAI1 - A64 Qword Untyped Atomic Integer Unary Write Only Operation MSD

MSD1W_A64_QWAI2 - A64 Qword Untyped Atomic Integer Binary Write Only Operation MSD

MSD1W_A64_QWAI3 - A64 Qword Untyped Atomic Integer Ternary Write Only Operation MSD

Word Typed Atomic Operations

Dword Typed Atomic Operations

Descriptor

MSD1R_DWTAI1 - Dword Typed Atomic Integer Unary with Return Data Operation MSD

MSD1R_DWTAI2 - Dword Typed Atomic Integer Binary with Return Data Operation MSD

MSD1R_DWTAI3 - Dword Typed Atomic Integer Ternary with Return Data Operation MSD

MSD1W_DWTAI1 - Dword Typed Atomic Integer Unary Write Only Operation MSD

MSD1W_DWTAI2 - Dword Typed Atomic Integer Binary Write Only Operation MSD

MSD1W_DWTAI3 - Dword Typed Atomic Integer Ternary Write Only Operation MSD

Doc Ref # IHD-OS-LKF-Vol 9-4.21 727

Word Atomic Counter Operations

Dword Atomic Counter Operations

Descriptor

MSD1R_DWAC1 - Dword Atomic Counter Unary with Return Data Operation MSD

MSD1R_DWAC2 - Dword Atomic Counter Binary with Return Data Operation MSD

MSD1W_DWAC1 - Dword Atomic Counter Unary Write Only Operation MSD

MSD1W_DWAC2 - Dword Atomic Counter Binary Write Only Operation MSD

Data Port 2 Message Specific Descriptors

This section contains the message specific descriptors for Data Port 2.

MT_DP2 - Data Port 2 Message Types

A32 and SLM Scaled Read/Write

Message Descriptor

MSD2R_BS - Byte Scaled Read MSD

MSD2W_BS - Byte Scaled Write MSD

MSD2R_US - Scaled Untyped Surface Read MSD

MSD2W_US - Scaled Untyped Surface Write MSD

A64 Scaled Read/Write

Read-Only Data Port Message Specific Descriptors

This section contains the message specific descriptors for the Read-Only Data Port.

MT_DP_RO - Read-Only Data Port Message Types

 Block Read/WriteBlock Read/WriteBlock Read/Write

Message Descriptor

MSD_CC_DWS - Constant Cache Dword Scattered Read MSD

MSD_CC_OWB - Constant Cache Oword Block Read MSD

MSD_CC_OWUB - Constant Cache Oword Unaligned Block Read MSD

MSD_SC_OWUB - Sampler Cache Oword Unaligned Block Read MSD

MSD_SC_MB - Sampler Cache Media Block Read MSD

728 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Other Messages

Message Descriptor

MSD_RSI - Read Surface Info MSD

URB Data Port Message Specific Descriptors

This section contains the message specific descriptors for the URB Data Port SFID_URB.

URB Messages

Message Descriptor

MSDUR_DWS - URB Dword Read

MSDUW_DWS - URB Dword Write

MSDUW_MDWS - URB Masked Dword Write

Message Headers

Message Headers provide additional parameters used by the message. When present, the Header is 1

register and specifies a common set of parameters used by most of the data port’s messages. The

specific combinations supported are described in the Messages section.

Data Port 0 supports various block and scattered operations for the Read/Write data cache. The Data

Port 0 Message Header is programmed to provide:

Buffer Base

Address

A base address offset used for A32 stateless address models. The default value is 0 when the

message header is not present.

Global Offset

A Byte, DWord, or QWord offset that is added to base address offset to address the data operands.

The default value is 0 when the message header is not present.

Per Thread

Scratch Space

This is used for bounds checking by the data port operation, to guarantee that the address

calculation does not go outside of the range expected for this thread. The default value is the

maximum value (11) when the message header is not present.

The A64 Read/Write Block operation provides A64 Stateless operations on the Data Port 1 Read/Write

data cache. This special Data Port 1 Message Header is programmed to provide:

Block Offset 0

Block Offset 1

This specifies the 1 or 2 64-bit addresses used for the A64 stateless address model.

HWord Channel Mode This controls how channel execution masks are interpreted for HWord operations.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 729

Surface and atomic operations, both untyped and typed, are provided on Data Port 1 for the Read/Write

data cache. This Message Header is programmed to provide:

Message Header Fields for Data Port 1

Buffer Base

Address

A base address used for SLM and A32 stateless address models. The default value is 0 when

the message header is not present.

Data Port 0 Message Headers

This section contains the message headers for Data Port 0.

Message Header

MH_BTS_GO - Block Message Header

MH_A32_GO - Stateless Block Message Header

MH_A32_HWB - Scratch Hword Block Message Header

MH_IGNORE - Ignored Message Header

Data Port 1 Message Headers

This section contains the message headers for Data Port 1.

Message Header

MH_A64_OWB - A64 Oword Block Message Header

MH_A64_HWB - A64 Hword Block Message Header

MH1_A32 - Stateless Surface Message Header

MH_T - Transpose Message Header

MH_MB - Normal Media Block Message Header

MH_MBBM - Byte Masked Media Block Message Header

MH_MBM - Merged Media Block Message Header

Message Address Payloads

The next sections describe all the supported formats of the Address Payloads.

Message Address Payloads are packed into registers based on the address model, surface type, and the

SIMD size. The number of registers used by an address payload is 1, 2, 4, or 5.

32 Bit Address Payloads

Address Payload

MAP32b_SIMD8 - SIMD8 32-Bit Address Payload

MAP32b_SIMD16 - SIMD16 32-Bit Address Payload

730 Doc Ref # IHD-OS-LKF-Vol 9-4.21

64 Bit Address Payloads

Address Payload

MAP64b_SIMD8 - SIMD8 64-Bit Address Payload

MAP64b_SIMD16 - SIMD16 64-Bit Address Payload

32 Bit Untyped Surface Address Payloads

Address Payload

MAP32b_USU_SIMD8 - SIMD8 Untyped BUFFER Surface 32-Bit Address Payload

MAP32b_USU_SIMD16 - SIMD16 Untyped BUFFER Surface 32-Bit Address Payload

MAP32b_USUV_SIMD8 - SIMD8 Untyped STRBUF Surface 32-Bit Address Payload

MAP32b_USUV_SIMD16 - SIMD16 Untyped STRBUF Surface 32-Bit Address Payload

64 Bit Untyped Surface Address Payloads

Address Payload

MAP64b_USU_SIMD8 - SIMD8 Untyped BUFFER Surface 64-Bit Address Payload

MAP64b_USU_SIMD16 - SIMD16 Untyped BUFFER Surface 64-Bit Address Payload

32 Bit Typed Surface Address Payloads

Address Payload

MAP32b_TS_SIMD8 - SIMD8 Typed Surface 32-Bit Address Payload

MAP32b_MSAA_TS_SIMD8 - SIMD8 MSAA Typed Surface 32-Bit Address Payload

MAP32b_RSI - Read Surface Info 32-Bit Address Payload

URB Address Payloads

Address Payload

MAPU_SIMD8 - SIMD8 URB Offset Message Address Payload

MAPU_CMASK_SIMD8 - SIMD8 URB Channel Mask Message Address Payload

Message Data Payloads

The next sections describe the all the supported formats of Data Payloads.

Message Data Payloads are packed into registers based on the width of the data and on the SIMD size.

The supported data payloads are 1, 2, 4, or 8 registers.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 731

Oword Block Data Payloads

Payload

MDP_OW1L - Lower Oword Block Data Payload

MDP_OW1U - Upper Oword Block Data Payload

MDP_OW2 - Oword 2 Block Data Payload

MDP_OW4 - Oword 4 Block Data Payload

MDP_OW8 - Oword 8 Block Data Payload

Hword Block Data Payloads

Payload

MDP_HW1 - Hword 1 Block Data Payload

MDP_HW2 - Hword 2 Block Data Payload

MDP_HW4 - Hword 4 Block Data Payload

MDP_HW8 - Hword 8 Block Data Payload

Word SIMD Data Payloads

Dword SIMD Data Payloads

Payload

MDP_DW_SIMD8 - Dword SIMD8 Data Payload

MDP_DW_SIMD16 - Dword SIMD16 Data Payload

Qword SIMD Data Payloads

Payload

MDP_QW_SIMD8 - Qword SIMD8 Data Payload

MDP_QW_SIMD16 - Qword SIMD16 Data Payload

SIMD Atomic Operation Data Payloads

Payload

MDP_AOP8_DW2 - Dword SIMD8 Atomic Operation CMPWR Message Data Payload

MDP_AOP16_DW2 - Dword SIMD16 Atomic Operation CMPWR Message Data Payload

MDP_AOP8_QW1 - Qword SIMD8 Atomic Operation Return Data Message Data Payload

MDP_AOP16_QW1 - Qword SIMD16 Atomic Operation Return Data Message Data Payload

MDP_AOP8_QW2 - Qword SIMD8 Atomic Operation CMPWR8B Message Data Payload

MDP_AOP16_QW2 - Qword SIMD16 Atomic Operation CMPWR8B Message Data Payload

MDP_A64_AOP8_QW2 - Qword SIMD8 Atomic Operation CMPWR Message Data Payload

MDP_A64_AOP8_OW2 - Oword A64 SIMD8 Atomic Operation CMPWR16B Message Data Payload

732 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Other Data Payloads

Payload

MDP_RSI - Read Surface Info Data Payload

MDP_TileW_SIMD8 - TileW SIMD8 Data Payload

Common Message Descriptor Controls

Many messages are related and share a common set of control fields. For example, many read and write

operations use the same Message Specific Controls in their message descriptor. These common fields are

described in the next sections.

Binding Table Index Message Descriptor Control Fields

Field

MDC_BTS - Surface Binding Table Index Message Descriptor Control Field

MDC_STATELESS - Stateless Binding Table Index Message Descriptor Control Field

MDC_BTS_A32 - Surface or Stateless Binding Table Index Message Descriptor Control Field

MDC_BTS_SLM_A32 - Any Binding Table Index Message Descriptor Control Field

Header Present Message Descriptor Control Fields

Field

MDC_MHP - Header Present Message Descriptor Control Field

MDC_MHR - Header Required Message Descriptor Control Field

MDC_MHF - Header Forbidden Message Descriptor Control Field

MDC_A32_MHP - A32 Scaled Header Present Message Descriptor Control Field

MDC_A64_MHP - A64 Scaled Header Present Message Descriptor Control Field

Data Blocks Message Descriptor Control Fields

Field

MDC_DB_OW - Oword Data Blocks Message Descriptor Control Field

MDC_DB_OWD - Oword Dual Data Blocks Message Descriptor Control Field

MDC_DB_HW - Hword Register Blocks Message Descriptor Control Field

MDC_A64_DB_OW - A64 Oword Data Blocks Message Descriptor Control Field

MDC_A64_DB_HW - A64 Hword Data Blocks Message Descriptor Control Field

MDC_DS - Data Size Message Descriptor Control Field

MDC_A64_DS - A64 Data Size Message Descriptor Control Field

Doc Ref # IHD-OS-LKF-Vol 9-4.21 733

SIMD Mode Message Descriptor Control Fields

Field

MDC_SM3 - SIMD Mode 3 Message Descriptor Control Field

MDC_SM3S - Subset SIMD Mode 3 Message Descriptor Control Field

MDC_SM2 - SIMD Mode 2 Message Descriptor Control Field

MDC_SM2R - Reversed SIMD Mode 2 Message Descriptor Control Field

MDC_SM2S - Subset SIMD Mode 2 Message Descriptor Control Field

MDC_SG3 - Slot Group 3 Message Descriptor Control Field

MDC_SG2 - Slot Group 2 Message Descriptor Control Field

Atomic Operation Message Descriptor Control Fields

Field

MDC_AOP1 - Atomic Integer Unary Operation Message Descriptor Control Field

MDC_AOP2 - Atomic Integer Binary Operation Message Descriptor Control Field

MDC_AOP3 - Atomic Integer Ternary Operation Message Descriptor Control Field

MDC_AOP3S - Subset Atomic Integer Ternary Operation Message Descriptor Control Field

MDC_FOP2 - Atomic Float Binary Operation Message Descriptor Control Field

MDC_FOP3 - Atomic Float Ternary Operation Message Descriptor Control Field

Other Message Descriptor Control Fields

Field

MDC_IAR - Invalidate After Read Message Descriptor Control Field

MDC_CMODE - Channel Mode Message Descriptor Control Field

MDC_CMASK - Channel Mask Message Descriptor Control Field

MDC_UW_CMASK - Untyped Write Channel Mask Message Descriptor Control Field

MDC_A32_SBSO - A32 Sideband Scale and Offset Enable Message Descriptor Control Field

MDC_VLSO - Vertical Line Stride Override Message Descriptor Control Field

Common Message Payload Controls

Some message headers and payloads are related and share a common set of control fields. These

common payload fields are described below.

Header Controls

Control

MHC_FFTID - FFTID Message Header Control

MHC_A32_BBA - A32 Buffer Base Address Message Header Control

MHC_A64_CMODE - Hword Channel Mode Message Header Control

734 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Control

MHC_BDIM - Block Dimensions Message Header Control

MHC_MB_CONTROL - Normal Media Block Message Header Control

MHC_MBBM_CONTROL - Byte Masked Media Block Message Header Control

MHC_MBM_CONTROL - Merged Media Block Message Header Control

MHC_PTSS - Per Thread Scratch Space Message Header Control

Address Controls

Control

MACR_32b - SIMD 32-Bit Address Payload Control

MACR_64b - SIMD 64-Bit Address Payload Control

MACD_LOD - LOD Message Address Payload Control

MACR_LOD_SIMD8 - SIMD8 LOD Message Address Payload Control

MACD_MSAA_SN - MSAA Sample Number Message Address Control

Data Controls

Control

MDCR_DW - Dword Data Payload Register

MDCR_QW - Qword Data Payload Register

MDCR_OW - Oword Data Payload Register

MDCD_TileW - TileW SIMD8 Data Control Dword

URB Controls

Control

MACD_URB_CMASK - URB Channel Mask Payload Control

MHC_URB_HANDLE - URB Handle Message Header Control

Pixel Data Port

The pixel data port allows read/write accesses to render targets. Render target is cached in Render Color

Cache (RCC). Auxiliary Surafce (a.k.a Control Surface) i.e. MCS buffer corresponding to a render target is

cached in MSC. Messages on O-bus with Shared Function ID = Render Target (RCC) are routed to Pixel

Dataport.

The diagram below shows how the Pixel Data Port connects with the caches and memory subsystem. The

execution units and sampling engine are shown for clarity.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 735

Pixel Data Port Connection to Memory

Render Target

This section describes the Render Target as pixel output from the Pixel Shader stage in the 3D Pipeline.

End of Thread Usage

Render Target data port messages may not have the End of Thread bit set in the message descriptor

other than the following exceptions:

The Render Target Write message may have End of Thread set for pixel shader threads dispatched by the

windower in non-contiguous dispatch mode.

Programming Note

Context: End of Thread Usage

When Dispatch Rate is Coarse and the Shader converts to Pixel Phases, the EOT message is required with masks

being zero after all the phases.

Bounds Checking

Read and write accesses to pixels outside of the surface are considered out-of-bounds. However, if only

the Render Target Array Index is out of bounds and the rest of the access is in-bounds, then the index

is set to zero and the read or write surface access is considered in-bounds.

736 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Writes that are out-of-bounds are suppressed and do not modify memory contents. If an in-bounds pixel

component is missing due to the Surface Format, the write is suppressed. If an in-bounds pixel

component is masked off (Pixel Sample Mask bit is zero), the write is suppressed.

Reads that are out-of-bounds are suppressed and return zero for all components. If an in-bounds pixel

component is missing due to the Surface Format, a zero is returned for RGB and a 1.0 is returned for

Alpha. A surface read is performed on any in-bounds pixel where the component is present in the

Surface Format, regardless of whether it is masked off (Pixel Sample Mask bit is zero). All render target

reads, in-bounds or out-of-bounds, modify the GRF.

Render Target Fast Clear

Fast clear of the render target is performed by setting the Render Target Fast Clear Enable field in

3DSTATE_PS and rendering a rectangle the size of the rectangle is related to the size of the MCS.

The following is required when performing a render target fast clear:

• The render target(s) is/are bound as they normally would be, with the MCS surface defined in

SURFACE_STATE.

• A rectangle primitive of the same size as the MCS surface is delivered.

• The pixel shader kernel requires no attributes and delivers a value of 0xFFFFFFFF in all channels of

the render target write message The replicated color message should be used.

• Depth Test Enable, Depth Buffer Write Enable, Stencil Test Enable, Stencil Buffer Write

Enable, and Alpha Test Enable must all be disabled.

• After Render target fast clear, pipe-control with color cache write-flush must be issued before

sending any DRAW commands on that render target.

• Pixel shader is not required for fast clearing render target

How to handle steps 1&2 properly:

• SW must store clear color using MI_STORE_DATA_IMM.

• No further synchronization is required.

• SW must store clear color using two MI_ATOMIC commands using inline data mode,

with AtomicOpcode set to MOV8B (0x24), ReturnDataControl and CsStall set to true on the last of those

MI_ATOMIC, and false on the others.

• If ClearValueAllocation was previously read (either with sampler reading this surface with

ClearValueAddressEnable or with FastClear operation using Clear Color Conversion feature) SW must

invalidate TextureCache with proper PIPE_CONTROL

Render Target Resolve

If the MCS is enabled on a non-multisampled render target, the render target must be resolved before

being used for other purposes (display, texture, CPU lock) The clear value from SURFACE_STATE is written

into pixels in the render target indicated as clear in the MCS. This is done by setting the Render Target

Resolve Enable field in 3DSTATE_PS and rendering a full render target sized rectangle. Once this is

Doc Ref # IHD-OS-LKF-Vol 9-4.21 737

complete, the render target will contain the same contents as it would have had the rendering been

performed with MCS surface disabled. In a typical usage model, the render target(s) need to be resolved

after rendering and before using it as a source for any consecutive operation.

When performing a render target resolve, PIPE_CONTROL with end of pipe sync must be delivered.

The Resolve Rectangle size is same as Clear Rectangle size.

Programming Note

Context: Render Target Resolve

• Depth Test Enable, Depth Buffer Write Enable, Stencil Test Enable, Stencil Buffer Write Enable, and

Alpha Test Enable must all be disabled.

• This render target resolve procedure is not supported on multisampled render targets. Unresolved

multisampled render targets are directly supported by the sampling engine, which resolves clear values in

addition to decompressing the surface This applies to both ld2dms and sample2dms messages.

Execution Mask

For Render Target Write messages, either the message header Pixel Sample Mask or the channel

execution mask is used to control the pixel write operations. If the Message Header is present, then the

Pixel Sample Mask is used and the channel execution mask is ignored. If the Message Header is not

present, then the channel execution mask is used in place of the Pixel Sample Mask.

For Render Target Read messages, the channel execution mask is used to control GRF write operations.

The message returns zeroes for samples not covered by current pixel coverage mask or samples outside

of MSAA index range.

Flushing the Render Cache

The render cache can be flushed via PIPE_CONTROL command with “Render Target Cache Flush” bit set.

Typically, end of pipe synchronization that requires render targets to be made visible to Sampler or CPU

or Display should use this mechanism to flush render cache. With the Render Target Cache Flush feature,

some cases do require flushing render cache as mentioned in the respective feature’s sections.

Multiple Render Targets (MRT)

Pixel Shader can output more than one color. Each color is accessed with a separate Render Target Write

message, each with a different surface indicated (different binding table index). In this Multiple Render

Target (MRT) case, depth buffer and stencil buffer are updated only by the message(s) to the last render

target, indicated by the Last Render Target Select bit set to clear the pixel scoreboard bits.

MRT is not supported when one or more RTs have these surface formats: YCRCB_SWAPUVY,

YCRCB_SWAPUV, YCRCB_SWAPY, or YCRCB_NORMAL.

MCS/CCS Buffers for Render Target(s)

Lossless Color Compression on Render target can be enabled for the purposes described below:

738 Doc Ref # IHD-OS-LKF-Vol 9-4.21

1. MMIO bit Cache Mode 1 (0x7004) register bit 5

2. MMIO bit Cache Mode 1 (0x7004) register bit 15

3. RT surface state (Auxiliary Surface Mode[2:0])

Note: Lossless Color Compression can only be applied to Surfaces which are TileY, TileYs, or TileYf.

The following table summarizes modes of operation related to the Lossless Color Compression on

Render target:

Cache Mode 1

MMIO Bit 5

 (Please refer to

Vol 1c)

Auxiliary Surface

Mode

 Surface State

Cache Mode 1

MMIO Bit 15

 (Please refer to

Vol 1c) Operation

1 X X Normal mode of operation i.e. no MSAA

compression and no color clear

0 AUX_NONE (0h) X Normal mode of operation i.e. no MSAA

compression and no color clear

0 AUX_CCS_D (1h) X Depending on the Number of multi-samples,

either MCS or CCS is enabled.

 No MSAA or Color Compression is enabled.

0 AUX_CCS_E

 (5h)

1 Depending on the Number of multi-samples,

either MCS or CCS is enabled.

 For Number of multi-samples > 1 MSAA

Compression is enabled.

 For Number of multi-samples = 1 Color

Compression is disabled.

0 AUX_CCS_E

 (5h)

0 Depending on the Number of multi-samples,

either MCS or CCS is enabled.

 For Number of multi-samples > 1 MSAA

Compression is enabled.

 For Number of multi-samples = 1 Color

Compression is enabled.

MSAA Width of Clear Rect Height of Clear Rect

2x Ceil(1/8*width) Ceil(1/2*height)

4X Ceil(1/8*width) Ceil(1/2*height)

8X Ceil(1/2*width) Ceil(1/2*height)

16X width Ceil(1/2*height)

• MSAA Compression: Multi-sample render target is bound to the pipeline and MSAA compression

feature is enabled. In this case, MCS buffer stores the information required for MSAA compression

algorithm. The size and layout of the MCS buffer is based on per-pixel RT. For 4X and 8X MSAA,

MCS buffer element is 8bpp and 32bpp respectively. Height, width, and layout of MCS buffer in

this case must match with Render Target height, width, and layout. MCS buffer is tiledY. When

MCS buffer is enabled and bound to MSRT, it is required that it is cleared prior to any rendering. A

Doc Ref # IHD-OS-LKF-Vol 9-4.21 739

clear value can be specified optionally in the surface state of the corresponding RT. Clear pass for

this case requires that scaled down primitive is sent down with upper left coordinate to coincide

with actual rectangle being cleared. For MSAA, clear rectangle’s height and width need to as show

in the following table in terms of (width, height) of the RT. MCS Buffer only Supports TileY mode.

• Fast Color Clear: When non multi-sample render target is bound to the pipeline and MCS buffer is

enabled, MCS buffer is used as an intermediate (coarse granular) buffer per RT. Hence, MCS buffer

is used to improve render target clear. When MCS is buffer is used for color clear of non-

multisampler render target, the following restrictions apply:

Color Clear of Non-MultiSampler Render Target Restrictions

Restrictions

Support is limited to tiled render targets.

They are supported with MCS buffer layout with these alignments in the RT space: Horizontal Alignment = 128 and

Vertical Alignment = 64.

MCS and Lossless compression is supported for TiledY/TileYs/TileYf non-MSRTs only.

Clear is supported only on the full RT; i.e., no partial clear or overlapping clears.

Fast clear to 0 is not supported for MSAA > 1x

The following tables describe the RT alignment:

TiledY RT CL Pixels Lines

bpp

32 8 4

64 4 4

128 2 4

TiledX RT CL Pixels Lines

bpp

32 16 2

64 8 2

128 4 2

CCS buffer (non-MSRT) is supported only for RT formats 32bpp, 64bpp, and 128bpp.

Clear pass must have a clear rectangle that must follow alignment rules in terms of pixels and lines as shown in the

table below. Further, the clear-rectangle height and width must be multiple of the following dimensions. If the

height and width of the render target being cleared do not meet these requirements, an MCS buffer can be created

such that it follows the requirement and covers the RT.

RT Pixel Blocks Per CCS CL: This is supposed to be used for sizing the CCS Surface.

TiledY RT Pixels Lines

bpp

32 128 64

64 64 64

740 Doc Ref # IHD-OS-LKF-Vol 9-4.21

TiledY RT Pixels Lines

128 32 64

To optimize the performance MCS buffer (when bound to 1X RT) clear similarly to MCS buffer clear for

MSRT case, clear rect is required to be scaled by the following factors in the horizontal and vertical

directions:

MCS CL for TiledY RCC Horizontal Scale Down Factor Vertical Scale Down Factor

bpp

32 64 32

64 32 32

128 16 32

The following SW requirements for MCS buffer clear functionality apply in addition to the general SW requirements

listed below:

• For non-MSRTs, loss less compression of render targets is supported for 32, 64, and 128 bpp surfaces as

described in the Shared Functions Data Port under Render Target Write. Lossless RT compression can be

enabled for each RT surface with auxiliary surface control bits as described in the Surface State. This feature

changes the MSC layout for various tiled and BPP formats as described in above sections. Fast clear, render,

and resolve operations are fundamentally the same. Since Sampler support reading this auxiliary (MCS)

buffer for non-MSRTs, resolve passes can be avoided in the cases when fast cleared and possibly

compressed RTs are consumed by the sampler.

• SW does not need to compile any PS for clear and resolve passes but must ensure that PS dispatch enable

bit is set.

Any transition from any value in {Clear, Render, Resolve} to a different value in {Clear, Render, Resolve}

requires end of pipe synchronization.

The following are the general SW requirements for MCS buffer clear functionality:

• At the time of Render Target creation, SW needs to create clear-buffer, i.e., MCS buffer.

• At the clear time, clear value for that RT must be programmed and clear enable bit must be set in

the surface state of the corresponding RT.

• SW must clear the RT with setting a RT clear bit set in the PS state during the clear pass as

described in the following sub-section.

• Since only one RT is bound with a clear pass, only one RT can be cleared at a time. To clear

multiple RTs, multiple clear passes are required.

• If Software wants to enable Color Compression without Fast clear, Software needs to initialize MCS

with zeros.

• Before binding the “cleared” RT to texture OR honoring a CPU lock OR submitting for flip, SW must

ensure a resolve pass. Such a resolve pass is described in the following sub-section.

Accessing Render Target

The final results of pixel shaders are written to either UAV surfaces or to Render target surfaces. Render

targets support a large set of surface formats (refer to Render Target Surfaces for details) with hardware

Doc Ref # IHD-OS-LKF-Vol 9-4.21 741

conversion from the format delivered by the thread. The render target message processing in HW

includes format conversion, alpha-test, alpha-to-coverage, depth/stencil tests, blending and logop

depending on various states.

The render target read/write messages are specifically for the use of pixel shader threads spawned by the

Pixel Shader Dispatch(PSD), and may not be used by any other thread types.

Message Common Control Fields

The following data tables describe common control fields used in the Render Target message

descriptors.

MDC_RT_SGS - Slot Group Select Render Cache Message Descriptor Control Field

Message Headers

The render target messages use a two-register message header.

If the header is not present, the behavior is as if the message was sent with most fields set to the same

value that was delivered in R0 and R1 on the pixel shader thread dispatch. The following fields, which are

not delivered in the pixel shader dispatch, behave as if they are set to zero:

Render Target Index

Source0 Alpha Present to Render Target

Additionally, Render Target Read messages must include a header.

MH_RT - Render Target Message Header

Render Target Specific Extended Message Descriptor

All Render Target Read and Write messages use same format of Extended Message Descriptor:

Extended Message Descriptor Render Target

Render Target Message Specific Descriptors

This section contains various registers for message specific descriptors.

MT_DP_RT - Render Data Port Message Types

MSD_RTW_SIMD16 - SIMD16 Render Target Write MSD

MSD_RTW_REP16 - REP16 Render Target Write MSD

MSD_RTW_HI8DS - HI8DS Render Target Write MSD

MSD_RTW_LO8DS - LO8DS Render Target Write MSD

MSD_RTW_SIMD8 - SIMD8 Render Target Write MSD

MSD_RTR_SIMD16 - SIMD16 Render Target Read MSD

MSD_RTR_SIMD8 - SIMD8 Render Target Read MSD

MSD_RTWH_SIMD16 - Half Precision SIMD16 Render Target Write MSD

MSD_RTWH_REP16 - Half Precision REP16 Render Target Write MSD

742 Doc Ref # IHD-OS-LKF-Vol 9-4.21

MSD_RTWH_HI8DS - Half Precision HI8DS Render Target Write MSD

MSD_RTWH_LO8DS - Half Precision LO8DS Render Target Write MSD

MSD_RTWH_SIMD8 - Half Precision SIMD8 Render Target Write MSD

Render Target Surfaces

This section contains information on render target surface types and surface formats.

Render Target Surface Types

All surface types, except SURFTYPE_STRBUF, are allowed.

For SURFTYPE_BUFFER and SURFTYPE_1D surfaces, only the X coordinate is used to index into the

surface. The Y coordinate must be zero.

For SURFTYPE_1D, 2D, 3D, and CUBE surfaces, a Render Target Array Index is included in the input

message to provide an additional coordinate. The Render Target Array Index must be zero for

SURFTYPE_BUFFER.

The surface format is restricted to the set supported as render target. If source/dest color blend is

enabled on Render Target Write message, the surface format is further restricted to the set supported as

alpha blend render target.

Cannot be used on a surface in field mode (Vertical Line Stride = 1).

Render Target Write Surface Formats

The following table indicates the surface formats supported by the Render Target Write message. All

Render Target formats supported for Render Target Writes are also supported for Render Target Reads,

except YCRCB formats.

The table lists the Surface Formats supported for reading and/or writing of Render Targets. For blending

operations, the named Projects support color blending on the listed Surface Formats.

Surface Formats for Render Target Messages

Surface Format Name Color Blend Support Message Type Support Lossless Compression Support

R32G32B32A32_FLOAT All Read/Write All

R32G32B32A32_SINT Not Supported Read/Write All

R32G32B32A32_UINT Not Supported Read/Write All

R32G32B32X32_FLOAT Read/Write

R16G16B16A16_UNORM All Read/Write All

R16G16B16A16_SNORM All Read/Write All

R16G16B16A16_SINT Not Supported Read/Write All

R16G16B16A16_UINT Not Supported Read/Write All

R16G16B16A16_FLOAT All Read/Write All

R32G32_FLOAT All Read/Write All

Doc Ref # IHD-OS-LKF-Vol 9-4.21 743

Surface Format Name Color Blend Support Message Type Support Lossless Compression Support

R32G32_SINT Not Supported Read/Write All

R32G32_UINT Not Supported Read/Write All

R16G16B16X16_FLOAT All Read/Write All

B8G8R8A8_UNORM All Read/Write All

B8G8R8A8_UNORM_SRGB All Read/Write

R10G10B10A2_UNORM All Read/Write

R10G10B10A2_UINT Not Supported Read/Write

R8G8B8A8_UNORM All Read/Write All

R8G8B8A8_UNORM_SRGB All Read/Write

R8G8B8A8_SNORM All Read/Write All

R8G8B8A8_SINT Not Supported Read/Write All

R8G8B8A8_UINT Not Supported Read/Write All

R16G16_UNORM All Read/Write All

R16G16_SNORM All Read/Write All

R16G16_SINT Not Supported Read/Write All

R16G16_UINT Not Supported Read/Write All

R16G16_FLOAT All Read/Write All

B10G10R10A2_UNORM All Read/Write

B10G10R10A2_UNORM_SRGB All Read/Write

R10G10B10_FLOAT_A2_UNORM Read/Write

R11G11B10_FLOAT All Read/Write

R32_SINT Not Supported Read/Write All

R32_UINT Not Supported Read/Write All

R32_FLOAT All Read/Write All

B8G8R8X8_UNORM All Read/Write All

B8G8R8X8_UNORM_SRGB All Read/Write

B5G6R5_UNORM All Read/Write

B5G6R5_UNORM_SRGB All Read/Write

B5G5R5A1_UNORM All Read/Write

B5G5R5A1_UNORM_SRGB All Read/Write

B4G4R4A4_UNORM All Read/Write

B4G4R4A4_UNORM_SRGB All Read/Write

R8G8_UNORM All Read/Write

R8G8_SNORM All Read/Write

R8G8_SINT Not Supported Read/Write

R8G8_UINT Not Supported Read/Write

R16_UNORM All Read/Write

744 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Surface Format Name Color Blend Support Message Type Support Lossless Compression Support

R16_SNORM All Read/Write

R16_SINT Not Supported Read/Write

R16_UINT Not Supported Read/Write

R16_FLOAT All Read/Write

B5G5R5X1_UNORM All Read/Write

B5G5R5X1_UNORM_SRGB All Read/Write

A1B5G5R5_UNORM All Read/Write

A4B4G4R4_UNORM All Read/Write

R8_UNORM All Read/Write

R8_SNORM All Read/Write

R8_SINT Not Supported Read/Write

R8_UINT Not Supported Read/Write

A8_UNORM All Read/Write

YCRCB_NORMAL Not Supported Write Not Supported

YCRCB_SWAPUVY Not Supported Write Not Supported

YCRCB_SWAPUV Not Supported Write Not Supported

YCRCB_SWAPY Not Supported Write Not Supported

Subspan/Pixel to Slot Mapping

The mapping of subspans, pixels, and samples to slots in the pixel shader dispatch depends on the

number of samples and message size.

Pixels are numbered as follows within a subspan:

0 = upper left

1 = upper right

2 = lower left

3 = lower right

sspi = Starting Sample Pair Index (from the message header)

Doc Ref # IHD-OS-LKF-Vol 9-4.21 745

Slot Mapping

Dispatch Size Num Samples

Slot Mapping

 (SSPI = Starting Sample Pair Index)

SIMD32 1X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]

Slot[11:8] = Subspan[2].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[3].Pixel[3:0].Sample[0]

Slot[19:16] = Subspan[4].Pixel[3:0].Sample[0]

Slot[23:20] = Subspan[5].Pixel[3:0].Sample[0]

Slot[27:24] = Subspan[6].Pixel[3:0].Sample[0]

Slot[31:28] = Subspan[7].Pixel[3:0].Sample[0]

2X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[1].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[1].Pixel[3:0].Sample[1]

Slot[19:16] = Subspan[2].Pixel[3:0].Sample[0]

Slot[23:20] = Subspan[2].Pixel[3:0].Sample[1]

Slot[27:24] = Subspan[3].Pixel[3:0].Sample[0]

Slot[31:28] = Subspan[3].Pixel[3:0].Sample[1]

4X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[3]

Slot[19:16] = Subspan[1].Pixel[3:0].Sample[0]

Slot[23:20] = Subspan[1].Pixel[3:0].Sample[1]

Slot[27:24] = Subspan[1].Pixel[3:0].Sample[2]

Slot[31:28] = Subspan[1].Pixel[3:0].Sample[3]

8X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[3]

746 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Dispatch Size Num Samples

Slot Mapping

 (SSPI = Starting Sample Pair Index)

Slot[19:16] = Subspan[0].Pixel[3:0].Sample[4]

Slot[23:20] = Subspan[0].Pixel[3:0].Sample[5]

Slot[27:24] = Subspan[0].Pixel[3:0].Sample[6]

Slot[31:28] = Subspan[0].Pixel[3:0].Sample[7]

SIMD16 1X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]

Slot[11:8] = Subspan[2].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[3].Pixel[3:0].Sample[0]

2X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[1].Pixel[3:0].Sample[0]

Slot[15:12] = Subspan[1].Pixel[3:0].Sample[1]

4X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[3]

8X
Dispatch[i]: (i=0, 2)

SSPI = i

Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[SSPI*2+2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[SSPI*2+3]

16x
Dispatch[i]: (i=0, 2, 4, 6)

SSPI = i

Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]

Slot[11:8] = Subspan[0].Pixel[3:0].Sample[SSPI*2+2]

Slot[15:12] = Subspan[0].Pixel[3:0].Sample[SSPI*2+3]

Doc Ref # IHD-OS-LKF-Vol 9-4.21 747

Dispatch Size Num Samples

Slot Mapping

 (SSPI = Starting Sample Pair Index)

SIMD8 1X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[1].Pixel[3:0].Sample[0]

2X
Slot[3:0] = Subspan[0].Pixel[3:0].Sample[0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[1]

4X
Dispatch[i]: (i=0..1)

 SSPI = i

Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]

8X
Dispatch[i]: (i=0, 1, 2, 3)

 SSPI = i

Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]

16x
Dispatch[i]: (i=0, 1, 2, 3, 4, 5, 6, 7)

 SSPI = i

Slot[3:0] = Subspan[0].Pixel[3:0].Sample[SSPI*2+0]

Slot[7:4] = Subspan[0].Pixel[3:0].Sample[SSPI*2+1]

Programming Note

Context: Render Target Surfaces

• When SIMD32 or SIMD16 PS threads send render target writes with multiple SIMD8 and SIMD16 messages,

the following must hold:

• All the slots (as described above) must have a corresponding render target write irrespective of the slot's

validity. A slot is considered valid when at least one sample is enabled. For example, a SIMD16 PS thread

must send two SIMD8 render target writes to cover all the slots.

Render Target Messages

The message operations on Render Cache Data Port use the same interface as the other data port

messages. The message’s Descriptor is sent to the target data port on a message sideband bus, and the

other parts are sequentially transmitted between the data port and EU registers across the OBUS. The

total number of registers sent and received by the data port is provided to the data port on the message

sideband bus.

748 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Descriptor
Describes the Message Type, the Message Specific Controls, and whether a

Message Header is present. The Message Descriptor and the destination Data Port

(SFID) are encoded as part of the send instruction.

Header
When present, provides additional Message specific controls. The message header

is optional for some Render Target messages. When present, it is a 2-register

payload.

Source Payload
Provides source data for write operations operations.

Writeback Payload
Returns result data for read operations operations.

The next sections describe all of the supported formats for the Source and Writeback Data Payloads, the

Message Descriptors, and their Message Headers.

Message Summary tables describe the parameters and characteristics of the Render Target data port

messages, following the notational conventions used in Message Formats.

Message-Specific Descriptors

The Render Cache data port has only 2 message types: Render Target Write and Render Target Read. The

Render Target Write message type has 5 subtype operations. The Render Target Read message type has

2 subtype operations. The specific message descriptors for these messages are below.

Render Target Write Message

Addr

Align

Data

Widt

h R/W

Address

Model Surface Type

SIMD

Slots

Data

Elemen

ts SIMD Address Calculation

Bounds

Check

Executio

n Mask

DW DW W BTS 1D, 2D, 3D, CUBE,

BUFFER

8, 16 1 (Surface[U, V, R, LOD])→SurfaceFormat[Slot] Surface RTPSM

This message writes 8 or 16 pixels to a render target. Depending on parameters contained in the

message and state, it may also perform a depth and stencil buffer write and/or a render target read for a

color blend operation. Additional operations enabled in the Color Calculator state are also initiated as a

result of issuing this message (depth test, alpha test, logic ops, etc.). This message is intended only for

use by pixel shader kernels for writing results to render targets.

R/W

Address

Model Surface Type

SIMD

Slots

Data

Elements

Message Specific

Descriptor

Message

Header

Address

Payload Source Payload

Writeback

Payload

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_LO8DS {Opt} MH_RT {Forbidden} MDP_RTW_8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_LO8DS MH_RT_ZM {Forbidden} MDP_RTW_ZM8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_LO8DS MH_RT_Z {Forbidden} MDP_RTW_Z8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_LO8DS MH_RT_M {Forbidden} MDP_RTW_M8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_HI8DS {Opt} MH_RT {Forbidden} MDP_RTW_8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_HI8DS MH_RT_ZM {Forbidden} MDP_RTW_ZM8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_HI8DS MH_RT_Z {Forbidden} MDP_RTW_Z8DS {Forbidden}

Doc Ref # IHD-OS-LKF-Vol 9-4.21 749

R/W

Address

Model Surface Type

SIMD

Slots

Data

Elements

Message Specific

Descriptor

Message

Header

Address

Payload Source Payload

Writeback

Payload

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_HI8DS MH_RT_M {Forbidden} MDP_RTW_M8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_SIMD8 {Opt} MH_RT {Forbidden} MDP_RTW_8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_SIMD8 MH_RT_ZMA {Forbidden} MDP_RTW_ZMA8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_SIMD8 MH_RT_ZA {Forbidden} MDP_RTW_ZA8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_SIMD8 MH_RT_MA {Forbidden} MDP_RTW_MA8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_SIMD8 MH_RT_ZM {Forbidden} MDP_RTW_ZM8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_SIMD8 MH_RT_Z {Forbidden} MDP_RTW_Z8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_SIMD8 MH_RT_A {Forbidden} MDP_RTW_A8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_SIMD8 MH_RT_M {Forbidden} MDP_RTW_M8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_LO8DS {Opt} MH_RT {Forbidden} MDP_RTW_S8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_LO8DS MH_RT_ZM {Forbidden} MDP_RTW_SZM8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_LO8DS MH_RT_Z {Forbidden} MDP_RTW_SZ8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_LO8DS MH_RT_M {Forbidden} MDP_RTW_SM8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_HI8DS {Opt} MH_RT {Forbidden} MDP_RTW_S8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_HI8DS MH_RT_ZM {Forbidden} MDP_RTW_SZM8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_HI8DS MH_RT_Z {Forbidden} MDP_RTW_SZ8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_HI8DS MH_RT_M {Forbidden} MDP_RTW_SM8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_SIMD8 {Opt} MH_RT {Forbidden} MDP_RTW_S8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_SIMD8 MH_RT_ZMA {Forbidden} MDP_RTW_SZMA8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_SIMD8 MH_RT_ZA {Forbidden} MDP_RTW_SZA8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_SIMD8 MH_RT_MA {Forbidden} MDP_RTW_SMA8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_SIMD8 MH_RT_ZM {Forbidden} MDP_RTW_SZM8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_SIMD8 MH_RT_Z {Forbidden} MDP_RTW_SZ8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_SIMD8 MH_RT_A {Forbidden} MDP_RTW_SA8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTW_SIMD8 MH_RT_M {Forbidden} MDP_RTW_SM8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD16 1 MSD_RTW_SIMD16 {Opt} MH_RT {Forbidden} MDP_RTW_16 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD16 1 MSD_RTW_SIMD16 MH_RT_ZMA {Forbidden} MDP_RTW_ZMA16 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD16 1 MSD_RTW_SIMD16 MH_RT_ZA {Forbidden} MDP_RTW_ZA16 {Forbidden}

750 Doc Ref # IHD-OS-LKF-Vol 9-4.21

R/W

Address

Model Surface Type

SIMD

Slots

Data

Elements

Message Specific

Descriptor

Message

Header

Address

Payload Source Payload

Writeback

Payload

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD16 1 MSD_RTW_SIMD16 MH_RT_MA {Forbidden} MDP_RTW_MA16 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD16 1 MSD_RTW_SIMD16 MH_RT_ZM {Forbidden} MDP_RTW_ZM16 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD16 1 MSD_RTW_SIMD16 MH_RT_Z {Forbidden} MDP_RTW_Z16 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD16 1 MSD_RTW_SIMD16 MH_RT_A {Forbidden} MDP_RTW_A16 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD16 1 MSD_RTW_SIMD16 MH_RT_M {Forbidden} MDP_RTW_M16 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD16 1 MSD_RTW_REP16 {Opt} MH_RT {Forbidden} MDP_RTW_16REP {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD16 1 MSD_RTW_REP16 MH_RT_M {Forbidden} MDP_RTW_M16REP {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_LO8DS {Opt} MH_RT {Forbidden} MDP_RTWH_8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_LO8DS MH_RT_ZM {Forbidden} MDP_RTWH_ZM8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_LO8DS MH_RT_Z {Forbidden} MDP_RTWH_Z8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_LO8DS MH_RT_M {Forbidden} MDP_RTWH_M8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_HI8DS {Opt} MH_RT {Forbidden} MDP_RTWH_8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_HI8DS MH_RT_ZM {Forbidden} MDP_RTWH_ZM8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_HI8DS MH_RT_Z {Forbidden} MDP_RTWH_Z8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_HI8DS MH_RT_M {Forbidden} MDP_RTWH_M8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_SIMD8 {Opt} MH_RT {Forbidden} MDP_RTWH_8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_SIMD8 MH_RT_ZMA {Forbidden} MDP_RTWH_ZMA8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_SIMD8 MH_RT_ZA {Forbidden} MDP_RTWH_ZA8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_SIMD8 MH_RT_MA {Forbidden} MDP_RTWH_MA8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_SIMD8 MH_RT_ZM {Forbidden} MDP_RTWH_ZM8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_SIMD8 MH_RT_Z {Forbidden} MDP_RTWH_Z8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_SIMD8 MH_RT_A {Forbidden} MDP_RTWH_A8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_SIMD8 MH_RT_M {Forbidden} MDP_RTWH_M8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_LO8DS {Opt} MH_RT {Forbidden} MDP_RTWH_S8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_LO8DS MH_RT_ZM {Forbidden} MDP_RTWH_SZM8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_LO8DS MH_RT_Z {Forbidden} MDP_RTWH_SZ8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_LO8DS MH_RT_M {Forbidden} MDP_RTWH_SM8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_HI8DS {Opt} MH_RT {Forbidden} MDP_RTWH_S8DS {Forbidden}

Doc Ref # IHD-OS-LKF-Vol 9-4.21 751

R/W

Address

Model Surface Type

SIMD

Slots

Data

Elements

Message Specific

Descriptor

Message

Header

Address

Payload Source Payload

Writeback

Payload

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_HI8DS MH_RT_ZM {Forbidden} MDP_RTWH_SZM8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_HI8DS MH_RT_Z {Forbidden} MDP_RTWH_SZ8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_HI8DS MH_RT_M {Forbidden} MDP_RTWH_SM8DS {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_SIMD8 {Opt} MH_RT {Forbidden} MDP_RTWH_S8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_SIMD8 MH_RT_ZMA {Forbidden} MDP_RTWH_SZMA8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_SIMD8 MH_RT_ZA {Forbidden} MDP_RTWH_SZA8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_SIMD8 MH_RT_MA {Forbidden} MDP_RTWH_SMA8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_SIMD8 MH_RT_ZM {Forbidden} MDP_RTWH_SZM8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_SIMD8 MH_RT_Z {Forbidden} MDP_RTWH_SZ8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_SIMD8 MH_RT_A {Forbidden} MDP_RTWH_SA8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD8 1 MSD_RTWH_SIMD8 MH_RT_M {Forbidden} MDP_RTWH_SM8 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD16 1 MSD_RTWH_SIMD16 {Opt} MH_RT {Forbidden} MDP_RTWH_16 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD16 1 MSD_RTWH_SIMD16 MH_RT_ZMA {Forbidden} MDP_RTWH_ZMA16 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD16 1 MSD_RTWH_SIMD16 MH_RT_ZA {Forbidden} MDP_RTWH_ZA16 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD16 1 MSD_RTWH_SIMD16 MH_RT_MA {Forbidden} MDP_RTWH_MA16 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD16 1 MSD_RTWH_SIMD16 MH_RT_ZM {Forbidden} MDP_RTWH_ZM16 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD16 1 MSD_RTWH_SIMD16 MH_RT_Z {Forbidden} MDP_RTWH_Z16 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD16 1 MSD_RTWH_SIMD16 MH_RT_A {Forbidden} MDP_RTWH_A16 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD16 1 MSD_RTWH_SIMD16 MH_RT_M {Forbidden} MDP_RTWH_M16 {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD16 1 MSD_RTWH_REP16 {Opt} MH_RT {Forbidden} MDP_RTWH_16REP {Forbidden}

W BTS 1D, 2D, 3D,

CUBE, BUFFER

SIMD16 1 MSD_RTWH_REP16 MH_RT_M {Forbidden} MDP_RTWH_M16REP {Forbidden}

The sample for a pixel is killed (not written to the render target or depth buffer) if the corresponding

oMask bit is zero. Bits in oMask larger than the number of multisamples are ignored.

The color payload is included if the Message Type is SIMD8 single source or SIMD8 Image Write.

The SIMD16 Replicated Data Color payload is included if the Message Type specifies single source

message with replicated data. One set of R/G/B/A data is included in the message, and this data is

replicated to all 16 pixels. The Replicated SIMD16 message is legal with color data and oMask, but the

registers for depth, stencil, and antialias alpha data cannot be included with this message, and the

corresponding bits in the message header must indicate that these registers are not present.

752 Doc Ref # IHD-OS-LKF-Vol 9-4.21

The following table enumerates the order that the data payload is packed in registers: Source 0 Alpha

(s0A), Output Mask (oM), Pixel components (R, G, B, A), Source Depth (sZ), and Output Stencil (oS).

Summary of Data Payload Register Order for Render Target Write Messages

Message Type Present? Message Register

S0A oM sZ oS M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14

SIMD16 0 0 0 0 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A

SIMD16 1 0 0 0 1/0s0A 3/2s0A 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A

SIMD16 0 0 1 0 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A 1/0sZ 3/2sZ

SIMD16 1 0 1 0 1/0s0A 3/2s0A 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A 1/0sZ 3/2sZ

SIMD16 0 1 0 0 oM 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A

SIMD16 1 1 0 0 1/0soA 3/2s0A oM 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A

SIMD16 0 1 1 0 oM 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A 1/0sZ 3/2sZ

SIMD16 1 1 1 0 1/0s0A 3/2s0A oM 1/0R 3/2R 1/0G 3/2G 1/0B 3/2B 1/0A 3/2A 1/0sZ 3/2sZ

REP16 0 0 0 0 RGBA

LO8DS 0 0 0 0 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A

LO8DS 0 0 1 0 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A 1/0sZ

LO8DS 0 1 0 0 oM 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A

LO8DS 0 1 1 0 oM 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A 1/0sZ

HI8DS 0 0 0 0 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A

HI8DS 0 0 1 0 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A 3/2sZ

HI8DS 0 1 0 0 oM 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A

HI8DS 0 1 1 0 oM 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A 3/2sZ

SIMD8 0 0 0 0 R G B A

SIMD8 1 0 0 0 s0A R G B A

SIMD8 0 0 1 0 R G B A sZ

SIMD8 1 0 1 0 s0A R G B A sZ

SIMD8 0 1 0 0 oM R G B A

SIMD8 1 1 0 0 s0A oM R G B A

SIMD8 0 1 1 0 oM R G B A sZ

SIMD8 1 1 1 0 s0A oM R G B A sZ

LO8DS 0 0 0 1 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A 1/0oS

LO8DS 0 0 1 1 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A 1/0sZ 1/0OoS

LO8DS 0 1 0 1 oM 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A 1/0oS

LO8DS 0 1 1 1 oM 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A 1/0sZ 1/0oS

HI8DS 0 0 0 1 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A 3/2oS

HI8DS 0 0 1 1 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A 3/2sZ 3/2oS

HI8DS 0 1 0 1 oM 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A 3/2oS

HI8DS 0 1 1 1 oM 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A 3/2sZ 3/2oS

SIMD8 0 0 0 1 R G B A oS

SIMD8 1 0 0 1 s0A R G B A oS

SIMD8 0 0 1 1 R G B A sZ oS

SIMD8 1 0 1 1 s0A R G B A sZ oS

SIMD8 0 1 0 1 oM R G B A oS

SIMD8 1 1 0 1 s0A oM R G B A oS

SIMD8 0 1 1 1 oM R G B A sZ oS

SIMD8 1 1 1 1 s0A oM R G B A sZ oS

HP SIMD16 0 0 0 0 R G B A

Doc Ref # IHD-OS-LKF-Vol 9-4.21 753

HP SIMD16 1 0 0 0 s0A R G B A

HP SIMD16 0 0 1 0 R G B A sZ

HP SIMD16 1 0 1 0 s0A R G B A sZ

HP SIMD16 0 1 0 0 oM R G B A

HP SIMD16 1 1 0 0 s0A oM R G B A

HP SIMD16 0 1 1 0 oM R G B A sZ

HP SIMD16 1 1 1 0 s0A oM R G B A sZ

HP REP16 0 0 0 0 RGBA

HP LO8DS 0 0 0 0 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A

HP LO8DS 0 0 1 0 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A 1/0sZ

HP LO8DS 0 1 0 0 oM 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A

HP LO8DS 0 1 1 0 oM 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A 1/0sZ

HP HI8DS 0 0 0 0 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A

HP HI8DS 0 0 1 0 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A 3/2sZ

HP HI8DS 0 1 0 0 oM 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A

HP HI8DS 0 1 1 0 oM 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A 3/2sZ

HP SIMD8 0 0 0 0 R G B A

HP SIMD8 1 0 0 0 s0A R G B A

HP SIMD8 0 0 1 0 R G B A sZ

HP SIMD8 1 0 1 0 s0A R G B A sZ

HP SIMD8 0 1 0 0 oM R G B A

HP SIMD8 1 1 0 0 s0A oM R G B A

HP SIMD8 0 1 1 0 oM R G B A sZ

HP SIMD8 1 1 1 0 s0A oM R G B A sZ

HP LO8DS 0 0 0 1 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A 1/0oS

HP LO8DS 0 0 1 1 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A 1/0sZ 1/0OoS

HP LO8DS 0 1 0 1 oM 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A 1/0oS

HP LO8DS 0 1 1 1 oM 1/0s0R 1/0s0G 1/0s0B 1/0s0A 1/0s1R 1/0s1G 1/0s1B 1/0s1A 1/0sZ 1/0oS

HP HI8DS 0 0 0 1 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A 3/2oS

HP HI8DS 0 0 1 1 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A 3/2sZ 3/2oS

HP HI8DS 0 1 0 1 oM 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A 3/2oS

HP HI8DS 0 1 1 1 oM 3/2s0R 3/2s0G 3/2s0B 3/2s0A 3/2s1R 3/2s1G 3/2s1B 3/2s1A 3/2sZ 3/2oS

HP SIMD8 0 0 0 1 R G B A oS

HP SIMD8 1 0 0 1 s0A R G B A oS

HP SIMD8 0 0 1 1 R G B A sZ oS

HP SIMD8 1 0 1 1 s0A R G B A sZ oS

HP SIMD8 0 1 0 1 oM R G B A oS

HP SIMD8 1 1 0 1 s0A oM R G B A oS

HP SIMD8 0 1 1 1 oM R G B A sZ oS

HP SIMD8 1 1 1 1 s0A oM R G B A sZ oS

Programming Note

Context: Render Target Write Message

Typically, the last message in a pixel shader is a Render Target Write message, with EOT set.

Programming Note

Context: Render Target Write Message

754 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Programming Note

Context: Render Target Write Message

• The dual source message cannot be used if the Render Target Rotation field in SURFACE_STATE is set to

anything other than RTROTATE_0DEG.

• If multiple SIMD8 Dual Source messages are delivered by the pixel shader thread, each SIMD8_DUALSRC_LO

message must be issued before the SIMD8_DUALSRC_HI message with the same Slot Group Select setting.

• Output Stencil is not supported with SIMD16 Render Target Write Messages.

Programming Note

Context: Render Target Writes in Multirate Shaders

• In multirate shaders, render target writes that can potentially kill pixels (via oMask, oDepth, or oStencil)

cannot modify the oMask, oDepth, or oStencil value after writing to a render target. For instance if a pixel-

rate render target is written, an associated sample-rate render target cannot modify these values or

undefined behavior can occur.

• In multirate shaders that write to render targets in multiple stages, render target 0 must be written to before

any other render targets.

• Pixel shaders dispatched at the coarse rate that contain a SIMD16 pixel-rate shader, cannot use SIMD8

messages, preventing a SIMD16 pixel-rate (or sample-rate) shader from using Dual Source messages [CNL+].

Replicate Data

The replicate data render target message is used for clearing Render Target. This message performs

better than the other messages due to its smaller message length. This message does not support depth,

stencil, or antialias alpha data being sent with it.

The pixel scoreboard bits corresponding to the dispatched pixel mask are cleared only if the Last Render

Target Select bit is set in the message descriptor.

Programming Note

Context: Replicate Data Render Target Write Message

Replicate Data Render Target Write message is not supported with AA alpha i.e. when primitive has Anti-Aliased

alpha enabled e.g. AA lines and points.

Single Source

The “normal” render target messages are single source. There are two forms, SIMD16 and SIMD8,

intended for the equivalent-sized pixel shader threads. A single source (4 channels) is delivered for each

of the 16 or 8 pixels in the message payload. Optional depth, stencil, and antialias alpha information can

also be delivered with these messages.

The pixel scoreboard bits corresponding to the dispatched pixel mask (or half of the mask in the case of

SIMD8 messages) are cleared only if the Last Render Target Select bit is set in the message descriptor.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 755

However, if Last Render Target Select is set, the message still causes pixel scoreboard clear and

depth/stencil buffer updates if enabled.

Dual Source

The dual source render target messages only have SIMD8 forms due to maximum message length

limitations. SIMD16 pixel shaders must send two of these messages to cover all of the pixels. Each

message contains two colors (4 channels each) for each pixel in the message payload. In addition to the

first source, the second source can be selected as a blend factor (BLENDFACTOR_*_SRC1_* options in the

blend factor fields of COLOR_CALC_STATE or BLEND_STATE). Optional depth, stencil, and antialias alpha

information can also be delivered with these messages.

For SIMD16 PS thread with two output colors must send messages in the following sequence for each

RT: SIMD8 dual source RTW message (low); SIMD8 dual source RTW message (high); SIMD16 single src

RTW message with second color.

Render Target Read Message

Addr

Align

Data

Widt

h R/W

Address

Model Surface Type

SIMD

Slots

Data

Eleme

nts SIMD Address Calculation

Bounds

Check

Executio

n Mask

DW DW R BTS 1D, 2D, 3D, CUBE,

BUFFER

8, 16 4 (Surface[U, V, R, LOD])→DW[Chan] Surface RTPSM

This message takes 8 or 16 pixels for reads to a render target. This message is intended only for use by

pixel shader kernels for reading data from render targets.

R/W

Address

Model

Surface

Type

SIMD

Slots

Data

Elements

Message Specific

Descriptor

Message

Header

Address

Payload

Source

Payload

Writeback

Payload

R BTS 1D, 2D, 3D,

CUBE,

BUFFER

SIMD8 {4} MSD_RTR_SIMD8 MH_RT {Forbidden} {Forbidden} {4}

MDP_DW_SIMD16

R BTS 1D, 2D, 3D,

CUBE,

BUFFER

SIMD16 {4} MSD_RTR_SIMD16 MH_RT {Forbidden} {Forbidden} {4}

MDP_DW_SIMD8

A SIMD8 writeback message consists of 4 destination registers. A SIMD16 writeback message consists of

8 destination registers.

Restrictions:

Must not have End-of-Thread bit set in message.

This message can only be issued from a kernel specified in WM_STATE or 3DSTATE_WM (pixel shader

kernel), dispatched in non-contiguous mode. Any other kernel issuing this message causes undefined

behavior.

Render Target read on an MSRT is supported via per-sample pixel shader.

756 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Message Data Payloads

The data payloads for Render Target Read messages depend on the SIMD message subtype and the

channel enables in the message descriptor. The writeback data payloads are 4 channels of red, green,

blue, and alpha data. Each channel is one or two message registers laid out in the standard 8 or 16

DWord format, depending whether it is a SIMD8 or SIMD16 data operation.

The data payloads for Render Target Write messages depend on the Message Subtype from the message

descriptor, and the settings of the oMask, Source 0 Alpha, and Source Depth presence control bits in the

message header. The following data tables list all the valid source payloads combinations for the Render

Target Write message.

The half precision Render Target Write messages have data payloads that can pack a full SIMD16

payload into 1 register instead of two. The half-precision packed format is used for RGBA and Source 0

Alpha, but Source Depth data payload is always supplied in full precision.

Render Target Data Payloads

Render Target Data Payloads

This section contains various registers for the Render Target Data Payloads.

MDP_RTW_16 - SIMD16 Render Target Data Payload

MDP_RTW_ZMA16 - SZ OM S0A SIMD16 Render Target Data Payload

MDP_RTW_ZA16 - SZ S0A SIMD16 Render Target Data Payload

MDP_RTW_MA16 - OM S0A SIMD16 Render Target Data Payload

MDP_RTW_ZM16 - SZ OM SIMD16 Render Target Data Payload

MDP_RTW_Z16 - SZ SIMD16 Render Target Data Payload

MDP_RTW_A16 - S0A SIMD16 Render Target Data Payload

MDP_RTW_M16 - OM SIMD16 Render Target Data Payload

MDP_RTW_16REP - Replicated SIMD16 Render Target Data Payload

MDP_RTW_M16REP - OM Replicated SIMD16 Render Target Data Payload

MDP_RTW_8 - SIMD8 Render Target Data Payload

MDP_RTW_ZMA8 - SZ OM S0A SIMD8 Render Target Data Payload

MDP_RTW_ZM8 - SZ OM SIMD8 Render Target Data Payload

MDP_RTW_ZA8 - SZ S0A SIMD8 Render Target Data Payload

MDP_RTW_MA8 - OM S0A SIMD8 Render Target Data Payload

MDP_RTW_Z8 - SZ SIMD8 Render Target Data Payload

MDP_RTW_A8 - S0A SIMD8 Render Target Data Payload

MDP_RTW_M8 - OM SIMD8 Render Target Data Payload

MDP_RTW_S8 - OS SIMD8 Render Target Data Payload

MDP_RTW_SZMA8 - OS SZ OM S0A SIMD8 Render Target Data Payload

MDP_RTW_SZM8 - OS SZ OM SIMD8 Render Target Data Payload

Doc Ref # IHD-OS-LKF-Vol 9-4.21 757

MDP_RTW_SZA8 - OS SZ S0A SIMD8 Render Target Data Payload

MDP_RTW_SMA8 - OS OM S0A SIMD8 Render Target Data Payload

MDP_RTW_SZ8 - OS SZ SIMD8 Render Target Data Payload

MDP_RTW_SA8 - OS S0A SIMD8 Render Target Data Payload

MDP_RTW_SM8 - OS OM SIMD8 Render Target Data Payload

MDP_RTW_8DS - SIMD8 Dual Source Render Target Data Payload

MDP_RTW_8DS - SIMD8 Dual Source Render Target Data Payload

MDP_RTW_ZM8DS - SZ OM SIMD8 Dual Source Render Target Data Payload

MDP_RTW_Z8DS - SZ SIMD8 Dual Source Render Target Data Payload

MDP_RTW_M8DS - OM SIMD8 Dual Source Render Target Data Payload

MDP_RTW_S8DS - OS SIMD8 Dual Source Render Target Data Payload

MDP_RTW_M8DS - OM SIMD8 Dual Source Render Target Data Payload

MDP_RTW_SZM8DS - OS SZ OM SIMD8 Dual Source Render Target Data Payload

MDP_RTW_SZ8DS - OS SZ SIMD8 Dual Source Render Target Data Payload

MDP_RTWH_16 - Half Precision SIMD16 Render Target Data Payload

MDP_RTW_SZ8DS - OS SZ SIMD8 Dual Source Render Target Data Payload

MDP_RTWH_ZM16 - Half Precision SZ OM SIMD16 Render Target Data Payload

MDP_RTWH_ZMA16 - Half Precision SZ OM S0A SIMD16 Render Target Data Payload

MDP_RTWH_ZA16 - Half Precision SZ S0A SIMD16 Render Target Data Payload

MDP_RTWH_MA16 - Half Precision OM S0A SIMD16 Render Target Data Payload

MDP_RTWH_Z16 - Half Precision SZ SIMD16 Render Target Data Payload

MDP_RTWH_A16 - Half Precision S0A SIMD16 Render Target Data Payload

MDP_RTWH_M16 - Half Precision OM SIMD16 Render Target Data Payload

MDP_RTWH_16REP - Half Precision Replicated SIMD16 Render Target Data Payload

MDP_RTWH_M16REP - Half Precision OM Replicated SIMD16 Render Target Data Payload

MDP_RTWH_8 - Half Precision SIMD8 Render Target Data Payload

MDP_RTWH_ZMA8 - Half Precision SZ OM S0A SIMD8 Render Target Data Payload

MDP_RTWH_ZM8 - Half Precision SZ OM SIMD8 Render Target Data Payload

MDP_RTWH_ZA8 - Half Precision SZ S0A SIMD8 Render Target Data Payload

MDP_RTWH_MA8 - Half Precision OM S0A SIMD8 Render Target Data Payload

MDP_RTWH_Z8 - Half Precision SZ SIMD8 Render Target Data Payload

MDP_RTWH_A8 - Half Precision S0A SIMD8 Render Target Data Payload

MDP_RTWH_M8 - Half Precision OM SIMD8 Render Target Data Payload

MDP_RTWH_S8 - Half Precision OS SIMD8 Render Target Data Payload

MDP_RTWH_SZMA8 - Half Precision OS SZ OM S0A SIMD8 Render Target Data Payload

MDP_RTWH_SZM8 - Half Precision OS SZ OM SIMD8 Render Target Data Payload

MDP_RTWH_SZA8 - Half Precision OS SZ S0A SIMD8 Render Target Data Payload

758 Doc Ref # IHD-OS-LKF-Vol 9-4.21

MDP_RTWH_SMA8 - Half Precision OS OM S0A SIMD8 Render Target Data Payload

MDP_RTWH_SZ8 - Half Precision OS SZ SIMD8 Render Target Data Payload

MDP_RTWH_SA8 - Half Precision OS S0A SIMD8 Render Target Data Payload

MDP_RTWH_SM8 - Half Precision OS OM SIMD8 Render Target Data Payload

MDP_RTWH_8DS - Half Precision SIMD8 Dual Source Render Target Data Payload

MDP_RTWH_ZM8 - Half Precision SZ OM SIMD8 Render Target Data Payload

MDP_RTWH_M8DS - Half Precision OM SIMD8 Dual Source Render Target Data Payload

MDP_RTWH_S8DS - Half Precision OS SIMD8 Dual Source Render Target Data Payload

MDP_RTWH_SZM8DS - Half Precision OS SZ OM SIMD8 Dual Source Render Target Data Payload

MDP_RTWH_SZ8DS - Half Precision OS SZ SIMD8 Dual Source Render Target Data Payload

MDP_RTWH_SM8DS - Half Precision OS OM SIMD8 Dual Source Render Target Data Payload

Shared Functions Pixel Interpolater

The Pixel Interpolator provides barycentric parameters at various offsets relative to the pixel location.

These barycentric parameters are in the same format and layout as those received in the pixel shader

dispatch. Please refer to the “Windower” chapter in the “3D Pipeline” volume for more details on

barycentric parameters.

Barycentric parameters delivered in the pixel shader payload are at pre-defined positions based on

Barycentric Interpolation Mode bits selected in 3DSTATE_WM. The pixel interpolator allows barycentric

parameters to be computed at additional locations.

Messages

The following is the message definition for the Pixel Interpolator shared function.

Programming Note

Context: Messages

Pixel Interpolator messages can only be delivered by pixel shader kernels.

Execution Mask. Each bit in the execution mask enables the corresponding slot’s barycentric parameter

return to the destination registers.

Initiating Message

Message Descriptor

Bits Description

19
Header Present: Specifies whether the message includes a header phase. Must be zero for all Pixel

Interpolator messages.

Format = Enable

Doc Ref # IHD-OS-LKF-Vol 9-4.21 759

Bits Description

18:17 Ignored

16
SIMD Mode. Specifies the SIMD mode of the message being sent.

Format = U1

0: SIMD8 mode

1: SIMD16 mode

15
Shading Rate for Attribute Evaluation

This field indicates how to interpret the message type (bits 13:12).

Format: U1

0: Evaluate at pixel shading rate.

1: Evaluate at coarse pixel shading rate.

14
Interpolation Mode. Specifies which interpolation mode is used.

Format = U1

0: Perspective Interpolation

1: Linear Interpolation

Programming Note

This field cannot be set to “Linear Interpolation” unless Non-Perspective Barycentric Enable in

3DSTATE_CLIP is enabled.

Programming Note

Context: Message Descriptor

This field is ignored when Message Type is set to Coarse To Pixel Mapping message.

13:12
Message Type. Specifies the type of message being sent when pixel-rate evaluation is requested.

Format = U2

0: Per Message Offset (eval_snapped with immediate offset)

1: Sample Position Offset (eval_sindex)

2: Centroid Position Offset (eval_centroid)

3: Per Slot Offset (eval_snapped with register offset)

Message Type. Specifies the type of message being sent when coarse-rate evaluation is requested.

Format = U2

0: Coarse to Pixel Mapping Message (internal message)

760 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Bits Description

1: Reserved

2: Coarse Centroid Position (eval_centroid)

3: Per Slot Coarse Pixel Offset (eval_snapped with register offset)

Programming Note

Context: Message Descriptor

When Message Type is Sample Position, requesting an attribute at sample index beyond the range defined

by the Forced Sample Count is illegal.

11
Note: For shaders dispatched at coarse rate (no SIMD32 dispatch), this bit has a different meaning and is

part of the Pixel Shader Phase field.

Slot Group Select. This field selects whether slots 15:0 or slots 31:16 are used for bypassed data.

Bypassed data includes the X/Y addresses and centroid position. For 8- and 16-pixel dispatches,

SLOTGRP_LO must be selected on every message. For 32-pixel dispatches, this field must be set correctly for

each message based on which slots are currently being processed.

0: SLOTGRP_LO: Choose bypassed data for slots 15:0.

1: SLOTGRP_HI: Choose bypassed data for slots 31:16.

Programming Note

Context: Message Descriptor

This field must be set to SLOTGRP_LO for SIMD8 messages. SIMD8 messages always use bypassed data for

slots 7:0.

11:8
For shaders not dispatched at coarse rate, bit 11 is the Slot Group Select bit and bits 10:8 are ignored.

Pixel Shader Phase. For shaders dispatched at coarse pixel rate, specifies the counter value of the inner PS

loop inside monolithic CPS+PS(+S) shader code.

The Pixel Interpolator uses this counter value to identify affected pixels for all attributes interpolated at pixel

rate and to identify pixels requested for Coarse to Pixel Mapping messages.

Format: U4

Range = [0..15]

Values other than 0 are valid only for shaders dispatched at coarse shading rate.

7:0
Message Specific Control. Refer to the sections below for the definition of these bits based on Message

Type.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 761

“Per Message Offset” Message Descriptor

Bit Description

7:4
Per Message Y Pixel Offset

Specifies the Y Pixel Offset that applies to all slots.

Format = S4 2’s complement representing units of 1/16 pixel.

Range = [-8/16, +7/16]

3:0
Per Message X Pixel Offset

Specifies the X Pixel Offset that applies to all slots.

Format = S4 2’s complement representing units of 1/16 pixel.

Range = [-8/16, +7/16]

“Sample Position Offset” Message Descriptor

Bits Description

7:4
Sample Index

Specifies the sample index that applies to all slots.

Sample Index must not exceed the value of NUM_RASTSAMPLES when NUM_RASTSAMPLES > 1. From API,

perspective, Forced Sample Count Defines the maximum allowable index in this message.

Format = U4

Range

[0, 15]

3:0 Ignored

“Centroid Position” and “Per Slot Offset” Message Descriptor

Bit Description

7:0 Ignored

762 Doc Ref # IHD-OS-LKF-Vol 9-4.21

“Coarse to Pixel Mapping” Message Descriptor

Bits Description

7:0
Coarse to Pixel Mapping Phase Enable bits

The Coarse to Pixel mapping message may include Output Pixel Coverage in the message payload. This

payload is optional and delivered only when coarse phase of pixel shader computes output coverage mask or

discards coarse pixels (output pixel coverage mask is different than input pixel coverage mask). The send

instruction requires payload to consist of at least one GRF register. The following bit indicates if payload

includes valid Output Pixel Coverage mask, or it is a dummy register to satisfy non-zero payload requirement.

bit 5: Output Pixel Coverage Mask Valid in payload

The Coarse to Pixel mapping message always returns two phases (two GRF registers) but it can also return

optional phases, as enabled by the following bits:

bit 4: Perspective Pixel Center Location Barycentric

bit 3: Perspective Pixel Centroid Location Barycentric

bit 2: Linear Pixel Center Location Barycentric

bit 1: Linear Pixel Centroid Location Barycentric

bit 0: Pixel Input Coverage Mask

Message Payload for Most Messages

This message payload applies to the following message types:

• Per Message Offset

• Sample Position Offset

• Centroid Position Offset

DWord Bit Description

M0.7:0 Ignored

SIMD8 Per Slot Offset Message Payload

This message payload applies only to the SIMD8 Per Slot Offset message type. The message length is 2.

DWord Bit Description

M0.7 31:0
Slot 7 X Pixel Offset

Specifies the X pixel offset for slot 7.

Format = S4 2’s complement representing units of 1/16 pixel. The upper 28 bits are ignored.

Range = [-8/16, +7/16]

Doc Ref # IHD-OS-LKF-Vol 9-4.21 763

DWord Bit Description

M0.6 31:0
Slot 6 X Pixel Offset

M0.5 31:0
Slot 5 X Pixel Offset

M0.4 31:0
Slot 4 X Pixel Offset

M0.3 31:0
Slot 3 X Pixel Offset

M0.2 31:0
Slot 2 X Pixel Offset

M0.1 31:0
Slot 1 X Pixel Offset

M0.0 31:0
Slot 0 X Pixel Offset

M1.7 31:0
Slot 7 Y Pixel Offset

Specifies the Y pixel offset for slot 7.

Format = S4 2’s complement representing units of 1/16 pixel. The upper 28 bits are ignored.

Range = [-8/16, +7/16]

M1.6 31:0
Slot 6 Y Pixel Offset

M1.5 31:0
Slot 5 Y Pixel Offset

M1.4 31:0
Slot 4 Y Pixel Offset

M1.3 31:0
Slot 3 Y Pixel Offset

M1.2 31:0
Slot 2 Y Pixel Offset

M1.1 31:0
Slot 1 Y Pixel Offset

M1.0 31:0
Slot 0 Y Pixel Offset

764 Doc Ref # IHD-OS-LKF-Vol 9-4.21

SIMD16 Per Slot Offset Message Payload

This message payload applies only to the SIMD16 Per Slot Offset message type. The message length is 4.

DWord Bit Description

M0.7 31:0
Slot 7 X Pixel Offset

Specifies the X pixel offset for slot 7.

Format = S4 2’s complement representing units of 1/16 pixel. The upper 28 bits are ignored.

Range = [-8/16, +7/16]

M0.6 31:0
Slot 6 X Pixel Offset

M0.5 31:0
Slot 5 X Pixel Offset

M0.4 31:0
Slot 4 X Pixel Offset

M0.3 31:0
Slot 3 X Pixel Offset

M0.2 31:0
Slot 2 X Pixel Offset

M0.1 31:0
Slot 1 X Pixel Offset

M0.0 31:0
Slot 0 X Pixel Offset

M1.7 31:0
Slot 15 X Pixel Offset

M1.6 31:0
Slot 14 X Pixel Offset

M1.5 31:0
Slot 13 X Pixel Offset

M1.4 31:0
Slot 12 X Pixel Offset

M1.3 31:0
Slot 11 X Pixel Offset

M1.2 31:0
Slot 10 X Pixel Offset

M1.1 31:0
Slot 9 X Pixel Offset

M1.0 31:0
Slot 8 X Pixel Offset

M2.7 31:0
Slot 7 Y Pixel Offset

Specifies the Y pixel offset for slot 7.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 765

DWord Bit Description

Format = S4 2’s complement representing units of 1/16 pixel. The upper 28 bits are ignored.

Range = [-8/16, +7/16]

M2.6 31:0
Slot 6 Y Pixel Offset

M2.5 31:0
Slot 5 Y Pixel Offset

M2.4 31:0
Slot 4 Y Pixel Offset

M2.3 31:0
Slot 3 Y Pixel Offset

M2.2 31:0
Slot 2 Y Pixel Offset

M2.1 31:0
Slot 1 Y Pixel Offset

M2.0 31:0
Slot 0 Y Pixel Offset

M3.7 31:0
Slot 15 Y Pixel Offset

M3.6 31:0
Slot 14 Y Pixel Offset

M3.5 31:0
Slot 13 Y Pixel Offset

M3.4 31:0
Slot 12 Y Pixel Offset

M3.3 31:0
Slot 11 Y Pixel Offset

M3.2 31:0
Slot 10 Y Pixel Offset

M3.1 31:0
Slot 9 Y Pixel Offset

M3.0 31:0
Slot 8 Y Pixel Offset

Coarse to Pixel Phase Initiating Message (SIMD8 or SIMD16 Message)

The initiating message payload is required, as send message requires at least one GRF register. The

payload register may be dummy (to satisfy non-zero payload requirement) or it may include Output Pixel

Coverage Mask if coarse pixel shading phase outputs PixelCoverage or discards coarse pixels. The Output

Pixel Coverage Mask Valid bit indicates if message payload includes valid data.

Programming Note: This message may be simd8 or simd16 if the thread dispatch rate is simd8. This

message MUST be simd16 if the thread dispatch rate is simd16.

766 Doc Ref # IHD-OS-LKF-Vol 9-4.21

M0.7 31:0
Slot 7 Output Pixel Coverage Mask

Format = U32

M0.6 31:0 Slot 6 Output Pixel Coverage Mask

M0.5 31:0 Slot 5 Output Pixel Coverage Mask

M0.4 31:0 Slot 4 Output Pixel Coverage Mask

M0.3 31:0 Slot 3 Output Pixel Coverage Mask

M0.2 31:0 Slot 2 Output Pixel Coverage Mask

M0.1 31:0 Slot 1 Output Pixel Coverage Mask

M0.0 31:0 Slot 0 Output Pixel Coverage Mask

M1.x Slots 15:8 Output Pixel Coverage Mask (delivered only if original dispatch mode was SIMD16)

Writeback Message

SIMD8

The response length for all SIMD8 messages is 2. The data for each slot is written only if its

corresponding execution mask bit is set.

DWord Bit Description

W0.7
31:0

Barycentric[1] for Slot 7

Format = IEEE_Float

W0.6
31:0

Barycentric[1] for Slot 6

W0.5
31:0

Barycentric[1] for Slot 5

W0.4
31:0

Barycentric[1] for Slot 4

W0.3
31:0

Barycentric[1] for Slot 3

W0.2
31:0

Barycentric[1] for Slot 2

W0.1
31:0

Barycentric[1] for Slot 1

W0.0
31:0

Barycentric[1] for Slot 0

W1.7
31:0

Barycentric[2] for Slot 7

Format = IEEE_Float

W1.6
31:0

Barycentric[2] for Slot 6

Doc Ref # IHD-OS-LKF-Vol 9-4.21 767

DWord Bit Description

W1.5
31:0

Barycentric[2] for Slot 5

W1.4
31:0

Barycentric[2] for Slot 4

W1.3
31:0

Barycentric[2] for Slot 3

W1.2
31:0

Barycentric[2] for Slot 2

W1.1
31:0

Barycentric[2] for Slot 1

W1.0
31:0

Barycentric[2] for Slot 0

SIMD16

The response length for all SIMD16 messages is 4. The data for each slot is written only if its

corresponding execution mask bit is set.

DWord Bit Description

W0.7
31:0

Barycentric[1] for Slot 7

Format = IEEE_Float

W0.6
31:0

Barycentric[1] for Slot 6

W0.5
31:0

Barycentric[1] for Slot 5

W0.4
31:0

Barycentric[1] for Slot 4

W0.3
31:0

Barycentric[1] for Slot 3

W0.2
31:0

Barycentric[1] for Slot 2

W0.1
31:0

Barycentric[1] for Slot 1

W0.0
31:0

Barycentric[1] for Slot 0

W1.7
31:0

Barycentric[2] for Slot 7

Format = IEEE_Float

W1.6
31:0

Barycentric[2] for Slot 6

W1.5
31:0

Barycentric[2] for Slot 5

768 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bit Description

W1.4
31:0

Barycentric[2] for Slot 4

W1.3
31:0

Barycentric[2] for Slot 3

W1.2
31:0

Barycentric[2] for Slot 2

W1.1
31:0

Barycentric[2] for Slot 1

W1.0
31:0

Barycentric[2] for Slot 0

Format = IEEE_Float

W2.7
31:0

Barycentric[1] for Slot 15

W2.6
31:0

Barycentric[1] for Slot 14

W2.5
31:0

Barycentric[1] for Slot 13

W2.4
31:0

Barycentric[1] for Slot 12

W2.3
31:0

Barycentric[1] for Slot 11

W2.2
31:0

Barycentric[1] for Slot 10

W2.1
31:0

Barycentric[1] for Slot 9

W2.0
31:0

Barycentric[1] for Slot 8

W3.7
31:0

Barycentric[2] for Slot 15

W3.6
31:0

Barycentric[2] for Slot 14

W3.5
31:0

Barycentric[2] for Slot 13

W3.4
31:0

Barycentric[2] for Slot 12

W3.3
31:0

Barycentric[2] for Slot 11

W3.2
31:0

Barycentric[2] for Slot 10

W3.1
31:0

Barycentric[2] for Slot 9

W3.0
31:0

Barycentric[2] for Slot 8

Doc Ref # IHD-OS-LKF-Vol 9-4.21 769

Coarse to Pixel Mapping Writeback Message (SIMD8 Message)

The writeback message layout is similar to SIMD8 PS thread payload. The first two writeback phases (W0

and W1) are mandatory, and remaining phases are optional as indicated by Coarse to Pixel Mapping

Phase Enable bits.

W0.7 31:16
Pixel Mask VMASK (SubSpan[1:0]) : Indicates lit and helper pixels within the two subspans; for each 4-

bit group, the OR of the corresponding 4-bit group in the Pixel Mask DMASK.

The Pixel Shader kernel should use VMASK as dispatch mask if pixel and/or sample phases compute

implicit derivatives. This field must not be modified by the Pixel Shader kernel.

 15:0
Pixel Mask DMASK (SubSpan[1:0]) : Indicates which pixels within the two subspans are lit (rasterized

and passed early Z/stencil tests if present).

The Pixel Shader kernel should use DMASK as dispatch mask if pixel and/or sample phases do not

compute implicit derivatives.

W0.6 31:0
Reserved (MBZ)

W0.5 31:0
Reserved (MBZ)

W0.4 31:0
Reserved (MBZ)

W0.3 31:16
Y1 : Y coordinate (screen space) for upper-left pixel of subspan 1 (slot 4)

Format = U16

 15:0
X1 : X coordinate (screen space) for upper-left pixel of subspan 1 (slot 4)

Format = U16

W0.2 31:16
Y0 : Y coordinate (screen space) for upper-left pixel of subspan 0 (slot 0)

Format = U16

 15:0
X0 : X coordinate (screen space) for upper-left pixel of subspan 0 (slot 0)

Format = U16

W0.1 31:0
Reserved (MBZ)

W0.0 31:20
Reserved (MBZ)

 19:16
MSAA rate (multisample count)

Format: U4 [1..16]

This field specifies MSAA sampling rate (required for PS+S monolithic shader).

 15:4 Reserved (MBZ)

770 Doc Ref # IHD-OS-LKF-Vol 9-4.21

 3:0
Next Pixel Shader Phase

Format = U4 [0..15]

Pixel Interpolator returns identifier of the next pixel phase to be queried in monolithic CPS+PS(+S)

implementation. The next phase may be different than requested phase + 1. The value of 0 indicates

there are no more pixels available beyond requested phase.

The intended usage scenario is

1) ISA kernel sends Coarse to Pixel Mapping requesting data for phase 0

2) If the returned next pixel phase is zero, ISA kernel executes pixel code for phase 0 (one loop pass)

and terminates

3) If the returned next pixel phase is greater than zero, ISA kernel executes pixel code for requested

phase and then requests shader input for next phase (until value of zero is returned)

W1.7 31:0
Reserved (MBZ)

W1.6 31:0 Reserved (MBZ)

W1.5 31:0 Reserved (MBZ)

W1.4 31:0 Reserved (MBZ)

W1.3 Parent coarse shader slots for pixel dispatched at slots 7:6

W1.2 Parent coarse shader slots for pixel dispatched at slots 5:4

W1.1 Parent coarse shader slots for pixel dispatched at slots 3:2

W1.0 Parent coarse shader slots for pixel dispatched at slots 1:0

W2.7 31:0
Perspective Pixel Location Barycentric[1] for Slot 7

This phase is included only if the corresponding bit in Coarse to Pixel Mapping message specific

control is enabled.

Format = IEEE_Float

W2.6 31:0 Perspective Pixel Location Barycentric[1] for Slot 6

W2.5 31:0 Perspective Pixel Location Barycentric[1] for Slot 5

W2.4 31:0 Perspective Pixel Location Barycentric[1] for Slot 4

W2.3 31:0 Perspective Pixel Location Barycentric[1] for Slot 3

W2.2 31:0 Perspective Pixel Location Barycentric[1] for Slot 2

W2.1 31:0 Perspective Pixel Location Barycentric[1] for Slot 1

W2.0 31:0 Perspective Pixel Location Barycentric[1] for Slot 0

W3 Perspective Pixel Location Barycentric[2] for Slots 7:0

W4:5 Perspective Centroid Barycentric, included only if the corresponding bit in Coarse to Pixel Mapping

message specific control is enabled.

W6:7 Linear Pixel Location Barycentric, included only if the corresponding bit in Coarse to Pixel Mapping

message specific control is enabled.

W8:9 Linear Centroid Barycentric, included only if the corresponding bit in Coarse to Pixel Mapping

Doc Ref # IHD-OS-LKF-Vol 9-4.21 771

message specific control is enabled.

W10
Pixel Shader Input Coverage Mask, for slots 7:0

This phase is included only if the corresponding bit in Coarse to Pixel Mapping message specific

control is enabled.

Format = U32

Coarse to Pixel Mapping Writeback Message (SIMD16 Message)

The writeback message layout is similar to SIMD16 PS thread payload. The first two writeback phases

(W0 and W1) are mandatory, and remaining phases are optional as indicated by Coarse to Pixel Mapping

Phase Enable bits.

Note: If all optional phases were enabled, the total length of the writeback message would exceed 16

GRFs which is not allowed. In such case, ISA kernel must split request into two PI messages. The following

table does not reflect this split, and lists all phases together in the order they are delivered.

W0.7 31:16
Pixel Mask VMASK (SubSpan[1:0]) : Indicates lit and helper pixels within the two subspans; for each

4-bit group, the OR of the corresponding 4-bit group in the Pixel Mask DMASK.

The Pixel Shader kernel should use VMASK as dispatch mask if pixel and/or sample phases compute

implicit derivatives. This field must not be modified by the Pixel Shader kernel.

 15:0
Pixel Mask DMASK (SubSpan[1:0]) : Indicates which pixels within the two subspans are lit (rasterized

and passed early Z/stencil tests if present).

 The Pixel Shader kernel should use DMASK as dispatch mask if pixel and/or sample phases do not

compute implicit derivatives.

W0.6 31:0
Reserved (MBZ)

W0.5 31:16
Y3: Y coordinate (screen space) for upper-left pixel of subspan 3 (slot 12)

Format = U16

 15:0
X3: X coordinate (screen space) for upper-left pixel of subspan 3 (slot 12)

Format = U16

W0.4 31:16
Y2 : Y coordinate (screen space) for upper-left pixel of subspan 2 (slot 8)

Format = U16

 15:0
X2 : X coordinate (screen space) for upper-left pixel of subspan 2 (slot 8)

Format = U16

W0.3 31:16
Y1 : Y coordinate (screen space) for upper-left pixel of subspan 1 (slot 4)

772 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Format = U16

 15:0
X1 : X coordinate (screen space) for upper-left pixel of subspan 1 (slot 4)

Format = U16

W0.2 31:16
Y0 : Y coordinate (screen space) for upper-left pixel of subspan 0 (slot 0)

Format = U16

 15:0
X0 : X coordinate (screen space) for upper-left pixel of subspan 0 (slot 0)

Format = U16

W0.1 31:0
Reserved (MBZ)

W0.0 31:20
Reserved (MBZ)

 19:16 MSAA rate (multisample count)

Format: U4 [1..16]

This field specifies MSAA sampling rate (required for PS+S monolithic shader).

 15:4 Reserved (MBZ)

 3:0 Next Pixel Shader Phase

Format = U4 [0..15]

Pixel Interpolator returns identifier of the next pixel phase to be queried in monolithic CPS+PS(+S)

implementation. The next phase may be different than requested phase + 1. The value of 0

indicates there are no more pixels available beyond requested phase.

The intended usage scenario is

1) ISA kernel sends Coarse to Pixel Mapping requesting data for phase 0

2) If the returned next pixel phase is zero, ISA kernel executes pixel code for phase 0 (one loop pass)

and terminates

3) If the returned next pixel phase is greater than zero, ISA kernel executes pixel code for requested

phase and then requests shader input for next phase (until value of zero is returned)

W1.7 32:16
Parent coarse shader slot for pixel dispatched at slot 15

Format: U16

Valid range: 0 – 15

 15:0
Parent coarse shader slot for pixel dispatched at slot 14

Format: U16

Valid range: 0 - 15

W1.6 Parent coarse shader slots for pixel dispatched at slots 13:12

Doc Ref # IHD-OS-LKF-Vol 9-4.21 773

W1.5 Parent coarse shader slots for pixel dispatched at slots 11:10

W1.4 Parent coarse shader slots for pixel dispatched at slots 9:8

W1.3 Parent coarse shader slots for pixel dispatched at slots 7:6

W1.2 Parent coarse shader slots for pixel dispatched at slots 5:4

W1.1 Parent coarse shader slots for pixel dispatched at slots 3:2

W1.0 Parent coarse shader slots for pixel dispatched at slots 1:0

W2.7 31:0
Perspective Pixel Location Barycentric[1] for Slot 7

This phase is included only if the corresponding bit in Coarse to Pixel Mapping message specific

control is enabled.

Format = IEEE_Float

W2.6 31:0 Perspective Pixel Location Barycentric[1] for Slot 6

W2.5 31:0 Perspective Pixel Location Barycentric[1] for Slot 5

W2.4 31:0 Perspective Pixel Location Barycentric[1] for Slot 4

W2.3 31:0 Perspective Pixel Location Barycentric[1] for Slot 3

W2.2 31:0 Perspective Pixel Location Barycentric[1] for Slot 2

W2.1 31:0 Perspective Pixel Location Barycentric[1] for Slot 1

W2.0 31:0 Perspective Pixel Location Barycentric[1] for Slot 0

W3 Perspective Pixel Location Barycentric[2] for Slots 7:0

W4 Perspective Pixel Location Barycentric[1] for Slots 15:8

W5 Perspective Pixel Location Barycentric[2] for Slots 15:8

W6:9 Perspective Centroid Barycentric, included only if the corresponding bit in Coarse to Pixel Mapping

message specific control is enabled.

W10:13 Linear Pixel Location Barycentric, included only if the corresponding bit in Coarse to Pixel Mapping

message specific control is enabled.

W14:17 Linear Centroid Barycentric, included only if the corresponding bit in Coarse to Pixel Mapping

message specific control is enabled.

W18
Pixel Shader Input Coverage Mask, for slots 7:0

This phase is included only if the corresponding bit in Coarse to Pixel Mapping message specific

control is enabled.

Format = U32

W19
Pixel Shader Input Coverage Mask, for slots 15:8

Format = U32

This phase is included only if the corresponding bit in Coarse to Pixel Mapping message specific

control is enabled.

774 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Message Gateway

The Message Gateway has these functions:

• Barrier messages for thread-to-thread synchronization within a thread group.

• Event Monitor, Event Wait, and Event Signal messages for thread-to-thread signaling across GPU.

End of Thread messages (sent to Thread Spawner), to exit the GPGPU and Media threads.

The Message Gateway has these functions:

• Barrier messages for thread-to-thread synchronization

• Timestamp provide a counter with a fixed frequency not dependent on the core clock.

End of Thread messages (sent to Thread Spawner), to exit the GPGPU and Media threads.

Media Sampler

This section describes the functionality of the Media Sampler.

Shared Functions – Video Motion Estimation

Programming Note

Restriction: HW Based Video Motion Estimation feature removed

The Video Motion Estimation (VME) engine is a shared function that provides motion estimation services.

It includes motion estimation for various block sizes and also standard specific operations such as

• Motion estimation and mode decision for AVC

• Intra prediction and mode decision for AVC

• Motion estimation and mode decision for MPEG2

• Motion estimation and mode decision for VC1

The motion estimation engine may also be used for other coding standards or other video processing

applications.

Theory of Operation

VME performs a sequence of operations to find the best mode for a given macroblock. Each operation

step can be enabled/disabled through the control of the income message. Early termination, skipping of

subsequent operation steps, is also supported when certain search criteria are met.

VME contains the following operation steps:

1. Skip check

2. IME: Integer motion estimation

3. FME: Fractional motion estimation

4. BME: Bidirectional motion estimation

Doc Ref # IHD-OS-LKF-Vol 9-4.21 775

5. IPE: Intra prediction estimation (AVC only)

Shape Decision

As a terminology, we call sub-block shapes: 8x4, 4x8, and 4x4 minor shapes (corresponding to sub-

partitions of 8x8 sub-macroblock), and 16x16, 16x8, 8x16, and 8x8 major shapes (corresponding to

sub-macroblocks of a 16x16 macroblock).

If the maximal allowed number of motion vectors MaxNumMVs (MaxNumMVs =

MaxNumMVsMinusOne + 1) is less than 4, we will set minor MV flag off: MinorMVsFlag = 0, i.e. no

minor motion vectors will be generated.

The reason of having this parameter MaxNumMVs is due to high level AVC conformance restrictions for

certain profiles: the total number of motion vectors of any two consecutive macroblocks not exceeding 16

(or 32). The mechanism here allows a reasonable degree of user control. In disable cases, MaxNumMVs

should be set to 32.

In the coding process of VME, the shape decision is done in multiple locations:

1. After IME and before FME, intermediate shape decision is performed to reduce the FME searching

candidates

2. After FME and before BME, existing shape decision is revised among the remaining candidates and

to see if there is further reduction.

3. Final shape decision is done after BME.

Partition decision before BME uses unidirectional motion vector count to meet MaxNumMVs

requirement. Adding BME for the partition candidates may exceed MaxNumMVs. As BME is performed

on a block by block basis using the block order for a given partition, BME step for a given block is

skipped and the best unidirectional motion vectors are used for the block if the overall motion vector

count exceeds MaxNumMVs when that particular block is switched to bidirectional. The process

continues to the last block of the partition.

Note: This is a sub-optimal solution to simplify the hardware implementation. For some cases, bidirectional

modes with larger sub-partitions might be better than unidirectional modes with finer sub-partitions.

The VME implementation has the following restriction: Multiple partition candidates are only enabled if

PartCandidateEn is set. And this only applies to source block of size 16x16.

If PartCandidateEn is not set, only the best partition is kept in state 1 (after IME) above and carried

through FME and BME. In other words, FME if enabled only operates on one partition candidate, and

BME if enabled only operates on one partition candidate. Bidirectional mode check only applies to the

partition candidates that meet the bidirectional restriction provided by BiSubMbPartMask. For example,

if a minor partition determined based on best unidirectional cost function is not 8x8 but one of 4x8, 8x4

or 4x4, VME skips the bidirectional mode check.

If PartCandidateEn is set, up to two sets of candidates are maintained by VME hardware, if the second

best partition candidate is within PartToleranceThrhd from the best one. The second best partition is

selected only from the two major partition candidates based on the unidirectional motion vector count,

subject to that the major partition is enabled:

776 Doc Ref # IHD-OS-LKF-Vol 9-4.21

• 1MV: The 16x16 partition

• 4MV: The 4x(8x8) partition with no minor shape

The following partitions are not supported as alternative partition.

• 2MV: The best of 2x(16x8) and 2x(8x16) partitions

• More than 4MV: The best of all 4x(8x8) partitions with at least one 8x8 having minor shape of 8x4,

4x8 or 4x4

Major Shape Decision Prior to FME

Now considering the best of each 8x8 is done, and we have the total cost-adjusted-distortion for this

sub-block level partition. Now among the four choices: the resulting 8x8 sub-partitioning, one 16x16,

two 16x8, and two 8x16, the one gives the best cost-adjusted-distortion, will determine the final decision

of partitioning shape. Any among these four, if its cost-adjusted-distortion is within the intermediate

tolerance (which is a predefined system state) from the best distortion will be marked as candidate

shapes.

Notice that, when the intermediate tolerance is set to 0, only the best shape will be selected as the

candidate. When the intermediate tolerance is large, all four shapes will become candidates.

Assume we have all the distortions for majors enumerated in DistoMajor[k], where k = 0, 1, 2, 3, 4, and 5,

for 16x16, 16x8, 8x16, the combined minors, 16x8 field, and 8x8 field respectively. Assume BestDisto is

equal to the minimal of the six values DistoMajor[k], for k = 0, …5. Assume the intermediate tolerance is

IntTol, the major shape k is a candidate shape if and only if DistoMajor[k]<=BestDisto+IntTol.

Shape Update after FME

Among all the candidate shapes, we recheck the distortion, if any of them is no longer with in the

intermediate tolerance DistortionTolerance from the best choice; we drop it for reduced calculation.

Final Code Decision after BME

For any given candidate shape, for each motion vector, if we do have improved distortion by switch from

the single direction to bi-direction, then we do it, unless the increased number of motion vectors hits

above MaxNumMVs; in this case, we take as many as possible first the ones generate the most

improvement.

Then, we choose the best among the improved candidate shapes.

Surfaces

The data elements accessed by VME are called “surfaces”. Surfaces are accessed using the surface state

model.

VME uses the binding table to bind indices to surface state, using the same mechanism used by the

sampling engine. A Binding Table Index (specified in the message descriptor) of less than 255 is used to

index into the binding table, and the binding table entry contains a pointer to the SURFACE_STATE.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 777

SURFACE_STATE contains the parameters defining the surface to be accessed, including its location,

format, and size.

State

BINDING_TABLE_STATE

VME uses the binding table to retrieve surface state. Refer to Sampling Engine for the definition of this

state.

SURFACE_STATE

VME uses the surface state for current and reference surfaces. Refer to Sampling Engine for the definition

of this state.

VME_STATE

This state structure contains the state used by the VME engine for data processing. VME state contains

the motion search path location tables and rate-distortion weight look-up-tables. As the two sets of

tables are fairly large, they are accessed as two separate states via state indexing mechanism so that

applications can inter-mix the use of the search path tables and RDLUT tables.

Even though VME engine has its unique shared function ID (see Target Function ID field in the SEND

instruction), the VME state is delivered through the Sampler State Pointer. When the General Purpose

Pipe is used, the Sampler State Pointer is programmed in the MEDIA_INTERFACE_DESCRIPTOR_LOAD

command and delivered directly to Sampler/VME by hardware. This posts one usage limitation. As the

VME state is overloaded on top of the Sampler State Pointer, VME messages cannot be intermixed with

other Sampler messages.

Each VME state may contain up to 8 VME_SEARCH_PATH_LUT_STATE. When multiple

VME_SEARCH_PATH_LUT_STATE are used, they need to be stored in memory contiguously. Each

VME_SEARCH_PATH_LUT_STATE contains 32 dwords in comparison of 4 dwords of a Sampler State.

When enabling sampler state pre-fetch (programming the Sampler Count field in the

MEDIA_INTERFACE_DESCRIPTOR_LOAD command), one VME_SEARCH_PATH_LUT_STATE is equivalent to

8 Samplers. Hardware may support up to two VME_SEARCH_PATH_LUT_STATE to be pre-fetched (See

See 3D_Media_GPGPU chapter, Media_GPGPU_Pipeline for more details).

778 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Sample_8x8 State

This section contains different state definitions.

This state definition is used only by the deinterlace message. This state is stored as an array of up to 8

elements, each of which contains the dwords described here. The start of each element is spaced 8

dwords apart. The first element of the array is aligned to a 32-byte boundary. The index with range 0-7

that selects which element is being used is multiplied by 2 to determine the Sampler Index in the

message descriptor.

SURFACE_STATE for Deinterlace, sample_8x8, and VME

This section contains media surface state definitions.

full frame top field bottom field

V Offset 0.5 V Offset 0.25 V Offset 0.75

MEDIA_SURFACE_STATE

Restrictions: The Faulting modes described in the MEMORY_OBJECT_CONTROL_STATE should be set to

the same for the multi-surface Video Analytics functions like “LBP Correlation” and “Correlation Search”

for both the surfaces.

SURFACE_STATE for Deinterlace, sample_8x8, and VME

MEDIA_SURFACE_STATE

Restrictions: The Faulting modes described in the MEMORY_OBJECT_CONTROL_STATE should be set to the same

for the multi-surface Video Analytics functions like “LBP Correlation” and “Correlation Search” for both the surfaces.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 779

SAMPLER_STATE for Sample_8x8 Message

SAMPLER_STATE has different formats, depending on the message type used. The sample_8x8 and

deinterlace messages use a different format of SAMPLER_STATE as detailed in the corresponding

sections.

Sampler State

SAMPLER_STATE

• Dword 0-15 is valid only when the function is “AVS Scaling”

• Function Convolve : State is 144DWs

• Function MinMaxfilter/Erode/Dilate : State is 8DWs

• Function MinMax/BoolCentroid/Centroid : State is 0DWs. The sampler state is not required.

• This state definition is used only by the sample_8x8 message only for specific function and the length of the

state varies according to the function programmed in the message header.

For AVS and Convolve the state is stored as an array of up to 48 elements (192 DWs), (upsize to 64 elements,

256DWs), each of which contains the dwords described here. The start of each of this state is spaced 256

dwords apart. The first element of the array is aligned to a 64-byte boundary. The sampler index in the

message descriptor is multiplied by 32 to determine the offset from the base where the sampler state is to

be read from. Sampler states with lower foot print than 32 elements should be packed at lower offsets and

this sampler state for sample_8x8 message should be kept at the end. We can reuse existing sampler_index if

the result of the multiplication of 32 is not overlapping with the existing states already programmed at the

lower offsets. Two adjacent state of this type should have a space of 2 sample index.

For MinMaxFilter, Erode and Dilate the state is stored as an array of up to 2 elements (8 DWs), each of

which contains the dwords as described in following section. The start of each of this state is spaced 8

dwords apart. The first element of the array is aligned to a 32-byte boundary. The sampler index in the

message descriptor is multiplied by 2 to determine the offset from the base where the sampler state is to

be read from. Sampler states with lower foot print than 2 elements should be packed at lower offsets and

this sampler state for sample_8x8 message should be kept after it. Sampler states with larger footprint

(192DWs) as described earlier should be packed after this. We can reuse existing sampler_index if the

result of the multiplication of 2 is not overlapping with the existing states already programmed at the

lower offsets. Two adjacent state of this type should have a space of 1 sample index.

Sampler State

SAMPLER_STATE_8x8_AVS

SAMPLER_STATE_8x8_AVS_COEFFICIENTS

SAMPLER_STATE_8x8_ERODE_DILATE_MINMAXFILTER

780 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Most of the existing functions are carried over and the states are programmed in exactly the same way. The

following functions are added and use sampler state:

• Convolve (00000) & mode: 512 DWords or 128 Elements.

Note: Convolve is the same with no change.

• 1D Vertical / Horizontal Convolution (function 01000 and 01001): 32 DWords or 8 Elements.

• 1 Pixel Convolution (Same as Convolve): 144 DWords.

• AVS Scaling: 280 DWords or 70 elements. Occupies 128 Elements for each state.

From the above list we can see that we are required to support 128 Elements and 8 Elements and the rest

of element size are already supported, For this case the sampler_index is multiplied by 128 (for "2D

Convolution" and "AVS Scaling") and 8 (for 1D convolution) respectively. Lower state sizes should use

lower index and higher states sizes should use higher index and should be aligned to the sampler state

size.

Description

Function FloodFill/LBPCreation/CorrelationSearch: State is 0 DWords.

Function 1PixelConvolution: State is 192 DWords.

Function 1D Vertical/1D Horizontal Convolution: State is 32 DWords.

Function Convolution: State is 512 DWords.

Function AVS Scaling: State is 280 DWords.

Sampler State

SAMPLER_STATE_8x8_1D_CONVOLVE

SIMD32/64 Messages

Initiating Message

SIMD32/64 Payload

SIMD32 Payload

DWord Bits Description

M1.7 31:0
Reserved

M1.6 31:0
U 2nd Derivative

Defines the change in the delta U for adjacent pixels in the X direction.

Format = IEEE_Float in normalized space.

M1.5 31:0
Delta V: defines the difference in V for adjacent pixels in the Y direction.

Programming Notes:

Doc Ref # IHD-OS-LKF-Vol 9-4.21 781

DWord Bits Description

• Delta V multiplied by Height in SURFACE_STATE must be less than or equal to 3 for

sample_unorm* message types.

• This field is ignored for the deinterlace message type.

• Negative Delta V are not supported and should be clamped to 0.

Format = IEEE_Float in normalized space.

M1.4
31:0

Delta U: defines the difference in U for adjacent pixels in the X direction.

Programming Notes:

• Delta U multiplied by Width in SURFACE_STATE must be less than or equal to 3 for

sample_unorm* message types.

• This field is ignored for the deinterlace message type.

• Negative Delta U are not supported and should be clamped to 0.

Format = IEEE_Float in normalized space.

M1.3 31:0
Pixel 0 V Address

Format: sample_unorm* : IEEE_Float in normalized space.

Deinterlace: U32 (Range: [0,2046])

Specifies the address for the pixel at the top left of the group and not the top of the message block

sent in.

M1.2 31:0
Pixel 0 U Address

Format: sample_unorm* : IEEE_Float in normalized space.

Deinterlace: U32 (Range: [0,4095])

Specifies the address for the pixel at the top left of the group and not the top of the message block

sent in.

M1.1 31:0
Reserved

M1.0 31:0 Ignored

Payload Parameter Definition

The table below shows all of the message types supported by the sampling engine. The Message Type

field in the message descriptor determines which message is being sent. The SIMD Mode field

determines the number of instances (i.e. pixels) and the formatting of the initiating and writeback

messages. The Header Present field determines whether a header is delivered as the first phase of the

message or the default header from R0 of the thread’s dispatch is used. The Message Length field is

used to vary the number of parameters sent with each message. Higher-numbered parameters are

optional, and default to a value of 0 if not sent but needed for the surface being sampled. Parameter 0 is

required except for the sampleinfo message which has no parameter 0.

782 Doc Ref # IHD-OS-LKF-Vol 9-4.21

The message lengths are computed as follows, where “N” is the number of parameters (“N” is rounded

up to the next multiple of 4 for SIMD4x2), and “H” is 1 if the header is present, 0 otherwise. The

maximum message length allowed to the sampler is 11.

SIMD Mode Message Length

SIMD4x2 H + (N/4)

SIMD8

 SIMD8D

H + N

SIMD16 H + (2*N)

SIMD8H H + N

SIMD16H H + N

The response lengths are computed as follows:

SIMD Mode

Response Length

 Return Format = 32-bit

Response Length

 Return Format = 16-bit ***

SIMD4x2 1 not allowed

SIMD8 sample+killpix 5 not allowed

all other message types 4 2 **

SIMD16 8 * 4 *

* For SIMD16, phases in the response length are reduced by 2 for each channel that is masked.

** : For SIMD8*, phases in the response length are reduced by 1 for each channel that is masked.

*** only

SIMD16 messages with six or more parameters exceed the maximum message length allowed, in which

case they are not supported. This includes some forms of sample_b_c, sample_l_c, and gather4_po_c

message types. Note that even for these messages, if 5 or fewer parameters are included in the message,

the SIMD16 form of the message is allowed. SIMD16 forms of sample_d and sample_d_c are not allowed,

regardless of the number of parameters sent.

SIMD16H messages have the same limitations as the corresponding SIMD16 message would, even

though maximum message length is not exceeded.

If Header Present is disabled, Response Length can be set to values in the table below for SIMD8 and

SIMD16 messages other than sample+killpix. The setting of Response Length determines the Write Channel

Mask fields that are used by the hardware according to the table below. Response Length values not

indicated in the table are not valid.

SIMD

Mode

Response

Length

Alpha Write

Channel Mask

Blue Write

Channel Mask

Green Write

Channel Mask

Red Write

Channel Mask

SIMD8*

1 1 1 1 0

2 1 1 0 0

3 1 0 0 0

4 0 0 0 0

Doc Ref # IHD-OS-LKF-Vol 9-4.21 783

SIMD

Mode

Response

Length

Alpha Write

Channel Mask

Blue Write

Channel Mask

Green Write

Channel Mask

Red Write

Channel Mask

SIMD16*

2 1 1 1 0

4 1 1 0 0

6 1 0 0 0

8 0 0 0 0

If Pixel Fault Mask Enable is enabled, response length must be set to a value one larger than those indicated in

the tables above.

Response Length of zero is allowed on all SIMD8* and SIMD16* sampler messages except sample+killpix, resinfo,

sampleinfo, LOD, and gather4*. Header Present must be enabled and Pixel Null Mask Enable must be disabled. The

Write Channel Mask for all four channels in the header must be 0 (channel enabled). A shader containing one or

more of these messages is not allowed to send any render target read or write messages to the data port. When

response length is set to zero, the following behavior occurs:

• When the sampler completes processing of the message, the resulting channels are delivered as input to the

Render Cache Data Port in the form of a Render Target Write message without a header. Refer to the Data

Port section for more details on this message.

• The fields normally set in the message descriptor for Render Target Write are set as follows:

• End of Thread (EOT) comes from the EOT on the sampler message. These response length zero

sampler messages are the only sampler messages allowed to have EOT enabled.

• Last Render Target Select is set to true.

• Slot Group Select is derived from EOT: If EOT is enabled, set to SLOTGRP_LO, otherwise SLOTGRP_HI.

• RT Write Message Type is derived from the sampler’s SIMD Mode field as follows: SIMD8 =>

SIMD8_LO, SIMD16 => SIMD16

Binding Table Index is set to the value set in the Render Target Binding Table Index field of the message

header.

SIMD8, SIMD8H, SIMD16, and SIMD16H Messages

Message Type Mnemonic

Parameters

0 1 2 3 4 5 6 7 8 9 10

00000 sample u v r ai mlod*

00001 sample_b bias u v r ai mlod*

00010 sample_l lod u v r ai

00011 sample_c ref u v r ai mlod*

00100 sample_d u dudx dudy v dvdx dvdy r drdx drdy ai mlod*

00101 sample_b_c ref bias u v r ai

00110 sample_l_c ref lod u v r ai

00111 ld u lod v r

00111 ld † u v lod r

01000 gather4 u v r ai

01001 LOD u v r ai

784 Doc Ref # IHD-OS-LKF-Vol 9-4.21

Message Type Mnemonic

Parameters

0 1 2 3 4 5 6 7 8 9 10

01010 resinfo lod

01011 sampleinfo

01100 sample+killpix u v r

10000 gather4_c ref u v r ai

10001 gather4_po u v offu offv r

10010 gather4_po_c ref u v offu offv r

10100 sample_d_c ref u dudx dudy v dvdx dvdy r drdx drdy ai

11100 ld2dms_w si mcsl mcsh u v r lod *

10110 sample_min u v

10111 sample_max u v

11101 ld_mcs u v r lod *

11110 ld2dms si mcs u v r lod *

11111 Id2dss ssi u v r lod *

11000 sample_lz u v r ai

11001 sample_c_lz ref u v r ai

11010 ld_lz u v r

* These parameters are allowed only for

† This parameter assignment is for

SIMD8D messages require Surface Type of the associated surface to be SURFTYPE_2D or SURFTYPE_NULL.

SIMD8D Messages:

Message Type Mnemonic

Parameters

0 1 2 3 4 5 6 7 8 9 10

00000 sample u0 u1 v0 v1 r mlod

00001 sample_b bias u0 u1 v0 v1 r mlod

00010 sample_l lod u0 u1 v0 v1 r

00011 sample_c ref u0 u1 v0 v1 r mlod

00100 sample_d u0 u1 dudx dudy v0 v1 dvdx dvdy r mlod

00101 sample_b_c ref bias u0 u1 v0 v1 r

00110 sample_l_c ref lod u0 u1 v0 v1 r

01000 gather4 u0 u1 v0 v1 r

01001 LOD u0 u1 v0 v1

10000 gather4_c ref u0 u1 v0 v1 r

10001 gather4_po u0 u1 v0 v1 offu offv r

10010 gather4_po_c ref u0 u1 v0 v1 offu offv r

Doc Ref # IHD-OS-LKF-Vol 9-4.21 785

Message Type Mnemonic

Parameters

0 1 2 3 4 5 6 7 8 9 10

10100 sample_d_c ref u0 u1 dudx dudy v0 v1 dvdx dvdy r

10110 sample_min u0 u1 v0 v1

10111 sample_max u0 u1 v0 v1

11000 sample_lz u0 u1 v0 v1 r

11001 sample_c_lz ref u0 u1 v0 v1 r

SIMD4x2 Messages

Message Type Mnemonic

Parameters

0 1 2 3 4 5 6 7 8 9 10

00010 sample_l u v r ai lod

00100 sample_d u v r ai dudx dudy dvdx dvdy drdx drdy mlod*

00110 sample_l_c u v r ai ref lod

00111 ld u v r lod

01000 gather4 u v r ai

01010 resinfo lod

01011 sampleinfo

10000 gather4_c u v r ai ref

10001 gather4_po u v r ai offu offv

10010 gather4_po_c u v r ref offu offv

10100 sample_d_c u v r ai dudx dudy dvdx dvdy drdx drdy ref

11100 ld2dms_w u v r lod* si mcsl mcsh

11101 ld_mcs u v r lod*

11110 ld2dms u v r lod* si mcs

* These parameters are allowed.

SIMD32/SIMD64 Messages

Message Type mnemonic Payload Layout Message Length Response Length

00000 sample_unorm Pixel Shader H + 1 8 **

00010 sample_unorm+killpix Pixel Shader H + 1 9 **

01000 deinterlace Pixel Shader H + 1 †

01100 sample_unorm Media H + 1 8 **

01010 sample_unorm+killpix Media H + 1 9 **

01011 sample_8x8 Media H + 1 16 *

11111 cache_flush no payload 1 1

* These parameters are allowed.

786 Doc Ref # IHD-OS-LKF-Vol 9-4.21

SIMD32/SIMD64 Messages

Message Type mnemonic Payload Layout Message Length Response Length

00000 sample_unorm Pixel Shader H + 1 8 **

00010 sample_unorm+killpix Pixel Shader H + 1 9 **

01000 deinterlace Pixel Shader H + 1 †

01100 sample_unorm Media H + 1 8 **

01010 sample_unorm+killpix Media H + 1 9 **

01011 sample_8x8 Media H + 1 16 *

11111 cache_flush no payload 1 1

* For sample_8x8, phases in the response length are reduced by 4 for each channel that is masked.

** For sample_unorm, phases in the response length are reduced by 2 for each channel that is masked.

† For deinterlace, response length depending on certain state fields. Refer to writeback message

definition for details.

SIMD32_64 Message Descriptor

Please refer to the 3D Sampler Message Descriptor definition at Message Descriptor - Sampling Engine.

SIMD32_64 Message Header

Please refer to the 3D Sampler Message Header definition at Message Header.

Message Header

The message header for the sampling engine is the same regardless of the message type. If the header is

not present, the behavior is as if the message was sent with all fields in the header set to zero (write

channel masks are all enabled and offsets are zero). When Response length is 0 for sample_8x8 message

then the data from sampler is directly written out to memory using media write message. Message

header needs to be present if mid-thread pre-emption is required.

DWord Bits Description

M0.5 31:0 Reserved

M0.4 31:0 Ignored

M0.3 31:5
Sampler State Pointer: Specifies the 32-byte aligned pointer to the sampler state table. This field is

ignored for “ld” and “resinfo” message types. This pointer is relative to the Dynamic State Base

Address.

Format = DynamicStateOfffset[31:5]

M0.3 4:1 Ignored

M0.3 0
Sampler State Base Address Select: required to be set to 0 to indicate using Dynamic State Base

Address

Doc Ref # IHD-OS-LKF-Vol 9-4.21 787

DWord Bits Description

Format = 1-bit enumerated value

Value Name Description

0 SAMP_DYNAMIC use Dynamic State Base Address

M0.2 31:24 Ignored

M0.2 23
Pixel Null Mask Enable:

Specifies whether the writeback message includes an extra phase indicating the pixel null mask.

Refer to the “Writeback Message” section for details on format. This field must be disabled for

sample+killpix and for all SIMD32/64 messages.

Format = Enable

Ignored for Sample_8x8 message

M0.2 22
SIMD Mode Extension:

If SIMD Mode in the message descriptor is set to SIMD8D / SIMD4x2, this field specifies which

mode is used. For other SIMD Modes, this field is ignored.

0: SIMD8D

1: SIMD4x2

M0.2 21
Slot Group Select: This field selects whether slots 7:0 or slots 15:8 are used for bypassed data.

Bypassed data only includes the scale factors for CPS LOD Compensation. This field is ignored if

CPS Message LOD Compensation Enable is disabled.

For 8-pixel dispatches, SLOTGRP_0 must be selected on every message. For 16-pixel dispatches, this

field must be set correctly for each SIMD8* message based on which slots are currently being

processed. For SIMD16* messages, SLOTGRP_0 must be selected.

Value Name Description

0 SLOTGRP_0 Choose bypassed data for slots 7:0.

1 SLOTGRP_1 Choose bypassed data for slots 15:8.

M0.2 20 Ignored

M0.2 19:18
SIMD32/64 Output Format Control

Specifies the output format of SIMD32/64 messages (sample_unorm* and sample_8x8). Ignored for

other message types. Refer to the writeback message formats for details on how this field affects

returned data.

0: 16 bit Full

1: 16 bit Chrominance Downsampled

2: 8 bit Full

3: 8 bit Chrominance Downsampled

788 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bits Description

Programming Note

Context: Message Header

This field is ignored for sample_8x8 messages if the Function is not AVS and MinMaxFilter. For

MinMaxFilter only 16bit Full and 8bit Full modes are supported.

Programming Note

Context: Message Header

This field is not used for HDC write messages.

M0.2 17:16
Gather4 Source Channel Select: Selects the source channel to be sampled in the gather4*

messages. Ignored for other message types.

0: Red channel

1: Green channel

2: Blue channel

3: Alpha channel

Note that for gather4*_c messages, this field must be set to 0 (Red channel).

M0.2 15
Alpha Write Channel Mask: Enables the alpha channel to be written back to the originating

thread.

0: Alpha channel is written back.

1: Alpha channel is not written back.

Programming Note

Context: Message Header

• A message with all four channels masked is not allowed.

• This field is ignored for the deinterlace message.

• This field must be set to zero for sample_8x8 in VSA

mode.

• This field must be set to zero for all gather4* messages.

Programming Note

Context: Message Header

For Sample_8x8 messages, Alpha/Blue/Red channels should be always masked (set to 1) and only

Green channel is enabled (set to 0).

M0.2
14 Blue Write Channel Mask: See Alpha Write Channel Mask.

M0.2 13 Green Write Channel Mask: See Alpha Write Channel Mask.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 789

DWord Bits Description

M0.2 12 Red Write Channel Mask: See Alpha Write Channel Mask.

M0.2 11:8
U Offset: The u offset from the _aoffimmi modifier on the “sample” or “ld” instruction in DX10.

Must be zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER. Must be set to zero if

_aoffimmi is not specified. Format is S3 2’s complement.

Programming Note

Context: Message Header

• This field is ignored for the sample_unorm*, sample_8x8, and deinterlace

messages.

• This field is ignored if the “offu” parameter is included in the gather4* messages.

M0.2 7:4
V Offset: The v offset from the _aoffimmi modifier on the “sample” or “ld” instruction in DX10. Must

be zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER. Must be set to zero if

_aoffimmi is not specified. Format is S3 2’s complement.

Programming Note

Context: Message Header

• This field is ignored for the sample_unorm*, sample_8x8, and deinterlace

messages.

• This field is ignored if the “offu” parameter is included in the gather4* messages.

M0.2 3:0
R Offset: The r offset from the _aoffimmi modifier on the “sample” or “ld” instruction in DX10. Must

be zero if the Surface Type is SURFTYPE_CUBE or SURFTYPE_BUFFER. Must be set to zero if

_aoffimmi is not specified. Format is S3 2’s complement.

This field is ignored for the sample_unorm*, sample_8x8, and deinterlace messages.

M0.1 31:0 Ignored

M0.0 31:0 Ignored

790 Doc Ref # IHD-OS-LKF-Vol 9-4.21

SIMD32_64 Payload Parameter Definition

Please refer to the 3D Sampler Payload Parameter Definition at Payload Parameter Definition.

SIMD32_64 Message Types

Please refer to the 3D Sampler Message Types definition at Message Types.

Writeback Message

SIMD32

Sample_unorm*

Pixels are numbered as follows:

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

Which registers are returned is determined by the write channel mask received in the corresponding

input message. Each asserted write channel mask results in both destination registers of the

corresponding channel being skipped in the writeback message, and all channels with higher numbered

registers being dropped down to fill in the space occupied by the masked channel. For example, if only

red and alpha are enabled, red is sent to regid+0 and regid+1, and alpha to regid+2 and regid+3 (using

16 bit Full mode as an example).

“16 bit Full” Output Format Control Mode

DWord Bit Description

W0.7 31:16
Pixel 15 Red

Format = 16-bit UNORM with an 8-bit range (the value FF00h maps to a real value of 1.0)

Range = [0000h:FF00h]

 15:0
Pixel 14 Red

W0.6
Pixel 13 & 12 Red

W0.5
Pixel 11 & 10 Red

W0.4
Pixel 9 & 8 Red

W0.3
Pixel 7 & 6 Red

Doc Ref # IHD-OS-LKF-Vol 9-4.21 791

DWord Bit Description

W0.2
Pixel 5 & 4 Red

W0.1
Pixel 3 & 2 Red

W0.0
Pixel 1 & 0 Red

W1.7
Pixel 31 & 30 Red

W1.6
Pixel 29 & 28 Red

W1.5
Pixel 27 & 26 Red

W1.4
Pixel 25 & 24 Red

W1.3
Pixel 23 & 22 Red

W1.2
Pixel 21 & 20 Red

W1.1
Pixel 19 & 18 Red

W1.0
Pixel 17 & 16 Red

W2
Pixels 15:0 Green

W3
Pixels 31:16 Green

W4
Pixels 15:0 Blue

W5
Pixels 31:16 Blue

W6
Pixels 15:0 Alpha

W7
Pixels 31:16 Alpha

“16 Bit Chrominance Downsampled” Output Format Control Mode

In this mode the odd pixel red & blue channels are not included.

DWord Bit Description

W0.7 31:16
Pixel 30 Red

Format = 16-bit UNORM with an 8-bit range (the value FF00h maps to a real value of 1.0)

Range = [0000h:FF00h]

792 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bit Description

 15:0
Pixel 28 Red

W0.6
Pixel 26 & 24 Red

W0.5
Pixel 22 & 20 Red

W0.4
Pixel 18 & 16 Red

W0.3
Pixel 14 & 12 Red

W0.2
Pixel 10 & 8 Red

W0.1
Pixel 6 & 4 Red

W0.0
Pixel 2 & 0 Red

W1.7 31:16
Pixel 15 Green

 15:0
Pixel 14 Green

W1.6
Pixel 13 & 12 Green

W1.5
Pixel 11 & 10 Green

W1.4
Pixel 9 & 8 Green

W1.3
Pixel 7 & 6 Green

W1.2
Pixel 5 & 4 Green

W1.1
Pixel 3 & 2 Green

W1.0
Pixel 1 & 0 Green

W2.7
Pixel 31 & 30 Green

W2.6
Pixel 29 & 28 Green

W2.5
Pixel 27 & 26 Green

W2.4
Pixel 25 & 24 Green

Doc Ref # IHD-OS-LKF-Vol 9-4.21 793

DWord Bit Description

W2.3
Pixel 23 & 22 Green

W2.2
Pixel 21 & 20 Green

W2.1
Pixel 19 & 18 Green

W2.0
Pixel 17 & 16 Green

W3.7 31:16
Pixel 30 Blue

 15:0
Pixel 28 Blue

W3.6
Pixel 26 & 24 Blue

W3.5
Pixel 22 & 20 Blue

W3.4
Pixel 18 & 16 Blue

W3.3
Pixel 14 & 12 Blue

W3.2
Pixel 10 & 8 Blue

W3.1
Pixel 6 & 4 Blue

W3.0
Pixel 2 & 0 Blue

W4.7 31:16
Pixel 15 Alpha

 15:0
Pixel 14 Alpha

W4.6
Pixel 13 & 12 Alpha

W4.5
Pixel 11 & 10 Alpha

W4.4
Pixel 9 & 8 Alpha

W4.3
Pixel 7 & 6 Alpha

W4.2
Pixel 5 & 4 Alpha

W4.1
Pixel 3 & 2 Alpha

794 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bit Description

W4.0
Pixel 1 & 0 Alpha

W5.7
Pixel 31 & 30 Alpha

W5.6
Pixel 29 & 28 Alpha

W5.5
Pixel 27 & 26 Alpha

W5.4
Pixel 25 & 24 Alpha

W5.3
Pixel 23 & 22 Alpha

W5.2
Pixel 21 & 20 Alpha

W5.1
Pixel 19 & 18 Alpha

W5.0
Pixel 17 & 16 Alpha

“8 Bit Full” Output Format Control Mode

DWord Bit Description

W0.7 31:24
Pixel 31 Red

Format = 8-bit UNORM

Range = [00h:FFh]

 23:16
Pixel 30 Red

 15:8
Pixel 29 Red

 7:0
Pixel 28 Red

W0.6
Pixel 27:24 Red

W0.5
Pixel 23:20 Red

W0.4
Pixel 19:16 Red

W0.3
Pixel 15:12 Red

W0.2
Pixel 11:8 Red

Doc Ref # IHD-OS-LKF-Vol 9-4.21 795

DWord Bit Description

W0.1
Pixel 7:4 Red

W0.0
Pixel 3:0 Red

W1
Pixels 31:0 Green

W2
Pixels 31:0 Blue

W3
Pixels 31:0 Alpha

“8 Bit Chrominance Downsampled” Output Format Control Mode

If either red or blue channel (but not both) are masked, the W0 register is included in the payload but the

masked channel is not written to the GRF. If both are masked, W0 is not included in the payload

(reducing the response length by one).

DWord Bit Description

W0.7 31:24
Pixel 30 Red

Format = 16-bit UNORM with an 8-bit range (the value FF00h maps to a real value of 1.0)

Range = [0000h:FF00h]

 23:16
Pixel 28 Red

 15:8
Pixel 26 Red

 7:0
Pixel 24 Red

W0.6
Pixel 22, 20, 18, 16 Red

W0.5
Pixel 14, 12, 10, 8 Red

W0.4
Pixel 6, 4, 2, 0 Red

W0.3
Pixel 30, 28, 26, 24 Blue

W0.2
Pixel 22, 20, 18, 16 Blue

W0.1
Pixel 14, 12, 10, 8 Blue

W0.0
Pixel 6, 4, 2, 0 Blue

W1.7 31:24
Pixel 31 Green

796 Doc Ref # IHD-OS-LKF-Vol 9-4.21

DWord Bit Description

 23:16
Pixel 30 Green

 15:8
Pixel 29 Green

 7:0
Pixel 28 Green

W1.6
Pixel 27:24 Green

W1.5
Pixel 23:20 Green

W1.4
Pixel 19:16 Green

W1.3
Pixel 15:12 Green

W1.2
Pixel 11:8 Green

W1.1
Pixel 7:4 Green

W1.0
Pixel 3:0 Green

W2.7
Pixel 31:28 Alpha

W2.6
Pixel 27:24 Alpha

W2.5
Pixel 23:20 Alpha

W2.4
Pixel 19:16 Alpha

W2.3
Pixel 15:12 Alpha

W2.2
Pixel 11:8 Alpha

W2.1
Pixel 7:4 Alpha

W2.0
Pixel 3:0 Alpha

Additional Writeback Phase for sample_unorm+killpix

For the sample_unorm+killpix messages, an additional writeback phase is returned. The value of “n”

depends on which channels are enabled for return and the Output Format Control Mode, this register will

immediately follow the first part of the writeback message.

Doc Ref # IHD-OS-LKF-Vol 9-4.21 797

DWord Bit Description

Wn.7:1 Reserved (not written)

Wn.0 31:0
Active Pixel Mask: This field has the bit for all pixels set to 1 except those pixels that have been

killed as a result of chroma key with kill pixel mode.

The bits in this mask correspond to the pixels as follows and they are listed from upper left (MSB)

lower right LSB:

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Cache_flush

The writeback message is for cache_flush indicates that the flush has been completed. The destination

register is not modified.

DWord Bit Description

W0.7:0 Reserved

SIMD32 Surface State

Please refer to the 3D Surface State definition in the SURFACE_STATE topic.

SIMD32 Sampler State

Please refer to the 3D Sampler State definition at Sampler State.

