

Doc Ref #: IHD-OS-V2 Pt2 – 05 11

Intel® OpenSource HD Graphics
Programmer’s Reference Manual (PRM)
Volume 2 Part 2: 3D/Media – Media (SandyBridge)

For the 2011 Intel Core Processor Family

May 2011

Revision 1.0

NOTICE:

This document contains information on products in the design phase of development, and Intel
reserves the right to add or remove product features at any time, with or without changes to this
open source documentation.

2 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

Creative Commons License

You are free to Share — to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor
(but not in any
way that suggests that they endorse you or your use of the work).

No Derivative Works. You may not alter, transform, or build upon this work.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S
TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them.

The SandyBridge chipset family, Havendale/Auburndale chipset family, Intel® 965 Express Chipset
Family, Intel® G35 Express Chipset, and Intel® 965GMx Chipset Mobile Family Graphics Controller may
contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel® sales office or your distributor to obtain the latest specifications and before
placing your product order. I2C is a two-wire communications bus/protocol developed by Philips. SMBus
is a subset of the I2C bus/protocol and was developed by Intel®. Implementations of the I2C bus/protocol
may require licenses from various entities, including Philips Electronics N.V. and North American Philips
Corporation.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2011, Intel Corporation. All rights reserved.

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 3

Contents
1. Media and General Purpose Pipeline .. 4

1.1 Introduction .. 4
1.1.1 Hardware Feature Map in Products ... 4

1.2 Media Pipeline Overview ... 5
1.3 Programming Media Pipeline... 7

1.3.1 Command Sequence ... 7
1.3.2 Interrupt Latency .. 10

1.4 Video Front End Unit.. 11
1.4.1 Interfaces.. 12
1.4.2 Mode of Operations.. 13
1.4.3 Parameterized Media Walker [DevSNB+].. 14

1.5 Thread Spawner Unit ... 23
1.5.1 Basic Functions.. 24
1.5.2 Interfaces.. 29

1.6 Media State Model [DevSNB+] .. 30
1.7 Media State and Primitive Commands... 30

1.7.1 MEDIA_VFE_STATE Command [DevSNB+]... 30
1.7.2 MEDIA_CURBE_LOAD Command [DevSNB+]... 33
1.7.3 MEDIA_INTERFACE_DESCRIPTOR_LOAD Command [DevSNB+] ... 34
1.7.4 INTERFACE_DESCRIPTOR_DATA [DevSNB+]... 35
1.7.5 MEDIA_GATEWAY_STATE Command [DevSNB].. 38
1.7.6 MEDIA_STATE_FLUSH Command [DevSNB].. 40
1.7.7 MEDIA_OBJECT Command [DevSNB+] ... 41
1.7.8 MEDIA_OBJECT_PRT Command... 76
1.7.9 MEDIA_OBJECT_WALKER Command [DevSNB+].. 79

1.8 Media Messages .. 83
1.8.1 Thread Payload Messages .. 83
1.8.2 Thread Spawn Message .. 88

4 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

1. Media and General Purpose Pipeline

1.1 Introduction
This section covers the programming details for the media (general purpose) fixed function pipeline. The
media pipeline is positioned in parallel with the 3D fixed function pipeline. It is so named as its initial (and
primary) usage is to provide media functionalities and it does have media specific fixed function
capability. However, the fixed functions are designed to have the general capability of controlling the
shared functions and resources, feeding generic threads to the Execution Units to be executed, and
interacting with such generic threads during run time. The media pipeline can be used for non-media
applications, and therefore, can also be referred to as the general purpose pipeline. For the rest of this
chapter, we will refer this fixed function pipeline as the media pipeline, keeping in mind its general
purpose capability.

Concurrency of the media pipeline and the 3D pipeline is not supported. In other words, only one pipeline
can be activated at a given time. Switching between the two pipelines within a single context is supported
using the MI_PIPELINE_SELECT command.

The followings are some media application examples that can be mapped onto the media pipeline. All
these applications are functional; however, what level of performance can be achieved depends on the
hardware configuration and is beyond the scope of this document.

 MPEG-2 decode acceleration with HWMC

 MPEG-2 decode acceleration with IS/IDCT and forward

 MPEG-2 decode acceleration with VLD and forward

 WMV-9 decode acceleration with post filters

 WMV-9 decode acceleration with HWMC and post filters

 WMV-9 decode acceleration with IS/IDCT and forward

 AVC decode acceleration with HWMC and forward including Loop Filter

 VC1 decode acceleration with HWMC and forward including Loop Filter

 Advanced deinterlace filter (motion detected or motion compensated deinterlace filter)

 Video encode acceleration (with various level of hardware assistant)

1.1.1 Hardware Feature Map in Products
The following table lists the hardware features in the media pipe.

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 5

Table 1-1. Video Front End Features in Device Hardware

Features/

Device

[DevGT+]

Generic Mode Y

Root Threads Y

Parent/Child Threads Y

SRT (Synchronized Root Threads) Y

PRT (Persistent Root Thread) Y

Interface Descriptor Remapping N

Interface Descriptor Remapping N

IS Mode (HW Inverse Scan) N

VLD Mode (HW MPEG2 VLD) N

AVC MC Mode N

AVC IT Mode (HW AVC IT) N

AVC ILDB Filter (in Data Port) N

VC1 MC Mode N

VC1 IT Mode (HW VC1 IT) N

Stalling HW Scoreboard Y

Non-stalling HW Scoreboard Y

HW Walker Y

HW Timer Y

Pipelined State Flush Y

HW Barrier Y

1.2 Media Pipeline Overview
The media (general purpose) pipeline consists of two fixed function units: Video Front End (VFE) unit and
Thread Spawner (TS) unit. VFE unit interfaces with the Command Streamer (CS), writes thread payload
data into the Unified Return Buffer (URB) and prepares threads to be dispatched through TS unit. VFE
unit also contains a hardware Variable Length Decode (VLD) engine for MPEG-2 video decode. TS unit is
the only unit of the media pipeline that interfaces to the Thread Dispatcher (TD) unit for new thread
generation. It is responsible of spawning root threads (short for the root-node parent threads) originated
from VFE unit and spawning child threads (can be either a leaf-node child thread or a branch-node parent
thread) originated from the Execution Units (EU) by a parent thread (can be a root-node or a branch-node
parent thread).

The fixed functions, VFE and TS, in the media pipeline, in most cases, share the same basic building
blocks as the fixed functions in the 3D pipeline. However, there are some unique features in media fixed
functions as highlighted by the followings.

 VFE manages URB and only has write access to URB; TS does not interface to URB.

6 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

 When URB Constant Buffer is enabled, VFE forwards TS the URB Handler for the URB Constant
Buffer received from CS.

 TS interfaces to TD; VFE does not.

 TS can have a message directed to it like other shared functions (and thus TS has a shared
function ID), and it does not snoop the Output Bus as some other fixed functions in the 3D
pipeline do.

 A root thread generated by the media pipeline can only have up to one URB return handle.

 If a root thread has a URB return handle, VFE creates the URB handle for the payload to initiating
the root thread and also passes it alone to the root thread as the return handle. The root thread
then uses the same URB handle for child thread generation.

 If URB Constant Buffer is enabled and an interface descriptor indicates that it is also used for the
kernel, TS requests TD to load constant data directly to the thread’s register space. For root
thread, constant data are loaded after R0 and before the data from the other URB handle. For
child thread, as the R0 header is provided by the parent thread, Thread Spawner splits the URB
handles from the parent thread into two and inserts the constant data after the R0 header.

 A root thread must terminate with a message to TS. A child thread should also terminate with a
message to TS.

 High streaming performance of indirect media object load is achieved by utilizing the large vertex
cache available in the Vertex Fetch unit (of the 3D pipeline).

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 7

Figure 1-1. Top level block diagram of the Media Pipeline

B6853-01

To EUs

Output Bus (from EUs)

S
id

eb
an

d
 S

ig
n
als

Indirect Data†

Vertex Fetch

Video
Front End

Thread
Spawner Thread

Dispatcher

Command
Streamer

Unified Return
Buffering

1.3 Programming Media Pipeline

1.3.1 Command Sequence
Media pipeline uses a simple programming model. Unlike the 3D pipeline, it does not support pipelined
state changes. Any state change requires an MI_FLUSH or PIPE_CONTROL command. When
programming the media pipeline, it should be cautious to not use the pipelining capability of the
commands described in the Graphics Processing Engine chapter.

To emphasize the non-pipeline nature of the media pipeline programming model, the programmer should
note that if any one command is issued in the “Primitive Command” step, none of the state commands
described in the previous steps cannot be issued without preceding with a MI_FLUSH or
PIPE_CONTROL command.

Note for [DevSNB+]: With the addition of MEDIA_STATE_FLUSH command, pipelined state changes are
allowed on the media pipeline. The MEDIA_STATE_FLUSH serves as a fence for state change by
flushing the VFE/TS front ends but not waiting for threads to retire.

8 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

The basic steps in programming the media pipeline are listed below. Some of the steps are optional;
however, the order must be followed strictly. Some usage restrictions are highlighted for illustration
purpose. For details, reader should refer to the respective chapters for these commands.

1.3.1.1 Command Sequence [DevSNB+]

For [DevSNB+], the media pipeline is further simplified with fixed functions like MPEG2 VLD and
AVC/VC1 IT removed. The addition includes (1) CURBE command is now unique to the media pipeline
and (2) the interface descriptors are delivered directly as a media state command instead of being loaded
through indirect state.

The programming model is listed as the following.

 Step1: MI_FLUSH/PIPE_CONTROL

o This step is mandatory.

o Multiple such commands in step 1 are allowed, but not recommended for performance
reason.

 Step2: State command PIPELINE_ SELECT

o This step is optional. This command can be omitted if it is known that within the same
context media pipeline was selected before Step 1.

o Multiple such commands in step 2 are allowed, but not recommended for performance
reason.

 Step3: State commands configuring pipeline states

o STATE_BASE_ADDRESS

 This command is mandatory for this step (i.e. at least one).

 Multiple such commands in this step are allowed. The last one overwrites
previous ones.

 This command must precede any other state commands below.

 Particularly, the fields Indirect Object Base Address and Indirect Object
Access Upper Bound are used to control indirect Media object load in VF.

 The fields Dynamics Base Address and Dynamics Base Access Upper
Bound are used to control indirect Curbe and Interface Descriptor object load in
VF.

 Note: This command may be inserted before (and after) any commands listed in
the previous steps (Step 1 to 3). For example, this command may be placed in
the ring buffer while the others are put in a batch buffer.

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 9

o STATE_SIP

 This command is optional for this step. It is only required when SIP is used by the
kernels.

o MEDIA_VFE_STATE

 This command is mandatory for this step (i.e. at least one).

 This command cause destruction of all outstanding URB handles in the system.
A new set of URB handles will be generated based on state parameters, no. of
URB and URB length, programmed in VFE FF state.

 Multiple such commands in this step are allowed. The last one overwrites
previous ones.

o MEDIA_CURBE_LOAD

 This command is optional.

 Multiple such commands in this step are allowed. The last one overwrites
previous ones.

o MEDIA_INTERFACE_DESCRIPTOR_LOAD

 This command is mandatory for this step (i.e. at least one).

 Multiple such commands in this step are allowed. The last one overwrites
previous ones.

 Step4: Primitive commands

o MEDIA_OBJECT

 This step is optional, but it doesn’t make practical sense not issuing media
primitive commands after being through previous steps to set up the media
pipeline.

 Multiple such commands in step 4 can be issued to continue processing media
primitives.

With the addition of MEDIA_STATE_FLUSH command, pipelined state changes are allowed on the
media pipeline. In order to support context switch for barrier groups, watermark and barrier dependencies
are added to the MEDIA_STATE_FLUSH command. The usage of barrier group may have strict
restriction that all threads belonging to a barrier group must all be present in order to avoid deadlock
during context switch. Here are the example programming sequences to allow context switch. Note that
the use of MEDIA_OBJECT_PRT is optional. It is required to support fast preemption. Similarly,
MI_ARB_ON_OFF is optional and is used to support fast preemption.

 MEDIA_VFE_STATE

 MEDIA_INTERFACE_DESCRIPTOR_LOAD

10 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

 MEDIA_CURBE_LOAD (optional)

 MEDIA_GATEWAY_STATE (for example for barrier group 1)

 MEDIA_OBJECT_PRT (with VFE_STATE_FLUSH set and PRT NEEDED set.)

 MEDIA_STATE_FLUSH (with watermark set for group 1)

 MI_ARB_ON_OFF (OFF) // Arbitration must be turned off while sending objects for group 1

 Several MEDIA_OBJECT command (for barrier group 1)

 MI_ARB_ON_OFF (ON) // Arbitration is allowed

 MEDIA_STATE_FLUSH (optional, only if barrier dependency is needed)

 MEDIA_INTERFACE_DESCRIPTOR_LOAD (optional)

 MEDIA_CURBE_LOAD (optional)

 MEDIA_GATEWAY_STATE (for example for barrier group 2)

 MEDIA_STATE_FLUSH (with watermark set for group 1)

 MI_ARB_ON_OFF (OFF) // Arbitration must be turned off while sending objects for group 2

 Several MEDIA_OBJECT command (for barrier group 2)

 MI_ARB_ON_OFF (ON) // Arbitration is allowed

 …

 MI_FLUSH

1.3.2 Interrupt Latency
Command Streamer is capable of context switching between primitive commands.

For all independent threads, it is not much a problem. The interrupt latency is dictated by the longest
command that is likely to have the largest number of threads. For VLD mode, such a command may be
corresponding to a largest slice in a high definition video frame. This is application dependent, there are
not much host software can do. For Generic mode, programmer should consider to constrain the compute
workload size of each thread.

In modes with child threads, a root thread may be persist in the system for long period of time – staying
until its child threads are all created and terminated. Therefore, the corresponding primitive command
may also last for long time. Software designer should partition the workload to restrict the duration of each
root thread. For example, this may be achieved by partitioning a video frame and assigning separate
primitive commands for different data partitions.

In modes with synchronized root threads, a synchronized root thread is dependent on a previous root or
child thread. This means context switch is not allowed between the primitive command for the
synchronized root thread and the one for the depending thread. So no command queue arbitration should

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 11

be allowed between them. Software designer should also restrict the duration of such non-interruptible
primitive command segments.

1.4 Video Front End Unit
The Video Front End unit is the first fixed function unit in the media pipeline. It processes
MEDIA_OBJECT commands to generate root threads by preparing the control (including interface
descriptor pointers) and payload (data pushed into the GRF) for the root threads.

VFE supports three modes of operation: Generic mode, Inverse Scan mode and VLD mode.

 Generic mode: In the Generic mode, VFE serves as a conduit for general-purpose kernels fully
configured by the host software. There is no application specific hardware enabled in this mode.

The following figure illustrates the three modes of operation. The details can be found in the rest of the
sections.

Figure 1-2. VFE Functional Blocks and Modes of Operations

B6854-01

To TS
IS

To URB

VLD

ITIS

“VLD mode”

“IS mode”

“Generic mode”

“AVC-IT
or VC1-IT

mode”

URB Entry
Manager State URB Write

From State
Variable
Manager

To/From
Global URB
Manager

VFE Unit

From CS
(or VF)

To CS
From TS

MEDIA_STATE_POINTERS command configures VFE in one of the three modes using. Mode switching
requires media pipeline state change.

12 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

1.4.1 Interfaces
VFE unit acquires its states from Sate Variable Manager, accesses URB handles from the Global URB
Manager, receives state and primitive commands from CS unit, writes thread payloads to URB, and
sends new thread to TS unit. It does not directly interface to Thread Dispatcher. When VFE is ready for a
thread, it sends the interface descriptor pointer for the thread to TS.

1.4.1.1 Interface to Command Streamer

VFE interfaces to CS to acquire the control data, inline data and indirect data of MEDIA_OBJECT
commands. The interface supports the throughput of a given mode of operation of VFE. For example, in
VLD mode and IS mode, VFE consumes one dword at a time, one dword to the variable length decoder
or one dword to the inverse-scan operator. In Generic mode, VFE is capable of a much higher throughput
to push indirect data (as thread payload data) into URB. As throughput for indirect data is much higher
than that of inline data, when large amount of user data need to be passed through VFE unit, if
applicable, it is encouraged to use indirect object load.

1.4.1.2 Interface to Thread Spawner

When a new root thread is fully assembled by VFE, VFE passes to TS the interface descriptor pointer, the
URB handle information, etc. In response to this, TS processes the thread information and sends a
thread request to TD.

VFE also transmits scratch memory base address received from State Variable Manager to TS, and
passes on the Constant URB handle received from CS.

VFE receives URB handle dereference signal from TS.

1.4.1.3 Interface to State Variable Manager

State Variable Manager is responsible of fetching media state structure from memory. VFE only acquires
its state variable upon the first primitive command. Therefore, host software is allowed to change media
states before issuing primitive commands. As media pipeline does not support pipelined state change, a
pipeline flush is required before any state change to make sure that there are no outstanding primitive
commands in the pipeline.

1.4.1.4 Interface to Global URB Manager

VFE is responsible for managing URB handles for all root threads. Upon state change, VFE allocates
URB handles through the Global URB Manager. VFE manages the URB handles in a circular buffer.
URB handle referencing is in a strict order (taking from the head of the circular buffer), even though the
handle dereferencing may occur out of order.

When starting a root thread, VFE reference one and only one URB handle, forwarding it to TS. TS then
forwards this handle to TD for thread dispatching.

The URB handle for a root thread is used in two ways: (1) serving as buffer space for VFE to assemble
thread payload, and (2) serving as the return URB buffer for the root thread to assemble child threads and
their payload.

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 13

TS sends an indication to VFE when it is safe to dereference the URB handle, and VFE dereferences it.
After a URB handle has been dereferenced, VFE can assign it to a new thread.

1.4.1.5 Interface to URB

VFE sends the assembled root thread payload to URB via a wide data bus. In Generic mode, the data
comes from the command as inline or indirect data objects. In IS mode, the inline data is directly
assembled as URB register wide payloads, and the indirect data are assembled through the Inverse Scan
logic. In VLD mode, the data is decoded from the indirect object (i.e. bitstream data).

1.4.2 Mode of Operations

1.4.2.1 Generic Mode

In the Generic mode, VFE serves as a conduit for general-purpose kernels fully configured by the host
software. As there is no special fixed function logic used, the Generic mode can also be viewed as a
‘pass-through’ mode. In this mode, VFE generates a new thread for each MEDIA_OBJECT command.
The payload contained in the MEDIA_OBJECT command (inline and/or indirect) is streamed into URB.
The interface descriptor pointer is computed by VFE based on the interface descriptor offset value and
the interface descriptor base pointer stored in the VFE state. VFE then forwards the interface descriptor
pointer and the URB handle to TS to generate a new root thread. Many media processing applications
can be supported using the Generic mode: MPEG-2 HWMC, frame rate conversion, advanced
deinterface filter, to name a few.

1.4.2.1.1 Interface Descriptor Selection

After populating the URB with the data, VFE notifies TS to initiate the thread. TS needs an interface
descriptor pointer to fetch the information for thread initiation. A list of interface descriptors is arranged by
the host software as a descriptor array in memory, as shown in the media state model in Error!
Reference source not found..

VFE obtains the interface descriptor base pointer from the VFE state structure. The offset into the list of
interface descriptors comes from MEDIA_OBJECT command. Each interface descriptor has a fixed size.
VFE uses a multiple of the fixed size and the offset to add to the base pointer, and creates the final
interface descriptor pointer to be sent to TS.

TS fetches the interface descriptor through the Instruction State Cache (ISC) using the interface
descriptor pointer. TS then initializes the thread through the Thread Dispatcher. The interface descriptor
pointer is given to TS by VFE for a root thread and by a thread for a child thread. The R0 header is
formed by TS for a root thread and is stored in URB by the parent thread for a child thread.

1.4.2.1.2 Scratch Space Allocation

TS handles the allocation of scratch space. Since TS does not have a normal state interface, VFE
receives the scratch space configuration with the VFE state, then forwards the configuration to TS with
the interface descriptor pointer.

14 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

1.4.3 Parameterized Media Walker [DevSNB+]
The Parameterized Media Walker is a hardware thread generation mechanism that creates threads
associated with units in a generalized 2-dimensional space, for example, blocks in a 2D image. With a
small number of unit step vectors, the walker can implement a large number of walking patterns as
described hereafter. This command may provide functions that are normally handled by the host
software, thus, may be used to simplify the host software and GPU interface.

The walker described herein is doubly nested, where essentially a “local” walker can perform a variety of
2-dimensional walking patterns and a “global” walker can perform similar 2-dimensional walking patterns
upon many local walkers. The local walker has 3 levels (outer, middle, and inner) while the global walker
has 2 levels (outer and inner). Thus, the algorithm has 5-nested loops that modify local state based on
user-defined unit step vectors.

The Walker’s programmability is derived from:

 The walker traverses a unit-normalized surface. Some example unit sizes:

o 1x1: Walking pixels

o 4x4: Walking sub-blocks

o 16x16: Walking macro-blocks

o 32x16: Walking macro-block-pairs

 The use of unit step vectors to describe the motion at each of level of nesting

 Starting locations for the local and global walkers

 Block sizes of the local and global walker

 And a small number of special mode controls for the inner-most loop which are aimed at
efficiently dividing an image into two balanced workloads for dual-slice designs.

1.4.3.1 Walker Parameter Description

The global and local loops are both described by the same four parameters:

 Resolution,

 Starting location,

 Outer unit vector,

 Inner unit vector

The local inner loop has some special modes that will be described later. A table of the user inputs and
some example values are given below:

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 15

It should be emphasized that the value of what a “unit” represents is implicitly defined by the user. In
other words, the walker traverses a “unit normalized space” that is not inherently bound to pixel walking.
If the smallest unit of work the user wants to walk is a 4x3 block of pixels, you can program the inner loop
to step (4,3) or (1,1):

 In the first case (4,3) the user is walking in units of pixels

 In the second case (1,1) the user is walking in units of 4x3 blocks of pixels.

It should be noted that hardware doesn’t contain enough bits for pixel walking for pixel resolution like
1920x1088. The intended usage of the walker is for block walking whereas the block size is not relevant
to the walker parameters.

1.4.3.2 Basic Parameters for the Local Loop

The local inner and outer loop xy-pair parameters alone can describe a large variety of primitive walking
patterns. Below are 9 primitive walking patterns generated by varying only the inner and outer unit step
vectors of the local loop:

16 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

 The top row shows the outer unit vector pointing down (+Y) and the inner unit vector pointing right
(+X). Rows and columns can easily be skipped by increasing the unit step vectors above one.

 The middle row the outer unit vector pointing right (+X) and the inner unit vector pointing down
(+Y). Again, rows and columns are skipped by increasing the unit step vectors beyond one.

 The last row shows the capability to walk angles not perpendicular to the edge. The 1st shows a
45º walking pattern by setting the inner unit vector to (-1,1). The 2nd shows a checkerboard
pattern by skipping every other outer loop and retaining the inner unit vector of (-1,1). The 3rd
shows a 26.5º walking pattern by setting the inner unit vector to (-2,1).

The block resolution, shown as [8,8], and the starting location, currently [0,0], can be varied and the
above patterns can be stretched and rotated many ways. The diagram below shows an example of
where the start position and unit step vectors can be set to achieve a full rotation of the same pattern:

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 17

1.4.3.3 Dual Mode of Local Loop

The local Inner Loop Special mode selects are included to aid in the distribution of work, specifically with
two slices in mind. Essentially, the local inner loop can be bisected and each half-walk can be directed
inward towards the center of the image (dual). The local inner loop need not be bisected, and can either
move away from the outer loop (repel) or move towards it (attract) when an even split is not desired:

In Dual mode, the sequence will alternate between two half-walks such that every-other output would go
to the same slice. This effect will produce a more balanced workload to two slices as shown in the
example below where the color of the block represents which slice it was dispatched to. This is the
walker’s approach to fine-grained parallelism.

18 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

1.4.3.4 MbAff-Like Special Case in Local Loop

The local loop has an additional middle loop that is used to achieve some specific walking patterns, with
MBAFF mode especially in mind. A pattern to handle MBAFF AVC content is to walk the top macroblocks
of all macroblock pairs (MB-pairs) on a wavefront followed by the respective bottom macroblocks. The
pattern is shown below.

The outer loop unit step vector would be [1, 0] and the inner loop unit step vector would be [-2, 2]. A third
loop is necessary to repeat the inner loop, only shifted down a unit before restarting. Thus, a middle loop
with a unit step vector of [0,1] would achieve this MBAFF pattern. Additionally, the number of “extra
steps” taken by the middle loop would be 1 in this case.

The addition of a middle loop also creates more overall flexibility, which seems necessary due to the
integer-based unit step vector solution proposed (Manhattan distance issues etc.).

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 19

1.4.3.5 Global Loop

The same set of general parameters is used to describe the global loop as well. Thus, a global loop that
is walking a raster-scan pattern can be combined with a local loop that is walking a 26.5º pattern (or vice-
versa). As shown in the example below, if the local block size ([8,8]) is not an even multiple of the global
resolution ([20,20]), the slack is still processed by dynamically changing the local block resolution.

The global loop will always resolve to be the upper-left corner of the local loop, shown above black
circles. Note that local loop can still start in any corner of the local block, but the local (0,0) will always be
the location where global loop begins the local loop, hence the upper-left corner.

The user can specify where the staring location of the global loop as with the local loop. If the user were
to set the global starting location to (16,16) in the previous example, after inverting the global outer and
global inner unit step vectors the same pattern would be achieved in the reverse order. Note that the
slack would still be handled along the right and bottom edge of the global image in that case. The user
could have also started at (12,12) in which case the slack would be handled on the left and top faces.

20 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

1.4.3.6 Walker Algorithm Description
The walker algorithm has been tested and optimized in software. A high-level pseudo-code description is
given below:

 Walker(){ //C-Style Pseudo-Code of Walker Algorithm

 Load_Inputs_And_Initialize();

 While (Global_Outer_Loop_In_Bounds()){

 Global_Inner_Loop_Intialization();

 While (Global_Inner_Loop_In_Bounds()){

 Local_Block_Boundary_Adjustment();

 Local_Outer_Loop_Initialization();

 While (Local_Outer_Loop_In_Bounds()){

 Local_Middle_Loop_Initialization();

 While (Local_Middle_Steps_Remaining()){

 Local_Inner_Loop_Initialization();

 While (Local_Inner_Loop_Is_Shrinking()){

 Execute();

 Calculate_Next_Local_Inner_X_Y();

 } //End Local Inner Loop

 Calculate_Next_Local_Middle_X_Y();

 } //End Local Middle Loop

 Calculate_Next_Local_Outer_X_Y();

 Calculate_Next_Local_Inverse_Outer_X_Y();

 } //End Local Outer Loop

 Calculate_Next_Global_Inner_X_Y();

 } //End Global Inner Loop

 Calculate_Next_Global_Outer_X_Y();

 } //End Global Outer Loop

 } //End Walker

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 21

The pseudo-code has the following characteristics:

 There are 5 levels of iteration

 The highest 2 levels are called “global” and the lowest 3 levels are called “local”

o The global loop is split into an outer and an inner loop.

o The local loop is split into an outer, a middle, and an inner loop.

o A bounding box for the global and local resolution is defined by the user.

o The starting location within each bounding box is also specified by the user.

 Each of the 5 loops has its own persistent

o Current position (x,y)

o Unit step vector (x,y)

 The final output (x,y) is a summation of the global x,y and the local x,y.

 The next (x,y) for given level can be calculated while the next lower level is still executing.
Additionally, the result can be used to check to see if the current level will execute again once
control is returned.

The flow of the global outer and inner loops is:

1. Check a bound condition

2. Initialize the next level loop

3. Execute the next level loop

4. When the next level loop fails its condition, calculate the next position for the current loop level and
repeat.

22 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

Figure 1-3. Walker algorithm flowchart for the Global Loop

Take note of the grey box “Local Block Boundary Adjustment”. This logic is necessary to adjust the local
block size when the distance between the current global position to the edge of the image is less than the
local resolution. Additionally, the local starting positions might be modified here as well if the defined
starting position is larger than the new local block size.

The flow of the 3 local loops does not vary much from the 2 global loops. The differences are:

 In addition to a boundary check, the local middle loop also ensures the number of middle steps is less
than or equal to the user defined “number of extra steps”.

 The local inner loop only checks to see if the prior distance between the x,y starting and ending
points are greater than their current distance. If this is true, it implies that the two inner loops are
converging towards each other.

 When the middle loop check fails, both the starting points (local outer) and ending points (local inner)
are updated.

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 23

Figure 1-4. Walker algorithm flowchart for the Local Loop

Local Outer Loop
In Bounds?No

Local Middle Steps
Remaining? No Calculate Next

Local Outer (X,Y)

Calculate Next Local
Inverse Outer (X,Y)

From Global
Loops

Return to
Global Loops

Local Inner Loop
Shrinking?

Calculate Next
Local Inner (X,Y)

Calculate Next
Local Middle (X,Y)

Yes

No

Output

Yes

Local Inner Loop
Initialization

Local Middle
Loop Initialization

Yes

1.5 Thread Spawner Unit
The Thread Spawner (TS) unit is responsible for making thread requests (root and child) to the Thread
Dispatcher, managing scratch memory, maintaining outstanding root thread counts, and monitoring the
termination of threads.

24 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

Figure 1-5. Thread Spawner block diagram

B6857-01

To TD

Constant
URB Handle

To Interface
Descriptor Cache

From

VFE

Thread
Generation

Thread
Dispatch
Queue

Root Thread
Request Queue

Root
Thread

From EU Spawn Thread
Request Queue

Child
Thread

S
yn

ch
ro

n
iza

tion
URB Handle
Dereference

Scratch
Buffer

Manager
Dereference

Interface
Descriptor

Fetch

To VFE

1.5.1 Basic Functions

1.5.1.1 Root Threads Lifecycle

Thread requests sourced from VFE are called root threads, since these threads may be creating
subsequent (child) threads. A root thread may a macroblock thread created by VFE as in VLD mode, or
may be a general-purpose thread assembled by VFE according to full description provided by host
software in Generic mode.

Thread requests are stored in the Root Thread Queue. TS keeps everything needed to get the root
threads ready for dispatch and then tracks dispatched threads until their retirement.

TS arbitrates between root thread and child thread. The root thread request queue is in the arbitration
only if the number of outstanding threads does not exceed the maximum root thread state variable.
Otherwise, the root thread request queue is stalled until some other root threads retire/terminate.

Once a root thread is selected to be dispatched, its lifecycle can be described by the following steps:

1. TS forwards the interface descriptor pointer to the L1 interface descriptor cache (a small fully
associated cache containing up to 4 interface descriptors). The interface descriptor is either

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 25

found in the cache or a corresponding request is forwarded to the L2 cache. Interface descriptors
return back to TS in requesting order.

 Once TS receives the interface descriptor, it checks whether maximum concurrent root
thread number has reached to determine whether to make a thread dispatch request or to
stall the request until some other root threads retire. If the thread requests the use of scratch
memory, it also generates a pointer into the scratch space.

2. TS then builds the transparent header and the R0 header.

3. Finally, TS makes a thread request to the Thread Dispatcher.

4. TS keeps track of dispatched thread, and monitors messages from the thread (resource
dereference and/or thread termination). When it receives a root thread termination message, it
can recover the scratch space and thread slot allocated to it. The URB handle may also be
dereferenced for a terminated root thread for future reuse. It should be noted that URB handle
dereference may occur before a root thread terminates. See detailed description in the Media
Message section.

 It is the root thread’s responsibility (software) to guarantee that all its children have retired
before the root thread can retire.

1.5.1.2 URB Handles

VFE is in charge of allocating URB handles for root threads. One URB handle is assigned to each root
thread. The handle is used for the payload into the root thread.

If Children Present is not set (root-without-child case), TS signals VFE to dereference the URB handle
immediately after it receives acknowledgement from TD that the thread is dispatched.

If Children Present is set (root-with-child case), the URB handle is forwarded to the root thread and
serves as the return URB handle for the root thread. TS does not signal deference at the time of
dispatch. TS signals URB handle deference only when it receives a resource dereference message from
the thread.

Children Present is a command variable in the _OBJECT command

1.5.1.3 Root to Child Responsibilities

Any thread created by another thread running in an EU is called a child thread. Child threads can create
additional threads, all under the tree of a root which was requested via the VFE path.

A root thread is responsible of managing pre-allocated resources such as URB space and scratch space
for its direct and indirect child threads. For example, a root thread may split its URB space into sections. It
can use one section for delivering payload to one child thread as well as forwarding the section to the
child thread to be used as return URB space. The child thread may further subdivide the URB section into
subsections and use these subsections for its own child threads. Such process may be iterated. Similarly,
a root thread may split its scratch memory space into sections and give one scratch section for one child
thread.

TS unit only enforces limitation on number of outstanding root threads. It is the root threads’ responsibility
to limit the number of child threads in their respected trees to balance performance and avoid deadlock.

26 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

1.5.1.4 Multiple Simultaneous Roots

Multiple root threads are allowed concurrently running in GEN4 execution units. As there is only one
scratch space state variable shared for all root threads, all concurrent root thread requiring scratch space
share the same scratch memory size. Figure 1-6 depicts two examples of thread-thread relationship. The
left graph shows one single tree structure. This tree starts with a single root thread that generates many
child threads. Some child threads may create subsequent child threads. The right graph shows a case
with multiple disconnected trees. It has multiple root threads, showing sibling roots of disconnected trees.
Some roots may have child threads (branches and leafs) and some may not.

There is another case (as shown in Figure 1-7) where multiple trees may be connected. If a root is a
synchronized root thread, it may be dependent on a preceding sibling root thread or on a child thread.

Figure 1-6. Examples of thread relationship

B6858-01

Root/siblingroot

leaf branch

leaf leaf

leaf leaf

Root/sibling Root/sibling

Figure 1-7. A example of thread relationship with root sibling dependency

B6859-01

Root/siblingroot

leaf branch

leaf leaf

leaf leaf

Root/sibling Root/sibling

leaf

1.5.1.5 Synchronized Root Threads

A synchronized root thread (SRT) originates from a MEDIA_OBJECT command with Thread
Synchronization field set. Synchronized root threads share the same root thread request queue with the
non-synchronized roots. A SRT is not automatically dispatched. Instead, it stays in the root thread request
queue until a spawn-root message is at the head of the child thread request queue. Conversely, a spawn-
root message in the child thread request queue will block the child thread request queue until the head of

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 27

root thread request queue is a SRT. When they are both at the head of queues, they are taken out from
the queue at the same time.

A spawn-root message may be issued by a root thread or a child thread. There is no restriction. However,
the number of spawn-root messages and the number of SRT must be identical between state changes.
Otherwise, there can be a deadlock. Furthermore, as both requests are blocking, synchronized root
threads must be used carefully to avoid deadlock.

When Scoreboard Control is enabled, the dispatch of a SRT originated from a MEDIA_OBJECT_EX
command is still managed by the same way in addition to the hardware scoreboard control.

1.5.1.6 Deadlock Prevention

Root threads must control deadlock within their own child set. Each root is given a set of preallocated
URB space; to prevent deadlock it must make sure that all the URB space is not allocated to intermediate
children who must create more children before they can exit.

There are limits to the number of concurrent threads. The upper bound is determined by the number of
execution units and the number of threads per EU. The actual upper bound on number of concurrent
threads may be smaller if the GRF requirement is large. Deadlock may occur if a root or intermediate
parent cannot exit until it has started its children but there is no space (for example, available thread slot
in execution units) for its children to start.

To prevent deadlock, the maximum number of root threads is provided in VFE state. The Thread
Spawner keeps track of how many roots have been spawned and prevents new roots if the maximum has
been reached. When child threads are present, it is software’s responsible of constraining child thread
generation, particularly the generation of child threads that may also spawn more child threads.

Child thread dispatch queue in TS is another resource that needs to be considered in preventing
deadlock. The child thread dispatch queue in TS is used for (1) message to spawn a child thread, (2)
message to spawn a synchronized root thread, and (3) thread termination message. If this queue is full, it
will prevent any thread to terminate, causing deadlock.

For example, if an application only has one root thread (max # of root threads is programmed to be one).
This root thread spawns child threads. In order to avoid deadlock, the maximum number of outstanding
child thread that this root thread can spawn is the sum of the maximum available thread slots plus the
depth of the child thread dispatch queue minus one.

 Max_Outstanding_Child_Threads = (Thread Slot Number – 1) + (TS Child Queue Depth – 1)

Adding other root threads (synchronized and/or non-synchronized) to the above example, the situation is
more complicated. A conservative measure may have to use to prevent deadlock. For example, the root
thread spawning child threads may have to exclude the max number of root threads as in the following
equation to compute the maximum number of outstanding child threads to be dispatched.

 Max_Outstanding_Child_Threads = (Thread Slot Number – 1) + (TS Child Queue Depth – 1) –
(Max Root Threads-1)

28 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

Table 1-2. TS Resource Available in Device Hardware

Device Child Thread Dispatch
Queue Depth

[DevSNB+] OPEN

1.5.1.7 Child Thread Lifecycle

When a (parent) thread creates a child thread, the parent thread behaves like a fixed function. It provides
all necessary information to start the child thread, by assembling the payload in URB (including R0
header) and then sending a spawn thread message to TS with following data:

 An interface descriptor pointer for the child thread.

 A pointer for URB data

The interface descriptor for a child may be different from the parent – how the parent determines the child
interface descriptor is up to the parent, but it must be one from the interface descriptor array on the same
interface descriptor base address.

The URB pointer is not the same as a URB handle. It does not have an URB handle number and does
not appear in any handle table. This is acceptable because the URB space is never reclaimed by TS
after a child is dispatched, but rather when the parent releases its original handles and/or retires.

The child request is stored in the child thread queue. The depth of the queue is limited to 8, overrun is
prevented by the message bus arbiter which controls the message bus. The arbiter knows the depth of
the queue and will only allow 8 requests to be outstanding until the TS signals an entry has been
removed.

As mentioned previously, child threads have higher priority over root threads. Once TS selects a child
thread to dispatch, it follows these steps:

1. TS forwards the interface descriptor pointer to the L1 interface descriptor cache (a small fully
associated cache containing up to 4 interface descriptors). The interface descriptor is either
found in the cache or a corresponding request is forwarded to the L2 cache. Interface descriptors
return back to TS in requesting order.

2. TS then builds the transparent header but not the R0 header.

3. Finally, TS makes a thread request to the Thread Dispatcher.

4. Once the dispatch is done, TS can forget the child – unlike roots, no bookkeeping is done that
has to be updated when the child retires.

If more data needs to be transferred between a parent thread and its child thread than that can fit in a
single URB payload, extra data must be communicated via shared memory through data port.

1.5.1.8 Arbitration between Root and Child Threads

When both root thread queue and child thread queue are both non-empty, TS serves the child thread
queue. In other words, child threads have higher priority over root threads. The only condition that the
child thread queue is stalled by the root thread queue is that the head of child thread queue is a root-
synchronization message and the head of root thread queue is not a synchronized root thread.

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 29

1.5.1.9 Persistent Root Thread

Persistent Root Thread (PRT) is in the context of multi-context scheduling, where the thread supports
midstream interruptability for fine grain context switch. A persistent root thread in general stays in the
system for a long period of time. It is normally a parent thread, and only one PRT is allowed in the system
at a time. Upon context switch interrupt, instead of proceeding to completion, a PRT can save its software
context and terminate. The PRT can be restarted later, even if it had completed normally the last time it
was executed. Therefore, the PRT must always save enough context (via data port messages to a
predefined surface) to allow it to restart from where it left off (including determining that it has nothing left
to do). However, since only one PRT can execute at a time, once the next PRT starts, the previous one
will never be restarted, thus the context save surface can be reused from one PRT to the next.

A PRT may check the Thread Restart Enable bit in the R0 header to find out whether it is a fresh start or
resumed from a previous interrupt and then can continue operations from that previously saved context.

PRT can be interleaved with other root (such as parent root thread, or synchronized root thread) and child
threads. A parent root thread is not necessarily a PRT, and doesn’t have to be as long as it can be
finished in deterministic time that is shorter than required for fine-grain context switch interrupt.

Use of PRT must follow the following rule:

 There can only be one PRT in the media pipeline at a given time. That means, there shall not be
any other media primitive commands (MEDIA_OBJECT or MEDIA_OBJECT_EX) between it and
the previous MI_FLUSH command. In other words, when multiple such PRTs are used in a
sequence of media primitive commands, MI_FLUSH must be inserted.

1.5.2 Interfaces

1.5.2.1 Interface to VFE

TS receives an interface descriptor pointer and a URB handle from VFE. It uses the interface descriptor
pointer to fetch the interface descriptor. TS uses the information in the interface descriptor along with the
URB handle to fill out the transparent header in the message to TD for all threads. For root thread, TS
also generate the R0 header.

TS transmits URB handle dereference signal to VFE. As described previously, the derefernce signal may
be at dispatch time or at later time depending on Children Present. No matter which case, there is one
and only one URB handle dereference for a thread.

1.5.2.2 Interface to Thread Dispatcher

TS creates the transparent header, assembles the URB handles and calls TD to dispatch a new thread.
For an unsynchronized root thread, there is one URB handle managed by VFE and optionally one
Constant URB handle managed by CS. For a synchronized root thread, there is one URB handle
managed by VFE, a URB handle created by the synchronizing thread (the one that sends the ‘spawn root
thread’ message, and optionally one Constant URB handle managed by CS. For a child thread, there is
one URB handle managed by the parent thread plus an optional Constant URB handle.

30 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

1.6 Media State Model [DevSNB+]
The media state model is based on in-line state load mechanism. VFE state, URB configuration and
Interface Descriptors are loaded to VFE hardware through state commands.

All Interface Descriptors have the same size and are organized as a contiguous array in memory. They
can be selected by Interface Descriptor Index for a given kernel. This allows different kinds of kernels to
coexist in the system.

1.7 Media State and Primitive Commands

1.7.1 MEDIA_VFE_STATE Command [DevSNB+]
An MI_FLUSH is required before MEDIA_VFE_STATE unless the only bits that are changed are
scoreboard related: Scoreboard Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
these scoreboard related states, a MEDIA_STATE_FLUSH is sufficient.

 MEDIA_STATE_FLUSH (optional, only if barrier dependency is needed)

 MEDIA_INTERFACE_DESCRIPTOR_LOAD (optional)

DWord Bit Description

31:29 Command Type = GFXPIPE = 3h

28:16 Media Command Opcode = MEDIA_VFE_STATE

Pipeline[28:27] = Media = 2h; Opcode[26:24] = 0h; Subopcode[23:16] = 0h

0

15:0 DWord Length (Excludes DWords 0,1) = 06h

1 31:10 Scratch Space Base Pointer. Specifies the 1k-byte aligned address offset to scratch
space for use by the kernel. This pointer is relative to the General State Base Address.

Format = GeneralStateOffset[31:10]

 9:8 Reserved: MBZ

 7:4 Stack Size

Range = [0,11] indicating [1KBytes, 2MBytes]

 3:0 Per Thread Scratch Space. Specifies the amount of scratch space allowed to be used by
each thread. The driver must allocate enough contiguous scratch space, pointed to by the
Scratch Space Pointer, to ensure that the Maximum Number of Threads each get Per
Thread Scratch Space size without exceeding the driver-allocated scratch space.

Note: The definition of this field is different from that in 3D fixed functions, where the per-
thread scratch space is specified in powers of 2.

Format = U4

Range = [0,11] indicating [1k bytes, 12k bytes] [DevSNB]

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 31

DWord Bit Description

2 31:16 Maximum Number of Threads. Specifies the maximum number of simultaneous root
threads allowed to be active. Used to avoid using up the scratch space, or to avoid
potential deadlock. Note that MSB will be zero due to the range limit below.

Format = U16 representing (thread count – 1)

Range = [0, n-1] where n = (# EUs) * (# threads/EU). See Graphics Processing Engine for
listing of #EUs and #threads in each device.

 15:8 Number of URB Entries. Specifies the number of URB entries that are used by the unit.

Format = U8

Range = [0,64] [0,64] Entries [DevSNB]

 7 Reset Gateway Timer. This field controls the reset of the timestamp counter maintained in
Message Gateway.

0 – Maintaining the existing timestamp state

1 – Resetting relative timer and latching the global timestamp

 6 Bypass Gateway Control. This field configures Gateway to use a simple message
protocol.

0 – Maintaining OpenGateway/ForwardMsg/CloseGateway protocol (legacy mode)

1 – Bypassing OpenGateway/CloseGateway protocol

 5 Fast Preempt. This field controls when an preempt signal is sent (broadcast) to EUs upon
a context switch interrupt. If this field is set to 1, TS hardware will send the preempt signal
to EUs, when the media pipe is ready (drained). If this field is set to 0, TS hardware will
wait until the number of outstanding thread to be 1 (only the _PRT) before sending the
preempt signal to EUs.

0 – Preempt only _PRT

1 – Fast Preempt

 4:3 Reserved: MBZ

 2 Reserved:MBZ

 1:0 Reserved

3 31:8 Reserved

 7:0 Reserved : MBZ

4 31:16 URB Entry Allocation Size. Specifies the length of each URB entry used by the unit, in
256-bit register increments. ROB address for URB starts after CURBE Allocated region

Format = U12

Range = [0, 991] 256-bit register increments. ROB has 32KB of storage. (URB Entry
Allocation Size * Number of URB Entries) + CURBE Allocation Size + 32 must be less than
or equal to 1024 [DevSNB+]

32 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

DWord Bit Description

 15:0 CURBE Allocation Size. Specifies the total length allocated for CURBE, in 256-bit register
increments – 1. ROB address for CURBE starts at address 32.

Format = U12

Range = [0, 991] 256-bit register increments. ROB has 32KB of storage. (URB Entry
Allocation Size * Number of URB Entries) + CURBE Allocation Size + 32 must be less than
1024 [Dev-SNB+]

Range = [0, 2015] 256-bit register increments. ROB has 64KB of storage. (URB Entry
Allocation Size * Number of URB Entries) + CURBE Allocation Size + 32 must be less than
2048 [DevSNB+]

5 31 Scoreboard Enable. This field enables and disables the hardware scoreboard in the Media
Pipeline. If this field is cleared, hardware ignores the following scoreboard state fields.

0 – Scoreboard disabled

1 – Scoreboard enabled

 30 Scoreboard Type. This field selects the type of scoreboard in use.

0 – Stalling scoreboard

1 – Non-stalling scoreboard

 29:8 Reserved : MBZ

 7:0 Scoreboard Mask. Each bit indicates the corresponding dependency scoreboard is
enabled. The scoreboard is based on the relative (X, Y) distance from the current threads’
(X, Y) position.

Bit n (for n = 0…7): Score n is enabled

Format = TRUE/FALSE

6 31:28 Scoreboard 3 Delta Y. Relative vertical distance of the dependent instance assigned to
scoreboard 3, in the form of 2’s compliment.

Format = S3

 27:24 Scoreboard 3 Delta X. Relative horizontal distance of the dependent instance assigned to
scoreboard 3, in the form of 2’s compliment.

Format = S3

 23:16 Scoreboard 2 Delta (X, Y)

 15:8 Scoreboard 1 Delta (X, Y)

 7:0 Scoreboard 0 Delta (X, Y)

7 31:24 Scoreboard 7 Delta (X, Y)

 23:16 Scoreboard 6 Delta (X, Y)

 15:8 Scoreboard 5 Delta (X, Y)

 7:0 Scoreboard 4 Delta (X, Y)

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 33

1.7.2 MEDIA_CURBE_LOAD Command [DevSNB+]

MEDIA_CURBE_LOAD
Project: [DevSNB+] Length Bias: 2

Desc

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Media Command Opcode

Default Value: 2h MEDIA_CURBE_LOAD Format: OpCode

26:24 Media Command Opcode

Default Value: 0h MEDIA_CURBE_LOAD Format: OpCode

23:16 Media Command Opcode

Default Value: 1h MEDIA_CURBE_LOAD Format: OpCode

15:0 DWord Length

Default Value: 2h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:0 Reserved Project: All Format: MBZ

2 31:17 Reserved Project: All Format: MBZ

16:0 CURBE Total Data Length

Project: All

Format: U17 In bytes

This field provides the length in bytes of the CURBE data.

This field must have the same alignment as the Curbe Object Data Start Address.

It must be DQWord (32-byte) aligned. As the CURBE data are sent directly to ROB, range
is limited to CURBE Allocation Size.

3 31:0 CURBE Data Start Address

Project: All

Address: DynamicBaseAddress[31:0]

Surface Type: CURBE

Range 0..4GB

Specifies the 32-byte aligned address of the CURBE data. This pointer is relative to the
Dynamics Base Address.

It must be DWord aligned.

34 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

1.7.3 MEDIA_INTERFACE_DESCRIPTOR_LOAD Command
[DevSNB+]

MEDIA_INTERFACE_DESCRIPTOR_LOAD
Project: [DevSNB+] Length Bias: 2
Desc

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Media Command Opcode

Default Value: 2h MEDIA_INTERFACE_DESCRIPTOR_
LOAD

Format: OpCode

26:24 Media Command Opcode

Default Value: 0h MEDIA_INTERFACE_DESCRIPTOR_
LOAD

Format: OpCode

23:16 Media Command Opcode

Default Value: 2h MEDIA_INTERFACE_DESCRIPTOR_
LOAD

Format: OpCode

15:0 DWord Length

Default Value: 2h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:5 Reserved Project: All Format: MBZ

4:0 Reserved Project: All Format: MBZ

2 31:17 Reserved Project: All Format: MBZ

16:0 Interface Descriptor Total Length

Project: All

Format: U17 In bytes

Range: 32..992 [DevSNB]

This field provides the length in bytes of the Interface Descriptor data.

This field must have the same alignment as the Interface Descriptor Data Start Address.

It must be DQWord (32-byte) aligned. As the Interface Descriptor data are sent directly to
ROB, range is limited to CURBE Allocation Size.

Range = [32 – 992] [1- 31] interface descriptor entries [DevSNB]

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 35

MEDIA_INTERFACE_DESCRIPTOR_LOAD
3 31:0 Interface Descriptor Data Start Address

Project: All

Address: DynamicBaseAddress[31:0]

Surface Type: INTERFACE_DESCRIPTOR_DATA

Range: 0..4GB

Specifies the 32-byte aligned address of the Interface Descriptor data. This pointer is
relative to the Dynamics Base Address.

1.7.4 INTERFACE_DESCRIPTOR_DATA [DevSNB+]
Interface Descriptor Data payload as pointed by the Interface Descriptor Data Start Address:

INTERFACE_DESCRIPTOR_DATA
Project: [DevSNB+]

Default Value: 00000000h

Desc

DWord Bit Description

0 31:6 Kernel Start Pointer

Project: All

Address: InstructionBaseAddress[31:6]

Surface Type: Kernel

Specifies the 64-byte aligned address offset of the first instruction in the kernel. This
pointer is relative to the Instruction Base Address.

5:0 Reserved Project: All Format: MBZ
1 31:26 Reserved Project: All Format: MBZ

25:20 Reserved Project: All Format: MBZ

19 Reserved Project: All Format: MBZ

18 Single Program Flow (SPF)

Project: All

Specifies whether the kernel program has a single program flow (SIMDnxm with m = 1)
or multiple program flows (SIMDnxm with m > 1).

Value Name Description Project

0h Multiple Program Flow All

1h Single Program Flow All

36 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

INTERFACE_DESCRIPTOR_DATA
17 Thread Priority

Project: All

Specifies the priority of the thread for dispatch

Value Name Description Project

0h Normal Priority All

1h High Priority All

16 Floating Point Mode

Project: All

Specifies the floating point mode used by the dispatched thread.

Value Name Description Project

0h Use IEEE-754 Rules All

1h Use alternate rules All

15:14 Reserved Project: All Format: MBZ

13 Illegal Opcode Exception Enable

Project: All

Format: Enable

This bit gets loaded into EU CR0.1[12] (note the bit # difference). See Exceptions and
ISA Execution Environment.

12 Reserved Project: All Format: MBZ

11 MaskStack Exception Enable

Project: All

Format: Enable

This bit gets loaded into EU CR0.1[11]. See Exceptions and ISA Execution
Environment.

10:8 Reserved Project: All Format: MBZ

7 Software Exception Enable

Project: All

Format: Enable

This bit gets loaded into EU CR0.1[13] (note the bit # difference). See Exceptions and
ISA Execution Environment.

6:0 Reserved Project: All Format: MBZ
2 31:5 Sampler State Pointer

Project: All

Address: DynamicStateOffset[31:5]

Surface Type: SAMPLER_STATE

Specifies the 32-byte aligned address offset of the sampler state table. This pointer is
relative to the Dynamic State Base Address.

This field is ignored for child threads.

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 37

INTERFACE_DESCRIPTOR_DATA
4:2 Sampler Count

Project: All

Format: U3

Range: 0..4

Specifies how many samplers (in multiples of 4) the kernel uses. Used only for
prefetching the associated sampler state entries.

This field is ignored for child threads.

If this field is not zero, sampler state is prefetched for the first instance of a root thread
upon the startup of the media pipeline.

Value Name Description Project

0h No samplers used All

1h Between 1 and 4 samplers used All

2h Between 5 and 8 samplers used All

3h Between 9 and 12 samplers used All

4h Between 13 and 16 samplers
used

 All

1:0 Reserved Project: All Format: MBZ

3 31:5 Binding Table Pointer

Project: All

Address: SurfaceStateOffset[31:5] – [DevSNB]

Surface Type: BINDING_TABLE

Specifies the 32-byte aligned address of the binding table. This pointer is relative to
the Surface State Base Address.

This field is ignored for child threads.
4:0 Binding Table Entry Count

Project: All

Format: U5

Range: 0..31

Specifies how many binding table entries the kernel uses. Used only for prefetching of
the binding table entries and associated surface state.

Note: The maximum number of prefetched binding table entries is limited to 31. For
kernels using a large number of binding table entries, it may be wise to set this field to
zero to avoid prefetching too many entries and thrashing the state cache.

This field is ignored for child threads.

If this field is not zero, binding table and surface state are prefetched for the first
instance of a root thread upon the startup of the media pipeline.

38 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

INTERFACE_DESCRIPTOR_DATA
4 31:16 Constant URB Entry Read Length

Project: All

Format: U6

Range: 0..63

Specifies the amount of URB data read and passed in the thread payload for the
Constant URB entry, in 8-DW register increments.

A value 0 means that no Constant URB Entry will be loaded. The Constant URB Entry
Read Offset field will then be ignored.

15:0 Constant URB Entry Read Offset

Project: All

Format: U6

Range 0..2015

Specifies the offset (in 8-DW units) at which Constant URB data is to be read from the
URB before being included in the thread payload.

Range = [0,2015] indicating [0,2015] 256-bit register increments. ROB has 64KB of
storage; 2048 entries. However, lowest 32 entries are reserved for VFE/TS to store
interface descriptor data. Hence, URB Entry Read Offset plus Read Length shall not
exceed 2015.

5 31:4 Reserved Project: [DevSNB] Format: MBZ

3:0 Barrier ID

Project: [DevSNB]

Format: U4

Range 0..15

Specifies the barrier id that is associated with this interface descriptor
6 31:8 Reserved Project: All Format: MBZ

7:0 Reserved
7 31:0 Reserved Project: All Format: MBZ

1.7.5 MEDIA_GATEWAY_STATE Command [DevSNB]

MEDIA_GATEWAY_STATE
Project: [DevSNB] Length Bias: 2

This command updates the Message Gateway state. In particular, it updates the state for a selected Barrier.

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 39

MEDIA_GATEWAY_STATE
28:27 Media Command Opcode

Default Value: 2h MEDIA_GATEWAY_STATE Format: OpCode

26:24 Media Command Opcode

Default Value: 0h MEDIA_GATEWAY_STATE Format: OpCode

23:16 Media Command Opcode

Default Value: 3h MEDIA_GATEWAY_STATE Format: OpCode

15:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

1 31:24 Reserved Project: All Format: MBZ

23:16 BarrierID

Project: All

Format: U4

This field indicates which one from the 16 Barrier States is updated.

15:8 Barrier.Byte

Project: All

Format: U8

This is the initial value to be delivered by the Message Gateway to the requester threads
when the Barrier Thread Count is reached.

7:0 Barrier.ThreadCount

Project: All

Format: U8

Range 1..MaxThreadCount

Barrier Thread Count is the total number of threads in a group that share the barrier
function.

It cannot be greater than the maximum number of threads, MaxThreadCount (DevID),
supported by the product. For example, MaxThreadCount (DevSNB) = 60.

40 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

1.7.6 MEDIA_STATE_FLUSH Command [DevSNB]

MEDIA_STATE_FLUSH
Project: [DevSNB] Length Bias: 2

This command updates the Message Gateway state. In particular, it updates the state for a selected
Barrier.
This command can be considered same as a MI_Flush except that only media parser will get flushed
instead of the entire 3D/media render pipeline. The command should be programmed prior to new Media
state, curbe and/or interface descriptor commands when switching to a new context or programming new
state for the same context.

With this command, pipelined state change is allowed for the media pipe.

It should be cautious when using this command when child_present flag in the media state is enabled. This
is because that CURBE state as well as Interface Descriptor state are shared between root threads and
child threads. Changing these states while child threads are generated on the fly may cause unexpected
behavior.

Combining with MI_ARB_ON/OFF command, it is possible to support interruptability with the following
command sequence where interrupt may be allowed only when MI_ARB_ON_OFF is ON:

MEDIA_STATE_FLUSH

VFE_STATE // VFE will hold CS if watermark isn't met

MI_ARB_OFF // There must be at least one VFE command before this one

MEDIA_OBJECT

….

MI_ARB_ON

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Media Command Opcode

Default Value: 2h MEDIA_STATE_FLUSH Format: OpCode

26:24 Media Command Opcode

Default Value: 0h MEDIA_STATE_FLUSH Format: OpCode

23:16 Media Command Opcode

Default Value: 4h MEDIA_STATE_FLUSH Format: OpCode

15:0 DWord Length

Default Value: 0h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 41

MEDIA_STATE_FLUSH
1 31:24 Reserved Project: All Format: MBZ

23:16 ThreadCountWaterMark

Project: All

Format: U8 Zero is Valid

The state flush is subject to the number of spawn threads to be dispatched to be less than
or equal to the Thread Count water Mark. If the number of unoccupied threads in the
system is smaller than this number, this command will stall the media pipeline.

Usage example: in certain usage a predetermined set of threads must be dispatched all
together as a work group and interrupt is only allowed between groups. For that, a media
state flush with the watermark set such that media pipe doesn’t proceed with the next group
of threads until there are enough hardware thread slots available.

15:0 BarrierMask

Project: All

This is a bit mask, with the bit location mapping with BarrierID, indicating whether the state
flush is subject to the corresponding Barrier. When Barrier is not used, all bits must be set
to 0.

Value Name Description Project

0h Not Waiting Not waiting for the corresponding Barrier
state to clear

All

1h Waiting Waiting for the corresponding Barrier
state to clear

All

1.7.7 MEDIA_OBJECT Command [DevSNB+]
The MEDIA_OBJECT command is the basic media primitive command for the media pipeline. It supports
loading of inline data as well as indirect data.

Dword Bits Description

0 31:29 Command Type = GFXPIPE = 3h

 28:16 Media Command Opcode = MEDIA_OBJECT

Pipeline[28:27] = Media = 2h; Opcode[26:24] = 1h; Subopcode[23:16] = 0h

 15:0 Dword Length (Excludes DWords 0,1)

Generic Mode: DWord Length = N+4, where N is in the range of [0,504]. The
maximum is 504 DW (equivalent to 63 8-DW registers). When both inline and
indirect data are fetched for this command, the total size in 8-DW registers must be
less than 112 (with both inline data length N and indirect data length rounded up to
8-DW aligned individually). The minimal inline data length is 0.

1 31:8 Reserved

 7:6 Reserved. MBZ

42 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

Dword Bits Description

 5:0 Interface Descriptor Offset. This field specifies the offset from the interface descriptor
base pointer to the interface descriptor which will be applied to this object. It is specified in
units of interface descriptors.

Format:

U5 [DevSNB]

Range = [0,30] [DevSNB only]

2 31 Children Present. Indicates that the root thread may send spawn messages to spawn child
threads and/or synchronized root threads.

If Children Present is not set, TS signals VFE to dereference the URB handle immediately
after it receives acknowledgement from TD that the thread is dispatched.

If Children Present is set, the URB handle is forwarded to the root thread and serves as the
return URB handle for the root thread. TS does not signal deference at the time of
dispatch. TS signals URB handle deference only when it receives a resource dereference
message from the thread.

In order avoid deadlock, such dereference must be issued once and only once for
each URB handle.

Format = Enable

 30:25 Reserved. MBZ

 24 Thread Synchronization. This field when set indicates that the dispatch of the thread
originated from this command is based on the “spawn root thread” message.

0 = No thread synchronization

1 = Thread dispatch is synchronized by the “spawn root thread” message

 23:22 Reserved. MBZ

 21 Use Scoreboard. This field specifies whether the thread associated with this command
uses hardware scoreboard. Only when this field is set, the scoreboard control fields in the
VFE Dword are valid. If this field is cleared, the thread associated with this command
bypasses hardware scoreboard.

0 = Not using scoreboard

1 = Using scoreboard

 20 Reserved. MBZ

 19 Reserved

 18:17 Half-Slice Destination Select

This field selects the half slice that this thread must be sent to.

Value Name Description Project

10 Half-Slice 1

01 Half-Slice 0

00 Either half-slice

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 43

Dword Bits Description

 16:0 Indirect Data Length. This field provides the length in bytes of the indirect data. A value
zero indicates that indirect data fetching is disabled – subsequently, the Indirect Data Start
Address field is ignored.

This field must have the same alignment as the Indirect Object Data Start Address.

It must be DQWord (32-byte) aligned. As the indirect data are sent directly to URB,
range is limited to 496 DW. When both inline and indirect data are fetched for this
command, the total size in 8-DW registers must be less than 112 (with both inline
data length and indirect data length rounded up to 8-DW aligned).

Format = U17 in bytes

3 31:0 Indirect Data Start Address. This field specifies the Graphics Memory starting address of
the data to be loaded into the kernel for processing. This pointer is relative to the Indirect
Object Base Address.

Hardware ignores this field if indirect data is not present.

Alignment of this address depends on the mode of operation.

It is the DWord aligned address of the indirect data.

Range = [0 - 512MB] (Bits 31:29 MBZ)

4 31:25 Reserved. MBZ

 24:16 Scoreboard Y

This field provides the Y term of the scoreboard value of the current thread.

Format = U9

 15:9 Reserved. MBZ

 8:0 Scoreboard X

This field provides the X term of the scoreboard value of the current thread.

Format = U9

5 31:20 Reserved. MBZ

 19:16 Scoreboard Color: This field specifies which dependency color the current thread belongs
to. It affects the dependency scoreboard control.

Format = U4

 15:8 Reserved. MBZ

 7:0 Scoreboard Mask: Each bit indicates the corresponding dependency scoreboard is
dependent on. This field is AND’d with the corresponding Scoreboard Mask field in the
MEDIA_VFE_STATE command.

Bit n (for n = 0…7): Scoreboard n is dependent, where bit 0 maps to n = 0.

Format = TRUE/FALSE

6..N 31:0 Inline Data

Generic Mode: The format of this data is specified by software. Hardware does
not interpret this data; it merely passes it to the kernel for processing. The total
size for the inline data and indirect data must not exceed 112 registers.

44 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

1.7.7.1 Inline Data Format in AVC-IT Mode

Each MEDIA_OBJECT_EX command in “AVC-IT mode” corresponds to the processing of one
macroblock. Macroblock parameters are passed in as inline data and the non-zero DCT coefficient data
(as well as motion vectors and weight/offset) for the macroblock is passed in as indirect data.

Error! Reference source not found. depicts the inline data format in AVC-IT mode. All fields in inline
data are forwarded to the thread as thread payload, except the QP fields, where the derived macroblock
information is filled in. Starting at GRF location, inline data are stored in GRF contiguously with the tail-
end partial GRF, if present, zero-filled. Some fields are merely forwarded. Some fields are also used by
VFE as indicated in the following table by a mark of [Used by VFE]. As shown, inline data starts at dword
4 of MEDIA_OBJECT_EX command.

Table 1-3 shows dwords 4+3, 4+4 and 4+5 of the inline data. Luma intra prediction mode
(LumaIntraPredModes) is provided as a fixed-size data structure. Details can be found in Section
1.7.7.1.1.

Table 1-3. Inline data subfields for an Intra Macroblock in AVC-IT mode (and AVC-MC mode)

Dword Bit Description

4+3 31:8 Reserved

 7:0 MbIntraStruct (Macroblock Intra Structure)

Bits MotionVerticalFieldSelect Index

7:6 ChromaIntraPredMode

5 [DevILK] IntraPredAvailFlagF – F (Pixel [-1, 7] available for intra
prediction) F = Is_Left_MB_Field & Is_Left_Bottom_MB_Intra

4 IntraPredAvailFlagE – E (left neighbor bottom half)

3 IntraPredAvailFlagD – D (Upper right neighbor)

2 IntraPredAvailFlagC – C (Upper left neighbor)

1 IntraPredAvailFlagB – B (Upper neighbor)

0 IntraPredAvailFlagA – A (Left neighbor top half)
4+4 31:16 LumaIndraPredModes[1] (Luma Intra Prediction Modes)

 15:0 LumaIndraPredModes[0]

4+5 31:16 LumaIndraPredModes[3]

 15:0 LumaIndraPredModes[2]

Dwords 4+3, 4+4 and 4+5 of the inline data for an inter-predicted macroblock is detailed in Table 1-4.

Table 1-4. Inline data subfields for an Inter Macroblock in AVC-IT mode (and AVC-MC mode)

DWord Bit Description

4+3 31:24 Log2WeightDenomChroma

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 45

DWord Bit Description

 23:16 Log2WeightDenomLuma

 15:8 SubMbPredMode (Sub Macroblock Prediction Mode)

This field describes the prediction mode of the sub macroblocks. It contains four subfields
each with 2-bits, corresponding to the 4 fixed size 8x8 sub macroblocks in sequential order.
Details can be found in Section 1.7.7.1.3.

This field is derived from sub_mb_type for a BP_8x8 macroblock.

This field is derived from MbType for a non-BP_8x8 inter macroblock, and carries
redundant information as MbType)

Bits [1:0]: SubMbPredMode[0]

Bits [3:2]: SubMbPredMode[1]

Bits [5:4]: SubMbPredMode[2]

Bits [7:6]: SubMbPredMode[3]

 7:0 SubMbShape (Sub Macroblock Shape)

This field describes the subdivision of the sub macroblocks. It contains four subfields each
with 2-bits, corresponding to the 4 fixed size 8x8 sub macroblocks in sequential order.
Details can be found in Section 1.7.7.1.3.

This field is derived from sub_mb_type for a BP_8x8 macroblock.

This field is forced to 0 for a non-BP_8x8 inter macroblock, and effectively carries
redundant information as MbType).

Bits [1:0]: SubMbShape[0]

Bits [3:2]: SubMbShape[1]

Bits [5:4]: SubMbShape[2]

Bits [7:6]: SubMbShape[3]

4+4 31:24 BindingTableIndexForward – Block 3

 23:16 BindingTableIndexForward – Block 2

 15:8 BindingTableIndexForward – Block 1

 7:0 BindingTableIndexForward – Block 0

4+5 31:24 BindingTableIndexBackward – Block 3

 23:16 BindingTableIndexBackward – Block 2

 15:8 BindingTableIndexBackward – Block 1

 7:0 BindingTableIndexBackward – Block 0

1.7.7.1.1 Luma Intra Prediction Modes

Luma Intra Prediction Modes (LumaIntraPredModes) is defined in Table 1-5. It is further categorized as
Intra16x16PredMode (Table 1-6), Intra8x8PredMode (Table 1-7) and Intra4x4PredMode (Table 1-8),

46 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

operating on 16x16, 8x8 and 4x4 block sizes, respectively. Figure 1-8 illustrates the intra prediction
directions geometrically for the Intra4x4 prediction. When a macroblock is subdivided, the intra prediction
is performed for the subdivision in a predetermined order. For example, Figure 1-9 shows the block order
for Intra4x4 prediction. And Figure 1-10 shows the block order of Block8x8 in a 16x16 region or Block4x4
in a 8x8 region.

Table 1-5. Definition of LumaIntraPredModes

LumaIntraPredModes

 [index]

Intra16x16PredMode Intra8x8PredMode Intra4x4PredMode

Index Bit MbType = [1…24]

Transform8x8Flag = 0

MbType = 0

Transform8x8Flag = 1

MbType = 0

Transform8x8Flag = 0

0 15:12 MBZ Block8x8 3 Block4x4 3 (0_0)

 11:8 MBZ Block8x8 2 Block4x4 2 (0_1)

 7:4 MBZ Block8x8 1 Block4x4 1 (0_2)

 3:0 Block16x16 Block8x8 0 Block4x4 0 (0_3)

1 15:12 MBZ MBZ Block4x4 7 (1_0)

 11:8 MBZ MBZ Block4x4 6 (1_1)

 7:4 MBZ MBZ Block4x4 5 (1_2)

 3:0 MBZ MBZ Block4x4 4 (1_3)

2 15:12 MBZ MBZ Block4x4 11 (2_0)

 11:8 MBZ MBZ Block4x4 10 (2_1)

 7:4 MBZ MBZ Block4x4 9 (2 2)

 3:0 MBZ MBZ Block4x4 8 (2_3)

3 15:12 MBZ MBZ Block4x4 15 (3_0)

 11:8 MBZ MBZ Block4x4 14 (3_1)

 7:4 MBZ MBZ Block4x4 13 (3_2)

 3:0 MBZ MBZ Block4x4 12 (3_3)

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 47

Table 1-6. Definition of Intra16x16PredMode

Intra16x16PredMode Description

0 Intra_16x16_Vertical

1 Intra_16x16_Horizontal

2 Intra_16x16_DC

3 Intra_16x16_Plane

4 – 15 Reserved

Table 1-7. Definition of Intra8x8PredMode

Intra8x8PredMode Description

0 Intra_8x8_Vertical

1 Intra_8x8_Horizontal

2 Intra_8x8_DC

3 Intra_8x8_Diagonal_Down_Left

4 Intra_8x8_Diagonal_Down_Right

5 Intra_8x8_Vertical_Right

6 Intra_8x8_Horizontal_Down

7 Intra_8x8_Vertical_Left

8 Intra_8x8_Horizontal_Up

9 – 15 Reserved

Table 1-8. Definition of Intra4x4PredMode

Intra4x4PredMode Description

0 Intra_4x4_Vertical

1 Intra_4x4_Horizontal

2 Intra_4x4_DC

48 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

Intra4x4PredMode Description

3 Intra_4x4_Diagonal_Down_Left

4 Intra_4x4_Diagonal_Down_Right

5 Intra_4x4_Vertical_Right

6 Intra_4x4_Horizontal_Down

7 Intra_4x4_Vertical_Left

8 Intra_4x4_Horizontal_Up

9 – 15 Reserved

Figure 1-8. Intra_4x4 prediction mode directions

0

1

43

57

8

6

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 49

Figure 1-9. Numbers of Block4x4 in a 16x16 region

Figure 1-10. Numbers of Block4x4 in an 8x8 region or numbers of Block8x8 in a 16x16 region

1.7.7.1.2 Macroblock Type

Macroblock Type, MbType, is defined as a unified parameter for all slice types (I, P or B slices) as shown
in Table 1-9. Furthermore, MbType has the same meaning for a P macroblock and a B macroblock. For
example, BP_L0_16x16 can be viewed as a P_L0_16x16 macroblock in a P slice or a B_L0_16x16
macroblock in a B slice.

0 1

3 2

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

50 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

As shown in Table 1-10, Macroblock Type (MbType) is derived from mb_type, as defined in AVC spec, for
an I-, P- or B-slice.

Table 1-9. Definition of MbType

MbType For an Intra Macroblock
(IntraMbFlag = 1)

For an Inter Macroblock
(IntraMbFlag = 1)

0 I_NxN Reserved

1 I_16x16_0_0_0 BP_L0_16x16

2 I_16x16_1_0_0 B_L1_16x16

3 I_16x16_2_0_0 B_Bi_16x16

4 I_16x16_3_0_0 BP_L0_L0_16x8

5 I_16x16_0_1_0 BP_L0_L0_8x16

6 I_16x16_1_1_0 B_L1_L1_16x8

7 I_16x16_2_1_0 B_L1_L1_8x16

8 I_16x16_3_1_0 B_L0_L1_16x8

9 I_16x16_0_2_0 B_L0_L1_8x16

10 I_16x16_1_2_0 B_L1_L0_16x8

11 I_16x16_2_2_0 B_L1_L0_8x16

12 I_16x16_3_2_0 B_L0_Bi_16x8

13 I_16x16_0_0_1 B_L0_Bi_8x16

14 I_16x16_1_0_1 B_L1_Bi_16x8

15 I_16x16_2_0_1 B_L1_Bi_8x16

16 I_16x16_3_0_1 B_Bi_L0_16x8

17 I_16x16_0_1_1 B_Bi_L0_8x16

18 I_16x16_1_1_1 B_Bi_L1_16x8

19 I_16x16_2_1_1 B_Bi_L1_8x16

20 I_16x16_3_1_1 B_Bi_Bi_16x8

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 51

MbType For an Intra Macroblock
(IntraMbFlag = 1)

For an Inter Macroblock
(IntraMbFlag = 1)

21 I_16x16_0_2_1 B_Bi_Bi_8x16

22 I_16x16_1_2_1 BP_8x8

23 I_16x16_2_2_1 Reserved

24 I_16x16_3_2_1 Reserved

25 I_PCM Reserved

26 Reserved (for SI) Reserved

27-63 Reserved Reserved

Table 1-10. Deriving MbType from mb_type for I, P and B slices

 I Slice P Slice B Slice

mb_type MbType Description MbType Description MbType Description

0 0 I_NxN 1 BP_L0_16x16 22 B_Direct_16x16
mapped to
BP_8x8

1 1 I_16x16_0_0_0 4 BP_L0_L0_16x8 1 BP_L0_16x16

2 2 I_16x16_1_0_0 5 BP_L0_L0_8x16 2 B_L1_16x16

3 3 I_16x16_2_0_0 22 BP_8x8 3 B_Bi_16x16

4 4 I_16x16_3_0_0 22 BP_8x8 4 BP_L0_L0_16x8

5 5 I_16x16_0_1_0 0 I_NxN 5 BP_L0_L0_8x16

6 6 I_16x16_1_1_0 1 I_16x16_0_0_0 6 B_L1_L1_16x8

7 7 I_16x16_2_1_0 2 I_16x16_1_0_0 7 B_L1_L1_8x16

8 8 I_16x16_3_1_0 3 I_16x16_2_0_0 8 B_L0_L1_16x8

9 9 I_16x16_0_2_0 4 I_16x16_3_0_0 9 B_L0_L1_8x16

10 10 I_16x16_1_2_0 5 I_16x16_0_1_0 10 B_L1_L0_16x8

11 11 I_16x16_2_2_0 6 I_16x16_1_1_0 11 B_L1_L0_8x16

12 12 I_16x16_3_2_0 7 I_16x16_2_1_0 12 B_L0_Bi_16x8

52 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

 I Slice P Slice B Slice

mb_type MbType Description MbType Description MbType Description

13 13 I_16x16_0_0_1 8 I_16x16_3_1_0 13 B_L0_Bi_8x16

14 14 I_16x16_1_0_1 9 I_16x16_0_2_0 14 B_L1_Bi_16x8

15 15 I_16x16_2_0_1 10 I_16x16_2_0_1 15 B_L1_Bi_8x16

16 16 I_16x16_3_0_1 11 I_16x16_2_2_0 16 B_Bi_L0_16x8

17 17 I_16x16_0_1_1 12 I_16x16_3_2_0 17 B_Bi_L0_8x16

18 18 I_16x16_1_1_1 13 I_16x16_0_0_1 18 B_Bi_L1_16x8

19 19 I_16x16_2_1_1 14 I_16x16_1_0_1 19 B_Bi_L1_8x16

20 20 I_16x16_3_1_1 15 I_16x16_2_0_1 20 B_Bi_Bi_16x8

21 21 I_16x16_0_2_1 16 I_16x16_3_0_1 21 B_Bi_Bi_8x16

22 22 I_16x16_1_2_1 17 I_16x16_0_1_1 22 BP_8x8

23 23 I_16x16_2_2_1 18 I_16x16_1_1_1 0 I_NxN

24 24 I_16x16_3_2_1 19 I_16x16_2_1_1 1 I_16x16_0_0_0

25 25 I_PCM 20 I_16x16_3_1_1 2 I_16x16_1_0_0

26 n/a n/a 21 I_16x16_0_2_1 3 I_16x16_2_0_0

27 22 I_16x16_1_2_1 4 I_16x16_3_0_0

28 23 I_16x16_2_2_1 5 I_16x16_0_1_0

29 24 I_16x16_3_2_1 6 I_16x16_1_1_0

30 25 I_PCM 7 I_16x16_2_1_0

31 n/a n/a 8 I_16x16_3_1_0

32 9 I_16x16_0_2_0

33 10 I_16x16_2_0_1

34 11 I_16x16_2_2_0

35 12 I_16x16_3_2_0

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 53

 I Slice P Slice B Slice

mb_type MbType Description MbType Description MbType Description

36 13 I_16x16_0_0_1

37 14 I_16x16_1_0_1

38 15 I_16x16_2_0_1

39 16 I_16x16_3_0_1

40 17 I_16x16_0_1_1

41 18 I_16x16_1_1_1

42 19 I_16x16_2_1_1

43 20 I_16x16_3_1_1

44 21 I_16x16_0_2_1

45 22 I_16x16_1_2_1

46 23 I_16x16_2_2_1

47 24 I_16x16_3_2_1

48 25 I_PCM

49-63 n/a n/a

1.7.7.1.3 Sub Macroblock Shape and Sub Macroblock Prediction Mode

Sub Macroblock Shape, SubMbShape, describes the shape of the sub divisions of an 8x8 sub
macroblock of a BP_8x8 macroblock. Sub Macroblock Prediction Mode, SubMbPredMode, indicates the
prediction mode for the sub macroblock. They are defined in Table 1-11 and Table 1-12. Both of these
parameters can be derived from sub_mb_type field as defined in AVC spec according to Table 1-14 and
Table 1-14.

For a non-BP_8x8 inter macroblock (IntraMbFlag = 0), the sub macroblocks will be greater than and
equal to 8x8. Both SubMbShape and SubMbPredMode must be filled to match with the MbType. In
particular, SubMbShape is 0 and SubMbPredMode is determined based on MbType according to Table
1-15.

Table 1-11. Definition of SubMbShape for an 8x8 region of a BP_8x8 macroblock

SubMbShape NumSubMbPart SubMbPartWidth SubMbPartHeight

0 1 8 8

54 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

SubMbShape NumSubMbPart SubMbPartWidth SubMbPartHeight

1 2 8 4

2 2 4 8

3 4 4 4

Table 1-12. Definition of SubMbPredMode for an 8x8 region of a BP_8x8 macroblock

SubMbPredMode Description Comments

0 Pred_L0 P_8x8 and B_8x8

1 Pred_L1 B_8x8 only

2 BiPred B_8x8 only

3 Reserved

Table 1-13. Mapping sub_mb_type to SubMbType and SubMbPredMode in P macroblocks
(BP_8x8)

sub_mb_type
[i]

name SubMb
Prediction

SubMbPartWidth SubMbPartHeight SubMbShape
[i]

SubMbPredMode
[i]

0 P_L0_8x8 Pred_L0 8 8 0 0

1 P_L0_8x4 Pred_L0 8 4 1 0

2 P_L0_4x8 Pred_L0 4 8 2 0

3 P_L0_4x4 Pred_L0 4 4 3 0

Inferred n/a n/a n/a n/a n/a n/a

Table 1-14. Mapping sub_mb_type to SubMbType and SubMbPredModd in B macroblocks
(BP_8x8)

sub_mb_type
[i]

name SubMb
Prediction

SubMbPartWidth SubMbPartHeight SubMbShape
[i]

SubMbPredMode
[i]

0 B_Direct_8x
8

Direct 4 4 3

1 B_L0_8x8 Pred_L0 8 8 0 0

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 55

sub_mb_type
[i]

name SubMb
Prediction

SubMbPartWidth SubMbPartHeight SubMbShape
[i]

SubMbPredMode
[i]

2 B_L1_8x8 Pred_L1 8 8 0 1

3 B_Bi_8x8 BiPred 8 8 0 2

4 B_L0_8x4 Pred_L0 8 4 1 0

5 B_L0_4x8 Pred_L0 4 8 2 0

6 B_L1_8x4 Pred_L1 8 4 1 1

7 B_L1_4x8 Pred_L1 4 8 2 1

8 B_Bi_8x4 BiPred 8 4 1 2

9 B_Bi_4x8 BiPred 4 8 2 2

10 B_L0_4x4 Pred_L0 4 4 3 0

11 B_L1_4x4 Pred_L1 4 4 3 1

12 B_Bi_4x4 BiPred 4 4 3 2

inferred mb_type Direct 4 4 3

Table 1-15. SubMbPredMode[] for non BP_8x8 macroblocks (when IntraMbFlag = 0)

 SubMbPredMode[i]

MbType Name i = 0 i = 1 i = 2 i = 3

0 Reserved Reserved Reserved Reserved Reserved

1 BP_L0_16x16 0 0 0 0

2 B_L1_16x16 1 1 1 1

3 B_Bi_16x16 2 2 2 2

4 BP_L0_L0_16x8 0 0 0 0

5 BP_L0_L0_8x16 0 0 0 0

6 B_L1_L1_16x8 1 1 1 1

56 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

 SubMbPredMode[i]

MbType Name i = 0 i = 1 i = 2 i = 3

7 B_L1_L1_8x16 1 1 1 1

8 B_L0_L1_16x8 0 0 1 1

9 B_L0_L1_8x16 0 1 0 1

10 B_L1_L0_16x8 1 1 0 0

11 B_L1_L0_8x16 1 0 1 0

12 B_L0_Bi_16x8 0 0 2 2

13 B_L0_Bi_8x16 0 2 0 2

14 B_L1_Bi_16x8 1 1 2 2

15 B_L1_Bi_8x16 1 2 1 2

16 B_Bi_L0_16x8 2 2 0 0

17 B_Bi_L0_8x16 2 0 2 0

18 B_Bi_L1_16x8 2 2 1 1

19 B_Bi_L1_8x16 2 1 2 1

20 B_Bi_Bi_16x8 2 2 2 2

21 B_Bi_Bi_8x16 2 2 2 2

1.7.7.1.4 Motion Vector Size

In AVC, a macroblock may have 0 or 32 motion vectors and many other combinations in between. In
order to simplify the AVC-IT interface, the motion vectors of a macroblock are regrouped. As shown in
Table 1-16, only 5 distinct combined motion vector states (cMvState) B0, B1, B2, P3 and B3, are derived,
corresponding the MvSize of 0, 2, 8, 16, and 32, respectively.

The maximum value of MvSize depends on the profile and level of the input AVC data. According to AVC
Spec Table A-4 in section A.3.3.2, for Main and High Profiles at Level greater than 3.0,
MinLumaBiPreSize is set to 8x8 (i.e. sub_mb_type in B macroblocks shall not be equal to B_Bi_8x4,
B_Bi_4x8, or B_Bi_4x4). Therefore, B3 state is not valid for the given profile and level.

Programming Notes: Programmers may (and should) take advantage of such profile and level restriction
to conserve memory foot print for indirect data, memory bandwidth for delivering data as well as possibly
the GRF register space storing motion vectors. For example, when the maximum possible MvSize is 16,
only 16 dwords need to be allocated for motion vectors in both indirect data buffer and GRF space.

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 57

Table 1-16. Motion vector regroup

Mblk
Type

MV
State

Max #
MVs

Reference
Lists

Combined
MV State

(cMvState)

Comments

P P0 0 n/a B0 Merged with B0

P P1 1 L0 B1 Merged with B1

P P2 4 L0 B2 Merged with B2

P P3 16 L0 P3 Sub-macroblock partition smaller than 8x8

B B0 0 n/a B0

B B1 2 L0, L1, or Bi B1

B B2 8 L0, L1, or Bi B2 Sub-macroblock partition down to 8x8

B B3 32 L0, L1, or Bi B3 For a High Profile AVC data, only
encountered with level <= 3.1

cMvState can be derived based on the following macroblock parameters: MbType, SubMbShape, and
SubMbPredMode. Table 1-17 provides the detailed mapping.

Table 1-17. Regrouped motion vector states for an Inter Macroblock

M
b

T
yp

e

In
ter M

acro
b

lo
ck T

yp
e

M
ax (su

b
_m

b
_typ

e[])

M
ax (S

u
b

M
B

P
red

M
o

d
e[])

E
xtact M

V
 #

M
V

 S
tate

M
vS

ize

C
o

m
m

en
d

s

1 BP_L0_16x16 n/a n/a 1 B1 2MV

2 B_L1_16x16 n/a n/a 1 B1 2MV

3 B_Bi_16x16 n/a n/a 2 B1 2MV

4 BP_L0_L0_16x8 n/a n/a 2 B2 8MV

5 BP_L0_L0_8x16 n/a n/a 2 B2 8MV

6 B_L1_L1_16x8 n/a n/a 2 B2 8MV

58 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

M
b

T
yp

e

In
ter M

acro
b

lo
ck T

yp
e

M
ax (su

b
_m

b
_typ

e[])

M
ax (S

u
b

M
B

P
red

M
o

d
e[])

E
xtact M

V
 #

M
V

 S
tate

M
vS

ize

C
o

m
m

en
d

s

7 B_L1_L1_8x16 n/a n/a 2 B2 8MV

8 B_L0_L1_16x8 n/a n/a 2 B2 8MV

9 B_L0_L1_8x16 n/a n/a 2 B2 8MV

10 B_L1_L0_16x8 n/a n/a 2 B2 8MV

11 B_L1_L0_8x16 n/a n/a 2 B2 8MV

12 B_L0_Bi_16x8 n/a n/a 3 B2 8MV

13 B_L0_Bi_8x16 n/a n/a 3 B2 8MV

14 B_L1_Bi_16x8 n/a n/a 3 B2 8MV

15 B_L1_Bi_8x16 n/a n/a 3 B2 8MV

16 B_Bi_L0_16x8 n/a n/a 3 B2 8MV

17 B_Bi_L0_8x16 n/a n/a 3 B2 8MV

18 B_Bi_L1_16x8 n/a n/a 3 B2 8MV

19 B_Bi_L1_8x16 n/a n/a 3 B2 8MV

20 B_Bi_Bi_16x8 n/a n/a 4 B2 8MV

21 B_Bi_Bi_8x16 n/a n/a 4 B2 8MV

22 BP_8x8 0 1 4 B2 8MV Without sub-partition, no BiPred

22 BP_8x8 0 2 5,6,7,8 B2 8MV Without sub-partition, with BiPred

22 BP_8x8 > 0 1 5-16 P3 16MV With sub-partition, no BiPred

22 BP_8x8 > 0 2 6-32 B3 32MV With sub-partition, with BiPred

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 59

1.7.7.1.5 Binding Table Index Data in AVC-IT Mode

There are always 8 binding table indices transferred in the inline data for an Inter Macroblock, a forward
and backward index for each 8x8 block in the macroblock. This data is derived from the reference index
sent with each motion vector; since between 0 and 32 motion vectors can be sent, a mapping scheme is
specified here to indicate which reference index is to be used for which block in the inline data.

The general scheme is that whenever the motion vectors are for partitions smaller than 8x8 then pick the
upper right, since all binding table indices are guarenteed to be the same for all sub-blocks in an 8x8. If
the motion vectors are for partitions larger than 8x8, then replicate the single binding table index for all
8x8s in the partition. If there is only a forward or backward motion vector specified, then replicate the
binding table indices for the missing direction.

MbType Inter
Macroblock

Binding Table Replication Rule

1 BP_L0_16x16 L0 binding table index replicated to all 4 forward and all 4 backward

2 B_L1_16x16 L1 binding table index replicated to all 4 forward and all 4 backward

3 B_Bi_16x16 L0 replicated to all 4 forward, L1 replicated to all 4 backward

4 BP_L0_L0_16x8 First L0 (top) replicated to blocks 0 & 1, both forward and backward, 2nd L0
replicated to blocks 2 & 3, both forward and backward.

5 BP_L0_L0_8x16 First L0 (left) replicated to blocks 0 & 2, both forward and backward, 2nd L0
replicated to blocks 1 & 3, both forward and backward.

6 B_L1_L1_16x8 First L1 (top) replicated to blocks 0 & 1, both forward and backward, 2nd L1
replicated to blocks 2 & 3, both forward and backward.

7 B_L1_L1_8x16 First L1 (left) replicated to blocks 0 & 2, both forward and backward, 2nd L1
replicated to blocks 1 & 3, both forward and backward.

8 B_L0_L1_16x8 First L0 (top) replicated to blocks 0 & 1, both forward and backward, 2nd L1
replicated to blocks 2 & 3, both forward and backward.

9 B_L0_L1_8x16 First L0 (left) replicated to blocks 0 & 2, both forward and backward, 2nd L1
replicated to blocks 1 & 3, both forward and backward.

10 B_L1_L0_16x8 First L1 (top) replicated to blocks 0 & 1, both forward and backward, 2nd L0
replicated to blocks 2 & 3, both forward and backward.

11 B_L1_L0_8x16 First L1 (left) replicated to blocks 0 & 2, both forward and backward, 2nd L0
replicated to blocks 1 & 3, both forward and backward.

12 B_L0_Bi_16x8 First L0 (top) replicated to blocks 0 & 1, both forward and backward, 2nd L0
replicated to blocks forward 2 & 3, 2nd L1 to backward blocks 2 & 3

13 B_L0_Bi_8x16 First L0 (left) replicated to blocks 0 & 2, both forward and backward, 2nd L0
replicated to blocks forward 1 & 3, 2nd L1 to backward blocks 2 & 3

14 B_L1_Bi_16x8 First L1 (top) replicated to blocks 0 & 1, both forward and backward, 2nd L0
replicated to blocks forward 2 & 3, 2nd L1 to backward blocks 2 & 3

15 B_L1_Bi_8x16 First L1 (left) replicated to blocks 0 & 2, both forward and backward, 2nd L0
replicated to blocks forward 1 & 3, 2nd L1 to backward blocks 2 & 3

16 B_Bi_L0_16x8 First L0 replicated to blocks forward 0 & 1, 1st L1 to backward blocks 0 & 1, 2nd L0
replicated to blocks 2 & 3, both forward and backward

17 B_Bi_L0_8x16 First L0 replicated to blocks forward 0 & 2, 1st L1 to backward blocks 0 & 2, 2nd L0
replicated to blocks 1 & 3, both forward and backward

60 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

MbType Inter
Macroblock

Binding Table Replication Rule

18 B_Bi_L1_16x8 First L0 replicated to blocks forward 0 & 1, 1st L1 to backward blocks 0 & 1, 2nd L1
replicated to blocks 2 & 3, both forward and backward

19 B_Bi_L1_8x16 First L0 replicated to blocks forward 0 & 2, 1st L1 to backward blocks 0 & 2, 2nd L1
replicated to blocks 1 & 3, both forward and backward

20 B_Bi_Bi_16x8 First L0 replicated to forward blocks 0 & 1, 1st L1 to backward blocks 0 & 1, 2nd L0
replicated to forward blocks 2 & 3, 2nd L1 to backward blocks 2 & 3

21 B_Bi_Bi_8x16 First L0 replicated to forward blocks 0 & 2, 1st L1 to backward blocks 0 & 2, 2nd L0
replicated to forward blocks 2 & 3, 2nd L1 to backward blocks 2 & 3

22 BP_8x8 1) If the MvSize is 8, then the Binding Table Indices can be directly derived from
the reference indices in the 8 motion vectors.

2) If MvSize is 16, then the macroblock is being split into 4x4 sub-blocks and
biprediction is off (only 1 motion vector per 4x4). In this case, each 4x4 can either
be forward or backward predicted, but the table reference for each set of 4 in an
8x8 is the same. Each of the 4 motion vectors in an 8x8 needs to be looked at – if
one of them is forward predicted then the associated table reference can be used
for that 8x8 block, and if one is backward predicted then that can be used for the
backward reference for the 8x8. If all 4 motion vectors are forward, then the
backward reference is not used and the forward table reference can be used as
the default.

3) If MvSize is 32, then BiPred for the 4x4 sub-blocks. In this case between 4 and
8 motion vectors are sent per 8x8 block depending on whether the prediction is Bi
or forward or backward. These motion vectors have to be searched in a simular
way to the MvSize=16 case to find both the forward and backward reference or to
replicate the existing reference if one of them is missing entirely.

1.7.7.2 Indirect Data Format in AVC-IT Mode

Indirect data in AVC-IT mode consist of Motion Vectors, Weight/Offset and Transform-domain Residue
(Coefficient). All three data blocks have variable size. Sizes of Motion Vector block and the Weight-Offset
block are determined by the MvSize value as shown in Table 1-18. Weight-Offset block, if present, is
always packed behind the Motion Vector block. Coefficient data block can be either packed behind the
Weight-Offset block or start at a predetermined offset, controlled by the fields in VFE_STATE_EX.

When coefficient data block is packed behind, it starts at the next 8-dword aligned offset from the indirect
object data address. This 8-dword alignment doesn’t leave any gap between the coefficient data block
from the motion vector data block and weight-offset data block with one exception. When MvSize = 2 and
weight-offset is not present, there is a 4-dword gap. Hardware ignores the value in the gap.

Table 1-18. Indirect subfield size in AVC-IT mode (and AVC-MC mode)

MV Weight/Offset Examples MvSize

Count DW Count DW

0 0 0 0 0 Intra macroblock in a picture containing P and/or B slices

2 2 4 1 4 P or B macroblocks with 16x16 sub macroblock

8 8 8 4 16 P or B macroblocks with minimal sub macroblock at 8x8

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 61

MV Weight/Offset Examples MvSize

Count DW Count DW

16 16 16 4 16 P macroblocks with minimal sub macroblock at less than 8x8

32 32 32 4 16 B macroblocks with minimal sub macroblock at less than 8x8

1.7.7.2.1 Motion Vector Block of Indirect Data in AVC-IT and AVC-MC Modes

Motion Vector block contains motion vectors in an intermediate format that is partially expanded
according to the smallest subdivisions within an inter-predicted macroblock. During the expansion (done
by AVC BSD engine or done by host software), a place that does not contain a motion vector is filled by
replicating the most relevant motion vector according to the following motion vector replication rules. The
intent of such motion vector replication is to allow a simpler kernel programming with fewer conditions to
check. This would likely reduce the kernel footprint; however, it may or may not achieve better
performance.

Motion Vector Replication Rules:

 Rule #1

o #1.1: For L0 MV, for any partition or subpartition where there is at least one motion vector

 If L0 inter prediction exists, the corresponding L0 MV is used

 Else if L1 inter prediction exits (of the same block), set to the same as L1 MV

 (Note that there is no ‘else’ here. If the partition or subpartition doesnot contain a
motion vector, it will be filled according to the following replication rules)

o #1.2: For L1 MV, for any partition or subpartition where there is at least one motion vector

 If L1 inter prediction exists, the corresponding L1 MV is used

 Else if L0 inter prediction exits (of the same block), set to the same as L0 MV

 (Note that there is no ‘else’ here. If the partition or subpartition doesnot contain a
motion vector, it will be filled according to the following replication rules)

 For a 16x16 partitioned macroblocked, MvSize = 2. The two MV fields follow Rule #1.

 For a macroblock with partition down to 8x8, MvSize = 8. The eight MV fields follow Rule #1.

o For an 8x16 partition, each 8x16 is broken down into 2 8x8 stacking vertically. The 8x16
MVs (after rule #1) are replicated into both 8x8 blocks.

o For an 16x8 partition, each 16x8 is broken down into 2 8x8 stacking horizontally. The
16x8 MVs (after rule #1) are replicated into both 8x8 blocks.

o For an 8x8 partition, each 8x8 has its own MVs (after rule #1).

 For P macroblock with subpartition below 8x8, MvSize = 16,

62 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

o For an 8x8 partition, the 8x8 L0 MV is replicated into all the four 4x4 blocks.

o For an 4x8 subpartition within an 8x8 partition, each 4x8 is broken down into 2 4x4
stacking vertically. The 4x8 L0 MV is replicated into both 4x4 blocks.

o For an 8x4 subpartition within an 8x8 partition, each 8x4 is broken down into 2 4x4
stacking horizontally. The 8x4 MV is replicated into both 4x4 blocks.

o For a 4x4 subpartition within an 8x8 partition, each 4x4 has its own L0 MV.

 For B macroblock with subpartition below 8x8, MvSize = 32,

o For an 8x8 partition, the 8x8 MVs (after rule #1) is replicated into all the four 4x4 blocks.

o For an 4x8 subpartition within an 8x8 partition, each 4x8 is broken down into 2 4x4
stacking vertically. The 4x8 MVs (after rule #1) are replicated into both 4x4 blocks.

o For an 8x4 subpartition within an 8x8 partition, each 8x4 is broken down into 2 4x4
stacking horizontally. The 8x4 MVs (after rule #1) are replicated into both 4x4 blocks.

o For a 4x4 subpartition within an 8x8 partition, each 4x4 has its own MVs (after rule #1).

Table 1-19. Indirect data Motion Vector block in AVC-IT mode (and AVC-MC mode)

MvSize DWord Bit

0 2 8 16 32

0 31:16 n/a MVVert_L0 MVVert_Y0_L0 MVVert_Y0_L0 MVVert_Y0_L0

 15:0 n/a MVHorz_L0 MVHorz_Y0_L0 MVHorz_Y0_L0 MVHorz_Y0_L0

1 31:16 n/a MVVert_L1 MVVert_Y0_L1 MVVert_Y1_L0 MVVert_Y0_L1

 15:0 n/a MVHorz_L1 MVHorz_Y0_L1 MVHorz_Y1_L0 MVHorz_Y0_L1

2 31:0 n/a Reserved: MBZ MV_Y1_L0 MV_Y2_L0 MV_Y1_L0

3 31:0 n/a Reserved: MBZ MV_Y1_L1 MV_Y3_L0 MV_Y1_L1

4 31:0 n/a n/a MV_Y2_L0 MV_Y4_L0 MV_Y2_L0

5 31:0 n/a n/a MV_Y2_L1 MV_Y5_L0 MV_Y2_L1

6 31:0 n/a n/a MV_Y3_L0 MV_Y6_L0 MV_Y3_L0

7 31:0 n/a n/a MV_Y3_L1 MV_Y7_L0 MV_Y3_L1

8 31:0 n/a n/a n/a MV_Y8_L0 MV_Y4_L0

9 31:0 n/a n/a n/a MV_Y9_L0 MV_Y4_L1

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 63

MvSize DWord Bit

0 2 8 16 32

10 31:0 n/a n/a n/a MV_Y10_L0 MV_Y5_L0

11 31:0 n/a n/a n/a MV_Y11_L0 MV_Y5_L1

12 31:0 n/a n/a n/a MV_Y12_L0 MV_Y6_L0

13 31:0 n/a n/a n/a MV_Y13_L0 MV_Y6_L1

14 31:0 n/a n/a n/a MV_Y14_L0 MV_Y7_L0

15 31:0 n/a n/a n/a MV_Y15_L0 MV_Y7_L1

16 31:0 n/a n/a n/a n/a MV_Y8_L0

17 31:0 n/a n/a n/a n/a MV_Y8_L1

18 31:0 n/a n/a n/a n/a MV_Y9_L0

19 31:0 n/a n/a n/a n/a MV_Y9_L1

20 31:0 n/a n/a n/a n/a MV_Y10_L0

21 31:0 n/a n/a n/a n/a MV_Y10_L1

22 31:0 n/a n/a n/a n/a MV_Y11_L0

23 31:0 n/a n/a n/a n/a MV_Y11_L1

24 31:0 n/a n/a n/a n/a MV_Y12_L0

25 31:0 n/a n/a n/a n/a MV_Y12_L1

26 31:0 n/a n/a n/a n/a MV_Y13_L0

27 31:0 n/a n/a n/a n/a MV_Y13_L1

28 31:0 n/a n/a n/a n/a MV_Y14_L0

29 31:0 n/a n/a n/a n/a MV_Y14_L1

30 31:0 n/a n/a n/a n/a MV_Y15_L0

31 31:0 n/a n/a n/a n/a MV_Y15_L1

64 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

1.7.7.2.2 Weight-Offset Block of Indirect Data in AVC-IT and AVC_MC Modes for
WeightedBiPredFlag ≠ 10

Table 1-20. Indirect data Weight-Offset block in AVC-IT mode (and AVC-MC mode)

MvSize DWord Bit

0 2 8, 16, 32

0 31:24 n/a Offset_Y_L1 Offset_Y_Block0_L1

 23:16 n/a Weight_Y_L1 Weight_Y_Block0_L1

 15:8 n/a Offset_Y_L0 Offset_Y_Block0_L0

 7:0 n/a Weight_Y_L0 Weight_Y_Block0_L0

1 31:16 n/a WO_Cb_L1 WO_Cb_Block0_L1

 15:0 n/a WO_Cb_L0 WO_Cb_Block0_L0

2 31:16 n/a WO_Cr_L1 WO_Cr_Block0_L1

 15:0 n/a WO_Cr_L0 WO_Cr_Block0_L0

3 31:4 n/a Reserved: MBZ Reserved: MBZ

 3:0 [DevILK] Weight is 128 [ChromaL1,
Chroma L0, Luma L1, Luma L0]

[DevILK] Weight is 128 [ChromaL1,
Chroma L0, Luma L1, Luma L0]

4 31:16 n/a n/a WO_Y_Block1_L1

 15:0 n/a n/a WO_Y_Block1_L0

5 31:16 n/a n/a WO_Cb_Block1_L1

 15:0 n/a n/a WO_Cb_Block1_L0

6 31:16 n/a n/a WO_Cr_Block1_L1

 15:0 n/a n/a WO_Cr_Block1_L0

7 31:4 n/a n/a Reserved: MBZ

 3:0 [DevILK] Weight is 128[ChromaL1,
Chroma L0, Luma L1, Luma L0]

8 31:16 n/a n/a WO_Y_Block2_L1

 15:0 n/a n/a WO_Y_Block2_L0

9 31:16 n/a n/a WO_Cb_Block2_L1

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 65

MvSize DWord Bit

0 2 8, 16, 32

 15:0 n/a n/a WO_Cb_Block2_L0

10 31:16 n/a n/a WO_Cr_Block2_L1

 15:0 n/a n/a WO_Cr_Block2_L0

11 31:4 n/a n/a Reserved: MBZ

 3:0 [DevILK] Weight is 128[ChromaL1,
Chroma L0, Luma L1, Luma L0]

12 31:16 n/a n/a WO_Y_Block3_L1

 15:0 n/a n/a WO_Y_Block3_L0

13 31:16 n/a n/a WO_Cb_Block3_L1

 15:0 n/a n/a WO_Cb_Block3_L0

14 31:16 n/a n/a WO_Cr_Block3_L1

 15:0 n/a n/a WO_Cr_Block3_L0

15 31:4 n/a n/a Reserved: MBZ

 3:0 [DevILK] Weight is 128[ChromaL1,
Chroma L0, Luma L1, Luma L0]

1.7.7.2.3 Weight-Offset Block of Indirect Data in AVC-IT and AVC_MC Modes for
WeightedBiPredFlag = 10

Implicit weights are used for B-slices when WeightedBiPredFlag = 10. In this mode the offsets are always
zero and the weights are 9-bits. To fit this in the same memory footprint, the offsets are not sent and the
9-bit weights are sign extended into the 16-bit block used for the weight/offset pair in explicit mode.

Table 1-38. Indirect data Implicit Weight block in AVC-IT mode (and AVC-MC mode)

MvSize DWord Bit

0 2 8, 16, 32

 31:16 n/a Weight_Y_L1 Weight_Y_Block0_L1

 15:0 n/a Weight_Y_L0 Weight_Y_Block0_L0

1 31:16 n/a Weight_Cb_L1 Weight_Cb_Block0_L1

66 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

MvSize DWord Bit

0 2 8, 16, 32

 15:0 n/a Weight_Cb_L0 Weight_Cb_Block0_L0

2 31:16 n/a Weight_Cr_L1 Weight_Cr_Block0_L1

 15:0 n/a Weight_Cr_L0 Weight_Cr_Block0_L0

3 31:0 n/a Reserved: MBZ Reserved: MBZ

4 31:16 n/a n/a Weight_Y_Block1_L1

 15:0 n/a n/a Weight_Y_Block1_L0

5 31:16 n/a n/a Weight_Cb_Block1_L1

 15:0 n/a n/a Weight_Cb_Block1_L0

6 31:16 n/a n/a Weight_Cr_Block1_L1

 15:0 n/a n/a Weight_Cr_Block1_L0

7 31:0 n/a n/a Reserved: MBZ

8 31:16 n/a n/a Weight_Y_Block2_L1

 15:0 n/a n/a Weight_Y_Block2_L0

9 31:16 n/a n/a Weight_Cb_Block2_L1

 15:0 n/a n/a Weight_Cb_Block2_L0

10 31:16 n/a n/a Weight_Cr_Block2_L1

 15:0 n/a n/a Weight_Cr_Block2_L0

11 31:0 n/a n/a Reserved: MBZ

12 31:16 n/a n/a Weight_Y_Block3_L1

 15:0 n/a n/a Weight_Y_Block3_L0

13 31:16 n/a n/a Weight_Cb_Block3_L1

 15:0 n/a n/a Weight_Cb_Block3_L0

14 31:16 n/a n/a Weight_Cr_Block3_L1

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 67

MvSize DWord Bit

0 2 8, 16, 32

 15:0 n/a n/a Weight_Cr_Block3_L0

15 31:0 n/a n/a Reserved: MBZ

The weights for MvSize = 8,16,32 are replicated is exactly the same manner as the binding table indices.
See section 1.7.3.1.5 for the description of the replication method. For MvSize=2 the replication is
described in the following table:

MbType Inter Macroblock Implicit Weight Replication Rule

1 BP_L0_16x16 L0 weight and offset replicated to L1 entries

2 B_L1_16x16 L1 weight and offset replicated to L0 entries

3 B_Bi_16x16 No replication needed.

1.7.7.2.4 Transform Residual Block of Indirect Data in AVC-IT Mode

Transform-domain residual data block in AVC-IT mode is similar to that in IS mode. Only the non-zero
coefficients are present in the data buffer and they are packed in the 8x8 block sequence of Y0, Y1, Y2,
Y3, Cb4 and Cr5, as shown in Error! Reference source not found.. When an 8x8 block is further
subdivided into 4x4 subblocks, the coefficients, if present, are organized in the subblock order. The
smallest subblock division is referred to as a transform block. The indirect data length in
MEDIA_OBJECT_EX includes all the non-zero coefficients for the macroblock. It must be doubleword
aligned.

Each non-zero coefficient in the indirect data buffer is contained in a doubleword-size data structure
consisting of the coefficient index, end of block (EOB) flag and the fixed-point coefficient value in 2’s
compliment form. As shown in Table 1-21, index is the row major 'raster' index of the coefficient within a
transform block. A coefficient is a 16-bit value in 2's complement.

Table 1-21. Structure of a transform-domain residue unit

DWord Bit Description

0 31:16 Transform-Domain Residual (coefficient) Value. This field contains the value of the non-
zero transform-domain residual data in 2’s compliment.

 15:7 Reserved: MBZ

68 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

DWord Bit Description

 6:1 Index. This field specifies the raster-scan address (raw address) of the coefficient within
the transform block. For a coefficient at Cartesian location (row, column) = (y, x) in a
transform block of width W, Index is equal to (y * W + x). For example, coefficient at
location (row, column) = (0, 0) in a 4x4 transform block has an index of 0; that at (2, 3) has
an index of 2*4 + 3 = 11.

The valid range of this field depends on the size of the transform block.

Format = U6

Range = [0, 63]

 0 EOB (End of Block). This field indicates whether the transform-domain residue is the last
one of the current transform block.

1.7.7.3 Inline Data Format in AVC-MC Mode

Each MEDIA_OBJECT_EX command in “AVC-MC mode” corresponds to the processing of one
macroblock. Macroblock parameters are passed in as inline data and the pixel-domain residual data (as
well as motion vectors and weight/offset) for the macroblock is passed in as indirect data.

Inline data format in AVC-MC mode follows the exact same format like the one in AVC-IT mode.
Specifically, the common fields required by VFE are at the same locations and have the same meaning.

The following table depicts the inline data format in AVC-MC mode. Unlike AVC-IT, all fields in inline data
are forwarded to the thread. Starting at GRF location, inline data are stored in GRF contiguously with the
tail-end partial GRF, if present, zero-filled. Some fields are merely forwarded. Some fields are also used
by VFE as indicated in the following table by a mark of [Used by VFE]. As shown, inline data starts at
dword 4 of MEDIA_OBJECT_EX command.

1.7.7.4 Indirect Data Format in AVC-MC Mode

Indirect data in AVC-IT mode consist of Motion Vectors, Weight/Offset and pixel-domain residual data. All
three data blocks have variable size.

Sizes of Motion Vector block and the Weight-Offset block are determined by the MvSize value. They are
the same as in AVC-IT mode and are depicted in Table 1-18. Weight-Offset block, if present, is always
packed behind the Motion Vector block. See Section 1.7.7.2 for more details.

Residual data block must start at a predetermined offset, controlled by the fields in VFE_STATE_EX.

1.7.7.5 Inline Data Format in VC1-IT Mode

Each MEDIA_OBJECT_EX command in “VC1-IT mode” corresponds to the processing of one
macroblock. Macroblock parameters, including motion vectors, are passed in as inline data and the non-
zero DCT coefficient data for the macroblock is passed in as indirect data.

Error! Reference source not found. depicts the inline data format in VC1-IT mode. All fields in inline
data are forwarded to the thread as thread payload. Inline data are stored in GRF contiguously with the
tail-end partial GRF, if present, zero-filled. Some fields are merely forwarded. Some fields are also used
by VFE as indicated in the following table by a mark of [Used by VFE]. As shown, inline data starts at
dword 4 of MEDIA_OBJECT_EX command.

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 69

Table 1-22. Inline data in VC1-IT mode

DWord Bit Description

4+0 31:28 MvFieldSelect. A bit-wise representation indicating which field in the reference frame is
used as the reference field for current field. It’s only used in decoding interlaced pictures.

This field is valid for non-intra macroblock only.

Bit Description

28 Forward predict of current frame/field or TOP field of interlace frame,
or block 0 in 4MV mode.

29 Backward predict of current frame/field or TOP field of interlace frame,
or forward predict for block 1 in 4MV mode.

30 Forward predict of BOTTOM field of interlace frame, or block 2 in 4MV
mode.

31 Backward predict of BOTTOM field of interlace frame, or forward
predict for block 3 in 4MV mode.

 Each corresponding bit has the following indication.
0 = The prediction is taken from the top reference field.

1 = The prediction is taken from the bottom reference field.

 27 Reserved. MBZ

 26 MvFieldSelectChroma . This field specifies the polarity of reference field for chroma blocks
when their motion vector is derived in Motion4MV mode for interlaced (field) picture.

Non-intra macroblock only. This field is derived from MvFieldSelect.

0 = The prediction is taken from the top reference field.

1 = The prediction is taken from the bottom reference field.

 25:24 MotionType – Motion Type

For frame picture, a macroblock may only be either 00 or 10.

For interlace picture, a macroblock may be of any motion types. It can be 01 if and only if
DctType is 1.

This field is 00 if and only if IntraMacroblock is 1.

00 = Intra

01 = Field Motion.

10 = Frame Motion or no motion.

Others = Reserved.

 23 Reserved. MBZ

 22 MvSwitch. This field specifies whether the prediction needs to be switched from forward to
backward or vice versa for single directional prediction for top and bottom fields of interlace
frame B macroblocks.

0 = No directional prediction switch from top field to bottom field

1 = Switch directional prediction from top field to bottom field

70 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

DWord Bit Description

 21 DctType. This field specifies whether the residual data is coded as field residual or frame
residual for interlaced picture. This field can be 1 only if MotionType is 00 (intra) or 01 (field
motion).

For progressive picture, this field must be set to ‘0’, i.e. all macrobalcoks are frame
macroblock.

0 = Frame residual type.

1 = Field residual type.

 20 OverlapTransform. This field indicates whether overlap smoothing filter should be
performed on I-block boundaries.

0 = No overlap smoothing filter.

1 = Overlap smoothing filter performed.

 19 Motion4MV. This field indicates whether current macroblock a progressive P picture uses 4
motion vectors, one for each luminance block.

It’s only valid for progressive P-picture decoding. Otherwise, it is reserved and MBZ. For
example, with MotionForward is 0, this field must also be set to 0.

0 = 1MV-mode.

1 = 4MV-mode.

 18 MotionBackward. This field specifies whether the backward motion vector is active for B-
picture. This field must be 0 if Motion4MV is 1 (no backward motion vector in 4MV-mode).

0 = No backward motion vector.

1 = Use backward motion vector(s).

 17 MotionForward. This field specifies whether the forward motion vector is active for P and B
pictures.

0 = No forward motion vector.

1 = Use forward motion vector(s).

 16 IntraMacroblock. This field specifies if the current macroblock is intra-coded. When set,
Coded Block Pattern is ignored and no prediction is performed (i.e., no motion vectors are
used).

For field motion, this field indicates whether the top field of the macroblock is coded as
intra.

0 = Non-intra macroblock.

1 = Intra macroblock.

 15:12 LumaIntra8x8Flag – Luma Intra 8x8 Flag

This field specifies whether each of the four 8x8 luminance blocks are intra or inter coded
when Motion4MV is set to 4MV-Mode.

Each bit corresponds to one block. “0” indicates the block is inter coded and ‘1’ indicates
the block is intra coded.

When Motion4MV is not 4MV-Mode, this field is reserved and MBZ.

Bit 15: Y0

Bit 14: Y1

Bit 13: Y2

Bit 12: Y3

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 71

DWord Bit Description

 11:6 CBP - Coded Block Pattern

This field specifies whether the 8x8 residue blocks in the macroblock are present or not.

Each bit corresponds to one block. “0” indicates residue block isn’t present, “1” indicates
residue block is present.

Note: For each block in an intra-coded macroblock or an intra-coded block in a P
macroblock in 4MV-Mode, the corresponding CBP must be 1. Subsequently, there must be
at least one coefficient (this coefficient might be zero) in the indirect data buffer associated
with the bock (i.e. residue block must be present).

Bit 11: Y0

Bit 10: Y1

Bit 9: Y2

Bit 8: Y3

Bit 7: Cb4

Bit 6: Cr5

 5 ChromaIntraFlag - Derived Chroma Intra Flag

This field specifies whether the chroma blocks should be treated as intra blocks based on
motion vector derivation process in 4MV mode.

0 = Chroma blocks are not coded as intra.

1 = Chroma blocks are coded as intra

 4 LastRowFlag – Last Row Flag

This field indicates that the current macroblock belongs to the last row of the picture.

This field may be used by the kernel to manage pixel output when overlap transform is on.

0 = Not in the last row
1 = In the last row

 3:0 Reserved. MBZ

4+1 32:26 Reserved. MBZ

 25:24 OSEdgeMaskChroma

This field contains the overscan edge mask for the Chroma blocks, the bit order of this field
matches the overscan edge numbers shown in Figure 1-11.

The left edge masks are used by VFE hardware and the top edge masks are used by the
kernel software.

Bit 24: Top edge of block Cb/Cr

Bit 25: Left edge of block Cb/Cr

72 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

DWord Bit Description

 23:16 OSEdgeMaskLuma

This field contains the overscan edge mask for the Luma blocks, the bit order of this field
matches the overscan edge numbers shown in Figure 1-11.

The left edge masks are used by VFE hardware and the top edge masks are used by the
kernel software.

Bit 16: Top edge of block Y0

Bit 17: Top edge of block Y1

Bit 18: Top edge of block Y2

Bit 19: Top edge of block Y3

Bit 20: Left edge of block Y0

Bit 21: Left edge of block Y1

Bit 22: Left edge of block Y2

Bit 23: Left edge of block Y3

Programming Note: In order to create 8 predication bits from each edge mask bit,
software may first create a 0, 1 vector by using a shr instruction with a step shift vector like
0, 1, 2, 3 (e.g. using immediate of type :v. Then each 0 or 1 of the LSB can be repeated by
an and instruction to create 8 bits to the flag register. Alternatively, this can be achieved
with one and instruction using a CURBE constant map of bit 0 and bit 1 mask.

 15:8 VertOrigin (Vertical Origin)

In unit of macroblocks relative to the current picture (frame or field).

 7:0 HorzOrigin (Horizontal Origin)

In unit of macroblocks.

4+2 31:16 MotionVector[0].Vert

 15:0 MotionVector[0].Horz

4+3 31:0 MotionVector[1]

4+4 31:0 MotionVector[2]

4+5 31:0 MotionVector[3]

4+6 31:0 MotionVectorChroma

Notes: This field is derived from MotionVector[3:0] as described in the following section.

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 73

DWord Bit Description

4+7 32:24 Subblock Code for Y3 [Used by VFE]

The following subblock coding definition applies to all 6 subblock coding bytes. Bits 7:6 are
reserved.

Subblock Partitioning

(Bits [1:0])

Subblock Present

(0 means not present, 1 means present)

Code Meaning Bit 2 Bit 3 Bit 4 Bit 5

00 Single 8x8 block (sb0) Sb0 Don’t care Don’t care Don’t care

01 Two 8x4 subblocks (sb0-1) Sb0 Sb1 Don’t care Don’t care

10 Two 4x8 subblocks (sb0-1) Sb0 Sb1 Don’t care Don’t care

11 Four 4x4 subblocks (sb0-3) Sb0 Sb1 Sb2 Sb3

 23;16 Subblock Code for Y2 [Used by VFE]

 15:8 Subblock Code for Y1 [Used by VFE]

 7:0 Subblock Code for Y0 [Used by VFE]

4+8 31:16 Reserved. MBZ

 15:8 Subblock Code for Cr [Used by VFE]

 7:0 Subblock Code for Cb [Used by VFE]

Figure 1-11 Indexing Block Edges for Overlapped Smoothing

1.7.7.5.1 Deriving Motion Vectors and Field Select for Interlaced Frame Picture

In MPEG2, the motion vectors are related to the decoded picture. For field picture, it is related to the field
and which field of the reference frame that a motion vector points to is given in the bitstream by syntax

74 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

element called Motion Vector Field Select (MVFS). In contrary, motion vectors defined in VC1 standard
for an interlaced frame is frame based and there is no such MVFS syntax. The VC1-IT interface defines
the motion vector and MVFS following the MPEG2 convention. Therefore, motion vectors and MVFS must
be derived from the frame-based motion vector values and the current macroblock position (in the top or
bottom field).

The derivation of the picture-based motion vectors (luma) and MVFS is provided by the following pseudo-
code. The idea is that MVFS comes from the LSB of the final pointer to the reference frame (note here it
is frame based not field base). The final pointer is the addition of the frame based motion vector and the
current macroblock position in the current frame (again, it is relative to the frame, not picture).

 Let (MV_X, MV_Y) be the original frame based luma motion vector in quarter-pel representation.

 Let (LMV_X, LMV_Y) be the derived field based luma motion vector and (CMV_X, CMV_Y) be
the derived field based chroma motion vector, both in quarter-pel precision as well.

 Let MVFS be the derived motion vertical field select field.

 Then

o LMV_X = MV_X;

o if (Current_field != BOTTOM_FIELD)

 iy = MV_Y >> 2; // Interger portion of MV_Y

o else // Current_field == BOTTOM_FIELD

 iy = (MV_Y >> 2) + 1; // Interger portion of MV_Y adjusted

o MVFS = iy & 1; // 0 – top field, 1 – bottom field

o LMV_Y = ((iy >>1)<< 2) + (MV_Y & 3);

1.7.7.5.2 Chroma Interpolations for Motion Prediction

There are two different interpolation modes are used for generating chroma samples according to the
picture level parameter bMVprecisionAndChromaRelation: the quarter-pel chroma motion prediction,
and the half-pel chroma motion prediction. The bilinear interpolation is applied for both cases.

For the quarter-pel case, the motion vectors for the chroma components are derived from the
corresponding luma motion vectors according to the following pseudocodes.

For the case of 1-MV,

 cmv.x = (mv.x + (mv.x&3==3))>>1;

 cmv.y = (mv.y + (mv.y&3==3))>>1;

For the case of 4-MV,

 switch(number of inter-coded blocks)

 case 3: // median of three

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 75

 if(mv0.x<mv1.x && mv0.x<mv2.x)

 mv0.x = (mv1.x<mv2.x) ? mv1.x : mv2.x;

 else if(mv0.x>mv1.x && mv0.x>mv2.x)

 mv0.x = (mv1.x>mv2.x) ? mv1.x : mv2.x;

 cmv.x = (mv0.x + (mv0.x&3==3))>>1;

 cmv.y = (mv0.y + (mv0.y&3==3))>>1;

 break;

 case 4: // average of middle two

 if(mv0.x<mv1.x && mv0.x<mv2.x && mv0.x<mv3.x){

 if(mv2.x<mv3.x){ mv0.x = mv2.x; if(mv1.x>mv3.x) mv1.x=mv3.x; }

 else { mv0.x = mv3.x; if(mv1.x>mv2.x) mv1.x=mv2.x; }

 }

 else if(mv0.x>mv1.x && mv0.x>mv2.x && mv0.x>mv3.x){

 if(mv2.x>mv3.x){ mv0.x = mv2.x; if(mv1.x<mv3.x) mv1.x=mv3.x; }

 else { mv0.x = mv3.x; if(mv1.x<mv2.x) mv1.x=mv2.x; }

 }

 else if(mv1.x<mv2.x && mv1.x<mv3.x)

 mv1.x = (mv2.x<mv3.x) ? mv2.x : mv3.x;

 else if(mv1.x>mv2.x && mv1.x>mv3.x)

 mv1.x = (mv2.x>mv3.x) ? mv2.x : mv3.x;

 case 2: // average of two

 x = (mv0.x + mv1.x)>>1; cmv.x = (x + (x&3==3))>>1;

 y = (mv0.y + mv1.y)>>1; cmv.y = (y + (y&3==3))>>1;

 break;

 case 0: case 1: chroma should be coded as intra-blocks.

 }

For the half–pel case, the motion vectors for the chroma components are derived from one more extra
shifting operation by rounding to the nearest full-pel if they are not currently in the half-grid.

For simple and main profile, the motion vectors are truncated so that the reference block is not totally off
the picture frame:

76 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

 // For luma:

 if((mv.x>>2)<-16) mv.x = -64 +(mv.x&3);

 if((mv.x>>2)> PW) mv.x = (PW<<2)+(mv.x&3);

 if((mv.y>>2)<-16) mv.y = -64 +(mv.y&3);

 if((mv.y>>2)> PH) mv.y = (PH<<2)+(mv.y&3);

 // For chroma:

 if((cmv.x>>2)<- 8) cmv.x = -32 +(cmv.x&3);

 if((cmv.x>>2)>CPW) cmv.x = (CPW<<2)+(cmv.x&3);

 if((cmv.y>>2)<- 8) cmv.y = -32 +(cmv.y&3);

 if((cmv.y>>2)>CPH) cmv.y = (CPH<<2)+(cmv.y&3);

1.7.7.6 Indirect Data Format in VC1-IT Mode

Indirect data format in VC1-IT mode is identical to the transform-domain residual data block portion of the
indirect data format in AVC-IT mode.

The indirect data start address in MEDIA_OBJECT_EX specifies the doubleword aligned address of the
first non-zero transform-domain residue (referred to as ‘coefficient’) of the first block of the macroblock.
The indirect data length in MEDIA_OBJECT_EX includes all the non-zero coefficients for the macroblock.
It must be doubleword aligned.

Each non-zero coefficient in the indirect data buffer is contained in a doubleword-size data structure as
shown in Table 1-21.

1.7.7.7 Inline Data Format in Generic Mode

MEDIA_OBJECT_EX command can also be used in “Generic mode” in place of MEDIA_OBJECT
command. The only difference of the usage is to allow interface descriptor remap. MEDIA_OBJECT_EX
command cannot be used together with MEDIA_OBJECT command.

1.7.8 MEDIA_OBJECT_PRT Command
The MEDIA_OBJECT_PRT command is for generating Persistent Root Thread for the media pipeline. It
only supports loading of inline data but not indirect data.

This command should be used for a root thread that might have to be present in the system for a period
longer than the certain minimal context-switch interrupt latency. It has to honor the context interrupt
signal to terminate upon request. It should also handle replay from the interrupted point upon context
restore (the same thread being dispatched more than once). In contrary, if a thread is not a Persistent
Root Thread, if dispatched, it must run to completion.

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 77

The command can be used in all VFE modes, except VLD mode.

 [DevSNB+]:

MEDIA_OBJECT_PRT
Project: [DevSNB+] Length Bias: 2

For simplification, _PRT command has a fixed size of 16 DWORD

DWord Bit Description

0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Media Command Opcode

Default Value: 2h MEDIA_OBJECT_PRT Format: OpCode

26:24 Media Command Opcode

Default Value: 1h MEDIA_OBJECT_PRT Format: OpCode

23:16 Media Command Opcode

Default Value: 2h MEDIA_OBJECT_PRT Format: OpCode

15:0 DWord Length

Default Value: 14h Excludes DWord (0,1)

Format: =n Total Length - 2

Project: All

Note: Regardless of the mode, inline data must be present in this command. The command
size must fit within 16 dwords.

1 31:6 Reserved Project: All Format: MBZ

5:0 Interface Descriptor Offset

Project: All

Format:

U5 [DevSNB]

This field specifies the offset from the interface descriptor base pointer to the interface
descriptor which will be applied to this object. It is specified in units of interface descriptors.

2 31 Children Present

Project: All

Format: Enable

Indicates that the root thread may send spawn messages to spawn child threads and/or
synchronized root threads.

If Children Present is not set, TS signals VFE to dereference the URB handle immediately
after it receives acknowledgement from TD that the thread is dispatched.

If Children Present is set, the URB handle is forwarded to the root thread and serves as the
return URB handle for the root thread. TS does not signal deference at the time of
dispatch. TS signals URB handle deference only when it receives a resource dereference
message from the thread.

In order avoid deadlock, such de-reference must be issued once and only once for
each URB handle.

78 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

MEDIA_OBJECT_PRT
30:24 Reserved Project: All Format: MBZ

23 PRT_Fence Needed

Project: All

Format: Enable

This field specifies that a PRT_Fence is generated after dispatching the thread associated
with this MEDIA_OBJECT_PRT. The PRT_Fence prevents additional threads following
this persistent root thread until a thread spawn message is sent. The PRT_Fence is
generated on first dispatch of the persistent root, as well as on re-dispatches of the
persistent root after context restore.

22 PRT_FenceType

Project: All

This field specifies the type of fence the PRT thread uses. If this field is set to 0, the fence
is set at the end of the root thread queue. It will block the dispatch of the next root thread,
but allowed these root threads to be populated through VFE to the root thread queue in TS.
If this field is set to 1, the fence is set at the entry of VFE, similar to the fence set by the
MEDIA_STATE_FLUSH command. No more command can go into the media pipe until a
thread spawn message is sent (by the PRT).

This field is only valid when PRT_Fence Needed is set to 1. Otherwise, it is ignored by
hardware.

Value Name Description Project

0h Root thread
queue

Root thread queue fence All

1h VFE state
flush

VFE state flush fence All

21:17 Reserved Project: All Format: MBZ

was Indirect Data Length

16:0 Indirect Data Length. This field provides the length in bytes of the indirect data. A value
zero indicates that indirect data fetching is disabled – subsequently, the Indirect Data Start
Address field is ignored.

This field must have the same alignment as the Indirect Object Data Start Address.

It must be DQWord (32-byte) aligned. As the indirect data are sent directly to URB,
range is limited to 496 DW. When both inline and indirect data are fetched for this
command, the total size in 8-DW registers must be less than 112 (with both inline
data length and indirect data length rounded up to 8-DW aligned).

Format = U17 in bytes

3 31:0 Indirect
Data
Length

Project: All Format: MBZ

was Indirect Data Start Address

4..15 31:0 Inline Data

Project: All

Format: U32 FormatDesc

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 79

1.7.9 MEDIA_OBJECT_WALKER Command [DevSNB+]
The MEDIA_OBJECT_WALKER command uses the hardware walker in VFE for generating threads
associated with a rectangular shaped object. It only supports loading of inline data (optionally) but not
indirect data. Control of scoreboards (up to 8) is implicit based on the (X, Y) address of the generated
thread and the scoreboard control state.

The command can be used only in Generic modes.

When Use Scoreboard field is set, the (X, Y) address and the Color field of the generated thread are
used in the hardware scoreboard and the thread dependencies are set by states from the
MEDIA_VFE_STATE command.

One or more threads may be generated by this command. This command doesn’t support indirect object
load. When inline data is present, it is repeated for all threads it generates. Unlike CURBE, which requires
pipeline flush for change, continued change of this kind of ‘global’ (in the sense of shared by multiple
threads from this command) data is supported when MEDIA_OBJECT_WALKER commands are issued
without a pipeline flush in between.

Dword Bits Description

0 31:29 Command Type = GFXPIPE = 3h

 28:16 Media Command Opcode = MEDIA_OBJECT_WALKER

Pipeline[28:27] = Media = 2h; Opcode[26:24] = 1h; Subopcode[23:16] = 03h

 15:0 DWord Length (Excludes DWords 0,1)

Valid range: [16…N]

Note: If this field is greater than 15, it indicates that inline data is present. If present, inline
data is common for all threads generated from this command, If this field is 15, it indicates
that inline data is not present. It should be noted that unlike other media object command,
inline data is optional for this command.

1 31:0 Reserved

 7:6 Reserved. MBZ

 5:0 Interface Descriptor Offset. This field specifies the offset from the interface descriptor base
pointer to the interface descriptor which will be applied to this object. It is specified in units of
interface descriptors.

Format:

U5 [DevSNB]

80 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

Dword Bits Description

2 31 Children Present. Indicates that the root thread may send spawn messages to spawn child
threads and/or synchronized root threads.

If Children Present is not set, TS signals VFE to dereference the URB handle immediately
after it receives acknowledgement from TD that the thread is dispatched.

If Children Present is set, the URB handle is forwarded to the root thread and serves as the
return URB handle for the root thread. TS does not signal deference at the time of dispatch.
TS signals URB handle deference only when it receives a resource dereference message
from the thread.

In order avoid deadlock, such dereference must be issued once and only once for each
URB handle.

Format = Enable

 30:25 Reserved. MBZ

 24 Thread Synchronization. This field when set indicates that the dispatch of the thread
originated from this command is based on the “spawn root thread” message.

0 = No thread synchronization

1 = Thread dispatch is synchronized by the “spawn root thread” message

 23:22 Reserved. MBZ

 21 Use Scoreboard. This field specifies whether the thread associated with this command uses
hardware scoreboard. Only when this field is set, the scoreboard control fields in the VFE
Dword are valid. If this field is cleared, the thread associated with this command bypasses
hardware scoreboard.

0 = Not using scoreboard

1 = Using scoreboard

 20:17 Reserved. MBZ

 16:0 Indirect Data Length. This field provides the length in bytes of the indirect data. A value zero
indicates that indirect data fetching is disabled – subsequently, the Indirect Data Start
Address field is ignored.

This field must have the same alignment as the Indirect Object Data Start Address.

It must be DQWord (32-byte) aligned. As the indirect data are sent directly to URB,
range is limited to 496 DW. When both inline and indirect data are fetched for this
command, the total size in 8-DW registers must be less than or equal to 63 (with both
inline data length and indirect data length rounded up to 8-DW aligned).

Format = U17 in bytes

3 31:0 Indirect Data Start Address. This field specifies the Graphics Memory starting address of
the data to be loaded into the kernel for processing. This pointer is relative to the Indirect
Object Base Address.

Hardware ignores this field if indirect data is not present.

Alignment of this address depends on the mode of operation.

It is the DWord aligned address of the indirect data.

Range = [0 - 512MB] (Bits 31:29 MBZ)

4 31:0 Reserved. MBZ

5 31:8 Reserved. MBZ

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 81

Dword Bits Description

 7:0 Scoreboard Mask: Each bit indicates the corresponding dependency scoreboard is
dependent on. This field is AND’d with the corresponding Scoreboard Mask field in the
MEDIA_VFE_STATE. All threads generated by this walker command share the same
dynamic mask.

Bit n (for n = 0…7): Scoreboard n is dependent, where bit 0 maps to n = 0.

Format = TRUE/FALSE

6 31 Dual Mode

Format: TRUE / FALSE

 30 Repel

Format: TRUE / FALSE

Note: Repel should not be combined with either Dual Mode or Quad Mode

 29 Reserved

 28 Reserved. MBZ

 29:24 Color Count Minus One. This field specifies the number of repeat of the inner most loop of
the walker. Each repeated walk position is assigned with an incremental Color number. The
Color number together with the X and Y position of the thread is used for dependency
scoreboard control.

Usage Example: This allows multiple sets of dependency threads to be dispatched.

Format: U4

 23:21 Reserved. MBZ

 20:16 Middle Loop Extra Steps

Format = U5

 15:14 Reserved. MBZ

 13:12 Local Mid-Loop Unit Y

Format = S1

 11:10 Reserved. MBZ

 9:8 Mid-Loop Unit X

Format = S1

 7:0 Reserved. MBZ

7 31:26 Reserved. MBZ

 25:16 Global Loop Exec Count

Format = U10

 15:10 Reserved. MBZ

 9:0 Local Loop Exec Count

Format = U10

8 31:25 Reserved. MBZ

82 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

Dword Bits Description

 24:16 Block Resolution Y : Vertical resolution of the local loop.

Format = U9

 15:9 Reserved. MBZ

 8:0 Block Resolution X : Horizontal resolution of the local loop.

Format = U9

9 31:25 Reserved. MBZ

 24:16 Local Start Y : Starting vertical position of the local loop.

Format = U9

 15:9 Reserved. MBZ

 8:0 Local Start X : Starting horizontal position of the local loop.

Format = U9

10 31:25 Reserved. MBZ

 24:16 [DevSNB]Local End Y : Ending vertical position of the local loop.

Format = U9

 15:9 Reserved. MBZ

 8:0 [DevSNBLocal End X : Ending horizontal position of the local loop.

Format = U9

11 31:26 Reserved. MBZ

 25:16 Local Outer Loop Stride Y : Vertical stride of the local outer loop, in 2’s complement.

Format = S9

 15:12 Reserved. MBZ

 9:0 Local Outer Loop Stride X : Horizontal stride of the local outer loop, in 2’s complement.

Format = S9

112 31:26 Reserved. MBZ

 25:16 Local Inner Loop Unit Y : Vertical stride of the local inner loop, in 2’s complement.

Format = S9

 15:12 Reserved. MBZ

 9:0 Local Inner Loop Unit X : Horizontal stride of the local inner loop, in 2’s complement.

Format = S9

13 31:25 Reserved. MBZ

 24:16 Global Resolution Y : Vertical resolution of the global loop.

Format = U9

 15:9 Reserved. MBZ

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 83

Dword Bits Description

 8:0 Global Resolution X : Horizontal resolution of the global loop.

Format = U9

14 31:26 Reserved. MBZ

 25:16 Global Start Y : Starting vertical location of the global loop, in 2’s complement.

Format = S9

 15:10 Reserved. MBZ

 9:0 Global Start X : Starting horizontal location of the global loop, in 2’s complement.

Format = S9

15 31:26 Reserved. MBZ

 25:16 Global Outer Loop Stride Y : Vertical stride of the global outer loop, in 2’s complement.

Format = S9

 15:10 Reserved. MBZ

 9:0 Global Outer Loop Stride X : Horizontal stride of the global outer loop, in 2’s complement.

Format = S9

16 31:26 Reserved. MBZ

 25:16 Global Inner Loop Unit Y : Vertical stride of the global inner loop, in 2’s complement.

Format = S9

 15:10 Reserved. MBZ

 9:0 Global Inner Loop Unit X : Horizontal stride of the global inner loop, in 2’s complement.

Format = S9

17…N 31:0 Inline Data

1.8 Media Messages
All message formats are given in terms of dwords (32 bits) using the following conventions which are
detailed in GEN4 Subsystem Chapter.

Dispatch Messages: Rp.d

SEND Instruction Messages: Mp.d

1.8.1 Thread Payload Messages
The root thread’s register contents differ from that of child threads, as shown in Figure 1-12. The register
contents for a synchronized root thread (also referred to as ‘spawned root thread’) and an
unsynchronized one are also different. Whether the URB Constant data field is present or not is
determined by the interface descriptor of a given thread. This applies to both root and child threads.
When URB Constant data field is present for a synchronized root thread, URB constant data field is
before the data field received from the spawning thread, which is also before the URB payload data.

84 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

Figure 1-12. Thread payload message formats for root and child threads

B6863-01

(a)
Unsynchronized Root Threads

R0 Header created by TS

URB Constant written by CS
(optional)

URB Payload data written by
VFE

R0 Header created by TS

URB Constant written by CS
(optional)

Payload received from
Spawning Thread

R0 Header created Parent Thread

URB Constant data written by CS
(optional)

Remaining URB Payload data
written by Parent Thread

(if present)

(b)
Synchronized Root Threads

(c)
Child Threads

URB Payload data written by
VFE

1.8.1.1 Generic Mode Root Thread

The following table shows the R0 register contents for a Generic mode root thread, which is generated by
TS. The remaining payloads are application dependent.

Table 1-23. R0 header of a generic mode root thread

DWord Bit Description

R0.7 31 Reserved

 27:24 Reserved

 23:0 Reserved

Root threads should have zero in this field.

R0.6 31:24 Reserved

 23:0 Reserved

R0.5 31:10 Scratch Space Pointer. Specifies the 1k-byte aligned pointer to the scratch space. This
field is only valid when Scratch Space is enabled.

Format = GeneralStateOffset[31:10]

 9:8 Reserved : MBZ

 7:0 FFTID. This ID is assigned by TS and is a unique identifier for the thread in comparison to
other concurrent root threads. It is used to free up resources used by the thread upon
thread completion.

R0.4 31:5 Binding Table Pointer: Specifies the 32-byte aligned pointer to the Binding Table. It is
specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 85

DWord Bit Description

 4:0 Reserved : MBZ

R0.3 31:5 Sampler State Pointer. Specifies the 32-byte aligned pointer to the sampler state table.

Format = GeneralStateOffset[31:5]

 4 Reserved : MBZ

 3:0 Per Thread Scratch Space. Specifies the amount of scratch space, in 16-byte quantities,
allowed to be used by this thread. The value specifies the power that two will be raised to,
to determine the amount of scratch space.

Format = U4

Range = [0,11] indicating [1k bytes, 2M bytes] in powers of two

R0.2
[DevSNB]

31:28 Reserved : MBZ

 27:24 BarrierID. This field indicates which one from the 16 Barriers this kernel is associated.

Format: U4

 23:16 Barrier.Offset. This is the offset for the Barrier to indicate the offset from the requester's
RegBase (which may be 0 if Bypass Gateway Control is set to 1) for the broadcast barrier
message. Barrier.Offset + RegBase must be in the valid GRF range. Otherwise, hardware
behavior is undefined.

It is in unit of 256-bit GRF register.

The most significant bit of this field must be zero.

Format = U8

Range = [0,127]

 15:9 Reserved : MBZ

 8:4 Interface Descriptor Offset. This field specifies the offset from the interface descriptor
base pointer to the interface descriptor which will be applied to this object. It is specified in
units of interface descriptors.

Format = U5

 3:0 Scoreboard Color (only with MEDIA_OBJECT_EX): This field specifies which dependency
color the current thread belongs to. It affects the dependency scoreboard control.

Format = U4

 3:0 Scoreboard Color (only with MEDIA_OBJECT_EX): This field specifies which dependency
color the current thread belongs to. It affects the dependency scoreboard control.

Format = U4

R0.1 31:28 [DevSNB+] Reserved : MBZ

 27:26 [DevSNB+] Reserved : MBZ

 25 Reserved. MBZ

 24:16 [DevILK+] Scoreboard Y

This field provides the Y term of the scoreboard value of the current thread.

Format = U9

86 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

DWord Bit Description

 15:12 [DevSNB+] Reserved : MBZ

 11:9 Reserved. MBZ

 8:0 [DevILK+] Scoreboard X

This field provides the X term of the scoreboard value of the current thread.

Format = U9

R0.0 31:24 [DevSNB+] Scoreboard Mask: Each bit indicates the corresponding dependency
scoreboard is dependent on. This field is AND’d with the corresponding Scoreboard Mask
field in the MEDIA_VFE_STATE.

Bit n (for n = 0…7): Scoreboard n is dependent, where bit 24 maps to n = 0.

Format = TRUE/FALSE

 23:16 Reserved : MBZ

 15:0 URB Handle. This is the URB handle where indicating the URB space for use by the root
thread and its children.

1.8.1.2 Root Thread from MEDIA_OBJECT_PRT [DevCTG+]

The root thread payload message for an MEDIA_OBJECT_PRT command has a fixed format
independent of the VFE mode (e.g. Generic mode or AVC-IT mode). One example GRF register location
is given for the condition that CURBE is disabled.

Table 1-24. Root thread payload layout for a MEDIA_OBJECT_PRT command

GRF Register Example Description

R0 R0 R0 header

R1 – R(m) n/a Constants from CURBE when CURBE is enabled

m is a non-negative value

 R(m+1) R1 In-line Data block.

The R0 header field is as the following, which is the same as in other modes except the Thread Restart
Enable bit (bit 0 of R0.2).

Table 1-25. R0 header of the thread payload of a MEDIA_OBJECT_PRT command

DWord Bit Description

R0.7 31 Reserved

 27:24 Reserved

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 87

DWord Bit Description

 23:0 Reserved

R0.6 31:24 Reserved

 23:0 Reserved

R0.5 31:10 Scratch Space Pointer. Specifies the 1k-byte aligned pointer to the scratch space. This
field is only valid when Scratch Space is enabled.

Format = GeneralStateOffset[31:10]

 9:8 Reserved : MBZ

 7:0 FFTID. This ID is assigned by TS and is a unique identifier for the thread in comparison to
other concurrent root threads. It is used to free up resources used by the thread upon
thread completion.

R0.4 31:5 Binding Table Pointer: Specifies the 32-byte aligned pointer to the Binding Table. It is
specified as an offset from the Surface State Base Address.

Format = SurfaceStateOffset[31:5]

 4:0 Reserved : MBZ

R0.3 31:5 Sampler State Pointer. Specifies the 32-byte aligned pointer to the sampler state table.

Format = GeneralStateOffset[31:5]

 4 Reserved : MBZ

 3:0 Per Thread Scratch Space. Specifies the amount of scratch space, in 16-byte quantities,
allowed to be used by this thread. The value specifies the power that two will be raised to,
to determine the amount of scratch space.

Format = U4

Range = [0,11] indicating [1k bytes, 2M bytes] in powers of two

R0.2 31:4 Interface Descriptor Pointer. Specifies the 16-byte aligned pointer to this thread’s interface
descriptor. Can be used as a base from which to offset child thread’s interface descriptor
pointers from.

Format = GeneralStateOffset[31:4]

 3:1 Reserved : MBZ

 0 Thread Restart Enable. If set, indicates that the persistent root thread (PRT) is being
restarted, and context should be restored from the context save area before executing.

Format = Enable

R0.1 31:0 Reserved : MBZ

R0.0 31:16 Reserved : MBZ

 15:0 URB Handle. This is the URB handle where indicating the URB space for use by the root
thread and its children.

The inline data block field is the same as in the MEDIA_OBJECT_EX command with zero-filled partial
GRF.

88 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

1.8.1.3 Root Thread from MEDIA_OBJECT_WALKER [DevSNB+]

The root thread payload message for an MEDIA_OBJECT_WALKER command, which must be in
Generic mode, has the same format as that of the generic mode root thread format.

Table 1-26. Root thread payload layout for a MEDIA_OBJECT_WALKER command

GRF Register Example Description

R0 R0 R0 header

R1 – R(m) n/a Constants from CURBE when CURBE is enabled

m is a non-negative value

 R(m+1) R1 In-line Data block.

The R0 header field is identical to that of Generic Mode Root Thread.

The inline data block field is the same as in the MEDIA_OBJECT command with zero-filled partial GRF.

There is no indirect data block field.

1.8.2 Thread Spawn Message
The thread spawn message is issued to the TS unit by a thread running on an EU. This message
contains only one 8-DW register. The thread spawn message may be used to

 Spawn a child thread

 Spawn a root thread (start dispatching a synchronized root thread)

 Dereference URB handle

 Indicate a thread termination, dereference other TS managed resource and may or may not
dereference URB handle

 Release a PRT_Fence ([DevCTG+])

In order to end a root thread, the end of thread message must be targeted at the thread spawner. In this
case, the root thread sends a message with a “dereference resource” in the Opcode field. The thread
spawner does not snoop the messages sideband to determine when a root thread has ended. Thread
Spawner does not track when a child thread terminates, to be consistent a child thread should also
terminate with a “dereference resource” message to the Thread Spawner. Software must set the
Requester Type (root or child thread) field correctly.

As TS dispatches one synchronized root thread upon receiving a ‘spawn root thread’ message (from a
synchronization thread). The synchronizing thread must send the number of ‘spawn root thread’ message
exactly the same as the subsequent ‘synchronized root thread’. No more, no less. Otherwise, hardware
behavior is undefined.

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 89

URB Handle Offset field in this message (in M0.4) has 10 bits, allowing addressing of a large URB space.
However, when a parent thread writes into the URB, it subjects to the maximum URB offset limitation of
the URB write message, which is only 6 bits (see Unified Return Buffer Chapter for details). In this case,
the parent thread may have to modify the URB Return Handle 0 field of the URB write message in order
to subdivide the large URB space that the thread manages.

[DevIL-B+]: In addition to monitor ‘end of thread message’ targeted to Thread Spawner, Thread
Spawner also monitors the message targeting to Message Gateway for EOT signal. Therefore, a child
thread, who doesn’t hold any hardware resource (URB handle or scratch memory) that Thread Spawner
manages, can terminate with a Gateway message with EOT on. The reason of this new TS feature is to
avoid a possible risk condition as described below.

In a system running child threads, a parent thread is monitoring the status of the child threads by
communications through Message Gateway. When a child thread is about to terminate, it sends a
message to the parent through Message Gateway and then sends a second message of EOT (end of
thread) to TS.

There is a latency between sending a message to parent thread and the EOT to TS due to message bus
arbitration. The parent thread may acknowledge the GW message and issue a new child dispatch before
the EOT was processed; basically threads are issued faster than retired.

Because the messages for new child dispatch and EOT go to the same queue in TS, if the queue gets
full, EOTs will get blocked. In the case when all the EUs/Threads are full, this will create a system
deadlock: no EOTs can be acknowledged by TS (to free up EU resource) and no child threads can be
dispatched (to free up TS queue to receive EOT message).

1.8.2.1 Message Descriptor

The following table shows the lower 16 bits of the message descriptor (lower 20 bits for [DevIL+]) within
the SEND instruction for a thread spawn message.

Bit Description

19 [DevILK+]: Header Present

This bit must be set to zero for all Thread Spawner messages.

18:5 Reserved: MBZ

4 Resource Select. This field specifies the resource associated with the action taken by the
Opcode.

If Opcode is “Spawn thread”, this field selects whether it is a child thread or a root thread.

0: spawn a child thread

1: spawn a root thread or ([DevCTG] only) release a PRT_Fence

If Opcode == “Dereference Resource”, this field indicates whether the URB handle is to be
dereferenced. The URB handle can only be dereferenced once.

0: The URB handle is dereferenced

1: The URB handle is NOT dereferenced

3:2 Reserved: MBZ

1 Requester Type. This field indicates whether the requesting thread is a root thread or a child

90 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

Bit Description

thread. If it is a root thread, when Opcode is 0, FF managed resources will be dereferenced. If it
is a child thread and Opcode is 0, no resource will be dereferenced – basically no action is
required by the TS.

0: Root thread

1: Child thread

0 Opcode. Indicates the operation performed by the message. A root thread must terminate with
a message to TS (Opcode == 0 and EOT == 1). A child thread should also terminate with such
a message. A thread cannot terminate with an Opcode of “spawn thread”.

0: dereference resource (also used for end of thread)

1: spawn thread

1.8.2.2 Message Payload

DWord Bit Description

M0.7 31:0 Reserved:

M0.6 31:0 Reserved:

M0.5 31:8 Ignored

 7:0 FFTID. This ID is assigned by TS and is a unique identifier for the thread in comparison to
other concurrent root threads. It is used to free up resources used by a root thread upon
thread completion.

This field is valid only if the Opcode is “dereference resource”, and is ignored by hardware
otherwise.

M0.4 31:16 Ignored

 15:10 Dispatch URB Length. Indicates the number of 8-DW URB entries contained in the
Dispatch URB Handle that will be dispatched. When spawning a child thread, the URB
handle contains most of the child thread's payload including R0 header. When spawning a
root thread, the URB handle contains the message passed from the requesting thread to
the spawned "peer" root thread. The number of GRF registers that will be initialized at the
start of the spawned child thread is the addition of this field and the number of URB
constants if present. The number of GRF registers that will be initialized at the start of a
spawned root thread is the addition of this field, the number of URB constants if present,
and the URB handle received from VFE.

This field is ignored if the Opcode is "dereference resource".

Length of 0 can be used while spawning child threads to indicate that there is no payload
beyond the required R0 header. Length of 0 while spawning a root thread indicates that
there is no payload at all from the parent thread. A spawned root has R0 supplied by the
Media_Object command indirect/inline data.

Format = U6

Range = [0,63] for child threads

Doc Ref #: IHD-OS-V2 Pt2 – 05 11 91

DWord Bit Description

 9:0 URB Handle Offset. Specifies the 8-DW URB entry offset into the URB handle that
determines where the associated dispatch payload will be retrieved from when the
spawned child or root thread is dispatched.

This field is ignored if the Opcode is “dereference resource”.

Format = U10

Range = [0,1023]

M0.3 31:0 Ignored

M0.2
[DevSN

B+]

31:28 Ignored

 27:24 BarrierID. This field indicates which one from the 16 Barriers this kernel is associated.

Format: U4

 23:16 Reserved

 15:10 Ignored

 9:4 Interface Descriptor Offset. This field specifies the offset from the interface descriptor
base pointer to the interface descriptor which will be applied to this object. It is specified in
units of interface descriptors.

Format = U5 [DevSNB]

 3:0 Scoreboard Color (only with MEDIA_OBJECT_EX): This field specifies which dependency
color the current thread belongs to. It affects the dependency scoreboard control.

Format = U4

M0.1 31:0 Ignored

M0.0 31:28 Ignored

 27:24 Reserved: MBZ

 23:16 Reserved : MBZ

 15:0 Dispatch URB Handle

If Opcode (and Requester Type) is “spawn a child thread”: Specifies the URB handle for
the child thread.

If Opcode (and Requester Type) is “spawn a root thread”: Specifies the URB handle
containing message (e.g. requester’s gateway information) from the requesting thread to
the spawned root thread.

If Opcode is “dereference resource”: This field is required on end of thread messages if
the Children Present bit is set, as the handle must be dereferenced, otherwise this field is
ignored.

92 Doc Ref #: IHD-OS-V2 Pt2 – 05 11

Revision History

Revision Number Description Revision Date

1.0 First 2011 OpenSource edition May 2011

§§

