Release Notes for X11R7.6

The X.Org Foundation [http://www.x.org/wiki/XorgFoundation]

November 2010

Abstract

These release notes contain information about features and their status in the X.Org Foundation X11R7.6 release.

Table of Contents

- Introduction to the X11R7.6 Release ... 1
- Summary of new features in X11R7.6 ... 2
- Overview of X11R7.6 ... 3
- Details of X11R7.6 components ... 3
 - Video Drivers .. 3
 - Input Drivers .. 5
 - Xorg server ... 5
 - Font support ... 8
- Build changes and issues ... 8
 - Silent build rules .. 8
 - New configure options for font modules ... 9
 - New configure options for documentation in modules 9
- Miscellaneous .. 9
 - Socket directory ownership and permissions ... 9
- Deprecated components and removal plans ... 10
 - Future Removals ... 10
 - Removed in this Release ... 10
- Attributions/Acknowledgements/Credits .. 11

Introduction to the X11R7.6 Release

This release is the seventh modular release of the X Window System™. The next full release will be X11R7.7 and is expected in 2011.

Unlike X11R1 through X11R6.9, X11R7.x releases are not built from one monolithic source tree, but many individual modules. These modules are distributed as individual source code releases, and each one is released when it is ready, instead of only when the overall window system is ready for release. The X11R7.x releases are made by “rolling up” the individual module releases into a collection that is often affectionately called the “katamari” by the developers.

The X11R7.6 release does not include all of the software formerly included in the previous X Window System releases. It is designed to be a reasonable baseline from which to start when building the window system for the first time for a new installation, distribution, or package set. It does not provide a full desktop environment, expecting a more feature rich set of applications to be installed from one of the several excellent desktop environments available for the X Window System. The X.Org developers continue to maintain and produce new releases of much of the software that was formerly in the main window system releases but is no longer included in the katamari releases, including many of the Athena Widgets desktop applications that were provided as samples in previous window system versions.

Once their window system build is established, most builders watch for announcements of individual module updates on the xorg-announce mailing list [http://lists.freedesktop.org/mailman/listinfo/xorg-
announce] and update to those as needed. The X.Org Foundation currently releases the X Window System
katamari releases approximately once a year, but many modules, especially the X servers and drivers, are
updated more frequently between those releases.

For help with how to build and develop in the modular tree see the Modular Developer's Guide [http://

We encourage you to report bugs using freedesktop.org's bug tracking system [https://
bugs.freedesktop.org/] using the xorg product, and to submit bug fixes and enhancements to
<xorg-devel@lists.x.org>. More details on patch submission and review process are available
of the X.Org wiki.

The release numbering is based on the original MIT X numbering system. X11 refers to the version of the
network protocol that the X Window system is based on: Version 11 was first released in 1988 and has
been stable for 22 years, with only upward compatible additions to the core X protocol, a record of stability
envied in computing. Formal releases of X started with X version 9 from MIT; the first commercial X
products were based on X version 10. The MIT X Consortium and its successors, the X Consortium, the
Open Group X Project Team, and the X.Org Group released versions X11R3 through X11R6.6. Since the
founding of the X.Org Foundation in early 2004, many further releases have been issued, from X11R6.7
to the current 7.6.

The next section describes what is new in the latest full release (7.6) compared with the previous full
release (7.5).

Summary of new features in X11R7.6

This is a sampling of the new features in X11R7.6. A more complete list of changes can be found in the
ChangeLog files that are part of the source of each X module.

- **InputClass** sections in Xorg configuration files are used to apply configuration options to any input
device matching specified rules, such as device path, type of device, device manufacturer, or other
data provided by the input hotplug backend. Details can be found in the INPUTCLASS section of the
xorg.conf(5) [xorg.conf.5.html] manual page.

- **Xorg configuration directories** are used to allow fragments of the X server configuration to be delivered
in individual files. For instance, the input device driver matching rules previously provided in HAL
.fdi files are now provided as InputClass sections in .conf files in a xorg.conf.d directory.

- **udev** is now used by the X server on Linux systems for input device discovery and hot-plug notification.
Other platforms continue to use the HAL framework for these tasks for now.

- **X protocol C-language Binding (XCB)** is now included in the katamari, and is required by several client-
side modules, including libX11, xlsatoms, xlsclients and xwininfo. XCB is a replacement for Xlib
featuring a small footprint, latency hiding, direct access to the protocol, improved threading support,
and extensibility. More information can be found on the XCB website at http://xcb.freedesktop.org/.

- Major progress has been made on the X.Org Documentation modernization - most of the library and
protocol specifications are now included in the modules for those libraries and protocols so they can be
updated in sync with new versions, and many have been converted to DocBook XML from the variety
of formats they were previously in. On most systems these documents will be installed under /usr/
share/doc/. They are also posted on the X.Org website at http://www.x.org/releases/X11R7.6/.

- **Video and input driver enhancements**. Please see the ChangeLog files for individual drivers; there are
far too many updates to list here.

- ... and the usual assortment of correctness and crash fixes.
Overview of X11R7.6

On most platforms, X11R7.6 has a single hardware-driving X server binary called Xorg. This binary can dynamically load the video drivers, input drivers, and other modules that are needed. Xorg has currently has support for Linux, Solaris, and some BSD OSs on Alpha, PowerPC, IA-64, AMD64, Intel x86, Sparc, and MIPS platforms.

Additional specialized X server binaries may be found depending on the platform and build configuration, including:

- **Xdmx**
 - is a proxy X server that uses one or more other X servers as its display devices. It provides multi-head X functionality for displays that might be located on different machines.

- **Xnest**
 - is a nested X server, that operates as both an X client and X server. Xnest is a client of the real server which manages windows and graphics requests on its behalf. Xnest is a server to its own clients, and manages windows and graphics requests on their behalf. To these clients, it appears to be a conventional server.

- **Xephyr**
 - is a X server that outputs to a window on a pre-existing “host” X display. Unlike Xnest which is an X proxy, and thus limited to the capabilities of the host X server, Xephyr is a full X server which uses the host X server window as a “framebuffer” via fast SHM XImages.

- **Xvfb**
 - is a virtual framebuffer X server that can run on machines with no display hardware and no physical input devices. It emulates a dumb framebuffer using virtual memory.

- **Xquartz**
 - is an X server that interacts with the MacOS X native Aqua window system, displaying windows on the Mac desktop and accepting input from the Mac system devices, allowing X11 applications to be used in a native Mac desktop session.

- **Xwin**
 - is an X server that runs under the Cygwin environment, interacting with the Microsoft Windows native window system, displaying windows on the Windows desktop and accepting input from the Windows system devices, allowing X11 applications to be used in a native Windows desktop session.

Details of X11R7.6 components

Video Drivers

X11R7.6 includes the following video drivers:

<table>
<thead>
<tr>
<th>Driver Name</th>
<th>Description</th>
<th>Further Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>apm</td>
<td>Alliance Pro Motion</td>
<td>README.apm [apm.html]</td>
</tr>
<tr>
<td>ark</td>
<td>Ark Logic</td>
<td></td>
</tr>
<tr>
<td>ast</td>
<td>ASPEED Technology</td>
<td></td>
</tr>
<tr>
<td>chips</td>
<td>Chips & Technologies</td>
<td>README.chips [chips.html], chips(4) [chips.4.html]</td>
</tr>
<tr>
<td>Vendor</td>
<td>Description</td>
<td>Manual</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>cirrus</td>
<td>Cirrus Logic</td>
<td>fbdev(4) [fbdev.4.html]</td>
</tr>
<tr>
<td>fbdev</td>
<td>Linux framebuffer device</td>
<td></td>
</tr>
<tr>
<td>geode(*)</td>
<td>AMD Geode GX and LX</td>
<td></td>
</tr>
<tr>
<td>glint</td>
<td>3Dlabs, TI</td>
<td>glint(4) [glint.4.html]</td>
</tr>
<tr>
<td>i128</td>
<td>Number Nine</td>
<td>i128(4) [i128.4.html]</td>
</tr>
<tr>
<td>i740</td>
<td>Intel i740</td>
<td>i740(4) [i740.html]</td>
</tr>
<tr>
<td>imstt</td>
<td>Integrated Micro Solns</td>
<td></td>
</tr>
<tr>
<td>intel</td>
<td>Intel i8xx/i9xx</td>
<td>intel(4) [intel.4.html]</td>
</tr>
<tr>
<td>mach64</td>
<td>ATI Mach64</td>
<td>mach64(4) [mach64.4.html]</td>
</tr>
<tr>
<td>mga</td>
<td>Matrox</td>
<td>mga(4) [mga.4.html]</td>
</tr>
<tr>
<td>neomagic</td>
<td>NeoMagic</td>
<td>neomagic(4) [neomagic.4.html]</td>
</tr>
<tr>
<td>newport(-)</td>
<td>SGI Newport</td>
<td>newport(4) [newport.4.html]</td>
</tr>
<tr>
<td>nsc</td>
<td>National Semiconductor</td>
<td>nsc(4) [nsc.4.html]</td>
</tr>
<tr>
<td>nv</td>
<td>NVIDIA</td>
<td>nv(4) [nv.4.html]</td>
</tr>
<tr>
<td>r128</td>
<td>ATI Rage128</td>
<td>r128(4) [r128.4.html]</td>
</tr>
<tr>
<td>radeon</td>
<td>ATI Radeon</td>
<td>radeon(4) [radeon.4.html]</td>
</tr>
<tr>
<td>rendition</td>
<td>Rendition</td>
<td>rendition(4) [rendition.4.html]</td>
</tr>
<tr>
<td>s3</td>
<td>S3 (not ViRGE or Savage)</td>
<td></td>
</tr>
<tr>
<td>s3virge</td>
<td>S3 ViRGE</td>
<td>s3virge(4) [s3virge.4.html]</td>
</tr>
<tr>
<td>savage</td>
<td>S3 Savage</td>
<td>Savage(4) [savage.4.html]</td>
</tr>
<tr>
<td>siliconmotion</td>
<td>Silicon Motion</td>
<td>siliconmotion(4) [siliconmotion.4.html]</td>
</tr>
<tr>
<td>sis</td>
<td>SiS</td>
<td>sis(4) [sis.4.html]</td>
</tr>
<tr>
<td>sisusb</td>
<td>SiS USB</td>
<td>sisusb(4) [sisusb.4.html]</td>
</tr>
<tr>
<td>suncg14(+)</td>
<td>Sun cg14</td>
<td></td>
</tr>
<tr>
<td>suncg3(+)</td>
<td>Sun cg3</td>
<td></td>
</tr>
<tr>
<td>suncg6(+)</td>
<td>Sun GX and Turbo GX</td>
<td></td>
</tr>
<tr>
<td>sunffb(+)</td>
<td>Sun Creator/3D, Elite 3D</td>
<td></td>
</tr>
<tr>
<td>sunleo(+)</td>
<td>Sun Leo (ZX)</td>
<td></td>
</tr>
<tr>
<td>suntcx(+)</td>
<td>Sun TCX</td>
<td></td>
</tr>
<tr>
<td>tdfx</td>
<td>3Dfx Voodoo Banshee, 3, 4 & 5</td>
<td>tdfx(4) [tdfx.4.html]</td>
</tr>
</tbody>
</table>
Drivers marked with (*) are present in a preliminary form in this release, but are not complete and/or stable yet.

Drivers marked with (+) are for Linux/Sparc only.

Drivers marked with (-) are for Linux/mips only.

Input Drivers

X11R7.6 includes the following input drivers:

<table>
<thead>
<tr>
<th>Driver Name</th>
<th>Description</th>
<th>Further Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>acecad</td>
<td>Acecad Flair</td>
<td>acecad(4) [aiptek.4.html]</td>
</tr>
<tr>
<td>aiptek(*)</td>
<td>Aiptek USB tablet</td>
<td>aiptek(4) [aiptek.4.html]</td>
</tr>
<tr>
<td>evdev(*)</td>
<td>Linux kernel EvDev</td>
<td>evdev(4) [evdev.4.html]</td>
</tr>
<tr>
<td>joystick</td>
<td>Joystick</td>
<td>joystick(4) [joystick.4.html]</td>
</tr>
<tr>
<td>kbd</td>
<td>generic keyboards (non-evdev systems)</td>
<td>kbd(4) [kbd.4.html]</td>
</tr>
<tr>
<td>mouse</td>
<td>most mouse devices (non-evdev systems)</td>
<td>mousedrv(4) [mousedrv.4.html]</td>
</tr>
<tr>
<td>synaptics</td>
<td>Synaptics & ALP touchpads</td>
<td>synaptics(4) [synaptics.4.html]</td>
</tr>
<tr>
<td>vmmouse</td>
<td>VMWare virtual mouse</td>
<td>vmmouse(4) [vmmouse.4.html]</td>
</tr>
<tr>
<td>void</td>
<td>dummy device</td>
<td>void(4) [void.4.html]</td>
</tr>
</tbody>
</table>

Drivers marked with (*) are available for Linux only.

Xorg server

Loader and Modules

The Xorg server relies on the operating system's native module loader support for handling program modules. The X server makes use of modules for video drivers, X server extensions, input device drivers, framebuffer layers, and internal components used by some drivers (like XAA & EXA).
The module interfaces (both API and ABI) used in this release are subject to change without notice. While we will attempt to provide backward compatibility for the module interfaces, we cannot guarantee this. Compatibility in the other direction is explicitly not guaranteed because new modules may rely on interfaces added in new releases.

Note about module security

The X server runs with root privileges, i.e., the X server loadable modules also run with these privileges. For this reason we recommend that all users be careful to only use loadable modules from reliable sources, otherwise the introduction of viruses and contaminated code can occur and wreak havoc on your system. We hope to have a mechanism for signing/verifying the modules that we provide available in a future release.

Configuration File

The Xorg server uses a configuration file as the primary mechanism for providing configuration and run-time parameters. The configuration file format is described in detail in the `xorg.conf(5)` [xorg.conf.5.html] manual page.

Note that this release features significant improvements for running the server without a configuration file, so many users may find that that they don't need a configuration file.

If you do need to customize the configuration file, see the `xorg.conf` manual page [xorg.conf.5.html]. You can also check the driver-specific manual pages and the related documentation (found at driver tables) also.

The recommended method for generating a configuration file is to use the Xorg server itself. Run as root:

```
Xorg -configure
```

and follow the instructions.

Command Line Options

Command line options can be used to override some default parameters and parameters provided in the configuration file. These command line options are described in the Xorg(1) [Xorg.1.html] manual page.

Multi-head

Some multi-head configurations are supported in X11R7.6. Support for multiple PCI/AGP cards may require a kernel with changes to support VGA arbitration.

One of the main problems is with drivers not sufficiently initializing cards that were not initialized at boot time. This has been improved somewhat with the INT10 support that is used by most drivers (which allows secondary card to be "soft-booted", but in some cases there are other issues that still need to be resolved. Some combinations can be made to work better by changing which card is the primary card (either by using a different PCI slot, or by changing the system BIOS's preference for the primary card).

Xinerama

Xinerama is an X server extension that allows multiple physical screens connected to multiple video devices to behave as a single screen. With traditional multi-head in X11, windows cannot span or cross physical screens. Xinerama removes this limitation. Xinerama does, however, require that the physical screens all have the same root depth, so it isn't possible, for example, to use an 8-bit screen together with a 16-bit screen in Xinerama mode.
Xinerama is not enabled by default, and can be enabled with the +xinerama command line option for the X server. Note that enabling Xinerama may disable certain other extensions which are not compatible with Xinerama.

DDC

The VESA® Display Data Channel (DDC™) standard allows the monitor to tell the video card (or in some cases the computer directly) about itself; particularly the supported screen resolutions and refresh rates.

Partial or complete DDC support is available in most of the video drivers. DDC is enabled by default, but can be disabled with a "Device" section entry: Option "NoDDC". We have support for DDC versions 1 and 2; these can be disabled independently with Option "NoDDC1" and Option "NoDDC2".

At startup the server prints out DDC information from the display, and can use this information to set the default monitor parameters, or to warn about monitor sync limits if those provided in the configuration file don't match those that are detected.

Changed behavior caused by DDC.

Several drivers use DDC information to set the screen size and pitch. This can be overridden by explicitly resetting it to the and non-DDC default value 75 with the --dpi 75 command line option for the X server, or by specifying appropriate screen dimensions with the "DisplaySize" keyword in the "Monitor" section of the config file.

GLX and the Direct Rendering Infrastructure (DRI)

Direct rendered OpenGL® support is provided for several hardware platforms by the Direct Rendering Infrastructure (DRI). Further information about DRI can be found at the DRI Project's web site http://dri.sf.net/. The 3D core rendering component is provided by Mesa http://www.mesa3d.org.

Of note is that this release supports building the X server using the system-wide libdrm. Previously, drm was kept in the server's tree and loaded as a module, rather than using the standard OS mechanisms for managing shared libraries of code. This requires that the server be built using a version of libdrm of 2.3.0 or newer if it is to use DRM.

Terminate Server keystroke

The Xorg server has previously allowed users to exit the server by pressing the keys Control + Alt + Backspace. While this function is still enabled by default in this release, the keymap data usually used with Xorg, from the xkeyboard-config project, has been modified to not map that sequence by default, in order to reduce the chance that inexperienced users will accidentally destroy their work.

Users who wish to have this functionality available by default may enable it via the XKB configuration option “terminate:ctrl_alt_bksp”. For instance, the `setxkbmap` command can be used to enable this by running:

```
setxkbmap -option "terminate:ctrl_alt_bksp"
```

The XKB Configuration Guide input/XKB-Config.html also includes an example xorg.conf.d file that sets the “terminate:ctrl_alt_bksp” option by default on all keyboards [input/XKB-Config.html#zap]. Many desktop environments include XKB configuration options in their preferences to enable this as well.
X Server startup state

The X servers in the X11R7.6 release now start by default with an empty black screen and do not draw the mouse cursor until a client sets the cursor image. To restore the classic behavior of starting with the grey weave pattern and × cursor, start the X server with the -retro option.

Font support

Details about the font support in X11R7.6 can be found in the “Fonts in X11R7.6 [fonts/fonts.html]” document.

Default font installation directory

Previous versions of X installed font files under the lib/X11/fonts subdirectory of the X installation directory (for instance, in X11R6 releases, /usr/X11R6/lib/X11/fonts was commonly used). This release uses the default installation path of the fonts subdirectory of the datadir setting from the GNU autoconf configuration. For instance, if the fonts are configured with ./configure --prefix=/usr, they will be installed under subdirectories of /usr/share/fonts/X11. The font module configure scripts all take an option of --with-fontrootdir=PATH to override the default. If --with-fontrootdir is not specified, the fontutil pkg-config file will be consulted to find the fontrootdir specified when the fontutil module was installed.

Bitmap font compression methods

The X11R7.6 release supports PCF format bitmap fonts stored uncompressed or compressed via the compress, gzip, or bzip2 programs. To utilize bzip2 compression, the libXfont and mkfontscale modules must be built with the --with-bzip2 — all other methods are enabled by default.

To specify which compression method to use when installing a font module from X11R7.6 the configure scripts accept an option of --with-compression=TYPE, where TYPE may be none, compress, gzip, or bzip2.

Type1 Font support

Previous versions of X came with two Postscript Type1 font backends. The functionality from the “Type1” backend has been replaced by the Type1 support in the “FreeType” backend.

CID Font support

The CID-keyed font format was designed by Adobe Systems for fonts with large character sets. The CID-keyed format is obsolete, as it has been superseded by other formats such as OpenType/CFF and support for CID-keyed fonts has been removed from X11.

Build changes and issues

Silent build rules

Most of the modules in this release use the AM_SILENT_RULES option of GNU automake 1.11. When building the software, most output will show an abbreviated format for the commands being run, such as:

 CC xmen.o
To enable verbose output, showing all the arguments to the commands being run, add the flag \texttt{V=1} to the \texttt{make} command line or add the flag \texttt{--disable-silent-rules} to the configure command.

New configure options for font modules

The bitmap font modules now accept a configure option of \texttt{--disable-all-encodings} to set the default for all encodings to off, requiring builders to then pass \texttt{--enable-<encoding>} flags for each encoding to be built.

New configure options for documentation in modules

As many more modules now contain documentation to be converted from DocBook XML to text, HTML, PostScript, and/or PDF formats, new standard options have been added to the configure macros to control the build of these in the modules.

\begin{itemize}
\item \texttt{--with-xmlto=yes|no} \hfill Enables or disables use of the \texttt{xmlto} command to translate DocBook XML to other formats. All DocBook XML conversions require use of this command.
\item \texttt{--with-fop=yes|no} \hfill Enables or disables use of the Apache \texttt{fop} command to translate DocBook XML to PostScript and PDF formats.
\item \texttt{--enable-docs=yes|no} \hfill Enables or disables the build and installation of all documentation except traditional man pages or those covered by the \texttt{--enable-devel-docs} and \texttt{--enable-specs} options.
\item \texttt{--enable-devel-docs=yes|no} \hfill Enables or disables the build and installation of documentation for developers of the X.Org software modules.
\item \texttt{--enable-specs=yes|no} \hfill Enables or disables the build and installation of the formal specification documents for protocols and APIs.
\end{itemize}

Miscellaneous

This section describes other items of note for the X11R7.6 release.

Socket directory ownership and permissions

The socket directories created in \texttt{/tmp} are now required to be owned by root and have their sticky-bit set. If the permissions are not set correctly, the component using this directory will print an error message and fail to start. Common socket directories that are known to be affected include:

\begin{itemize}
\item \texttt{/tmp/.font-unix}
\item \texttt{/tmp/.ICE-unix}
\item \texttt{/tmp/.X11-unix}
\end{itemize}
These directories are used by the font server (\texttt{xfs}), applications using the Inter-Client Exchange protocol (ICE) and the X server, respectively.

There are several solutions to the problem of when to create these directories. They could be created at install time by the system's installer if the \texttt{/tmp} dir is persistent. They could be created at boot time by the system's boot scripts (e.g., the \texttt{init.d} scripts). Or, they could be created by PAM modules at service startup or user login time.

The solution chosen is platform dependent, and the system administrator should be able to handle creating those directories on any systems that do not have the correct ownership or permissions.

Deprecated components and removal plans

This section lists current plans for removal of obsolete or deprecated components in the X.Org releases. As our releases are open source, users who continue to require these can find the source in previous releases and continue to use these, but the X.Org Foundation and its volunteers have decided the burden of continued maintenance and distribution in the core X11 releases outweighs the benefits of doing so. In some cases, this is simply because no one has volunteered to do continued maintenance, so if software is listed here that you need, you can contact \texttt{xorg@lists.freedesktop.org} to volunteer to take over maintainership, either inside or outside of the Xorg release process.

Future Removals

- **DGA version 2**

 DGA 2.0 is included in 7.6. Documentation for the client libraries can be found in the XDGA\texttt{(3)} [XDGA.3.man] man page. DGA should be considered deprecated; if you are relying on it, please let us know what you need it for so we can find better solutions. In this release, support has been removed for all DGA rendering and mapping code, leaving just mode setting and raw input device access.

- **Input device discovery via HAL**

 The Xorg server currently uses the HAL framework [http://www.freedesktop.org/wiki/Software/hal] to discover connected input devices, receive notification of hotplug events for them, and to retrieve configuration parameters for them. The HAL maintainers have deprecated HAL, so the X.Org developers have begun replacement with alternatives. As a result, configuration of input devices via HAL \texttt{*.fdi} files is no longer supported on Linux platforms using udev, and may not be supported on other platforms in future Xorg server releases.

Removed in this Release

- **Xprint**

 The Xprint server and extension were previously removed from X11R7.5. This release
removes Xprint support from a number of client programs that still had it.

Xsdl server The experimental Xsdl server has never been finished or maintained, and was removed in this release.

Unmaintained extensions Support has been removed from the X servers for the following extensions, which were obsolete, not widely used, or not working:

- Multi-Buffering

Attributions/Acknowledgements/Credits

THIS IS A DRAFT OF THE X11R7.6 CREDITS SECTION.

If you find missing credits, incorrect attributions, or other errors, please send details to <xorg@lists.freedesktop.org>.

This section lists the credits for the X11R7.6 release. For a more detailed breakdown, refer to the ChangeLog file in the source tree for each module, the history in the xorg product in freedesktop.org's git repositories [http://cgit.freedesktop.org/xorg/] or the 'git log' information for individual source files.

The X Window System has been a collaborative effort from its inception. Our apologies for anyone or organization inadvertently overlooked. Many individuals (including major contributors) who worked on X are represented by their employers in this list. If you feel we have left anyone out, please let us know.

These people contributed in some way to X11R7.6 since the release of X11R7.5:

###

Kim Woelders
Aaron Plattner Kok, Auke
Aaron Zang Kristian Høgsberg
Adam Jackson Kusanagi Kouichi
Adam Tkac Lee Leahu
Adrian 'Dagurashibanipal' von Bidder Leif Middelschulte
Adrian Bunk Leonardo Chiquitto
Alan Coopersmith Lubos Lunak
Alberto Milone Luc Verhaegen
Alex Deucher Luca Tettamanti
Alex Warg Ma Ling
Alexander Kabaev Maarten Maathuis
Alp Toker Macpaul Lin
Andrej Gelenberg Magnus Kessler
Andres Salomon Marc Majka
Andrew Chant Marcin Baczynski
Andrew Randrianasulu Marcin Kocienicki
Andrzej Hajda Marcin Slusarz
Andy Furniss Marek Oľšák
Andy Ritger Mario Kleiner
Antoine Latter Mark Kettenis
Arkadiusz Miśkiewicz Marko Myllynen
Arnaud Fontaine Markus Duft
Auke Kok Markus Gapp
Release Notes for X11R7.6

2d3d Inc.
3Dlabs Inc. Ltd.
Aaron Plattner
Adam de Boor
Adam Jackson
Adobe Systems Inc.
Advanced Micro Devices, Inc.
After X-TT Project
AGE Logic Inc.
Alan Coopersmith
Alan Cox
Alan Hourihane
Alexander Gottwald
Alex Deucher
Alex Williamson
Alexei Gilchrist
Anders Carlsson
Andreas Luik
Andreas Monitzer
Andreas Robinson
Andrei Barbu
Andrew C Aitchison
Andrey A. Chernov
Andy Ritger
Angus Lees
Ani Joshi
Anton Zioviev
Apollo Computer Inc.
Apple Computer Inc.
Apple Inc.
Ares Software Corp.
Arnaud LE HORS
Arne Schwabe
ASPEED Technology Inc.
AT&T Inc.
ATT Technologies Inc.
Bart Massey
Bart Trojanowski, Symbio Technologies, LLC
BEAM Ltd.
Benjamin Herrenschmidt
Benjamin Rienfenstahl
Ben Skeggs
Beth Mardutho: The Syriac Institute
Bigelow and Holmes
Bill Reynolds
Bistream Inc.
Bogdan Diaconescu
Branden Robinson
Brian Fundakowski Feldman
Brian Goines
Bogdan D.
Brian Paul
Bruce Kalk
Bruno Haible

Kensuke Matsuzaki
Kevin E. Martin
Kim woelders
Kristian Høgsberg
Larry Wall
Lars Knoll
Lawrence Berkeley Laboratory
Leif Delgass
Lennart Augustsson
Leon Shiman
Lexmark International Inc.
Linus Torvalds
Linuxcare Inc.
Lorens Younes
Luc Verhaegen
Machine Vision Holdings Inc.
Mandriva Linux
Manfred Brands
Manish Singh
Marc Aurele La France
Mark Adler
Mark J. Kilgard
Mark Kettenis
Mark Leisher
Mark Smulders
Mark Vojkovich
Martin Husemann
Marvin Solomon
Massachusetts Inst. Of Technology
Matrox Graphics
Matthew Grossman
Matthias Hopf
Matthias Ihmig
Matthieu Herrb
Metro Link Inc.
Michal Rehacek
Michael Bax
Michael H. Schimek
Michael P. Marking
Michael Schimek
Michael Smith
Michel Dänzer
Mike A. Harris
Mike Harris
Ming Yu
MIPS Computer Systems Inc.
MontaVista Software Inc.
National Semiconductor
NCR Corporation Inc.
Neil Brown
NetBSD Foundation
Netscape Communications Corp.
Network Computing Devices Inc.
New Mexico State University
Bryan Stine
Bryan W. Headley.
C. Scott Ananian
Carl Switzky
Catharon Productions Inc.
Charles Murcko
Chen Xiaying
Chisato Yamauchi
Chris Constello
Chris Salch
Christian Thaeter
Christian Zietz
Cognition Corp.
Compaq Computer Corporation
Concurrent Computer Corporation
Conectiva S.A.
Corin Anderson
Corvin Zahn.
Cronyx Ltd.
Craig Struble
Daewoo Electronics Co. Ltd.
Dag-Erling Smørgrav
Dale Schumacher
Damien Miller
Daniel Berrange
Daniel Borca
Daniel Stone
Daniver Limited
Daryll Strauss
Data General Corporation
Dave Airlie
David Bateman
David Dawes
David E. Wexelblat
David Holland
David J. McKay
David McCullough
David Mosberger-Tang
David Reveman
David S. Miller
David Woodhouse
Davor Matic
Deron Johnson
Digeo Inc.
Dennis De Winter
Digital Equipment Corporation
Dirk Hohnadel
Dmitry Golubev
Donnie Berkholz
DOS-EMU-Development-Team
Doug Anson
Drew Parsons
Earle F. Philhower III
Edouard TISSERANT

Nicholas Joly
Nicholas Miell
Nicholas Wourms
Nicolai Haehnle
Noah Levitt
Nolan Leake
Nokia Corporation
Nokia Home Communications
Novell Inc.
Nozomi YTOW
NTT Software Corporation
Number Nine Computer Corp.
Number Nine Visual Technologies
NVIDIA Corporation
Olivier Danet
Oki Technosystems Laboratory Inc.
Olivetti Research Limited
OMRON Corporation
Open Software Foundation
Open Text Corporation
OpenedHand Ltd.
Oracle Corp.
Orest Zborowski
Owen Taylor
Pablo Saratxaga
Panacea Inc.
Panagiotis Tsirigotis
Paolo Severini
Pascal Haible
Patrick Lecoanet
Patrick Lerda
Paul Anderson
Paul Elliott
Paul Mackerras
Peter Breitenloher
Peter Hutterer
Peter Kunzmann
Peter Osterlund
Peter Trattler
Philip Blundell
Philip Homburg
Philip Langdale
Precision Insight Inc.
Prentice Hall
Quarterdeck Office Systems
Radek Doulik
Ralf Habacker
Randy Hendry
Ranier Keller
Red Hat Inc.
Regis Cridlig
Rene Cougnenc
Richard A. Hecker
Richard Burdick
This product includes software developed by The XFree86 Project, Inc (http://www.xfree86.org/) and its contributors.

This product includes software that is based in part on the work of the FreeType Team (http://www.freetype.org/).

This product includes software developed by the University of California, Berkeley and its contributors.

This product includes software developed by Christopher G. Demetriou.

This product includes software developed by the NetBSD Foundation, Inc. (http://www.netbsd.org/) and its contributors.

This product includes software developed by X-Oz Technologies (http://www.x-oz.com/).