

Intel® UHD Graphics Open Source

Programmer's Reference Manual

For the 2020 Intel Core™ Processors with Intel Hybrid Technology

based on the "Lakefield" Platform

Volume 13: SW/HW System Interface

April 2021, Revision 1.0

ii Doc Ref # IHD-OS-LKF-Vol 13-4.21

Notices and Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Code names are used by Intel to identify products, technologies, or services that are in development and

not publicly available. These are not "commercial" names and not intended to function as trademarks.

Customer is responsible for safety of the overall system, including compliance with applicable safety-

related requirements or standards.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by

this document.

The products described may contain design defects or errors known as errata which may cause the

product to deviate from published specifications. Current characterized errata are available on request.

You may not use or facilitate the use of this document in connection with any infringement or other legal

analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free

license to any patent claim thereafter drafted which includes subject matter disclosed herein.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of

merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising

from course of performance, course of dealing, or usage in trade.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers

must not rely on the absence or characteristics of any features or instructions marked "reserved" or

"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for

conflicts or incompatibilities arising from future changes to them. The information here is subject to

change without notice. Do not finalize a design with this information.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its

subsidiaries. Other names and brands may be claimed as the property of others.

Doc Ref # IHD-OS-LKF-Vol 13-4.21 iii

Table of Contents

SW/HW System Interface ... 1

Interrupts ... 1

Overview: .. 1

GT Engine Interrupts: ... 3

Hardware Scheduler/MinIA SW Interface .. 4

Host SW Interface .. 5

Interrupt Aggregating Logic ... 6

External Interfaces .. 9

Uncore Registers .. 9

PCI Device Registers.. 10

MMIO .. 13

Force Wake and Steering Table ... 13

Multicast Steering and Die Recovery ... 25

SW Virtualization Reserved MMIO range .. 26

Observability .. 27

Observability Overview ... 27

GT Power-up/RC6 Exit ... 27

Render Engine Power-up ... 27

Media Engine Power-up ... 27

Resume from Partial GT Power Down ... 27

Trace ... 28

Doc Ref # IHD-OS-LKF-Vol 13-4.21 1

SW/HW System Interface

Interrupts

Overview:

The Graphics device is comprised of a number of independent engines that can be invoked to execute

workloads. Engines communicate status primarily through interrupts. The Graphics device supports two

models of scheduling and handling of interrupts:

• Host SW schedules and manages all interrupts

• Scheduling and related interrupts are managed by hardware scheduler (MinIA micro-controller)

and host SW manages interrupts not related to scheduling.

The hardware can be configured to work in either of these models. HW scheduling is the preferred mode

because it provides best utilization of resources. The figure below shows the high-level overview of the

interrupt infrastructure.

2 Doc Ref # IHD-OS-LKF-Vol 13-4.21

The interrupt infrastructure is designed to support both of these models. Each engine is allocated a set of

interrupt bits that it can set to report events (the number of bits allotted to each engine varies -- most

engines are allocated 16bits, some engines which have more events are allocated 32bits). Interrupt

messages sent by engines result in interrupt bits being recorded in MMIO registers and an interrupt

being generated to the servicing agent (MinIA scheduler or Host SW). The interrupt handler determines

the source of the interrupt (by reading registers) and then processes the interrupts. Processing interrupts

involves reading the interrupt status register, performing the operations for handling the interrupt and

indicating completion of handling by writing to registers (clear).

When using the HW scheduler, the scheduling related interrupts are directed to the MinIA scheduler.

Doc Ref # IHD-OS-LKF-Vol 13-4.21 3

GT Engine Interrupts:

Within GT, engines are categorized into different engine classes and instances. An engine class is used to

differentiate between engines that perform different functions (Copy, Render, VideoDecode,

VideoEncode, etc). A product may have a number of instances of a specific engine class e.g.: GT2 has 2

instances of VD, GT3 has 4 instances of VD, etc. The following table lists various engine classes as well as

instances within each class.

Engine Class Engine Instance Name ClassID[2:0] InstanceID[5:0]

Render RCS 0 0

Video Decode VCS0-N 1 0-N

Video Enhancement Engine VECS0-N/2 2 0-N/2

Copy Engine BCS 3 0

Other

 GTPM 4 1

 WDOAPerf 4 2

 SCTRG 4 3

 KCR 4 4

 Gunit 4 5

 CSME 4 6

Reserved 6-7

Each engine reports up to 16 interrupts to interrupt handling logic. Source identification data is included

in interrupt messages to interrupt aggregating logic, i.e. when reporting an interrupt to either host or

graphics firmware, the generating engine must identify itself. 16 bits of identification is sent along with

interrupt data, and comprises Engine Class ID, Instance ID and Virtual Function Number. Interrupt bit

definition varies per engine class, these are listed in the Bspec in the Global/ section.

4 Doc Ref # IHD-OS-LKF-Vol 13-4.21

Format of interrupt message:

Bit Fied Purpose

[31:30] Reserved

[29:27] VF ID

[26] Reserved

[25:20] Instance ID

[19] Reserved

[18:16] Engine Class ID

[15:0] Interrupt data

Hardware Scheduler/MinIA SW Interface

Graphics interrupts to scheduling firmware are delivered as two unique vector values. Each vector

accounts for 32 graphics engines. Firmware processes each of two groups of graphics engines

independently.

Service routines are independent for the two interrupt vectors presented to the MinIA firmware.

Doc Ref # IHD-OS-LKF-Vol 13-4.21 5

Host SW Interface

Interrupts to Host are delivered via a Master Interrupt Control Register. Graphics interrupts use 2 bits in

the Master Interrupt Control Register. In addition, interrupt events from Display are also represented in

6 Doc Ref # IHD-OS-LKF-Vol 13-4.21

the Master Interrupt Control Register. Multiple copies of INT DW and Master Interrupt Control Register

exist, one for every virtual machine in the system.

Interrupt bits in the Master Interrupt Control Register are Read-Only bits, and are level indications that a

second level interrupt is present (As seen earlier, second level interrupts per client are OR-ed together to

set a bit in the Master. When the second level IIR is cleared, the bit represented in the Master will be 0.).

An interrupt is sent to driver whenever bits are set in the Master Interrupt Control Register and the

Enable bit is also set.

As a result of this interrupt, SW first resets the Master Control Enable bit. SW then reads the Master

Interrupt Control register into a local variable, and works off this local variable to service interrupts. Once

all lower level interrupts have been serviced, SW writes the Master Interrupt Control register to set the

Master Control Enable bit.

Interrupt Aggregating Logic

A hierarchical interrupt status infrastructure is provided to efficiently determine the source of the

interrupt. The first level of interrupts is generated by GT Engines. Interrupt handling logic accumulates

these interrupts from the various engines, and organizes it as a single bit per engine in a second level. 32

bits of second level interrupts are OR-ed together to generate a DW-level interrupt event for up to 32

engines. Two such events are used to provide support for up to 64 GT engines. These DW-level interrupt

events are marked in red in the picture below. When communicating with the MinIA, these events are

mapped to two unique interrupt vectors in the MinIA LAPIC. When communicating with host driver,

these events form two bits of the Master Interrupt Control Register as marked in the picture.

Doc Ref # IHD-OS-LKF-Vol 13-4.21 7

8 Doc Ref # IHD-OS-LKF-Vol 13-4.21

Nomenclature:

First level interrupts are stored in storage named ‘per-Instance Collapsing Register’ (INST_CR in the

picture). These are 16 bits wide, one such storage exists per interrupt producing engine within GT.

Second level interrupts are stored in storage referred to as ‘GT INT DW’ (DW_IIR, DW_CR in the picture).

These are 32 bits wide. Two such DWs exist, DW0 and DW1

Each GT INT DW is accompanied by two other registers:

 Selector: This is a one-hot version of GT INT DW, and indicates which engine of 32 is next to be

serviced.

 Shared IIR: This presents the 16 bit interrupt data of the engine selected by the Selector for SW

to service.

First Level Interrupt Bits:

When an interrupt event comes into the interrupt handling logic, it is AND-ed with a per-Engine Enable

register. Only enabled events make forward progress. Disabled events are simply dropped by the

interrupt handling logic. [Note that multiple instances of the same engine type (except those in the

‘Other’ Engine Class) share the same Enable register.]

Enabled interrupts are logged in a per-instance Collapsing Register. These events are AND-ed with (the

inverse of) a per-Instance Mask Register. Only unmasked events make forward progress. Masked events

remain in the per-Instance Collapsing Register until they are unmasked. [Note that every instance (even

of the same engine type) has its own Mask Register.]

Unmasked events in the per-Instance Collapsing Register are OR-ed together to produce a single second

level interrupt event.

Second Level Interrupt Bits:

Second level interrupt events are stored in the GT INT DW. GT INT DW is a double buffered structure. A

snapshot of events is taken when SW reads GT INT DW. From the time of read to the time of SW

completely clearing GT INT DW (to indicate end of service), all incoming interrupts are logged in a

secondary storage structure. This guarantees that the record of interrupts SW is servicing will not change

while under service.

Bits in the GT INT DW_IIR are OR-ed together to generate a DW-level event. INT DW is cleared by writing

1s. If events exist in the secondary storage (DW_CR) at the time that INT DW is completely cleared, a

second DW-level event will be generated.

Shared IIR, Selector:

The Shared IIR and Selector registers are used when SW is in the process of handling reported interrupts.

As a result of a GT interrupt (DW-level interrupt), SW reads the DW IIR register. The read provides an

indication of engines needing service. SW must then service engines one at a time by writing a one-hot

selection into the Selector Register.

When a selection is made by writing the Selector, interrupt handling logic presents all the unmasked

interrupt bits (first level interrupt events) for the selected engine in the Shared IIR, and sets the Data-

Valid bit (MSB). SW can then read the Shared IIR and take action for the reported events. SW must clear

Doc Ref # IHD-OS-LKF-Vol 13-4.21 9

the Shared IIR by writing 1 to the Data-Valid bit to indicate end of service for the selected engine. This

clearing of the Shared IIR Data-Valid bit clears both the Shared IIR as well as the Selector. Note that the

Selector data must be one-hot. Selector must not have a bit set that is not set in DW_IIR.

SW then repeats the above steps for each bit set in GT INT DW. Multiple rounds of Selector write-Shared

IIR clear may be required to service GT INT DW a single time.

GT INT DW bits are cleared by SW writing a 1 to these bits. This is done only after individual engines are

serviced via the Selector write –Shared IIR clear routine. This clearing can be done after each iteration

through the Selector write-Shared IIR clear routine (i.e. one bit in GT INT DW cleared after each iteration),

or all at once after all engines have been serviced. DW_IIR bits must not be cleared without first servicing

that engine’s interrupts via the Selector and Shared IIR registers.

Enable and Mask Registers:

Interrupt aggregating logic includes Enable registers per Engine Class. Different instances of the same

engine class use the same Enable register, except for engines in the ‘Other’ class. Each instance in the

‘Other’ class has its own Enable register.

Interrupt aggregating logic also includes Mask registers. Each engine instance, even within the same

Engine Class, has a unique Mask Register.

Enables for Engine classes at the two software interfaces are typically complements of each other.

External Interfaces

Uncore Registers

GFX MMIO – MCHBAR Aperture

Address:
140000h – 147FFFh

140000h - 14FFFFh

Default Value: Same as MCHBAR

Access: Aligned Word, Dword, or Qword Read

This range defined in the graphics MMIO range is an alias with which graphics driver can read and write

registers defined in the MCHBAR MMIO space claimed through Device #0. Attributes for registers

defined within the MCHBAR space are preserved when the same registers are accessed via this space.

Registers that the graphics driver requires access to are Rank Throttling, GMCH Throttling, Thermal

Sensor, etc.

The Alias functions work for MMIO access from the CPU, reads only. In addition, GT is also able to read

registers within this range. Writes to the MCHBAR alias are not allowed (writes will have no affect).

Graphics MMIO registers can be accessed through MMIO BARs in the Gfx Device. The aliasing

mechanism is turned off if memory access to the corresponding function is turned off via software or in

certain power states.

10 Doc Ref # IHD-OS-LKF-Vol 13-4.21

Please refer to applicable EDS documentation for details of this register’s format and behavior.

PCI Device Registers

Address Symbol Name

00054h DEVEN_0_0_0_PCI Device Enable

0005Ch DPR_0_0_0_PCI DMA Protected Range

00000h VID2_0_2_0_PCI Vendor Identification

00002h DID2_0_2_0_PCI Device Identification

00004h PCICMD_0_2_0_PCI PCI Command

00006h PCISTS2_0_2_0_PCI PCI Status

0000Ch CLS_0_2_0_PCI Cache Line Size

0000Dh MLT2_0_2_0_PCI Master Latency Timer

0000Eh HDR2_0_2_0_PCI Header Type

0000Fh BIST_0_2_0_PCI Built In Self Test

00010h GTTMMADR_0_2_0_PCI Graphics Translation Table Memory Mapped Range Address

00018h GMADR_0_2_0_PCI Graphics Memory Range Address

00020h IOBAR_0_2_0_PCI I/O Base Address

0002Ch SVID2_0_2_0_PCI Subsystem Vendor Identification

0002Eh SID2_0_2_0_PCI Subsystem Identification

00030h ROMADR_0_2_0_PCI Video BIOS ROM Base Address

00034h CAPPOINT_0_2_0_PCI Capabilities Pointer

0003Ch INTRLINE_0_2_0_PCI Interrupt Line

0003Dh INTRPIN_0_2_0_PCI Interrupt Pin

0003Eh MINGNT_0_2_0_PCI Minimum Grant

0003Fh MAXLAT_0_2_0_PCI Maximum Latency

00040h CAPID0_0_2_0_PCI Capability Identifier

00042h CAPCTRL0_0_2_0_PCI Capabilities Control

00044h CAPID0_A_0_2_0_PCI Capabilities A

00048h CAPID0_B_0_2_0_PCI Capabilities B

00050h MGGC0_0_2_0_PCI PCI Mirror of GMCH Graphics Control

00054h DEVEN0_0_2_0_PCI Mirror of Device Enable

00058h DEV2CTL_0_2_0_PCI Device 2 Control

00060h MSAC_0_2_0_PCI Multi Size Aperture Control

00070h PCIECAPHDR_0_2_0_PCI PCI Express Capability Header

00072h PCIECAP_0_2_0_PCI PCI Express Capability

00074h DEVICECAP_0_2_0_PCI Device Capabilities

0007Ah DEVICESTS_0_2_0_PCI PCI Express Capability Structure

000ACh MSI_CAPID_0_2_0_PCI Message Signaled Interrupts Capability ID

Doc Ref # IHD-OS-LKF-Vol 13-4.21 11

Address Symbol Name

000AEh MC_0_2_0_PCI Message Control

000B0h MA_0_2_0_PCI Message Address

000B4h MD_0_2_0_PCI Message Data

000B8h MSI_MASK_0_2_0_PCI MSI Mask Bits

000BCh MSI_PEND_0_2_0_PCI MSI Pending Bits

000C0h BDSM_0_2_0_PCI Mirror of Base Data of Stolen Memory

000C8h GFX_VTDBAR_LSB_0_2_0_PCI GFX_VTDBAR_LSB

000CCh GFX_VTDBAR_MSB_0_2_0_PCI

000D0h PMCAPID_0_2_0_PCI Power Management Capabilities ID

000D2h PMCAP_0_2_0_PCI Power Management Capabilities

000D4h PMCS_0_2_0_PCI Power Management Control and Status

000E0h SWSMI_0_2_0_PCI Software SMI

000E4h GSE_0_2_0_PCI Graphics System Event

000E8h SWSCI_0_2_0_PCI Software SCI

000FCh ASLS_0_2_0_PCI ASL Storage

00100h PASID_EXTCAP_0_2_0_PCI PASID Extended Capability Header

00104h PASID_CAP_0_2_0_PCI PASID Capability

00106h PASID_CTRL_0_2_0_PCI PASID Control

00200h ATS_EXTCAP_0_2_0_PCI ATS Extended Capability Header

00204h ATS_CAP_0_2_0_PCI ATS Capability

00206h ATS_CTRL_0_2_0_PCI ATS Control

00300h PR_EXTCAP_0_2_0_PCI Page Request Extended Capability Header

00304h PR_CTRL_0_2_0_PCI Page Request Control

00306h PR_STATUS_0_2_0_PCI Page Request Status

00308h OPRC_0_2_0_PCI Outstanding Page Request Capacity

0030Ch OPRA_0_2_0_PCI Outstanding Page Request Allocation

00320h SRIOV_ECAPHDR_0_2_0_PCI SRIOV Extended Capability Header

00324h SRIOV_CAP_0_2_0_PCI SRIOV Capabilities

00328h SRIOV_CTRL_0_2_0_PCI SRIOV Control Register

0032Ah SRIOV_STS_0_2_0_PCI SRIOV Status

0032Ch SRIOV_INITVFS_0_2_0_PCI SRIOV Initial VFs

0032Eh SRIOV_TOTVFS_0_2_0_PCI SRIOV Total VFs

00330h SRIOV_NUMOFVFS_0_2_0_PCI SRIOV Number of VFs

00334h FIRST_VF_OFFSET_0_2_0_PCI SRIOV First VF Offset

00336h VF_STRIDE_0_2_0_PCI VF Stride

0033Ah VF_DEVICEID_0_2_0_PCI VF Device ID

12 Doc Ref # IHD-OS-LKF-Vol 13-4.21

Address Symbol Name

0033Ch SUPPORTED_PAGE_SIZES_0_2_0_PCI Supported Page Sizes

00340h SYSTEM_PAGE_SIZES_0_2_0_PCI System Page Sizes

00344h VF_BAR0_LDW_0_2_0_PCI VF BAR0 LDW

00348h VF_BAR0_UDW_0_2_0_PCI VF BAR0 UDW

0034Ch VF_BAR1_LDW_0_2_0_PCI VF BAR1 LDW

00350h VF_BAR1_UDW_0_2_0_PCI VF BAR1 UDW

00354h VF_BAR2_LDW_0_2_0_PCI VF BAR2 LDW

00358h VF_BAR2_UDW_0_2_0_PCI VF BAR2 UDW

0035Ch VF_MIGST_OFFSET_0_2_0_PCI VF Migration State Array Offset

Doc Ref # IHD-OS-LKF-Vol 13-4.21 13

MMIO

Force Wake and Steering Table

Here is the Force Wake and Steering Table.

MMIO

Range

Start

MMIO

Range

End

Bytes Section

Target /

Unit

Unit

Description

Wake

Target

Replicate

d /

 Multicast

?

Replicatio

n Group

Type

Inst.

Coun

t Steering

00000000 00000AFF 2816 <reserved> Reserved

00000B00 00000BFF 256 gtgti SF Snoop filter INF /

COH

No - 1 -

00000C00 00000DF

F

512 gtgti RPM Ring PM unit INF /

COH

No - 1 -

00000E00 00000FFF 512 gtgti MGSR Shadow

Register and

Interface to

SA message

channel

INF /

COH

No - 1 -

00001000 00001FFF 4096 gtgti MDRB Door Bell INF /

COH

No - 1 -

00002000 000026FF 1792 gtfix CS Command

Streamer

RENDE

R

No - 1 -

00002700 00002FFF 2304 gtfix OA OAunit GTI No - 1 -

00003000 00003FFF 4096 gtfix CS messaging

range (3D

Command

Stream)

RENDE

R

No - 1 -

00004000 000049FF 2560 gtgti GAMW Graphics

Arbiter

(GAM) Walk

GTI No - 1 -

00004A00 00004FFF 1536 gtgti GAMT Graphics

Arbiter

(GAM) TLB

GTI No - 1 -

00005000 000051FF 512 reserved

00005200 000052FF 256 gtfix SOL SOL RENDE

R

No - 1 -

00005300 000053FF 256 gtfix TSG0 TSG0 RENDE

R

No - 1 -

00005400 000054FF 256 gtfix TSG1 gtyscz

00005500 00005FFF 2816 gtsc WMBE WMBE RENDE

R

Yes SLICE 2 sliceid[0..1]

00006000 00006FFF 4096 gtfix SVG SVG RENDE

R

No - 1 -

00007000 00007FFF 4096 gtsc SVL SVL RENDE

R

Yes SLICE 2 sliceid[0..1]

14 Doc Ref # IHD-OS-LKF-Vol 13-4.21

MMIO

Range

Start

MMIO

Range

End

Bytes Section

Target /

Unit

Unit

Description

Wake

Target

Replicate

d /

 Multicast

?

Replicatio

n Group

Type

Inst.

Coun

t Steering

00008000 000080FF 256 gtgti GPM PM Unit

Messages

GTI No - 1 -

00008100 0000813F 64 gtgti GTGTICP CP unit

Messages

GTI No - 1 -

00008140 0000814F 16 gtsc SCCFGCP CP unit reg.

file - Copy in

Slice

Common (in

all slices)

RENDE

R

Yes SLICE 2 sliceid[0..1]

00008150 0000815F 16 gtss SSMCFGCP CP unit reg.

file - Copy in

SSM

RENDE

R

Y (sub

slice)

00008160 000081FF 160 <reserved> Reserved

00008200 000082FF 256 gtgti GDT DTunit

Messages

GTI No - 1 -

00008300 000084FF 512 gtfix VF VFunit

Registers

RENDE

R

No - 1 -

00008500 000085FF 256 gtgti MBC Boot

Controller

Messages

GTI No - 1 -

00008600 000086FF 256 gtgti GPM PM Unit

Messages

GTI No - 1 -

00008700 000087FF 256 gtgti MCFG MCFG GTI No - 1 -

00008800 0000883F 64 gtgti DTF Ring PM unit INF /

COH

No - 1 -

00008840 00008BFF 960 <reserved> Reserved

00008C00 00008CFF 256 gtsc SPM PM Unit RENDE

R

Yes SLICE 2 sliceid[0..1]

00008D0

0

00008FFF 768 <reserved> Reserved

00009000 000093FF 1024 gtgti MBC BC unit GTI No - 1 -

00009400 0000947F 128 gtgti GTGTICP CP unit reg.

file - Copy in

GTI par

GTI No - 1 -

00009480 000094CF 80 <reserved> Reserved

000094D

0

0000951F 80 gtsc SCCFGCP CP unit reg.

file - Copy in

Slice

Common (in

all slices)

RENDE

R

Yes SLICE 2 sliceid[0..1]

00009520 0000955F 64 gtssm SSMCFGCP CP unit reg.

file - Copy in

SSM

RENDE

R

Y (sub

slice)

Doc Ref # IHD-OS-LKF-Vol 13-4.21 15

MMIO

Range

Start

MMIO

Range

End

Bytes Section

Target /

Unit

Unit

Description

Wake

Target

Replicate

d /

 Multicast

?

Replicatio

n Group

Type

Inst.

Coun

t Steering

00009560 000095FF 160 gtgti INFCPCFG INF /

COH

No - 1 -

00009600 000097FF 512 <reserved> Reserved

00009800 00009FFF 2048 gtgti GDT DT Unit

(potentially

some to OA)

GTI No - 1 -

0000A000 0000AFFF 4096 gtgti GPM PM Unit GTI No - 1 -

0000B000 0000B0FF 256 gtsc LNCF L3 unique

status

registers for

each slice

(unicast per

GT).

RENDE

R

Yes SLICE 2 sliceid[0..1]

0000B100 0000B3FF 768 gtl3wrap LBCF L3 bank

config space

(multicast

copy per

bank and

slice)

RENDE

R

Yes L3BANK 2 sliceid[0..1]

0000B400 0000B47F 128 gtfix LPFC L3

performance

/ flush flow

control unit

RENDE

R

No - 1 -

0000B480 0000BFFF 2944 <reserved> Reserved

0000C800 0000CFFF 2048 gtgti GAMW range

moved from

GAMT to

GAMW as

per DCN

396119

GTI No - 1 -

0000D00

0

0000DEFF 3840 gtmc <reserved> Reserved

0000DF00 0000DFFF 256 gtssm CPSS CPSS RENDE

R

Yes SUBSLICE 8 sliceid[0..1],

subslice[0..3

]

0000E000 0000E0FF 256 gtssm DM DM RENDE

R

Yes SUBSLICE 8 sliceid[0..1],

subslice[0..3

]

0000E100 0000E1FF 256 gtssm SC SC RENDE

R

Yes SUBSLICE 8 sliceid[0..1],

subslice[0..3

]

0000E200 0000E3FF 512 gtssm GW GWL (inst. 0) RENDE

R

Yes SUBSLICE 8 sliceid[0..1],

subslice[0..3

]

16 Doc Ref # IHD-OS-LKF-Vol 13-4.21

MMIO

Range

Start

MMIO

Range

End

Bytes Section

Target /

Unit

Unit

Description

Wake

Target

Replicate

d /

 Multicast

?

Replicatio

n Group

Type

Inst.

Coun

t Steering

0000E400 0000E7FF 1024 gtssm TDL TDL RENDE

R

Yes SUBSLICE 8 sliceid[0..1],

subslice[0..3

]

0000E800 0000E8FF 256 gtssm PSD PSD RENDE

R

Yes SUBSLICE 8 sliceid[0..1],

subslice[0..3

]

0000E900 0000EAFF 512 <reserved> Reserved

0000EB00 0000EFFF 1280 gtgti GAMWD GAMWD GTI No - 1 -

0000F000 000108FF 6400 gtgti GAMW Graphics

Arbiter

(GAM) Walk

GTI No - 1 -

00010900 00013FFF 14080 <reserved> Reserved

00014000 000143FF 1024 gtenc0 WIN WIN unit GTI No - 1 -

00014400 000147FF 1024 gtenc1 WIN WIN unit GTI No - 1 -

00014800 00016DF

F

9728 <reserved> Reserved

00016E00 00016FFF 512 gtfix VFR RENDE

R

No - 1 -

00017000 00017FFF 4096 gtfix SVGR RENDE

R

No - 1 -

00018000 00019FFF 8192 gtfix POCS RENDE

R

No - 1 -

0001A000 00021FFF 32768 <reserved> Reserved

00022000 00022FFF 4096 gtgti BCS Blitter

Command

Streamer

GTI No - 1 -

00023000 00023FFF 4096 gtgti BCS blitter

messaging

range (Blitter

Command

Stream)

GTI No - 1 -

00024000 0002407F 128 gtgti GTISPC GT SPC INF /

COH

No - 1 -

00024080 000240FF 128 gtgti MEDIASPC WIN unit GTI No - 1 -

00024100 0002417F 128 gtgti MEDIA2SPC WIN unit GTI No - 1 -

00024180 000241FF 128 gtgti SLICE0SPC SLICE0 SPC

unit

RENDE

R

No - 1 -

00024200 0002427F 128 gtgti NXTSLICESP

C

SLICE1 SPC

unit

RENDE

R

Yes SLICE 2 sliceid[0..1]

00024280 000242FF 128 gtgti SLICE1SPC

<reserved>

Reserved

<SLICE1 SPC

unit)

Doc Ref # IHD-OS-LKF-Vol 13-4.21 17

MMIO

Range

Start

MMIO

Range

End

Bytes Section

Target /

Unit

Unit

Description

Wake

Target

Replicate

d /

 Multicast

?

Replicatio

n Group

Type

Inst.

Coun

t Steering

00024300 0002437F 128 gtgti FIXSPC fixed

function SPC

unit

GTI No - 1 -

00024380 000243FF 128 <reserved> Reserved

00024400 0002447F 128 gtsc SSM0SPC SSM0 SPC

unit

RENDE

R

Yes SLICE 2 sliceid[0..1]

00024480 000244FF 128 gtss SSM1SPC SSM1 SPC

unit

RENDE

R

Yes SLICE 2 sliceid[0..1]

00024500 0002457F 128 gtsc SSM0SPC SSM2 SPC

unit

RENDE

R

Yes SLICE 2 sliceid[0..1]

00024580 000245FF 128 gtss SSM1SPC SSM3 SPC

unit

RENDE

R

Yes SLICE 2 sliceid[0..1]

00024600 0002467F 128 <reserved> Reserved

00024680 000246FF 128 gtss EUP1SPC EU1SPC unit RENDE

R

Yes SUBSLICE 8 sliceid[0..1],

subslice[0..3

]

00024700 0002477F 128 gtss EUP2SPC EU2SPC unit RENDE

R

Yes SUBSLICE 8 sliceid[0..1],

subslice[0..3

]

00024780 000247FF 128 gtss EUP3SPC EU3SPC unit RENDE

R

Yes SUBSLICE 8 sliceid[0..1],

subslice[0..3

]

00024800 000249FF 512 <reserved> Reserved

00024A00 00024A7F 128 gtss MSAMPSPC RENDE

R

Yes SUBSLICE 8 sliceid[0..1],

subslice[0..3

]

00024A80 00024DF

F

896 <reserved> Reserved

00024E00 00024E7F 128 gtsc SSM0SPC SSM4 SPC

unit

RENDE

R

Yes SLICE 2 sliceid[0..1]

00024E80 00024EFF 128 gtss SSM1SPC SSM5 SPC

unit

RENDE

R

Yes SLICE 2 sliceid[0..1]

00024F00 00024F7F 128 gtsc SSM0SPC SSM6 SPC

unit

RENDE

R

Yes SLICE 2 sliceid[0..1]

00024F80 00024FFF 128 gtss SSM1SPC SSM7 SPC

unit

RENDE

R

Yes SLICE 2 sliceid[0..1]

00025000 000251FF 512 <reserved>

00025200 0002527F 128 gtmc MEDIASPC EU3SPC unit GTI No - 1 -

00025280 000252FF 128 gtmc MEDIASPC EU3SPC unit GTI No - 1 -

00025300 0002FFFF 44288 <reserved> Reserved

00030000 0003FFFF 65536 gtgti KCR GTI No - 1 -

18 Doc Ref # IHD-OS-LKF-Vol 13-4.21

MMIO

Range

Start

MMIO

Range

End

Bytes Section

Target /

Unit

Unit

Description

Wake

Target

Replicate

d /

 Multicast

?

Replicatio

n Group

Type

Inst.

Coun

t Steering

001C0000 001C07FF 2048 gtyvdbox

0

VCS Video

Command

Streamer

MEDIA0 No - 1 -

001C0800 001C0FFF 2048 gtyvdbox

0

VIN Media Units

(VIN unit)

MEDIA0 No - 1 -

001C1000 001C1FFF 4096 gtyvdbox

0

VCS Video

Command

Streamer

MEDIA0 No - 1 -

001C2000 001C27FF 2048 gtyvdbox

0

HUC P24C micro-

controller for

HUC specific

MEDIA0 No - 1 -

001C2800 001C2BFF 1024 gtyvdbox

0

HWM HWM unit

for HEVC

MEDIA0 No - 1 -

001C2C0

0

001C3EFF 4864 gtyvdbox

0

<reserved> Reserved

001C3F00 001C3FFF 256 gtyvdbox

0

VDCFGCP Media Units

(VIN unit)

MEDIA0 No - 1 -

001C4000 001C47FF 2048 gtyvdbox

1

VCS (Rsvd.) Video

Command

Streamer

001C4800 001C4FFF 2048 gtyvdbox

1

VIN (Rsvd.) Media Units

(VIN unit)

001C5000 001C5FFF 4096 gtyvdbox

1

VCS (Rsvd.) Video

Command

Streamer

001C6000 001C67FF 2048 gtyvdbox

1

HUC (Rsvd.) P24C micro-

controller for

HUC specific

001C6800 001C6BFF 1024 gtyvdbox

1

HWM (Rsvd.) HWM unit

for HEVC

001C6C0

0

001C7EFF 4864 gtyvdbox

1

<reserved> Reserved

001C7F00 001C7FFF 256 gtyvdbox

1

VDCFGCP

(Rsvd.)

Media Units

(VIN unit)

001C8000 001C9FFF 8192 gtyvebox

0

VECS Video

Enhancemen

t Command

Streamer

MEDIA0 No - 1 -

001CA00

0

001CA0F

F

256 gtyvebox

0

VFW VFW unit

UPPER SLICE

MEDIA0 No - 1 -

001CA10

0

001CBEFF 7680 gtyvebox

0

<reserved> Reserved

001CBF00 001CBFFF 256 gtyvebox VECFGCP Media Units MEDIA0 No - 1 -

Doc Ref # IHD-OS-LKF-Vol 13-4.21 19

MMIO

Range

Start

MMIO

Range

End

Bytes Section

Target /

Unit

Unit

Description

Wake

Target

Replicate

d /

 Multicast

?

Replicatio

n Group

Type

Inst.

Coun

t Steering

0 (VIN unit)

001CC00

0

001CFFFF 16384 RSVD <reserved> Reserved

001D000

0

001D07F

F

2048 gtyvdbox

2

VCS Video

Command

Streamer

MEDIA2 No - 1 -

001D080

0

001D0FFF 2048 gtyvdbox

2

VIN Media Units

(VIN unit)

MEDIA2 No - 1 -

001D100

0

001D1FFF 4096 gtyvdbox

2

VCS Video

Command

Streamer

MEDIA2 No - 1 -

001D200

0

001D27F

F

2048 gtyvdbox

2

HUC P24C micro-

controller for

HUC specific

MEDIA2 No - 1 -

001D280

0

001D2BF

F

1024 gtyvdbox

2

HWM HWM unit

for HEVC

MEDIA2 No - 1 -

001D2C0

0

001D3EFF 4864 gtyvdbox

2

<reserved> Reserved

001D3F00 001D3FFF 256 gtyvdbox

2

VDCFGCP Media Units

(VIN unit)

MEDIA2 No - 1 -

001D400

0

001D47F

F

2048 gtyvdbox

3

VCS (Rsvd.) Video

Command

Streamer

001D480

0

001D4FFF 2048 gtyvdbox

3

VIN (Rsvd.) Media Units

(VIN unit)

001D500

0

001D5FFF 4096 gtyvdbox

3

VCS (Rsvd.) Video

Command

Streamer

001D600

0

001D67F

F

2048 gtyvdbox

3

HUC (Rsvd.) P24C micro-

controller for

HUC specific

001D680

0

001D6BF

F

1024 gtyvdbox

3

HWM (Rsvd.) HWM unit

for HEVC

001D6C0

0

001D7EFF 4864 gtyvdbox

3

<reserved> Reserved

001D7F00 001D7FFF 256 gtyvdbox

3

VDCFGCP

(Rsvd.)

Media Units

(VIN unit)

001D800

0

001D9FFF 8192 gtyvebox

1

VECS (Rsvd.) Video

Enhancemen

t Command

Streamer

001DA00

0

001DA0F

F

256 gtyvebox

1

VFW (Rsvd.) VFW unit

UPPER SLICE

20 Doc Ref # IHD-OS-LKF-Vol 13-4.21

MMIO

Range

Start

MMIO

Range

End

Bytes Section

Target /

Unit

Unit

Description

Wake

Target

Replicate

d /

 Multicast

?

Replicatio

n Group

Type

Inst.

Coun

t Steering

001DA10

0

001DBEF

F

7680 gtyvebox

1

<reserved> Reserved

001DBF00 001DBFFF 256 gtyvebox

1

VECFGCP

(Rsvd.)

Media Units

(VIN unit)

001DC00

0

001DFFFF 16384 RSVD <reserved> Reserved

001E0000 001E07FF 2048 gtyvdbox

4

VCS (Rsvd.) Video

Command

Streamer

001E0800 001E0FFF 2048 gtyvdbox

4

VIN (Rsvd.) Media Units

(VIN unit)

001E1000 001E1FFF 4096 gtyvdbox

4

VCS (Rsvd.) Video

Command

Streamer

001E2000 001E27FF 2048 gtyvdbox

2

HUC (Rsvd.) P24C micro-

controller for

HUC specific

001E2800 001E2BFF 1024 gtyvdbox

4

HWM (Rsvd.) HWM unit

for HEVC

001E2C00 001E3EFF 4864 gtyvdbox

4

<reserved> Reserved

001E3F00 001E3FFF 256 gtyvdbox

4

VDCFGCP

(Rsvd.)

Media Units

(VIN unit)

001E4000 001E47FF 2048 gtyvdbox

5

VCS (Rsvd.) Video

Command

Streamer

001E4800 001E4FFF 2048 gtyvdbox

5

VIN (Rsvd.) Media Units

(VIN unit)

001E5000 001E5FFF 4096 gtyvdbox

5

VCS (Rsvd.) Video

Command

Streamer

001E6000 001E67FF 2048 gtyvdbox

5

HUC (Rsvd.) P24C micro-

controller for

HUC specific

001E6800 001E6BFF 1024 gtyvdbox

5

HWM (Rsvd.) HWM unit

for HEVC

001E6C00 001E7EFF 4864 gtyvdbox

5

<reserved> Reserved

001E7F00 001E7FFF 256 gtyvdbox

5

VDCFGCP

(Rsvd.)

Media Units

(VIN unit)

001E8000 001E9FFF 8192 gtyvdbox

5

VECS (Rsvd.) Video

Enhancemen

t Command

Doc Ref # IHD-OS-LKF-Vol 13-4.21 21

MMIO

Range

Start

MMIO

Range

End

Bytes Section

Target /

Unit

Unit

Description

Wake

Target

Replicate

d /

 Multicast

?

Replicatio

n Group

Type

Inst.

Coun

t Steering

Streamer

001EA000 001EA0FF 256 gtyvebox

2

VFW (Rsvd.) VFW unit

UPPER SLICE

001EA100 001EBEFF 7680 gtyvebox

2

<reserved> Reserved

001EBF00 001EBFFF 256 gtyvebox

2

VECFGCP

(Rsvd.)

Media Units

(VIN unit)

001EC000 001EFFFF 16384 RSVD <reserved> Reserved

001F0000 001F07FF 2048 gtyvdbox

6

VCS (Rsvd.) Video

Command

Streamer

001F0800 001F0FFF 2048 gtyvdbox

6

VIN (Rsvd.) Media Units

(VIN unit)

001F1000 001F1FFF 4096 gtyvdbox

6

VCS (Rsvd.) Video

Command

Streamer

001F2000 001F27FF 2048 gtyvdbox

6

HUC (Rsvd.) P24C micro-

controller for

HUC specific

001F2800 001F2BFF 1024 gtyvdbox

6

HWM (Rsvd.) HWM unit

for HEVC

001F2C00 001F3EFF 4864 gtyvdbox

6

<reserved> Reserved

001F3F00 001F3FFF 256 gtyvdbox

6

VDCFGCP

(Rsvd.)

Media Units

(VIN unit)

001F4000 001F47FF 2048 gtyvdbox

7

VCS (Rsvd.) Video

Command

Streamer

001F4800 001F4FFF 2048 gtyvdbox

7

VIN (Rsvd.) Media Units

(VIN unit)

001F5000 001F5FFF 4096 gtyvdbox

7

VCS (Rsvd.) Video

Command

Streamer

001F6000 001F67FF 2048 gtyvdbox

7

HUC (Rsvd.) P24C micro-

controller for

HUC specific

001F6800 001F6BFF 1024 gtyvdbox

7

HWM (Rsvd.) HWM unit

for HEVC

001F6C00 001F7EFF 4864 gtyvdbox

7

<reserved> HWM unit

for HEVC

001F7F00 001F7FFF 256 gtyvdbox

7

VDCFGCP

(Rsvd.)

Media Units

(VIN unit)

22 Doc Ref # IHD-OS-LKF-Vol 13-4.21

MMIO

Range

Start

MMIO

Range

End

Bytes Section

Target /

Unit

Unit

Description

Wake

Target

Replicate

d /

 Multicast

?

Replicatio

n Group

Type

Inst.

Coun

t Steering

001F8000 001F9FFF 8192 gtyvebox

3

VECS (Rsvd.) Video

Enhancemen

t Command

Streamer

001FA000 001FA0FF 256 gtyvebox

3

VFW (Rsvd.) VFW unit

UPPER SLICE

001FA100 001FBEFF 7680 gtyvebox

3

<reserved> Reserved

001FBF00 001FBFFF 256 gtyvebox

3

VECFGCP

(Rsvd.)

Media Units

(VIN unit)

001FC000 001FFFFF 16384 RSVD <reserved> Reserved

00200000 0023FFFF 26214

4

RSVD <reserved

for media

slices 4-7>

Reserved for

media slices

4-7

• The Steering Control Registers reside at the following locations:

• MGSR access point (access initiated by agent outside of GT):

Steering Reg

Addr Description

4 0xFDC Access steering towards all other endpoints (all but above)

• CS access point:

Steering Reg

Addr Description

1 0x20CC Access steering towards all GT endpoints

• Note: All Steering Control Registers contain the following fields:

Field Description

multicast 1: Access will be multicast to all replicated endpoints:

• *WRITE* op cycles go to all endpoint instances; sliceid[]/subsliceid[] fields

ignored.

• *READ* op cycles go to all endpoint instances, and responses are

returned from all instances; The MsgCh selects single instance’s

response as the final read return, based on sliceid[]/subsliceid[]

fields.

0: Access will be steered using sliceid[] and subsliceid[] fields below:

• Both *WRITE* and *READ* cycles go to a single instance of an endpoint,

Doc Ref # IHD-OS-LKF-Vol 13-4.21 23

based on sliceid[]/subsliceid[] steering.

Default: 1

Note: The multicast field has no impact for a non-replicated target.

sliceid[] Default: 0

subsliceid[] Default: 0

• The following Replication Group Types exist for multicast MMIO endpoints:

Replication

Group Type Description / Notes

SLICE • All actual products are 1 slice for fuse/steering purposes

SS • 8 subslices

• Uses subsliceid field

• Terminated/disabled when the corresponding subslice fuse is disabled

L3BANK • 8 instances

• subsliceid 0..7 to access

• Terminated/disabled when fuse_gt_l3disable bit mapped to this bank is

‘disable’

• Fuse reflections (how to tell when an endpoint is disabled):

Fuse Register reflection

fuse_gt_ss_dis[4:0] 0x913C[7:0]

fuse_gt_l3_disable[3:0] 0x9118[7:0]

(fuse is replicated into [3:0] and [7:4])

Note: MsgCh termination also occurs when the domains are powered down. (i.e., not necessarily

because the domain is disabled/fused off.) If reading/writing the registers is needed, then force-

wake of the domain is required. Force-wake is not required for shadow register accesses coming

through MGSR.

• The following table captures the force-wake and corresponding acknowledgment register

locations for the various domains:

Domain

Driver

ForceWake

Req

Driver

ForceWake

Ack

ForceWake

Req

ForceWake

Status Comment

AON NA NA NA NA Registers sit outside of the C6

boundary. No ForceWake required.

24 Doc Ref # IHD-OS-LKF-Vol 13-4.21

Domain

Driver

ForceWake

Req

Driver

ForceWake

Ack

ForceWake

Req

ForceWake

Status Comment

GT 0xA188 0x00130044 NA NA

Render 0xA278 0x0D84 0xA27C 0xA2A0[1]

VDBOX0 0xA540 0x0D50 0xA274[0] 0xA2A0[0]

VDBOX1 0xA544 0x0D54 0xA274[1] 0xA2A0[0]

VDBOX2 0xA548 0x0D58 0xA274[2] 0xA2A0[2]

VDBOX3 0xA54C 0x0D5C 0xA274[3] 0xA2A0[2] As available per config

VDBOX4 0xA550 0x0D60 0xA274[4] 0xA2A0[3]

VDBOX5 0xA554 0x0D64 0xA274[5] 0xA2A0[3]

VDBOX6 0xA558 0x0D68 0xA274[6] 0xA2A0[4]

VDBOX7 0xA55C 0x0D6C 0xA274[7] 0xA2A0[4]

VEBOX0 0xA560 0x0D70 0xA274[8] 0xA2A0[0]

VEBOX1 0xA564 0x0D74 0xA274[9] 0xA2A0[2]

VEBOX2 0xA568 0x0D78 0xA274[10] 0xA2A0[3]

VEBOX3 0xA56C 0x0D7C 0xA274[11] 0xA2A0[4]

• Miscellaneous Notes:

• The MsgCh network has termination points, where cycles to endpoints that are disabled (fused-

off, powered off, etc…) are gracefully completed. The termination node on the network will sink P

cycles, and return dummy completions for NP cycles, on behalf of the disabled endpoints.

• Access requirements to registers that are part of GTMMADDR but not listed in the GT MMIO map

table is defined elsewhere. This descriptions in this document only cover GT range.

Doc Ref # IHD-OS-LKF-Vol 13-4.21 25

Multicast Steering and Die Recovery

Some units in GT are replicated multiple times in the design, each with their own register storage local to

that instance.

• In some cases, each replica/instance gets its own MMIO address range of offsets – for example,

the multiple CCS command streamers, multiple VDBox/VEBox instances. For those, direct register

access targets the only instance of that registers. The programming model described on this page

is moot for those cases where each register has unique address.

• In other cases, the multiple instances of the unit use the same MMIO address on message

channel. For these cases, the message channel provides additional capabilities to address the

instances for read/write operations in either multicast (targeting all instances) or unicast modes

(target specific instance) via a set of “steering registers” which can be configured to direct the

access as desired. The steering registers have 3 fields: Multicast/Unicast, Sliceid, Subsliceid.

o Multicast write access - write goes to all instances; sliceid/subsliceid fields are ignored

o Multicast read access – read goes to all instances and all instances generate read

response; message channel selects single instance’s response as the final read return

(based on the steering register slice/subslice fields)

o Unicast write access – write goes to only the instance specified in the steering register

o Unicast read access – read goes to only the instance specified in the steering register

o In some replicated units, all of the replicated instances always “enabled” from a message

channel perspective (never fused off/separately power gated) and thus all instances are

always accessible if the containing power well is on (e.g. if GT is out of RC6)

o In some replicated units, there are die recovery/fuse down modes where some instances are

fused off/disabled. For the latter, GT also contains MMIO registers which allow SW to detect

which instances are fused as enabled/disabled (generally 1-hot). When this fuse down case

applies, message channel is aware of the fusing and provides automatic termination of cycles

toward disabled instances (writes get dropped with dummy NP completion if NP write; reads get

dummy completion with 0 read return value from that instance). The fuse mirror register provides

a mechanism for SW to know which instances are valid and to program the steering register

toward enabled instances when needed – see comments below.

General rules:

• Some of these replicated registers are control registers which are generally expected to be all

programmed with the same value – for these, writes should generally be multicast and reads can

target any enabled instance (since all instances should contain the same value from prior

multicast write).

• Some replicated registers are status registers and are expected to have different values as part of

normal usage (for example, INSTDONE registers related to Sampler, Slice common; TDL thread

status, etc). For these typical usage model would be to either iterate over all enabled instances or

select specific single instance to target.

26 Doc Ref # IHD-OS-LKF-Vol 13-4.21

• If an instance is disabled (access terminated on message channel via the fuse info above or if

containing power well is power gated), reads from that instance will return 0s and writes are

silently dropped. Since the default for the steering registers is multicast read with

sliceid=subsliceid=0, the default hardware behavior is to return data from instance that

corresponds with sliceid/subsliceid = 0. If that instance is disabled, message channel will return a

dummy response (0). In order to get correct/valid value the steering registers must be used to

access a valid instance.

o Note that a common usage model is for SW/FW to initializing specific bits in control

register by reading the current/default value, then modifying the value in memory

(set/clear few bits), and then write the result back.

o For these cases, SW must ensure that it uses the steering registers to steer to an enabled

instance when performing the initial read.

• When performing engine and power context save restore, GT hardware is aware of the fuses and

internally targets reads for context save toward the first enabled instance.

• In cases where steering registers are being programmed, caution must be exercised to ensure

that there is no race condition/concurrent access between two different initiators using a given

steering register. SW must protect against concurrent access by multiple threads to any given

steering register. System level flows must also guard against concurrent access by Firmware

(CSC/FSP FW, Punit pCode) and driver tools to any given steering register.

o Multicast is the hardware default. If an agent sets a steering register to unicast mode, they

should generally set it back to multicast after completion.

o In some projects there are separate steering registers listed are intended to allow for

some degree of concurrency between different usages targeting different destinations in

GT by replication group.

▪ MGSR uses the MMIO offset requested in the inbound cycle to select which

steering register to use for routing.

▪ MGSR uses SAI policy registers to identify sources as “IA” (low privilege cfg_src on

message channel) vs “HW” (high privilege – includes trusted firmware such as

CSC/FSP, Pcode)

▪ See project specific documentation for the list of steering registers and their

intended use.

SW Virtualization Reserved MMIO range

The MMIO address range from 0x178000 thru 0x178FFF is reserved for communication between a VMM

and the GPU Driver executing on a Virtual Machine.

HW does not actually implement anything within this range. Instead, in a SW Virtualized environment, if

a VM driver issues a read to this MMIO address range, the VMM will trap that access, and provide

whatever data it wishes to pass to the VM driver. In a non-SW-Virtualizated environment (including an

SR-IOV Virtualized environment), reads will return zeros, like any other unimplemented MMIO address.

Writes to this range are always ignored.

Doc Ref # IHD-OS-LKF-Vol 13-4.21 27

It is important that no "real" HW MMIO register be defined within this range, as it would be inaccessable

in a SW-virtualized environment.

Observability

Observability Overview

As GFX-enabled systems and usage models have grown in complexity over time, a number of hardware

features have been added to provide more insight into hardware behavior while running a commercially

available operating system. This chapter documents these features with pointers to relevant sections in

other chapters. Supported observability features include:

Feature

Performance counters

Internal node tracing

Note: This chapter describes the registers and instructions used to monitor GPU performance. Please

review other volumes in this specification to understand the terms, functionality and details for specific

Intel graphics devices.

DFD Configuration Restore

Since DFD logic does not usually add value to end user usage models and its configuration space is large

(which would add latency to power management restore flows), it is typically not enabled during normal

operation for optimal power & performance. Hence, additional steps are required when DFD

functionality is needed in combination with system configurations where GT logic loses power/is reset.

The basic strategy per scenario is detailed below.

GT Power-up/RC6 Exit

Strategy

Replicate failure without power management

Render Engine Power-up

Configure the RCS RC6 W/A batch buffer to restore render engine DFD configuration ONLY.

Media Engine Power-up

Configure the applicable media command stream W/A batch buffer to restore media engine DFD

configuration ONLY.

Resume from Partial GT Power Down

For cases where SW is aware of power well state, re-apply DFD configuration.

For cases where SW is not aware of power well state, configure the per-context W/A batch buffer to

apply the DFD configuration on every context load.

28 Doc Ref # IHD-OS-LKF-Vol 13-4.21

Trace

This section contains the following contents:

Feature

• Performance Visibility

Performance Visibility

Motivation for Hardware-Assisted Performance Visibility

As the focus on GFX performance and programmability has increased over time, the need for hardware

(HW) support to rapidly identify bottlenecks in HW and efficiently tune the work sent to same has

become correspondingly important. This part of the BSpec describes the HW support for Performance

Visibility.

Performance Event Counting

An earlier generation introduced dedicated GFX performance counters to address key issues associated

with existing chipset CHAPs counters (lack of synchronization with GFX rendering work and low sampling

frequency achievable when sampling via CPU MMIO read). Furthermore, reliance on SoC assets created a

cross-IP dependency that was difficult to manage well. Hence, the approach since that earlier generation

has been to use dedicated counters managed by the graphics device driver for graphics performance

measurement. The dedicated counter values are written to memory whenever an

MI_REPORT_PERF_COUNT command is placed in the ring buffer.

While this approach eliminated much of the error associated with the previous approaches, it is still

limited to sampling the counters only at the boundaries between ring commands. This inherently limited

the ability of performance analysis tools to drill down into a primitive, which can contain thousands of

triangles and require several hundreds of milliseconds to render. It is further worth noting that precise

sampling via MI_REPORT_PERF command requires flushing the GFX pipeline before and after the work of

interest. The overhead of flushing the GFX pipeline can become large if the work of interest is small,

hence reducing the accuracy of the performance counter measurement. In such situations, the flush can

be removed or internally triggered reporting can be used with some resulting loss of precision in which

draws/dispatches are being profiled.

Additionally, Intel design and architecture teams found that the existing silicon-based performance

analysis tools provided only a general idea of where a problem may exist but were not able to pinpoint a

problem. This was generally because the counter values are integrated across a very large time period,

washing out the dynamic behavior of the workload.

Enhanced the aggregating counters to support the additional thread types generated by DX11

workloads. The high rate at which interesting internal events can occur motivated adding an interrupt-

generation capability so that HW could notify SW when the data buffer was approaching full.

Enhances support for high reporting frequencies by increasing the report buffer size in order to allow SW

sufficient time between performance monitoring interrupts, enabling single run histogramming support

Doc Ref # IHD-OS-LKF-Vol 13-4.21 29

for events like pixels per polygon. Desire for more flexibility in custom event creation drove addition of 4

more Boolean counters.

Issues with support drove enhancements to enable performance monitoring with RC6 enabled, different

report buffer ring wrap behavior, and MMIO visibility into performance counters.

Enhances functionality of aggregating counters for EUs by providing some flexibility in what quantities

are aggregated across all EUs including more quantities relevant to GPGPU workloads. Since several of

the previously defined aggregating counters had not delivered very much value on earlier projects, the

overall number of A-counters has gone down even though aggregating counters for sampler/pixel-level

functionality have been added/redefined. Custom counter creation has been enhanced by adding the

ability to negate a signal at the input of the Boolean logic. Given that the increased complexity of GFX

workloads and number of EUs in GT2/GT3 could lead to more frequent counter overflows, the width A-

counters has increased to 40 bits. HW optimizations have also modified the SW interface slightly. Please

note that no media-specific A-counter support was added, hence requiring all media engine support to

be implemented using B/C-counters.

All OA config registers are tied to GT global reset and hence are not affected by per-engine resets (e.g.

render only reset).

OA Programming Guidelines

SW utilizing OA HW is expected to monitor the overflow/lost report status for the OABUFFER and

respond as appropriate for the active usage model.

In order for OA counters to increment the 'Counter Stop-Resume Mechanism' bit of

the OACTXCONTROL register must be set. This requires a RCS context with this bit set be loaded, and

either RCS force wake be enabled or the RCS context be left active for the duration of the window this

counter is needed for.

In general, OA is effectively unable to count between the power context save that happens prior to GFX

entering RC6 and the power context restore that occurs on the next RC6 exit. This limitation results from

the fact that the counters themselves are power context save/restored and hence the counts that (may)

have accumulated in this time window are overwritten by the saved values that are read back from the

power context save area. An example of the kind of information that can be missed is the GTI traffic

resulting from the power context save of OA itself. The size of this performance counting blind spot is

microarchitecturally minimized as much as reasonably possible but still varies from device to device.

CPD must be disabled during performance counting or undercounts may occur.

HW Support

This section contains various reporting counters and registers for hardware support for Performance

Visibility.

30 Doc Ref # IHD-OS-LKF-Vol 13-4.21

Performance Counter Registers

Register

OACTXCONTROL - Observation Architecture Control per Context

OACTXID - Observation Architecture Control Context ID

OA_IMR - OA Interrupt Mask Register

OASTATUS - Observation Architecture Status Register

OAHEADPTR - Observation Architecture Head Pointer

OATAILPTR - Observation Architecture Tail Pointer

OABUFFER - Observation Architecture Buffer

OASTARTTRIG_COUNTER - Observation Architecture Start Trigger Counter

OARPTTRIG_COUNTER - Observation Architecture Report Trigger Counter

OAREPORTTRIG2 - Observation Architecture Report Trigger 2

OAREPORTTRIG6 - Observation Architecture Report Trigger 6

CEC0-0 - Customizable Event Creation 0-0

CEC1-0 - Customizable Event Creation 1-0

CEC1-1 - Customizable Event Creation 1-1

CEC2-0 - Customizable Event Creation 2-0

CEC2-1 - Customizable Event Creation 2-1

CEC3-0 - Customizable Event Creation 3-0

CEC3-1 - Customizable Event Creation 3-1

CEC4-0 - Customizable Event Creation 4-0

CEC5-0 - Customizable Event Creation 5-0

CEC5-1 - Customizable Event Creation 5-1

CEC6-0 - Customizable Event Creation 6-0

CEC6-1 - Customizable Event Creation 6-1

CEC7-0 - Customizable Event Creation 7-0

CEC7-1 - Customizable Event Creation 7-1

The following Performance Statistics registers are power context save/restored:

Register

OAPERF_A0 - Aggregate Perf Counter A0

OAPERF_A0_UPPER - Aggregate Perf Counter A0 Upper DWord

OAPERF_A1 - Aggregate Perf Counter A1

OAPERF_A1_UPPER - Aggregate Perf Counter A1 Upper DWord

OAPERF_A2 - Aggregate Perf Counter A2

OAPERF_A2_UPPER - Aggregate Perf Counter A2 Upper DWord

OAPERF_A3 - Aggregate Perf Counter A3

OAPERF_A3_UPPER - Aggregate Perf Counter A3 Upper DWord

OAPERF_A4 - Aggregate Perf Counter A4

OAPERF_A4_UPPER - Aggregate Perf Counter A4 Upper DWord

OAPERF_A4_LOWER_FREE - Aggregate Perf Counter A4 Lower DWord Free

Doc Ref # IHD-OS-LKF-Vol 13-4.21 31

Register

OAPERF_A4_UPPER_FREE - Aggregate Perf Counter A4 Upper DWord Free

OAPERF_A5 - Aggregate Perf Counter A5

OAPERF_A5_UPPER - Aggregate Perf Counter A5 Upper DWord

OAPERF_A6 - Aggregate Perf Counter A6

OAPERF_A6_UPPER - Aggregate Perf Counter A6 Upper DWord

OAPERF_A6_LOWER_FREE - Aggregate Perf Counter A6 Lower DWord Free

OAPERF_A6_UPPER_FREE - Aggregate Perf Counter A6 Upper DWord Free

OAPERF_A7 - Aggregate Perf Counter A7

OAPERF_A7_- Upper Aggregate Perf Counter A7 Upper DWord

OAPERF_A8 - Aggregate Perf Counter A8

OAPERF_A8_UPPER - Aggregate Perf Counter A8 Upper DWord

OAPERF_A9 - Aggregate Perf Counter A9

OAPERF_A9_UPPER - Aggregate Perf Counter A9 Upper DWord

OAPERF_A10 - Aggregate Perf Counter A10

OAPERF_A10_UPPER - Aggregate Perf Counter A10 Upper DWord

OAPERF_A11 - Aggregate Perf Counter A11

OAPERF_A11_UPPER - Aggregate Perf Counter A11 Upper DWord

OAPERF_A12 - Aggregate Perf Counter A12

OAPERF_A12_UPPER - Aggregate Perf Counter A12 Upper DWord

OAPERF_A13 - Aggregate Perf Counter A13

OAPERF_A13_UPPER - Aggregate Perf Counter A13 Upper DWord

OAPERF_A14 - Aggregate Perf Counter A14

OAPERF_A14_UPPER - Aggregate Perf Counter A14 Upper DWord

OAPERF_A15 - Aggregate Perf Counter A15

OAPERF_A15_UPPER - Aggregate Perf Counter A15 Upper DWord

OAPERF_A16 - Aggregate Perf Counter A16

OAPERF_A16_UPPER - Aggregate Perf Counter A16 Upper DWord

OAPERF_A17 - Aggregate Perf Counter A17

OAPERF_A17_UPPER - Aggregate Perf Counter A17 Upper DWord

OAPERF_A18 - Aggregate Perf Counter A18

OAPERF_A18_UPPER - Aggregate Perf Counter A18 Upper DWord

OAPERF_A19 - Aggregate Perf Counter A19

OAPERF_A19_UPPER - Aggregate Perf Counter A19 Upper DWord

OAPERF_A19_LOWER_FREE - Aggregate Perf Counter A19 Lower DWord Free

OAPERF_A19_UPPER_FREE - Aggregate Perf Counter A19 Upper DWord Free

OAPERF_A20 - Aggregate Perf Counter A20

OAPERF_A20_UPPER - Aggregate Perf Counter A20 Upper DWord

OAPERF_A20_UPPER_FREE - Aggregate Perf Counter A20 Upper DWord Free

OAPERF_A20_LOWER_FREE - Aggregate Perf Counter A20 Lower DWord Free

OAPERF_A21 - Aggregate Perf Counter A21

OAPERF_A21_UPPER - Aggregate Perf Counter A21 Upper DWord

32 Doc Ref # IHD-OS-LKF-Vol 13-4.21

Register

OAPERF_A22 - Aggregate Perf Counter A22

OAPERF_A22_UPPER - Aggregate Perf Counter A22 Upper DWord

OAPERF_A23 - Aggregate Perf Counter A23

OAPERF_A23_UPPER - Aggregate Perf Counter A23 Upper DWord

OAPERF_A24 - Aggregate Perf Counter A24

OAPERF_A24_UPPER - Aggregate Perf Counter A24 Upper DWord

OAPERF_A25 - Aggregate Perf Counter A25

OAPERF_A25_UPPER - Aggregate Perf Counter A25 Upper DWord

OAPERF_A26 - Aggregate Perf Counter A26

OAPERF_A26_UPPER - Aggregate Perf Counter A26 Upper DWord

OAPERF_A27 - Aggregate Perf Counter A27

OAPERF_A27_UPPER - Aggregate Perf Counter A27 Upper DWord

OAPERF_A28 - Aggregate Perf Counter A28

OAPERF_A28_UPPER - Aggregate Perf Counter A28 Upper DWord

OAPERF_A29 - Aggregate Perf Counter A29

OAPERF_A29_UPPER - Aggregate Perf Counter A29 Upper DWord

OAPERF_A30 - Aggregate Perf Counter A30

OAPERF_A30_UPPER - Aggregate Perf Counter A30 Upper DWord

OAPERF_A31 - Aggregate_Perf_Counter_A31

OAPERF_A31_UPPER - Aggregate Perf Counter A31 Upper DWord

OAPERF_A32 - Aggregate_Perf_Counter_A32

OAPERF_A33 - Aggregate_Perf_Counter_A33

OAPERF_A34 - Aggregate_Perf_Counter_A34

OAPERF_A35 - Aggregate_Perf_Counter_A35

OAPERF_B0 - Boolean_Counter_B0

OAPERF_B1 - Boolean_Counter_B1

OAPERF_B2 - Boolean_Counter_B2

OAPERF_B3 - Boolean_Counter_B3

OAPERF_B4 - Boolean_Counter_B4

OAPERF_B5 - Boolean_Counter_B5

OAPERF_B6 - Boolean_Counter_B6

OAPERF_B7 - Boolean_Counter_B7

EU_PERF_CNT_CTL0 - Flexible EU Event Control 0

EU_PERF_CNT_CTL1 - Flexible EU Event Control 1

EU_PERF_CNT_CTL2 - Flexible EU Event Control 2

EU_PERF_CNT_CTL3 - Flexible EU Event Control 3

EU_PERF_CNT_CTL4 - Flexible EU Event Control 4

EU_PERF_CNT_CTL5 - Flexible EU Event Control 5

EU_PERF_CNT_CTL6 - Flexible EU Event Control 6

Doc Ref # IHD-OS-LKF-Vol 13-4.21 33

OA Interrupt Control Registers

The Interrupt Control Registers listed below all share the same bit definition. The bit definition is as follows:

Bit Description

31:29 Reserved. MBZ: These bits may be assigned to interrupts on future products/steppings.

28 Performance Monitoring Buffer Half-Full Interrupt: For internal trigger (timer based) reporting, if the

report buffer crosses the half full limit, this interrupt is generated.

27:0 Reserved: MBZ (These bits must be never set by OA, these bit could be allocated to some other unit)

• WDBoxOAInterrupt Vector

• IMR

• Bit Definition for Interrupt Control Registers

Performance Counter Report Formats

Counters layout for various values of select from the register:

Counters layout for various values of the “Counter Select” from the register:

Counter Select = 000

A-Cntr 10

(low dword)

A-Cntr 9

(low dword)

A-Cntr 8

(low dword)

A-Cntr 7

(low dword)

GPU_TICKS CTX ID TIME_STAMP RPT_ID

A-Cntr 18

(low dword)

A-Cntr 17

(low dword)

A-Cntr 16

(low dword)

A-Cntr 15

(low dword)

A-Cntr 14 (low

dword)

A-Cntr 13

(low dword)

A-Cntr 12 (low

dword)

A-Cntr 11

(low dword)

Counter Select = 010

A-Cntr 10

(low dword)

A-Cntr 9

(low dword)

A-Cntr 8

(low dword)

A-Cntr 7

(low dword)

GPU_TICKS CTX ID TIME_STAMP RPT_ID

A-Cntr 18

(low dword)

A-Cntr 17

(low dword)

A-Cntr 16

(low dword)

A-Cntr 15

(low dword)

A-Cntr 14 (low

dword)

A-Cntr 13

(low dword)

A-Cntr 12 (low

dword)

A-Cntr 11

(low dword)

B-Cntr 7 B-Cntr 6 B-Cntr 5 B-Cntr 4 B-Cntr 3 B-Cntr 2 B-Cntr 1 B-cntr 0

C-Cntr 7 C-Cntr 6 C-Cntr 5 C-Cntr 4 C-Cntr 3 C-Cntr 2 C-Cntr 1 C-Cntr 0

Counter Select = 111

C-Cntr 3 C-Cntr 2 C-Cntr 1 C-Cntr 0 GPU_TICKS CTX ID TIME_STAMP RPT_ID

B-Cntr 7 B-Cntr 6 B-Cntr 5 B-Cntr 4 B-Cntr 3 B-Cntr 2 B-Cntr 1 B-Cntr 0

34 Doc Ref # IHD-OS-LKF-Vol 13-4.21

OACS Report Format (Counter Select = 0b101):

A-Cntr 3

(low

dword)

A-Cntr 2

(low

dword)

A-Cntr 1

(low

dword)

A-Cntr 0

(low

dword)

GPU_TICKS CTX ID TIME_STAMP RPT_ID

A-Cntr 11

(low

dword)

A-Cntr 10

(low

dword)

A-Cntr 9

(low

dword)

A-Cntr 8

(low

dword)

A-Cntr 7 (low

dword)

A-Cntr 6

(low

dword)

A-Cntr 5 (low

dword)

A-Cntr 4

(low

dword)

A-Cntr 19

(low

dword)

A-Cntr 18

(low

dword)

A-Cntr 17

(low

dword)

A-Cntr 16

(low

dword)

A-Cntr 15

(low dword)

A-Cntr 14

(low

dword)

A-Cntr 13 (low

dword)

A-Cntr 12

(low

dword)

A-Cntr 27

(low

dword)

A-Cntr 26

(low

dword)

A-Cntr 25

(low

dword)

A-Cntr 24

(low

dword)

A-Cntr 23

(low dword)

A-Cntr 22

(low

dword)

A-Cntr 21 (low

dword)

A-Cntr 20

(low

dword)

A-Cntr 35

(low

dword)

A-Cntr 34

(low

dword)

A-Cntr 33

(low

dword)

A-Cntr 32

(low

dword)

A-Cntr 31

(low dword)

A-Cntr 30

(low

dword)

A-Cntr 29 (low

dword)

A-Cntr 28

(low

dword)

High bytes

of A31-A28

High bytes

of A27-A24
High bytes

of A23-A20

High bytes

of A19-A16

High bytes of

A15-A12

High bytes

of A11-A8

High bytes of

A7-A4

High bytes

of A3-A0

B-Cntr 7 B-Cntr 6 B-Cntr 5 B-Cntr 4 B-Cntr 3 B-Cntr 2 B-Cntr 1 B-Cntr 0

C-Cntr 7 C-Cntr 6 C-Cntr 5 C-Cntr 4 C-Cntr 3 C-Cntr 2 C-Cntr 1 C-Cntr 0

Counter Select = 111

C-Cntr 3 C-Cntr 2 C-Cntr 1 C-Cntr 0 GPU_TICKS CTX ID TIME_STAMP RPT_ID

B-Cntr 7 B-Cntr 6 B-Cntr 5 B-Cntr 4 B-Cntr 3 B-Cntr 2 B-Cntr 1 B-Cntr 0

Description of RPT_ID and other important fields of the layout:

Field Description

GPU TICKS[31:0] GPU_TICKS is simply a free-running count of render clocks elapsed used for normalizing other

counters (e.g. EU active time), it is expected that the rate that this value advances will vary with

frequency and freeze (but not lose its value) when all GT clocks are gated, GT is in RC6, and so

on.

Context ID[31:0]
This field carries the Context ID of the active context in render/compute engine.

[31:0]: Context ID in Execlist mode of scheduling.

TIME_STAMP[31:0]
This field provides an elapsed real-time value that can be used as a timestamp for GPU events

over short periods of time. This field has the same format at TIMESTAMP register defined in

Doc Ref # IHD-OS-LKF-Vol 13-4.21 35

Field Description

Render Command Streamer.

SourceID[5:0]

Field Description

GPU TICKS[31:0]
GPU_TICKS is simply a free-running count of render clocks elapsed used for normalizing other

counters (e.g. EU active time), it is expected that the rate that this value advances will vary with

frequency and freeze (but not lose its value) when all GT clocks are gated, GT is in RC6, and so

on.

TIME_STAMP[31:0]
This field provides an elapsed real-time value that can be used as a timestamp for GPU events

over short periods of time. This field has the same format at TIMESTAMP register defined in

Render Command Streamer.

RPT_ID[31:0] This field has several sub fields as defined below:

31:26 Reserved MBZ

25 Render Context Valid: When set indicates render context is valid and the ID is of the

render context is set in “Context ID” field of report format.

24:19
Report Reason[5:0]:

Report_reason[0]: When set indicates current report is due to “Timer Triggered”.

Report_reason[1]: When set indicates current report is due to “Internal report trigger 1”.

Report_reason[2]: When set indicates current report is due to “Internal report trigger 2”.

Report_reason[3]: When set indicates current report is due to “Render context switch”.

Report_reason[4]: When set indicates current report is due to “GO transition from ‘1’ to

‘0’ “.

Report_reason[5]: Reserved

18 Start Trigger Event:This bit is multiplexed from “Start Trigger Event-1” or “Start

Trigger Event-2” based on the “Internal Report Trigger-1” or “Internal Report Trigger-2”

asserted in the Report Reason respectively. “Internal Report Trigger-1” is given priority

over “Internal Report Trigger-2”. By default Start Trigger Event-1 is outputted.

17 Threshold Enable: This bit is multiplexed from “Report Trigger Threshold Enable-1” or

“Report Trigger Threshold Enable-2” based on the “Internal Report Trigger-1” or

“Internal Report Trigger-2” asserted in the Report Reason respectively. “Internal Report

Trigger-1” is given priority over “Internal Report Trigger-2”. By default “Report Trigger

Threshold Enable-1” is outputted.

16 Timer Enabled

15:0 Reserved

RPT_ID[31:0] Subfields of RPT_ID detailed below:

31:25 squashed_slice_clock_frequency[6:0]:

36 Doc Ref # IHD-OS-LKF-Vol 13-4.21

Field Description

 Ratio encoding in this field can be decoded using the ratio encoding table that is part

of the definition of the RP_FREQ_NORMAL register.

24:19 Report Reason[5:0]:

 Report_reason[0]: When set indicates current report is due to “Timer Triggered”.

 Report_reason[1]: When set indicates current report is due to “Internal report trigger

1”.

 Report_reason[2]: When set indicates current report is due to “Internal report trigger

2”.

 Report_reason[3]: When set indicates current report is due to “Render context switch”.

 Report_reason[4]: When set indicates current report is due to “GO transition from ‘1’ to

‘0’ “.

 Report_reason[5]: When set indicates the current report is due to Clock Ratio change

between squashed Slice Clock frequency to squashed Unslice clock frequency.

18 Start Trigger Event:This bit is multiplexed from “Start Trigger Event-1” or “Start

Trigger Event-2” based on the “Internal Report Trigger-1” or “Internal Report Trigger-2”

asserted in the Report Reason respectively. “Internal Report Trigger-1” is given priority

over “Internal Report Trigger-2”. By default Start Trigger Event-1 is outputted.

17 Threshold Enable: This bit is multiplexed from “Report Trigger Threshold Enable-1” or

“Report Trigger Threshold Enable-2” based on the “Internal Report Trigger-1” or

“Internal Report Trigger-2” asserted in the Report Reason respectively. “Internal Report

Trigger-1” is given priority over “Internal Report Trigger-2”. By default “Report Trigger

Threshold Enable-1” is outputted.

16 Render Context Valid: When set indicates render context is valid and the ID is of the

render context is set in “Context ID” field of report format.

15:0 Reserved

Performance Counter Reporting

When either the MI_REPORT_PERF_COUNT command is received or the internal report trigger logic fires,

a snapshot of the performance counter values is written to memory. The format used by HW for such

reports is selected using the Counter Select field within the OACONTROL register. The organization and

number of report formats vary per project and are detailed in Performance Counter Report Formats.

Details of Start Trigger Behavior

• All counters not explicitly defined as free-running will advance after the start trigger conditions are

met.

• Counting will continue after the start trigger has fired until OA is disabled or device is reset.

• Multiple start triggering blocks (where implemented) are OR'd together in order to allow

specification of multiple trigger conditions.

• Bit 18 in the report format reflects whether the start trigger has fired or not.

While architectural intent was that Start Trigger logic would control all qualified counter types (A/B/C),

there is a long-standing implementation bug whereby start trigger logic only affects B/C counters.

Doc Ref # IHD-OS-LKF-Vol 13-4.21 37

Configuration of Trigger Logic

OA contains logic to control when performance counter values are reported to memory. This

functionality is controlled using the OA report trigger and OA start trigger registers. More detailed

register descriptions are included in the Hardware Programming interface. The block diagram below

illustrates the logic these registers control.

Note that counters which are 40 bits wide are split in the report format into low DWORD and high byte

chunks for simplicity of HW implementation as well as SW-friendly alignment of report data. The

performance counter read logically done before writing out report data for these 40-bit counters is

guaranteed to be an atomic operation, the counter data is simply swizzled as it is being packed into the

report.

Context Switch Triggered Reports

A context load/switch on RCS will cause a performance counter snapshot to be written to memory at the

next location in the OA circular report buffer using the perf counter format selected in OACONTROL (

[Register] Observation Architecture Control). This functionality can be leveraged when preemption is

enabled to re-construct the contribution of a specific context to a performance counter delta, requires

SW to consider both the delta reported by MI_REPORT_PERF and the reports that may have been issued

to OABUFFER by intervening contexts.

Frequency Change Triggered Reports

A GFX frequency change will cause a performance counter snapshot to be written to memory at the next

location in the OA circular report buffer using the perf counter format selected in

OACONTROL ([Register] Observation Architecture Control). Please note that a change back to the same

frequency can occur and that such changes will still cause a performance counter report to occur.

38 Doc Ref # IHD-OS-LKF-Vol 13-4.21

Aggregating Counters

The table below described the desired high-level functionality from each of the aggregating counters.

Note that there is no counter of 2x2s sent to pixel shader, this is based on the assumption that the pixel

shader invocation pipeline statistics counter increments for partially lit 2x2s as well and hence does not

require a duplicate performance counter.

Please also note that some of the information provided by A-counters is useful for GFX/system load-

balancing and is hence made available via free-running counters which do not require initial setup and

count irrespective of OA enable/disable or freeze.

Counter

Event Description

A0 GPU Busy
GPU is not idle (includes all GPU engines).

Link to detailed register definition:

[Register] Aggregate Perf Counter A0

A1 # of Vertex Shader

Threads Dispatched

Count of VS threads dispatched to EUs

Link to detailed register definition:

[Register] Aggregate Perf Counter A1

A2 # of Hull Shader

Threads Dispatched

Count of HS threads dispatched to EUs

Link to detailed register definition:

[Register] Aggregate Perf Counter A2

A3 # of Domain Shader

Threads Dispatched

Count of DS threads dispatched to EUs

Link to detailed register definition:

[Register] Aggregate Perf Counter A3

A4 # of GPGPU

Threads Dispatched
Count of GPGPU threads dispatched to EUs

Available on both qualified and free-running counters

Link to detailed register definition:

[Register] Aggregate Perf Counter A4

A5 # of Geometry

Shader Threads

Dispatched

Count of GS threads dispatched to EUs

Link to detailed register definition:

[Register] Aggregate Perf Counter A5

A6 # of Pixel Shader

Threads Dispatched
Count of PS threads dispatched to EUs

Available on both qualified and free-running counters

Link to detailed register definition:

Doc Ref # IHD-OS-LKF-Vol 13-4.21 39

Counter

Event Description

[Register] Aggregate Perf Counter A6

A7 Aggregating EU

counter 0

User-defined (details in Flexible EU Event Counters section)

Link to detailed register definition:

[Register] Aggregate Perf Counter A7

A8 Aggregating EU

counter 1

User-defined (details in Flexible EU Event Counters section)

Link to detailed register definition:

[Register] Aggregate Perf Counter A8

A9 Aggregating EU

counter 2

User-defined (details in Flexible EU Event Counters section)

Link to detailed register definition:

[Register] Aggregate Perf Counter A9

A10 Aggregating EU

counter 3

User-defined (details in Flexible EU Event Counters section)

Link to detailed register definition:

[Register] Aggregate Perf Counter A10

A11 Aggregating EU

counter 4

User-defined (details in Flexible EU Event Counters section)

Link to detailed register definition:

[Register] Aggregate Perf Counter A11

A12 Aggregating EU

counter 5

User-defined (details in Flexible EU Event Counters section)

Link to detailed register definition:

[Register] Aggregate Perf Counter A12

A13 Aggregating EU

counter 6

User-defined (details in Flexible EU Event Counters section)

Link to detailed register definition:

[Register] Aggregate Perf Counter A13

A14 Aggregating EU

counter 7

User-defined (details in Flexible EU Event Counters section)

Link to detailed register definition:

[Register] Aggregate Perf Counter A14

A15 Aggregating EU

counter 8

User-defined (details in Flexible EU Event Counters section)

Link to detailed register definition:

[Register] Aggregate Perf Counter A15

A16 Aggregating EU

counter 9

User-defined (details in Flexible EU Event Counters section)

Link to detailed register definition:

40 Doc Ref # IHD-OS-LKF-Vol 13-4.21

Counter

Event Description

[Register] Aggregate Perf Counter A16

A17 Aggregating EU

counter 10

User-defined (details in Flexible EU Event Counters section)

Link to detailed register definition:

[Register] Aggregate Perf Counter A17

A18 Aggregating EU

counter 11

User-defined (details in Flexible EU Event Counters section)

Link to detailed register definition:

[Register] Aggregate Perf Counter A18

A19 Aggregating EU

counter 12
Available on both qualified and free-running counters

User-defined (details in Flexible EU Event Counters section)

Link to detailed register definition:

[Register] Aggregate Perf Counter A19

A20 Aggregating EU

counter 13
Available on both qualified and free-running counters

User-defined (details in Flexible EU Event Counters section)

Link to detailed register definition:

[Register] Aggregate Perf Counter A20

A21 2x2s Rasterized Count of the number of samples of 2x2 pixel blocks generated from the input

geometry before any pixel-level tests have been applied. (Please note that 2x2s may

be in terms of pixels or in terms of samples depending on project but are

consistent between A21-A27.)

Link to detailed register definition:

[Register] Aggregate Perf Counter A21

A22 2x2s Failing Fast

pre-PS Tests

Count of the number of samples failing fast "early" (i.e. before pixel shader

execution) tests (counted at 2x2 granularity). (Please note that 2x2s may be in terms

of pixels or in terms of samples depending on project but are consistent between

A21-A27.)

Link to detailed register definition:

[Register] Aggregate Perf Counter A22

A23 2x2s Failing Slow

pre-PS Tests

Count of the number of samples of failing slow "early" (i.e. before pixel shader

execution) tests (counted at 2x2 granularity). (Please note that 2x2s may be in terms

of pixels or in terms of samples depending on project but are consistent between

A21-A27.)

Link to detailed register definition:

[Register] Aggregate Perf Counter A23

Doc Ref # IHD-OS-LKF-Vol 13-4.21 41

Counter

Event Description

A24 2x2s Killed in PS
Number of samples entirely killed in the pixel shader as a result of explicit

instructions in the kernel (counted in 2x2 granularity). (Please note that 2x2s may be

in terms of pixels or in terms of samples depending on project but are consistent

between A21-A27.)

Link to detailed register definition:

[Register] Aggregate Perf Counter A24

A25 2x2s Failing post-PS

Tests
Number of samples that entirely fail "late" tests (i.e. tests that can only be

performed after pixel shader execution). Counted at 2x2 granularity. (Please note

that 2x2s may be in terms of pixels or in terms of samples depending on project but

are consistent between A21-A27.)

Link to detailed register definition:

[Register] Aggregate Perf Counter A25

A26 2x2s Written To

Render Target
Number of samples that are written to render target.(counted at 2x2 granularity).

MRT case will report multiple writes per 2x2 processed by the pixel shader. (Please

note that 2x2s may be in terms of pixels or in terms of samples depending on

project but are consistent between A21-A27.)

Please note that this counter will not advance if a render target update does not

occur and that pixel masking operations performed by the fixed function HW or

shader may not be reflected in counters A22-A25 which only track their specific

defined operations. This can lead to an apparent discrepancy between A21 vs. A22-

A25 vs. A26/A27.

Link to detailed register definition:

[Register] Aggregate Perf Counter A26

A27 Blended 2x2s

Written to Render

Target

Number of samples of blendable that are written to render target.(counted at 2x2

granularity). MRT case will report multiple writes per 2x2 processed by the pixel

shader. (Please note that 2x2s may be in terms of pixels or in terms of samples

depending on project but are consistent between A21-A27.)

Please note that this counter will not advance if a render target update does not

occur and that pixel masking operations performed by the fixed function HW or

shader may not be reflected in counters A22-A25 which only track their specific

defined operations. This can lead to an apparent discrepancy between A21 vs. A22-

A25 vs. A26/A27.

Link to detailed register definition:

[Register] Aggregate Perf Counter A27

A28 2x2s Requested

from Sampler

Aggregated total 2x2 texel blocks requested from all EUs to all instances of sampler

logic.

42 Doc Ref # IHD-OS-LKF-Vol 13-4.21

Counter

Event Description

Link to detailed register definition:

[Register] Aggregate Perf Counter A28

A29 Sampler L1 Misses Aggregated misses from all sampler L1 caches. Please note that the number of L1

accesses varies with requested filtering mode and in other implementation specific

ways. Hence it is not possible in general to draw a direct relationship between A28

and A29. However, a high number of sampler L1 misses relative to texel 2x2s

requested frequently degrades sampler performance.

Link to detailed register definition:

[Register] Aggregate Perf Counter A29

A30 SLM Reads Total read requests from an EU to SLM (including reads generated by atomic

operations).

Link to detailed register definition:

[Register] Aggregate Perf Counter A30

A31 SLM Writes Total write requests from an EU to SLM (including writes generated by atomic

operations).

Link to detailed register definition:

[Register] Aggregate_Perf_Counter_A31

A32 Other Shader

Memory Accesses
Aggregated total requests from all EUs to memory surfaces other than render

target or texture surfaces (e.g. shader constants).

Link to detailed register definition:

[Register] Aggregate_Perf_Counter_A32

A33 Other Shader

Memory Accesses

That Miss First-

Level Cache

Aggregated total requests from all EUs to memory surfaces other than render

target or texture surfaces (e.g. shader constants) that miss first-level cache.

Link to detailed register definition:

[Register] Aggregate_Perf_Counter_A33

A34 Atomic Accesses Aggregated total atomic accesses from all EUs. This counter increments on atomic

accesses to both SLM and URB.

Link to detailed register definition:

[Register] Aggregate_Perf_Counter_A34

Workaround

SLM atomics are not included by this OA event (only global memory atomics are

counted), a workaround using B/C counters is possible.

A35
Barrier Messages

Aggregated total kernel barrier messages from all Eus (one per thread in barrier).

Doc Ref # IHD-OS-LKF-Vol 13-4.21 43

Counter

Event Description

Link to detailed register definition:

[Register] Aggregate_Perf_Counter_A35

Flexible EU Event Counters

Since EU performance events are most interesting in many cases when aggregated across all EUs and

many interesting EU performance events are limited to certain APIs (e.g. hull shader kernel stats only

applicable when running a DX11+ workload), adds some additional flexibility to the aggregated counters

coming from the EU array.

The following block diagram shows the high-level flow that generates each flexible EU event.

Note that no support is provided for differences between flexible EU event programming between EUs

because the resulting output from each EU is eventually merged into a single OA counter anyway.

44 Doc Ref # IHD-OS-LKF-Vol 13-4.21

Supported Increment Events

Increment Event Encoding Notes

EU FPU0 Pipeline

Active

0b0000 Signal that is high on every EU clock where the EU FPU0 pipeline is actively

executing an ISA instruction.

EU FPU1 Pipeline

Active

0b0001 Signal that is high on every EU clock where the EU FPU1 pipeline is actively

executing an ISA instruction.

EU SEND Pipeline

Active

0b0010 Signal that is high on every EU clock where the EU send pipeline is actively

executing an ISA instruction. Only fine event filters 0b0000,0b0101, 0b0111,

0b1000, 0b1001, and 0b1010 are supported with this increment event.

EU FPU0 & FPU1

Pipelines Concurrently

Active

0b0011 Signal that is high on every EU clock where the EU FPU0 and FPU1 pipelines are

both actively executing an ISA instruction. Only coarse event filters 0b0000,

0b0111, and 0b1000 are supported with this increment event. Only fine event

filters 0b0000, 0b0111, 0b1000, 0b1001, and 0b1010 are supported with this

increment event.

Some EU Pipeline

Active

0b0100 Signal that is high on every EU clock where at least one EU pipeline is actively

executing an ISA instruction. Only coarse event filters 0b0000, 0b0111, and

0b1000 are supported with this increment event. Only fine event filters

0b0000,0b0101, 0b0111, 0b1000, 0b1001, and 0b1010 are supported with this

increment event.

At Least 1 Thread

Loaded But No EU

Pipeline Active

0b0101 Signal that is high on every EU clock where at least one thread is loaded but no

EU pipeline is actively executing an ISA instruction. Only coarse event filters

0b0000, 0b0111, and 0b1000 are supported with this increment event. Only fine

event filters 0b0000, 0b0111, 0b1000, 0b1001, and 0b1010 are supported with

this increment event.

Threads loaded

integrator == max

threads for current

HW SKU

0b1000
Implies an accumulator which increases every EU clock by the number of loaded

threads, signal pulses high for one clock when the accumulator exceeds a

multiple of the number of thread slots (e.g. for a 8-thread EU, signal pulses high

every clock where the increment causes a 3-bit accumulator to overflow). Only

coarse event filters 0b0000, 0b0111, and 0b1000 are supported with this

increment event. Only fine event filters 0b0000, 0b0111, 0b1000, 0b1001, and

0b1010 are supported with this increment event.

No event 0b1111 Expected HW default, allows logic to be power-optimized.

Supported Coarse Event Filters

Coarse

Event Filter Encoding Notes

No mask 0b0000 Never masks increment event.

VS Thread

Filter

0b0001
For increment events 0b0000/0b0001/0b0010, masks increment events unless the FFID

which dispatched the currently executing thread equals FFID of VS.

HS Thread

Filter

0b0010
For increment events 0b0000/0b0001/0b0010, masks increment event unless the FFID

which dispatched the currently executing thread equals FFID of HS.

Doc Ref # IHD-OS-LKF-Vol 13-4.21 45

Coarse

Event Filter Encoding Notes

DS Thread

Filter

0b0011
For increment events 0b0000/0b0001/0b0010, masks increment event unless the FFID

which dispatched the currently executing thread equals FFID of DS.

GS Thread

Filter

0b0100
For increment events 0b0000/0b0001/0b0010, masks increment event unless the FFID

which dispatched the currently executing thread equals FFID of GS.

PS Thread

Filter

0b0101
For increment events 0b0000/0b0001/0b0010, masks increment event unless the FFID

which dispatched the currently executing thread equals FFID of PS.

TS Thread

Filter

0b0110
For increment events 0b0000/0b0001/0b0010, masks increment event unless the FFID

which dispatched the currently executing thread equals FFID of TS.

Row = 0 0b0111 Masks increment event unless the row ID for this EU is 0 (control register is in TDL so only

have to check within quarter-slice).

Row = 1 0b1000 Masks increment event unless the row ID for this EU is 1 (control register is in TDL so only

have to check within quarter-slice).

Fine Event Filters

Fine Event Filter Encoding Notes

None 0b0000 Never mask increment event.

Cycles where

hybrid instructions

are being executed

0b0001 Masks increment event unless the instruction(s) being executed on the pipeline(s)

selected by the increment event are hybrid instructions.

Cycles where

ternary instructions

are being executed

0b0010 Masks increment event unless the instruction(s) being executed on the pipeline(s)

selected by the increment event are ternary instructions.

Cycles where

binary instructions

are being executed

0b0011 Masks increment event unless the instruction(s) being executed on the pipeline(s)

selected by the increment event are binary instructions.

Cycles where mov

instructions are

being executed

0b0100 Masks increment event unless the instruction(s) being executed on the pipeline(s)

selected by the increment event are mov instructions.

Cycles where sends

start being

executed

0b0101 Masks increment event unless the instruction(s) being executed on the pipeline(s)

selected by the increment event are send start of dispatch. Note that if this fine

event filter is used in combination with increment events not related to the EU send

pipeline (e.g. FPU0 active), the associated flexible event counter will increment in an

implementation-specific manner.

EU# = 0b00 0b0111 Masks increment event unless the EU number for this EU is 0b00.

EU# = 0b01 0b1000 Masks increment event unless the EU number for this EU is 0b01.

EU# = 0b10 0b1001 Masks increment event unless the EU number for this EU is 0b10.

EU# = 0b11 0b1010 Masks increment event unless the EU number for this EU is 0b11.

46 Doc Ref # IHD-OS-LKF-Vol 13-4.21

Flexible EU Event Config Registers

EU_PERF_CNT_CTL0 - Flexible EU Event Control 0

EU_PERF_CNT_CTL1 - Flexible EU Event Control 1

EU_PERF_CNT_CTL2 - Flexible EU Event Control 2

EU_PERF_CNT_CTL3 - Flexible EU Event Control 3

EU_PERF_CNT_CTL4 - Flexible EU Event Control 4

EU_PERF_CNT_CTL5 - Flexible EU Event Control 5

EU_PERF_CNT_CTL5 - Flexible EU Event Control 6

Custom Event Counters

Also known as B-counters, the events counted in these counters are defined from Boolean combinations

of input signals using the custom event creation logic built into OA.

The following diagram(s) illustrate(s) the structure used to create a custom event. Every B-counter has

such a block.

Doc Ref # IHD-OS-LKF-Vol 13-4.21 47

MI_REPORT_PERF_COUNT

