®

(intel

Intel® 965 Express Chipset
Family and Intel® G35 Express
Chipset Graphics Controller PRM

Programmer’s Reference Manual (PRM)

Volume 1: Graphics Core

January 2008

Revision 1.0a

Technical queries: ilg@linux.intel.com

www.intellinuxgraphics.org

Creative Commons License

You are free:

to Share — to copy, distribute,display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any
way that suggests that they endorse you or your use of the work).

No Derivative Works. You may not alter, transform, or build upon this work.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended
for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them.

The Intel® 965 Express Chipset Family and Intel® G35 Express Chipset may contain design defects or errors known as errata
which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

12C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the 12C bus/protocol and was
developed by Intel. Implementations of the 12C bus/protocol may require licenses from various entities, including Philips
Electronics N.V. and North American Philips Corporation.

Intel and the Intel are trademarks of Intel Corporation in the U.S. and other countries.
*QOther names and brands may be claimed as the property of others.
Copyright © 2008, Intel Corporation. All rights reserved.

http://creativecommons.org/licenses/by-nd/3.0/us/�

Contents
1 o) o o 18 o o[1 18
1.1 Notations and CONVENTIONSttt e aeeaes 20
1.1.1 Reserved Bits and Software Compatibility ..., 20
1.2 L1 2117] [0 PP 20
2 Graphics DeVICE OVEIVIBWt et aanees 32
2.1 Graphics Memory Controller Hub (GMCH) ... 32
2.2 Graphics Processing Unit (GPU) ... 33
3 Graphics Processing ENGINE (GPE)coiiiiiiii it e e e 34
3.1 [) 4 oo 18T [0 o PP 34
3.2 L0 1 7= 1Y 34
3.2.1 BIOCK Diagram 34
3.2.2 Command Stream (CS) UnNit ... i 35
3.2.3 BD PIPEIING .. e s 35
3.2.4 Media PiPelNE. ... e 36
3.2.5 GEN4 SUDSYSTEM ... e 36
3.2.5.1 Execution UnNits (EUS)coiiiiii i 36
3.2.6 GPE FUNCTHION IDS ..ottt eeeas 36
3.3 Pipeline SeleCtion ... s 38
3.4 URB AIIOCALION ..ttt ettt et et et et et e e e 38
3.4.1 URB _FENCEttt aee s 39
3.5 Constant URB ENtries (CURBES)uiiitiiii it ee ettt eeiee e eaneeaaaas 44
3.5.1 (O 1 7= 1 44
3.5.2 Multiple CURBE AHOCAtIONconeiee e 44
3.5.3 CS URB ST ATE ittt e 45
3.54 CONSTANT_BUFFER.ttt ettt et et ee 46
3.6 Memory AcCeSS INAIrECTION ... e 47
3.6.1 STATE_BASE_ADDRESS ...ttt ettt eee s 49
3.7 Instruction and State PrefetCho 53
3.7.1 STATE _PREFETCH ...ttt ettt 54
3.8 System Thread Configurationcoiiiiiiii i 55
3.8.1 ST AT E S P ettt e 55
3.9 Command Ordering RUIES ... 56
3.9.1 PIPELINE _SELECT ...ttt ettt et ettt e et et ettt et e e 56
3.9.2 PIPE_CONTROL ..ttt et et et ettt et ettt e e eeas 56
3.9.3 URB-Related State-Setting Commandscoooeviiiiiieiiiiiieiinennn. 57
3.9.4 Common Pipeline State-Setting Commands........c.cccevviiiieviiinnnnnn.. 57
3.9.5 3D Pipeline-Specific State-Setting Commandsc.c..ccviiieainne. 57
3.9.6 Media Pipeline-Specific State-Setting Commands 58
3.9.7 URB_FENCE (URB Fencing & Entry Allocation)...........ccooeevieiinenn... 58
3.9.8 CONSTANT_BUFFER (CURBE LOAd) ...ouviuiiiiiiiiiiiiievee e 59
3.9.9 BDPRIMITIVE . ..ttt e ee 59
3.9.10 MEDIA _OBUIECT .ttt ettt et e 59
4 Graphics Command FOIMatSttt ettt e e e e e ane e eannes 60

4.1 (070] a0 F=Ta Lo o] o o F= U =T 60
4.1.1 Memory Interface CommaNdS.ccoiieiiiiiiiiiii i ieeeeees 61

4.1.2 P24 B I 0o] 0 0 F=T 0 T £ T PP 61

4.1.3 3D/Media COMMANASueii e e eeeas 61

4.1.4 AV/To[=To T Te [=ToR®1e] o o1 0 o =T o o I 61

4.1.5 CommanNd HEAUET ...t e 61

4.2 (670 ¢ o1 =T o BN 1Y F= T o N 64
4.2.1 Memory Interface Command Mapcooeviiiiiiiiiiii i iieieeaeens 64

4.2.2 P24 B N 0011 3] 0 F=Ta o BN 1Y F= T o 66

4.2.3 3D/Media CommaNd Map.......ueeit e 67
Rt o IS (T g [o [=TSR Y =T o L PP 70
51 Graphics Register AdAreSS Mapcouuciniiii e 70
51.1 Memory and 1/0 Space RegiSters.......ooiiiiiii i 70

5.1.2 PCI Configuration SPacCe........cooeiiiii i 72

5.1.3 Graphics Register Memory Address Map.......ooeveeviiviiiiiiieeanennns 73

5.2 VGA and Extended VGA RegiSter Mapooueiii i eeaee e 95
521 VGA and Extended VGA 1/0 and Memory Register Map 95

53 Indirect VGA and Extended VGA Register INdicesc.ooooiiiiiiiiiiiiiiiiaan. 96
Y =T ToT VAN B T= = o g 1= £ 100
6.1 MeEMOrY ObjJECT OVEIVIBW. ...ttt ettt eaaaeeanas 100
6.1.1 MemOory ODjJECt TYPES .. 100

6.2 Channel FOIMATS ...ttt ettt 101
6.2.1 Unsigned Normalized (UNORM) ... 101

6.2.2 Gamma Conversion (SRGB)oviiiiii e 102

6.2.3 Signed Normalized (SNORM) ..o e 102

6.2.4 Unsigned Integer (UINT/USCALED) ..o 102

6.2.5 Signed Integer (SINT/SSCALED) ... 102

6.2.6 Floating PoOINt (FLOAT) ...ttt e 103

6.2.6.1 32-bit Floating Point.........ccoiiiiiiiiiiii e 103

6.2.6.2 64-bit Floating PoiNt.........ocoiiiiiiiii i 103

6.3 NoON-Video Surface FOrmMAaLScoieiie i 103
6.3.1 Surface Format Naming.......ccooiiiiiiii i 103

6.3.2 INtENSItY FOrMatso e 104

6.3.3 LUmMINANCE FOIMALS ...ttt es 104

6.3.4 PAAA _UNORM ...ttt et 105

6.3.5 AAPA_UNORM ...t 105

6.4 Compressed Surface FOrmMatScoiiiiiii e 106
6.4.1 FXT Texture FOrmats ..o 106

6.4.1.1 Overview of FXTL FOrmatscccoviimiiieiiiiiienanenns 106

6.4.1.2 FXTLCC_HI FOrmatcooueiiiiiiii i 107

6.4.1.3 FXT1 CC_CHROMA FOrmMatcouviuiieiiniiniiniineanannnns. 109

6.4.1.4 FXT1 CC_MIXED FOrmatcooeiimiiiiiiiiiiiiieieaennen 111

6.4.1.5 FXT1 CC_ALPHA FOrmMat.......ccvieiiiiiiiiiiiiiiiaiieneaenae 116

6.4.2 BC TexXture FOrmatS.......coiuuiiiii i e e 119

6.4.2.1 Opaque and One-bit Alpha Textures (BC1) 119

6.4.2.2 Opaque Textures (BC1_RGB)......ccoiiiiiiiiiiiiiiiiiiieens 122

6.4.2.3 Compressed Textures with Alpha Channels (BC2-3) 122

6.5 Video Pixel/Texel FOrmats.o e 124
6.5.1 Packed Memory Organizationoocoiiiiioiiiii i 124

6.5.2 Planar Memory Organizationcoocvieiiiaiii e 125

6.6 Surface Memory Organizationscoie i 127

6.7 Graphics Translation Tables ... e 127
6.8 Hardware Status Page......coouiiiiiii it eaee e 128
6.9 INnstruction RING BUffers. ..o e 128
6.10 Instruction Batch Buffers oot 128
6.11 Display, Overlay, CUrsor SUIMaCeSoiiiiii et 128
6.12 2D ReNAEr SUITACESttt as 128
6.13 2D MONOCHIOME SOUFCEuiiiiiei ettt ettt eans 129
6.14 2D ColOr Pattern ...t 129
6.15 3D Color Buffer (Destination) SUrfacescccoviiiiiiiii it 129
6.16 3D Depth Buffer SUMacCescoiiiiiii i et 130
B.17 SUITACE LAYOUL. ...ttt ettt ettt ettt aneens 130
B.07. 0 BUITEIS ot 130

6.17.2 AD SUIMACES. et 131

B6.17.3 2D SUIM A S ettt ettt 131
6.17.3.1 Computing MIP level Siz€S......cccooviiiiiiiiiiiiiiiiiienn, 132

6.17.3.2 Base Address for LOD Calculation............c.c..ccoviiieeana. 132

6.17.3.3 Minimum Pitch 133

6.17.3.4 Alignment Unit Size.......ceoiiniiiiiii e 134

6.17.3.5 Cartesian to Linear Address Conversion.............ccoee... 134

6.17.3.6 Compressed Mipmap Layout..........ccovviiiiiiiiiiiiiieanann. 134

6.17.3.7 SUIfaCe ArTays ... 135

6.17.4 CUDE SUIMACES ..o e 135
6.17.4.1 Hardware Cube Map Layout..........cooeviiiiiiiiiiiiiineanns 135

6.17.4.2 ReSTINCHIONS. . eiii e 136

B6.17.5 3D SUIMACES. ..t 136
6.17.5.1 Minimum Pitch 138

6.18 Surface Padding ReqUIrEMENTS ...t 139
6.18.1 Sampling ENGIiNe SUIfacescoiiiiiiiiiii i 139

6.18.2 Render Target and Media Surfaces.........cccoviiiiiiiiiiiiiiiiiiiiaaans 139

6.19 Logical CoNteXt Data......couuiei it 140
6.19.1 Overall ConteXt LayOuUt......c.uiiiiiiiii it e e eaees 140
6.19.1.1 Per-Process GTT and Run Lists Disabled 140

6.19.2 Register/State CoNteXt.ot 140

6.19.3 The Probe LiSt. ... et aaes 155

6.19.4 Pipelined State Pagecoviiiiiiiiii i 155

6.19.5 RING BUT@r ... s 155

6.19.6 The Per-Process Hardware Status Page..........ccoiiiiiiiiiiiiiaannaan. 156

Device 2 Configuration RegiSterSouiiiiii ittt eaneeas 158
7.1) 1 oo 11 Tox Lo o I 158
7.2 Device 2, FUNCHION O .ttt et e e e enas 158
7.2.1 VID2 — Vendor Identificationccooiiiiiiiiiiiii e 160

7.2.2 DID2 — Device ldentificationot 161

7.2.3 PCICMD2 — PCIl COMMANGeeeeiieet ettt e e ee e eaeaaneaas 162

7.2.4 PCISTS2 — PCI STAtUS ..ot 163

7.2.5 RID2 — Revision Identificationo 164

7.2.6 CC — ClasSS COR.. ettt 165

7.2.7 CLS — Cache LiNe Size... .o e 165

7.2.8 MLT2 — Master LatencCy Timer....coueuuieiiii e eeieeeeaneen 166

7.2.9 HDR2 — Header TYPe ..ttt e 166

7.2.10 BIST — BUilt IN Self TeSt it 166

7.2.11 GTTMMADR — Graphics Translation Table Range Address............ 167

7.3

7.2.12
7.2.13
7.2.14
7.2.15
7.2.16
7.2.17
7.2.18
7.2.19
7.2.20
7.2.21
7.2.22
7.2.23
7.2.24
7.2.25
7.2.26
7.2.27
7.2.28
7.2.29
7.2.30
7.2.31
7.2.32
7.2.33
7.2.34
7.2.35
7.2.36
7.2.37
7.2.38
7.2.39
7.2.40
7.2.41
7.2.42
7.2.43
7.2.44
7.2.45
7.2.46
Device
7.3.1

7.3.2

7.3.3

7.3.4

7.3.5

7.3.6

7.3.7

7.3.8

7.3.9

7.3.10
7.3.11
7.3.12
7.3.13
7.3.14
7.3.15
7.3.16
7.3.17
7.3.18
7.3.19

GMADR — Graphics Memory Range Addressccooveevviiiiiniinenn. 168
IOBAR — 1/0 Base AdAresSS. .. cuuuii e e 169
SVID2 — Subsystem Vendor Identificationoooiaa. 169
SID2 — Subsystem Identification..............cooiiiiiiiiiiii i 170
ROMADR — Video BIOS ROM Base AdAressccoooeeeviiieiiiieennns 170
CAPPOINT — Capabilities Pointeroooiiiiii e 170
INTRLINE — INterrupt LiNe ..o e 171
INTRPIN — INterrupt Pin ..o eaeea s 171
MINGNT — Minimum Grant ..o eas 171
MAXLAT — Maximum LatenCycoouueeoiii i 172
MCAPPTR — Capabilities Pointer (to Mirror of DevO CAPID).......... 172
MCAPID — Mirror of Dev O Capability Identification. 172
MGGC — Mirror of DevO GMCH Graphics Control 173
MDEVENdevOFO — Mirror of DevO DEVEN..... ...t 174
SSRW — Software Scratch Read Write..........cooiiiiiiiiiiiiiiiienen. 174
BSM — Base of Stolen MEemMOrYcocuuiiiiiiiiii i eeas 174
HSRW — Hardware Scratch Read Writeccoiiiiiiiiiiiiiiiiian 175
MSAC — Multi Size Aperture Control ..., 175
SCWBFC — Secondary CWB Flush Control ([DevBW] Only).......... 176
CAPL — Capabilities List CONtrolccceviiiiiiiiiiiiii e 176
MSI_CAPID — Message Signaled Interrupts Capability ID............ 177
MC — Message CoNtrol........ooi e 178
MA — MeSSage AAAIrESSt aeeeaas 179
MD — MeESSAQE Datacvviiiiiiiiiii et 179
GDRST — Graphics Device ReSetccuiiiiiiiiiiiiiie i 180
GMBUSFREQ — GMBUS frequency binary encoding..................... 181
PMCAPID — Power Management Capabilities IDc.ccevueens 181
PMCAP — Power Management Capabilities............ccccoviieeiiiina.. 182
PMCS — Power Management Control/Status...............oocviiieianan. 183
SWSMI — Software SMI ... e 184
ASLE — System Display Event Registerccooiiviiiiiiiiiiieiieann.. 184
SWSCI — Software SCloiuiiiiiii e 185
LBB — Legacy Backlight Brightness ([DevCL] Only) 186
MID2 — Manufacturing IDo 187
ASLS — ASL STOMAQE ...ttt 187
D2 U 1 o o 1 (o] o T 188
VID2 — Vendor ldentificationcc.ooiiiiiiiiiiii e 189
DID2 — Device Identificationccoooiiiiiiiiiiiiiiiiiiieeeee 189
PCICMD2 — PCI COMMANG ...ttt eeeeaes 190
PCISTS2 — PCI StatUS .. .cuiiiii it 191
RID2 — Revision ldentificationccoooiiiiiiiiiiiiiieeeas 192
CC — ClasS COUE. ..ttt ettt aeas 193
CLS — Cache Line Size.....coii e 193
MLT2 — Master Latency Timer.o 194
HDR2 — Header TYPE .. e et aas 194
BIST — Built In Self TeSt ..o 194
MMADR — Memory Mapped Range Addresscccvviieieiiieannnn.. 195
SVID2 — Subsystem Vendor Identificationoooo... 195
SID2 — Subsystem ldentification..........c..ooviiiiiiiiiiiiiiie 196
ROMADR — Video BIOS ROM Base AdAressccovieiieiieennnnnnn. 196
CAPPOINT — Capabilities PoINtercooiiiiiiiiiiiiiiiiii e 196
MINGNT — Minimum Grant ..o aeas 197
MAXLAT — MaxXimum LatENCYcueiieiiiiii e eeeaaes 197
MCAPPTR — Capabilities Pointer (to Mirror of DevO CAPID).......... 197
MCAPID — Mirror of Dev O Capability Identification. 198

7.3.20 MGGC — Mirror of DevO GMCH Graphics Control 199
7.3.21 MDEVENdevOFO — Mirror of DevO DEVEN........c.ccooiiiiiiiiiiieiennen. 199
7.3.22 SSRW — Software Scratch Read Write..........c.ocoiiiiiiiiiiiiiiienes 200
7.3.23 BSM — Base of Stolen MemMOrYcccuiiiiii i aeas 200
7.3.24 HSRW — Hardware Scratch Read Writeo, 200
7.3.25 MSAC — Multi Size Aperture Control, 201
Memory INterface REQISTEISo et et eaneeas 202
8.1 1 a1 oo 18T [0 o PP 202
8.2 Virtual Memory CONTIOL e e eaees 202
8.2.1 Global Virtual MemoOry ... 202
8.2.1.1 PGTBL_CTL—Page Table Control Register 203
8.2.1.2 PGTBL_ER—Page Table Error Register (Debug)............ 205
8.2.1.3 Graphics Translation Table (GTT) Range (GTTADR)...... 207
8.2.1.4 GTT Page Table Entries (PTES)coiiiiiiiiiiiiiiiiiaeenns 208
8.2.2 Single-Level (Flat) Per-Process Virtual Memoryccooooiiiae... 209
8.2.2.1 PGTBL_CTL2— Per Process Page Table Control Register 209
8.2.2.2 PGTBL_STR2—Page Table Steer Register (Per Process). 211
8.2.3 TLB Read Interfacecooiiiii e 213
8.2.3.1 TLB_RD_EXT — TLB Read Extent............ccceiuiieennannnn.. 213
8.2.3.2 Instruction/State Cache (ISC).....ccooviiiiiiiiiiiiiiiieenee. 214
8.2.3.3 VerteX FEtCh (VF) .o 215
8.2.3.4 Command Streamer (CS)......iiiiiiiiiii i 216
8.2.3.5 Texture Cache (MT) ..ot 217
8.2.3.6 Render Cache (RC) ...cooviiiiiiiiiii e 218
8.3 GFX_MODE — Graphics Mode RegiSter........ccoiiiiiiiii i 219
8.4 EXCC—Execute Condition Code ReQiStercoiiiiiiiiiiiiii i eiieeeeeanas 220
8.5 RINGBUF—RING BUffer RegISterso e 222
8.5.1 UHPTR — Pending Head Pointer Register..........c.cooooviiiiiiiiiiaaiin. 226
8.6 Debug RegisSters CONTIOl e aee e 227
8.6.1 HW_MEMRD—Memory Read Sync Register (Debug).................... 227
8.6.2 IPEIR—Instruction Parser Error Identification Register (Debug) 228
8.6.3 IPEHR—Instruction Parser Error Header Register (Debug) 229
8.6.4 INSTDONE—Instruction Stream Interface Done Register (Debug) . 229
8.6.5 INSTPS—Instruction Parser State Register (Debug@) 231
8.6.6 ACTHD — Active Head Pointer Register (Debug@)cc..cceiiit.. 231
8.6.7 DMA_FADD_P — Primary DMA Engine Fetch Address (Debug)...... 232
8.6.8 INSTDONE_1 — Additional Instruction Stream Interface Done
(=] o 18 T) L 232
8.6.9 GFX_FLSH_CNTL — Graphics Flush Controlcooooiiia.t. 234
8.7 NOPID — NOP Identification ReQISterc.oviiiiiiii i 235
8.8 Interrupt CoNtrol REQISTEIS ... e e 236
8.8.1 HWS_PGA — Hardware Status Page Address Register................. 239
8.8.2 PWRCTXA — Power Context Register Address ([DevCL] Only) 240
8.8.3 HWSTAM — Hardware Status Mask Register.........c.ccooiviiiiinn... 241
8.8.4 IER — Interrupt Enable Registerccviiiiiiiiiiiiiii i, 244
8.8.5 IR — Interrupt ldentity Registercooiiiiiiiiiiiii s 245
8.8.6 IMR—Interrupt Mask Register.........ooo i 246
8.8.7 ISR — Interrupt Status RegiSterooiiiiiiiiiiiiieeee e 247
8.9 Hardware-Detected Error Bit Definitions (for EIR, EMR, ESR) 248
8.9.1 EIR — Error ldentity REQIStercooiiiii i 249
8.9.2 EMR—Error Mask RegiSter......cooiiiiiiiiiii e 250
8.9.3 ESR—Error Status RegiSteroiiiiiiiiii i 251

8.10

8.11

8.12

8.13

8.14

8.15
8.16

8.17
8.18

Register Definitions for Context SAVecoiiiiiiii i 252
8.10.1 INSTPM—Instruction Parser Mode Register........c.coeviviiiiiiennnnnnns 252
8.10.2 Cache_Mode_0— Cache Mode Register Occovviiiiiiiiiiniinnnnnnn. 254
8.10.3 Cache_Mode_1— Cache Mode Register 1ccoiiiiiiiiiiiiiiennnnn. 257
8.10.4 BB_ADDR—Batch Buffer Head Pointer Registerc...cocoo.. 261
8.10.5 BB_STATE — Batch Buffer State Register...........cocoviieiiiiiiiennnenn. 262
8.10.6 CTXT_SR_CTL — Context Save/Restore Control Register.............. 263
Logical CoNteXt SUPPOIT ... e e 264
8.11.1 CCID—Current Context ID RegiSter........cccvviiiiiiiiiiiiiiiiiieanns 264
8.11.2 CXT_SIZE—Context Size with Extended State..................coeeee... 266
8.11.3 CXT_SIZE_NOEXT—Context Size without the Extended State....... 266
Arbitration Control, and Scratch BitSc.ooiiiiiiiiiiieee 267

8.12.1 MI_DISPLAY_POWER_DOWN—Display Power Down ([DevCL] Only)267
8.12.2 MI_ARB_STATE—Memory Interface Arbitration State Register...... 268
8.12.3 MI_RDRET_STATE—Memory Interface Read Return State Register 271

8.12.4 MI_MODE — Mode Register for Software Interface 274
8.12.5 ECOSKPD—ECO Scratch Pad (DEBUG)ccccviiiiiiiiiiiieieaaennen 278
[T=T 018 o = =T 0 115 (=] =S 281
8.13.1 CSFLFSM — Flush FSM (Debug)coooiiiiiiiiiiiiie e 281
8.13.2 CSFLFLAG — Flush FLAG (DebuU@) «..cueiuiiiiiieiieiieieeeeeeenee 283
8.13.3 CSFLTRK — Flush Track (DebuUQg) ...cvieiiiiiiiiiii i 284
8.13.4 CSCMDOP — Instruction DWORD (Debug@).......ccoviiiiiiiiiiiiianann. 284
8.13.5 CSCMDVLD — Instruction DWORD Valid (Debug@)cccccvviieaan.. 285
8.13.6 CLKCMP — Compare count clock stop (Debu@).......cccovvieviiniinnn. 285
8.13.7 VFDC—Set Value of Draw Count (DEBUG).......cccviiiiiiiiiiiiiiiennnns 286
8.13.8 VFSKPD—VF Scratch Pad (DEBUG)........coiiuiiiiiiiiiiieieaeeenee 286
Software Visible Counter RegiSters.o 288
8.14.1 PS_DEPTH_COUNT — Reported Pixels Passing Depth Test Counter 288
8.14.2 TIMESTAMP — Reported Timestamp Count............ccooiiiiiiiiiaann. 289
MTCH_CID_RST — Matched Context ID Reset Registerccocvevvviinnennnn. 290
Interrupt CoNtrol REQISTEIS ... e e 291
8.16.1.1 BCS_IPEIR—Instruction Parser Error Identification Register

(DEDUG) - e 292

8.16.1.2 BCS_IPEHR—Instruction Parser Error Header Register
(DEDUG) i e 292

8.16.1.3 BCS_ACTHD — Active Head Pointer Register (Debug)... 292
8.16.1.4 BCS_DMA_FADD —DMA Engine Fetch Address (Debug) 293

8.16.1.5 BCS_HWS_PGA — Hardware Status Page Address Register293

8.16.1.6 BCS_NOPID — NOP Identification Register 294
8.16.1.7 BCS_MI_MODE — Mode Register for Software Interface 294
8.16.1.8 BCS_INSTPM—Instruction Parser Mode Register.......... 295
8.16.1.9 BCS_UHPTR — Pending Head Pointer Register............. 296

8.16.1.10 BCS_CNTR—Counter for the Bit Stream Decode Engine 296
8.16.1.11 BCS_THRSH—Threshold for the Counter of Bit Stream
Decode ENGINe ... 296
8.16.1.12 BCS_BB_ADDR—Batch Buffer Head Pointer Register 297
8.16.1.13 BCS_RCCID—Ring Buffer Current Context ID Register.. 297
8.16.1.14 BCS_RNCID—Ring Buffer Next Context ID Register...... 298

Software Control Bit DefinitioNs ..o e 298
Frame Buffer Compression Control ([DeVCL] ONly)ooiiiiiiiiiiiiiiiieaens 299
8.18.1 FBC_CFB_BASE — Compressed Frame Buffer Base Address......... 299

8.18.2 FBC_LL_BASE — Compressed Frame Line Length Buffer Address.. 300
8.18.3 FBC_CONTROL — Frame Buffer Compression Control Register 301
8.18.4 FBC_COMMAND — Frame Buffer Compression Command Register 302

10

11

intel)

8.18.5 FBC_STATUS — Frame Buffer Compression Status Register......... 303
8.18.6 FBC_CONTROL2— Frame Buffer Compression 2™ Control Register 305
8.18.7 FBC_DISPYOFF — FBC Fence Display Buffer Y Offset 306

8.18.8 FBC_MOD_NUM— FBC Number of Modifications for Recompression307
8.18.9 FBC_TAG — Frame Buffer Compression TAG Interface (DEBUG) ... 308

8.19 FENCE REGISTEIS . . ittt 310

8.19.1 FENCE — Graphics Memory Fence Table Registers...................... 310
8.20 GFX MMIO — MCHBAR APEITUIE ...ttt e ettt eeaneeas 312
Memory Interface Commands for Rendering ENGiNeoooiiiiiiiiiiiiiiiiienaens 314
9.1) oo [T Lo o I 314
9.2 MI_ARB _CHECK ...ttt et e ettt ettt ettt et et e e e s 314
9.3 MI_BATCH_BUFFER_END......tiiiiiiei ettt e s 315
9.4 MI_BATCH _BUFFER ST AR T -ttt et et ettt e aaeeas 315
9.5 L BT o N T P 318
9.6 Y T 1S PP 323
9.7 MI_LOAD_REGISTER_IMM ...ttt et e 324
9.8 MI_LOAD_SCAN_LINES_EXCL ..ttt et et et et et et e e ane e 325
9.9 MI_LOAD_SCAN_LINES INCL ...ttt e ettt et ettt et e 327
9,10 MI_NOOP . 328
9.11 MI_OVERLAY _FLIP . e 329

9.11.1 Turning the Overlay Off i 331

9.11.2 Valid Overlay Flip SEQUENCESciuiiiiii i 331
9.12 MI_REPORT _HEADttt e e et ettt et e e e 332
9.13 MI_SET _CONTEXT ettt ettt ettt ettt et et ettt et e e e e aneaaes 332
9.14 MI_STORE_DATA _IMM ...ttt e ettt e aae s 335
9.15 MI_STORE_DATA_INDEX ... ittt et e 337
9.16 MI_STORE_REGISTER_MEM ... 339
9.17 MI_USER _INTERRUPT ..ttt e 341
9.18 MI_WAIT _FOR _EVENT ..ttt ae e 341
Memory Interface Commands for Blitter ENgine ... 346
I A | o 1 oo [T Lo P 346
10.2 MI_LOAD_REGISTER _IMM ...ttt et e e 347
0 TRC T 1 1 N L PP 348
10.4 MI_STORE_DATA IMM L.ttt ettt et et et et e e enees 349
10.5 MI_STORE_DATA_INDEXttt et et e e e 350
10.6 MI_USER_INTERRUPT ...ttt ettt ettt e e et e et e e enee 352
10.7 MI_WAIT_FOR _EVENT ...ttt ettt e e e 352
Graphics Memory Interface FUNCHIONS. ..o e 354
5 A | o | 1 oY [1 T o] I PP 354
11.2 Graphics Memory CHeNtS ... e 354
11.3 Graphics Memory Addressing OVEeIrVIEW.ueuiuieiii i e e 355

11.3.1 Graphics Address Pathcooeoiiiiii e 355
11.4 Graphics Memory AddreSS SPaACEScuuuuiei i aaaeens 357
11.5 Address Tiling FUNCHION ..ot et e e 357

11.5.1 Linear vs. Tiled StOrage. ... oot 357

11.5.2 Tile FOIMAS ..o e e aaees 360

12

10

11.5.3 Tiling AIQOrithim ... e 362

11.5.4 TiliNG SUPPOITt et e eaaes 363
11.5.4.1 Tiled (Fenced) REQIONScoiiiiiiiiiiiiiiiieiie e 363

11.5.4.2 Tiled Surface Parametersccooviiiiiiiiiiiiiiiiniinenen. 364

11.5.4.3 Tiled Surface RestrictionS........c.ooiiiiiiiiiiiiii it 364

11.5.5 Per-Stream Tile Format SUPPOrtcooiiiiiii i 367

5 I ST o Yo [(o= 1 I 1Y/ =T 0 To Y V1Y =T o] o] 10 T [367
11.6.1 Logical Memory Space MappPiNgS......uceuiteaaia i aaaans 368

11.7 Physical GraphiCs MEMOKYuuiiii ittt e e e e aaneeas 372
11.7.1 Physical Graphics Address TYPES ... aaas 372

11.7.2 MaAIN MEIMOTY .ttt et ettt et et ettt et e e et et ee e anees 373
11.7.2.1 Optimizing Main Memory Allocationc.o...... 373

11.7.2.2 Application of the Theory (Page Coloring) 373

Device Programming ENVIFONMENT ... e ee e 376
12.1 Programming MOEl...... ... e 376
12.2 Graphics Device Register Programming........ccoooiieiiiieiiii i eaaiae e 376
12.3 Graphics Device Command STreamsScoineiiiii i 377
12.3.1 COMMANA USE . ..uiiiiiiiiiiie ettt ettt et et e e aaaas 377

12.3.2 Command TranSport OVEIVIEWc.eeeiiieeiiiii i aaieeeaiaaeaanaes 377

12.3.3 ComMMANd ParSer. ...t e 378

12.3.4 The RiNg BUfer. ... s 378
12.3.4.1 The Ring Buffer (RB)ccoiiiiiiiiiiii e 379

12.3.4.2 Ring Buffer RegiSters......ccoviiiiiiiiiiiiiii e 379

12.3.4.3 Ring Buffer Placementot 381

12.3.4.4 Ring Buffer Initialization ... 381

12.3.4.5 Ring Buffer USe ..o 381

12.3.4.6 Ring Buffer Semaphore..........ccoiiiiiiiiiiiiiiiiiiiiieeas 382

12.3.5 Batch BUffers. ..o s 382
12.3.5.1 Batch Buffer Chaining......... .o 382

12.3.5.2 Ending Batch Buffers.........ccoooiiiiiiiiiiiiiieie s 383

12.3.6 INAITECT DAt@ ..cuneieiei et e e 383
12.3.6.1 Logical CONEXESunuuieii et 383

12.3.7 Command Arbitration.o 383
12.3.7.1 Arbitration Policies and Rationaleccoovienn... 383

12.3.7.2 Wait COmMMANASouniiiiiieieae e 384

12.3.7.3 Wait Events/Conditions.........cociiiiiiiiiiiiii it 384

12.3.7.4 Command Arbitration Points.............c.ooooiiiiiiiiiia... 385

12.3.7.5 Command Arbitration Rules............ccoiiiiiiiiiiiiiiiennes 385

12.3.7.6 Batch Buffer Protection...........ccooiiiiiiiiiiiiiiiiiienn. 385

12.3.8 Graphics Engine Synchronizationccoiiiiiiiiiiiiiiiiiiiii e, 386

12.3.9 Graphics Memory CONErencCyYo 387
12.3.10 Graphics Cache CONEreNCY.......cueiuiiie i 387
12.3.10.1 Rendering Cacheccoiiiiiiiii e 387

12.3.10.2 Sampler CaCheo 388

12.3.10.3 Instruction/State Cacheccooiiiiiiiiiiiiiiiiiiiaans 388

12.3.10.4 VerteX Cache ... 389

12.3.10.5 GTT TLBS ..ttt 389

12.3.11 Command Synchronizationcoeoeiiiiiiii i aeas 389
12.3.11.1 MI_FLUSH .t 390

12.3.11.2 SYNC FIUSh ... 390

12.4 Hardware STatlsoooiiiiiiiii ittt ettt ateaaeeaeeeaaaeaeeeas 391
12.4.1 Hardware-Detected Errors (Master Error bit)c.ocoiiiiiiiiiinn... 392

12.4.2 Thermal SeNnsor EVENT......c.coiiiiiii e 392

13

14

12.4.3 SYNC STAtUS ...ttt ettt et e aaas 392

12.4.4 Display Plane A, B, Flip Pending........cooiiiiiiiiiiiii e 392

12.4.5 Overlay FIip PENAING ..o e 392

12.4.6 Display Pipe A,B VBLANK ...t 392

12.4.7 User INTerruUPt. ...t eaeaaas 393

12.4.8 PIPE_CONTROL Notify Interrupt........cooiiiiiii it 393

12.4.9 Display Port INterrupt ... e e 393

12.5 Hardware Status WITeS.ot 393
I G | g 1 =T g 0 o 393
IO A] = 394
12.7.1 Error REPOITING . ettt 394

12.7.2 Page Table EFrOrs ... e 395

12.7.3 Clearing ErTOrS. ... et et e eee e 395

12.8 Rendering Context Managementt 396
12.8.1 Multiple Logical Rendering CONtextscoceviiiiiiiiiiiiiiiiieeaeenns. 396
12.8.1.1 Current ConteXt IDSccooiiiiiiiiiiiiiii e 397

12.8.1.2 Intra-Ring Context SWitCh...........ooooiiiiiiiiiiiiiiaee, 397

12.8.1.3 Logical Rendering Context Creation and Initialization ... 398

12.8.1.4 CONtEXE SAVE .. .nuiiii it e 398

12,9 RESEE SHale ..t 399
Frame Buffer Compression ([DeVCL] ONlY) ...oeiiiii e 400
0 T R O 1= V= PP 400
13.2 Programming INterfacecoooiiiiiii i e 401
13.2.1 FBC unit programming interface ..o 401

13.2.2 Programming interface from Display Engineccoiioiia... 402

R TRC TN @ o 1=T - a1 0T 1Y, o o [T 403
13.3.1 RLE-FBC FUNCLiON MOOES ...ttt 403

13.3.2 COmMPresSSioN MOGESc.uutii ettt e e 404
13.3.2.1 Single Compression Modeccccoiiiiiiiiiiiiiiiiieaanen, 404

13.3.2.2 Periodic Compression Modeccoviiiiiiiiiiiiiiianannn.. 404

13.4 USAQE RESTICHIONS . ..ottt ettt e et ettt et et et et e eeeanees 405
13.5 Power Management INterfaceo e 406
13.6 Memory Data STrUCTUIES. ...ttt e e e aanneees 407
13.6.1 RLE PIXEl RUNS ...t 407

13.6.2 RLE PiXel RUN SetS ... e 407

13.6.3 RLE-Compressed LiNe ... 407

13.6.4 RLE Compressed Frame and Line Length Buffers........................ 408

13.7 TUNING Parameters ...ttt ettt et e e e e e e aaneean 409
I T RO S 1 ¢ o [PP 409

13.7.2 INEEIVAD e e 409

13.7.3 FBC Modification COUNTEI........couiiuiiiiiiiii i e 409

13.8 Implementation (DEBUG)ueiiii e e 410
IR T Tt R - T N = Y/ 410
13.8.1.1 TranSitioONS. ..ot 410

jRC TR S T~ 6o] o o1 0] =170) PP 411

jIRC R S JRC T D T<Tolo] 0 o] o (=21 To | o P 412

13.8.4 Frame Buffer Write Detectorc.viuiiiiiiiiiiii i 412

13.8.5 CONBIENCY .ttt e 413

2 T = o o T T P 414
I A | o o 0T 11 T o] I PP 414
14.2 Classical BLT Engine Functional Descriptioncooioiiiiiiiiiiiiiiiiiiiiiaenn. 414

11

12

14.3
14.4
14.5
14.6
14.7

14.8

14.9

14.2.1 Basic BLT Functional Considerations...........oooiiiiiiiiiiiiiiiiiiaians 415
14.2.1.1 Color Depth Configuration and Color Expansion........... 415
14.2.1.2 Graphics Data Size Limitations.........c.ccovieiiieiienieanne. 416
14.2.1.3 Bit-Wise Operationsccceviiiiiiiiiiiiiieiiieiiaaaans 416
14.2.1.4 Per-Pixel Write-Masking Operationscceeevn... 421
14.2.1.5 When the Source and Destination Locations Overlap 422
14.2.2 Basic Graphics Data Considerations...........ccvoviiieiiiiieiiieiieenen. 426
14.2.2.1 Contiguous vs. Discontinuous Graphics Data............... 426
14.2.2.2 SOUICE Data....ccovinnniiiii i 427
14.2.2.3 Monochrome Source Datacoooviiiiiiiiiiiiiiiin... 428
14.2.2.4 Pattern Dataoooiiiii i 429
14.2.2.5 Destination Data..........ccoiuviiiiiiiiiiiiiiiiieie e 431
14.2.3 BLT Programming EXamples.cooeoiiii i 432
14.2.3.1 Pattern Fill — A Very Simple BLTooiiiiiiiiiiia.. 432

14.2.3.2 Drawing Characters Using a Font Stored in System
7= 70 Y/ 435
BLT INSTrUCtiON OVEIVIEW.ottt ettt aaannns 438
BLT ENQINE State. ...ttt aee e 438
Cacheable MemMOry SUPPOITii ittt e e e e e e e aaneean 439
Device Cache Coherency: Render and Texture Cachescccoevieinnen. 439
BLT ENGINE INSTrUCTIONS. ...t 440
14.7.1 Blt Programming RestriCtionsccciiiiiiiiii e 440
Fill/MOVE INSErUCHIONSt e e e 440
14.8.1 COLOR_BLT (Fill) 1ueueieiiiiiii e 441
14.8.2 SRC_COPY_BLT (MOVE) ...ttt ee e eaens 442
2D (X,Y) BLT INSTrUCHIONS ...ttt et ettt anee e 443
14.9.1 XY _SETUPR _BLT ittt e et e e ettt e e aaeeaeas 445
14.9.2 XY_SETUP_MONO_PATTERN_SL BLT ..ottt 446
14.9.3 XY _SETUP_CLIP_ BLT ittt et et eeeee s 447
14.9.4 XY _PIXEL _BLT ittt ettt e e e 447
14.9.5 XY _SCANLINES BLT .etiiiitiitiitii et ee e 448
e T T A I = B = PPN 449
14.9.7 XY_TEXT_IMMEDIATE_BLT .euriiiiiiiiii e 450
14.9.8 XY _COLOR_BLT ittt et ettt e ee e 451
e T T N = B =1 I PP 452
14.9.10 XY_PAT_CHROMA _BLT ..ttt et e e eae e 453
14.9.11 XY_PAT_BLT_IMMEDIATE ...ttt 454
14.9.12 XY_PAT_CHROMA_BLT_IMMEDIATE ..ottt 455
14.9.13 XY_MONO _PAT _BLT ..ttt et ettt e e e e 456
14.9.14 XY_MONO_PAT_FIXED_BLT ..uuiiuiitiitiieaea et ee e e eae e 458
14.9.14.1 Monochrome Pattern Memory Format 460
14.9.14.2 HS_HORIZONTAL O .eenniiieieeeee et 461
14.9.14.3 HS_VERTICAL L...onniiiiii it 461
14.9.14.4 HS_FDIAGONAL 2 ... eiiiiiii et 461
14.9.14.5 HS_BDIAGONAL 3.ttt et 461
14.9.14.6 HS_CROSS 4....oniiiiiiii ettt 462
14.9.14.7 HS_DIAGCROSS 5 ...ttt 462
14.9.14.8 Screen DOOK 8 ... 462
14.9.14.9 SD WiIdE O ..t 462
14.9.14.10 Walking Bit (ONe) A ..o 463
14.9.14.11 Walking Zero B ..o 463
14.9.15 XY_SRC_COPY _BLT .uttitiutitatae et et e e e aeeeaneanens 463
14.9.16 XY_SRC_COPY_CHROMA _BLT ..ttt ettt e 465
14.9.17 XY_MONO_SRC_COPY_BLT .ttititiiiitiiteaea e eae e 466

14.10

14.9.18 XY_MONO_SRC_COPY_ IMMEDIATE_BLT ...ciiiiiiiiiieiieeeieeeaens 468
14.9.19 XY _FULL _BLT ettt et ettt ettt e e e e e eaea 470
14.9.20 XY_FULL_IMMEDIATE_PATTERN_BLT ..ttt 472
14.9.21 XY_FULL_MONO_SRC_BLT ..uiuuiitiiiiii ettt e e 474
14.9.22 XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLTccieiniinennen. 476
14.9.23 XY_FULL_MONO_PATTERN_BLT ..t 478
14.9.24 XY_FULL_MONO_PATTERN_MONO_SRC_BLT ..ictiiiiiiiiiiiiiaaiaananns 480
BLT Engine Instruction Field Definitionso 482
14.10.1 BROO—BLT Opcode & CONLrolc.ovneiiiiiii e 482
14.10.2 BRO1—Setup BLT Raster OP, Control, and Destination Offset....... 485
14.10.3 BRO5—Setup Expansion Background Colorcooiiiiiiiiiiniinas 487
14.10.4 BRO6—Setup Expansion Foreground ColOr..........ooceiiiiiiiiiianiian. 488
14.10.5 BRO7—Setup Color Pattern Addresscooeeiiiiiiiiiiieiieiieaeenens 489
14.10.6 BRO9—Destination AdAress.........cceouiiuiieiiiiiiiiiiieieiieeeeeeaens 490
14.10.7 BR11—BLT Source Pitch (OffSet).....cceiiiiiiii et 491
14.10.8 BRI12—S0Urce AdAreSSttt 492
14.10.9 BR13—BLT Raster OP, Control, and Destination Pitch.................. 492
14.10.10BR14—Destination Width & Height............coooiiiiiiiiiiiii . 494
14.10.11BR15—Color Pattern AdAressooueeiiii i 495
14.10.12 BR16—Pattern Expansion Background & Solid Pattern Color......... 496
14.10.13BR17—Pattern Expansion Foreground CoOlOr.........cocovviiiiniiinennn.. 496
14.10.14 BR18—Source Expansion Background, and Destination Color 497
14.10.15BR19—Source Expansion Foreground Colorc..cooviiiiiiina... 497

13

14

Figure 2-1. GMCH BIOCK Diagramciieiiiiiie i e et e e aneas 32
Figure 2-2. Block Diagram of the GPU ... 33
Figure 3-1. The Graphics Processing ENQINe ..o 34
Figure 3-2. GPE Diagram Showing Fixed/Shared FUNCtIONS.........c.ccoviiiiiiiiiiiiiiennenn. 35
Figure 3-3. URB Allocation — 3D Pipeline.......c.ooiiiiiiiiiiii e e 39
Figure 3-4 URB Allocation — Media Pipelineccoiiiiiiii e 40
Figure 6-1. FXT1 Encoded BIOCKS. ... 106
Figure 6-2. Memory Layout of Packed YUV 4:2:2 FormatScccvviiiiiiiiiiiiiiieanannns 125
Figure 6-3. YUV 4:2:0 Format Memory Organizationc..ccevieeiiiiieiienieninennes 126
Figure 6-4. YUV 4:1:0 Format Memory Organizationcccoiiiiiiiiiiiiiiiiaaiaan. 127
Figure 6-5. VolumMeE TeXTUIre Mapcoiiiiiii et 136
Figure 11-1. Graphics Memory Paths........cooiiiiiiiiiiii e 356
Figure 11-2. Rectangular Memory Operand Parametersc.ccovieviiiiiiieiieenneenn.. 358
Figure 11-3. Linear Surface LayOuULcooi it 358
Figure 11-4. Memory Tile DIMENSIONS ...t 359
Figure 11-5. Tiled SUIrface LayOUL.......ociiiiiieiii et e e e e e aanas 360
Figure 11-6. Y-Major Tile LaYOUTcouiii et anee e 361
Figure 11-7. Tiled Surface Placement i 365
Figure 11-8. Global and Render GTT MappinNgcouuueimiii i eaaes 369
Figure 11-9. GTT Re-mapping to Handle Differing Pitchesccooiiiiiiiiint.. 371
Figure 11-10. Logical-to-Physical Graphics Memory Mappingcoceveieviienineann.. 371
Figure 11-11. Memory INTerfacesot 372
Figure 11-12. Memory Pages backing Color and Depth Buffers...................cooaet. 374
Figure 12-1. Graphics Controller Command Interfacecc.cooiiiiiiiiiiiiiiiiinin... 378
Figure 12-2. RiNG BUT @I e aes 379
Figure 12-3. Batch Buffer Chaining oo 382
Figure 13-1. 32bpp PiXel RUN. ... e 407
Figure 13-2. 16bpp PixXel RUN. ... e et aaes 407
Figure 13-3. PiXel RUN Set. ...ttt ettt e aneeans 407
Figure 13-4. RLE-Compression BUfferso 408
Figure 14-1. Block Diagram and Data Paths of the BLT Engine.............ccoiiieein... 415
Figure 14-2. Block Diagram and Data Paths of the BLT Engine...........cccceviieeinn.... 421
Figure 14-3. Source Corruption in BLT with Overlapping Source and Destination

[T = £ o 1 - PP 423
Figure 14-4. Correctly Performed BLT with Overlapping Source and Destination

[To= | 1 o 1 - PP 424
Figure 14-5. Suggested Starting Points for Possible Source and Destination Overlap

11 L0 = L[] o 1 PP 425

Figure 14-6. Representation of On-Screen Single 6-Pixel Line in the Frame Buffer .. 426
Figure 14-7. Representation of On-Screen 6x4 Array of Pixels in the Frame Buffer.. 427

Figure 14-8. Pattern Data -- Always an 8x8 Array of Pixels............cooiiiiiiiiiiiiat, 429
Figure 14-9. 8bpp Pattern Data -- Occupies 64 Bytes (8 quadwords) 430
Figure 14-10. 16bpp Pattern Data -- Occupies 128 Bytes (16 quadwords) 430
Figure 14-11. 32bpp Pattern Data -- Occupies 256 Bytes (32 quadwords) 430
Figure 14-12. On-Screen Destination for Example Pattern Fill BLT 432
Figure 14-13. Pattern Data for Example Pattern Fill BLT........ccoviiiiiiiiiiiiii i 433
Figure 14-14. Results of Example Pattern Fill BLTcooiiiiiiiiiiii i 434
Figure 14-15. On-Screen Destination for Example Character Drawing BLT 435

Tables

intel)

Figure 14-16. Source Data in System Memory for Example Character Drawing BLT. 435

Figure 14-17. Results of Example Character Drawing BLTcooiiiiiiiiiiiiiinan.. 437
Table 1-1. SUPPOrted ChIPSETSttt aeeas 18
Table 3-1. Gend FUNCLION IDS ...t ee 37
Table 3-2. Base Address UtIzationo e 48
Table 4-1. RCP Command Header FOrmatcoooiiiiiiiiiii i 62
Table 4-2. VCCP Command Header FOrMAatoeveiiiiiiiiii i 63
Table 4-3. Memory Interface Commands for RCPooiiiiiiiii e 64
Table 4-4. Memory Interface Commands for VCCPcooiiiiiiiii i 65
Table 5-1. Graphics Controller Register Memory and I/0 Mapc.ooieiiiiiiiiiiiianne, 71
Table 5-2. Memory-Mapped REQISTEIS ...ttt ettt e e aaanas 73
Table 5-3. 1/0 and Memory RegiStEr Mapcvuiiniii i eeeaas 95
Table 5-4. 2D Sequence Registers (3C4h / 3C5hN) ... 96
Table 5-5. 2D Graphics Controller Registers (3CEh / 3CFN)ooiiiiiiiiiias 97
Table 5-6. 2D Attribute Controller Registers (3COh / 3C1h) ccceiiiiiiiiiiiiiiiiiiieaeas 97
Table 5-7. 2D CRT Controller Registers (3B4h / 3D4h / 3B5h / 3D5h)c.cevieiiinnnant 98
Table 6-1. FXT1 FOrmat SUMMAIYt e e et e aaane e aaneenn 106
Table 6-2. FXT CC_HI BIoCk ENCOAING ..cnnniiii e 107
Table 6-3. FXT CC_HI Decoded CoOlOrsS. ...t aaaee 108
Table 6-4. FXT CC_HI Interpolated Color Table........ccooiiiiiiii e 108
Table 6-5. FXT CC_CHROMA BIoCk ENCOAINGciinni i 109
Table 6-6. FXT CC_CHROMA Decoded ColOrS......cuiiieiiiiie i eeiee e eeaaae 110
Table 6-7. FXT CC_CHROMA Interpolated Color Table..........ccooiiiiiiiiiiiiiiiiiiie . 111
Table 6-8. FXT CC_MIXED BIOCK ENCOAING ..ot et eanee 111
Table 6-9. FXT CC_MIXED (Alpha[0]=0) Decoded ColOrsScciiiiiiiiiiiiiiiiaaaiaannn. 112

Table 6-10.
Table 6-11.
Table 6-12.
Table 6-13.
Table 6-14.
Table 6-15.
Table 6-16.
Table 6-17.
Table 6-18.
Table 6-19.
Table 6-20.
Table 6-21.
Table 6-22.
Table 6-23.
Table 6-24.
Table 6-25.

Table 9-1.
Table 9-2.
Table 8-3.
Table 11-1
Table 11-2
Table 11-3

FXT CC_MIXED Decoded Colors (AlIpha[0] = 0) .cvuveviiiiiiiiiieiieeeenns 112
FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 0-15)..... 113
FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 16-31)...114
FXT CC_MIXED (Alpha[0]=0) Decoded COlOrS.......cccoeviuiiiiiiiiieennaanns 114
FXT CC_MIXED Decoded Colors (Alpha[0] = 1) .cccieiiiiiiiiiiiiiee e 114
FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 0-15)..... 115

FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 16-31)...115
FXT CC_ALPHA BIOCK ENCOAING ..ttt 116
FXT CC_ALPHA Decoded COIOrS ...uuieieiie e 117
FXT CC_ALPHA Interpolated Color Table (LERP=0)cccvviiieneinnn... 118
FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 0-15)......... 118
FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 16-31) 118
Depth Buffer FOrmMatscooiiii e 130
Alignment Units for TeEXTUre Mapsocuieiiiiiiiii i veaaeeenas 134
Context Setup that Cannot Use Defaults ...t 150
Initialization of Command Stateccoooiiiiiiiiii s 151
Bit Definition for Interrupt Control Registers ..., 236
Hardware-Detected Error BitSocoiiiiiiiiii i 248
Bit Definition for Interrupt Control Registersccviiiiiiiiiiiiiiennnn. 291
. Graphics Memory CleNtS ... 354
. Graphics Memory AdAresS TYPES ...t e aaaeens 357
. X-M@jor Til@ LAYOUL ...ttt et ettt et e e aneeas 361

15

16

ntel)

Table 11-4.
Table 12-1.
Table 12-2.
Table 12-3.
Table 14-1.
Table 14-2.
Table 14-3.
Table 14-4.

Physical Memory AdAress TYPES «ouuuuiiii e e e 372
Ring Buffer CharaCteriStiCS. ..o 380
Graphics Memory CONEIreNCY ... 387
Page Table Error TYPesS ... 395
Bit-Wise Operations and 8-Bit Codes (00-3F)cccvviiiiiiiiiiiiiiieennnen. 417
Bit-Wise Operations and 8-bit Codes (40 - 7F) .coiiiiiiiiiiiiiiiiiieeeee 418
Bit-Wise Operations and 8-bit Codes (80 - BF).....ccoooiiiiiiiiiiiiiiiia. .. 419
Bit-Wise Operations and 8-bit Codes (CO - FF).....coiiiiiiiiiiiiiiiiiiiaann. 420

Revision History

Document Revision Description Revision Date
Number Number
1 1.0a Initial release. January 2008

17

1

Introduction

Note:

This Programmer’s Reference Manual (PRM) describes the architectural behavior and
programming environment of the Intel® 965 Express Chipset family and Intel® G35
Express Chipset GMCH graphics devices (see Table 1-1). The GMCH’s Graphics
Controller (GC) contains an extensive set of registers and instructions for
configuration, 2D, 3D, and Video systems. The PRM describes the register, instruction,
and memory interfaces and the device behaviors as controlled and observed through
those interfaces. The PRM also describes the registers and instructions and provides
detailed bit/field descriptions.

The term “Gen4” is used throughout the PRM to refer to the Generation 4 family of
graphics devices. The devices listed in Table 1-1 are Gen4 devices.

Table 1-1. Supported Chipsets

18

Chipset Family Name Device Name Device Tag
Intel® Q965 Chipset 82Q965 GMCH [DevBW]
Intel® Q963 Chipset 82Q963 GMCH
Intel® G965 Chipset 82G965 GMCH
Intel® G35 Chipset 82G35 GMCH [DevBW-E]
Intel® GM965 Chipset GM965 GMCH [DevCL]
Intel® GME965 Chipset GME965 GMCH

NOTES:

1. Unless otherwise specified, the information in this document applies to all of the devices
mentioned in Table 1-1. For Information that does not apply to all devices, the Device
Tag is used.

2. Throughout the PRM, references to “All” in a project field refters to all devices in
Table 1-1.

3. Throughout the PRM, references to [DevBW] apply to both [DevBW] and [DevBW-E].
[DevBW-E] is referenced specifically for information that is [DevBW-E] only.

4. Stepping info is sometimes appended to the device tag (e.g., [DevBW-C]). Information
without any device tagging is applicable to all devices/steppings.

The PRM is intended for hardware, software, and firmware designers who seek to
implement or use the graphic functions of the 965 Express Chipset family and G35
Chipset Express Chipset. Familiarity with 2D and 3D graphics programming is
assumed.

intel)

The Programmer’s Reference Manual is organized into four volumes:

e PRM, Volume 1: Graphics Core
Volume 1 covers the overall Graphics Processing Unit (GPU), without much detail
on 3D, Media, or the core subsystem. Topics include the command streamer,
context switching, and memory access (including tiling). The Memory Data
Formats can also be found in this volume.

The volume also contains a chapter on the Graphics Processing Engine (GPE). The
GPE is a collective term for 3D, Media, the subsystem, and the parts of the
memory interface that are used by these units. Display, blitter and their memory
interfaces are not included in the GPE.

¢ PRM, Volume 2; 3D/Media
Volume 2 covers the 3D and Media pipelines in detail. This volume is where details
for all of the “fixed functions” are covered, including commands processed by the
pipelines, fixed-function state structures, and a definition of the inputs (payloads)
and outputs of the threads spawned by these units.

This volume also covers the single Media Fixed Function, VLD. It describes how to
initiate generic threads using the thread spawner (TS). It is generic threads which
will be used for doing the majority of media functions. Programmable kernels will
handle the algorithms for media functions such IDCT, Motion Compensation,
WMV9, and even Motion Estimation (used for encoding MPEG streams).

¢ PRM, Volume 3: Display Registers
Volume 3 describes the control registers for the display. The overlay registers and
VGA registers are also cover in this volume.

e PRM, Volume 4: Subsystem and Cores
Volume 4 describes the GMCH programmable cores, or EUs, and the “shared
functions”, which are shared by more than one EU and perform functions such as
1/0 and complex math functions.

The shared functions consist of the sampler, extended math unit, data port (the
interface to memory for 3D and media), Unified Return Buffer (URB), and the
Message Gateway which is used by EU threads to signal each other. The EUs use
messages to send data to and receive data from the subsystem; the messages are
described along with the shared functions, although the generic message send EU
instruction is described with the rest of the instructions in the Instruction Set
Architecture (ISA) chapters.

This latter part of this volume describes the GMCH core, or EU, and the associated
instructions that are used to program it. The instruction descriptions make up
what is referred to as an Instruction Set Architecture, or ISA. The ISA describes
all of the instructions that the GMCH core can execute, along with the registers
that are used to store local data.

19

intel.

1.1 Notations and Conventions

1.1.1 Reserved Bits and Software Compatibility

In many register, instruction and memory layout descriptions, certain bits are marked
as “Reserved”. When bits are marked as reserved, it is essential for compatibility with
future devices that software treat these bits as having a future, though unknown,
effect. The behavior of reserved bits should be regarded as not only undefined, but
unpredictable. Software should follow these guidelines in dealing with reserved bits:

Do not depend on the states of any reserved bits when testing values of registers that
contain such bits. Mask out the reserved bits before testing. Do not depend on the
states of any reserved bits when storing to instruction or to a register.

When loading a register or formatting an instruction, always load the reserved bits

with the values indicated in the documentation, if any, or reload them with the values
previously read from the register.

1.2 Terminology

Term Abbr. Definition

3D Pipeline — One of the two pipelines supported in the GPE. The 3D
pipeline is a set of fixed-function units arranged in a
pipelined fashion, which process 3D-related commands by
spawning EU threads. Typically this processing includes
rendering primitives. See 3D Pipeline.

Adjacency — One can consider a single line object as existing in a strip
of connected lines. The neighboring line objects are
called “adjacent objects”, with the non-shared endpoints
called the “adjacent vertices.” The same concept can be
applied to a single triangle object, considering it as
existing in a mesh of connected triangles. Each triangle
shares edges with three other adjacent triangles, each
defined by an non-shared adjacent vertex. Knowledge of
these adjacent objects/vertices is required by some object
processing algorithms (e.g., silhouette edge detection).
See 3D Pipeline.

Application IP AlIP Application Instruction Pointer. This is part of the control
registers for exception handling for a thread. Upon an
exception, hardware moves the current IP into this
register and then jumps to SIP.

Architectural ARF A collection of architecturally visible registers for a thread
Register File such as address registers, accumulator, flags, notification
registers, IP, null, etc. ARF should not be mistaken as just
the address registers.

Array of Cores — Refers to a group of Gen4 EUs, which are physically
organized in two or more rows. The fact that the EUs are
arranged in an array is (to a great extent) transparent to
CPU software or EU kernels.

20

intel.

Term

Abbr.

Definition

Binding Table

Memory-resident list of pointers to surface state blocks
(also in memory).

Binding Table
Pointer

BTP

Pointer to a binding table, specified as an offset from the
Surface State Base Address register.

Bypass Mode

Mode where a given fixed function unit is disabled and
forwards data down the pipeline unchanged. Not
supported by all FF units.

Byte

A numerical data type of 8 bits, B represents a signed
byte integer.

Child Thread

A branch-node or a leaf-node thread that is created by
another thread. It is a kind of thread associated with the
media fixed function pipeline. A child thread is originated
from a thread (the parent) executing on an EU and
forwarded to the Thread Dispatcher by the TS unit. A child
thread may or may not have child threads depending on
whether it is a branch-node or a leaf-node thread. All pre-
allocated resources such as URB and scratch memory for
a child thread are managed by its parent thread.

Clip Space

A 4-dimensional coordinate system within which a clipping
frustum is defined. Object positions are projected from
Clip Space to NDC space via “perspecitive divide” by the
W coordinate, and then viewport mapped into Screen
Space

Clipper

3D fixed function unit that removes invisible portions of
the drawing sequence by discarding (culling) primitives or
by “replacing” primitives with one or more primitives that
replicate only the visible portion of the original primitive.

Color Calculator

CcC

Part of the Data Port shared function, the color calculator
performs fixed-function pixel operations (e.g., blending)
prior to writing a result pixel into the render cache.

Command

Directive fetched from a ring buffer in memory by the
Command Streamer and routed down a pipeline. Should
not be confused with instructions which are fetched by the
instruction cache subsystem and executed on an EU.

Command
Streamer

CS or CSI

Functional unit of the Graphics Processing Engine that
fetches commands, parses them and routes them to the
appropriate pipeline.

Constant URB
Entry

CURBE

A UE that contains “constant” data for use by various
stages of the pipeline.

Control Register

CR

The read-write registers are used for thread mode control
and exception handling for a thread.

Data Port

DP

Shared function unit that performs a majority of the
memory access types on behalf of Gen4 programs. The
Data Port contains the render cache and the constant
cache and performs all memory accesses requested by
Gen4 programs except those performed by the Sampler.
See DataPort.

21

22

Term Abbr. Definition

Degenerate Object | — Object that is invisible due to coincident vertices or
because does not intersect any sample points (usually due
to being tiny or a very thin sliver).

Destination — Describes an output or write operand.

Destination Size — The number of data elements in the destination of a Gen4
SIMD instruction.

Destination Width — The size of each of (possibly) many elements of the
destination of a Gen4 SIMD instruction.

Double Quad word DQ A fundamental data type, DQ represents 16 bytes.

(DQword)

Double word D or DW A fundamental data type, D or DW represents 4 bytes.

(DWord)

Drawing Rectangle | — A screen-space rectangle within which 3D primitives are
rendered. An objects screen-space positions are relative
to the Drawing Rectangle origin. See Strips and Fans.

End of Block EOB A 1-bit flag in the non-zero DCT coefficient data structure
indicating the end of an 8x8 block in a DCT coefficient
data buffer.

End Of Thread EOT a message sideband signal on the Output message bus
signifying that the message requester thread is
terminated. A thread must have at least one SEND
instruction with the EOT bit in the message descriptor
field set in order to properly terminate.

Exception — Type of (normally rare) interruption to EU execution of a
thread’s instructions. An exception occurrence causes the
EU thread to begin executing the System Routine which is
designed to handle exceptions.

Execution Channel — The width of each of several data elements that may be
processed by a single Gen4 SIMD instruction.

Execution Size ExecSize Execution Size indicates the number of data elements
processed by a GEN4 SIMD instruction. It is one of the
GENA4 instruction fields and can be changed per
instruction.

Execution Unit EU Execution Unit. An EU is a multi-threaded processor within
the GEN4 multi-processor system. Each EU is a fully-
capable processor containing instruction fetch and decode,
register files, source operand swizzle and SIMD ALU, etc.
An EU is also referred to as a GEN4 Core.

Execution Unit EUID The 4-bit field within a thread state register (SRO) that

Identifier identifies the row and column location of the EU a thread
is located. A thread can be uniquely identified by the EUID
and TID.

Execution Width ExecWidth The width of each of several data elements that may be
processed by a single Gen4 SIMD instruction.

Extended Math EM A Shared Function that performs more complex math

Unit

operations on behalf of several EUs.

®

intel

Term

Abbr.

Definition

FF Unit

A Fixed-Function Unit is the hardware component of a 3D
Pipeline Stage. A FF Unit typically has a unique FF ID
associated with it.

Fixed Function

FF

Function of the pipeline that is performed by dedicated
(vs. programmable) hardware.

Fixed Function ID

FFID

Unique identifier for a fixed function unit.

FLT_MAX

fmax

The magnitude of the maximum representable single
precision floating number according to IEEE-754 standard.
FLT_MAX has an exponent of OXFE and a mantissa of all
one’s.

Gateway

GW

See Message Gateway.

GEN4 Core

Alternative name for an EU in the GEN4 multi-processor
system.

General Register
File

GRF

Large read/write register file shared by all the EUs for
operand sources and destinations. This is the most
commonly used read-write register space organized as an
array of 256-bit registers for a thread.

General State Base
Address

The Graphics Address of a block of memory-resident
“state data”, which includes state blocks, scratch space,
constant buffers and kernel programs. The contents of
this memory block are referenced via offsets from the
contents of the General State Base Address register. See
Graphics Processing Engine.

Geometry Shader

GS

Fixed-function unit between the vertex shader and the
clipper that (if enabled) dispatches “geometry shader”
threads on its input primitives. See Geometry Shader.

Graphics Address

The GPE virtual address of some memory-resident object.
This virtual address gets mapped by a GTT or PGTT to a
physical memory address. Note that many memory-
resident objects are referenced not with Graphics
Addresses, but instead with offsets from a “base address
register”.

Graphics
Processing Engine

GPE

Collective name for the Subsystem, the 3D and Media
pipelines, and the Command Streamer.

Guardband

GB

Region that may be clipped against to make sure objects
do not exceed the limitations of the renderer’s coordinate
space.

Horizontal Stride

HorzStride

The distance in element-sized units between adjacent
elements of a Gen4 region-based GRF access.

Immediate floating
point vector

VF

A numerical data type of 32 bits, an immediate floating
point vector of type VF contains 4 floating point elements
with 8-bit each. The 8-bit floating point element contains
a sign field, a 3-bit exponent field and a 4-bit mantissa
field. It may be used to specify the type of an immediate
operand in an instruction.

23

24

Term Abbr. Definition

Immediate integer \% A numerical data type of 32 bits, an immediate integer

vector vector of type V contains 8 signed integer elements with
4-bit each. The 4-bit integer element is in 2's compliment
form. It may be used to specify the type of an immediate
operand in an instruction.

Index Buffer 1B Buffer in memory containing vertex indices.

In-loop Deblocking ILDB The deblocking filter operation in the decoding loop. Itis a

Filter stage after MC in the video decoding pipe. It is required to
support WMV9 Profile B video decoder acceleration.

Instruction — Data in memory directing an EU operation. Instructions
are fetched from memory, stored in a cache and executed
on one or more Gen4 cores. Not to be confused with
commands which are fetched and parsed by the command
streamer and dispatched down the 3D or Media pipeline.

Instruction Pointer IP The address (really an offset) of the instruction currently
being fetched by an EU. Each EU has its own IP.

Instruction Set ISA The GEN4 ISA describes the instructions supported by a

Architecture GEN4 EU.

Instruction State ISC On-chip memory that holds recently-used instructions and

Cache state variable values.

Interface — Media analog of a State Descriptor.

Descriptor

Intermediate Z 1Z Completion of the Z (depth) test at the front end of the
Windower/Masker unit when certain conditions are met
(no alpha, no pixel-shader computed Z values, etc.)

Inverse Discrete IDCT the stage in the video decoding pipe between 1Q and MC

Cosine Transform

Inverse 1Q A stage in the video decoding pipe between IS and IDCT.

Quantization

Inverse Scan 1S A stage in the video decoding pipe between VLD and IQ.
In this stage, a sequence of none-zero DCT coefficients
are converted into a block (e.g. an 8x8 block) of
coefficients. VFE unit has fixed functions to support IS for
both MPEG-2 and WMV.

Jitter — Just-in-time compiler.

Kernel — A sequence of Gen4 instructions that is logically part of
the driver or generated by the jitter. Differentiated from
a Shader which is an application supplied program that is
translated by the jitter to Gen4 instructions.

LSB Least Significant Bit

Least Significant
Bit

MathBox

See Extended Math Unit

Media

Term for operations such as video decode and encode
that are normally performed by the Media pipeline.

®

intel

Term Abbr. Definition

Media Pipeline — Fixed function stages dedicated to media and “generic”
processing, sometimes referred to as the generic pipeline.

Message — Messages are data packages transmitted from a thread to
another thread, another shared function or another fixed
function. Message passing is the primary communication
mechanism of GEN4 architecture.

Message Gateway — Shared function that enables thread-to-thread message
communication/synchronization used solely by the Media
pipeline.

Message Register MRF Write-only registers used by EUs to assemble messages

File prior to sending and as the operand of a send instruction.

Most Significant Bit | MSB Most Significant Bit

Motion MC Part of the video decoding pipe.

Compensation

Motion Picture MPEG MPEG is the international standard body

Expert Group JTC1/SC29/WG11 under ISO/IEC that has defined audio
and video compression standards such as MPEG-1, MPEG-
2, and MPEG-4, etc.

Motion Vector Field [MVFS A four-bit field selecting reference fields for the motion

Selection vectors of the current macroblock.

Multi Render MRT Multiple independent surfaces that may be the target of a

Targets sequence of 3D or Media commands that use the same
surface state.

Normalized Device NDC Clip Space Coordinates that have been divided by the Clip

Coordinates Space “W” component.

Object — A single triangle, line or point.

Out-of-loop De- OLDB The de-blocking filter operation outside the decoding loop.

Blocking Filter It is required to support WMV9 Profile A video decoder
acceleration.

Out-of-loop De- OLDR The de-ringing filter operation outside the decoding loop.

Ringing Filter It is required to support WMV9 Profile A video decoder
acceleration.

Parent Thread — A thread corresponding to a root-node or a branch-node
in thread generation hierarchy. A parent thread may be a
root thread or a child thread depending on its position in
the thread generation hierarchy.

Pipeline Stage — A abstracted element of the 3D pipeline, providing
functions performed by a combination of the
corresponding hardware FF unit and the threads spawned
by that FF unit.

Pipelined State PSP Pointers to state blocks in memory that are passed down

Pointers the pipeline.

Pixel Shader PS Shader that is supplied by the application, translated by

the jitter and is dispatched to the EU by the Windower
(conceptually) once per pixel.

25

Term Abbr. Definition

Point — A drawing object characterized only by position
coordinates and width.

Primitive — Synonym for object: triangle, rectangle, line or point.

Primitive Topology — A composite primitive such as a triangle strip, or line list.
Also includes the objects triangle, line and point as
degenerate cases.

Provoking Vertex — The vertex of a primitive topology from which vertex
attributes that are constant across the primitive are
taken.

Quad Quad word QQ A fundamental data type, QQ represents 32 bytes.

(QQword)

Quad Word Qw A fundamental data type, QW represents 8 bytes.

(QWword)

Rasterization — Conversion of an object represented by vertices into the
set of pixels that make up the object.

Region-based — Collective term for the register addressing modes

addressing available in the EU instruction set that permit
discontiguous register data to be fetched and used as a
single operand.

Render Cache RC Cache in which pixel color and depth information is
written prior to being written to memory, and where prior
pixel destination attributes are read in preparation for
blending and Z test.

Render Target RT A destination surface in memory where render results are

written.

Render Target
Array Index

Selector of which of several render targets the current
operation is targeting.

Root Thread

A root-node thread. A thread corresponds to a root-node
in a thread generation hierarchy. It is a kind of thread
associated with the media fixed function pipeline. A root
thread is originated from the VFE unit and forwarded to
the Thread Dispatcher by the TS unit. A root thread may
or may not have child threads. A root thread may have
scratch memory managed by TS. A root thread with
children has its URB resource managed by the VFE.

Sampler

Shared function that samples textures and reads data
from buffers on behalf of EU programs.

Scratch Space

Memory allocated to the subsystem that is used by EU
threads for data storage that exceeds their register
allocation, persistent storage, storage of mask stack
entries beyond the first 16, etc.

Shader

A Gen4 program that is supplied by the application in an
high level shader language, and translated to Gen4
instructions by the jitter.

intel.

Term

Abbr.

Definition

Shared Function

SF

Function unit that is shared by EUs. EUs send messages
to shared functions; they consume the data and may
return a result. The Sampler, Data Port and Extended
Math unit are all shared functions.

Shared Function ID

SFID

Unique identifier used by kernels and shaders to target
shared functions and to identify their returned messages.

Single Instruction
Multiple Data

SIMD

The term SIMD can be used to describe the kind of
parallel processing architecture that exploits data
parallelism at instruction level. It can also be used to
describe the instructions in such architecture.

Source

Describes an input or read operand

Spawn

To initiate a thread for execution on an EU. Done by the
thread spawner as well as most FF units in the 3D
pipeline.

Sprite Point

Point object using full range texture coordinates. Points
that are not sprite points use the texture coordinates of
the point’s center across the entire point object.

State Descriptor

Blocks in memory that describe the state associated with
a particular FF, including its associated kernel pointer,
kernel resource allowances, and a pointer to its surface
state.

State Register

SR

The read-only registers containing the state information of
the current thread, including the EUID/TID, Dispatcher
Mask, and System IP.

State Variable

SV

An individual state element that can be varied to change
the way given primitives are rendered or media objects
processed. On Gen4 state variables persist only in
memory and are cached as needed by
rendering/processing operations except for a small
amount of non-pipelined state.

Stream Output

A term for writing the output of a FF unit directly to a
memory buffer instead of, or in addition to, the output
passing to the next FF unit in the pipeline.

Strips and Fans

SF

Fixed function unit whose main function is to decompose
primitive topologies such as strips and fans into primitives
or objects.

Sub-Register

Subfield of a SIMD register. A SIMD register is an aligned
fixed size register for a register file or a register type. For
example, a GRF register, r2, is 256-bit wide, 256-bit
aligned register. A sub-register, r2.3:d, is the fourth
dword of GRF register r2.

Subsystem — The Gen4 name given to the resources shared by the FF
units, including shared functions and EUs.
Surface — A rendering operand or destination, including textures,

buffers, and render targets.

Surface State

State associated with a render surface including

27

28

Term Abbr. Definition

Surface State Base | — Base address used when referencing binding table and

Pointer surface state data.

Synchronized Root | — A root thread that is dispatched by TS upon a ‘dispatch

Thread root thread’ message.

System IP SIP There is one global System IP register for all the threads.
From a thread’s point of view, this is a virtual read only
register. Upon an exception, hardware performs some
bookkeeping and then jumps to SIP.

System Routine — Sequence of Gen4 instructions that handles exceptions.
SIP is programmed to point to this routine, and all threads
encountering an exception will call it.

Thread — An instance of a kernel program executed on an EU. The
life cycle for a thread starts from the executing the first
instruction after being dispatched from Thread Dispatcher
to an EU to the execution of the last instruction — a send
instruction with EOT that signals the thread termination.
Threads in GEN4 system may be independent from each
other or communicate with each other through Message
Gateway share function.

Thread Dispatcher TD Functional unit that arbitrates thread initiation requests
from Fixed Functions units and instantiates the threads on
EUs.

Thread ldentifier TID The field within a thread state register (SRO) that
identifies which thread slots on an EU a thread occupies. A
thread can be uniquely identified by the EUID and TID.

Thread Payload — Prior to a thread starting execution, some amount of data
will be pre-loaded in to the thread’s GRF (starting at r0).
This data is typically a combination of control information
provided by the spawning entity (FF Unit) and data read
from the URB.

Thread Spawner TS The second and the last fixed function stage of the media
pipeline that initiates new threads on behalf of
generic/media processing.

Topology — See Primitive Topology.

Unified Return URB The on-chip memory managed/shared by GEN4 Fixed

Buffer Functions in order for a thread to return data that will be
consumed either by a Fixed Function or other threads.

Unsigned Byte uB A numerical data type of 8 bits.

integer

Unsigned Double ub A numerical data type of 32 bits. It may be used to

Word integer specify the type of an operand in an instruction.

Unsignhed Word uw A numerical data type of 16 bits. It may be used to

integer

specify the type of an operand in an instruction.

Unsynchronized
Root Thread

A root thread that is automatically dispatched by TS.

URB Dereference

See URB Reference

intel.

Term

Abbr.

Definition

URB Entry

UE

URB Entry: A logical entity stored in the URB (such as a
vertex), referenced via a URB Handle.

URB Entry
Allocation Size

Number of URB entries allocated to a Fixed Function unit.

URB Fence

Fence

Virtual, movable boundaries between the URB regions
owned by each FF unit.

URB Handle

A unique identifier for a URB entry that is passed down a
pipeline.

URB Reference

For the most part, data is passed down the fixed function
pipeline in an indirect fashion. The data is typically stored
in the URB and accessed via a URB handle. When a
pipeline stage passes the handle of a URB data entry to a
downstream stage, it is said to make a URB reference.
Note that there may be several references to the same
URB data entry in the pipeline at any given time. When a
downstream stage accesses the URB data entry via a URB
handle, it is said to “dereference” the URB data entry.
When there are no longer any references to a URB data
entry within the pipeline, the URB storage can be
reclaimed.

Variable Length
Decode

VLD

The first stage of the video decoding pipe that consists
mainly of bit-wide operations. GEN4 supports hardware
VLD acceleration in the VFE fixed function stage.

Vertex Buffer

VB

Buffer in memory containing vertex attributes.

Vertex Cache

vC

Cache of Vertex URB Entry (VUE) handles tagged with
vertex indices. See the VS chapter for details on this
cache.

Vertex Fetcher

VF

The first FF unit in the 3D pipeline responsible for fetching
vertex data from memory. Sometimes referred to as the
Vertex Formatter.

Vertex Header

Vertex data required for every vertex appearing at the
beginning of a Vertex URB Entry.

Vertex ID

Unique ID for each vertex that can optionally be included
in vertex attribute data sent down the pipeline and used
by kernel/shader threads.

Vertex Index

Offset (in vertex-sized units) of a given vertex in a vertex
buffer. Available in the VF and VS units for debugging
purposes.

Vertex Sequence
Number

Unique ID for each vertex sent down the south bus that
may be used to identify vertices for debugging purposes.

Vertex Shader

VS

An APIl-supplied program that calculates vertex attributes.
Also refers to the FF unit that dispatches threads to
“shade” (calculate attributes for) vertices.

Vertex URB Entry

VUE

A URB entry that contains data for a specific vertex.

Vertical Stride

VertStride

The distance in element-sized units between 2 vertically-
adjacent elements of a Gen4 region-based GRF access.

29

30

Term Abbr. Definition

Video Front End VFE The first fixed function in the GEN4 generic pipeline;
performs fixed-function media operations.

Viewport VP Post-clipped geometry is mapped to a rectangular region
of the bound rendertarget(s). This rectangular region is
called a viewport. Typically, the viewport is set to the full
extent of the rendertarget(s), but any subregion can be
used as well.

Windower 1Z Wiz Term for Windower/Masker that encapsulates its early
(“intermediate™) depth test function.

Windower/Masker WM Fixed function triangle/line rasterizer.

Word W A numerical data type of 16 bits, W represents a signed

word integer.

88

intel)

Graphics Device Overview

2.

32

1 Graphics Memory Controller Hub (GMCH)

The GMCH is a system memory controller with an integrated graphics device. The
integrated graphics device is sometimes referred to in this document as a Graphics
Processing Unit (GPU). The GMCH connects to the CPU via a host bus and to system
memory via a memory bus. The GMCH also contains some 10 functionality to
interface to an external graphics device and also to an 10 controller. This document
will not contain any further references to external graphics devices or 10 controllers.

The graphics core, or GPU, resides within the GMCH, which also contains the memory
interface, configuration registers, and other chipset functions. The GPU itself can be
viewed as comprising the command streamer (CS) or command parser, the Memory
Interface or MI, the display interface, and (by far the largest element of the Gen4
family GMCH) the 3D/Media engine. This latter piece is made up of the 3D and media
“fixed function” (FF) pipelines, and the Gen4 subsystem, which these pipelines make
use of to run “shaders” and kernels.

Figure 2-1. GMCH Block Diagram

CPU
GMCH
Memory
Controller
(Optional)
External |1 10 iMemory
Graphics vV -
Device Interface Graphics
Processing
Unit (GPU)
Display
IO Controller

2.2

Graphics Processing Unit (GPU)

The Graphics Processing Unit is controlled by the CPU through a direct interface of
memory-mapped 10 registers, and indirectly by parsing commands that the CPU has
placed in memory. The display interface and blitter (block image transferrer) are
controlled primarily by direct CPU register addresses, while the 3D and Media pipelines
and the parallel Video Codec Engine (VCE) are controlled primarily through instruction
lists in memory.

The Gen4 subsystem contains an array of cores, or execution units, along with a
number of “shared functions”, which receive and process messages at the behest of
programs running on the cores. The shared functions perform critical tasks such as
sampling textures and updating the render target (usually the frame buffer). The
cores themselves are described by an instruction set architecture, or ISA.

Figure 2-2. Block Diagram of the GPU

CPU Regqister
In}enfage

GPU | GPE

3D/
Media
Sub-

system

Display/
Overlay

Blitter Media||| VCE

Memory Interface

Memory

Interface

33

intel.

Graphics Processing Engine
(GPE)

3.1

3.2

3.2.1

Introduction

This chapter serves two purposes: It provides a high-level description of the Graphics
Processing Engine (GPE) of the GEN4 Graphics Processing Unit (GPU). It also specifies
the programming and behaviors of the functions common to both pipelines (3D,
Media) within the GPE. However, details specific to either pipeline are not addressed
here.

Overview

The Graphics Processing Engine (GPE) performs the bulk of the graphics processing
provided by the GEN4 GPU. It consists of the 3D and Media fixed-function pipelines,
the Command Streamer (CS) unit that feeds them, and the GEN4 Subsystem that
provides the bulk of the computations required by the pipelines.

Block Diagram

Figure 3-1. The Graphics Processing Engine

34

Vertex Memory Source
Buffers Objects Surfaces

Sampler

Subsystem

Destination
*Inter-Thread Communication Surfaces

Figure 3-2. GPE Diagram Showing Fixed/Shared Functions

3.2.2

3.2.3

Memory Command Stream
from MI Function
/
GPE
CS
iL 1 Commands l i i
3D GEN4 Media
Pipeline Subsystem Pipeline
A4
VF < - URB - VFE
VS TS
GS | -
cLp| Amd
s
M

.

Command Stream (CS) Unit

The Command Stream (CS) unit manages the use of the 3D and Media pipelines, in
that it performs switching between pipelines and forwarding command streams to the
currently active pipeline. It manages allocation of the URB and helps support the
Constant URB Entry (CURBE) function.

3D Pipeline

The 3D pipeline provides specialized 3D primitive processing functions. These
functions are provided by a pipeline of “fixed function” stages (units) and GEN4
threads spawned by these units. See 3D Pipeline Overview.

35

intel)

3.2.5

3.25.1

3.2.6

36

Note:

Media Pipeline

The Media pipeline provides both specialized media-related processing functions and
the ability to perform more general (“generic”) functionality. These Media-specific
functions are provided by a Video Front End (VFE) unit. A Thread Spawner (TS) unit
is utilized to spawn GEN4 threads requested by the VFE unit or as required when the
pipeline is used for general processing. See Media Pipeline Overview.

GEN4 Subsystem

The GEN4 Subsystem is the collective name for the GEN4 programmable cores, the
Shared Functions accessed by them (including the Sampler, Extended Math Unit
(“MathBox™), the DataPort, and the Inter-Thread Communication (ITC) Gateway), and
the Dispatcher which manages threads running on the cores.

Execution Units (EUSs)

While the number of EU cores in the GEN4 subsystem is almost entirely transparent to
the programming model, there are a few areas where this parameter comes into play:

e The amount of scratch space required is a function of (#EUs * #Threads/EU)

e Debug registers (e.g., EU-enable bitmasks)

Device # of EUs #Threads/EU

All 8 4

GPE Function IDs

The following table lists the assigments (encodings) of the Shared Function and Fixed
Function IDs used within the GPE. A Shared Function is a valid target of a message
initiated via a ‘send’ instruction. A Fixed Function is an identifiable unit of the 3D or
Media pipeline. Note that the Thread Spawner is both a Shared Function and Fixed
Function.

The initial intention was to combine these two ID namespaces, so that (theoretically)
an agent (such as the Thread Spawner) that served both as a Shared Function and
Fixed Function would have a single, unique 4-bit ID encoding. However, this is not a
requirement of the architecture.

Table 3-1. Gen4 Function IDs

intel.

ID[3:0] SFID Shared Function FFID Fixed Function
0ox0 SFID_NULL Null FFID_NULL Null
Ox1 SFID_MATH Extended Math Reserved -—-
0ox2 SFID_SAMPLER Sampler Reserved -
0x3 SFID_GATEWAY Message Gateway Reserved -
ox4 SFID_DP_READ DataPort Read Reserved -
0ox5 SFID_DP_WRITE | DataPort Write Reserved -
0x6 SFID_URB URB Reserved -
Oox7 SFID_SPAWNER Thread Spawner FFID_SPAWNER | Thread Spawner
0x8 Reserved - FFID_VFE Video Front End
0x9 Reserved - FFID_VS Vertex Shader
OxA Reserved - FFID_CS Command Stream
0xB Reserved - FFID_VF Vertex Fetch
oxC Reserved - FFID_GS Geometry Shader
OxD Reserved - FFID_CLIP Clipper Unit
OxE Reserved - FFID_SF Strip/Fan Unit
OxF Reserved - FFID_WM Windower/Masker Unit

37

intel)

3.3

Pipeline Selection

The PIPELINE_SELECT command is used to specify which GPE pipeline (3D or Media)
is to be considered the “current” active pipeline. Issuing 3D-pipeline-specific
commands when the Media pipeline is selected, or vice versa, is UNDEFINED.

This command causes the URB deallocation of the previously selected pipe. For
example, switching from the 3D pipe to the Media pipe (either within or between
contexts) will cause the CS to send a “Deallocating Flush” down the 3D pipe. This will
cause each 3D FF to start a URB deallocation sequence after the current tasks are
done. When the WM sees this, it will de-reference the current Constant URB Entry.
Once this happens, all 3D URB entries will be deallocated (after some north bus
delay). This allows the CS to set the URB fences for the media pipe. And vice versa
for switching from media to 3D pipes.

Programming Restriction:

e Software must ensure the current pipeline is flushed via an MI_FLUSH prior to the
execution of PIPELINE_SELECT.

DWord

Bit Description

0 31:29 Instruction Type = GFXPIPE = 3h

28:16 3D Instruction Opcode = PIPELINE_SELECT

GFXPIPE[28:27 = Oh, 26:24 = 1h, 23:16 = 04h] (Non-pipelined)

15:1 Reserved: MBZ

0] Pipeline Select
0: 3D pipeline is selected

1: Media pipeline is selected

Note:

3.4

38

This one bit of Pipeline Select state is contained within the logical context.

Implementation Note: Currently, this bit is only required for switching pipelines.
The CS unit needs to know which pipeline (if any) has an outstanding CURBE
reference pending. A switch away from that pipeline requires the CS unit to force any
CURBE entries to be deallocated.

URB Allocation

Storage in the URB is divided among the various fixed functions in a programmable
fashion using the URB_FENCE command (see following).

3.4.1

intel)

URB_FENCE

The URB_FENCE command is used to define the current URB allocation for those FF
units that can own (write) URB entries. The FF units’ allocations are specified via a
set of 512-bit granular fence pointers, in a predefined order in the URB as shown in
the diagram below. (In the discussion below, “previous” refers to the relative position
in the list presented in Figure 3-3, not necessarily with respect to the order of fence
pointers in the command or the order of FF units in the physical pipelines).

The URB_FENCE command is required in certain programming sequences (see
programming notes below, as well as the Command Ordering Rules subsection below).

Each FF unit that can own URB entries is provided with a fence pointer that specifies
the URB address immediately following that FF unit’s allocated region (i.e., it identifies
the end of the allocated region). The range allocated to a particular FF unit therefore
starts at the previous FF unit’s fence pointer and ends at its associated fence pointer.
The starting fence pointer for the first (VS) fixed function is implied to be 0. URB
locations starting at the fence pointer of the last FF unit in the list (CS) are effectively
unusable. If a FF unit’s fence pointer is identical to the previous FF unit’s fence
pointer, the FF unit has no URB storage allocated to it (and therefore the FF unit must
either be disabled or otherwise programmed to not require its own URB entries).

The fencing and allocation of the URB is performed in a pipeline-dependent manner.
The following diagrams show the layout of the URB fence regions for the 3D and Media
pipelines (depending on which one is selected via PIPELINE_SELECT). In the
URB_FENCE command, Fence values not associated with the currently selected
pipeline will be ignored.

Figure 3-3. URB Allocation — 3D Pipeline

512 bits

VFVS Allocation
VS Fence >

GS Allocation

GS Fence —»

CLIP Allocation

CLP Fence —»

SF Allocation
SF Fence —»
CS Allocation
CS Fence —»
unused

URB_SIZE —»

39

Figure 3-4 URB Allocation — Media Pipeline

512 bits

VFE Allocation

VFE Fence —»

CS Allocation

CS Fence —»

unused

URB_SIZE —»

Programming Notes:

1.

URB Size
a. URB_SIZE is 16KB = 256 512-bit units

On a per-fixed-function basis, software must modify (via pipeline state pointer
commands) any (active) fixed-function state which relies on the size of the
fixed-function’s fenced URB region. If a fixed-function’s URB region is
repositioned within the URB, but retains the same size, the previous state is
still valid. Note that changing fence pointers via URB_FENCE only affects the
location of the allocated region, not the contents — i.e., no data copy is
performed.

A URB_FENCE command must be issued subsequent to any change to
the value in the GS or CLIP unit’'s Maximum Number of Threads
state (via PIPELINE_STATE_POINTERS) and before any subsequent
pipeline processing (e.g., via 3DPRIMITIVE or CONSTANT_BUFFER).

A URB_FENCE command must be issued subsequent to any change to
the value in any FF unit’'s Number of URB Entries or URB_Entry
Allocation Size state (via PIPELINE_STATE_POINTERS) and before
any subsequent pipeline processing (e.g., via 3DPRIMITIVE or
CONSTANT_BUFFER). Also see the Command Ordering Rules
subsection below.

To workaround a silicon issue it is required that this instruction be
programmed within a 64 byte cacheline aligned memory chunk (i.e., it
must not cross a 64-byte cacheline boundary.)

URB_FENCE

Project:

All

|Length Bias: 2

This command is used to set the fences between URB regions owned by the fixed functions.

DWord

Bit

Description

0

31:29

Command Type
Default Value: 3h GFXPIPE Format: OpCode

40

URB_FENCE

28:27 Command SubType
Default Value: Oh GFXPIPE_COMMON Format: OpCode
26:24 3D Command Opcode
Default Value: Oh GFXPIPE_PIPELINED Format: OpCode
23:16 3D Command Sub Opcode
Default Value: 00h URB_FENCE Format: OpCode
15:14 Reserved Project: All Format: MBZ
13 CS Unit URB Reallocation Request
Project: All
Format: Enable FormatDesc
If set, the CS unit will perform a URB entry deallocation/reallocation action.
Note: Modifying the CS URB allocation via URB_FENCE invalidates any previous CURBE
entries. Therefore software must subsequently [re]issue a CONSTANT_BUFFER
command before CURBE data can be used in the pipeline.
(The following description applies to all URB Reallocation Request bits):
A reallocation action is required if either (a) the region of the URB allocated to this unit
changes location or size as defined by the bracketing Fence values, or (b) the Number
of URB Entries or URB Entry Allocation Size state variables associated with this unit
have been modified since the last reallocation action. Software is required to set this bit
accordingly.
Within the context’s command stream, this is the only cause of a reallocation action --- a
reallocation action is not performed as a side effect of a change to the formentioned
state variables. Hardware will, however, take care of deallocation/reallocation resulting
from context swtiches.
Note that all Fence values provided in this command (and relevant to the selected
pipeline) are considered valid and provided to the active pipeline, regardless of any
reallocation requests. For example, if the 3D pipeline is selected and only the CS Fence
is being changed, the CLIP, GS, VS and SF Fence values must be programmed to their
correct (previous) values.
12 VFE Unit URB Reallocation Request
Project: All
Format: Enable FormatDesc
If set, the VFE unit will perform a URB entry deallocation/reallocation action. (See CS
Unit URB Reallocation Request description)
11 SF Unit URB Reallocation Request

Project: All
Format: Enable FormatDesc

If set, the SF unit will perform a URB entry deallocation/reallocation action. (See CS
Unit URB Reallocation Request description)

41

URB_FENCE
10 CLIP Unit URB Reallocation Request
Project: All
Format: Enable FormatDesc
If set, the CLIP unit will perform a URB entry deallocation/reallocation action. (See
CS Unit URB Reallocation Request description)
9 GS Unit URB Reallocation Request
Project: All
Format: Enable FormatDesc
If set, the GS unit will perform a URB entry deallocation/reallocation action. (See CS
Unit URB Reallocation Request description)
8 VS Unit URB Reallocation Request
Project: All
Format: Enable FormatDesc
If set, the VS unit will perform a URB entry deallocation/reallocation action. (See CS
Unit URB Reallocation Request description)
7:0 DWord Length
Default Value: 1h Excludes DWord (0,1)
Format: =n Total Length - 2
Project: All
1 31:30 Reserved Project: All Format: MBZ
29:20 CLIP Fence
Project: All
Format: U10 representing the first 512-bit FormatDesc
URB address beyond this unit’'s URB
space
Range [GS Fence,256]
Indicates the URB fence value for the CLIP unit.
This field is considered valid whenever the 3D pipeline is selected via
PIPELINE_SELECT. Otherwise it is ignored.
19:10 GS Fence
Project: All
Format: U10 representing the first 512-bit FormatDesc
URB address beyond this unit’'s URB
space
Range [VS Fence,256]
Indicates the URB fence value for the GS unit.
This field is considered valid whenever the 3D pipeline is selected via
PIPELINE_SELECT. Otherwise it is ignored.

42

intel.

URB_FENCE
9:0 VS Fence
Project: All
Format: U10 representing the first 512-bit FormatDesc
URB address beyond this unit’'s URB
space
Range [0.256]
Indicates the URB fence value for the VS unit.
Note: When the 3D pipeline is used, the VS FF unit must be allocated URB space
even if the VS function (i.e., “vertex shading”) is disabled. The VF unit utilizes Vertex
URB Entries (VUEs) allocated to the VS in order to input vertex data to the 3D pipeline
even if vertex shading is not enabled.
This field is considered valid whenever the 3D pipeline is selected via
PIPELINE_SELECT. Otherwise it is ignored.
31 Reserved Project: All Format: MBZ
30:20 CS Fence
Project: All
Format: U11 representing the first 512-bit FormatDesc
URB address beyond this unit’'s URB
space
Range [VFE Fence,256] (Media) or [SF Fence,256] (3D Pipe)
Indicates the URB fence value for the CS unit.
This field is always considered valid, as it is relevant regardless of the currently
selected pipeline.
19:10 VFE Fence
Project: All
Format: U10 representing the first 512-bit FormatDesc
URB address beyond this unit’'s URB
space
Range [0,256]
Indicates the URB fence value for the VFE unit. This field is considered valid whenever
the Media pipeline is selected via PIPELINE_SELECT. Otherwise it is ignored.
9:0 SF Fence
Project: All
Format: U10 representing the first 512-bit FormatDesc
URB address beyond this unit’'s URB
space
Range [CLIP Fence,256]

Indicates the URB fence value for the SF unit.

This field is considered valid whenever the 3D pipeline is selected via
PIPELINE_SELECT. Otherwise it is ignored.

43

intel)

3.5

3.5.1

3.5.2

44

Constant URB Entries (CURBESs)

Overview

It is anticipated that threads will need to access some amount of non-immediate
constant data, e.g., a matrix from a VS kernel. While the DataPort can be used to
read (“pull”) this data from a memory buffer, doing so may incur a performance
penalty due to the latency of the access. In order to provide a higher-performance
path, both pipelines are provided with the ability to preload (“push”) data from a
memory buffer into the URB and have portions of that data automatically included in
subsequent thread payloads. These pushed constants will then be immediately
available for use by the thread (at the expense of increased GRF allocation, dispatch
latency, etc.).

The mechanism to push constants into thread payloads is the Constant URB Entry
(CURBE). The CURBE is a special URB entry (owned by the CS unit) used to store the
constant data. Software can issue the CONSTANT_BUFFER command to specify the
source Constant Buffer in memory. Upon receipt of that command, the CS unit will
read the Constant Buffer data from memory and write the data into the CURBE. Fixed
functions of the pipeline can be programmed to include their subset of the CURBE data
in thread payloads.

Multiple CURBE Allocation

There is only one “current” CURBE state provided by the architecture. Portions of the
current CURBE is available to the various fixed-function stages of the pipelines.
However, in order to avoid having to flush the pipeline prior to modifying the contents
of the current CURBE, the GPE is supplied with the ability to pipeline changes to the
current CURBE. This support comes in the form of a set of CURBEs that can be
maintained in the URB. A region of the URB can be allocated to the CS unit (see
URB_FENCE command) to hold this set of CURBEs. Within that region, software can
define a set of up to 4 Constant URB Entries (CURBEs) — (see CS_URB_STATE
command).

When a CONSTANT_BUFFER command is received, an attempt is made to find an
unused CURBE within the set. If one is found, it is used as the destination of the
memory read, and the handle of that CURBE is passed down the pipeline without
incurring a pipeline flush performance penalty. Fixed functions will switch to using the
new CURBE as the handle travels down the pipeline. When the handle reaches the
end of the pipeline, the previous CURBE is marked as unused.

If a CONSTANT_BUFFER command is encountered and there is only one CURBE
allocated and it is in use, the CS unit will implicitly wait for the pipeline to drain and
the CURBE to become available to be overwritten. Due to the performance impact of
modifying the CURBE when only a single CURBE is allocated, it is recommended that
software operate with a single CURBE allocation only if (a) the CURBE is large enough
to make multiple allocations undesirable, and/or (b) it is anticipated that the constant
data will remain static for long processing periods (thus amortizing the impact of
modifying it).

3.5.3

CS_URB_STATE

CS_URB_STATE

Project:

All

|Length Bias: 2

The CS_URB_STATE packet is used to define the number and size of CURBEs contained within the CS unit’'s

allocated URB region.

DWord Bit Description
0 31:29 Command Type
Default Value: 3h GFXPIPE Format: OpCode
28:27 Command SubType
Default Value: Oh GFXPIPE_COMMON Format: OpCode
26:24 3D Command Opcode
Default Value: Oh GFXPIPE_PIPELINED Format: OpCode
23:16 3D Command Sub Opcode
Default Value: 01h CS_URB_STATE Format: OpCode
15:8 Reserved Project: All Format: MBZ
7:0 DWord Length
Default Value: Oh Excludes DWord (0,1)
Format: =n Total Length - 2
Project: All
1 31:9 Reserved Project: All Format: MBZ
8:4 URB Entry Allocation Size
Project: All
Format: U5 count (of 512-bit units) — 1 FormatDesc
Range [0,31] = [1,32] 512-bit units = [2,64] 256-bit URB rows
Specifies the length of each URB entry owned by the CS unit.
3 Reserved Project: All Format: MBZ
2:0 Number of URB Entries

Project: All
Format: U3 count of entries FormatDesc
Range [0,4]

Specifies the number of URB entries that are used by the CS unit.

45

intel.

3.5.4

CONSTANT_BUFFER

CONSTANT_BUFFER

Project:

All

|Length Bias: |2

The CONSTANT_BUFFER packet is used to define the memory address of data that will be read by the CS unit and

stored into the current CURBE entry.

Programming Notes:

e |Issuing a CONSTANT_BUFFER packet with Valid set when the CS unit does not have any CURBE entries
allocated in the URB results in UNDEFINED behavior.

e Modifying the CS URB allocation via URB_FENCE invalidates any previous CURBE entries. Therefore software
must subsequently [re]issue a CONSTANT_BUFFER command before CURBE data can be used in the pipeline.

DWord Bit Description
0 31:29 Command Type

Default Value: 3h GFXPIPE Format: OpCode

28:27 Command SubType
Default Value: Oh GFXPIPE_COMMON Format: OpCode

26:24 3D Command Opcode
Default Value: Oh GFXPIPE_PIPELINED Format: OpCode

23:16 3D Command Sub Opcode
Default Value: 02h CONSTANT_BUFFER Format: OpCode

15:9 Reserved Project: All Format: MBZ

8 Valid

Project: All
Format: Enable FormatDesc
If TRUE, a Constant Buffer will be defined and possibly used in the pipeline (depending
on FF unit state programming). The Buffer Starting Address and Buffer Length
fields are valid.
If FALSE, the Constant Buffer becomes undefined and unused. The Buffer Starting
Address and Buffer Length fields are ignored. The FF unit state descriptors must
not specify the use of CURBE data, or behavior is UNDEFINED.

7:0 DWord Length

Default Value: Oh Excludes DWord (0,1)
Format: =n Total Length - 2
Project: All

46

CONSTANT_BUFFER

1 31:6 Buffer Starting Address
Project: All
Format: GeneralStateOffset[31:6] or FormatDesc

GraphicsAddress[31:6] (see below)
If Valid is set and INSTPM<CONSTANT_BUFFER Address Offset Disable> is clear
(enabled), this field defines the location of the memory-resident constant data via a
64Byte-granular offset from the General State Base Address.
If Valid is set and INSTPM<CONSTANT_BUFFER Address Offset Disable> is set
(disabled), this field defines the location of the memory-resident constant data via a
64Byte-granular Graphics Address (not offset).
Programming Notes
Constant Buffers can only be allocated in linear (not tiled) graphics memory
Constant Buffers can only be mapped to Main Memory (UC)
5:0 Buffer Length
Project: All
Format: U6 Count-1 in 512-bit units FormatDesc
If Valid is set, this field specifies the length of the constant data to be loaded from
memory into the CURBE in 512-bit units (minus one). The length must be less than
or equal to the URB Entry Allocation Size specified via the CS_URB_STATE
command.
3.6 Memory Access Indirection

The GPE supports the indirection of certain graphics (GTT-mapped) memory accesses.
This support comes in the form of two base address state variables used in certain
memory address computations with the GPE.

The intent of this functionality is to support the dynamic relocation of certain driver-
generated memory structures after command buffers have been generated but prior
to their submittal for execution. For example, as the driver builds the command
stream it could append pipeline state descriptors, kernel binaries, etc. to a general
state buffer. References to the individual items would be inserting in the command
buffers as offsets from the base address of the state buffer. The state buffer could
then be freely relocated prior to command buffer execution, with the driver only
needing to specify the final base address of the state buffer. Two base addresses are
provided to permit surface-related state (binding tables, surface state tables) to be
maintained in a state buffer separate from the general state buffer.

While the use of these base addresses is unconditional, the indirection can be

effectively disabled by setting the base addresses to zero. The following table lists the
various GPE memory access paths and which base address (if any) is relevant.

47

48

intel.

Table 3-2.

Base Address Utilization

Base Address Used

Memory Accesses

General State Base
Address

CS unit reads from CURBE Constant Buffers via
CONSTANT_BUFFER when INSTPM< CONSTANT_BUFFER
Address Offset Disable> is clear (enabled).

3D Pipeline FF state read by the 3D FF units, as referenced by
state pointers passed via 3DSTATE_PIPELINE_POINTERS.

Media pipeline FF state, as referenced by state pointers passed
via MEDIA_PIPELINE_POINTERS.

DataPort memory accesses resulting from ‘stateless’ DataPort
Read/Write requests. See DataPort for a definition of the
‘stateless’ form of requests.

General State Base
Address

Sampler reads of Sampler State data and associated Default
Color State data

Viewport states used by CLIP, SF, and WM/CC

COLOR_CALC_STATE

General State Base
Address

Normal EU instruction stream (non-system routine)

System routine EU instruction stream (starting address = SIP)

Surface State Base
Address

Sampler and DataPort reads of Binding Table data, as referenced
by BT pointers passed via 3DSTATE_BINDING_TABLE_POINTERS

Sampler and DataPort reads of Surface State data

Indirect Object Base
Address

MEDIA_OBJECT Indirect Data accessed by the CS unit .

None

CS unit reads from Ring Buffers, Batch Buffers

CS unit reads from CURBE Constant Buffers via
CONSTANT_BUFFER when INSTPM< CONSTANT_BUFFER
Address Offset Disable> is set (disabled).

CS wrrites resulting from 3D_CONTROL

All VF unit memory accesses (Index Buffers, Vertex Buffers)

All Sampler Surface Memory Data accesses (texture fetch, etc.)

All DataPort memory accesses except ‘stateless’ DataPort
Read/Write requests (e.g., RT accesses.) See DataPort for a
definition of the ‘stateless’ form of requests.

Memory reads resulting from STATE_PREFETCH commands

Any physical memory access by the device

GTT-mapped accesses not included above (i.e., default)

intel)

The following notation is used in the PRM to distinguish between addresses and

offsets:
Notation Definition

PhysicalAddress[n:m] Corresponding bits of a physical graphics memory byte address
(not mapped by a GTT)

GraphicsAddress[n:m] Corresponding bits of an absolute, virtual graphics memory byte
address (mapped by a GTT)

GeneralStateOffset[n:m] Corresponding bits of a relative byte offset added to the General
State Base Address value, the result of which is interpreted as a
virtual graphics memory byte address (mapped by a GTT)

SurfaceStateOffset[n:m] Corresponding bits of a relative byte offset added to the Surface
State Base Address value, the result of which is interpreted as a
virtual graphics memory byte address (mapped by a GTT)

3.6.1 STATE_BASE_ADDRESS

The STATE_BASE_ADDRESS command sets the base pointers for subsequent state,
instruction, and media indirect object accesses by the GPE. (See Table 3-2. Base
Address Utilization for details)

Programming Notes:

e The following commands must be reissued following any change to the base
addresses:
— 3DSTATE_PIPELINE_POINTERS
— 3DSTATE_BINDING_TABLE_POINTERS
— MEDIA_STATE_POINTERS.

e Execution of this command causes a full pipeline flush, thus its use should be
minimized for higher performance.

49

intel.

STATE_BASE_ADDRESS

Project: All | Length Bias: | 2

The STATE_BASE_ADDRESS command sets the base pointers for subsequent state, instruction, and media
indirect object accesses by the GPE. (See Table 3-2. Base Address Utilization for details)

Programming Notes:
e The following commands must be reissued following any change to the base addresses:
— 3DSTATE_PIPELINE_POINTERS
— 3DSTATE_BINDING_TABLE_POINTERS
— MEDIA_STATE_POINTERS.

e Execution of this command causes a full pipeline flush, thus its use should be minimized for higher

performance.
DWord Bit Description
0 31:29 Command Type
Default Value: 3h GFXPIPE Format: OpCode
28:27 Command SubType
Default Value: Oh GFXPIPE_COMMON Format: OpCode

26:24 3D Command Opcode
Default Value: 1h GFXPIPE_NONPIPELINED Format: OpCode

23:16 3D Command Sub Opcode

Default Value: 01h STATE_BASE_ADDRESS Format: OpCode
15:8 Reserved Project: All Format: MBZ
7:0 DWord Length
Default Value: 4h Excludes DWord (0,1)
Format: =n Total Length - 2
Project: All

50

STATE_BASE_ADDRESS

31:12 General State Base Address
Project: All
Format: GraphicsAddress[31:12] FormatDesc
Specifies the 4K-byte aligned base address for general state accesses. See Table 3-2
for details on where this base address is used.

11:1 Reserved Project: All Format: MBZ

0 Modify Enable

Project: All
Format: Enable FormatDesc
The address in this dword is updated only when this bit is set.
Value Name Description Project
Oh Disable Ignore the updated address All
1h Enable Modify the address All

31:12 Surface State Base Address
Project: All
Format: GraphicsAddress[31:12] FormatDesc
Specifies the 4K-byte aligned base address for binding table and surface state accesses.
See Table 3-2 for details on where this base address is used.

11:1 Reserved Project: All Format: MBZ

0] Modify Enable

Project: All
Format: Enable FormatDesc

The address in this dword is updated only when this bit is set.

Value Name Description Project
Oh Disable Ignore the updated address All
1h Enable Modify the address All

51

STATE_BASE_ADDRESS

3 31:12 Indirect Object Base Address

Project: All
Format: GraphicsAddress[31:12] FormatDesc
Specifies the 4K-byte aligned base address for indirect object load in MEDIA_OBJECT
command. See Table 3-2 for details on where this base address is used.

11:1 Reserved Project: All Format: MBZ

0 Modify Enable
Project: All
Format: Enable FormatDesc
The address in this dword is updated only when this bit is set.
Value Name Description Project
Oh Disable Ignore the updated address All
1h Enable Modify the address All
4 31:12 General State Access Upper Bound

Project: All
Format: GraphicsAddress[31:12] FormatDesc
Specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address for
general state accesses. This includes all accesses that are offset from General State
Base Address (see Table 3-2). Read accesses from this address and beyond will
return UNDEFINED values. Data port writes to this address and beyond will be
“dropped on the floor” (all data channels will be disabled so no writes occur). Setting
this field to O will cause this range check to be ignored.
If non-zero, this address must be greater than the General State Base Address.

11:1 Reserved Project: All Format: MBZ

0 Modify Enable

Project: All
Format: Enable FormatDesc
The bound in this dword is updated only when this bit is set.
Value Name Description Project
Oh Disable Ignore the updated bound All
1h Enable Modify the bound All

52

STATE_BASE_ADDRESS

5 31:12 Indirect Object Access Upper Bound
Project: All
Format: GraphicsAddress[31:12] FormatDesc

This field specifies the 4K-byte aligned (exclusive) maximum Graphics Memory address
access by an indirect object load in a MEDIA_OBJECT command. Indirect data accessed
at this address and beyond will appear to be 0. Setting this field to O will cause this
range check to be ignored.

If non-zero, this address must be greater than the Indirect Object Base Address.
Hardware ignores this field if indirect data is not present.

Setting this field to FFFFFh will cause this range check to be ignored.

11:1 Reserved Project: All Format: MBZ
0 Modify Enable
Project: All
Format: Enable FormatDesc

The bound in this dword is updated only when this bit is set.

Value Name Description Project

Oh Disable Ignore the updated bound All

1h Enable Modify the bound All
3.7 Instruction and State Prefetch

The STATE_PREFETCH command is provided strictly as an optional mechanism to
possibly enhance pipeline performance by prefetching data into the GPE’s Instruction
and State Cache (I1SC).

53

3.

7.1

intel.

STATE_PREFETCH

STATE_PREFETCH

Project:

All

|Length Bias: |2

(This command is provided strictly for performance optimization opportunities, and likely requires some
experimentation to evaluate the overall impact of additional prefetching.)

The STATE_PREFETCH command causes the GPE to attempt to prefetch a sequence of 64-byte cache lines into
the GPE-internal cache (“L2 ISC”) used to access EU kernel instructions and fixed/shared function indirect state
data. While state descriptors, surface state, and sampler state are automatically prefetched by the GPE, this
command may be used to prefetch data not automatically prefetched, such as: 3D viewport state; Media
pipeline Interface Descriptors; EU kernel instructions.

DWord Bit Description
0 31:29 Command Type
Default Value: 3h GFXPIPE Format: OpCode
28:27 Command SubType
Default Value: Oh GFXPIPE_COMMON Format: OpCode
26:24 3D Command Opcode
Default Value: Oh GFXPIPE_PIPELINED Format: OpCode
23:16 3D Command Sub Opcode
Default Value: 03h STATE_PREFETCH Format: OpCode
15:8 Reserved Project: All Format: MBZ
7:0 DWord Length
Default Value: Oh Excludes DWord (0,1)
Format: =n Total Length - 2
Project: All
1 31:6 Prefetch Pointer
Project: All
Format: GraphicsAddress[31:6] FormatDesc
Specifies the 64-byte aligned address to start the prefetch from. This pointer is an
absolute virtual address, it is not relative to any base pointer.
5:3 Reserved Project: All Format: MBZ
2:0 Prefetch Count

Project: All
Format: U3 count of cache lines (minus one) FormatDesc
Range [0,7] indicating a count of [1,8]

Indicates the number of contiguous 64-byte cache lines that will be prefetched.

54

3.8 System Thread Configuration
3.8.1 STATE_SIP
STATE_SIP
Project: All |Length Bias: 2

The STATE_SIP command specifies the starting instruction location of the System Routine that is shared by all

threads in execution.

DWord Bit Description
0 31:29 Command Type
Default Value: 3h GFXPIPE Format: OpCode
28:27 Command SubType
Default Value: Oh GFXPIPE_COMMON Format: OpCode
26:24 3D Command Opcode
Default Value: 1h GFXPIPE_NONPIPELINED Format: OpCode
23:16 3D Command Sub Opcode
Default Value: 02h STATE_SIP Format: OpCode
15:8 Reserved Project: All Format: MBZ
7:0 DWord Length
Default Value: Oh Excludes DWord (0,1)
Format: =n Total Length - 2
Project: All
1 31:4 System Instruction Pointer (SIP)
Project: All
Format: GeneralStateOffset[31:4] FormatDesc
Specifies the instruction address of the system routine associated with the current
context as a 128-bit granular offset from the General State Base Address. SIP is
shared by all threads in execution. The address specifies the double quadword aligned
instruction location.
Errata Description Project
BWTOO7 Instructions pointed at by offsets from General State Base = [DevBW-A]
must be contained within 32-bit physical address space
(that is, must map to memory pages under 4G.)
3:0 Reserved Project: All Format: MBZ

55

intel)

3.9 Command Ordering Rules

There are several restrictions regarding the ordering of commands issued to the GPE.
This subsection describes these restrictions along with some explanation of why they
exist. Refer to the various command descriptions for additional information.

The following flowchart illustrates an example ordering of commands which can be
used to perform activity within the GPE.

‘ MI_FLUSH ‘

:

PIPELINE_SELECT ‘

Common or Pipeline-specific state-
setting commands can be issued L
along any paths from here down ‘

CS_URB_STATE ‘

i

3D o Media
Pipeline?
A v
‘ 3DSTATE_PIPELINE_POINTERS ‘ ‘ MEDIA_STATE_POINTERS ‘
URB_FENCE URB_FENCE
‘ CONSTANT_BUFFER ‘ ‘ CONSTANT_BUFFER ‘
‘ 3DPRIMITIVE / 3DCONTROL ‘ ‘ MEDIA_OBJECT ‘

3.9.1 PIPELINE_SELECT

The previously-active pipeline needs to be flushed via the MI_FLUSH command
immediately before switching to a different pipeline via use of the PIPELINE_SELECT
command. Refer to Section 3.3 for details on the PIPELINE_SELECT command.

3.9.2 PIPE_CONTROL

The PIPE_CONTROL command does not require URB fencing/allocation to have been
performed, nor does it rely on any other pipeline state. It is intended to be used on
both the 3D pipe and the Media pipe. It has special optimizations to support the
pipelining capability in the 3D pipe which do not apply to the Media pipe.

56

3.9.3

3.9.4

3.9.5

intel)

Several commands are used (among other things) to set state variables used in URB
entry allocation --- specifically, the Number of URB Entries and the URB Entry
Allocation Size state variables associated with various pipeline units. These state
variables must be set-up prior to the issuing of a URB_FENCE command. (See the
sub-section on URB_FENCE below).

URB-Related State-Setting Commands

CS_URB_STATE (only) specifies these state variables for the common CS FF unit.
3DSTATE_PIPELINED_POINTERS sets the state variables for FF units in the 3D
pipeline, and MEDIA_STATE_POINTERS sets them for the Media pipeline. Depending
on which pipeline is currently active, only one of these commands needs to be used.
Note that these commands can also be reissued at a later time to change other state
variables, though if a change is made to (a) any Number of URB Entries and the
URB Entry Allocation Size state variables or (b) the Maximum Number of
Threads state for the GS or CLIP FF units, a URB_FENCE command must follow.

Common Pipeline State-Setting Commands

The following commands are used to set state common to both the 3D and Media
pipelines. This state is comprised of CS FF unit state, non-pipelined global state (EU,
etc.), and Sampler shared-function state.

e STATE_BASE_ADDRESS

e STATE_SIP

e 3DSTATE_SAMPLER_PALETTE_LOAD

e 3DSTATE_CHROMA_KEY

The state variables associated with these commands must be set appropriately prior
to initiating activity within a pipeline (i.e., 3DPRIMITIVE or MEDIA_OBJECT).

3D Pipeline-Specific State-Setting Commands

The following commands are used to set state specific to the 3D pipeline.

e 3DSTATE_PIPELINED_POINTERS

e 3DSTATE_BINDING_TABLE_POINTERS
e 3DSTATE_VERTEX_BUFFERS

e 3DSTATE_VERTEX_ELEMENTS

e 3DSTATE_INDEX_BUFFERS

e 3DSTATE_DRAWING_RECTANGLE

e 3DSTATE_CONSTANT_COLOR

e 3DSTATE_DEPTH_BUFFER

e 3DSTATE_POLY_STIPPLE_OFFSET
e 3DSTATE_POLY_STIPPLE_PATTERN
e 3DSTATE_LINE_STIPPLE

e 3DSTATE_GLOBAL_DEPTH_OFFSET

The state variables associated with these commands must be set appropriately prior
to issuing 3DPRIMITIVE.

57

intel)

3.9.7

58

Media Pipeline-Specific State-Setting Commands

The following commands are used to set state specific to the Media pipeline.
e MEDIA_STATE_POINTERS

The state variables associated with this command must be set appropriately prior to
issuing MEDIA_OBJECT.

URB_FENCE (URB Fencing & Entry Allocation)

URB_FENCE command is used to initiate URB entry deallocation/allocation processes
within pipeline FF units. The URB_FENCE command is first processed by the CS FF
unit, and is then directed down the currently selected pipeline to the FF units
comprising that pipeline.

As the FF units receive the URB_FENCE command, a URB entry deallocation/allocation

process with be initiated if (a) the FF unit is currently enabled (note that some cannot

be disabled) and (b) the ModifyEnable bit associated with that FF unit's Fence value

is set. If these conditions are met, the deallocation of the FF unit’s currently-allocated
URB entries (if any) commences. (Implementation Note: For better performance, this
deallocation proceeds in parallel with allocation of new handles).

Modifying the CS URB allocation via URB_FENCE invalidates any previous CURBE
entries. Therefore software must subsequently [re]issue a CONSTANT_BUFFER
command before CURBE data can be used in the pipeline.

The allocation of new handles (if any) for the FF unit then commences. The
parameters used to perform this allocation come from (a) the URB_FENCE Fence
values, and (b) the relevant URB entry state associated with the FF unit: specifically,
the Number of URB Entries and the URB Entry Allocation Size. For the CS unit,
this state is programmed via CS_URB_STATE, while the other FF units receive this
state indirectly via PIPELINED_STATE_POINTERS or MEDIA_STATE_POINTERS
commands.

Although a FF unit’s allocation process relies on it's URB Fence as well as the relevant
FF unit pipelined state, only the URB_FENCE command initiates URB entry
deallocation/allocation. This imposes the following restriction: If a change is made to
(a) the Number of URB Entries or URB Entry Allocation Size state for a given FF
unit or (b) the Maximum Number of Threads state for the GS or CLIP FF units, a
URB_FENCE command specifying a valid URB Fence state for that FF unit must be
subsequently issued — at some point prior to the next CONSTANT_ BUFFER,
3DPRIMITIVE (if using the 3D pipeline) or MEDIA_OBJECT (if using the Media
pipeline). It is invalid to change Number of URB Entries or URB Entry Allocation
Size state for enabled FF units without also issuing a subsequent URB_FENCE
command specifying a valid Fence valid for that FF unit.

It is valid to change a FF unit’s Fence value without specifying a change to its
Number of URB Entries or URB Entry Allocation Size state, though the values
must be self-consistent.

intel)

3.9.8 CONSTANT_BUFFER (CURBE Load)

The CONSTANT_BUFFER command is used to load constant data into the CURBE URB
entries owned by the CS unit. In order to write into the URB, CS URB fencing and
allocation must have been established. Therefore, CONSTANT_BUFFER can only be
issued after CS_URB_STATE and URB_FENCE commands have been issued, and prior
to any other pipeline processing (i.e., 3DPRIMITIVE or MEDIA_OBJECT). See the
definition of CONSTANT_BUFFER for more details.

Modifying the CS URB allocation via URB_FENCE invalidates any previous CURBE

entries. Therefore software must subsequently [re]lissue a CONSTANT_BUFFER
command before CURBE data can be used in the pipeline.

3.9.9 3DPRIMITIVE

Before issuing a 3DPRIMITIVE command, all state (with the exception of
MEDIA_STATE_POINTERS) needs to be valid. Therefore the commands used to set
this state need to have been issued at some point prior to the issue of 3DPRIMITIVE.

3.9.10 MEDIA_OBJECT

Before issuing a MEDIA_OBJECT command, all state (with the exception of 3D-
pipeline-specific state) needs to be valid. Therefore the commands used to set this
state need to have been issued at some point prior to the issue of MEDIA_OBJECT.

59

intel)

Graphics Command Formats

4.1

60

Command Formats

This section describes the general format of the graphics device commands.

Graphics commands are defined with various formats. The first DWord of all
commands is called the header DWord. The header contains the only field common to
all commands -- the client field that determines the device unit that will process the
command data. The Command Parser examines the client field of each command to
condition the further processing of the command and route the command data
accordingly.

Some Gen4 Devices include two Command Parsers, each controlling an independent
processing engine. These will be referred to in this document as the Render
Command Parser (RCP) and the Video Codec Command Parser (VCCP).

Valid client values for the Render Command Parser are:

Client # Client
0 Memory Interface (MI_xxx)
1 Miscellaneous (includes Trusted Ops)
2 2D Rendering (xxx_BLT_xxx)
3 Graphics Pipeline (3D and Media)
4-7 Reserved

Graphics commands vary in length, though are always multiples of DWords. The
length of a command is either:

e Implied by the client/opcode

e Fixed by the client/opcode yet included in a header field (so the Command Parser
explicitly knows how much data to copy/process)

e Variable, with a field in the header indicating the total length of the command

Note that command sequences require QWord alignment and padding to QWord length
to be placed in Ring and Batch Buffers.

The following subsections provide a brief overview of the graphics commands by client
type provides a diagram of the formats of the header DWords for all commands.
Following that is a list of command mnemonics by client type.

4.1.1

4.1.2

4.1.3

4.1.4

4.1.5

Memory Interface Commands

Memory Interface (Ml) commands are basically those commands which do not require
processing by the 2D or 3D Rendering/Mapping engines. The functions performed by
these commands include:

e Control of the command stream (e.g., Batch Buffer commands, breakpoints, ARB
On/Off, etc.)

e Hardware synchronization (e.g., flush, wait-for-event)
e Software synchronization (e.g., Store DWORD, report head)
¢ Graphics buffer definition (e.g., Display buffer, Overlay buffer)

e Miscellaneous functions

Refer to the Memory Interface Commands chapter for a description of these
commands.

2D Commands

The 2D commands include various flavors of Blt operations, along with commands to
set up BIt engine state without actually performing a Blt. Most commands are of fixed
length, though there are a few commands that include a variable amount of "inline"
data at the end of the command.

Refer to the 2D Commands chapter for a description of these commands.

3D/Media Commands

The 3D/Media commands are used to program the graphics pipelines for 3D or media
operations.

Refer to the 3D chapter for a description of the 3D state and primitive commands and

the Media chapter for a description of the media-related state and object commands.

Video Codec Commands

Command Header

The Command Headers are shown in the following tables.

61

intel.

Table 4-1. RCP Command Header Format

Bits
TYPE 31:29 28:24 23 22 21:0
Memory 000 Opcode Identification No./DWord Count
Interface 00h — NOP Command Dependent Data
M1 0Xh — Single DWord Commands 5:0 — DWord Count
1Xh — Two+ DWord Commands 5:0 — DWord Count
2Xh — Store Data Commands 5:0 — DWord Count
3Xh — Ring/Batch Buffer Cmds
Reserved 001 Opcode — 11111 23:19 18:16 15:0
Sub Opcode Re- DWord Count
00h — 01h served
2D 010 Opcode Command Dependent Data
4:0 — DWord Count
TYPE 31:29 28:27 26:24 23:16 15:8 7:0
Common 011 00 Opcode — 000 Sub Opcode Data bword
Count
Common (NP) 011 00 Opcode — 001 Sub Opcode Data Dword
Count
Reserved 011 00 Opcode — 010 — 111
Single Dword 011 01 Opcode — 000 — 001 Sub Opcode
N/A
Command
Reserved 011 01 Opcode — 010 — 111
Media State 011 10 Opcode — 000 Sub Opcode Dword
Count
Media Object 011 10 Opcode — 001 — 010 Sub Opcode Dword Count
Reserved 011 10 Opcode — 011 — 111
011 11 Opcode — 000 Dword
3DState p Sub Opcode Data Count
3DState (NP) 011 11 Opcode — 001 Sub Opcode Data Dword
Count
PIPE_Control 011 11 Opcode — 010 Data Dword
- Count
DWord
3DPrimitive 011 11 OpCOde — 011 Data Count
Reserved 011 11 Opcode — 100 — 111
Reserved 1XX XX
NOTES:

62

1. The qualifier “NP” indicates that the state variable is non-pipelined and the
render pipe is flushed before such a state variable is updated. The other state
variables are pipelined (default).

intel.

Table 4-2. VCCP Command Header Format

Bits
TYPE 31:29 28:24 23 22 21:0
Memory 000 Opcode Identification No./DWord Count
Interface 00h — NOP Command Dependent Data
M) 0Xh — Single DWord Commands 5:0 — DWord Count
1Xh — Reserved 5:0 — DWord Count
2Xh — Store Data Commands 5:0 — DWord Count
3Xh — Ring/Batch Buffer Cmds
TYPE 31:29 28:27 26:24 23:16 15:0
Reserved 011 (0):¢ XXX XX
Reserved 011 10 OXX
AVC State 011 10 100 Opcode: Oh — 4h DWord Count
AVC Object 011 10 100 Opcode: 8h DWord Count
VC1 State 011 10 101 Opcode: Oh — 4h DWord Count
VC1 Object 011 10 101 Opcode: 8h DWord Count
Reserved 011 10 110 Opcode: Oh — 1h DWord Count
Reserved 011 10 110 Opcode: 8h DWord Count
Reserved 011 10 11X
Reserved 011 11 XXX
TYPE 31:29 28:27 26:24 23:21 20:16 15:0
MFX Common 011 10 000 000 subopcode DWord Count
Reserved 011 10 000 001-111 subopcode DWord Count
AVC Common 011 10 001 000 subopcode DWord Count
AVC Dec 011 10 001 001 subopcode DWord Count
AVC Enc 011 10 001 010 subopcode DWord Count
Reserved 011 10 001 011-111 subopcode DWord Count
\R/gieg)ergéf(())r:) 011 10 010 000 subopcode DWord Count
VC1 Dec 011 10 010 001 subopcode DWord Count
\F;(eieg]ic)i (for 011 10 010 010 subopcode DWord Count
Reserved 011 10 010 011-111 subopcode DWord Count
Reserved 011 10 011
(MPEG2 000 subopcode DWord Count
Common)
MPEG2 Dec 011 10 011 001 subopcode DWord Count
“Rﬂizz\éegngor 011 10 011 010 subopcode DWord Count
Reserved 011 10 011 011-111 subopcode DWord Count
Reserved 011 10 100-111 XXX

63

intel.

4.2 Command Map

This section provides a map of the graphics command opcodes.

4.2.1 Memory Interface Command Map

All the following commands are defined in Memory Interface Commands.

Table 4-3. Memory Interface Commands for RCP

Opcode Command Comments
(28:23)
1-DWord
00h MI_NOOP
Olh Reserved
02h MI_USER_INTERRUPT
03h MI_WAIT_FOR_EVENT
04h MI_FLUSH
05h MI_ARB_CHECK
06h Reserved
07h MI_REPORT_HEAD
08-09h Reserved
0Ah MI_BATCH_BUFFER_END
0Bh—OFh Reserved
2+ DWord
10h Reserved
11h MI_OVERLAY_FLIP
12h MI_LOAD_SCAN_LINES_INCL
13h MI_LOAD_SCAN_LINES_EXCL
14h MI_DISPLAY_BUFFER_INFO
15h Reserved
16h Reserved
17h Reserved
18h MI_SET_CONTEXT
19h—-1Fh Reserved
Store Data
20h MI_STORE_DATA_IMM
21h MI_STORE_DATA_INDEX
22h MI_LOAD_REGISTER_IMM
23h Reserved
24h MI_STORE_REGISTER_MEM

64

intel.

Opcode Command Comments
(28:23)

25h Reserved

26h Reserved

27h—2Fh Reserved

Ring/Batch Buffer

30h Reserved

31h MI_BATCH_BUFFER_START

32h—3Fh Reserved
Table 4-4. Memory Interface Commands for VCCP
Opcode Command Comments
(28:23)

1-DWord

00h MI_NOOP

0l1lh Reserved

02h MI_USER_INTERRUPT

03h Reserved

04h MI_FLUSH

05h MI_ARB_CHECK

06-09h Reserved

0Ah MI_BATCH_BUFFER_END

0Bh—OFh Reserved

2- DWord

10h—1Fh Reserved

Store Data

20h MI_STORE_DATA_IMM
21h MI_STORE_DATA_INDEX
22h—2Fh Reserved

Ring/Batch Buffer

30h Reserved
31h MI_BATCH_BUFFER_START
32h—3Fh Reserved

65

intel.

4.2.2 2D Command Map

All the following commands are defined in Blitter Instructions.

Opcode Command Comments
(28:22)

00h Reserved

01h XY_SETUP_BLT

02h Reserved

03h XY_SETUP_CLIP_BLT

04h—10h Reserved

11h XY_SETUP_MONO_PATTERN_SL_BLT

12h—-23h Reserved

24h XY_PIXEL_BLT

25h XY_SCANLINES_BLT

26h XY_TEXT_BLT

23h—30h Reserved

31h XY_TEXT_IMMEDIATE_BLT

32h—3Fh Reserved

40h COLOR_BLT

41h-42h Reserved

43h SRC_COPY_BLT

44h—4Fh Reserved

50h XY_COLOR_BLT

51h XY_PAT_BLT

52h XY_MONO_PAT BLT

53h XY_SRC_COPY_BLT

54h XY_MONO_SRC_COPY_BLT

55h XY_FULL_BLT

56h XY_FULL_MONO_SRC_BLT

57h XY_FULL_MONO_PATTERN_BLT

58h XY_FULL_MONO_PATTERN_MONO_SRC_BLT

59h XY_MONO_PAT_FIXED_BLT

5Ah—70h Reserved

71h XY_MONO_SRC_COPY_IMMEDIATE_BLT

72h XY_PAT_BLT_IMMEDIATE

73h XY_SRC_COPY_CHROMA_BLT

74h XY_FULL_IMMEDIATE_PATTERN_BLT

75h XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT

76h XY_PAT_CHROMA_BLT

66

intel.

Opcode Command Comments
(28:22)
77h XY_PAT_CHROMA_BLT_IMMEDIATE
78h—7Fh Reserved
4.2.3 3D/Media Command Map
Pipeline Opcode Sub Command Definition Chapter
Type Opcode
(28:27)
Common Bits Bits
(pipelined) 26:24 23:16
Oh Oh 00h URB_FENCE Graphics Processing Engine
Oh Oh 01lh CS_URB_STATE Graphics Processing Engine
Oh Oh 02h CONSTANT_BUFFER Graphics Processing Engine
Oh Oh 03h STATE_PREFETCH Graphics Processing Engine
Oh Oh 04h-FFh Reserved
Common Bits Bits
(non- 26:24 23:16
pipelined)
Oh 1h 00h Reserved n/a
Oh 1h O1lh STATE_BASE_ADDRESS Graphics Processing Engine
Oh 1h 02h STATE_SIP Graphics Processing Engine
Oh 1h 03h—FFh Reserved n/a
Reserved Bits Bits
26:24 23:16
Oh 2h—-7h XX Reserved n/a

67

intel.

Pipeline Opcode Sub Command Definition Chapter
Type Opcode
(28:27)
Single DW Opcode Bits
(26:24) 23:16
1h Oh 00h-01h Reserved n/a
1h Oh 02h Reserved n/a
1h Oh 03h-0Ah Reserved n/a
1h Oh 0OBh Reserved n/a
1h Oh OCh-FFh Reserved n/a
1h 1h 00h-03h Reserved n/a
1h 1h 04h PIPELINE_SELECT Graphics Processing Engine
1h 1h 05h-FFh Reserved n/a
1h 2h-7h XX Reserved n/a
Media Opcode Bits
(26:24) 23:16
2h Oh 00h MEDIA_STATE_POINTERS Media
2h 1h 00h MEDIA_OBJECT Media
2h 1h Olh MEDIA_OBJECT_EX Media
2h 1h 02h MEDIA_OBJECT_PRT Media
2h 2h—7h XX Reserved n/a
Pipeline Opcode Sub Command Definition
Type Opcode Chapter
(28:27)
3D State Bits Bits
(Pipelined) 26:24 23:16
3h Oh 00h 3DSTATE_PIPELINED_POINTERS 3D Pipeline
3h Oh 01h 3DSTATE_BINDING_TABLE_POINTERS 3D Pipeline
3h Oh 02h Reserved
3h Oh 03h—-04h Reserved n/a
3h Oh 05h 3DSTATE_URB 3D Pipeline
3h Oh 06h-07h Reserved n/a
3h Oh 08h 3DSTATE_VERTEX_BUFFERS Vertex Fetch
3h Oh 09h 3DSTATE_VERTEX_ELEMENTS Vertex Fetch

68

intel

®

Pipeline Opcode Sub Command Definition
Type Opcode Chapter
(28:27)
3h Oh OAh 3DSTATE_INDEX_BUFFER Vertex Fetch
3h Oh OBh Reserved n/a
3h Oh 0Ch Reserved n/a
3h oh 0Dh 3DSTATE_VIEWPORT_STATE_POINTERS 3D Pipeline
3h Oh OEh—FFh Reserved n/a
3D State Bits Bits
(Non- 26:24 23:16
Pipelined)
3h 1h 00h 3DSTATE_DRAWING_RECTANGLE Strips & Fans
3h 1h 01lh 3DSTATE_CONSTANT_COLOR Color Calculator
3h 1h 02h 3DSTATE_SAMPLER_PALETTE_LOADO Sampling Engine
3h 1h 03h Reserved
3h 1h 04h 3DSTATE_CHROMA_KEY Sampling Engine
3h 1h 05h 3DSTATE_DEPTH_BUFFER Windower
3h 1h 06h 3DSTATE_POLY_STIPPLE_OFFSET Windower
3h 1h 07h 3DSTATE_POLY_STIPPLE_PATTERN Windower
3h 1h 08h 3DSTATE_LINE_STIPPLE Windower
3h 1h 09h 3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP Windower
3h 1h OAh—FFh Reserved Windower
3D Bits Bits
(Control) 26:24 23:16
3h 2h 00h PIPE_CONTROL 3D Pipeline
3h 2h 01h—FFh Reserved n/a
3D Bits Bits
(Primitive) 26:24 23:16
3h 3h 00h 3DPRIMITIVE Vertex Fetch
3h 3h 01h—FFh Reserved n/a
3h 4h—7h 00h—FFh Reserved n/a

69

intel)

Register Address Maps

51

51.1

70

Note:

Note:

Graphics Register Address Map

This chapter provides address maps of the graphics controllers 1/0 and memory-
mapped registers. Individual register bit field descriptions are provided in the
following chapters. PCI configuration address maps and register bit descriptions are
provided in the following chapter.

Memory and 1/0 Space Registers

This section provides a high-level register map (register groupings per function). The
memory and 1/0 maps for the graphics device registers are shown in the following
table, except PCI Configuration registers that are described in the following chapter.

The VGA and Extended VGA registers can be accessed via standard VGA 1/0 locations
as well as via memory-mapped locations.

All graphics MMIO registers can also be accessed via CPU 1/0.

The memory space address listed for each register is an offset from the base memory
address programmed into the MMADR register (PCI configuration offset 14h).

Table 5-1. Graphics Controller Register Memory and 1/0 Map

Start End Description
Offset Offset

00000h OOFFFh VGA and Extended VGA Control Registers. These registers are located in both
1/0 space and memory space. The VGA and Extended VGA registers contain the
following register sets: General Control/Status, Sequencer (SRxx), Graphics
Controller (GRxx), Attribute Controller (Arxx), VGA Color Palette, and CRT Controller
(CRxx) registers. Detailed bit descriptions are provided in the VGA and Extended VGA
Register Chapter. The registers within a set are accessed using an indirect addressing
mechanism as described at the beginning of each section. Note that some of the
register description sections have additional operational information at the beginning
of the section

01000h O1FFFh Reserved

02000h O2FFFh Instruction, Memory, and Interrupt Control Registers:
Instruction Control Registers Ring Buffer registers and page table control
registers are located in this address range. Various instruction status, error, and
operating registers are located in this group of registers.
Graphics Memory Fence Registers. The Graphics Memory Fence registers are
used for memory tiling capabilities.
Interrupt Control/Status Registers. This register set provides interrupt
control/status for various GC functions.
Display Interface Control Register. This register controls the FIFO watermark and
provides burst length control.
Logical Context Registers
Software Visible Counters

03000h 031FFh FENCE & Per Process GTT Control registers

03200h 0O3FFFh Frame Buffer Compression Registers

04000h 043FFh Reserved.

04400h O4FFFh Reserved.

05000h O5FFFh 1/0 Control Registers

06000h 06FFFh Clock Control Registers. This memory address space is the location of the GC clock
control and power management registers

07000h 073FFh 3D Internal Debug Registers

07400h 088FFh GPE Debug Registers (3D/Media Fixed Functions)

08900h O8FFFh Reserved for Subsystem Debug Registers

09000h 09FFFh Reserved

0A000h OAFFFh Display Palette Registers

0BOOOh OFFFFh Reserved

10000h 13FFFh MMIO MCHBAR. Alias through which the graphics driver can access registers in the
MCHBAR accessed through device 0.

14000h 2FFFFh Reserved

71

intel.

Start End Description
Offset Offset
30000h 3FFFFh Overlay Registers. These registers provide control of the overlay engine. The
overlay registers are double-buffered with one register buffer located in graphics
memory and the other on the device. On-chip registers are not directly writeable. To
update the on-chip registers software writes to the register buffer area in graphics
memory and instructs the device to update the on-chip registers.
40000h 5FFFFh Reserved
60000h 6FFFFh Display Engine Pipeline Registers
70000h 72FFFh Display and Cursor Registers
73000h 73FFFh Performance Counters
74000h 7FFFFh Reserved
51.2 PCI Configuration Space

72

See the releveant EDS for details on accessing PCI configuration space, PCI address
map tables, and register descriptions.

5.1.3

intel.

Graphics Register Memory Address Map

All graphics device registers are directly accessible via memory-mapped 1/0 and
indirectly accessible via the MMIO_INDEX and MMIO_DATA 1/0 registers. In addition,
the VGA and Extended VGA registers are 1/0 mapped.

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access

00000h-00FFFh — VGA and VGA Extended Registers —

These registers are both memory and 1/0 mapped

and are listed in the following table. Note that the

1/0 address and memory offset address are the

same value for each register.

Reserved (1000h-1FFFh)
01000h-01FFFh — Reserved —
Primary CS Instruction and Interrupt Control Registers (02000h-02FFFh)

02000h-0201Fh — Reserved —
02020h-02023h PGTBL_CTL Page Table Control Register R/W
02024h-02027h PGTBL_ER Page Table Error Register (DEBUG) RO
02028h—0202Bh EXCC Execute Condition Code Register R/W,RO
0202Ch—-0202Fh — Reserved —
02030h—02033h PRBO_TAIL Primary Ring Buffer O Tail Register R/W
02034h—02037h PRBO_HEAD Primary Ring Buffer O Head Register R/W
02038h—0203Bh PRBO_STARTsted Primary Ring Buffer O Start Register R/W
0203Ch—0203Fh PRBO_CTL Primary Ring Buffer O Control Register R/W
02040h—0205Fh — Reserved —
02060h—02063h HW_MEMRD Memory Read Sync Register (DEBUG) RO
02064h—02067h IPEIR Instruction Parser Error Identification Register RO

(DEBUG)
02068h—0206Bh IPEHR Instruction Parser Error Header Register (DEBUG) RO
0206Ch—0206Fh INSTDONE Instruction Stream Interface Done Register RO

(DEBUG)
02070h—02073h INSTPS Instruction Parser State Register (DEBUG) RO
02074h—02077h ACTHD Active Head Pointer Register (DEBUG) RO
02078h—0207Bh DMA_FADD_P Primary DMA Engine Fetch Address Register RO

(DEBUG)
0207Ch—0207Fh INSTDONE_1 Instruction Stream Interface Done 1 (Debug) RO

73

intel.

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access
02080h—02083h HWS_PGA Hardware Status Page Address Register R/W
02084h—02087h — Reserved —
02088h—0208Ch PWRCTXA Power Context Register Address ([DevCL]) R/W
0208Dh—-02093h — Reserved —
02094h—02097h NOPID NOP lIdentification Register RO
02098h-0209Bh HWSTAM Hardware Status Mask Register R/W
0209Ch—-0209Fh MI_MODE Mode Register for Software Interface R/W
020A0h-020A3h IER Interrupt Enable Register R/W
020A4h-020A7h 1IR Interrupt lIdentity Register R/WC
020A8h-020ABh IMR Interrupt Mask Register R/W
020ACh-020AFh ISR Interrupt Status Register RO
020BOh-020B3h EIR Error lIdentity Register R/WC
020B4h-020B7h EMR Error Mask Register R/W
020B8h-020BBh ESR Error Status Register RO
020BCh-020BFh — Reserved —
020C0h—-020C3h INSTPM Instruction Parser Mode Register R/W

(SAVED/RESTORED)
020C4h—-020C7h PGTBL_CTL2 Per-process Page Table Control O R/W
020C8h—-020CBh PGTBL_STR2 Page Table Steer Register (Per Process) R/W
020CCh—020DFh — Reserved —
020EOh-020E3h MI_DISPLAY_POWER_D | Display Power Down Enable ([DevCL] Only) R/W
OWN
MI_RDRET_STATE Memory Interface Read Return State Register R/W
([DevBW] Only)
020E4h-020E7h MI_ARB_STATE Memory Interface Arbitration State Register R/W
(SAVED/RESTORED)
020E8h-020FBh — Reserved —
020FCh—020FFh MI_RDRET_STATE Memory Interface Read Return State Register R/W
([DevCL] Only)
02100h—0211Fh — Reserved —
02120h—-02123h CACHE_MODE_O Cache Mode Register O (DEBUG) R/W
(SAVED/RESTORED)
02124h-02127h CACHE_MODE_1 Cache Mode Register 1 (DEBUG) R/W

(SAVED/RESTORED)

74

Table 5-2. Memory-Mapped Registers

intel.

Address Offset Symbol Register Name Access
02128h—-02133h — Reserved —
02134h—-02137h UHPTR Pending Head Pointer Register R/W
02138h—0213Fh — Reserved —
02140h—-02147h BB_ADDR Batch Buffer Current Address RO
02148h—0214Bh BB_STATE Batch Buffer State Register R/W
0214Ch—-0216Fh — Reserved —
02170h—-02177h GFX_FLSH_CNTL Graphics Flush Control R/W
02178h—0217Bh — Reserved —
0217Ch-0217Fh PR_CTR_THRSH Reserved —
02180h-02183h CCIDO Current Context ID 0 (assoc w/ PRBO) R/W
02184h-0218Fh — Reserved —
02190h-02193h — Reserved
02194h-0219Fh — Reserved —
021A0h-021A3h CXT_SIZE Context Size (DEBUG) R/W
021A4h-021A7h CXT_SIZE_NOEXT Context Size without Ext. State (DEBUG) R/W
021A8h-021CFh — Reserved —
021D0h-021D3h ECOSKPD ECO Scratch Pad (DEBUG) R/W
021D4h-021FFh — Reserved —
02200h-02303h CSFLFSM Flush FSM (Debug) R/W
02204h—02207h CSFLFLAG Flush FLAG (Debug) R/W
02208h—0220Bh CSFLTRK Flush Track (Debug) R/W
0220Ch—0220Fh CSCMDOP Instruction DWORD (Debug) R/W
02210h—-02213h CSCMDVLD Instruction DWORD Valid (Debug) R/W
02214h-0230Fh — Reserved —
02310h-0234Fh — Reserved —
02350h-02357h PS_DEPTH_COUNT Reported Pixels Passing Depth Test Counter R/W
02358-0235Fh TIMESTAMP Reported Timestamp Count R/W
02360-02367h CLKCMP Compare Count Clock Stop (Debug)
02368h-0236Fh — Reserved —
02370h-02377h — Reserved —
02378h-0237Fh — Reserved —

75

intel.

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access
02380h-02387h — Reserved —
02388h-0244Fh — Reserved —
02450h-02453h VFDC Set Value of Draw Count (DEBUG) R/W
02454h-0246Fh — Reserved —
02470h-02473h VFSKPD VF Scratch Pad (DEBUG) R/W
02474h-024FFh — Reserved —

Per-Process GTT Control (02500h-025FFh)
02500h-0251Fh — Reserved —
02520h—-02520 GFX_MODE Graphics Mode R/W
Probe List Control (02600h-026FFh) : Reserved
02600h—-026FFh | — | Reserved | —
Run List Control (02700h-027FFh) : Reserved
02700h-02FFFh | — | Reserved | —
FENCE & Per-Process GTT Control (03000h-031FFh)
03000h-03007h FENCE[O] Graphics Memory Fence Table Register [0] R/W
0307Ch-0307Fh FENCE[15] Graphics Memory Fence Table Register [15] R/W
Frame Buffer Compression Control (03200h-03FFFh) ([DevCL] Only)
03200h-03203h FBC_CFB_BASE Compressed Frame Buffer Base Address R/W
03204h-03207h FBC_LL_BASE Compressed Frame Line Length Buffer Address R/W
03208h-0320Bh FBC_CONTROL Frame Buffer Compression Control Register R/W
0320Ch-0320Fh FBC_COMMAND Frame Buffer Compression Command Register R/W
03210h-03213h FBC_STATUS Frame Buffer Compression Status Register R/W
03214h-03217h FBC_CONTROL2 Frame Buffer Compression 2" Control Register R/W
0321Bh-0321Eh FBC_DISPYOFF Frame Buffer Compression Display Y Offset R/W
03220h-03223h FBC_MOD_NUM Frame Buffer Compression Num of Modifications R/W
03214h-032FFh — Reserved —
03300h-033C3h FBC_TAG Frame Buffer Compression Tag Interface (Debug) R/W
03400h-03FFFh — Reserved —
Frame Buffer Compression Control (03200h-03FFFh) : Reserved
03200h-03FFFh DPFC_CB_BASE DPFC Compressed Buffer Base Address R/W

76

Table 5-2. Memory-Mapped Registers

intel.

Address Offset Symbol Register Name Access
BCS Instruction and Interrupt Control Registers (04000h-043FFh)
04000h-043FFh — Reserved —
04064h—04067h BCS_IPEIR Instruction Parser Error Identification Register RO
(Debug)
04068h—0406Bh BCS_IPEHR Instruction Parser Error Header Register (Debug) RO
04074h—04077h BCS_ACTHD Active Head Pointer Register (Debug) RO
04078h — 0407Bh BCS_DMA_FADD DMA Engine Fetch Address (Debug) RO
04080h—04083h BCS_HWS_PGA Hardware Status Page Address Register R/W
04084h—04093h — Reserved —
04094h—04097h BCS_NOPID NOP ldentification Register RO
04097h—0409B — Reserved —
0409Ch—0409Fh BCS_MI_MODE Mode Register for Software Interface R/W
040A0h—040BFh — Reserved —
040C0h—040C3h BCS_INSTPM Instruction Parser Mode Register R/W
040C4h—04133h — Reserved —
04134h—-04137h BCS_UHPTR Pending Head Pointer R/W
04138h—04177h — Reserved —
04178h—0417Bh BCS_CNTR Counter for the Bit Stream Decode Engine R/W
0417Ch—0417Fh BCS_THRSH Threshold for the Counter of Bit Stream Decode R/W
Engine
04180h—0413Fh — Reserved —
04140h—-04147h BCS_BB_ADDR Batch Buffer Head Pointer Register RO
04148h—0418Fh — Reserved —
04190h—04193h BCS_RCCID Ring Buffer Current Context ID R/W
04194h—-04197h BCS_RNCID Ring Buffer Next Context ID R/W
04198h—043FFh — Reserved —

(04400h-044FFh) : Reserved

04400h—044FFh

Reserved

7

intel.

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access
MFC Status Registers (04500h-04FFFh) : Reserved
04500h-04FFFh — Reserved —
170 Control Registers (05000h-05FFFh)
05000h—-0500Fh — Reserved —
05010h-05013h GPIO_CTLO General Purpose 1/0 Control Register [0] R/W
05014h-05017h GPIO_CTL1 General Purpose 1/0 Control Register [1] R/W
05018h-0501Bh GPIO_CTL2 General Purpose 1/0 Control Register [2] R/W
0501Ch-0501Fh GPIO_CTL3 General Purpose 1/0 Control Register [3] R/W
05020h-05023h GPIO_CTL4 General Purpose 1/0 Control Register [4] R/W
05024h-05027h GPIO_CTL5 General Purpose 1/0 Control Register [5] R/W
05028h-0502Bh GPIO_CTL6 General Purpose 1/0 Control Register [6] R/W
0502Ch-0502Fh GPIO_CTLY General Purpose 1/0 Control Register [7] R/W
05030h-050FFh — Reserved —
05100h-05103h GMBUSO GMBUS Clock Select/Device Select R/W
05104h-05107h GMBUS1 GMBUS Command/Status R/W
05108h-0510Bh GMBUS2 GMBUS Status R/W
0510Ch-0510Fh GMBUS3 GMBUS Data Buffer R/W
05110h-05F13h GMBUS4 GMBUS Interrupt Mask R/W
05114h-0511Fh — Reserved —
05120h-05123h GMBUSS5 GMBUS 2-Byte Index Register R/W
05124h-05FFFh — Reserved —
VSC Registers (05000h — O5FFFh) : Reserved
05000h-0506Fh | — | Reserved | —
VSC Registers : Reserved
05070h-05083h | | Reserved |
Clock Control and Power Management Registers (06000h-06FFFh)
06000h-06003h VGAO VGA 0 Divisor R/W
06004h-06007h VGAl1 VGA 1 Divisor R/W
06008h—-0600Fh Reserved
06010h-06013h VGA_PD VGA Post Divisor Select R/W
06014h-06017h DPLLA_CTRL Display PLL A Control R/W

78

Table 5-2. Memory-Mapped Registers

intel.

Address Offset Symbol Register Name Access
06018h-0601Bh DPLLB_CTRL Display PLL B Control R/W
0601Ch-0601Fh DPLLAMD Display PLL A SDVO/UDI Multiplier/Divsor R/W
06020h-06023h DPLLBMD Display PLL B SDVO/UDI Multiplier/Divsor R/W
06024h—-0603Fh — Reserved —
06040h-06043h FPAO DPLL A Divisor O R/W
06044h-06047h FPAl1 DPLL A Divisor 1 R/W
06048h-0604Bh FPBO DPLL B Divisor O R/W
0604Ch-0604Fh FPB1 DPLL B Divisor 1 R/W
06050h-0606Bh — Reserved —
0606Ch—0606Fh DPLL_TEST DPLLA and DPLLB Test Register R/W
06070h-06103h — Reserved —
06104h-06107h D_STATE D State Function Control R/W
06108h-061FFh — Reserved —
06200h-06203h DSPCLK_GATE_D Clock Gating Disable for Display Register R/W
06204h-06207h RENCLK_GATE_D1 Clock Gating Disable for Render Register | R/W
06208h-0620Bh RENDCLK_GATE_D2 Clock Gating Disable for Render Register 11 —
0620Ch-0620Fh — Reserved —
06210h—06213h RAMCLK_GATE_D GFX RAM Clock Gating Disable Register ([DevCL] R/W

Only)
06214h—06125h DEUC Dynamic EU Control R/W/L
06216h-06FFFh — Reserved —
3D-Internal Debug Registers (07000h-073FFh) Reserved
07000h-073FFh — Reserved —
GPE Debug Registers (07400h-088FFh, DEBUG ONLY, Subject to Change)

07400h-07403h SVG_CTL Debug Control R/W
07404h-07407h SVG_RDATA Debug Return Data RO
07408h-0740Bh SVG_WORK_CTL Debug Workaround Control R/W
0740Ch-074FFh — Reserved —
07500h-07503h VF_CTL Debug Control R/W
07504h-07507h VF_STRG_VAL Debug Snapshot Trigger Value R/W
07508h-0750Bh VF_STR_VL_OVR Debug Start Vertex Location Override R/W
0750Ch-0750Fh VF_VC_OVR Debug Vertex Count Override R/W

79

intel.

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access
07510h-07513h VF_STR_PSKIP Debug Starting Primitives Skipped RO
07514h-07517h VF_MAX_PRIM Debug Max Primitives R/W
07518h-0751Bh VF_RDATA Debug Return Data RO
0751Ch-075FFh — Reserved —
07600h-07603h VS_CTL Debug Control R/W
07604h-07607h VS_STRG_VAL Debug Snapshot Trigger Value R/W
07608h-0760Bh VS_RDATA Debug Return Data RO
0760Ch-078FFh — Reserved —
07900h-07903h GS_CTL Debug Control R/W
07904h-07907h GS_STRG_VAL Debug Snapshot Trigger Value R/W
07908h-0790Bh GS_RDATA Debug Return Data RO
0790Ch-079FFh — Reserved —
07A00h-07A03h CL_CTL Debug Control R/W
07A04h-07A07h CL_STRG_VAL Debug Snapshot Trigger Value R/W
07A08h-07A0Bh CL_RDATA Debug Return Data RO
07A0Ch-07AFFh — Reserved —
07B00h-07B03h SF_CTL Debug Control R/W
07B04h-07B07h SF_STRG_VAL Debug Snapshot Trigger Value R/W
07B08h-07B0OBh SF_MIN_PR_IND Debug Minimum Primitive Index R/W
07B0OCh-07BOFh SF_MAX_PR_IND Debug Maximum Primitive Index R/W
07B10h-07B13h SF_CLIP_RMIN Debug Clip Rectangle Minimum Coordinates R/W
07B14h-07B17h SF_CLIP_RMAX Debug Clip Rectangle Maximum Coordinates R/W
07B18h-07B1Bh SF_RDATA Debug Return Data RO
07B1Ch-07BFFh — Reserved —
07C0O0h-07C03h WIZ_CTL Debug Control R/W
07C04h-07C0O7h WIZ_STRG_VAL Debug Snapshot Trigger Value R/W
07C08h-07C0OBh WIZ_RDATA Debug Return Data RO
07COCh-07CFFh — Reserved —
07D00h-07D03h VFE_CTL Debug Control R/W
07D04h—-07D07h VFE_STRG_VAL Debug Snapshot Trigger Value R/W
07D08h—07D0Bh VFE_RDATA Debug Return Data RO

07D0OCh-07DFFh

Reserved

80

Table 5-2. Memory-Mapped Registers

intel.

Address Offset Symbol Register Name Access
07EO0h-07E03h TS_CTL Debug Control R/W
07E04h-07EO7h TS_STRG_0-6VAL Debug Snapshot Trigger RO.6 Value R/W
07EO08h-07EOBh TS_STRG_O0-7VAL Debug Snapshot Trigger RO.7 Value R/W
07EOCh-07EOFh TS_RDATA Debug Return Data RO
07E10h-07FFFh — Reserved —
08000h-08003h TD_CTL Debug Control R/W
08004h-08007h TD_CTL2 Debug Control 2 R/W
08008h-0800Bh TD_VF_VS_EMSK Debug VF/VS Execution Mask R/W
0800Ch-0800Fh TD_GS_EMSK Debug GS Execution Mask R/W
08010h-08013h TD_CLIP_EMSK Debug Clipper Execution Mask R/W
08014h-08017h TD_SF_EMSK Debug SF Execution Mask R/W
08018h-0801Bh TD_WIZ_EMSK Debug WIZ Execution Mask R/W
0801Ch-0801Fh TD_0-6_EHTRG_VAL Debug RO.6 External Halt Trigger Value R/W
08020h-08023h TD_0-7_EHTRG_VAL Debug RO.7 External Halt Trigger Value R/W
08024h-08027h TD_0-6_EHTRG_MSK Debug RO.6 External Halt Trigger Mask R/W
08028h-0802Bh TD_0-7_EHTRG_MSK Debug RO.7 External Halt Trigger Mask R/W
0802Ch-0802Fh TD_RDATA Debug Return Data RO
08030h-08033h TD_TS_EMSK Debug TS Execution Mask —
08034h—-080FFh — Reserved —
08100h-08103h MATH_CTL Math Debug Control R/W
08104h-08107h MATH_RDATA Math Debug Return Data RO
08108h-081FFh — Reserved —
08200h-08203h ISC_CTL Instruction / State Debug Control R/W
08204h-0827FFh — Reserved —
08280h-08283h ISC_L1CA_CTR Instruction L1 Cache Debug Control RO
08284h-08287h ISC_L1CA_RDATA Instruction L1 Cache Debug Return Data
08288h-0828Bh ISC_L1CA BP_ADR1 Instruction L1 Cache Breakpoint Address 1 Control
0828Ch-0828Fh — Reserved —
08290h-08293h ISC_L1CA_BP_ADR2 Instruction L1 Cache Breakpoint Address 2 Control
08294h-08297h ISC_L1CA_BP_OPC1 Instruction L1 Cache Breakpoint Opcode 1 Control
08298h-0829Bh ISC_L1CA_BP_OPC2 Instruction L1 Cache Breakpoint Opcode 2 Control
0829Ch-082FFh — Reserved —

81

intel.

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access
08300h-08303h MA_DEBUG_1 Message Arbiter Debug Control R/W
08304h-083FFh — Reserved —
08400h-08403h SAMPLER_CTL Sampler Debug Control R/W
08404h-08407h SAMPLER_RDATA Sampler Debug Return Data RO
08408h-084FFh — Reserved —
08500h-08503h DP_CTL Data Port Debug Control R/W
08504h-08507h DP_RDATA Data Port Debug Return Data RO
08508h—-085FFh — Reserved —
08600h-08603h RC_CTL Debug Control R/W
08604h-08607h RC_DEF_CLR Debug Force Default Color R/W
08608h-0860Bh RC_RDATA Debug Return Data RO
0860Ch-086FFh — Reserved —
08700h-08703h URB_CTL Debug Control R/W
08704h-08707h — Reserved —
08708h-0870Bh URB_RDATA Debug Return Data RO
0870Ch-087FFh — Reserved —
08800h-08803h EU_CTL Debug Control R/W
08804h-0880Fh — Reserved —
08810h-08817h EU_ATT Debug Attention RO
08818h-0881Fh — Reserved —
08820h-08827h EU_ATT_DATA EU Debug Attention Data RO
08828h-0882Fh — Reserved —
08830h-08837h EU_ATT_CLR Debug Attention Clear WO
08838h-0883Fh — Reserved —
08840h-08843h EU_RDATA Debug Return Data RO
08844h-088FFh — Reserved —

Reserved for Debug (08900h-09FFFh)
08900h-08FFFh — Reserved for Subsystem Debug —
09000h-09FFFh — Reserved —
Display Palette (OAOOOh-OAFFFh)
OAO00h-OA3FFh DPALETTE_A Display Pipe A Palette R/W

0A400h-0A7FFh

Reserved

82

Table 5-2. Memory-Mapped Registers

intel.

Address Offset Symbol Register Name Access
0A800h-0ABFFh DPALETTE_B Display Pipe B Palette R/W
OACOOh-0AFFFh — Reserved —

TLB Read Range (OBOOOh-OBFFFh) : Reserved
0BOOOh-OBFFFh — Reserved —
AVC Video Decode (0OCOOOh-OCFFFh) : Reserved
0CO00h-0CFFFh - Reserved -
0DO0Oh-OFFFFh — Reserved —
GFX MMIO — MCHBAR Aperture (10000h-13FFFh)
10000h-13FFFh | — | MCHBAR Aperture | R/W

Reserved (14000h-2FFFFh)

14000h-2FFFFh

| Reserved

Overlay Registers (30000h-03FFFFh)
(For additional address offsets in the double-buffering scheme, see Overlay Chapter)

30000h-30003h OVADD Overlay Register Update Address R/W
30004h-30007h OTEST Overlay Test Register R/W
30008h-3000Bh DOVSTA Display/Overlay Status RO
3000Ch-3000Fh DOVSTAEX Display/Overlay Extended Status RO
30010h-30013h OVR_GAMMAS5 Overlay Gamma Correction [5] R/W
30014h-30017h OVR_GAMMA4 Overlay Gamma Correction [4] R/W
30018h-3001Bh OVR_GAMMA3 Overlay Gamma Correction [3] R/W
3001Ch-3001Fh OVR_GAMMA2 Overlay Gamma Correction [2] R/W
30020h-30023h OVR_GAMMA1 Overlay Gamma Correction [1] R/W
30024h-30027h OVR_GAMMAO Overlay Gamma Correction [0] R/W
30028h-30057h — Reserved —
30058h-3005Bh SYNCPHO Overlay Flip Sync Lock Phase O RO
3005Ch-3005Fh SYNCPH1 Overlay Flip Sync Lock Phase 1 RO
30060h-30063h SYNCPH2 Overlay Flip Sync Lock Phase 2 RO
30064h-30067h SYNCPH3 Overlay Flip Sync Lock Phase 3 RO
30068h-300FFh — Reserved —
30100h—-30103 OBUF_O0Y Overlay Buffer O Y Pointer RO
30104h-30107h OBUF_1Y Overlay Buffer 1 Y Pointer RO
30108h-3010Bh OBUF_OU Overlay Buffer 0 U Pointer RO

83

intel.

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access
3010Ch-3010Fh OBUF_0V Overlay Buffer 0 V Pointer RO
30110h-30113h OBUF_1U Overlay Buffer 1 U Pointer RO
30114h-30117h OBUF_1V Overlay Buffer 1 V Pointer RO
30118h-3011Bh OSTRIDE Overlay Stride RO
3011Ch-3011Fh YRGB_VPH Y/RGB Vertical Phase RO
30120h-30123h UV_VPH UV Vertical Phase RO
30124h-30127h HORZ_PH Horizontal Phase RO
30128h-3012Bh INIT_PHS Initial Phase RO
3012Ch-3012Fh DWINPOS Destination Window Position RO
30130h-30133h DWINSZ Destination Window Size RO
30134h-30137h SWIDTH Source Width RO
30138h-3013Bh SWIDTHSW Source Width in Swords RO
3013Ch-3013Fh SHEIGHT Source Height RO
30140h-30143h YRGBSCALE Y/RGB Scale Factor RO
30144h-30147h UVSCALE U V Scale Factor RO
30148h-3014Bh OVCLRCO Overlay Color Correction O RO
3014Ch-3014Fh OVCLRC1 Overlay Color Correction 1 RO
30150h-30153h DCLRKV Destination Color Key Value RO
30154h-30157h DCLRKM Destination Color Key Mask RO
30158h-3015Bh SCHRKVH Source Chroma Key Value High RO
3015Ch-3015Fh SCHRKVL Source Chroma Key Value Low RO
30160h-30163h SCHRKEN Source Chroma Key Enable RO
30164h-30167h OCONFIG Overlay Configuration RO
30168h-3016Bh OCMD Overlay Command RO
3016Ch-3016Fh — Reserved —
30170h-30173h OSTART_OY Overlay Surface Y O Base Address Register RO
30174h-30177h OSTART _1Y Overlay Surface Y 1 Base Address Register RO
30178h-3017Bh OSTART _0OU Overlay Surface U O Base Address Register RO
3017Ch-3017Fh OSTART _0OV Overlay Surface V 0 Base Address Register RO
30180h-30183h OSTART _1U Overlay Surface U 1 Base Address Register RO
30184h-30187h OSTART _1V Overlay Surface V 1 Base Address Register RO
30188h-3018Bh OTILEOFF_OY Overlay Surface Y O Base Address Register RO

84

Table 5-2. Memory-Mapped Registers

intel.

Address Offset Symbol Register Name Access
3018Ch-3018Fh OTILEOFF _1Y Overlay Surface Y 1 Base Address Register RO
30190h-30193h OTILEOFF _0OU Overlay Surface U O Bae Address Register RO
30194h-30197h OTILEOFF _0OV Overlay Surface V 0 Base Address Register RO
30198h-3019Bh OTILEOFF _1U Overlay Surface U 1 Base Address Register RO
3019Ch-3019Fh OTILEOFF _1V Overlay Surface V 1 Base Address Register RO
301A0h-301A3h — Reserved —
301A4h-301A7h UVSCALEV UV Vertical Downscale Integer Register RO
301A8h-302FFh — Reserved —
30300h-303FFh Y_VCOEFS Overlay Y Vertical Filter Coefficients RO
30368h-303FFh — Reserved —
30400h-305FFh Y_HCOEFS Overlay Y Horizontal Filter Coefficient RO
304ACh-305FFh — Reserved —
30600h-306FFh UV_VCOEFS Overlay UV Vertical Filter Coefficients RO
30668h-306FFh — Reserved —
30700h-307FFh UV_HCOEFS Overlay UV Horizontal Filter Coefficients RO
30768h-3FFFFh — Reserved —

Reserved (40000h-5FFFFh)
40000h—5FFFFh — Reserved —
Display Engine Pipeline Registers (60000h—6FFFFh)

Display Pipeline A

60000h—60003h HTOTAL_A Pipe A Horizontal Total R/W
60004h—60007h HBLANK_A Pipe A Horizontal Blank R/W
60008h—6000Bh HSYNC_A Pipe A Horizontal Sync R/W
6000Ch—6000Fh VTOTAL_A Pipe A Vertical Total R/W
60010h—60013h VBLANK_A Pipe A Vertical Blank R/W
60014h—60017h VSYNC_A Pipe A Vertical Sync R/W
60018h—6001Bh — Reserved R/W
6001Ch—6001Fh PIPEASRC Pipe A Source Image Size R/W
60020h—60023h BCLRPAT_A Pipe A Border Color Pattern R/W
60024h—60027h — Reserved —
60028h—6002Bh VSYNCSHIFT_A Vertical Sync Shift Register A —
6002Ch—6004Fh — Reserved —

85

intel.

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access
60050h—60053h CRCCTRLREDA Pipe A CRC Red Control R/W
60054h—60057h CRCCTRLGREENA Pipe A CRC Green Control R/W
60058h—6005Bh CRCCTRLBLUEA Pipe A CRC Blue Control R/W
6005Ch—6005Fh CRCCTRLRESA Pipe A CRC Residual Control Register R/W
60060h—60063h CRCRESREDA Pipe A CRC Red Result RO
60064h—60067h CRCRESGREENA Pipe A CRC Green Result RO
60068h—6006Bh CRCRESBLUEA Pipe A CRC Blue Result RO
6006Ch-6006Fh CRCRESRESA Pipe A CRC Residual Result RO
60070h—60FFFh — Reserved —
Display Pipeline B
61000h—61003h HTOTAL_B Pipe B Horizontal Total R/W
61004h—61007h HBLANK_B Pipe B Horizontal Blank R/W
61008h—6100Bh HSYNC_B Pipe B Horizontal Sync R/W
6100Ch—6100Fh VTOTAL_B Pipe B Vertical Total R/W
61010h—61013h VBLANK_B Pipe B Vertical Blank R/W
61014h—61017h VSYNC_B Pipe B Vertical Sync R/W
61018h—6101Bh — Reserved —
6101Ch—-6101Fh PIPEBSRC Pipe B Source Image Size R/W
61020h—61023h BCLRPAT_B Pipe B Border Color Pattern R/W
61024h—61027h — Reserved —
61028h—6102Bh VSYNCSHIFT_B Vertical Sync Shift Register B —
6102Ch—6104Fh — Reserved —
61050h—61053h CRCCTRLREDB Pipe B CRC Red Control R/W
61054h—61057h CRCCTRLGREENB Pipe B CRC Green Control R/W
61058h—-6105Bh CRCCTRLBLUEB Pipe B CRC Blue Control R/W
6105Ch—-6105Fh CRCCTRLRESB Pipe B CRC Residual Control Register R/W
61060h—61063h CRCRESREDB Pipe B CRC Red Result RO
61064h—61067h CRCRESGREENB Pipe B CRC Green Result RO
61068h—6106Bh CRCRESBLUEB Pipe B CRC Blue Result RO
6106Ch—6106Fh CRCRESRESB Pipe B CRC Residual Result RO
61070h—610FFh — Reserved —
61100h—61103h ADPA Analog Display Port A Control R/W

86

Table 5-2. Memory-Mapped Registers

intel.

Address Offset Symbol Register Name Access
61104h—6110Fh — Reserved —
61110h—61113h PORT_HOTPLU_EN Port HotPlug Enable R/W
61114h—61117h PORT_HOTPLU_STAT Port HotPlug Status R/W
61118h—6113Fh — Reserved —
61140h-61143h sDVO/HDMIB Digital Display Port B Control Register R/W
61144h—6114Fh — Reserved —
61150h-61153h sDVO/DP Digital Display Port DFT Register R/W
61154h—61157h sDVO/DP Digital Display Port DFT Register 2 R/W
61158h—6115Fh — Reserved —
61160h-61163h sDVO/HDMIC Digital Display Port C | R/W
61164h—6116Bh — Reserved —
6116Ch—6116Fh — Reserved —
61170h—61173h VIDEO_DIP_CTL Video DIP Control R/W
61174h—61177h — Reserved —
61178h—6117Bh VIDEO_DIP_DATA Video Data Island Packet Data R/W
6117Ch—-61177h — Reserved —
LVDS ([DevCL] Only)
61180h—61183h LVDS Digital Display Port Control ([DevCL]) R/W
61184h—611FFh — Reserved —
Panel Power Sequencing ([DevCL] Only)
61200h—61203h PP_STATUS Panel Power Status RO
61204h—61207h PP_CONTROL Panel Power Control R/W
61208h—6120Bh PP_ON_DELAYS Panel Power On Sequencing Delays R/W
6120Ch—-6120Fh PP_OFF_DELAYS Panel Power Off Sequencing Delays R/W
61210h—61213h PP_DIVISOR Panel Power Cycle Delay and Reference Divisor R/W
61214h—6122Fh — Reserved —
Panel Fitting ([DevCL] Only)
61230h—61233h PFIT_CONTROL Panel Fitting Control R/W
61234h—61237h PFIT_PGM_RATIOS Programmed Panel Fitting Ratios R/W
61238h—6124Fh — Reserved —

87

intel.

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access
Backlight Control and Modulation ([DevCL] Only)
61250h—61253h BLC_PWM_CTL2 Backlight PWM Control Register 2 R/W
61254h—61257h BLC_PWM_CTL Backlight PWM Control R/W
61258h—6125Fh — Reserved —
61260h—61263h BLM_HIST_CTL Image BLM Histogram Control Register R/W
61264h—61267h Image Enhancement Bin Data Register RO, R/W
61268h—6126Bh Histogram Threshold Guardband Register R/W
6126Ch—61FFFh — Reserved —

High Definition Audio Registers (62000h—62FFFh)

62000h—62003h AUD_CONFIG Audio Configuration R/W
62004h—6200Fh — Reserved —
62010h—62013h AUD_DEBUG Audio Debug RO
62014h—6201Fh — Reserved —
62020h—62023h AUD_VID_DID Audio Vendor ID / Device ID RO
62024h—62027h AUD_RID Audio Revision ID RO
62028h—6202Bh AUD_SUBN_CNT Audio Subordinate Node Count RO
6202Ch—6203Fh — Reserved —
62040h—62043h AUD_FUNC_GRP Audio Function Group Type RO
62044h—62047h AUD_FUNC_SUBN_CNT | Audio Function Subordinate Node Count RO
62048h—6204Bh AUD_GRP_CAP Audio Function Group Capabilities RO
6204Ch—6204Fh AUD_PWRST Audio Power State RO
62050h—62053h AUD_SUPPWR Audio Supported Power State RO
62054h—62057h AUD_SID Audio Root Node Subsystem ID RO
62058h—6206Fh — Reserved —
62070h—62073h AUD_OUT_CWCAP Audio Output Converter Widget Capabilities RO
62074h—62077h AUD_OUT_PCMSIZE Audio PCM Size and Rates R/W
62078h—6207Bh AUD_OUT_STR Audio Stream Formats R/W
6207Ch—-6207Fh AUD_OUT_DIG_CNVT Audio Digital Converter R/W
62080h—62083h AUD_OUT_CH_STR Audio Channel ID and Stream ID RO
62084h—62087h AUD_OUT_STR_DESC Audio Stream Descriptor Format RO
62088h—6209Fh — Reserved —
620A0h—620A3h AUD_PINW_CAP Audio Pin Complex Widget Capabilities RO

88

Table 5-2. Memory-Mapped Registers

intel.

Address Offset Symbol Register Name Access
620A4h—620A7h AUD_PIN_CAP Audio Pin Capabilities RO
620A8h—620ABh AUD_PINW_CONNLNG Audio Connection List Length RO
620ACh—620AFh AUD_PINW_CONNLST Audio Connection List Entry RO
620B0Oh—620B3h AUD_PINW_CNTR Audio Pin Widget Control RO
620B4h—620B7h AUD_CNTL_ST Audio Control State RO
620B8h—620BBh AUD_PINW_UNSOLRES | Audio Unsolicited Response Enable RO

P
620BCh—620BFh AUD_PINW_CONFIG Audio Configuration Default RO
620C0h—-620D3h — Reserved —
620D4h—620D7h AUD_HDMIW_STATUS Audio HDMI Status R/W
620D8h—-6210Bh — Reserved —
6210Ch—62117h AUD_HDMIW_HDMIEDI HDMI Data EDID Block R/W
D
62118h—-62127h AUD_HDMIW_INFOFR Audio HDMI Widget Data Island Packet R/W
62128h—67FFFh — Reserved —
TV Out Control Registers (68000h—6FFFFh)

68000h—68003h TV_CTL TV Out Control R/W
68004h-68007h TV_DAC TV DAC Control/Status R/W, RO
68008h—6800Fh — Reserved —
68010h—68013h TV_CSC_Y Color Space Convert Y R/W
68014h—68017h TV_CSC_Y2 Color Space Convert Y2 R/W
68018h—6801Bh TV_CSC_U Color Space Convert U R/W
6801Ch-6801Fh TV_CSC_U2 Color Space Convert U2 R/W
68020h—68023h TV_CSC_V Color Space Convert V R/W
68024h—68027h TV_CSC_V2 Color Space Convert V2 R/W
68028h—6802Bh TV_CLR_KNOBS Color Knobs R/W
6802Ch—-6802Fh TV_CLR_LEVEL Color Level Control R/W
68030h—68033h TV_H_CTL_1 H Control 1 R/W
68034h—68037h TV_H_CTL_2 H Control 2 R/W
68038h—6803Bh TV_H_CTL_3 H Control 3 R/W
6803Ch—-6803Fh TV_V_CTL_1 V Control 1 R/W
68040h—68043h TV_V_CTL_2 V Control 2 R/W
68044h—68047h TV_V_CTL_3 V Control 3 R/W
68048h—6804Bh TV_V_CTL_4 V Control 4 R/W
6804Ch—-6804Fh TV_V_CTL_5 V Control 5 R/W

89

intel.

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access
68050h—68053h TV_V_CTL_6 V Control 6 R/W
68054h—68057h TV_V CTL_ 7 V Control 7 R/W
68058h—6805Fh — Reserved —
68060h—68063h TV_SC_CTL_1 SubCarrier Control 1 R/W
68064h—68067h TV_SC_CTL_2 SubCarrier Control 2 R/W
68068h—6806Bh TV_SC_CTL_3 SubCarrier Control 3 R/W
6806Ch—6806Fh — Reserved —
68070h—68073h TV_WIN_POS Window Position R/W
68074h—68077h TV_WIN_SIZE Window Size R/W
68078h—6807Fh — Reserved —
68080h—68083h TV_FILTER_CTL_1 Filter Control 1 R/W
68084h—68087h TV_FILTER_CTL_2 Filter Control 2 R/W
68088h—6808Bh TV_FILTER_CTL_3 Filter Control 3 R/W
6808Ch-6808Fh SIN_ROM Sine ROM —
68090h-68093h TV_CC_CTL Closed Caption Control R/W
68094h-68097h TV_CC_DATA1 Closed Caption Data Field 1 R/W
68098h-6809Bh TV_CC_DATA2 Closed Caption Data Field 2 R/W
6809Ch—680AFh — Reserved —
680B0h-680B3h TV_WSS_ CTL WSS Control R/W
680B4h-680B7h TV_WSS_DATA WSS Data R/W
68100h—681EFh TV_H_LUMA H Filter Luma Coefficients R/W
681FOh—681FFh — Reserved —
68200h—682EFh TV_H_CHROMA H Filter Chroma Coefficients R/W
682FOh—682FFh — Reserved —
68300h—683ABh TV_V_LUMA V Filter Luma Coefficients R/W
683ACh—683FFh — Reserved —
68400h—684ABh TV_V_CHROMA V Filter Chroma Coefficients R/W
684ACh—6FFFFh — Reserved —

Display and Cursor Control Registers (70000h—77FFFh)

Display Pipeline A Control
70000h—70003h PIPEA_DSL Pipe A Display Scan Line Count RO
70004h—70007h PIPEA_SLC Pipe A Display Scan Line Count Range Compare RO
70008h—7000Bh PIPEACONF Pipe A Configuration R/W
7000Ch—7000Fh — Reserved —
70010h—70013h PIPEAGCMAXRED Pipe A Gamma Correction Max Red R/W
70014h—70017h PIPEAGCMAXGRN Pipe A Gamma Correction Max Green R/W

90

Table 5-2. Memory-Mapped Registers

intel.

Address Offset Symbol Register Name Access
70018h—-7001Bh PIPEAGCMAXBLU Pipe A Gamma Correction Max Blue R/W
7001Ch—-70023h — Reserved —
70024h—70027h PIPEASTAT Pipe A Display Status Select R/W
70028h—7002Fh — Reserved —
70030h—70033h DSPARB Display Arbitration Control R/W
70034h—70037h FW1 Display FIFO Watermark Control 1 R/W
70038h—7003Bh FW2 Display FIFO Watermark Control 2
7003Ch—7003Fh FW3 Display FIFO Watermark Control 3 R/W
70040h-70043h PIPEAFRAMEH Pipe A Frame Count High RO
70044h-70047h PIPEAFRAMEPIX Pipe A Frame Count Low and Pixel Count RO
70048h-7007Fh — Reserved —
Cursor A and B Registers
70080h—70083h CURACNTR Cursor A Control R/W
70084h—70087h CURABASE Cursor A Base Address R/W
70088h—7008Bh CURAPOS Cursor A Position R/W
7008Ch—-7008Fh — Reserved —
70090h—7009Fh CURAPALET[0:3] Cursor A Palette 0:3 R/W
700A0h—700BFh — Reserved —
700COh—700C3h CURBCNTR Cursor B Control R/W
700C4h—700C7h CURBBASE Cursor B Base Address R/W
700C8h—700CBh CURBPOS Cursor B Position R/W
700CCh—700CFh — Reserved —
700D0h—700DFh CURBPALET[0:3] Cursor B Palette 0:3 R/W
700EOh—7017Fh — Reserved —
Display A Control
70180h—70183h DSPACNTR Display A Plane Control R/W
70184h—70187h DSPALINOFF Display A Linear Offset Register R/W
70188h—7018Bh DSPASTRIDE Display A Stride R/W
7018Ch-7018Fh — Reserved —
70190h-70193h DSPARESV (RSVD) Display A Reserved R/W
70194h—70197h DSPAKEYVAL Sprite Color Key Value R/W
70198h—7019Bh DSPAKEYMSK Sprite Color Key Mask Value R/W
7019Ch—-7019Fh DSPASURF Display A Surface Base Address Register R/W
701A0h-701A3h — Reserved —
701A4h—701A7h DSPATILEOFF Display A Tiled Offset Register R/W
701A8h-701FFh — Reserved —
70200h-70203h DSPAFLPQSTAT Flip Queue Status Register R/W

91

intel.

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access
70204h—703FFh — Reserved —
VBIOS Software Flags 0-6
70400h-70403h — Reserved —
70404h—7040Fh — Reserved —
70410h—7044Fh SWFxX Software Flag 00:0F R/W
70450h—70FFFh — Reserved —
Display Pipeline B Control
71000h—71003h PIPEB_DSL Pipe B Display Scan Line Count RO
71004h—71007h PIPEB_SLC Pipe B Display Scan Line Range Compare RO
71008h—7100Bh PIPEBCONF Pipe B Configuration R/W
7100Ch—-7100Fh — Reserved —
71010h—71013h PIPEBGCMAXRED Pipe B Gamma Correction Max Red R/W
71014h—71017h PIPEBGCMAXGRN Pipe B Gamma Correction Max Green R/W
71018h—-7101Bh PIPEBGCMAXBLU Pipe B Gamma Correction Max Blue R/W
71024h—71027h PIPEBSTAT Pipe B Status R/W
71028h—7103Fh — Reserved —
71040h-71043h PIPEBFRAMEH Pipe B Frame Count High RO
71044h-71047h PIPEBFRAMEPIX Pipe B Frame Count Low and Pixel Count RO
71048h-7117Fh — Reserved —
Display B / Sprite Control
71180h—71183h DSPBCNTR Display B / Sprite Control R/W
71184h—71187h DSPBLINOFFSET Display B / Sprite Linear Offset R/W
71188h—7118Bh DSPBSTRIDE Display B / Sprite Stride R/W
7118Ch—-71193h — Reserved —
71194h—71197h DSPBKEYVAL Display B / Sprite Color Key Value R/W
71198h—7119Bh DSPBKEYMSK Display B / Sprite Color Key Mask R/W
7119Ch—-7119Fh DSPBSURF Display B Surface Base Address Register R/W
711A0h-711A3h — Reserved —
711A4h—711A7h DSPBTILEOFF Display B Tiled Offset Register R/W
711A8h-711FFh — Reserved —
71200h-71203h DSPBFLPQSTAT Flip Queue Status Register R/W

71204h—713FFh

Reserved

92

Table 5-2. Memory-Mapped Registers

intel.

Address Offset Symbol Register Name Access
Video BIOS Registers
71400h—71403h VGACNTRL VGA Display Plane Control R/W
71404h—7140Fh — Reserved —
VBIOS Software Flags 10-1F
71410h—7144Fh SWF[10-1F] Software Flag 10 — 1F R/W
71450h—71FFFh — Reserved —
Display C 7/ Sprite Control
72000h—7217Fh — Reserved —
72180h—72183h DSPCCNTR Display C / Sprite Control R/W
72184h—72187h DSPCLINOFF Display C / Sprite Linear Offset Register R/W
72188h—7218Bh DSPCSTRIDE Display C / Sprite Stride R/W
7218Ch—-7218Fh DSPCPOS Display C / Sprite Position R/W
72190h—72193h DSPCSIZE Display C / Sprite Height and Width R/W
72194h—72197h DSPCKEYMINVAL Display C / Sprite Color Key Min Value R/W
72198h—7219Bh DSPCKEYMSK Display C / Sprite Color Key Mask R/W
7219Ch—-7219Fh DSPCSURF Display C Surface Address Register R/W
721A0h—721A3h DSPCKEYMAXVAL Display C / Sprite Color Key Max Value R/W
721A4h—-721A7h DSPCTILEOFF Display C Tiled Offset Register R/W
721A4h-721FFh — Reserved —
72200h-72203h DSPCFLPQSTAT Flip Queue Status Register R/W
72204h—721CFh — Reserved —
721D0h-721D3h DCLRCO Display C Color Correction O R/W
721D4h—721D7h DCLRC1 Display C Color Correction 1 R/W
721D8h—721DFh — Reserved —
721EOh—721E3h GAMCS5 Display C Gamma Correction Register 5 R/W
721E4h—721E7h GAMC4 Display C Gamma Correction Register 4 R/W
721E8h—721EBh GAMC3 Display C Gamma Correction Register 3 R/W
721ECh—721EFh GAMC2 Display C Gamma Correction Register 2 R/W
721FOh—721F3h GAMC1 Display C Gamma Correction Register 1 R/W
721F4h—721F7h GAMCO Display C Gamma Correction Register O R/W
721F8h—723FFh — Reserved —

93

intel.

Table 5-2. Memory-Mapped Registers

Address Offset Symbol Register Name Access

Video Sprite A Control : Reserved

72000h—723FFh — Reserved —

VBIOS Software Flags 30-32

72400h—-72413h — Reserved —
72414h—72417h SWF[30] Software Flag 30 R/W
72418h—7241Bh SWF[31] Software Flag 31 R/W
7241Ch—7241Fh SWF[32] Software Flag 32 R/W
72420h—72FFFh — Reserved —

Performance Counters (73000h-73FFFh)

73000h—73003h PCSRC Performance Counter Source Register R/W
73004h—73007h PCSTAT Performance Counter Status Register RO
73008h—7317Fh — Reserved —

Video Sprite B Control : Reserved

73180h—733FFh | — | Reserved | —

Reserved (74000h-7FFFFh)

74000h—7FFFFh | — | Reserved | —

94

52

521

VGA and Extended VGA Register Map

For 1/0 locations, the value in the address column represents the register 1/0 address.
For memory mapped locations, this address is an offset from the base address
programmed in the MMADR register.

VGA and Extended VGA 1I/0 and Memory Register Map
Table 5-3. 1/0 and Memory Register Map

Address Register Name (Read) Register Name (Write)
2D Registers
3BOh—3B3h Reserved Reserved
3B4h VGA CRTC Index (CRX) VGA CRTC Index (CRX)
(monochrome) (monochrome)
3B5h VGA CRTC Data (monochrome) VGA CRTC Data (monochrome)
3B6h—3B9h Reserved Reserved
3Bah VGA Status Register (ST01) VGA Feature Control Register (FCR)
3BBh—-3BFh Reserved Reserved
3CO0h VGA Attribute Controller Index (ARX) VGA Attribute Controller Index
(ARX)/
VGA Attribute Controller Data
(alternating writes select ARX or
write ARxx Data)
3C1lh VGA Attribute Controller Data Reserved
(read ARxx data)
3C2h VGA Feature Read Register (ST00) VGA Miscellaneous Output Register
(MSR)
3C3h Reserved Reserved
3C4h VGA Sequencer Index (SRX) VGA Sequencer Index (SRX)
3C5h VGA Sequencer Data (SRxx) VGA Sequencer Data (SRxx)
3C6h VGA Color Palette Mask (DACMASK) VGA Color Palette Mask (DACMASK)
3C7h VGA Color Palette State (DACSTATE) VGA Color Palette Read Mode Index
(DACRX)
3C8h VGA Color Palette Write Mode Index VGA Color Palette Write Mode Index
(DACWX) (DACWX)
3C9h VGA Color Palette Data (DACDATA) VGA Color Palette Data (DACDATA)
3CAh VGA Feature Control Register (FCR) Reserved
3CBh Reserved Reserved
3CCh VGA Miscellaneous Output Register Reserved
(MSR)

95

5.

96

intel.

Address Register Name (Read) Register Name (Write)
3CDh Reserved Reserved
3CEh VGA Graphics Controller Index (GRX) VGA Graphics Controller Index
(GRX)
3CFh VGA Graphics Controller Data (GRxx) VGA Graphics Controller Data
(GRxx)
3D0h-3D1h Reserved Reserved
2D Registers
3D4h VGA CRTC Index (CRX) VGA CRTC Index (CRX)
3D5h VGA CRTC Data (CRxx) VGA CRTC Data (CRxx)
System Configuration Registers
3D6h GFX/2D Configurations Extensions GFX/2D Configurations Extensions
Index (XRX) Index (XRX)
3D7h GFX/2D Configurations Extensions GFX/2D Configurations Extensions
Data (XRxx) Data (XRxx)
2D Registers
3D8h—3D%h Reserved Reserved
3DAh VGA Status Register (ST01) VGA Feature Control Register (FCR)
3DBh—-3DFh Reserved Reserved

3

Indirect VGA and Extended VGA Register Indices

The registers listed in this section are indirectly accessed by programming an index
value into the appropriate SRX, GRX, ARX, or CRX register. The index and data
register address locations are listed in the previous section. Additional details
concerning the indirect access mechanism are provided in the VGA and Extended VGA
Register Description Chapter (see SRxx, GRxx, ARxx or CRxx sections).

Table 5-4. 2D Sequence Registers (3C4h / 3C5h)

Index Sym Description
00h SROO Sequencer Reset
01h SRO1 Clocking Mode
02h SRO2 Plane / Map Mask
03h SRO3 Character Font
04h SR04 Memory Mode
07h SRO7 Horizontal Character Counter Reset

Table 5-5. 2D Graphics Controller Registers (3CEh / 3CFh)

Table 5-6.

Index Sym Register Name
00h GROO Set / Reset
O1h GRO1 Enable Set / Reset
02h GRO2 Color Compare
03h GRO3 Data Rotate
04h GRO4 Read Plane Select
05h GRO5 Graphics Mode
06h GRO06 Miscellaneous
07h GRO7 Color Don’t Care
08h GRO8 Bit Mask
10h GR10 Address Mapping
11h GR11 Page Selector
18h GR18 Software Flags
2D Attribute Controller Registers (3COh / 3C1h)
Index Sym Register Name
00h AROO Palette Register O
01h ARO1 Palette Register 1
02h ARO2 Palette Register 2
03h ARO3 Palette Register 3
04h ARO4 Palette Register 4
05h ARO5 Palette Register 5
0o6h ARO6 Palette Register 6
07h ARO7 Palette Register 7
08h ARO8 Palette Register 8
09h ARO9 Palette Register 9
OAh AROA Palette Register A
0Bh AROB Palette Register B
0Ch AROC Palette Register C
ODh AROD Palette Register D
OEh AROE Palette Register E
OFh AROF Palette Register F
10h AR10 Mode Control
11h AR11 Overscan Color
12h AR12 Memory Plane Enable
13h AR13 Horizontal Pixel Panning
14h AR14 Color Select

97

98

intel.

Table 5-7. 2D CRT Controller Registers (3B4h / 3D4h / 3B5h / 3D5h)

Index Sym Register Name
00h CROO Horizontal Total
01h CRO1 Horizontal Display Enable End
02h CRO2 Horizontal Blanking Start
03h CRO3 Horizontal Blanking End
04h CRO4 Horizontal Sync Start
05h CRO5 Horizontal Sync End
06h CRO6 Vertical Total
07h CRO7 Overflow
08h CRO8 Preset Row Scan
09h CR0O9 Maximum Scan Line
OAh CROA Text Cursor Start
OBh CROB Text Cursor End
OCh CROC Start Address High
0ODh CROD Start Address Low
OEh CROE Text Cursor Location High
OFh CROF Text Cursor Location Low
10h CR10 Vertical Sync Start
11h CR11 Vertical Sync End
12h CR12 Vertical Display Enable End
13h CR13 Offset
14h CR14 Underline Location
15h CR15 Vertical Blanking Start
16h CR16 Vertical Blanking End
17h CR17 CRT Mode
18h CR18 Line Compare
22h CR22 Memory Read Latch Data
24h CR24 Test Register for Toggle State of Attribute Control Register

88

6

intel.

Memory Data Formats

6.1

6.1.1

This chapter describes the attributes associated with the memory-resident data
objects operated on by the graphics pipeline. This includes object types, pixel
formats, memory layouts, and rules/restrictions placed on the dimensions, physical
memory location, pitch, alignment, etc. with respect to the specific operations
performed on the objects.

Memory Object Overview

Any memory data accessed by the device is considered part of a memory object of
some memory object type.

Memory Object Types

The following table lists the various memory objects types and an indication of their
role in the system.

Memory Object Type

Role

Graphics Translation Table (GTT)

Contains PTEs used to translate “graphics addresses” into physical
memory addresses.

Hardware Status Page

Cached page of sysmem used to provide fast driver synchronization.

Logical Context Buffer

Memory areas used to store (save/restore) images of hardware
rendering contexts. Logical contexts are referenced via a pointer to the
corresponding Logical Context Buffer.

Ring Buffers

Buffers used to transfer (DMA) instruction data to the device. Primary
means of controlling rendering operations.

Batch Buffers

Buffers of instructions invoked indirectly from Ring Buffers.

State Descriptors

Contains state information in a prescribed layout format to be read by
hardware. Many different state descriptor formats are supported.

Vertex Buffers

Buffers of 3D vertex data indirectly referenced through “indexed” 3D
primitive instructions.

VGA Buffer
(Must be mapped UC on PCI)

Graphics memory buffer used to drive the display output while in legacy
VGA mode.

Display Surface

Memory buffer used to display images on display devices.

Overlay Surface

Memory buffer used to display overlaid images on display devices.

Overlay Register, Filter Coefficients

Buffer

Memory area used to provide double-buffer for Overlay register and
filter coefficient loading.

Cursor Surface

Hardware cursor pattern in memory.

100

intel.

Memory Object Type

Role

2D Render Source

Surface used as primary input to 2D rendering operations.

2D Render R-M-W Destination

2D rendering output surface that is read in order to be combined in the
rendering function. Destination surfaces that accessed via this Read-
Modify-Write mode have somewhat different restrictions than Write-
Only Destination surfaces.

2D Render Write-Only Destination

2D rendering output surface that is written but not read by the 2D
rendering function. Destination surfaces that accessed via a Write-Only
mode have somewhat different restrictions than Read-Modify-Write
Destination surfaces.

2D Monochrome Source

1 bpp surfaces used as inputs to 2D rendering after being converted to
foreground/background colors.

2D Color Pattern

8x8 pixel array used to supply the “pattern” input to 2D rendering
functions.

DIB

“Device Independent Bitmap” surface containing “logical” pixel values
that are converted (via LUTs) to physical colors.

3D Color Buffer

Surface receiving color output of 3D rendering operations. May also be
accessed via R-M-W (aka blending). Also referred to as a Render
Target.

3D Depth Buffer

Surface used to hold per-pixel depth and stencil values used in 3D
rendering operations. Accessed via RMW.

3D Texture Map

Color surface (or collection of surfaces) which provide texture data in
3D rendering operations.

“Non-3D” Texture

Surface read by Texture Samplers, though not in normal 3D rendering
operations (e.g., in video color conversion functions).

Motion Comp Surfaces

These are the Motion Comp reference pictures.

Motion Comp Correction Data Buffer

This is Motion Comp intra-coded or inter-coded correction data.

6.2 Channel Formats

6.2.1 Unsigned Normalized (UNORM)

An unsigned normalized value with n bits is interpreted as a value between 0.0 and
1.0. The minimum value (all 0’s) is interpreted as 0.0, the maximum value (all 1’s) is
interpreted as 1.0. Values inbetween are equally spaced. For example, a 2-bit
UNORM value would have the four values 0, 1/3, 2/3, and 1.

If the incoming value is interpreted as an n-bit integer, the interpreted value can be
calculated by dividing the integer by 2"-1.

101

intel)

6.2.3

6.2.4

6.2.5

102

Gamma Conversion (SRGB)

Gamma conversion is only supported on UNORM formats. If this flag is included in the
surface format name, it indicates that a reverse gamma conversion is to be done after
the source surface is read, and a forward gamma conversion is to be done before the
destination surface is written.

Signed Normalized (SNORM)

A signed normalized value with n bits is interpreted as a value between -1.0 and +1.0.
If the incoming value is interpreted as a 2's-complement n-bit signed integer, the
interpreted value can be calculated by dividing the integer by 2"*-1. Note that the
most negative value of -2"* will result in a value slightly smaller than -1.0. This value
is clamped to -1.0, thus there are two representations of -1.0 in SNORM format.

Unsigned Integer (UINT/USCALED)

The UINT and USCALED formats interpret the source as an unsigned integer value
with n bits with a range
of 0 to 2"-1.

The UINT formats copy the source value to the destination (zero-extending if
required), keeping the value as an integer.

The USCALED formats convert the integer into the corresponding floating point value

(e.g., Ox03 --> 3.0f). For 32-bit sources, the value is rounded to nearest even.

Signhed Integer (SINT/SSCALED)

A signed integer value with n bits is interpreted as a 2’s complement integer with a
range of -2"* to +2"1-1.

The SINT formats copy the source value to the destination (sign-extending if
required), keeping the value as an integer.

The SSCALED formats convert the integer into the corresponding floating point value
(e.g., OXFFFD --> -3.0f). For 32-bit sources, the value is rounded to nearest even.

intel)

6.2.6 Floating Point (FLOAT)
Refer to IEEE Standard 754 for Binary Floating-Point Arithmetic. The IA-32 Intel®

Architecture Software Developer’'s Manual also describes floating point data types
(though GEN4 deviates slightly from those behaviors).

6.2.6.1 32-bit Floating Point

Bit Description

31 Sign (s)

30:23 Exponent (e) Biased Exponent

22:0 Fraction (f) Does not include “hidden one”

The value of this data type is derived as:
e ife ==255and f!= 0, then v is NaN regardless of s
if e == 255 and f == 0, then v = (-1)**infinity (signed infinity)
if 0 < e < 255, then v = (-1)°*2¢120*(1 f)
if e == 0 and f != 0, then v = (-1)**2¢120*(0 f) (denormalized numbers)
if e==0 and f == 0, then v = (-1)°*0 (signed zero)

6.2.6.2 64-bit Floating Point

Bit Description

63 Sign (s)

62:52 Exponent (e) Biased Exponent

51:0 Fraction (f) Does not include “hidden one”

The value of this data type is derived as:
e ife==0Db'11..11" and f = 0, then v is NaN regardless of s

e ife==1D0'11..11" and f == 0, then v = (-1)**infinity (signed infinity)
e ifO<e<bi1l..11’, then v = (-1)5*2(1029)*(7 f)
e ife==0andf!=0, then v = (-1)>*2¢1922>(0 f) (denormalized numbers)
e ife==0andf==0, then v = (-1)**0 (signed zero)
6.3 Non-Video Surface Formats

This section describes the lowest-level organization of a surfaces containing discrete
“pixel” oriented data (e.g., discrete pixel (RGB,YUV) colors, subsampled video data,
3D depth/stencil buffer pixel formats, bump map values etc. Many of these pixel
formats are common to the various pixel-oriented memory object types.

6.3.1 Surface Format Naming

Unless indicated otherwise, all pixels are stored in “little endian” byte order. l.e.,
pixel bits 7:0 are stored in byte n, pixel bits 15:8 are stored in byte n+1, and so on.

103

intel)

The format labels include color components in little endian order (e.g., RBG8B8AS8
format is physically stored as R, G, B, A).

The name of most of the surface formats specifies its format. Channels are listed in
little endian order (LSB channel on the left, MSB channel on the right), with the
channel format specified following the channels with that format. For example,

R5G5 SNORM_B6_UNORM contains, from LSB to MSB, 5 bits of red in SNORM format,
5 bits of green in SNORM format, and 6 bits of blue in UNORM format.

6.3.2 Intensity Formats

All surface formats containing “1” include an intensity value. When used as a source
surface for the sampling engine, the intensity value is replicated to all four channels
(R,G,B,A) before being filtered. Intensity surfaces are not supported as destinations.

6.3.3 Luminance Formats

All surface formats contaning “L” include a luminance value. When used as a source
surface for the sampling engine, the luminance value is replicated to the three color
channels (R,G,B) before being filtered. The alpha channel is provided either from
another field or receives a default value. Luminance surfaces are not supported as
destinations.

104

intel.

6.3.4 P4A4 UNORM
This texel format contains a 4-bit Alpha value (in the high nibble) and a 4-bit Palette
Index value (in the low nibble).
7 4 3 0
Alpha Palette Index
Bit Description
7:4 Alpha
Alpha value which will be replicated to both the high and low nibble of an 8-bit value, and then
divided by 255 to yield a [0.0,1.0] Alpha value.
Format: U4
3:0 Palette Index
A 4-bit index which is used to lookup a 24-bit (RGB) value in the texture palette (loaded via
3DSTATE_SAMPLER_PALETTE_LOAD)
Format: U4
6.3.5 A4P4 _UNORM
This texel format contains a 4-bit Alpha value (in the low nibble) and a 4-bit Color
Index value (in the high nibble).
7 4 3 0
Palette Index Alpha
Bit Description
7:4 Palette Index
A 4-bit color index which is used to lookup a 24-bit RGB value in the texture palette.
Format: U4
3:0 Alpha

Alpha value which will be replicated to both the high and low nibble of an 8-bit value, and then
divided by 255 to yield a [0.0,1.0] alpha value.

Format: U4

105

intel)

6.4

6.4.1

Compressed Surface Formats

This section contains information on the internal organization of compressed surface
formats.

FXT Texture Formats

There are four different FXT1 compressed texture formats. Each of the formats
compress two 4x4 texel blocks into 128 bits. In each compression format, the 32
texels in the two 4x4 blocks are arranged according to the following diagram:

Figure 6-1. FXT1 Encoded Blocks

6.4.1.1

t0 1 t2 t3 t16 | t17 | t18 | t19
t4 t5 t6 t7 20 | t21 | t22 | t23
t8 t9 t10 | t11 t24 | 25 | t26 | t27
t12 | t13 | t14 | t15 28 | t29 | t30 | t31

Overview of FXT1 Formats

During the compression phase, the encoder selects one of the four formats for each
block based on which encoding scheme results in best overall visual quality. The
following table lists the four different modes and their encodings:

Table 6-1. FXT1 Format Summary

Bit Bit Bit Block Summary Description
127 126 125 Compression
Mode

0 0 X CC_HI 2 R5G5BS5 colors supplied. Single LUT with 7 interpolated color
values and transparent black

0 1 0 CC_CHROMA 4 R5G5BS5 colors used directly as 4-entry LUT.

0 1 1 CC_ALPHA 3 A5R5G5BS5 colors supplied. LERP bit selects between 1 LUT with
3 discrete colors + transparent black and 2 LUTs using
interpolated values of Color 0,1 (t0-15) and Color 1,2 (t16-31).

1 X X CC_MIXED 4 R5G5BS5 colors supplied, where Color0,1 LUT is used for tO-t15,
and Color2,3 LUT used for t16-31. Alpha bit selects between LUTs
with 4 interpolated colors or 3 interpolated colors + transparent
black.

106

intel)

6.4.1.2 FXT1 CC_HI Format

In the CC_HI encoding format, two base 15-bit R5G5B5 colors (Color O, Color 1) are
included in the encoded block. These base colors are then expanded (using high-
order bit replication) to 24-bit RGB colors, and used to define an 8-entry lookup table
of interpolated color values (the 8™ entry is transparent black). The encoded block
contains a 3-bit index value per texel that is used to lookup a color from the table.

6.4.1.2.1 CC_HI Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_HI block
format:

Table 6-2. FXT CC_HI Block Encoding

Bit Description
127:126 Mode = ‘00’b (CC_HI)
125:121 Color 1 Red
120:116 Color 1 Green
115:111 Color 1 Blue
110:106 Color 0 Red
105:101 Color O Green
100:96 Color 0 Blue

95:93 Texel 31 Select
50:48 Texel 16 Select
47:45 Texel 15 Select

2:0 Texel O Select

107

intel)

6.4.1.2.2 CC_HI Block Decoding

The two base colors, Color O and Color 1 are converted from R5G5B5 to R8G8B8 by
replicating the 3 MSBs into the 3 LSBs, as shown in the following table:

Table 6-3. FXT CC_HI Decoded Colors

Expanded Color Expanded Channel Encoded Block
Bit Bit Source Bit

Color 1 [23:19] Color 1 Red [7:3] [125:121]
Color 1 [18:16] Color 1 Red [2:0] [125:123]
Color 1 [15:11] Color 1 Green [7:3] [120:116]
Color 1 [10:08] Color 1 Green [2:0] [120:118]
Color 1 [07:03] Color 1 Blue [7:3] [115:111]
Color 1 [02:00] Color 1 Blue [2:0] [115:113]
Color 0 [23:19] Color O Red [7:3] [110:106]
Color 0 [18:16] Color O Red [2:0] [110:108]
Color 0 [15:11] Color O Green [7:3] [105:101]
Color 0 [10:08] Color O Green [2:0] [105:103]
Color 0 [07:03] Color O Blue [7:3] [100:96]

Color 0 [02:00] Color 0 Blue [2:0] [100:98]

These two 24-bit colors (Color 0, Color 1) are then used to create a table of seven
interpolated colors (with Alpha = OFFh), along with an eight entry equal to RGBA =
0,0,0,0, as shown in the following table:

Table 6-4. FXT CC_HI Interpolated Color Table

Interpolated Color RGB Alpha
Color

0 Color0.RGB OFFh
1 (5 * Color0.RGB + 1 * Colorl.RGB + 3) / 6 OFFh
2 (4 * Color0.RGB + 2 * Color1.RGB + 3) / 6 OFFh
3 (3 * Color0.RGB + 3 * Colorl.RGB + 3) / 6 OFFh
4 (2 * Color0.RGB + 4 * Colorl.RGB + 3) / 6 OFFh
5 (1 * Color0.RGB + 5 * Colorl.RGB + 3) / 6 OFFh
6 Colorl.RGB OFFh
7 RGB = 0,0,0 0

This table is then used as an 8-entry Lookup Table, where each 3-bit Texel n Select
field of the encoded CC_HI block is used to index into a 32-bit ABR8G8BS8 color from
the table completing the decode of the CC_HI block.

108

6.4.1.3

6.4.1.3.1

intel)

In the CC_CHROMA encoding format, four 15-bit R5B5G5 colors are included in the

encoded block. These colors are then expanded (using high-order bit replication) to
form a 4-entry table of 24-bit RGB colors. The encoded block contains a 2-bit index
value per texel that is used to lookup a 24-bit RGB color from the table. The Alpha

component defaults to fully opaque (OFFh).

FXT1 CC_CHROMA Format

CC_CHROMA Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_CHROMA
block format:

Table 6-5. FXT CC_CHROMA Block Encoding

Bit Description
127:125 Mode = ‘010’b (CC_CHROMA)
124 Unused
123:119 Color 3 Red
118:114 Color 3 Green
113:109 Color 3 Blue
108:104 Color 2 Red
103:99 Color 2 Green
98:94 Color 2 Blue
93:89 Color 1 Red
88:84 Color 1 Green
83:79 Color 1 Blue
78:74 Color O Red
73:69 Color O Green
68:64 Color 0 Blue
63:62 Texel 31 Select
33:32 Texel 16 Select
31:30 Texel 15 Select
1:0 Texel O Select

109

intel)

6.4.1.3.2 CC_CHROMA Block Decoding

The four colors (Color 0-3) are converted from R5G5B5 to R8G8B8 by replicating the 3
MSBs into the 3 LSBs, as shown in the following tables:

Table 6-6. FXT CC_CHROMA Decoded Colors

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit
Color 3 [23:17] Color 3 Red [7:3] [123:119]
Color 3 [18:16] Color 3 Red [2:0] [123:121]
Color 3 [15:11] Color 3 Green [7:3] [118:114]
Color 3 [10:08] Color 3 Green [2:0] [118:116]
Color 3 [07:03] Color 3 Blue [7:3] [113:109]
Color 3 [02:00] Color 3 Blue [2:0] [113:111]
Color 2 [23:17] Color 2 Red [7:3] [108:104]
Color 2 [18:16] Color 2 Red [2:0] [108:106]
Color 2 [15:11] Color 2 Green [7:3] [103:99]
Color 2 [10:08] Color 2 Green [2:0] [103:101]
Color 2 [07:03] Color 2 Blue [7:3] [98:94]
Color 2 [02:00] Color 2 Blue [2:0] [98:96]
Color 1 [23:17] Color 1 Red [7:3] [93:89]
Color 1 [18:16] Color 1 Red [2:0] [93:91]
Color 1 [15:11] Color 1 Green [7:3] [88:84]
Color 1 [10:08] Color 1 Green [2:0] [88:86]
Color 1 [07:03] Color 1 Blue [7:3] [83:79]
Color 1 [02:00] Color 1 Blue [2:0] [83:81]
Color 0 [23:17] Color O Red [7:3] [78:74]
Color 0 [18:16] Color O Red [2:0] [78:76]
Color 0 [15:11] Color O Green [7:3] [73:69]
Color 0 [10:08] Color 0 Green [2:0] [73:71]
Color 0 [07:03] Color 0 Blue [7:3] [68:64]
Color 0 [02:00] Color 0 Blue [2:0] [68:66]

This table is then used as a 4-entry Lookup Table, where each 2-bit Texel n Select
field of the encoded CC_CHROMA block is used to index into a 32-bit ABR8G8BS8 color
from the table (Alpha defaults to OFFh) completing the decode of the CC_CHROMA
block.

110

Table 6-7. FXT CC_CHROMA Interpolated Color Table

6.4.1.4

6.4.1.4.1

Texel Select Color ARGB
0 Color0.ARGB
1 Colorl.ARGB
2 Color2.ARGB
3 Color3.ARGB

FXT1 CC_MIXED Format

In the CC_MIXED encoding format, four 15-bit R5G5B5 colors are included in the
encoded block: Color O and Color 1 are used for Texels 0-15, and Color 2 and Color 3
are used for Texels 16-31.

Each pair of colors are then expanded (using high-order bit replication) to form 4-
entry tables of 24-bit RGB colors. The encoded block contains a 2-bit index value per
texel that is used to lookup a 24-bit RGB color from the table. The Alpha component
defaults to fully opaque (OFFh).

CC_MIXED Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_MIXED block
format:

Table 6-8. FXT CC_MIXED Block Encoding

Bit Description
127 Mode = ‘1'b (CC_MIXED)
126 Color 3 Green [0]

125 Color 1 Green [0]
124 Alpha [0]

123:119 Color 3 Red

118:114 Color 3 Green

113:109 Color 3 Blue

108:104 Color 2 Red

103:99 Color 2 Green
98:94 Color 2 Blue
93:89 Color 1 Red
88:84 Color 1 Green
83:79 Color 1 Blue
78:74 Color O Red

111

Bit Description
73:69 Color O Green
68:64 Color O Blue
63:62 Texel 31 Select
33:32 Texel 16 Select
31:30 Texel 15 Select
1:0 Texel O Select

6.4.1.4.2 CC_MIXED Block Decoding

The decode of the CC_MIXED block is modified by Bit 124 (Alpha [0]) of the encoded
block.

Alpha[0] = 0 Decoding

When Alpha[0] = O the four colors are encoded as 16-bit R5G6B5 values, with the
Green LSB defined as per the following table:

Table 6-9. FXT CC_MIXED (Alpha[0]=0) Decoded Colors

Encoded Color Bit Definition

Color 3 Green [0] Encoded Bit [126]

Color 2 Green [0] Encoded Bit [33] XOR Encoded Bit [126]
Color 1 Green [0] Encoded Bit [125]

Color 0 Green [0] Encoded Bit [1] XOR Encoded Bit [125]

The four colors (Color 0-3) are then converted from R5G5B6 to R8G8B8 by replicating
the 3 MSBs into the 3 LSBs, as shown in the following table:

Table 6-10. FXT CC_MIXED Decoded Colors (Alpha[0] = 0)

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit
Color 3 [23:17] Color 3 Red [7:3] [123:119]
Color 3 [18:16] Color 3 Red [2:0] [123:121]
Color 3 [15:11] Color 3 Green [7:3] [118:114]
Color 3 [10] Color 3 Green [2] [126]
Color 3 [09:08] Color 3 Green [1:0] [118:117]
Color 3 [07:03] Color 3 Blue [7:3] [113:109]

112

intel.

Expanded Color Bit

Expanded Channel Bit

Encoded Block Source Bit

Color 3 [02:00] Color 3 Blue [2:0] [113:111]
Color 2 [23:17] Color 2 Red [7:3] [108:104]
Color 2 [18:16] Color 2 Red [2:0] [108:106]
Color 2 [15:11] Color 2 Green [7:3] [103:99]

Color 2 [10] Color 2 Green [2] [33] XOR [126]]
Color 2 [09:08] Color 2 Green [1:0] [103:100]
Color 2 [07:03] Color 2 Blue [7:3] [98:94]
Color 2 [02:00] Color 2 Blue [2:0] [98:96]
Color 1 [23:17] Color 1 Red [7:3] [93:89]
Color 1 [18:16] Color 1 Red [2:0] [93:91]
Color 1 [15:11] Color 1 Green [7:3] [88:84]
Color 1 [10] Color 1 Green [2] [125]
Color 1 [09:08] Color 1 Green [1:0] [88:86]
Color 1 [07:03] Color 1 Blue [7:3] [83:79]
Color 1 [02:00] Color 1 Blue [2:0] [83:81]
Color 0 [23:17] Color O Red [7:3] [78:74]
Color 0 [18:16] Color O Red [2:0] [78:76]
Color 0 [15:11] Color 0 Green [7:3] [73:69]

Color 0 [10]

Color 0 Green [2]

[1] XOR [125]

Color 0 [09:08]

Color O Green [1:0]

[73:71]

Color 0 [07:03]

Color 0 Blue [7:3]

[68:64]

Color 0 [02:00]

Color 0 Blue [2:0]

[68:66]

The two sets of 24-bit colors (Color 0,1 and Color 2,3) are then used to create two
tables of four interpolated colors (with Alpha = OFFh). The ColorO,1 table is used as a
lookup table for texel 0-15 indices, and the Color2,3 table used for texels 16-31
indices, as shown in the following figures:

Table 6-11. FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 0-15)

Texel O- Color RGB Alpha
15 Select

0 Color0.RGB OFFh

1 (2*Color0.RGB + Colorl.RGB + 1) /3 OFFh

2 (Color0.RGB + 2*Colorl.RGB + 1) /3 OFFh

3 Colorl.RGB OFFh

113

intel)

Table 6-12. FXT CC_MIXED Interpolated Color Table (Alpha[0]=0, Texels 16-31)

Texel 16-31 Color RGB Alpha
Select
0 Color2.RGB OFFh
1 (2/3) * Color2.RGB + (1/3) * Color3.RGB OFFh
2 (1/3) * Color2.RGB + (2/3) * Color3.RGB OFFh
3 Color3.RGB OFFh

Alpha[0] = 1 Decoding

When Alpha[0] = 1, ColorO and Color2 are encoded as 15-bit R5G5B5 values. Colorl
and Color3 are encoded as RGB565 colors, with the Green LSB obtained as shown in
the following table:

Table 6-13. FXT CC_MIXED (Alpha[0]=0) Decoded Colors

Encoded Color Bit Definition
Color 3 Green [0] Encoded Bit [126]
Color 1 Green [0] Encoded Bit [125]

All four colors are then expanded to 24-bit RBG8B8 colors by bit replication, as show
in the following diagram.

Table 6-14. FXT CC_MIXED Decoded Colors (Alpha[0] = 1)

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit
Color 3 [23:17] Color 3 Red [7:3] [123:119]
Color 3 [18:16] Color 3 Red [2:0] [123:121]
Color 3 [15:11] Color 3 Green [7:3] [118:114]
Color 3 [10] Color 3 Green [2] [126]
Color 3 [09:08] Color 3 Green [1:0] [118:117]
Color 3 [07:03] Color 3 Blue [7:3] [113:109]
Color 3 [02:00] Color 3 Blue [2:0] [113:111]
Color 2 [23:19] Color 2 Red [7:3] [108:104]
Color 2 [18:16] Color 2 Red [2:0] [108:106]
Color 2 [15:11] Color 2 Green [7:3] [103:99]
Color 2 [10:08] Color 2 Green [2:0] [103:101]
Color 2 [07:03] Color 2 Blue [7:3] [98:94]
Color 2 [02:00] Color 2 Blue [2:0] [98:96]
Color 1 [23:17] Color 1 Red [7:3] [93:89]
Color 1 [18:16] Color 1 Red [2:0] [93:91]
Color 1 [15:11] Color 1 Green [7:3] [88:84]
Color 1 [10] Color 1 Green [2] [125]

114

intel)

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit
Color 1 [09:08] Color 1 Green [1:0] [88:87]
Color 1 [07:03] Color 1 Blue [7:3] [83:79]
Color 1 [02:00] Color 1 Blue [2:0] [83:81]
Color 0 [23:19] Color O Red [7:3] [78:74]
Color 0 [18:16] Color 0 Red [2:0] [78:76]
Color 0 [15:11] Color 0 Green [7:3] [73:69]
Color 0 [10:08] Color 0 Green [2:0] [73:71]
Color 0 [07:03] Color 0 Blue [7:3] [68:64]
Color 0 [02:00] Color 0 Blue [2:0] [68:66]

The two sets of 24-bit colors (Color 0,1 and Color 2,3) are then used to create two
tables of four colors. The ColorO,1 table is used as a lookup table for texel 0-15
indices, and the Color2,3 table used for texels 16-31 indices. The color at index 1 is
the linear interpolation of the base colors, while the color at index 3 is defined as

Black (0,0,0) with Alpha = 0, as shown in the following figures:

Table 6-15. FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 0-15)

Texel 0-15 Color RGB Alpha
Select
0 Color0.RGB OFFh
1 (Color0.RGB + Colorl.RGB) /2 OFFh
2 Colorl.RGB OFFh
3 Black (0,0,0) 0

Table 6-16. FXT CC_MIXED Interpolated Color Table (Alpha[0]=1, Texels 16-31)

Texel 16- Color RGB Alpha
31 Select

(0] Color2.RGB OFFh

1 (Color2.RGB + Color3.RGB) /2 OFFh

2 Color3.RGB OFFh

3 Black (0,0,0) 0

These tables are then used as a 4-entry Lookup Table, where each 2-bit Texel n Select
field of the encoded CC_MIXED block is used to index into the appropriate 32-bit
AB8R8G8BS8 color from the table, completing the decode of the CC_CMIXED block.

115

intel)

6.4.1.5 FXT1 CC_ALPHA Format
In the CC_ALPHA encoding format, three ASR5G5B5 colors are provided in the

encoded block. A control bit (LERP) is used to define the lookup table (or tables) used
to dereference the 2-bit Texel Selects.

6.4.1.5.1 CC_ALPHA Block Encoding

The following table describes the encoding of the 128-bit (DQWord) CC_ALPHA block
format:

Table 6-17. FXT CC_ALPHA Block Encoding

Bit Description
127:125 Mode = ‘011’b (CC_ALPHA)
124 LERP
123:119 Color 2 Alpha
118:114 Color 1 Alpha
113:109 Color 0 Alpha
108:104 Color 2 Red
103:99 Color 2 Green
98:94 Color 2 Blue
93:89 Color 1 Red
88:84 Color 1 Green
83:79 Color 1 Blue
78:74 Color 0 Red
73:69 Color O Green
68:64 Color 0O Blue
63:62 Texel 31 Select
33:32 Texel 16 Select
31:30 Texel 15 Select
1:0 Texel O Select

116

intel)

6.4.1.5.2 CC_ALPHA Block Decoding

Each of the three colors (Color 0-2) are converted from A5R5G5B5 to ABR8G8BS8 by
replicating the 3 MSBs into the 3 LSBs, as shown in the following tables:

Table 6-18. FXT CC_ALPHA Decoded Colors

Expanded Color Bit Expanded Channel Bit Encoded Block Source Bit
Color 2 [31:27] Color 2 Alpha [7:3] [123:119]
Color 2 [26:24] Color 2 Alpha [2:0] [123:121]
Color 2 [23:17] Color 2 Red [7:3] [108:104]
Color 2 [18:16] Color 2 Red [2:0] [108:106]
Color 2 [15:11] Color 2 Green [7:3] [103:99]
Color 2 [10:08] Color 2 Green [2:0] [103:101]
Color 2 [07:03] Color 2 Blue [7:3] [98:94]
Color 2 [02:00] Color 2 Blue [2:0] [98:96]
Color 1 [31:27] Color 1 Alpha [7:3] [118:114]
Color 1 [26:24] Color 1 Alpha [2:0] [118:116]
Color 1 [23:17] Color 1 Red [7:3] [93:89]
Color 1 [18:16] Color 1 Red [2:0] [93:91]
Color 1 [15:11] Color 1 Green [7:3] [88:84]
Color 1 [10:08] Color 1 Green [2:0] [88:86]
Color 1 [07:03] Color 1 Blue [7:3] [83:79]
Color 1 [02:00] Color 1 Blue [2:0] [83:81]
Color 0 [31:27] Color 0 Alpha [7:3] [113:109]
Color 0 [26:24] Color 0 Alpha [2:0] [113:111]
Color 0 [23:17] Color O Red [7:3] [78:74]
Color 0 [18:16] Color O Red [2:0] [78:76]
Color 0 [15:11] Color 0 Green [7:3] [73:69]
Color 0 [10:08] Color 0 Green [2:0] [73:71]
Color 0 [07:03] Color 0 Blue [7:3] [68:64]
Color 0 [02:00] Color 0 Blue [2:0] [68:66]

117

ntel)

LERP = O Decoding

When LERP = 0, a single 4-entry lookup table is formed using the three expanded
colors, with the 4t" entry defined as transparent black (ARGB=0,0,0,0). Each 2-bit
Texel n Select field of the encoded CC_ALPHA block is used to index into a 32-bit
AB8R8G8BS8 color from the table completing the decode of the CC_ALPHA block.

Table 6-19. FXT CC_ALPHA Interpolated Color Table (LERP=0)

Texel Select Color Alpha
0 Color0.RGB Color0.Alpha
1 Colorl.RGB Colorl.Alpha
2 Color2.RGB Color2.Alpha
3 Black (RGB=0,0,0) 0

LERP = 1 Decoding

When LERP = 1, the three expanded colors are used to create two tables of four
interpolated colors. The Color0,1 table is used as a lookup table for texel 0-15
indices, and the Colorl,2 table used for texels 16-31 indices, as shown in the following
figures:

Table 6-20. FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 0-15)

Texel O- Color ARGB

15 Select
0 Color0.ARGB
1 (2*Color0.ARGB + Colorl.ARGB + 1) /3
2 (Color0.ARGB + 2*Colorl.ARGB + 1) /3
3 Colorl.ARGB

Table 6-21. FXT CC_ALPHA Interpolated Color Table (LERP=1, Texels 16-31)

118

Texel 16- Color ARGB

31 Select
0 Color2.ARGB
1 (2*Color2.ARGB + Colorl.ARGB + 1) /3
2 (Color2.ARGB + 2*Colorl.ARGB + 1) /3
3 Colorl.ARGB

6.4.2

6.4.2.1

intel)

BC Texture Formats

The hardware supports three “BCn” surface formats that divide surfaces (texture
maps) into independent 4x4 texel blocks and stores compressed versions of these
blocks in 1 or 2 QWord units. Note that non-power-of-2 dimensioned maps may
require the surface to be padded out to the next multiple of four texels — here the pad
texels are not referenced by the device.

An 8-byte (QWord) block encoding can be used if the source texture contains no
transparency (is opaque) or if the transparency can be specified by a one-bit alpha.
A 16-byte (DQWord) block encoding can be used to support source textures that
require more than one-bit alpha: here the 1% QWord is used to encode the texel
alpha values, and the 2" QWord is used to encode the texel color values.

These three types of format are discussed in the following sections:

e Opaque and One-bit Alpha Textures (BC1)
e Opaque Textures (BC1_RGB)
e Textures with Alpha Channels (BC2-3)

Notes:

¢ Any single texture must specify that its data is stored as 64 or 128 bits per group
of 16 texels. If 64-bit blocks—that is, format BC1l—are used for the texture, it is
possible to mix the opaque and one-bit alpha formats on a per-block basis within
the same texture. In other words, the comparison of the unsigned integer
magnitude of color_0 and color_1 is performed uniquely for each block of 16
texels.

¢ When 128-bit blocks are used, then the alpha channel must be specified in either
explicit (format BC2) or interpolated mode (format BC3) for the entire texture.
Note that as with color, once interpolated mode is selected then either 8
interpolated alphas or 6 interpolated alphas mode can be used on a block-by-block
basis. Again the magnitude comparison of alpha_0 and alpha_1 is done uniquely
on a block-by-block basis.

Opaque and One-bit Alpha Textures (BC1)

Texture format BC1 is for textures that are opaque or have a single transparent color.
For each opaque or one-bit alpha block, two 16-bit R5G6B5 values and a 4x4 bitmap
with 2-bits-per-pixel are stored. This totals 64 bits (1 QWord) for 16 texels, or 4-bits-
per-texel.

In the block bitmap, there are two bits per texel to select between the four colors, two
of which are stored in the encoded data. The other two colors are derived from these
stored colors by linear interpolation.

The one-bit alpha format is distinguished from the opaque format by comparing the
two 16-bit color values stored in the block. They are treated as unsigned integers. If
the first color is greater than the second, it implies that only opaque texels are
defined. This means four colors will be used to represent the texels. In four-color
encoding, there are two derived colors and all four colors are equally distributed in

119

120

RGB color space. This format is analogous to R5G6B5 format. Otherwise, for one-bit
alpha transparency, three colors are used and the fourth is reserved to represent
transparent texels. Note that the color blocks in BC2-3 formats strictly use four
colors, as the alpha values are obtained from the alpha block (the DX7 Direct3D
reference rasterizer had a known bug that erroneously allowed 3-color BC2-3 color
blocks).

In three-color encoding, there is one derived color and the fourth two-bit code is
reserved to indicate a transparent texel (alpha information). This format is analogous
to A1R5G5B5, where the final bit is used for encoding the alpha mask.

The following piece of pseudo-code illustrates the algorithm for deciding whether
three- or four-color encoding is selected:

if (color 0 > color 1)

// Four-color block: derive the other two colors.
// 00 = color 0, 01 = color 1, 10 = color 2, 11 = color 3
// These two bit codes correspond to the 2-bit fields
// stored in the 64-bit block.
color 2 = (2 * color 0 + color 1) / 3;
color 3 = (color 0 + 2 * color 1) / 3;
1
else
// Three-color block: derive the other color.
// 00 = color 0, 01 = color_ 1, 10 = color_ 2,
// 11 = transparent.
// These two bit codes correspond to the 2-bit fields
// stored in the 64-bit block.
color 2 = (color 0 + color 1) / 2;
color_3 = transparent;

The following tables show the memory layout for the 8-byte block. It is assumed that
the first index corresponds to the y-coordinate and the second corresponds to the x-
coordinate. For example, Texel[1][2] refers to the texture map pixel at (x,y) = (2,1).

Here is the memory layout for the 8-byte (64-bit) block:

Word Address 16-bit Word
0 Color_0O
1 Color_1
2 Bitmap Word_0
3 Bitmap Word_1

Color_0 and Color_1 (colors at the two extremes) are laid out as follows:

Bits Color
15:11 Red color component
10:5 Green color component
4:0 Blue color component

Bitmap Word_0O is laid out as follows:

Bits Texel
1:0 (LSB) Texel[0][0]
3:2 Texel[0][1]
5:4 Texel[0][2]
7:6 Texel[0][3]
9:8 Texel[1][0]
11:10 Texel[1][1]
13:12 Texel[1][2]
15:14 Texel[1][3]

Bitmap Word_1 is laid out as follows:

Bits Texel

1:0 (LSB) Texel[2][0]

3:2 Texel[2][1]
5:4 Texel[2][2]
7:6 Texel[2][3]
9:8 Texel[3][0]

11:10 Texel[3][1]

13:12 Texel[3][2]

15:14 (MSB) [Texel[3][3]

Example of Opaque Color Encoding

As an example of opaque encoding, we will assume that the colors red and black are
at the extremes. We will call red color_0 and black color_1. There will be four
interpolated colors that form the uniformly distributed gradient between them. To
determine the values for the 4x4 bitmap, the following calculations are used:

00 ? color O
01 ? color 1
10 ? 2/3 color 0 + 1/3 color_ 1
11 ? 1/3 color 0 + 2/3 color_ 1

Example of One-bit Alpha Encoding

This format is selected when the unsigned 16-bit integer, color_O, is less than the
unsigned 16-bit integer, color_1. An example of where this format could be used is
leaves on a tree to be shown against a blue sky. Some texels could be marked as
transparent while three shades of green are still available for the leaves. Two of these
colors fix the extremes, and the third color is an interpolated color.

121

intel)

6.4.2.2

6.4.2.3

122

The bitmap encoding for the colors and the transparency is determined using the
following calculations:

00 ? color O

01 ? color 1

10 ? 1/2 color 0 + 1/2 color_1
11 ? Transparent

Opaque Textures (BC1_RGB)

Texture format BC1_RGB is identical to BC1, with the exception that the One-bit Alpha
encoding is removed. Color O and Color 1 are not compared, and the resulting texel
color is derived strictly from the Opaque Color Encoding. The alpha channel defaults
to 1.0.

Compressed Textures with Alpha Channels (BC2-3)

There are two ways to encode texture maps that exhibit more complex transparency.
In each case, a block that describes the transparency precedes the 64-bit block
already described. The transparency is either represented as a 4x4 bitmap with four
bits per pixel (explicit encoding), or with fewer bits and linear interpolation analogous
to what is used for color encoding.

The transparency block and the color block are laid out as follows:

Word Address 64-bit Block
3:0 Transparency block
7:4 Previously described 64-bit block

Explicit Texture Encoding

For explicit texture encoding (BC2 formats), the alpha components of the texels that
describe transparency are encoded in a 4x4 bitmap with 4 bits per texel. These 4 bits
can be achieved through a variety of means such as dithering or by simply using the 4
most significant bits of the alpha data. However they are produced, they are used just
as they are, without any form of interpolation.

Note:
DirectDraw’s compression method uses the 4 most significant bits.

The following tables illustrate how the alpha information is laid out in memory, for
each 16-bit word.

This is the layout for Word 0:

Bits Alpha

3:0 (LSB) [0][0]
7:4 [0][1]
11:8 [01[21]
15:12 (MSB) [01[3]

This is the layout for Word 1:

Bits Alpha

3:0 (LSB) [11[0]
7:4 [1101]
11:8 [11[2]
15:12 (MSB) [11[3]

This is the layout for Word 2:

Bits Alpha

3:0 (LSB) [21[0]
7:4 [2][1]
11:8 [21[21
15:12 (MSB) [21[3]

This is the layout for Word 3:

Bits Alpha

3:0 (LSB) [31[0]
7:4 [31[1]
11:8 31121
15:12 (MSB) [31[3]

Three-Bit Linear Alpha Interpolation

The encoding of transparency for the BC3 formats is based on a concept similar to the
linear encoding used for color. Two 8-bit alpha values and a 4x4 bitmap with three
bits per pixel are stored in the first eight bytes of the block. The representative alpha
values are used to interpolate intermediate alpha values. Additional information is
available in the way the two alpha values are stored. If alpha_O is greater than
alpha_1, then six intermediate alpha values are created by the interpolation.
Otherwise, four intermediate alpha values are interpolated between the specified
alpha extremes. The two additional implicit alpha values are 0 (fully transparent) and
255 (fully opaque).

The following pseudo-code illustrates this algorithm:

// 8-alpha or 6-alpha block?

if (alpha 0 > alpha 1) {
// 8-alpha block:
// 000 = alpha 0, 001
alpha 2 = (6 * alpha 0
alpha 3 = (5 * alpha 0
alpha 4 = (4 * alpha 0
alpha 5 = (3 * alpha 0
alpha 6 = (2 * alpha 0

+
+
+
+
+

alpha 1,
alpha 1) / 7;
2 * alpha 1) /
3 * alpha 1) /
4 * alpha 1) /
5 * alpha 1) /

7;
7;
7;
7;

/

NN

derive the other 6 alphas.
others are interpolated

/
/
/
/
/

bit
Bit
Bit
Bit
Bit

code
code
code
code
code

010
011
100
101
110

123

6.5

6.5.1

124

alpha 7 = (alpha 0 + 6 * alpha 1) / 7; // Bit code 111

else { // 6-alpha block: derive the other alphas.
// 000 = alpha 0, 001 = alpha 1, others are interpolated

alpha 2 = (4 * alpha 0 + alpha 1) / 5; // Bit code 010
alpha 3 = (3 * alpha 0 + 2 * alpha 1) / 5; // Bit code 011
alpha 4 = (2 * alpha 0 + 3 * alpha 1) / 5; // Bit code 100
alpha 5 = (alpha 0 + 4 * alpha 1) / 5; // Bit code 101
alpha 6 = 0; // Bit code 110
alpha 7 = 255; // Bit code 111

The memory layout of the alpha block is as follows:

Byte Alpha

0 Alpha_0

Alpha_1

[01[2] (2 LSBs), [O][1], [0][O]

[11[1] (1 LSB), [1][0], [O1[3]. [0][2] (1 MSB)

[1113]. [1][2]. [1]1[1] (2 MSBs)

[21[2] (2 LSBs), [2][1], [2]10]

[31[1] (1 LSB), [3][01, [21[3]. [2][2] (1 MSB)

N~N|]o|la|lh~h|]W|IN|R

[3113]. [3][2]. [3][1] (2 MSBs)

Video Pixel/Texel Formats

This section describes the “video” pixel/texel formats with respect to memory layout.
See the Overlay chapter for a description of how the Y, U, V components are sampled.

Packed Memory Organization

Color components are all 8 bits in size for YUV formats. For YUV 4:2:2 formats each
DWord will contain two pixels and only the byte order affects the memory
organization.

The following four YUV 4:2:2 surface formats are supported, listed with alternate
names:

e YCRCB_NORMAL (UYVY) (R8G8_B8G8_UNORM)

e YCRCB_SWAPUVY (YUY2) (G8R8_G8B8 _UNORM)

¢ YCRCB_SWAPUV

e YCRCB_SWAPY

The channels are mapped as follows:
Cr (V) Red

Y Green

Cb (U) Blue

Figure 6-2.

6.5.2

Note:

Memory Layout of Packed YUV 4:2:2 Formats

intel.

31‘30‘29‘28‘27‘26‘25‘24

23‘22‘21‘20‘19‘18‘17‘16

15‘14‘13‘12‘11‘10‘ 9 ‘ 8

7‘6‘5‘4‘3‘2‘1‘0

Vv

Y

U

Y

Pixel N

Pixel N+1

Pixel N

YUV 4:2:2 (Normal)

31‘30‘29‘28‘27‘26‘25‘24

23‘22‘21‘20‘19‘18‘17‘16

15‘14‘13‘12‘11‘10‘ 9 ‘ 8

7‘6‘5‘4‘3‘2‘1‘0

Pixel N Pixel N+1 Pixel N
YUV 4:2:2 (UV Swap)
31‘30‘29‘28‘27‘26‘25‘24 23‘22‘21‘20‘19‘18‘17‘16 15‘14‘13‘12‘11‘10‘9‘8 7‘6‘5‘4‘3‘2‘1‘0
Pixel N+1 Pixel N Pixel N

YUV 4:2:2 (Y Swap)

31‘30‘29‘28‘27‘26‘25‘24

23‘22‘21‘20‘19‘18‘17‘16

15‘14‘13‘12‘11‘10‘ 9 ‘ 8

7]e]s]a]3][2]1]o0

Y

Y

U

\Y,

Pixel N+1

Pixel N

Pixel N

YUV 4:2:2 (UV/Y Swap)

Mem_Layout_YUV 422

Planar Memory Organization

Planar formats use what could be thought of as separate buffers for the three color
components. Because there is a separate stride for the Y and U/V data buffers, several
memory footprints can be supported.

There is no direct support for use of planar video surfaces as textures. The sampling
engine can be used to operate on each of the 8bpp buffers separately (via a single-
channel 8-bit format such as 18_UNORM). The U and V buffers can be written
concurrently by using multiple render targets from the pixel shader. The Y buffer
must be written in a separate pass due to its different size.

The following figure shows two types of memory organization for the YUV 4:2:0 planar

video data:

1. The memory organization of the common YV12 data, where all three planes are
contiguous and the strides of U and V components are half of that of the Y

component.
2.

independent but satisfy certain alignment restrictions.

An alternative memory structure that the addresses of the three planes are

125

Figure 6-3. YUV 4:2:0 Format Memory Organization

126

_ Width
Y Pointer >

V Pointer

) \% Height/2
U Pointer |

»le
hl

u Height/2

Width/2

()

Height

Width
Y PointeL‘—’|
v Height
U Pointer o

V Pointer

A
\%

A 4

Width/2
(b)

u I Height/2

Height/2

YUV 420 Mem Org

intel)

The following figure shows memory organization of the planar YUV 4:1:0 format
where the planes are contiguous. The stride of the U and V planes is a quarter of that
of the Y plane.

Figure 6-4. YUV 4:1:0 Format Memory Organization

6.6

6.7

Width
Y Pointer

Height
Y .
U Pointer
r A .
V Pointer | U | y Height4
r A .
\Y v Height/4

width/i

YUV 410 Mem Org

Surface Memory Organizations

See Memory Interface Functions chapter for a discussion of tiled vs. linear surface
formats.

Graphics Translation Tables

The Graphics Translation Tables GTT (Graphics Translation Table, sometimes known
as the global GTT) and PPGTT (Per-Process Graphics Translation Table) are memory-
resident page tables containing an array of DWord Page Translation Entries (PTEs)
used in mapping logical Graphics Memory addresses to physical memory addresses,
and sometimes snooped system memory “PCI” addresses.

The graphics translation tables must reside in (unsnooped) system memory.

The base address (MM offset) of the GTT and the PPGTT are programmed via the
PGTBL_CTL and PGTBL_CTL2 MI registers, respectively. The translation table base
addresses must be 4KB aligned. The GTT size can be either 128KB, 256KB or 512KB
(mapping to 128MB, 256MB, and 512MB aperture sizes respectively) and is physically
contiguous. The global GTT should only be programmed via the range defined by
GTTADR. The PPGTT is programmed directly in memory. The per-process GTT
(PPGTT) size is controlled by the PGTBL_CTL2 register. The PPGTT can, in addition to
the above sizes, also be 64KB in size (corresponding to a 64MB aperture). Refer to
the GTT Range chapter for a bit definition of the PTE entries.

127

intel)

6.8

6.9

6.10

6.11

6.12

128

Hardware Status Page

The hardware status page is a naturally-aligned 4KB page residing in snooped system
memory. This page exists primarily to allow the device to report status via PCI
master writes — thereby allowing the driver to read/poll WB memory instead of UC
reads of device registers or UC memory.

The address of this page is programmed via the HWS_PGA MI register. The definition
of that register (in Memory Interface Registers) includes a description of the layout of
the Hardware Status Page.

Instruction Ring Buffers

Instruction ring buffers are the memory areas used to pass instructions to the device.
Refer to the Programming Interface chapter for a description of how these buffers are
used to transport instructions.

The RINGBUF register sets (defined in Memory Interface Registers) are used to specify
the ring buffer memory areas. The ring buffer must start on a 4KB boundary and be
allocated in linear memory. The length of any one ring buffer is limited to 2MB.

Note that “indirect” 3D primitive instructions (those that access vertex buffers) must
reside in the same memory space as the vertex buffers.

Instruction Batch Buffers

Instruction batch buffers are contiguous streams of instructions referenced via an
MI_BATCH_BUFFER_START and related instructions (see Memory Interface
Instructions, Programming Interface). They are used to transport instructions
external to ring buffers.

Note that batch buffers should not be mapped to snooped SM (PCI) addresses. The
device will treat these as MainMemory (MM) address, and therefore not snoop the CPU
cache.

The batch buffer must be QWord aligned and a multiple of QWords in length. The

ending address is the address of the last valid QWord in the buffer. The length of any
single batch buffer is “virtually unlimited” (i.e., could theoretically be 4GB in length).

Display, Overlay, Cursor Surfaces

These surfaces are memory image buffers (planes) used to refresh a display device in
non-VGA mode. See the Display chapter for specifics on how these surfaces are
defined/used.

2D Render Surfaces

These surfaces are used as general source and/or destination operands in 2D BIt
operations.

6.13

6.14

6.15

intel)

Note that the device provides no coherency between 2D render surfaces and the
texture cache — i.e., the texture cache must be explicitly invalidated prior to the use of
a texture that has been modified via the Blt engine.

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces
are used, restrictions on their size, placement, etc.

2D Monochrome Source

These 1lbpp surfaces are used as source operands to certain 2D Blt operations, where
the BIt engine expands the 1bpp source into the required color depth.

The device uses the texture cache to store monochrome sources. There is no
mechanism to maintain coherency between 2D render surfaces and (texture)-cached
monochrome sources, software is required to explicitly invalidate the texture cache
before using a memory-based monochrome source that has been modified via the Blt
engine. (Here the assumption is that SW enforces memory-based monochrome
source surfaces as read-only surfaces).

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces
are used, restrictions on their size, placement, coherency rules, etc.

2D Color Pattern

Color pattern surfaces are used as special pattern operands in 2D BIt operations.

The device uses the texture cache to store color patterns. There is no mechanism to
maintain coherency between 2D render surfaces and (texture)-cached color patterns,
software is required to explicitly invalidate the texture cache before using a memory-
based color pattern that has been modified via the Blt engine. (Here the assumption
is that SW enforces memory-based color pattern surfaces as read-only surfaces).

See the 2D Instruction and 2D Rendering chapters for specifics on how these surfaces
are used, restrictions on their size, placement, etc.

3D Color Buffer (Destination) Surfaces

3D Color buffer surfaces are used to hold per-pixel color values for use in the 3D
pipeline. Note that the 3D pipeline always requires a Color buffer to be defined.

Refer to Non-Video Pixel/Texel Formats section in this chapter for details on the Color
buffer pixel formats. Refer to the 3D Instruction and 3D Rendering chapters for
details on the usage of the Color Buffer.

The Color buffer is defined as the BUFFERID_COLOR_BACK memory buffer via the
3DSTATE_BUFFER_INFO instruction. That buffer can be mapped to LM, SM (snhooped
or unsnooped) and can be linear or tiled. When both the Depth and Color buffers are
tiled, the respective Tile Walk directions must match.

When a linear Color and a linear Depth buffers are used together:

1. They may have different pitches, though both pitches must be a multiple of 32
bytes.

2. They must be co-aligned with a 32-byte region.

129

intel)

3D Depth Buffer Surfaces

Depth buffer surfaces are used to hold per-pixel depth values and per-pixel stencil
values for use in the 3D pipeline. Note that the 3D pipeline does not require a Depth
buffer to be allocated, though a Depth buffer is required to perform (non-trivial) Depth
Test and Stencil Test operations.

The following table summarizes the possible formats of the Depth buffer. Refer to
Depth Buffer Formats section in this chapter for details on the pixel formats. Refer to
the Windower and DataPort chapters for details on the usage of the Depth Buffer.

Table 6-22. Depth Buffer Formats

6.17

6.17.1

130

DepthBufferFormat / bpp Description
DepthComponent
D32_FLOAT_S8X24_UINT 64 32-bit floating point Z depth value in first DWord, 8-
bit stencil in upper byte of second DWord
D32_FLOAT 32 32-bit floating point Z depth value
D24_UNORM_S8_UINT 32 24-bit fixed point Z depth value in lower 3 bytes, 8-

bit stencil value in upper byte

D16_UNORM 16 16-bit fixed point Z depth value

The Depth buffer is specified via the 3SDSTATE_DEPTH_BUFFER command. See the
description of that instruction in Windower for restrictions.

Surface Layout

This section describes the formats of surfaces and data within the surfaces.

Buffers

A buffer is an array of structures. Each structure contains up to 2048 bytes of
elements. Each element is a single surface format using one of the supported surface
formats depending on how the surface is being accessed. The surface pitch state for
the surface specifies the size of each structure in bytes.

The buffer is stored in memory contiguously with each element in the structure
packed together, and the first element in the next structure immediately following the
last element of the previous structure. Buffers are supported only in linear memory.

6.17.2

6.17.3

Surface Pitch
A o0 a b c d e f
1
2
3
0]
N
n
@
=
=}
m
v 1

1D Surfaces

One-dimensional surfaces are identical to 2D surfaces with height of one. Arrays of
1D surfaces are also supported. Please refer to the 2D Surfaces section for details on

how these surfaces are stored.

2D Surfaces

Surfaces that comprise texture mip-maps are stored in a fixed “monolithic” format and
referenced by a single base address. The base map and associated mipmaps are
located within a single rectangular area of memory identified by the base address of
the upper left corner and a pitch. The base address references the upper left corner
of the base map. The pitch must be specified at least as large as the widest mip-map.
In some cases it must be wider; see the section on Minimum Pitch below.

These surfaces may be overlapped in memory and must adhere to the following
memory organization rules:

e For non-compressed texture formats, each mipmap must start on an even row
within the monolithic rectangular area. For 1-texel-high mipmaps, this may
require a row of padding below the previous mipmap. This restriction does not
apply to any compressed texture formats: i.e., each subsequent (lower-res)
compressed mipmap is positioned directly below the previous mipmap.

¢ Vertical alignment restrictions vary with memory tiling type: 1 DWord for linear,
16-byte (DQWord) for tiled. (Note that tiled mipmaps are not required to start at
the left edge of a tile row).

131

6.17.3.1

6.17.3.2

132

Computing MIP level sizes

Map width and height specify the size of the largest MIP level (LOD 0). Less detailed
LOD level (i+1) sizes are determined by dividing the width and height of the current
(i) LOD level by 2 and truncating to an integer (floor). This is equivalent to shifting
the width/height by 1 bit to the right and discarding the bit shifted off. The map
height and width are clamped on the low side at 1.

In equations, the width and height of an LOD “L” can be expressed as:

W, = ((width >> L)> 0?width >> L :1)
H, = ((height >> L)> 0?height >> L :1)

Base Address for LOD Calculation

It is conceptually easier to think of the space that the map uses in Cartesian space (X,
y), where x and y are in units of texels, with the upper left corner of the base map at
(0, 0). The final step is to convert from Cartesian coordinates to linear addresses as
documented at the bottom of this section.

It is useful to think of the concept of “stepping” when considering where the next MIP
level will be stored in rectangular memory space. We either step down or step right
when moving to the next higher LOD.

e for MIPLAYOUT_RIGHT maps:
— step right when moving from LOD O to LOD 1
— step down for all of the other MIPs

o for MIPLAYOUT_BELOW maps:
— step down when moving from LOD O to LOD 1
— step right when moving from LOD 1 to LOD 2
— step down for all of the other MIPs

To account for the cache line alignment required, we define i and j as the width and
height, respectively, of an alignment unit. This alignment unit is defined below. We

then define lower-case w; and h_ as the padded width and height of LOD “L” as
follows:

W, = i*ceil(ﬂj
i

h, = j*ceiI(H—_Lj
J

Equations to compute the upper left corner of each MIP level are then as follows:

6.17.3.3

intel.

for MIPLAYOUT_RIGHT maps:

LOD, = (0,0)

LOD, = (w,,0)

LOD, = (W, h,)

LOD, = (w,,h, +h,)
LOD, = (w,,h, +h, +h,)

for MIPLAYOUT_BELOW maps:

LOD, = (0,0)

LOD, =(0,h,)

LOD, = (W1’ ho)

LOD, = (w,,h, +h,)

LOD, = (w,;,h, +h, +h,)

For MIPLAYOUT_RIGHT maps, the minimum pitch must be calculated before choosing
a fence to place the map within. This is approximately equal to 1.5x the pitch
required by the base map, with possible adjustments made for cache line alignment.

For MIPLAYOUT_BELOW and MIPLAYOUT_LEGACY maps, the minimum pitch required
is equal to that required by the base (LOD 0) map.

Minimum Pitch

A safe but simple calculation of minimum pitch is equal to 2x the pitch required by the
base map for MIPLAYOUT_RIGHT maps. This ensures that enough pitch is available,
and since it is restricted to MIPLAYOUT_RIGHT maps, not much memory is wasted. It
is up to the driver (hardware independent) whether to use this simple determination
of pitch or a more complex one.

133

intel)

6.17.3.4

Alignment Unit Size

The following table indicates the i and j values that should be used for each map
format. Note that the compressed formats are padded to a full compression cell.

Table 6-23. Alignment Units for Texture Maps

6.17.3.5

6.17.3.6

134

map format alignment unit width “i”’ alignment unit height “j”
YUV 4:2:2 formats 4 2
BC1-5 4 4
FXT1 8 4
all other formats 4 2

Cartesian to Linear Address Conversion

A set of variables are defined in addition to the i and j defined above.

e b = bytes per texel of the native map format (0.5 for BC1, FXT1, and 4-bit surface
format, 2.0 for YUV 4:2:2, others aligned to surface format)

t = texel rows / memory row (4 for BC1-3 and FXT1, 1 for all other formats)

p = pitch in bytes (equal to pitch in dwords * 4)

B = base address in bytes (address of texel 0,0 of the base map)

X, y = cartestian coordinates from the above calculations in units of texels
(assumed that x is always a multiple of i and y is a multiple of j)

e A = linear address in bytes

A:B+¥+xbt

This calculation gives the linear address in bytes for a given MIP level (taking into
account L1 cache line alignment requirements).

Compressed Mipmap Layout

Mipmaps of textures using compressed (BCn, FXT) texel formats are also stored in a
monolithic format. The compressed mipmaps are stored in a similar fashion to
uncompressed mipmaps, with each block of source (uncompressed) texels
represented by a 1 or 2 QWord compressed block. The compressed blocks occupy the
same logical positions as the texels they represent, where each row of compressed
blocks represent a 4-high row of uncompressed texels. The format of the blocks is
preserved, i.e., there is no “intermediate” format as required on some other devices.

The following exceptions apply to the layout of compressed (vs. uncompressed)

mipmaps:

e Mipmaps are not required to start on even rows, therefore each successive mip
level is located on the texel row immediately below the last row of the previous
mip level. Pad rows are neither required nor allowed.

e The dimensions of the mip maps are first determined by applying the sizing
algorithm presented in Non-Power-of-Two Mipmaps above. Then, if necessary,
they are padded out to compression block boundaries.

6.17.3.7

6.17.4

6.17.4.1

intel)

Both 1D and 2D surfaces can be specified as an array. The only difference in the
surface state is the presence of a depth value greater than one, indicating multiple
array “slices”.

Surface Arrays

A value QPitch is defined which indicates the worst-case size for one slice in the
texture array. This QPitch is multiplied by the array index to and added to the surface
base address to determine the base address for that slice. Within the slice, the map is
stored identically to a MIPLAYOUT_BELOW 2D surface. MIPLAYOUT_BELOW is the
only format supported by 1D non-arrays and both 2D and 1D arrays, the programming
of the MIP Map Layout Mode state variable is ignored when using a TextureArray.

The following equation is used for surface formats other than compressed textures:
QPitch = (h, + h, +11j)* Pitch
The input variables in this equation are defined in sections above.

The equation for compressed textures (BC* and FXT1 surface formats) follows:

QPitch = * Pitch

Cube Surfaces

The 3D pipeline supports cubic environment maps, conceptually arranged as a cube
surrounding the origin of a 3D coordinate system aligned to the cube faces. These
maps can be used to supply texel (color/alpha) data of the environment in any
direction from the enclosed origin, where the direction is supplied as a 3D “vector”
texture coordinate. These cube maps can also be mipmapped.

Each texture map level is represented as a group of six, square cube face texture
surfaces. The faces are identified by their relationship to the 3D texture coordinate

system. The subsections below describe the cube maps as described at the API as
well as the memory layout dictated by the hardware.

Hardware Cube Map Layout
The cube face textures are stored in the same way as 3D surfaces are stored (see
section 6.17.5 for details). For cube surfaces, however, the depth is equal to the

number of faces (always 6) and is not reduced for each MIP. The equation for D, is
replaced with the following for cube surfaces:

D, =6

The “q” coordinate is replaced with the face identifier as follows:

135

intel)

6.17.4.2

6.17.5

“q” coordinate face
0 +X
1 -X
2 +y
3 -y
4 +z
5 -z

Restrictions

e The cube map memory layout is the same whether or not the cube map is mip-
mapped, and whether or not all six faces are “enabled”, though the memory
backing disabled faces or non-supplied levels can be used by software for other
purposes.

e The cube map faces all share the same Surface Format

3D Surfaces

Multiple texture map surfaces (and their respective mipmap chains) can be arranged
into a structure known as a Texture3D (volume) texture. A volume texture map
consists of many planes of 2D texture maps. See Sampler for a description of how
volume textures are used.

Figure 6-5. Volume Texture Map

136

Plane=0 —

— Plane =0
[P=0

Mip O Mip 1 Mip 2

Note that the number of planes defined at each
successive mip level is halved. Volumetric texture

maps are stored as follows. All of the LOD=0 g-planes

are stacked vertically, then below that, the LOD=1 q-
planes are stacked two-wide, then the LOD=2 g-
planes are stacked four-wide below that, and so on.

The width, height, and depth of LOD “L” are as
follows:

W, = ((width >> L)> 0?width >> L :1)
H, = ((height >> L)> 0?height >> L :1)

This is the same as for a regular texture. For volume
textures we add:

D, = ((depth >> L) > 0?depth >>L:1)

Cache-line aligned width and height are as follows,
with i and j being a function of the map format as
shown in Table 6-23.

W, = i*ceil[ﬂj
i

h, = j*ceiI(H—_Lj
J

Note that it is not necessary to cache-line align in the
“depth” dimension (i.e. lower case “d”).

The following equations for LOD, q give the base
address Cartesian coordinates for the map at LOD L
and depth q.

LOD,, =(0,g*hy)
LOD,, =((q%2)*w,, D, *h, +(q >>1)*h,)

LOD 0 (Mip 0)

q=0

q=1

Q=2

Q=3

q=4

Q=5

q=6

LOD, , = ((q%4)*w,, D, *h, +ceil(%j*hl +(q>>2)*h) =7

LOD;, = ((q%8)*ws, D, *h, + ceil(%j*h1 + ceil(%)*h2 +(g>>3)

These values are then used as “base addresses” and
the 2D MIP Map equations are used to compute the
location within each LOD/q map.

LOD 1 (Mip 1)

LOD 2 (Mip 2)
LOD 3 (Mip 3)

intel)

6.17.5.1 Minimum Pitch

The minimum pitch required to store the 3D map may in some cases be greater than
the minimum pitch required by the LOD=0 map. This is due to cache line alignment
requirements that may impact some of the MIP levels requiring additional spacing in

the horizontal direction.

138

6.18
6.18.1

6.18.2

intel)

Surface Padding Requirements

Sampling Engine Surfaces

The sampling engine accesses texels outside of the surface if they are contained in the
same cache line as texels that are within the surface. These texels will not participate
in any calculation performed by the sampling engine and will not affect the result of
any sampling engine operation, however if these texels lie outside of defined pages in
the GTT, a GTT error will result when the cache line is accessed. In order to avoid
these GTT errors, “padding” at the bottom and right side of a sampling engine surface
is sometimes necessary.

It is possible that a cache line will straddle a page boundary if the base address or
pitch is not aligned. All pages included in the cache lines that are part of the surface
must map to valid GTT entries to avoid errors. To determine the necessary padding
on the bottom and right side of the surface, refer to the table in Section 6.17.3.4 for
the i and j parameters for the surface format in use. The surface must then be
extended to the next multiple of the alignment unit size in each dimension, and all
texels contained in this extended surface must have valid GTT entries.

For example, suppose the surface size is 15 texels by 10 texels and the alignment
parameters are i=4 and j=2. In this case, the extended surface would be 16 by 10.
Note that these calculations are done in texels, and must be converted to bytes based
on the surface format being used to determine whether additional pages need to be
defined.

For buffers, which have no inherent “height,” padding requirements are different. A
buffer must be padded to the next multiple of 256 array elements, with an additional
16 bytes added beyond that to account for the L1 cache line.

For cube surfaces, an additional two rows of padding are required at the bottom of the
surface. This must be ensured regardless of whether the surface is stored tiled or
linear. This is due to the potential rotation of cache line orientation from memory to
cache.

For compressed textures (BC* and FXT1 surface formats), padding at the bottom of
the surface is to an even compressed row, which is equal to a multiple of 8
uncompressed texel rows. Thus, for padding purposes, these surfaces behave as if j
= 8 only for surface padding purposes. The value of 4 for j still applies for mip level
alignment and QPitch calculation.

Render Target and Media Surfaces

The data port accesses data (pixels) outside of the surface if they are contained in the
same cache request as pixels that are within the surface. These pixels will not be
returned by the requesting message, however if these pixels lie outside of defined
pages in the GTT, a GTT error will result when the cache request is processed. In
order to avoid these GTT errors, “padding” at the bottom of the surface is sometimes
necessary.

If the surface contains an odd number of rows of data, a final row below the surface
must be allocated. If the surface will be accessed in field mode (Vertical Stride = 1),
enough additional rows below the surface must be allocated to make the extended
surface height (including the padding) a multiple of 4.

139

intel.

6.19 Logical Context Data
Logical Contexts are memory images used to store copies of the device’s rendering
and ring context.
Logical Contexts are aligned to 256-byte boundaries.
Logical contexts are referenced by their memory address. The format and contents of
rendering contexts are considered device-dependent and software must not access
the memory contents directly. The definition of the logical rendering and power
context memory formats is included here primarily for internal documentation
purposes.
6.19.1 Overall Context Layout
6.19.1.1 Per-Process GTT and Run Lists Disabled
For this case (which is the only case for [DevBW] and [DevCL]), the entire context
image consists of the Register/State Context, including the pipelined state section.
6.19.2 Register/State Context
The following table describes the device-dependent layout of a logical context in
memory.
DWord Bits State Field
MEMORY INTERFACE STATE
00h 31:0 MI_Noop
01lh 31:29 Instruction Type = MI_INSTRUCTION = Oh
28:23 MI Instruction Opcode = MI_LOAD_REGISTER_IMM = 22h
22:12 Reserved: MBZ
11:8 Byte Write Disables:
This field specifies which bytes of the Data DWord are not to be written to the DWord
offset specified in Register Offset.
Format = Enable[4] (bit 8 corresponds to Data DWord [7:0]).
Range = Must specify a valid register write operation
This field will always be written as Fh on context saves.
7:6 Reserved: MBZ
5:0 DWord Length (Excludes DWord 0,1) = 2bh (dec_44)
02h 31:0 CACHE_MODE_O0 Address
03h 31:0 | CACHE MODE_O Data
04h 31:0 CACHE_MODE_1 Address
05h 31:0 CACHE_MODE_1 Data
06h 31:0 MI_ARB_STATE Address
07h 31:0 MI_ARB_STATE Data
08h 31:0 INSTPM Address
09h 31:0 INSTPM Data
0Ah-29h 31:0 Reserved
2Ah 31:0 PS DEPTH_COUNT Lower Address
2Bh 31:0 PS DEPTH_COUNT Lower Data

140

DWord Bits State Field
2Ch 31:0 PS DEPTH_COUNT Upper Address
2Dh 31:0 PS DEPTH_COUNT Upper Data
2Eh 31:0 MI_Noop
2Fh 31:0 MI_Noop
PIPELINE_SELECT
30h 31:29 Instruction Type = GFXPIPE = 3h
28:23 3D Instruction Opcode = PIPELINE_SELECT
GFEXPIPE[28:27 = Oh, 26:24 = 1h, 23:16 = 04h] (Non-pipelined)
22:1 Reserved: MBZ
0 0: 3D pipeline is selected
1: Media pipeline is selected
CS_URB_STATE
31h 31:29 Command Type = GFXPIPE = 3h
28:16 3D Command Opcode = CS_URB_STATE
GFXPIPE[28:27 = 0Oh, 26:24 = 0h, 23:16 = 01h] (Pipelined)
15:8 Reserved : MBZ
7:0 DWord Length (excludes DWords 0,1) =0
32h 31:9 Reserved : MBZ
8:4 URB Entry Allocation Size
3 Reserved: MBZ
2-0 Number of URB Entries
URB_FENCE
33h 31:29 Instruction Type = GFXPIPE = 3h
28:16 3D Instruction Opcode = URB_FENCE
GFXPIPE[28:27 = Oh, 26:24 = Oh, 23:16 = 00h] (Pipelined)
15:14 Reserved : MBZ
13 ModifyEnable(CS Fence)
12 ModifyEnable(VFE Fence)
11 ModifyEnable(SF Fence)
10 ModifyEnable(CLIP Fence)
9 ModifyEnable(GS Fence)
8 ModifyEnable(VS Fence)
7:0 DWord Length (Excludes DWords 0,1) = 1
34h 31:30 Reserved : MBZ
29:20 CLP Fence
19:10 GS Fence
9:0 VS Fence
35h 31:30 | Reserved : MBZ
29:20 CS Fence
19:10 VFE Fence
9:0 SF Fence
CONSTANT_ BUFFER
36h 31:29 Command Type = GFXPIPE = 3h
28:16 3D Command Opcode = CONSTANT_BUFFER

GFXPIPE[28:27 = Oh, 26:24 = 0h, 23:16 = 02h] (Pipelined)

141

DWord Bits State Field
15:9 Reserved : MBZ
8 Valid (Saved as clear since CONSTANT_BUFFER is saved later)
7:0 DWord Length (excludes DWords 0,1) =0
37h 31:6 Buffer Starting Address
5:0 Buffer Length
STATE_BASE_ADDRESS
38h 31:29 Command Type = GFXPIPE = 3h
28:16 3D Command Opcode = STATE_BASE_ADDRESS
GFXPIPE[28:27 = Oh, 26:24 = 1h, 23:16 = 01h] (Nonpipelined)
15:8 Reserved : MBZ
7:0 DWord Length (Excludes DWords 0,1) = 4
39h 31:12 General State Base Address
11:1 Reserved : MBZ
0 Modify Enable
3Ah 31:12 Surface State Base Address
11:1 Reserved : MBZ
0 Modify Enable
3Bh 31:12 Indirect Object Base Address
11:1 Reserved : MBZ
0 Modify Enable
3Ch 31:12 General State Access Upper Bound
11:1 Reserved : MBZ
0 Modify Enable
3Dh 31:12 Indirect Object Access Upper Bound
11:1 Reserved: MBZ
0 Modify Enable
STATE_SIP
3Eh 31:29 Command Type = GFXPIPE = 3h
28:16 Command Opcode = STATE_SIP
GFEXPIPE[28:27 = Oh, 26:24 = 1h, 23:16 = 02h] (Non-Pipelined)
15:8 Reserved : MBZ
7:0 DWord Length (Excludes DWords 0,1) =0
3Fh 31:4 System Instruction Pointer (SIP)
3:0 Reserved : MBZ
3DSTATE_ DRAWING_ RECTANGLE
40h 31:29 Instruction Type = GFXPIPE = 3h
28:16 3D Instruction Opcode = 3DSTATE_DRAWING_RECTANGLE
GFXPIPE[28:27 = 3h, 26:24 = 1h, 23:16 = 00h] (Non-Pipelined)
15:0 ¢gngth (Excludes DWord 0,1) =2

142

DWord Bits State Field
41h 31:16 Clipped Drawing Rectangle Y Min
15:0 Clipped Drawing Rectangle X Min
42h 31:16 Clipped Drawing Rectangle Y Max
15:0 Clipped Drawing Rectangle X Max
43h 31:16 Drawing Rectangle Origin Y
15:0 Drawing Rectangle Origin X
3DSTATE_DEPTH_BUFFER
44h 31:29 Instruction Type = GFXPIPE = 3h
28:16 3D Instruction Opcode = 3DSTATE_DEPTH_BUFFER
GFXPIPE[28:27 = 3h, 26:24 = 1h, 23:16 = 05h] (Non-Pipelined)
15:0 DWord Length (excl. DWord 0,1) = 3
45h 31:29 Surface Type
28 Reserved: MBZ
27 Tiled Surface
26 Tile Walk
25 Depth Buffer Coordinate Offset Disable
24:21 Reserved : MBZ
20:18 Surface Format
17:0 Surface Pitch
46h 31:0 Surface Base Address
47h 31:19 Height
18:6 Width
5:2 LOD
1 MIP Map Layout Mode
0 Reserved : MBZ
48h 31:21 Depth
20:12 Minimum Array Element
11:0 Reserved : MBZ
3DSTATE_ CHROMA_KEY (INDEX_0)
49h 31:29 Instruction Type = 3D_INSTRUCTION = 3h
28:16 3D Instruction Opcode = 3DSTATE_CHROMA_KEY
GFXPIPE[28:27 = 3h, 26:24 = 1h; 23:16 = 04h] (Non-Pipelined)
15:0 DWord Length (Excludes DWords 0,1) = 2
4Ah 31:30 ChromaKey Table Index = 0
29:0 Reserved: MBZ
4Bh 31:0 ChromaKey Low Value
4Ch 31:0 ChromaKey High Value
3DSTATE_ CHROMA_ KEY (INDEX_1)
4Dh 31:29 Instruction Type = 3D_INSTRUCTION = 3h
28:16 3D Instruction Opcode = 3DSTATE_CHROMA_KEY
GFXPIPE[28:27 = 3h, 26:24 = 1h; 23:16 = 04h] (Non-Pipelined)
15:0 DWord Length (Excludes DWords 0,1) = 2
4Eh 31:30 ChromaKey Table Index = 1
29:0 Reserved: MBZ
4Fh 31:0 ChromaKey Low Value
50h 31:0 ChromaKey High Value
3DSTATE_ CHROMA KEY (INDEX_2)
51h 31:29 Instruction Type = 3D_INSTRUCTION = 3h
28:16 3D Instruction Opcode = 3DSTATE_CHROMA_KEY
GFXPIPE[28:27 = 3h, 26:24 = 1h; 23:16 = 04h] (Non-Pipelined)
15:0 DWord Length (Excludes DWords 0,1) = 2
52h 31:30 ChromaKey Table Index = 2
29:0 Reserved: MBZ

143

DWord Bits State Field
53h 31:0 ChromaKey Low Value
54h 31:0 ChromaKey High Value
3DSTATE_CHROMA_KEY (INDEX_3)
55h 31:29 Instruction Type = 3D_INSTRUCTION = 3h
28:16 3D Instruction Opcode = 3DSTATE_CHROMA_KEY
GFEXPIPE[28:27 = 3h, 26:24 = 1h; 23:16 = 04h] (Non-Pipelined)
15:0 DWord Length (Excludes DWords 0,1) = 2
56h 31:30 ChromaKey Table Index = 3
29:0 Reserved: MBZ
57h 31:0 ChromaKey Low Value
58h 31:0 ChromaKey High Value
3D State Constant Color
59h 31:29 Instruction Type = GFXPIPE = 3h
28:16 3D Instruction Opcode = 3DSTATE_CONSTANT_COLOR
GFXPIPE[28:27 = 3h, 26:24 = 1h, 23:16 = 01h] (Non-Pipelined)
15:0 DWord Length (excl. DWord 0,1) = 3
5Ah 31:0 Blend Constant Color Red
5Bh 31:0 Blend Constant Color Blue
5Ch 31:0 Blend Constant Color Green
5Dh 31:0 Blend Constant Color Alpha
3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP
5Eh 31:29 Instruction Type = 3D_INSTRUCTION = 3h
28:16 3D Instruction Opcode = 3DSTATE_GLOABL_DEPTH_OFFSET_CLAMP
GFEXPIPE[28:27 = 3h, 26:24 = 1h, 23:16 = 09h] (Non-Pipelined)
15:0 DWord Length (excl. DWord 0,1) = 0
5Fh 31:0 Global Depth Offset Clamp
3DSTATE_POLY_STIPPLE_OFFSET
60h 31:29 Instruction Type = 3D_INSTRUCTION = 3h
28:16 3D Instruction Opcode = 3DSTATE_POLY_STIPPLE_OFFSET
GFEXPIPE[28:27 = 3h, 26:24 = 1h, 23:16 = 06h] (Non-Pipelined)
15:0 DWord Length (excl. DWord 0,1) = 0
61h 31:13 Reserved: MBZ
12:8 Polygon Stipple X Offset
7:5 Reserved: MBZ
4:0 Polygon Stipple Y Offset
3DSTATE_LINE_STIPPLE
62h 31:29 Instruction Type = 3D_INSTRUCTION = 3h
28:16 3D Instruction Opcode = 3DSTATE_LINE_STIPPLE
GFXPIPE[28:27 = 3h, 26:24 = 1h, 23:16 = 08h] (Non-Pipelined)
15:0 DWord Length (excl. DWord 0,1) = 1
63h 31 Modify Enable (Current Repeat Counter, Current Stipple Index)
30 Reserved: MBZ
29:21 Current Repeat Counter
This field sets the HW-internal repeat counter state.
Format = U9
20 Reserved: MBZ
19:16 Current Stipple Index
This field sets the HW-internal stipple pattern index.
Format = U4
15:0 Line Stipple Pattern
Specifies a pattern used to mask out bit specific pixels while rendering lines.
Format = 16 bit mask. Bit 15 = most significant bit, Bit O = least significant bit
64h 31:16 Line Stipple Inverse Repeat Count
15:9 Reserved: MBZ

144

DWord

Bits

State Field

8:0

Line Stipple Repeat Count

SVGunit Context Data (Media)

MEDIA_STATE_POINTERS

Note: Dwords 65h — 67h will be saved as MI_NOOP (opcode 00h) unless MEDIA_STATE_POINTERS

has been initialized (issued at least once).

65h 31:29 Command Type = GFXPIPE = 3h
28:16 Media Command Opcode = MEDIA_STATE_POINTERS
Pipeline[28:27] = Media = 2h; Opcode[26:24] = Oh; Subopcode[23:16] = Oh
15:0 DWord Length (Excludes DWords 0,1) = 01h
66h 31:5 Pointer to VLD _STATE
4:1 Reserved : MBZ
0 VLD Enable
67h 31:5 Pointer to VFE_ STATE
4:0 Reserved : MBZ

SVGunit Context Data (3D)

3DSTATE_PIPELINE_POINTERS

Note: Dwords 68h — 6Eh will be saved as M1_NOOP (opcode 00h) unless
3DSTATE_PIPELINE_POINTERS has been initialized (issued at least once).

68h 31:29 Command Type = GFXPIPE = 3h
28:16 3D Command Opcode = 3DSTATE_PIPELINED_POINTERS
GFXPIPE[28:27 = 3h, 26:24 = 0h, 23:16 = 00h] (Pipelined)
15:8 Reserved : MBZ
7:0 DWord Length (Excludes DWords 0,1) =5
69h 31:5 Pointer to VS STATE
4:0 Reserved : MBZ
6Ah 31:5 Pointer to GS_STATE
4:1 Reserved : MBZ
0 GS Enable
6Bh 31:5 Pointer to CLP_STATE
4:1 Reserved : MBZ
0 CLP Enable
6Ch 31:5 Pointer to SF_ STATE
4:0 Reserved : MBZ
6Dh 31:5 Pointer to WINDOWER_STATE
4:0 Reserved : MBZ
6Eh 31:6 Pointer to COLOR_CALC_STATE
5:0 Reserved : MBZ
3DSTATE_BINDING_TABLE_POINTERS
Note: Dwords 6Fh — 74h will be saved as MI_NOOP (opcode 0O0h) unless
3DSTATE_BINDING_TABLE_POINTERS has been initialized (issued at least once).
6Fh 31:29 Command Type = GFXPIPE = 3h
28:16 3D Command Opcode = 3DSTATE_BINDING_TABLE_POINTERS
GFXPIPE[28:27 = 3h, 26:24 = 0h, 23:16 = 01h] (Pipelined)
15:8 Reserved : MBZ
7:0 DWord Length (Excludes DWords 0,1) = 4
70h 31:5 Pointer to VS Binding Table
4:0 Reserved : MBZ
71h 31:5 Pointer to GS Binding Table
4:0 Reserved : MBZ
72h 31:5 Pointer to CLP Binding Table
4:0 Reserved : MBZ
73h 31:5 Pointer to SF Binding Table
4:0 Reserved : MBZ
74h 31:5 Pointer to PS Binding Table

145

intel)

DWord

Bits

State Field

4:0

Reserved : MBZ

Note: Dwords 75

CONSTANT_BUFFER
h — 76h will be saved as M1_NOOP (opcode 00h) unless CONSTANT_BUFFER has
been initialized (issued at least once).

75h 31:29 Command Type = GFXPIPE = 3h
28:16 | 3p command Opcode = CONSTANT_BUFFER
GFXPIPE[28:27 = Oh, 26:24 = 0h, 23:16 = 02h] (Pipelined)
15:9 Reserved : MBZ
8 Valid (Will be set if CONSTANT_BUFFER was issued in the context to be saved)
7:0 DWord Length (excludes DWords 0,1) = 0
76h 31:6 Buffer Starting Address
5:0 Buffer Length
77h 31:0 MI_Noop

(This region was formerly Blitter Related Context Data)

78 — 87h

31:0

Reserved
Should be treated as garbage data when inspecting a saved context.

VFunit Related Context Data

3DSTATE_INDEX_ BUFFER

88h 31:29 Command Type = GFXPIPE = 3h
28:16 GFXPIPE Opcode = 3DSTATE_INDEX_BUFFER
GFEXPIPE[28:27 = 3h, 26:24 = Oh, 23:16 = 0Ah] (Pipelined)
15:11 Reserved : MBZ
10 Cut Index Enable
9:8 Index Format
7:0 DWord Length (excludes DWords 0,1) = 1
89h 31:.0 Buffer Starting Address
8Ah 31.0 Buffer Ending Address
3DSTATE_VERTEX_BUFFER
8Bh 31:29 Command Type = GFXPIPE = 3h
28:16 GFXPIPE Opcode = 3DSTATE_VERTEX_BUFFERS
GFXPIPE[28:27 = 3h, 26:24 = Oh, 23:16 = 08h] (Pipelined)
15:8 Reserved : MBZ
7:0 DWord Length (excludes DWords 0,1)
8C-8Fh Vertex Buffer 0 State
90-93 Vertex Buffer 1 State
CC-CFh Vertex Buffer 16 State
3DSTATE_VERTEX_ELEMENT (71 - 93h)
DOh 31:29 Command Type = GFXPIPE = 3h
28:16 GFXPIPE Opcode = 3DSTATE_VERTEX_ELEMENTS
GFXPIPE[28:27 = 3h, 26:24 = Oh, 23:16 = 09h] (Pipelined)
15:8 Reserved : MBZ
7:0 DWord Length (excludes DWords 0,1)
D1 — [1-2] EIement[O]
D2h dw
D3 — [3-4] Element[1]
D4h dw
37- Element[17
F3 — F4h 3[8]dw [17]
F5h 31:0 Reserved

146

DWord

Bits

State Field

F6-FFh

MI_NOOP

DMunit Related Context Data

3DSTATE_SAMPLER_PALETTE_LOAD (ONLY on Extended SAVE Mode)

100h 31:29 Instruction Type = GFXPIPE = 3h
28:16 3D Instruction Opcode = 3DSTATE_SAMPLER_PALETTE_LOAD
GFXPIPE[28:27 = 3h, 26:24 = 1h; 23:16 = 02h] (Non-Pipelined)
15:4 Reserved: MBZ
3:0 DWord Length (excludes DWords 0,1)
101- 31:24 Reserved
110h
23:0 Palette Color[O:N-1]
111- 31:0 MI1_NOOP
117h

WI1Zunit Related Context Data

3DSTATE_POLY_STIPPLE_PATTERN (ONLY on Extended SAVE Mode)
118h 31:29 Instruction Type = 3D_INSTRUCTION = 3h
28:16 3D Instruction Opcode = 3DSTATE_POLY_STIPPLE_PATTERN
GFXPIPE[28:27 = 3h, 26:24 = 1h, 23:16 = 07h] (Non-Pipelined)
15:0 DWord Length (excl. DWord 0,1) = 31
119h 31:0 Polygon Stipple Pattern Row 1 (top most)
11Ah 31:0 Polygon Stipple Pattern Row 2
11Bh — 31:0 Polygon Stipple Pattern Rows 3 through 32 (bottom-most)
138h
139- 31:0 MI_Noop
13Fh

6.19.2.1.1 Power Context Memory Layout ([DevCL] Only)

Additional context data is required if a reset occurs (if power is lost, for example)

between the save and restore of a context. A mobile-only feature provides for saving
and restoring the following context state/registers in this event. Note that the context

below includes a pointer (in an MI_SET_CONTEXTcommand) to the usual logical
rendering context which is considered a subset of the power context when power

context is saved/restored. See the device EDS for further details.

DWord Bits State Field

MEMORY INTERFACE STATE

00h 31:0 MI_NOOP

O1h 31:29 Instruction Type = MI_INSTRUCTION = Oh

28:23 MI Instruction Opcode = MI_LOAD_REGISTER_IMM = 22h

22:12 Reserved: MBZ

11:8 Byte Write Disables = Fh (all enabled)

7:6 Reserved: MBZ

5:0 DWord Length (Excludes DWord 0,1) = Ah

02h 31:0 Scratch Pad Register Address Offset
03h 31:0 Scratch Pad Register Data
04h 31:0 EXCC Register Address Offset

147

148

DWord Bits State Field
05h 31:21 Reserved. MBZ.
20:16 Bit Write Masks for Bits 4:0: Written as 1Fh (all enabled)
15:5 Reserved: MBZ
4:0 User Defined Condition Codes
06h 31:0 Ring Buffer Tail Pointer Register Offset
07h 31:21 Reserved: MBZ
20:3 Tail Offset (Never Saved on Context Switch)
2:1 Reserved: MBZ
0 In Use (Always saved as 0)
08h 31:0 Ring Buffer Starting Address Register Offset
09h 31:12 Starting Address
11:0 Reserved: MBZ
31:0 Ring Buffer Head Pointer Register Offset
0Ah Note: The Head reg is restored after the Address reg, as restoring the
Address reg resets the Head.
0Bh 31:21 Wrap Count
20:2 Head Offset
1:0 Reserved: MBZ
0OCh 31:0 Ring Buffer Length Register Offset
ODh 31:21 Reserved: MBZ
20:12 Buffer Length
11 RB Wait
10 RB Arb off
RB in time slice
Disable Register Accesses
7:3 Reserved: MBZ
2:1 Automatic Report Head Pointer
0 Ring Buffer Enable
OEh 31:29 Instruction Type = MI_INSTRUCTION = Oh
28:23 MI Instruction Opcode = MI_SET_CONTEXT = 18h
22:6 Reserved: MBZ
5:0 DWord Length (Excludes Dword 0,1) = 0O
OFh 31:11 Logical Context Address
10:4 Reserved: MBZ
8 Memory Space Select
7:4 Physical Start Address Extension

Extended State Save Enable

Extended State Restore Enable

Force Restore

DWord

Bits

State Field

Restore Inhibit

149

intel.

6.19.2.1.2 Logical Context Initialization

150

Each logical context should initialize all device state before beginning operations so
that any context switches that occur subsequently will save and restore coherent
device state. See Memory Interface Functions for more information. Table 6-25
provides values that should be used to initialize any state that the context does not
require for its operations. Note that these state variables will need to be set to
something more intelligent for a context that intends to perform operations that
depend on them. The values of these state variables are saved (and subsequently
restored) on any context switch, with the exception of the
3DSTATE_SAMPLER_PALETTE_LOAD and 3DSTATE_POLY_STIPPLE_PATTERN which
are only saved from and restored to contexts that have the Extended State Save
Enable and Extended State Restore Enable, respectively, set in the
MI_SET_CONTEXT command that triggers the context switch. See Memory Interface
Commands for details of this command.

Note that 3D/Media pipelined state cannot be initialized; it is not stored internally to
the device but is accessed from state blocks in memory as required by rendering
operations. Any context that will issue 3DPRIMITIVE or MEDIA_OBJECT_LOAD
commands must first place valid state structures in memory and send down the
corresponding command (3DSTATE_PIPELINED_POINTERS or
MEDIA_STATE_POINTERS) to point to it. There are no defaults for this state. The
following table (Table 6-24) summarizes state that MUST BE properly set up for a
given context. Please refer to the Graphics Processing Engine (GPE), 3D Pipeline and
Media chapters for details on these commands.

Table 6-24. Context Setup that Cannot Use Defaults

Context

Required Setup

Notes

3D

PIPELINE_SELECT

3D Pipeline must be selected

CS_URB_STATE

Must allocate sufficient URB space for
constants that will be used.

3DSTATE_PIPELINED_POINTERS

Pointers for all enabled FF units (when
offset from base address) must point to
valid state in memory.

3DSTATE_BINDING_TABLE_POINTERS

Pointers for all enabled FF units (when
offset from base address) must point to
valid binding tables in memory.

STATE_BASE_ADDRESS

Must be properly initialized so that
pointers above point to valid state
blocks.

URB_FENCE

Enabled FF units must be allocated
sufficient URB space to avoid deadlock.
Note that most FF units cannot be
disabled. Only VS and CLIP can be
disabled.

CONSTANT_BUFFER

Must point to a valid constant buffer if
constants will be used.

STATE_SIP

Must point to a valid exception handler
if any threads will be dispatched with
any exceptions enabled.

®

intel

Context Required Setup Notes
Media PIPELINE_SELECT Media Pipeline must be selected
CS_URB_STATE Same as above
MEDIA_STATE_POINTERS Pointers for one, or both if enabled,

Media FF units (when offset from base
address) must point to valid state in

memory.

STATE_BASE_ADDRESS Must be properly initialized so that
pointers above point to valid state
blocks.

URB_FENCE Enabled FF units must be allocated

sufficient URB space to avoid deadlock.
Note that the VFE FF unit cannot be
disabled.

CONSTANT_BUFFER Must point to a valid constant buffer if
constants will be used.

STATE_SIP Must point to a valid exception handler
if any threads will be dispatched with
any exceptions enabled.

Table 6-25. Initialization of Command State

Instruction/Field Value
PIPELINE_SELECT
Pipeline Select 0 = 3D pipeline is selected
CS_URB_STATE
URB Entry Allocation Size 0
Number of URB Entries 0
URB_FENCE
CS Unit URB Reallocation Request 0
VFE Fence Unit URB Reallocation Request 0
SF Unit URB Reallocation Request 0
CLIP Unit URB Reallocation Request 0
GS Unit URB Reallocation Request 0
VS Unit URB Reallocation Request 0
CLP Fence 192
GS Fence 128
VS Fence 64
CS Fence 256
VFE Fence 0
SF Fence 252
CONSTANT_BUFFER
Valid 0
Buffer Starting Address 0
Buffer Length 0
STATE_BASE_ADDRESS
General State Base Address 0

151

152

Instruction/Field Value
Surface State Base Address 0
Indirect Object Base Address 0
General State Access Upper Bound 0
Indirect Object Access Upper Bound 0
STATE_SIP
System Instruction Pointer 0
3DSTATE_DRAWING_RECTANGLE
Clipped Drawing Rectangle Y Min 0
Clipped Drawing Rectangle X Min 0
Clipped Drawing Rectangle Y Max 8191
Clipped Drawing Rectangle X Max 8191
Drawing Rectangle Origin Y 0
Drawing Rectangle Origin X 0

3DSTATE_DEPTH_BUFFER

Surface Type

7 (SURFTYPE_NULL)

Tiled Surface 0
Tile Walk 1=Y
Depth Buffer Coordinate Offset Disable 0
Surface Format 0
Surface Pitch 0
Surface Base Address 0
Height 0
Width 0
LOD 0
MIP Map Layout Mode 0 = MIPLAYOUT_BELOW
Depth 0
Minimum Array Element 0
3DSTATE_CHROMA_KEY (INDEX_0)

ChromaKey Table Index 0
ChromaKey Low Value 0
ChromaKey High Value 0
3DSTATE_CHROMA_KEY (INDEX_1)

ChromaKey Table Index 1
ChromaKey Low Value 0
ChromaKey High Value 0
3DSTATE_CHROMA_KEY (INDEX_2)

ChromaKey Table Index 2
ChromaKey Low Value 0
ChromaKey High Value 0
3DSTATE_CHROMA_KEY (INDEX_3)

ChromaKey Table Index 3
ChromaKey Low Value 0
ChromaKey High Value 0
3DSTATE_CONSTANT_COLOR

Blend Constant Color Red 1.0
Blend Constant Color Blue 1.0

Instruction/Field Value

Blend Constant Color Green 1.0

Blend Constant Color Alpha 1.0

3DSTATE_GLOBAL_DEPTH_OFFSET CLAMP

Global Depth Offset Clamp 0.0

3DSTATE_POLY_STIPPLE_OFFSET

Polygon Stipple X Offset 0

o

Polygon Stipple Y Offset

3DSTATE_LINE_STIPPLE

Modify Enable

Current Repeat Counter

Current Stipple Index

Line Stipple Pattern

Line Stipple Inverse Repeat Count

o|lo|o|o|o|o

Line Stipple Repeat Count

MEDIA_STATE_POINTERS

o

Pointer to VLD STATE

VLD Enable

o

o

Pointer to VFE_STATE

3DSTATE_PIPELINE_POINTERS

Pointer to VS_STATE

Pointer to GS_STATE

GS Enable

Pointer to CLP_STATE

CLP Enable

Pointer to SF_STATE

Pointer to WINDOWER_STATE

(el [e}[e] (o] (o] (o]} (o] (]

Pointer to COLOR_CALC_STATE

3DSTATE_BINDING_TABLE_POINTERS

Pointer to VS Binding Table

Pointer to GS Binding Table

Pointer to CLP Binding Table

Pointer to SF Binding Table

o|o|o|o|o

Pointer to PS Binding Table

3DSTATE__INDEX_BUFFER

Cut Index Enable

Index Format

Buffer Starting Address

o|o|o|o

Buffer Ending Address

3DSTATE_VERTEX_BUFFER (O — 16)

DWord Length (excludes DWords 0,1) 50 (32h)

Vertex Buffer Index 0

Buffer Access Type 0 = VERTEXDATA

Buffer Pitch 0

Buffer Starting Address 0

Max Index 0

... values repeated for all 17 Vertex Buffers

153

154

Instruction/Field Value
3DSTATE_VERTEX_ELEMENT (0 — 17)
DWord Length (excludes DWords 0,1) 35 (23h)
Vertex Buffer Index 0
Valid 0
Source Element Format 0
Source Element Offset 0

Component 0 Control

2 = VFCOMP_STORE_0O

Component 1 Control

0 = VFCOMP_NOSTORE

Component 2 Control

0 = VFCOMP_NOSTORE

Component 3 Control

0 = VFCOMP_NOSTORE

Destination Element Offset 0
... values repeated for all 18 Vertex Elements
3DSTATE_SAMPLER_PALETTE_LOAD (Required

to be initialized only if context uses extended

save)

DWord Length (excludes DWords 0,1) 15
Palette Color O 0
Palette Color 1 0
0
Palette Color 15 0
3DSTATE_POLY_STIPPLE_PATTERN (Required to

be initialized only if context uses extended save)

DWord Length (excl. DWord 0,1) 31
Polygon Stipple Pattern Row 1 (top most) 0
Polygon Stipple Pattern Row 2 0
0
Polygon Stipple Pattern Row 32 (bottom-most) 0

intel)

6.19.3 The Probe List
The Probe List consists of 1024 slots. Each slot can hold a probe list entry. Each
entry is one Dword and has the following format:
Bit Description
31:12 Surface Page Base Address.

Format = PerProcessGraphicsVirtualAddress[31:12]

11:1 Reserved. MBZ
0 Fault. This bit is set by HW if this probe faults (either on context restore or when executing
MI_PROBE.) This bit is ignored when this probe entry is read in order to be re-checked as part of a
context restore operation.
SW must clear the Fault bit in a probe list entry for which it has successfully serviced
a surface fault. When restoring a context, Fault bits are only set for new faults. They
are not cleared for reprobes which do not fault.
6.19.4 Pipelined State Page
This page is used a scratch area for the pipeline to store pipelined state that is not
referenced indirectly. Under no circumstances should SW read from or write to this
page.
6.19.5 Ring Buffer

This page is used a scratch area for the pipeline to store ring buffer commands that
need to be reissued. Under no circumstances should SW read from or write to this

page.

155

intel)

6.19.6 The Per-Process Hardware Status Page
The following table defines the layout of the Per-process Hardware Status Page:
DWord Description
Offset
(3FFh — These locations can be used for general purpose via the MI_STORE_DATA_INDEX or
020h) MI_STORE_DATA_IMM instructions.
1F:1A Reserved.
19 Context Save Finished Timestamp
18 Context Restore Complete Timestamp
17 Pre-empt Request Received Timestamp
16 Last Switch Timestamp
15:12 Reserved.
11:10 Probe List Slot Fault Register (2 DWSs)
F:5 Reserved.
4 Ring Head Pointer Storage: The contents of the Ring Buffer Head Pointer register (register DWord
1) are written to this location either as result of an MI_REPORT_HEAD instruction or as the result of
an “automatic report” (see RINGBUF registers).
3:0 Reserved.

156

This page is designed to be read by SW in order to glean additional details about a
context beyond what it can get from the context status.

Accesses to this page will automatically be treated as cacheable and snooped. It is
therefore illegal to locate this page in any region where snooping is illegal (such as in
stolen memory).

88

intel.

Device 2 Configuration
Registers

7.1 Introduction
PCI Configuration Device 2 is the Internal Graphics Device (IGD). The common subset
of these registers is thus documented in this specification. For all other configuration
register devices, please see the EDS for the particular device concerned.
Note that only a subset of the Device 2 Configuration registers is documented here.
Registers that are not documented here are available for use (and many are already
used) for product-specific control registers that relate to Device 2. Please see the EDS
for the complete set of Device 2 registers for a given product.
All registers documented herein are common between all products in the Gen4 family
except for the minor exceptions noted. Any changes to the registers documented here
must be presented to the common graphics core change control board.

7.2 Device 2, Function O

Register Name Register Register Register Default Value Access
Symbol Start End
Vendor ldentification VID2 0 1 8086h RO;
Device ldentification DID2 2 3 [Device RO;
Specific]

PCI Command PCICMD2 4 5 0000h RO; R/W;

PCI Status PCISTS2 6 7 0090h RO;

Revision ldentification RID2 8 8 00h RO;

Class Code CcC 9 B 030000h RO;

Cache Line Size CLS C C 00h RO;

Master Latency Timer MLT2 D D 00h RO;

Header Type HDR2 E E 80h RO;

Built In Self Test BIST F F 00h RO;

Graphics Translation Table Range | GTTMMADR 10 17 000000000000 RO; R/W;

Address 0004h

Graphics Memory Range Address GMADR 18 1F 000000000000 RO; R/W;

000Ch R/W/L;
1/0 Base Address I0BAR 20 23 00000001h RO; R/W;

158

intel.

Register Name Register Register Register Default Value Access
Symbol Start End
Subsystem Vendor Identification SVID2 2C 2D 0000h R/WO;
Subsystem ldentification SID2 2E 2F 0000h R/WO;
Video BIOS ROM Base Address ROMADR 30 33 00000000h RO;
Capabilities Pointer CAPPOINT 34 34 90h RO;
Interrupt Line INTRLINE 3C 3C 00h R/W;
Interrupt Pin INTRPIN 3D 3D 01lh RO;
Minimum Grant MINGNT 3E 3E 00h RO;
Maximum Latency MAXLAT 3F 3F 00h RO;
Capabilities Pointer (to Mirror of MCAPPTR 44 44 48h RO;
DevO CAPID)
Mirror of Dev O Capability MCAPID 48 51 [Device RO;
Identification Specific]
Mirror of DevO GMCH Graphics MGGC 52 53 0030h RO;
Control
Mirror of DevO DEVEN MDEVENdevOF | 54 57 [Device RO;
0 Specific]
Software Scratch Read Write SSRW 58 5B 00000000h R/W;
Base of Stolen Memory BSM 5C 5F [Device RO;
Specific]
Hardware Scratch Read Write HSRW 60 61 0000h R/W;
Multi Size Aperture Control MSAC 62 62 02h RO; R/W;
R/W/L;
VTD Status VTDS 63 63 02h or 00h RO;
Secondary CWB Flush Control SCWBFC 68 6F 000000000000 RO
[DevBW Only] 0000h
Capabilities List Control CAPL 7F 7F 0o0h RO; R/W;
Message Signaled Interrupts MSI_CAPID 90 91 DO05h RO;
Capability ID
Message Control MC 92 93 0000h RO; R/W;
Message Address MA 94 97 00000000h R/W; RO;
Message Data MD 98 99 0000h R/W;
FLR Capability ID FLRCAPID A4 A5 0009h RO;
FLR Length and Version FLRLENVER A6 A7 2006h RO;
FLR Control FLRCNTL A8 A9 0000h RO; R/W;
FLR Status FLRSTAT AA AA 00h RO
Graphics Device Reset GDRST co co 00h RO; R/W;

159

intel.

Register Name Register Register Register Default Value Access
Symbol Start End
GMBUS frequency binary GMBUSFREQ ccC CD 0000h R/W; RO;
encoding
Power Management Capabilities PMCAPID DO D1 0001h RO;
ID
Power Management Capabilities PMCAP D2 D3 0022h or 0023h | RO;
Power Management PMCS D4 D5 0000h RO; R/W;
Control/Status
Software SMI SWSMI EO El 0000h R/W;
System Display Event Register ASLE E4 E7 00000000h R/W;
Software SCI SWSCI E8 E9 0000h RO; R/W;
Legacy Backlight Brightness LBB F4 F7 00000000h R/W;
Manufacturing 1D MID2 F8 FB [Device RO;
Specific]

ASL Storage ASLS FC FF 00000000h R/W;

7.2.1 VID2 — Vendor ldentification
B/D/F/Type: 0/2/0/PCI
Address Offset: 0-1h
Default Value: 8086h
Access: RO;
Size: 16 bits
This register combined with the Device ldentification register uniquely identifies any
PCI device.

Bit Access Default Description
Value
15:0 RO 8086h Vendor ldentification Number (VID): PCI standard identification for
Intel.

160

7.2.2 DID2 — Device ldentification

B/D/F/Type: 0/2/0/PCI
Address Offset: 2-3h
Default Value: [Device Specific]
Access: RO;
Size: 16 bits
This register combined with the Vendor Identification register uniquely identifies any
PCI device.

Bit Access Default Description

Value
15:0 RO - Device ldentification Number (DID): Identifier assigned to the GMCH

core/primary PCI device. Intel Reserved Text: Some bits of this field are
actually determined by fuses, which allows unique Device IDs to be used for
different product SKUs.

161

intel.

7.2.3 PCICMD2 — PCI Command
B/D/F/Type: 0/2/0/PCI
Address Offset: 4-5h
Default Value: 0000h
Access: RO; R/W;
Size: 16 bits
This 16-bit register provides basic control over the IGDs ability to respond to PCI
cycles. The PCICMD Register in the IGD disables the IGD PCI compliant master
accesses to main memory.

Bit Access Default Description
Value

15:11 RO 00h Reserved

10 R/W Ob Interrupt Disable: This bit disables the device from asserting INTx#.
0: Enable the assertion of this device's INTx# signal.

1: Disable the assertion of this device's INTx# signal. DO_INTx messages
will not be sent to DMI.

9 RO Ob Fast Back-to-Back (FB2B): Not Implemented. Hardwired to O.

8 RO Ob SERR Enable (SERRE): Not Implemented. Hardwired to O.

7 RO Ob Address/Data Stepping Enable (ADSTEP): Not Implemented.
Hardwired to O.

6 RO Ob Parity Error Enable (PERRE): Not Implemented. Hardwired to 0. Since
the IGD belongs to the category of devices that does not corrupt programs or
data in system memory or hard drives, the IGD ignores any parity error that
it detects and continues with normal operation.

5 RO Ob Video Palette Snooping (VPS): This bit is hardwired to O to disable
snooping.

4 RO Ob Memory Write and Invalidate Enable (MWIE): Hardwired to O. The
IGD does not support memory write and invalidate commands.

3 RO Ob Special Cycle Enable (SCE): This bit is hardwired to 0. The IGD ignores
Special cycles.

2 R/W Ob Bus Master Enable (BME):

0: Disable IGD bus mastering.
1: Enable the IGD to function as a PCI compliant master.

1 R/W Ob Memory Access Enable (MAE): This bit controls the IGDs response to
memory space accesses.
0: Disable.

1: Enable.

0 R/W Ob 1/0 Access Enable (IOAE): This bit controls the IGDs response to 1/0
space accesses.
0: Disable.

1: Enable.

162

7.2.4 PCISTS2 — PCI Status

B/D/F/Type: 0/2/0/PCI
Address Offset: 6-7h
Default Value: 0090h
Access: RO;

Size: 16 bits

PCISTS is a 16-bit status register that reports the occurrence of a PClI compliant
master abort and PCI compliant target abort. PCISTS also indicates the DEVSEL#
timing that has been set by the IGD.

Bit Access Default Description
Value

15 RO Ob Detected Parity Error (DPE): Since the IGD does not detect parity, this
bit is always hardwired to 0.g

14 RO Ob Signaled System Error (SSE): The IGD never asserts SERR#, therefore
this bit is hardwired to O.

13 RO Ob Received Master Abort Status (RMAS): The IGD never gets a Master
Abort, therefore this bit is hardwired to O.

12 RO Ob Received Target Abort Status (RTAS): The IGD never gets a Target
Abort, therefore this bit is hardwired to O.

11 RO Ob Signaled Target Abort Status (STAS): Hardwired to 0. The IGD does
not use target abort semantics.

10:9 RO 00b DEVSEL Timing (DEVT): N/A. These bits are hardwired to "00".
8 RO Ob Master Data Parity Error Detected (DPD): Since Parity Error Response

is hardwired to disabled (and the IGD does not do any parity detection), this
bit is hardwired to O.

7 RO 1b Fast Back-to-Back (FB2B): Hardwired to 1. The IGD accepts fast back-
to-back when the transactions are not to the same agent.

6 RO Ob User Defined Format (UDF): Hardwired to O.

5 RO Ob 66 MHz PCI Capable (66C): N/A - Hardwired to O.

4 RO 1b Capability List (CLIST): This bitis set to 1 to indicate that the register at

34h provides an offset into the functionfi PCI Configuration Space containing
a pointer to the location of the first item in the list.

3 RO Ob Interrupt Status: This bit reflects the state of the interrupt in the device.
Only when the Interrupt Disable bit in the command register is a 0 and this
Interrupt Status bit is a 1, will the devices INTx# signal be asserted. Setting
the Interrupt Disable bit to a 1 has no effect on the state of this bit.

2:0 RO 000b Reserved.:

163

intel)

7.2.5 RID2 — Revision Identification

B/D/F/Type: 0/2/0/PCI
Address Offset: 8h
Default Value: 00h
Access: RO;

Size: 8 bits
Compatible Revision ID (CRID):

An 8 bit hardwired value assigned by the ID Council. Normally, the value assigned as
the CRID will be identical to the SRID value of a previous stepping of the product with
which the new product is deemed "compatible”. Note that CRID is not an addressable
PCI register. The CRID value is simply reflected through the RID register when
appropriately selected. Lower 4 bits of the CRID are driven by Fuses. The CRID fuses
are programmed based on the SKU.

Stepping Revision ID (SRID):

An 8 bit hardwired value assigned by the ID Council. The values assigned as the SRID
of a product's steppings will be selectively incremented based on the degree of change
to that stepping. It is suggested that the first stepping of any given product have an
SRID value = 01h simply to avoid the "reserved register” value of 00Oh. Note that
SRID is not an addressable PCI register. The SRID value is simply reflected through
the RID register when appropriately selected.

RID Select Key Value:

This is hardwired value (69h). If the latched value written to the RID register address
matches this RID Select Key Value, the CRID value be presented for reading from the
RID register.

RID Definition:

This register contains the revision number of the GMCH Device #0. Following PCI
Reset the SRID value is selected to be read. When a write occurs to this register the
write data is compared to the hardwired RID Select Key Value which is 69h. If the
data matches this key a flag is set that enables the CRID value to be read through this
register.

Note that the flag is a "write once'. Therefore once the CRID is selected to be read,
the only way to again select the SRID is to PCI Reset the component. Also if any
value other than the key (69h) is written to the RID register, the flag is locked such
that the SRID is selected until the component is PCI Reset. Note that the RID register
itself is not directly write-able.

This register contains the revision number for Device #2 Functions O and 1.
Bit Access Default Description
Value
7:0 00h Revision Identification Number (RID): This is an 8-bit value that
indicates the revision identification number for the GMCH.

164

7.2.6 CC — Class Code
B/D/F/Type: 0/2/0/PCI
Address Offset: 9-Bh
Default Value: 030000h
Access: RO;
Size: 24 bits
This register contains the device programming interface information related to the
Sub-Class Code and Base Class Code definition for the IGD. This register also contains
the Base Class Code and the function sub-class in relation to the Base Class Code.
Bit Access Default Description
Value
23:16 RO 03h Base Class Code (BCC): This is an 8-bit value that indicates the base
class code for the GMCH. This code has the value 03h, indicating a Display
Controller.
15:8 RO 00h Sub-Class Code (SUBCC): Based on Device #0 GGC-GMS bits and GGC-
IVD bits.
00h: VGA compatible
80h: Non VGA (GMS = "000" or IVD = "1")
7:0 RO 00h Programming Interface (PI):
00h: Hardwired as a Display controller.
7.2.7 CLS — Cache Line Size
B/D/F/Type: 0/2/0/PCI
Address Offset: Ch
Default Value: 00h
Access: RO;
Size: 8 bits
The IGD does not support this register as a PCI slave.
Bit Access Default Description
Value
7:0 RO 00h Cache Line Size (CLS): This field is hardwired to Os. The IGD as a PCI
compliant master does not use the Memory Write and Invalidate command
and, in general, does not perform operations based on cache line size.

165

intel)

7.2.8 MLT2 — Master Latency Timer
B/D/F/Type: 0/2/0/PCI
Address Offset: Dh
Default Value: 00h
Access: RO;
Size: 8 bits
The IGD does not support the programmability of the master latency timer because it
does not perform bursts.
Bit Access Default Description
Value
7:0 RO 00h Master Latency Timer Count Value: Hardwired to Os.
7.2.9 HDR2 — Header Type
B/D/F/Type: 0/2/0/PCI
Address Offset: Eh
Default Value: 80h
Access: RO;
Size: 8 bits
This register contains the Header Type of the IGD.
Bit Access Default Description
Value
7 RO 1b Multi Function Status (MFunc): Indicates if the device is a Multi-
Function Device. The Value of this register is determined by Device #0, offset
54h, DEVEN[4]. If Device #0 DEVEN[4] is set, the Mfunc bit is also set.

6:0 RO 00h Header Code (H): This is a 7-bit value that indicates the Header Code for
the IGD. This code has the value 00h, indicating a type O configuration space
format.

7.2.10 BIST — Built In Self Test
B/D/F/Type: 0/2/0/PCI
Address Offset: Fh
Default Value: 00h
Access: RO;
Size: 8 bits
This register is used for control and status of Built In Self Test (BIST).
Bit Access Default Description
Value
7 RO Ob BIST Supported: BIST is not supported. This bit is hardwired to 0.
6:0 RO 00h Reserved

166

7.2.11

intel)

GTTMMADR — Graphics Translation Table Range Address

B/D/F/Type: 0/2/0/PCI

Address Offset: 10-17h

Default Value: 0000000000000004h
Access: RO; R/W;

Size: 64 bits

This register requests allocation for combined Graphics Translation Table and Memory
Mapped Range. The allocation is split evenly between GTTADDR and MMIO, with
MMIO coming first (lowest address) in the space.

For the Global GTT, GTTADDR is defined as part of a memory BAR in graphics device
config space as an alias with which software writes values (PTEs) into the global
Graphics Translation Table (GTT). Writing PTEs directly into the global GTT memory
area is allowed.

Device

Total
Allocation

GTTADDR
Size

GTT
Entries

Total Aperture
Size

Base Address
Bits

All

1 MB

512K

128K

512M

35:20

The device snoops writes to GTTADDR space in order to invalidate any cached
translations within the various TLB's implemented on-chip. There are some
exceptions to this — see GTT-TLB in the Programming Interface chapter.

The Global GTT base address is programmed in the PGTB_CNTL register. The Global
GTT resides in Main Memory

The Global GTT is required to be 4KB aligned, with each entry being DWord aligned.

Bit

Access

Default
Value

Description

63:36

R/W

0000000h

Must be set to O since addressing above 64GB is not supported.

35:21

R/W

0000h

Memory Base Address: Set by the OS, these bits correspond to address
signals [35:21].

20

R/W

R/W, Memory Base Address[20].

0 indicates at least 2MB address range.

19:4

RO

0000h

Reserved: Hardwired to O's to indicate at least 1MB address range.

RO

Ob

Prefetchable Memory: Hardwired to O to prevent prefetching.

2:1

RO

10b

Memory Type ()

00 : To indicate 32 bit base address
01: Reserved

10 : To indicate 64 bit base address

11: Reserved

RO

Ob

Memory/10 Space: Hardwired to O to indicate memory space.

167

intel.

7.2.12 GMADR — Graphics Memory Range Address
B/D/F/Type: 0/2/0/PCI
Address Offset: 18-1Fh
Default Value: 000000000000000Ch
Access: RO; R/W; R/W/L;
Size: 64 bits
IGD graphics memory base address is specified in this register.
Bit Access Default Description
Value
63:36 RO 0000000h | Reserved
35:29 R/W 00h Memory Base Address: Set by the OS, these bits correspond to address
signals [35:29].
28 R/W/L Ob 512 MB Address Mask: This bit is either part of the Memory Base Address
(R/W) or part of the Address Mask (RO), depending on the value of
MSAC[1:0].
See MSAC (Dev 2, Func O, offset 62h) for details.
27 R/W/L Ob 256 MB Address Mask: This bit is either part of the Memory Base Address
(R/W) or part of the Address Mask (RO), depending on the value of
MSAC[1:0].
See MSAC (Dev 2, Func O, offset 62h) for details.
26:4 RO 000000h Address Mask: Hardwired to Os to indicate at least 128MB address range.
3 RO 1b Prefetchable Memory: Hardwired to 1 to enable prefetching.
2:1 RO 10b Memory Type ()
00 : To indicate 32 bit base address
01: Reserved
10 : To indicate 64 bit base address
11: Reserved
0 RO Ob Memory/10 Space: Hardwired to O to indicate memory space.

168

7.2.13 IOBAR — 1/0 Base Address
B/D/F/Type: 0/2/0/PCI
Address Offset: 20-23h
Default Value: 00000001h
Access: RO; R/W;
Size: 32 bits
This register provides the Base offset of the 1/0 registers within Device #2. Bits 15:3
are programmable allowing the 1/0 Base to be located anywhere in 16bit 1/0 Address
Space. Bits 2:1 are fixed and return zero, bit O is hardwired to a one indicating that 8
bytes of 1/0 space are decoded.
Access to the 8Bs of 10 space is allowed in PM state DO when 10 Enable (PCICMD bit
0) set. Access is disallowed in PM states D1-D3 or if 10 Enable is clear or if Device #2
is turned off or if internal graphics is disabled thru the fuse or fuse override
mechanisms. Note that access to this 10 BAR is independent of VGA functionality
within Device #2. Also note that this mechanism in available only through function O
of Device#2 and is not duplicated in function #1.
If accesses to this 10 bar are allowed then the GMCH claims all 8, 16 or 32 bit 10
cycles from the CPU that falls within the 8B claimed.
Bit Access Default Description
Value
31:16 0000h Reserved Read as 0's, these bits correspond to address signals [31:16].
15:3 R/W 0000h 10 Base Address: Set by the OS, these bits correspond to address signals
[15:3].
2:1 00b Memory Type: Hardwired to Os to indicate 32-bit address.
0 1b Memory / 10 Space: Hardwired to 1 to indicate 10 space.
7.2.14 SVID2 — Subsystem Vendor Identification
B/D/F/Type: 0/2/0/PCI
Address Offset: 2C-2Dh
Default Value: 0000h
Access: R/WO;
Size: 16 bits
Bit Access Default Description
Value
15:0 R/WO 0000h Subsystem Vendor ID: This value is used to identify the vendor of the

subsystem. This register should be programmed by BIOS during boot-up.
Once written, this register becomes Read-Only. This register can only be
cleared by a Reset.

169

intel)

7.2.15 SID2 — Subsystem ldentification
B/D/F/Type: 0/2/0/PCI
Address Offset: 2E-2Fh
Default Value: 0000h
Access: R/WO;
Size: 16 bits
Bit Access Default Description
Value
15:0 R/WO 0000h Subsystem ldentification: This value is used to identify a particular
subsystem. This field should be programmed by BIOS during boot-up. Once
written, this register becomes Read-Only. This register can only be cleared by
a Reset.
7.2.16 ROMADR — Video BIOS ROM Base Address
B/D/F/Type: 0/2/0/PCI
Address Offset: 30-33h
Default Value: 00000000h
Access: RO;
Size: 32 bits
The IGD does not use a separate BIOS ROM, therefore this register is hardwired to Os.
Bit Access Default Description
Value
31:18 RO 0000h ROM Base Address: Hardwired to Os.
17:11 RO 00h Address Mask: Hardwired to Os to indicate 256 KB address range.
10:1 RO 000h Reserved: Hardwired to Os.
0 RO Ob ROM BIOS Enable: 0 = ROM not accessible.
7.2.17 CAPPOINT — Capabilities Pointer
B/D/F/Type: 0/2/0/PCI
Address Offset: 34h
Default Value: 90h
Access: RO;
Size: 8 bits
Bit Access Default Description
Value
7:0 RO 90h Capabilities Pointer Value: This field contains an offset into the function's

PCI Configuration Space for the first item in the New Capabilities Linked List
which is the MSI Capabilities ID register at address 90h or the Power
Management Capabilities ID registers at address DOh. The value is
determined by CAPL[O].

170

7.2.18 INTRLINE — Interrupt Line
B/D/F/Type: 0/2/0/PCI
Address Offset: 3Ch
Default Value: 00h
Access: R/W;
Size: 8 bits
Bit Access Default Description
Value
7:0 R/W 00h Interrupt Connection: Used to communicate interrupt line routing
information. POST software writes the routing information into this register
as it initializes and configures the system. The value in this register indicates
which input of the system interrupt controller that the device’s interrupt pin
is connected to.
7.2.19 INTRPIN — Interrupt Pin
B/D/F/Type: 0/2/0/PCI
Address Offset: 3Dh
Default Value: 01lh
Access: RO;
Size: 8 bits
Bit Access Default Description
Value
7:0 RO 01h Interrupt Pin: As a single function device, the IGD specifies INTA# as its
interrupt pin.
0lh: INTA#.
7.2.20 MINGNT — Minimum Grant
B/D/F/Type: 0/2/0/PCI
Address Offset: 3Eh
Default Value: 00h
Access: RO;
Size: 8 bits
Bit Access Default Description
Value
7:0 RO 00h Minimum Grant Value: The IGD does not burst as a PCl compliant master.

171

intel)

7.2.21 MAXLAT — Maximum Latency

B/D/F/Type: 0/2/0/PCI
Address Offset: 3Fh
Default Value: 00h
Access: RO;
Size: 8 bits
Bit Access Default Description
Value
7:0 RO 00h Maximum Latency Value: The IGD has no specific requirements for how
often it needs to access the PCI bus.

7.2.22 MCAPPTR — Capabilities Pointer (to Mirror of DevO

CAPID)
B/D/F/Type: 0/2/0/PCl
Address Offset: 44h
Default Value: 48h
Access: RO;
Size: 8 bits
Bit Access Default Description
Value
7:0 RO 48h Capabilities Pointer Value: In this case the first capability is the product-
specific Capability Identifier (CAPIDO).

7.2.23 MCAPID — Mirror of Dev O Capability Identification.

B/D/F/Type:
Address Offset:
Default Value:
Access:

Size:

0/2/0/PCI
48-51h

[Device Specific]
RO;

80 bits

This is an INTEL RESERVED register and should NOT be disclosed to customers. It is
for test and debug purposes only and will not be included in external documentation.
Control of bits in this register are only required for customer visible SKU

differentiation.

Bit Access Default
Value

Description

79:0 RO --

Device Specific Bit Definitions

172

7.2.24

MGGC — Mirror of DevO GMCH Graphics Control

B/D/F/Type:
Address Offset:
Default Value:
Access:

Size:

0/2/0/PCI
52-53h
0030h
RO;

16 bits

Bit

Access

Default
Value

Description

15:7

RO

000000000b

Reserved

6:4

RO

011b

Graphics Mode Select (GMS): This field is used to select the amount
of Main Memory that is pre-allocated to support the Internal Graphics
device in VGA (non-linear) and Native (linear) modes. The BIOS ensures
that memory is pre-allocated only when Internal graphics is enabled.
Stolen Memory Base is located between (TOLUD - SMSize) to TOUD.

000 = No memory pre-allocated. Device 2 (IGD) does not claim VGA
cycles (Mem and 10), and the Sub-Class Code field within Device 2
function 0. Class Code register is 80.

001 = DVMT (UMA) mode, 1 MB memory pre-allocated for frame buffer.
010 = DVMT (UMA) mode, 4 MB memory pre-allocated for frame buffer.
011 = DVMT (UMA) mode, 8 MB memory pre-allocated for frame buffer.

100 = DVMT (UMA) mode, 16 MB memory pre-allocated for frame
buffer.

101 = DVMT (UMA) mode, 32 MB memory pre-allocated for frame
buffer.

110 = DVMT (UMA) mode, 48 MB memory pre-allocated for frame
buffer.

111 = DVMT (UMA) mode, 64 MB memory pre-allocated for frame
buffer.

Note: This register is locked and becomes Read Only when the D_LCK bit
in the SMRAM register is set. Hardware does not clear or set any of
these bits automatically based on IGD being disabled/enabled.

3:2

RO

00b

Reserved

RO

Ob

IGD VGA Disable (1VD): 1:Disable. Device 2 (IGD) does not claim
VGA cycles (Mem and 10), and the Sub-Class Code field within Device 2
function O Class Code register is 80.

0: Enable (Default). Device 2 (IGD) claims VGA memory and 10 cycles,
the Sub-Class Code within Device 2 Class Code register is 00.

RO

Ob

Reserved

173

intel)

7.2.25 MDEVENdevOFO — Mirror of DevO DEVEN
B/D/F/Type: 0/2/0/PCI
Address Offset: 54-57h
Default Value: [Device Specific]
Access: RO;
Size: 32 bits
Allows for enabling/disabling of PCI devices and functions that are within the MCH.
Bit Access Default Description
Value
31:0 RO -- Device Specific Bit Definitions. See Device 0 documentation in the EDS.
7.2.26 SSRW — Software Scratch Read Write
B/D/F/Type: 0/2/0/PCI
Address Offset: 58-5Bh
Default Value: 00000000h
Access: R/W;
Size: 32 bits
Bit Access Default Description
Value
31:0 R/W 00000000h | Reserved
7.2.27 BSM — Base of Stolen Memory
B/D/F/Type: 0/2/0/PCI
Address Offset: 5C-5Fh
Default Value: [Device Specific]
Access: RO;
Size: 32 bits
Graphics Stolen Memory and TSEG are within DRAM space defined under TOLUD.
From the top of low used DRAM, GMCH claims 1 to 64MBs of DRAM for internal
graphics if enabled.
Bit Access Default Description
Value
31:20 RO -- Base of Stolen Memory (BSM): This register contains bits 31 to 20 of the
base address of stolen DRAM memory. The host interface determines the
base of graphics stolen memory by subtracting the graphics stolen memory
size from TOLUD. See Device 0 TOLUD in the EDS for more explanation.
19:0 RO 00000h Reserved

174

7.2.28 HSRW — Hardware Scratch Read Write
B/D/F/Type: 0/2/0/PCI
Address Offset: 60-61h
Default Value: 0000h
Access: R/W;
Size: 16 bits
Bit Access Default Description
Value
15:0 R/W 0000h Reserved R/W
7.2.29 MSAC — Multi Size Aperture Control
B/D/F/Type: 0/2/0/PCI
Address Offset: 62h
Default Value: 02h
Access: RO; R/W; R/W/L;
Size: 8 bits
This register determines the size of the graphics memory aperture in function 0. By
default the aperture size is 256 MB. Only the system BIOS will write this register
based on pre-boot address allocation efforts, but the graphics may read this register
to determine the correct aperture size. System BIOS needs to save this value on boot
so that it can reset it correctly during S3 resume.
Bit Access Default Description
Value
7:4 R/W Oh Scratch Bits Only: Have no physical effect on hardware.
3 RO Ob Reserved
2:1 R/W/L Olb Aperture Size (LHSAS):
11: bits [28:27] of GMADR register are made Read only and forced to zero,
allowing only 512MB of GMADR
01: bit [28] of GMADR is made R/W and bit [27] of GMADR is forced to zero
allowing 256MB of GMADR
00: bits [28:27] of GMADR register are made R/W allowing 128MB of GMADR
10: lllegal programming.
0 RO Ob Reserved

175

intel)

7.2.30 SCWBFC — Secondary CWB Flush Control ([DevBW] Only)
B/D/F/Type: 0/2/0/PCI
Address Offset: 68-6Fh
Default Value: 0000000000000000h
Access: W
Size: 64 bits
This reqister is for hardware debug purposes only. This is not relevant for software.
All the data stored in the secondary CWB is flushed to memory before a write to this
page is completed on the Front side bus. The write data is discarded. All transactions
from the CPU that follow are not processed by the chipset till the "flush write"
completes creating a fence beyond which coherency is guaranteed.
A read to this page does not flush the primary CWB/DWB and returns Zeros.
Bit Access Default Description
Value
63:0 w 000000000 | Secondary CWB Flush Control (SCWBFC): A CPU Dword/Qword write
0000000h to this space flushes the Secondary CWB/DWB of all writes. The data is
discarded..
7.2.31 CAPL — Capabilities List Control
B/D/F/Type: 0/2/0/PCI
Address Offset: 7Fh
Default Value: 00h
Access: RO; R/W;
Size: 8 bits
Allows BIOS to hide capabilities that are part of the Device 2 PCI Capabilities Linked
List. By setting the appropriate bits, certain capabilities will be "skipped" during a
later phase of system initialization. This is an INTEL RESERVED register and should
NOT be disclosed to customers. It is for test and debug purposes only and will not be
included in external documentation.
Bit Access Default Description
Value
7:1 RO 00h Reserved.:
0] R/W Ob MSI Capability Hidden (MSICH):

0: MSI Capability at 90h is included in list.

1: MSI Capability is NOT included in list. Power Management Capability ID's
(DOh) pointer is the next capability.

176

intel)

7.2.32 MSI_CAPID — Message Signaled Interrupts Capability 1D
B/D/F/Type: 0/2/0/PCI
Address Offset: 90-91h
Default Value: DO05h
Access: RO;
Size: 16 bits
When a device supports MSI it can generate an interrupt request to the processor by
writing a predefined data item (a message) to a predefined memory address. The
reporting of the existence of this capability can be disabled by setting MSICH (CAPL[O]
@ 7Fh). In that case walking this linked list will skip this capability and instead go
directly to the PCI PM capability.
Bit Access Default Description
Value
15:8 RO DOh Pointer to Next Capability: This contains a pointer to the next item in the
capabilities list which is the Power Management Capability.
7:0 RO 05h Capability ID: Value of 05h identifies this linked list item (capability
structure) as being for MSI registers.

177

intel.

7.2.33 MC — Message Control
B/D/F/Type:

Address Offset:
Default Value:

Access:

Size:

0/2/0/PCI
92-93h
0000h
RO; R/W;
16 bits

System software can modify bits in this register, but the device is prohibited from
doing so.
If the device writes the same message multiple times, only one of those messages is
guaranteed to be serviced. If all of them must be serviced, the device must not
generate the same message again until the driver services the earlier one.

Bit Access Default Description
Value
15:8 RO 00h Reserved

7 RO Ob 64-bit Address Capable: Hardwired to O to indicate that the function does
not implement the upper 32 bits of the Message Address register and is
incapable of generating a 64-bit memory address. This may need to change
in future implementations when addressable system memory exceeds the
32bit/4GB limit.

6:4 R/W 000b Multiple Message Enable (MME): System software programs this field to
indicate the actual number of messages allocated to this device. This number
will be equal to or less than the number actually requested. The encoding is
the same as for the MMC field below.

3:1 RO 000b Multiple Message Capable (MMC): System software reads this field to
determine the number of messages being requested by this device. Value :
Number of Messages Requested
000: 1 All of the following are reserved in this implementation:

001: 2

010: 4

011: 8

100: 16

101: 32

110: Reserved.
111: Reserved.

0 R/W Ob MSI Enable (MSIEN): Controls the ability of this device to generate MSls.

178

7.2.34 MA — Message Address
B/D/F/Type: 0/2/0/PCI
Address Offset: 94-97h
Default Value: 00000000h
Access: R/W; RO;
Size: 32 bits
A read from this register produces undefined results.
Bit Access Default Description
Value
31:2 R/W 00000000h | Message Address: Used by system software to assign an MSI address to
the device. The device handles an MSI by writing the padded contents of
the MD register to this address.
1:0 RO 00b Force Dword Align: Hardwired to O so that addresses assigned by
system software are always aligned on a dword address boundary.
7.2.35 MD — Message Data
B/D/F/Type: 0/2/0/PCI
Address Offset: 98-99h
Default Value: 0000
Access: R/W;
Size: 16 bits
Bit Access Default Description
Value
15:0 R/W 0000h Message Data: Base message data pattern assigned by system software

and used to handle an MSI from the device. When the device must generate
an interrupt request, it writes a 32-bit value to the memory address specified
in the MA register. The upper 16 bits are always set to 0. The lower 16 bits
are supplied by this register.

179

ntel.

7.2.36 GDRST — Graphics Device Reset
B/D/F/Type: 0/2/0/PCI
Address Offset: COh
Default Value: 00h
Access: RO; RWIL;
Size: 8 bits
Bit Access Defau Description
It
Value
75 RO Oh Reserved ():
4:2 RWI/L 00b Graphics Reset Domain (GRDOM): Graphics Reset Domain (GRDOM):
000 — Full Graphics Reset will be performed (Render and Media engines and Display clock
domain resets asserted)
001 — Render Engine only will be reset
011 — Media Engine only will be reset
010 — Reserved (lllegal Programming)
1XX — Reserved (lllegal Programming)
1 RO Oh Reserved ():
0 RWI/L Ob Graphics Reset Enable (GR):

Setting this bit asserts graphics-only reset. The clock domains to be reset are determined
by GRDOM. Hardware resets this bit when the reset is complete. Setting this bit without
waiting for it to clear, is undefined behavior.

Once this bit is set to a "1" all MMIO registers associated with the selected engine(s) are
returned to power on default state. Ring buffer pointers are reset, command stream
fetches are dropped and ongoing render pipeline processing is halted, state machines and
State Variables returned to power on default state. If the Display is reset, all display
engines are halted (garbage on screen). VGA memory is not available, Store DWORDs
and interrupts associated with the reset engine(s) are not guaranteed to be completed.
Device #2 10 registers are not available.

Device #2 Config registers continue to be available while Graphics reset is asserted.

180

intel)

7.2.37 GMBUSFREQ — GMBUS frequency binary encoding

B/D/F/Type: 0/2/0/PCI
Address Offset: CC-CDh
Default Value: 0000h
Access: R/W; RO;
Size: 16 bits
Bit Access Default Description
Value
15:10 RO 000000b Reserved (RSVD)
9:0 R/W 0000000 | CMBUS CDCLK frequency (cdfreq)
000b

7.2.38 PMCAPID — Power Management Capabilities 1D

B/D/F/Type: 0/2/0/PCI
Address Offset: DO-D1h
Default Value: 0001h
Access: RO;
Size: 16 bits
Bit Access Default Description
Value
15:8 RO 00h NEXT_PTR: This contains a pointer to the next item in the capabilities list.
7:0 RO 01h CAP_ID: SIG defines this ID is 01h for power management.

181

intel.

7.2.39 PMCAP — Power Management Capabilities
B/D/F/Type: 0/2/0/PCI
Address Offset: D2-D3h
Default Value: 0022h
Access: RO;
Size: 16 bits
Bit Access Default Description
Value
15:11 RO 00h PME Support: This field indicates the power states in which the IGD may
assert PME#. Hardwired to O to indicate that the IGD does not assert the
PME# signal.

10 RO Ob D2: The D2 power management state is not supported. This bit is
hardwired to O.

9 RO Ob D1: Hardwired to O to indicate that the D1 power management state is not
supported.

8:6 RO 000b Reserved.

5 RO 1b Device Specific Initialization (DSIl): Hardwired to 1 to indicate that
special initialization of the IGD is required before generic class device driver
is to use it.

4 RO Ob Auxiliary Power Source: Hardwired to O.

3 RO Ob PME Clock: Hardwired to O to indicate IGD does not support PME#
generation.

2:0 RO 01-b Version: [DevBW] Hardwired to 010b to indicate that there are 4 bytes of
power management registers implemented and that this device complies with
revision 1.1 of the PCI Power Management Interface Specification.

[DevCL] 010b indicates compliant with revision 1.1 of the PCI Power
Management Speficiation. 011b indicates compliance with revision 1.2 of the
PCI Power Management Specification. The value in this register is
determined by the value of MCHBAR offset CO8[15].

182

7.2.40

PMCS — Power Management Control/Status

B/D/F/Type:

Address Offset:

Default Value:
Access:
Size:

0/2/0/PCI
D4-D5h
0000h
RO; R/W;
16 bits

Bit

Access

Default
Value

Description

15

RO

Ob

PME_Status: This bit is O to indicate that IGD does not support PME#
generation from D3 (cold).

14:13

RO

00b

Data Scale (Reserved): The IGD does not support data register. This bit
always returns O when read, write operations have no effect.

12:9

RO

Oh

Data_Select (Reserved): The IGD does not support data register. This
bit always returns O when read, write operations have no effect.

RO

Ob

PME_En:
disabled.

This bit is O to indicate that PME# assertion from D3 (cold) is

7:4

RO

00h

Reserved Always returns O when read, write operations have no effect.

RO

[DevBW] Only: Reserved, hardwired to O.

No_Soft_Reset. Will be set according to the state of MCHBAR C08[14].
When transitioning from D3hot to DO, a O indicates the device performs an
internal reset, a 1 indicates that the device does not perform an internal
reset, and Configuration Context is preserved. Note that the state of this bit
has no hardware effect — it is programmable since there is some ambiguity as
to which definition of the bit our hardware behavior better matches.

RO

Ob

Reserved Always returns O when read, write operations have no effect.

1:0

R/W

00b

PowerState: This field indicates the current power state of the IGD and can
be used to set the IGD into a new power state. If software attempts to write
an unsupported state to this field, write operation must complete normally on
the bus, but the data is discarded and no state change occurs.

On a transition from D3 to DO the graphics controller is optionally reset to
initial values. Behavior of the graphics controller in supported states is

detailed in the power management section of the PRM.

Bits[1:0] Power state
00 DODefault
01 D1Not Supported
10 D2Not Supported

11 D3

183

intel.

7.2.41 SWSMI — Software SMI

B/D/F/Type: 0/2/0/PCI
Address Offset: EO-Elh
Default Value: 0000h
Access: R/W; R/WC;
Size: 16 bits

As long as there is the potential that DVO port legacy drivers exist which expect this
register at this address, Dev#2FOaddress EOh-E1h must be reserved for this register.

Bit Access Default Description
Value
15:8 R/W 00h SW scratch bits:
7:1 R/W 00h Software Flag: Used to indicate caller and SMI function desired, as well as

return result.

0 R/W Ob GMCH Software SMI Event: When set this bit will trigger an SMI.
Software must clear this bit to remove the SMI condition.

7.2.42 ASLE — System Display Event Register

B/D/F/Type: 0/2/0/PCI
Address Offset: E4-E7h
Default Value: 00000000h
Access: R/W;

Size: 32 bits

The exact use of these bytes including whether they are addressed as bytes,words, or
as a dword, is not pre-determined but subject to change by driver and System BIOS
teams (acting in unison).

Bit Access Default Description
Value
31:24 R/W 00h ASLE Scratch Trigger3: When written, this scratch byte triggers an

interrupt when IEF bit O is enabled and IMR bit O is unmasked. If written as
part of a 16-bit or 32-bit write, only one interrupt is generated in common.

23:16 R/W 0oh ASLE Scratch Trigger2: When written, this scratch byte triggers an
interrupt when IEF bit O is enabled and IMR bit O is unmasked. If written as
part of a 16-bit or 32-bit write, only one interrupt is generated in common.

15:8 R/W 00h ASLE Scratch Trigger 1: When written, this scratch byte triggers an
interrupt when IEF bit O is enabled and IMR bit O is unmasked. If written as
part of a 16-bit or 32-bit write, only one interrupt is generated in common.

7:0 R/W 0oh ASLE Scratch Trigger 0: When written, this scratch byte triggers an
interrupt when IEF bit O is enabled and IMR bit O is unmasked. If written as
part of a 16-bit or 32-bit write, only one interrupt is generated in common.

184

7.2.43

SWSCI — Software SCI

B/D/F/Type: 0/2/0/PCI
Address Offset: E8-E9h
Default Value: 0000h
Access: RWO; RW;
Size: 16 bits

This register serves 2 purposes:
1) Support selection of SMI or SCI event source (SMISCISEL - bitl5)
2) SCI Event trigger (GSSCIE — bit 0).

To generate a SW SCI event, software (System BIOS/Graphics driver) should program
bit 15 (SMISCISEL) to 1. This is typically programmed once (assuming SMls are never
triggered). On a "0" to "1" subsequent transition in bit O of this register (caused by a
software write operation), GMCH sends a single SCI message (as currently defined in
Grantsdale GMCH EDS) down the DMI link to ICH. ICH will set the DMISCI bit in its
TCO1_STS register and TCOSCI_STS bit in its GPEO register upon receiving this
message from DMI. The corresponding SCI event handler in BIOS is to be defined as a
_Lxx method, indicating level trigger to the operating system.

Once written as 1, software must write a "0" to this bit to clear it, and all other write
transitions (1->0, 0->0, 1->1) or if bit 15 is "0" will not cause GMCH to send SCI
message to DMI link.

To generate a SW SMI event, software should program bit 15 to O and trigger SMI via
writes to SWSMI register (See SWSMI register for programming details).

Bit

Access Default Description

Value

15

RWO Ob SMI or SCI event select (SMISCISEL): SMI or SCI event select

(SMISCISEL)-
0 = SMI (default)
1= SClI

If selected event source is SMI, SMI trigger and associated
scratch bits accesses are performed via SWSMI register at
offset EOh. If SCI event source is selected, the rest of the bits
in this register provide SCI trigger capability and associated
SW scratch pad area.

14:1

RW

00000000 | Software scratch bits (SCISB): SW scratch bits (read/write bits not used
000000b by hardware) (SCISB)

RW

Ob GMCH Software SCI Event (GSSCIE): If SCI event is selected (SMISCISEL
= 1), on a “0” to “1” transition of GSSCIE bit, GMCH will send a SCI message
via DMI link to ICH to cause the TCOSCI_STS bit in its GPEO register to be
setto 1.

Software must write a “0” to clear this bit.

185

intel.

7.2.44 LBB — Legacy Backlight Brightness ([DevCL] Only)
B/D/F/Type: 0/2/0/PCI
Address Offset: FA4-F7h
Default Value: 00000000h
Access: R/W;
Size: 32 bits
This register can be accessed by either Byte, Word, or Dword PCI config cycles. A
write to this register will cause the Backlight Event (Display B Interrupt) if enabled.
Bit Access Default Description
Value
31:24 R/W 00h LBPC Scratch Trigger3: When written, this scratch byte triggers an
interrupt when LBEE is enabled in the Pipe B Status register and the Display
B Event is enabled in IER and unmasked in IMR etc. If written as part of a
16-bit or 32-bit write, only one interrupt is generated in common.
23:16 R/W 00h LBPC Scratch Trigger2: When written, this scratch byte triggers an
interrupt when LBEE is enabled in the Pipe B Status register and the Display
B Event is enabled in IER and unmasked in IMR etc. If written as part of a
16-bit or 32-bit write, only one interrupt is generated in common.
15:8 R/W 00h LBPC Scratch Triggerl: When written, this scratch byte triggers an
interrupt when LBEE is enabled in the Pipe B Status register and the Display
B Event is enabled in IER and unmasked in IMR etc. If written as part of a
16-bit or 32-bit write, only one interrupt is generated in common.
7:0 R/W 00h Legacy Backlight Brightness (LBES): The value of zero is the lowest
brightness setting and 255 is the brightest. A write to this register will cause
a flag to be set (LBES) in the PIPEBSTATUS register and cause an interrupt if
Backlight event in the PIPEBSTATUS register and cause an Interrupt if
Backlight Event (LBEE) and Display B Event is enabled by software.

186

7.2.45 MID2 — Manufacturing ID
B/D/F/Type: 0/2/0/PCI
Address Offset: F8-FBh
Default Value: [Device Specific]
Access: RO;
Size: 32 bits
This is an INTEL RESERVED register and should NOT be disclosed to customers. It is
for test and debug purposes only and will not be included in external documentation.
Bit Access Default Description
Value
31:24 RO 00h Reserved
23:16 RO -- Manufacturing Stepping ID (MSTEP)
15:8 RO OFh Foundry Code (FOUND):
OFh: Foundry code for Intel
others: Reserved
These bits identify the Foundry; code of 0000 1111b = foundry code for
Intel.
7:3 RO - Process ID (PROC)
2:0 RO - Dot Process (DOT)
7.2.46 ASLS — ASL Storage
B/D/F/Type: 0/2/0/PCI
Address Offset: FC-FFh
Default Value: 00000000h
Access: R/W;
Size: 32 bits
This SW scratch register only needs to be read/write accessible. The exact bit register
usage must be worked out in common between System BIOS and driver software, but
storage for switching/indicating up to 6 devices is possible with this amount. For each
device, the ASL control method will require two bits for _DOD (BIOS detectable yes or
no, VGA/NonVGA), one bit for _DGS (enable/disable requested), and two bits for
_DCS (enabled now/disabled now, connected or not).
Bit Access Default Description
Value
31:0 R/W 00000000h | RW according to a software controlled usage to support device switching.

187

intel.

7.3 Device 2, Function 1
Register Name Register Register Register Default Access
Symbol Start End Value
Vendor Identification VID2 0 1 8086h RO;
Device ldentification DID2 2 3 [Device RO;
Specific]
PCI Command PCICMD2 4 5 0000h RO; R/W;
PCI Status PCISTS2 6 7 0090h RO;
Revision Identification RID2 8 8 00h RO;
Class Code CcC 9 B 038000h RO;
Cache Line Size CLS C C 00h RO;
Master Latency Timer MLT2 D D 00h RO;
Header Type HDR2 E E 80h RO;
Built In Self Test BIST F F 00h RO;
Memory Mapped Range Address MMADR 10 17 000000000 RO; R/W;
0000004h
Subsystem Vendor ldentification SVID2 2C 2D 0000h RO;
Subsystem ldentification SID2 2E 2F 0000h RO;
Video BIOS ROM Base Address ROMADR 30 33 00000000h RO;
Capabilities Pointer CAPPOINT 34 34 DOh RO;
Minimum Grant MINGNT 3E 3E 00h RO;
Maximum Latency MAXLAT 3F 3F 00h RO;
Capabilities Pointer (to Mirror of DevO MCAPPTR 44 44 48h RO;
CAPID)
Mirror of Dev O Capability Identification MCAPID 48 51 [Device RO;
Specific]
Mirror of DevO GMCH Graphics Control MGGC 52 53 0030h RO;
Mirror of DevO DEVEN MDEVENdevO | 54 57 [Device RO;
FO Specific]
Software Scratch Read Write SSRW 58 5B 00000000h | RO;
Base of Stolen Memory BSM 5C 5F [Device RO;
Specific]
Hardware Scratch Read Write HSRW 60 61 0000h RO;
Multi Size Aperture Control MSAC 62 62 02h RO;

188

7.3.1 VID2 — Vendor ldentification
B/D/F/Type: 0/2/0/PCI
Address Offset: 0-1h
Default Value: 8086h
Access: RO;
Size: 16 bits
This register combined with the Device ldentification register uniquely identifies any
PCI device.

Bit Access Default Description
Value
15:0 RO 8086h Vendor ldentification Number (VID): PCI standard identification for
Intel.

7.3.2 DID2 — Device ldentification
B/D/F/Type: 0/2/0/PCI
Address Offset: 2-3h
Default Value: [Device Specific]
Access: RO;
Size: 16 bits
This register combined with the Vendor Identification register uniquely identifies any
PCI device.

Bit Access Default Description
Value
15:0 RO -- Device ldentification Number (DID): Identifier assigned to the GMCH

core/primary PCI device.

Intel Reserved Text: Some bits of this field are
actually determined by fuses, which allows unique Device IDs to be used for
different product SKUs. See the device EDS for details.

189

intel.

7.3.3 PCICMD2 — PCI Command
B/D/F/Type: 0/2/0/PCI
Address Offset: 4-5h
Default Value: 0000h
Access: RO; R/W;
Size: 16 bits
This 16-bit register provides basic control over the IGDs ability to respond to PCI
cycles. The PCICMD Register in the IGD disables the IGD PCI compliant master
accesses to main memory.
Bit Access Default Description
Value
15:11 RO 00h Reserved

10 R/W Ob Interrupt Disable: This bit disables the device from asserting INTx#.
0: Enable the assertion of this device's INTx# signal.

1: Disable the assertion of this device's INTx# signal. DO_INTx messages
will not be sent to DMI.

RO Ob Fast Back-to-Back (FB2B): Not Implemented. Hardwired to O.

RO Ob SERR Enable (SERRE): Not Implemented. Hardwired to O.

RO Ob Address/Data Stepping Enable (ADSTEP): Not Implemented.
Hardwired to O.

6 RO Ob Parity Error Enable (PERRE): Not Implemented. Hardwired to 0. Since
the IGD belongs to the category of devices that does not corrupt programs or
data in system memory or hard drives, the IGD ignores any parity error that
it detects and continues with normal operation.

5 RO Ob Video Palette Snooping (VPS): This bit is hardwired to O to disable
snooping.

4 RO Ob Memory Write and Invalidate Enable (MWIE): Hardwired to O. The
IGD does not support memory write and invalidate commands.

3 RO Ob Special Cycle Enable (SCE): This bit is hardwired to 0. The IGD ignores
Special cycles.

2 R/W Ob Bus Master Enable (BME):

0: Disable IGD bus mastering.
1: Enable the IGD to function as a PCI compliant master.

1 R/W Ob Memory Access Enable (MAE): This bit controls the IGDs response to
memory space accesses.
0: Disable.

1: Enable.

0 R/W Ob 1/0 Access Enable (IOAE): This bit controls the IGDs response to 1/0
space accesses.
0: Disable.

1: Enable.

190

7.3.4 PCISTS2 — PCI Status

B/D/F/Type: 0/2/0/PCI
Address Offset: 6-7h
Default Value: 0090h
Access: RO;

Size: 16 bits

PCISTS is a 16-bit status register that reports the occurrence of a PClI compliant
master abort and PCI compliant target abort. PCISTS also indicates the DEVSEL#
timing that has been set by the IGD.

Bit Access Default Description
Value
15 RO Ob Detected Parity Error (DPE): Since the IGD does not detect parity, this
bit is always hardwired to O.
14 RO Ob Signaled System Error (SSE): The IGD never asserts SERR#, therefore
this bit is hardwired to O.
13 RO Ob Received Master Abort Status (RMAS): The IGD never gets a Master
Abort, therefore this bit is hardwired to O.
12 RO Ob Received Target Abort Status (RTAS): The IGD never gets a Target
Abort, therefore this bit is hardwired to O.
11 RO Ob Signaled Target Abort Status (STAS): Hardwired to 0. The IGD does not
use target abort semantics.
10:9 RO 00b DEVSEL Timing (DEVT): N/A. These bits are hardwired to "00".
8 RO Ob Master Data Parity Error Detected (DPD): Since Parity Error Response

is hardwired to disabled (and the IGD does not do any parity detection), this
bit is hardwired to O.

7 RO 1b Fast Back-to-Back (FB2B): Hardwired to 1. The IGD accepts fast back-
to-back when the transactions are not to the same agent.

6 RO Ob User Defined Format (UDF): Hardwired to O.

5 RO Ob 66 MHz PCI Capable (66C): N/A - Hardwired to O.

4 RO 1b Capability List (CLIST): This bitis set to 1 to indicate that the register at

34h provides an offset into the functionfi PCI Configuration Space containing
a pointer to the location of the first item in the list.

3 RO Ob Interrupt Status: This bit reflects the state of the interrupt in the device.
Only when the Interrupt Disable bit in the command register is a O and this
Interrupt Status bit is a 1, will the devices INTx# signal be asserted. Setting
the Interrupt Disable bit to a 1 has no effect on the state of this bit.

2:0 RO 000b Reserved.

191

intel)

7.3.5 RID2 — Revision Identification
B/D/F/Type: 0/2/0/PCI
Address Offset: 8h
Default Value: 00h
Access: RO;
Size: 8 bits
Compatible Revision ID (CRID):
An 8 bit hardwired value assigned by the ID Council. Normally, the value assigned as
the CRID will be identical to the SRID value of a previous stepping of the product with
which the new product is deemed "compatible”. Note that CRID is not an addressable
PCI register. The CRID value is simply reflected through the RID register when
appropriately selected. Lower 4 bits of the CRID are driven by Fuses. The CRID fuses
are programmed based on the SKU.
Stepping Revision ID (SRID):
An 8 bit hardwired value assigned by the ID Council. The values assigned as the SRID
of a product's steppings will be selectively incremented based on the degree of change
to that stepping. It is suggested that the first stepping of any given product have an
SRID value = 01h simply to avoid the "reserved register" value of 00Oh. Note that
SRID is not an addressable PCI register. The SRID value is simply reflected through
the RID register when appropriately selected.
RID Select Key Value:
This is hardwired value (69h). If the latched value written to the RID register address
matches this RID Select Key Value, the CRID value be presented for reading from the
RID register.
RID Definition:
This register contains the revision number of the GMCH Device #0. Following PCI
Reset the SRID value is selected to be read. When a write occurs to this register the
write data is compared to the hardwired RID Select Key Value which is 69h. If the
data matches this key a flag is set that enables the CRID value to be read through this
register.
Note that the flag is a "write once'. Therefore once the CRID is selected to be read,
the only way to again select the SRID is to PCI Reset the component. Also if any
value other than the key (69h) is written to the RID register, the flag is locked such
that the SRID is selected until the component is PCI Reset. Note that the RID register
itself is not directly write-able.
This register contains the revision number for Device #2 Functions O and 1.

Bit Access Default Description
Value
7:0 00h Revision Identification Number (RID): This is an 8-bit value that
indicates the revision identification number for the GMCH.

192

7.3.6 CC — Class Code
B/D/F/Type: 0/2/0/PCI
Address Offset: 9-Bh
Default Value: 038000h
Access: RO;
Size: 24 bits
This register contains the device programming interface information related to the
Sub-Class Code and Base Class Code definition for the IGD. This register also contains
the Base Class Code and the function sub-class in relation to the Base Class Code.
Bit Access Default Description
Value
23:16 RO 03h Base Class Code (BCC): This is an 8-bit value that indicates the base
class code for the GMCH. This code has the value 03h, indicating a Display
Controller.
15:8 RO 80h Sub-Class Code (SUBCC): 80h:Non VGA
7:0 RO 00h Programming Interface (PI):
00h: Hardwired as a Display controller.
7.3.7 CLS — Cache Line Size
B/D/F/Type: 0/2/0/PCI
Address Offset: Ch
Default Value: 00h
Access: RO;
Size: 8 bits
The IGD does not support this register as a PCI slave.
Bit Access Default Description
Value
7:0 RO 00h Cache Line Size (CLS): This field is hardwired to Os. The IGD as a PCI
compliant master does not us