
X Session Management Library

X Consortium Standard

Ralph Mor

X Session Management Library: X Consortium Standard
by Ralph Mor
X Version 11, Release 6.4
Version 1.0
Copyright © 1993, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

X Window System is a trademark of The Open Group.

iii

Table of Contents
1. Overview of Session Management .. 1
2. The Session Management Library .. 2
3. Understanding SMlib's Dependence on ICE ... 3
4. Header Files and Library Name ... 4
5. Session Management Client (Smc) Functions ... 5

Connecting to the Session Manager .. 5
The Save Yourself Callback .. 7
The Die Callback .. 8
The Save Complete Callback ... 9
The Shutdown Cancelled Callback ... 9

Closing the Connection .. 9
Modifying Callbacks ... 10
Setting, Deleting, and Retrieving Session Management Properties 10
Interacting With the User .. 11
Requesting a Save Yourself ... 12
Requesting a Save Yourself Phase 2 .. 13
Completing a Save Yourself ... 13
Using Smc Informational Functions .. 14
Error Handling ... 14

6. Session Management Server (Sms) Functions .. 16
Initializing the Library ... 16

The Register Client Callback ... 19
The Interact Request Callback ... 19
The Interact Done Callback ... 20
The Save Yourself Request Callback .. 20
The Save Yourself Phase 2 Request Callback 21
The Save Yourself Done Callback ... 21
The Connection Closed Callback .. 21
The Set Properties Callback ... 22
The Delete Properties Callback .. 22
The Get Properties Callback .. 22

Registering the Client .. 23
Sending a Save Yourself Message ... 23
Sending a Save Yourself Phase 2 Message .. 24
Sending an Interact Message .. 25
Sending a Save Complete Message ... 25
Sending a Die Message ... 25
Cancelling a Shutdown .. 25
Returning Properties .. 25
Pinging a Client ... 26
Cleaning Up After a Client Disconnects .. 26
Using Sms Informational Functions .. 26
Error Handling ... 27

7. Session Management Properties ... 29
8. Freeing Data ... 32
9. Authentication of Clients .. 33
10. Working in a Multi-Threaded Environment ... 34
11. Acknowledgements .. 35

1

Chapter 1. Overview of Session
Management
The purpose of the X Session Management Protocol (XSMP) is to provide a uniform mech-
anism for users to save and restore their sessions. A session is a group of clients, each of
which has a particular state. The session is controlled by a network service called the session
manager. The session manager issues commands to its clients on behalf of the user. These
commands may cause clients to save their state or to terminate. It is expected that the client
will save its state in such a way that the client can be restarted at a later time and resume
its operation as if it had never been terminated. A client's state might include information
about the file currently being edited, the current position of the insertion point within the
file, or the start of an uncommitted transaction. The means by which clients are restarted is
unspecified by this protocol.

For purposes of this protocol, a client of the session manager is defined as a connection to the
session manager. A client is typically, though not necessarily, a process running an application
program connected to an X display. However, a client may be connected to more than one X
display or not be connected to any X displays at all.

2

Chapter 2. The Session Management
Library
The Session Management Library (SMlib) is a low-level "C" language interface to XSMP. It
is expected that higher level toolkits, such as Xt, will hide many of the details of session
management from clients. Higher level toolkits might also be developed for session managers
to use, but no such effort is currently under way.

SMlib has two parts to it:

• One set of functions for clients that want to be part of a session

• One set of functions for session managers to call

Some applications will use both sets of functions and act as nested session man-
agers. That is, they will be both a session manager and a client of another session.
An example is a mail program that could start a text editor for editing the text of a
mail message. The mail program is part of a regular session and, at the same time,
is also acting as a session manager to the editor.

Clients initialize by connecting to the session manager and obtaining a client-ID
that uniquely identifies them in the session. The session manager maintains a list
of properties for each client in the session. These properties describe the client's
environment and, most importantly, describe how the client can be restarted (via
an SmRestartCommand). Clients are expected to save their state in such a way as
to allow multiple instantiations of themselves to be managed independently. For
example, clients may use their client-ID as part of a filename in which to store the
state for a particular instantiation. The client-ID should be saved as part of the
SmRestartCommand so that the client will retain the same ID after it is restarted.

Once the client initializes itself with the session manager, it must be ready to re-
spond to messages from the session manager. For example, it might be asked to
save its state or to terminate. In the case of a shutdown, the session manager might
give each client a chance to interact with the user and cancel the shutdown.

3

Chapter 3. Understanding SMlib's
Dependence on ICE

The X Session Management Protocol is layered on top of the Inter-Client Exchange
(ICE) Protocol. The ICE protocol is designed to multiplex several protocols over a
single connection. As a result, working with SMlib requires a little knowledge of
how the ICE library works.

The ICE library utilizes callbacks to process messages. When a client detects that
there is data to read on an ICE connection, it should call the IceProcessMessages
function. IceProcessMessages will read the message header and look at the major
opcode in order to determine which protocol the message was intended for. The
appropriate protocol library will then be triggered to unpack the message and hand
it off to the client via a callback.

The main point to be aware of is that an application using SMlib must have some
code that detects when there is data to read on an ICE connection. This can be done
via a select call on the file descriptor for the ICE connection, but more typically,
XtAppAddInput will be used to register a callback that will invoke IceProcessMes-
sages each time there is data to read on the ICE connection.

To further complicate things, knowing which file descriptors to call select on re-
quires an understanding of how ICE connections are created. On the client side,
a call must be made to SmcOpenConnection in order to open a connection with a
session manager. SmcOpenConnection will internally makea call into IceOpenCon-
nection which will, in turn, determine if an ICE connection already exists between
the client and session manager. Most likely, a connection will not already exist and
a new ICE connection will be created. The main point to be aware of is that, on
the client side, it is not obvious when ICE connections get created or destroyed,
because connections are shared when possible. To deal with this, the ICE library
lets the application register watch procedures that will be invoked each time an ICE
connection is opened or closed. These watch procedures could be used to add or
remove ICE file descriptors from the list of descriptors to call select on.

On the session manager side, things work a bit differently. The session manager has
complete control over the creation of ICE connections. The session manager has
to first call IceListenForConnections in order to start listening for connections
from clients. Once a connection attempt is detected, IceAcceptConnection must
be called, and the session manager can simply add the new ICE file descriptor to
the list of descriptors to call select on.

For further information on the library functions related to ICE connections, see the
“Inter-Client Exchange Library” standard.

4

Chapter 4. Header Files and Library
Name

Applications (both session managers and clients) should include the header file
<X11/SM/SMlib.h>. This header file defines all of the SMlib data structures and
function prototypes. SMlib.h includes the header file <X11/SM/SM.h>, which de-
fines all of the SMlib constants.

Because SMlib is dependent on ICE, applications should link against SMlib and
ICElib by using “-lSM -lICE”.

5

Chapter 5. Session Management Client
(Smc) Functions

This section discusses how Session Management clients:

• Connect to the Session Manager

• Close the connection

• Modify callbacks

• Set, delete, and retrieve Session Manager properties

• Interact with the user

• Request a “Save Yourself”

• Request a “Save Yourself Phase 2”

• Complete a “Save Yourself”

• Use Smc informational functions

• Handle Errors

Connecting to the Session Manager
To open a connection with a session manager, use SmcOpenConnection

SmcConn SmcOpenConnection(network_ids_list, context, xsmp_major_rev,
xsmp_minor_rev, mask, callbacks, previous_id, client_id_ret,
error_length, error_string_ret);

network_ids_list Specifies the network ID(s) of the session manager.

context A pointer to an opaque object or NULL. Used to determine if an
ICE connection can be shared (see below [6]).

xsmp_major_rev The highest major version of the XSMP the application sup-
ports.

xsmp_minor_rev The highest minor version of the XSMP the application sup-
ports (for the specified xsmp_major_rev).

mask A mask indicating which callbacks to register.

callbacks The callbacks to register. These callbacks are used to respond
to messages from the session manager.

previous_id The client ID from the previous session.

client_id_ret The client ID for the current session is returned.

error_length Length of the error_string_ret argument passed in.

Session Management
Client (Smc) Functions

6

error_string_ret Returns a null-terminated error message, if any. The
error_string_ret argument points to user supplied memory.
No more than error_length bytes are used.

The network_ids_list argument is a null-terminated string containing a list of net-
work IDs for the session manager, separated by commas. If network_ids_list is
NULL, the value of the SESSION_MANAGER environment variable will be used. Each
network ID has the following format:

 tcp/
<hostname>:<portnumber>

or

 dec-
net/<hostname>::<objname>

or

 lo-
cal/<hostname>:<path>

An attempt will be made to use the first network ID. If that fails, an attempt will be
made using the second network ID, and so on.

After the connection is established, SmcOpenConnection registers the client with
the session manager. If the client is being restarted from a previous session,
previous_id should contain a null terminated string representing the client ID from
the previous session. If the client is first joining the session, previous_id should
be set to NULL. If previous_id is specified but is determined to be invalid by the
session manager, SMlib will re-register the client with previous_id set to NULL.

If SmcOpenConnection succeeds, it returns an opaque connection pointer of type
SmcConn and the client_id_ret argument contains the client ID to be used for this
session. The client_id_ret should be freed with a call to free when no longer
needed. On failure, SmcOpenConnection returns NULL, and the reason for failure is
returned in error_string_ret.

Note that SMlib uses the ICE protocol to establish a connection with the session
manager. If an ICE connection already exists between the client and session man-
ager, it might be possible for the same ICE connection to be used for session man-
agement.

The context argument indicates how willing the client is to share the ICE connection
with other protocols. If context is NULL, then the caller is always willing to share the
connection. If context is not NULL, then the caller is not willing to use a previously
opened ICE connection that has a different non-NULL context associated with it.

As previously discussed (section 3, “Understanding SMlib's Dependence on ICE”),
the client will have to keep track of when ICE connections are created or destroyed
(using IceAddConnectionWatch and IceRemoveConnectionWatch and will have to
call IceProcessMessages each time a select shows that there is data to read on an
ICE connection. For further information, see the “Inter-Client Exchange Library”
standard.

The callbacks argument contains a set of callbacks used to respond to session man-
ager events. The mask argument specifies which callbacks are set. All of the call-
backs specified in this version of SMlib are mandatory. The mask argument is nec-
essary in order to maintain backwards compatibility in future versions of the library.

The following values may be ORed together to obtain a mask value:

Session Management
Client (Smc) Functions

7

SmcSaveYourselfProcMask
SmcDieProcMask
SmcSaveCompleteProcMask
SmcShutdownCancelledProcMask

For each callback, the client can register a pointer to client data. When SMlib in-
vokes the callback, it will pass the client data pointer.

typedef struct {

 struct {
 SmcSaveYourselfProc callback;
 SmPointer client_data;
 } save_yourself;

 struct {
 SmcDieProc callback;
 SmPointer client_data;
 } die;

 struct {
 SmcSaveCompleteProc callback;
 SmPointer client_data;
 } save_complete;

 struct {
 SmcShutdownCancelledProc callback;
 SmPointer client_data;
 } shutdown_cancelled;

} SmcCallbacks;

The Save Yourself Callback
The Save Yourself callback is of type SmcSaveYourselfProc

typedef void (*SaveYourselfProc)(smc_conn, client_data, save_type,
shutdown, interact_style, fast);

smc_conn The session management connection object.

client_data Client data specified when the callback was registered.

save_type Specifies the type of information that should be saved.

shut_down Specifies if a shutdown is taking place.

interact_style The type of interaction allowed with the user.

fast if True, then client should save its state as quickly as possible.

The session manager sends a “Save Yourself” message to a client either to check-
point it or just before termination so that it can save its state. The client responds
with zero or more calls to SmcSetProperties to update the properties indicating

Session Management
Client (Smc) Functions

8

how to restart the client. When all the properties have been set, the client calls
SmcSaveYourselfDone

If interact_style is SmInteractStyleNone the client must not interact with the
user while saving state. If interact_style is SmInteractStyleErrors the client
may interact with the user only if an error condition arises. If interact_style is
SmInteractStyleAny then the client may interact with the user for any purpose.
Because only one client can interact with the user at a time, the client must call
SmcInteractRequest and wait for an “Interact” message from the session manager.
When the client is done interacting with the user, it calls SmcInteractDone The
client may only call SmcInteractRequest after it receives a “Save Yourself” message
and before it calls SmcSaveYourselfDone

If save_type is SmSaveLocal the client must update the properties to reflect its
current state. Specifically, it should save enough information to restore the state as
seen by the user of this client. It should not affect the state as seen by other users.
If save_type is SmSaveGlobal the user wants the client to commit all of its data
to permanent, globally accessible storage. If save_type is SmSaveBoth the client
should do both of these (it should first commit the data to permanent storage before
updating its properties).

Some examples are as follows:

• If a word processor were sent a “Save Yourself” with a type of SmSaveLocal it
could create a temporary file that included the current contents of the file, the
location of the cursor, and other aspects of the current editing session. It would
then update its SmRestartCommand property with enough information to find this
temporary file.

• If a word processor were sent a “Save Yourself” with a type of SmSaveGlobal it
would simply save the currently edited file.

• If a word processor were sent a “Save Yourself” with a type of SmSaveBoth it
would first save the currently edited file. It would then create a temporary file with
information such as the current position of the cursor and what file is being edited.
Finally, it would update its SmRestartCommand property with enough information
to find the temporary file.

The shutdown argument specifies whether the system is being shut down. The in-
teraction is different depending on whether or not shutdown is set. If not shutting
down, the client should save its state and wait for a “Save Complete” message. If
shutting down, the client must save state and then prevent interaction until it re-
ceives either a “Die” or a “Shutdown Cancelled.”

The fast argument specifies that the client should save its state as quickly as pos-
sible. For example, if the session manager knows that power is about to fail, it would
set fast to True.

The Die Callback
The Die callback is of type SmcDieProc

typedef void (*SmcDieProc)(smc_conn, client_data);

smc_conn The session management connection object.

Session Management
Client (Smc) Functions

9

client_data Client data specified when the callback was registered.

The session manager sends a “Die” message to a client when it wants it to die.
The client should respond by calling SmcCloseConnection. A session manager that
behaves properly will send a “Save Yourself” message before the “Die” message.

The Save Complete Callback
The Save Complete callback is of type SmcSaveCompleteProc

typedef void (*SmcSaveCompleteProc)(smc_conn, client_data);

smc_conn The session management connection object.

client_data Client data specified when the callback was registered.

The Shutdown Cancelled Callback
The Shutdown Cancelled callback is of type SmcShutdownCancelledProc

typedef void (*SmcShutdownCancelledProc)(smc_conn, client_data);

smc_conn The session management connection object.

client_data Client data specified when the callback was registered.

The session manager sends a “Shutdown Cancelled” message when the user can-
celled the shutdown during an interaction (see section 5.5, “Interacting With the
User”). The client can now continue as if the shutdown had never happened. If the
client has not called SmcSaveYourselfDone yet, it can either abort the save and then
call SmcSaveYourselfDone with the success argument set to False or it can contin-
ue with the save and then call SmcSaveYourselfDone with the success argument
set to reflect the outcome of the save.

Closing the Connection
To close a connection with a session manager, use SmcCloseConnection

SmcCloseStatus SmcCloseConnection(smc_conn, count, reason_msgs);

smc_conn The session management connection object.

count The number of reasons for closing the connection.

reason_msgs The reasons for closing the connection.

The reason_msgs argument will most likely be NULL if resignation is expected by
the client. Otherwise, it contains a list of null-terminated Compound Text strings
representing the reason for termination. The session manager should display these
reason messages to the user.

Note that SMlib used the ICE protocol to establish a connection with the session
manager, and various protocols other than session management may be active on
the ICE connection. When SmcCloseConnection is called, the ICE connection will
be closed only if all protocols have been shutdown on the connection. Check the

Session Management
Client (Smc) Functions

10

ICElib standard for IceAddConnectionWatch and IceRemoveConnectionWatch to
learn how to set up a callback to be invoked each time an ICE connection is opened
or closed. Typically this callback adds/removes the ICE file descriptor from the list
of active descriptors to call select on (or calls XtAppAddInput or XtRemoveInput).

SmcCloseConnection returns one of the following values:

• SmcClosedNow - the ICE connection was closed at this time, the watch procedures
were invoked, and the connection was freed.

• SmcClosedASAP - an IO error had occurred on the connection, but SmcCloseCon-
nection is being called within a nested IceProcessMessages The watch proce-
dures have been invoked at this time, but the connection will be freed as soon as
possible (when the nesting level reaches zero and IceProcessMessages returns
a status of IceProcessMessagesConnectionClosed

• SmcConnectionInUse - the connection was not closed at this time, because it is
being used by other active protocols.

Modifying Callbacks
To modify callbacks set up in SmcOpenConnection use SmcModifyCallbacks

void SmcModifyCallbacks(smc_conn, mask, callbacks);

smc_conn The session management connection object.

mask A mask indicating which callbacks to modify.

callbacks The new callbacks.

When specifying a value for the mask argument, the following values may be ORed
together:

SmcSaveYourselfProcMask
SmcDieProcMask
SmcSaveCompleteProcMask
SmcShutdownCancelledProcMask

Setting, Deleting, and Retrieving Session Man-
agement Properties

To set session management properties for this client, use SmcSetProperties

void SmcSetProperties(smc_conn, num_props, props);

smc_conn The session management connection object.

num_props The number of properties.

props The list of properties to set.

The properties are specified as an array of property pointers. Previously set property
values may be over-written using the SmcSetProperties function. Note that the

Session Management
Client (Smc) Functions

11

session manager is not expected to restore property values when the session is
restarted. Because of this, clients should not try to use the session manager as a
database for storing application specific state.

For a description of session management properties and the SmProp structure, see
section 7, “Session Management Properties.”

To delete properties previously set by the client, use SmcDeleteProperties

void SmcDeleteProperties(smc_conn, num_props, prop_names);

smc_conn The session management connection object.

num_props The number of properties.

prop_names The list of properties to set.

To get properties previously stored by the client, use SmcGetProperties

Status SmcGetProperties(smc_conn, prop_reply_proc, client_data);

smc_conn The session management connection object.

prop_reply_proc The callback to be invoked when the properties reply comes
back.

client_data This pointer to client data will be passed to the SmcPropRe-
plyProc callback.

The return value of SmcGetProperties is zero for failure and a positive value for
success.

Note that the library does not block until the properties reply comes back. Rather,
a callback of type SmcPropReplyProc is invoked when the data is ready.

typedef void (*SmcPropReplyProc)(smc_conn, client_data, num_props,
props);

smc_conn The session management connection object.

client_data This pointer to client data will be passed to the SmcPropReplyProc
callback.

num_props The number of properties returned.

props The list of properties returned.

To free each property, use SmFreeProperty (see section 8, “Freeing Data”). To free
the actual array of pointers, use free

Interacting With the User
After receiving a “Save Yourself” message with an interact_style of SmInterac-
tStyleErrors or SmInteractStyleAny the client may choose to interact with the
user. Because only one client can interact with the user at a time, the client must call
SmcInteractRequest and wait for an “Interact” message from the session manager.

Session Management
Client (Smc) Functions

12

Status SmcInteractRequest(smc_conn, dialog_type, interact_proc,
client_data);

smc_conn The session management connection object.

dialog_type The type of dialog the client wishes to present to the user.

interact_proc The callback to be invoked when the “Interact” message arrives
from the session manager.

client_data This pointer to client data will be passed to the SmcInteractProc
callback when the “Interact” message arrives.

The return value of SmcInteractRequest is zero for failure and a positive value for
success.

The dialog_type argument specifies either SmDialogError indicating that the
client wants to start an error dialog, or SmDialogNormal meaning that the client
wishes to start a nonerror dialog.

Note that if a shutdown is in progress, the user may have the option of cancelling
the shutdown. If the shutdown is cancelled, the clients that have not interacted yet
with the user will receive a “Shutdown Cancelled” message instead of the “Interact”
message.

The SmcInteractProc callback will be invoked when the “Interact” message arrives
from the session manager.

typedef void (*SmcInteractProc)(smc_conn, client_data);

smc_conn The session management connection object.

client_data Client data specified when the callback was registered.

After interacting with the user (in response to an “Interact” message), you should
call SmcInteractDone

void SmcInteractDone(smc_conn, cancel_shutdown);

smc_conn The session management connection object.

cancel_shutdown If True, indicates that the user requests that the entire shut-
down be cancelled.

The cancel_shutdown argument may only be True if the corresponding “Save
Yourself” specified True for shutdown and SmInteractStyleErrors or SmInterac-
tStyleAny for the interact_style.

Requesting a Save Yourself
To request a checkpoint from the session manager, use SmcRequestSaveYourself

void SmcRequestSaveYourself(smc_conn, save_type, shutdown,
interact_style, fast, global);

smc_conn The session management connection object.

Session Management
Client (Smc) Functions

13

save_type Specifies the type of information that should be saved.

shutdown Specifies if a shutdown is taking place.

interact_style The type of interaction allowed with the user.

fast If True the client should save its state as quickly as possible.

global Controls who gets the “Save Yourself.”

The save_type, shutdown, interact_style, and fast arguments are discussed in
more detail in section 5.1.1, “The Save Yourself Callback.”

If global is set to True then the resulting “Save Yourself” should be sent to all
clients in the session. For example, a vendor of a Uninterruptible Power Supply
(UPS) might include a Session Management client that would monitor the status of
the UPS and generate a fast shutdown if the power is about to be lost.

If global is set to False then the “Save Yourself” should only be sent to the client
that requested it.

Requesting a Save Yourself Phase 2
In response to a “Save Yourself”, the client may request to be informed when all
the other clients are quiescent so that it can save their state. To do so, use SmcRe-
questSaveYourselfPhase2

Status SmcRequestSaveYourselfPhase2(smc_conn,
save_yourself_phase2_proc, client_data);

smc_conn The session management connection object.

save_type_phase2_proc The callback to be invoked when the “Save Yourself
Phase 2” message arrives from the session manager.

client_data This pointer to client data will be passed to the
SmcSaveYourselfPhase2Proc callback when the “Save
Yourself Phase 2” message arrives.

The return value of SmcRequestSaveYourselfPhase2 is zero for failure and a posi-
tive value for success.

This request is needed by clients that manage other clients (for example, window
managers, workspace managers, and so on). The manager must make sure that all
of the clients that are being managed are in an idle state so that their state can
be saved.

Completing a Save Yourself
After saving state in response to a “Save Yourself” message, you should call Sm-
cSaveYourselfDone

void SmcSaveYourselfDone(smc_conn, success);

smc_conn The session management connection object.

Session Management
Client (Smc) Functions

14

success If True the “Save Yourself” operation was completed successfully.

Before calling SmcSaveYourselfDone the client must have set each required prop-
erty at least once since the client registered with the session manager.

Using Smc Informational Functions
int SmcProtocolVersion(smc_conn);

SmcProtocolVersion returns the major version of the session management protocol
associated with this session.

int SmcProtocolRevision(smc_conn);

SmcProtocolRevision returns the minor version of the session management proto-
col associated with this session.

char *SmcVendor(smc_conn);

SmcVendor returns a string that provides some identification of the owner of the
session manager. The string should be freed with a call to free

char *SmcRelease(smc_conn);

SmcRelease returns a string that provides the release number of the session man-
ager. The string should be freed with a call to free

char *SmcClientID(smc_conn);

SmcClientID returns a null-terminated string for the client ID associated with this
connection. This information was also returned in SmcOpenConnection (it is provid-
ed here for convenience). Call free on this pointer when the client ID is no longer
needed.

IceConn SmcGetIceConnection(smc_conn);

SmcGetIceConnection returns the ICE connection object associated with this ses-
sion management connection object. The ICE connection object can be used to get
some additional information about the connection. Some of the more useful func-
tions which can be used on the IceConn are IceConnectionNumber, IceConnec-
tionString, IceLastSentSequenceNumber, IceLastReceivedSequenceNumber, and
IcePing. For further information, see the “Inter-Client Exchange Library” standard.

Error Handling
If the client receives an unexpected protocol error from the session manager, an
error handler is invoked by SMlib. A default error handler exists that simply prints
the error message to stderr and exits if the severity of the error is fatal. The client
can change this error handler by calling the SmcSetErrorHandler function.

SmcErrorHandler SmcSetErrorHandler(handler);

The error handler. You should pass NULL to restore the default handler.

SmcSetErrorHandler returns the previous error handler.

Session Management
Client (Smc) Functions

15

The SmcErrorHandler has the following type:

typedef void (*SmcErrorHandler)(smc_conn, swap, offending_minor_opcode,
offending_sequence_num, error_class, severity, values);

smc_conn The session management connection object.

swap A flag that indicates if the specified values need byte
swapping.

offending_minor_opcode The minor opcode of the offending message.

offending_sequence_num The sequence number of the offending message.

error_class The error class of the offending message.

severity IceCanContinue, IceFatalToProtocol, or IceFatal-
ToConnection

values Any additional error values specific to the minor opcode
and class.

Note that this error handler is invoked for protocol related errors. To install an error
handler to be invoked when an IO error occurs, use IceSetIOErrorHandler For
further information, see the “Inter-Client Exchange Library” standard.

16

Chapter 6. Session Management Server
(Sms) Functions

This section discusses how Session Management servers:

• Initialize the library

• Register the client

• Send a “Save Yourself” message

• Send a “Save Yourself Phase 2” message

• Send an “Interact” message

• Send a “Save Complete” message

• Send a “Die” message

• Cancel a shutdown

• Return properties

• Ping a client

• Clean up after a client disconnects

• Use Sms informational functions

• Handle errors

Initializing the Library
SmsInitialize is the first SMlib function that should be called by a session manag-
er. It provides information about the session manager and registers a callback that
will be invoked each time a new client connects to the session manager.

Status SmsInitialize(vendor, release, new_client_proc, manager_data,
host_based_auth_proc, error_length, error_string_ret);

vendor A string specifying the session manager vendor.

release A string specifying the session manager release number.

new_client_proc Callback to be invoked each time a new client connects to
the session manager.

manager_data When the SmsNewClientProc callback is invoked, this
pointer to manager data will be passed.

host_based_auth_proc Host based authentication callback.

Session Management
Server (Sms) Functions

17

error_length Length of the error_string_ret argument passed in.

error_string_ret Returns a null-terminated error message, if any. The
error_string_ret points to user supplied memory. No
more than error_length bytes are used.

After the SmsInitialize function is called, the session manager should call the
IceListenForConnections function to listen for new connections. Afterwards, each
time a client connects, the session manager should call IceAcceptConnection

See section 9, “Authentication of Clients,” for more details on authentication (in-
cluding host based authentication). Also see the “Inter-Client Exchange Library”
standard for further details on listening for and accepting ICE connections.

Each time a new client connects to the session manager, the SmsNewClientProc
callback is invoked. The session manager obtains a new opaque connection object
that it should use for all future interaction with the client. At this time, the session
manager must also register a set of callbacks to respond to the different messages
that the client might send.

typedef Status (*SmsNewClientProc)(sms_conn, manager_data, mask_ret,
callbacks_ret, failure_reason_ret);

sms_conn A new opaque connection object.

manager_data Manager data specified when the callback was registered.

mask_ret On return, indicates which callbacks were set by the session
manager.

callbacks_ret On return, contains the callbacks registered by the session
manager.

failure_reason_ret Failure reason returned.

If a failure occurs, the SmsNewClientProc should return a zero status as well as
allocate and return a failure reason string in failure_reason_ret. SMlib will be
responsible for freeing this memory.

The session manager must register a set of callbacks to respond to client events. The
mask_ret argument specifies which callbacks are set. All of the callbacks specified
in this version of SMlib are mandatory. The mask_ret argument is necessary in order
to maintain backwards compatibility in future versions of the library.

The following values may be ORed together to obtain a mask value:

SmsRegisterClientProcMask
SmsInteractRequestProcMask
SmsInteractDoneProcMask
SmsSaveYourselfRequestProcMask
SmsSaveYourselfP2RequestProcMask
SmsSaveYourselfDoneProcMask
SmsCloseConnectionProcMask
SmsSetPropertiesProcMask
SmsDeletePropertiesProcMask

Session Management
Server (Sms) Functions

18

SmsGetPropertiesProcMask

For each callback, the session manager can register a pointer to manager data spe-
cific to that callback. This pointer will be passed to the callback when it is invoked
by SMlib.

typedef struct {
 struct {
 SmsRegisterClientProc callback;
 SmPointer manager_data;
 } register_client;

 struct {
 SmsInteractRequestProc callback;
 SmPointer manager_data;
 } interact_request;

 struct {
 SmsInteractDoneProc callback;
 SmPointer manager_data;
 } interact_done;

 struct {
 SmsSaveYourselfRequestProc callback;
 SmPointer manager_data;
 } save_yourself_request;

 struct {
 SmsSaveYourselfPhase2RequestProc callback;
 SmPointer manager_data;
 } save_yourself_phase2_request;

 struct {
 SmsSaveYourselfDoneProc callback;
 SmPointer manager_data;
 } save_yourself_done;

 struct {
 SmsCloseConnectionProc callback;
 SmPointer manager_data;
 } close_connection;

 struct {
 SmsSetPropertiesProc callback;
 SmPointer manager_data;
 } set_properties;

 struct {
 SmsDeletePropertiesProc callback;
 SmPointer manager_data;
 } delete_properties;

 struct {

Session Management
Server (Sms) Functions

19

 SmsGetPropertiesProc callback;
 SmPointer manager_data;
 } get_properties;

} SmsCallbacks;

The Register Client Callback
The Register Client callback is the first callback that will be invoked after the client
connects to the session manager. Its type is SmsRegisterClientProc

typedef Status (*SmsRegisterClientProc)(sms_conn, manager_data,
previous_id);

sms_conn The session management connection object.

manager_data Manager data specified when the callback was registered.

previous_id The client ID from the previous session.

Before any further interaction takes place with the client, the client must be regis-
tered with the session manager.

If the client is being restarted from a previous session, previous_id will contain
a null-terminated string representing the client ID from the previous session. Call
free on the previous_id pointer when it is no longer needed. If the client is first
joining the session, previous_id will be NULL.

If previous_id is invalid, the session manager should not register the client at this
time. This callback should return a status of zero, which will cause an error message
to be sent to the client. The client should re-register with previous_id set to NULL.

Otherwise, the session manager should register the client with a unique client ID
by calling the SmsRegisterClientReply function (to be discussed shortly), and the
SmsRegisterClientProc callback should return a status of one.

The Interact Request Callback
The Interact Request callback is of type SmsInteractRequestProc

typedef void (*SmsInteractRequestProc)(sms_conn, manager_data,
dialog_type);

sms_conn The session management connection object.

manager_data Manager data specified when the callback was registered.

dialog_type The type of dialog the client wishes to present to the user.

When a client receives a “Save Yourself” message with an interact_style of SmIn-
teractStyleErrors or SmInteractStyleAny the client may choose to interact with
the user. Because only one client can interact with the user at a time, the client must
request to interact with the user. The session manager should keep a queue of all
clients wishing to interact. It should send an “Interact” message to one client at a
time and wait for an “Interact Done” message before continuing with the next client.

Session Management
Server (Sms) Functions

20

The dialog_type argument specifies either SmDialogError indicating that the
client wants to start an error dialog, or SmDialogNormal meaning that the client
wishes to start a nonerror dialog.

If a shutdown is in progress, the user may have the option of cancelling the shut-
down. If the shutdown is cancelled (specified in the “Interact Done” message), the
session manager should send a “Shutdown Cancelled” message to each client that
requested to interact.

The Interact Done Callback
When the client is done interacting with the user, the SmsInteractDoneProc call-
back will be invoked.

typedef void (*SmsInteractDoneProc)(sms_conn, manager_data,
cancel_shutdown);

sms_conn The session management connection object.

manager_data Manager data specified when the callback was registered.

cancel_shutdown Specifies if the user requests that the entire shutdown be can-
celled.

Note that the shutdown can be cancelled only if the corresponding “Save Yourself”
specified True for shutdown and SmInteractStyleErrors or SmInteractStyleAny
for the interact_style.

The Save Yourself Request Callback
The Save Yourself Request callback is of type SmsSaveYourselfRequestProc

typedef void (*SaveYourselfRequestProc)(sms_conn, manager_data,
save_type, shutdown, interact_style, fast, global);

sms_conn The session management connection object.

manager_data Manager data specified when the callback was registered.

save_type Specifies the type of information that should be saved.

shutdown Specifies if a shutdown is taking place.

interact_style The type of interaction allowed with the user.

fast If True the client should save its state as quickly as possible.

global Controls who gets the “Save Yourself.”

The Save Yourself Request prompts the session manager to initiate a checkpoint or
shutdown. For information on the save_type, shutdown, interact_style, and fast
arguments, see section 6.3, “Sending a Save Yourself Message.”

If global is set to True then the resulting “Save Yourself” should be sent to all
applications. If global is set to False then the “Save Yourself” should only be sent
to the client that requested it.

Session Management
Server (Sms) Functions

21

The Save Yourself Phase 2 Request Callback
The Save Yourself Phase 2 Request callback is of type
SmsSaveYourselfPhase2RequestProc

typedef void (*SmsSaveYourselfPhase2RequestProc)(sms_conn,
manager_data);

sms_conn The session management connection object.

manager_data Manager data specified when the callback was registered.

This request is sent by clients that manage other clients (for example, window man-
agers, workspace managers, and so on). Such managers must make sure that all
of the clients that are being managed are in an idle state so that their state can
be saved.

The Save Yourself Done Callback
When the client is done saving its state in response to a “Save Yourself” message,
the SmsSaveYourselfDoneProc will be invoked.

typedef void (*SaveYourselfDoneProc)(sms_conn, manager_data, success);

sms_conn The session management connection object.

manager_data Manager data specified when the callback was registered.

success If True the Save Yourself operation was completed successfully.

Before the “Save Yourself Done” was sent, the client must have set each required
property at least once since it registered with the session manager.

The Connection Closed Callback
If the client properly terminates (that is, it calls SmcCloseConnection, the Sm-
sCloseConnectionProc callback is invoked.

typedef void (*SmsCloseConnectionProc)(sms_conn, manager_data, count,
reason_msgs);

sms_conn The session management connection object.

manager_data Manager data specified when the callback was registered.

count The number of reason messages.

reason_msgs The reasons for closing the connection.

The reason_msgs argument will most likely be NULL and the count argument zero
(0) if resignation is expected by the user. Otherwise, it contains a list of null-termi-
nated Compound Text strings representing the reason for termination. The session
manager should display these reason messages to the user.

Call SmFreeReasons to free the reason messages. For further information, see sec-
tion 8, “Freeing Data”

Session Management
Server (Sms) Functions

22

The Set Properties Callback
When the client sets session management properties, the SmsSetPropertiesProc
callback will be invoked.

typedef void (*SmsSetPropertiesProc)(sms_conn, manager_data, num_props,
props);

sms_conn The session management connection object.

manager_data Manager data specified when the callback was registered.

num_props The number of properties.

props The list of properties to set.

The properties are specified as an array of property pointers. For a description of
session management properties and the SmProp structure, see section 7, “Session
Management Properties.”

Previously set property values may be over-written. Some properties have prede-
fined semantics. The session manager is required to store nonpredefined properties.

To free each property, use SmFreeProperty. For further information, see section 8,
“Freeing Data” You should free the actual array of pointers with a call to free

The Delete Properties Callback
When the client deletes session management properties, the SmsDeleteProper-
tiesProc callback will be invoked.

typedef void (*SmsDeletePropertiesProc)(sms_conn, manager_data,
num_props, prop_names);

sms_conn The session management connection object.

manager_data Manager data specified when the callback was registered.

num_props The number of properties.

prop_names The list of properties to delete.

The properties are specified as an array of strings. For a description of session man-
agement properties and the SmProp structure, see section 7, “Session Management
Properties.”

The Get Properties Callback
The SmsGetPropertiesProc callback is invoked when the client wants to retrieve
properties it set.

typedef void (*SmsGetPropertiesProc)(sms_conn, manager_data);

sms_conn The session management connection object.

Session Management
Server (Sms) Functions

23

manager_data Manager data specified when the callback was registered.

The session manager should respond by calling SmsReturnProperties. All of the
properties set for this client should be returned.

Registering the Client
To register a client (in response to a SmsRegisterClientProc callback), use Sm-
sRegisterClientReply.

Status SmsRegisterClientReply(sms_conn, client_id);

sms_conn The session management connection object.

client_id A null-terminated string representing a unique client ID.

The return value of SmsRegisterClientReply is zero for failure and a positive value
for success. Failure will occur if SMlib can not allocate memory to hold a copy of
the client ID for it's own internal needs.

If a non-NULL previous_id was specified when the client registered itself,
client_id should be identical to previous_id.

Otherwise, client_id should be a unique ID freshly generated by the session man-
ager. In addition, the session manager should send a “Save Yourself” message with
type = Local, shutdown = False, interact-style = None, and fast = False im-
mediately after registering the client.

Note that once a client ID has been assigned to the client, the client keeps this ID
indefinitely. If the client is terminated and restarted, it will be reassigned the same
ID. It is desirable to be able to pass client IDs around from machine to machine,
from user to user, and from session manager to session manager, while retaining
the identity of the client. This, combined with the indefinite persistence of client
IDs, means that client IDs need to be globally unique.

You should call the SmsGenerateClientID function to generate a globally unique
client ID.

char *SmsGenerateClientID(sms_conn);

sms_conn The session management connection object.

NULL will be returned if the ID could not be generated. Otherwise, the return value
of the function is the client ID. It should be freed with a call to free when no longer
needed.

Sending a Save Yourself Message
To send a “Save Yourself” to a client, use SmsSaveYourself.

void SmsSaveYourself(sms_conn, save_type, shutdown, interact_style,
fast);

sms_conn The session management connection object.

Session Management
Server (Sms) Functions

24

save_type Specifies the type of information that should be saved.

shutdown Specifies if a shutdown is taking place.

interact_style The type of interaction allowed with the user.

fast If True the client should save its state as quickly as possible.

The session manager sends a “Save Yourself” message to a client either to check-
point it or just before termination so that it can save its state. The client responds
with zero or more “Set Properties” messages to update the properties indicating
how to restart the client. When all the properties have been set, the client sends a
“Save Yourself Done” message.

If interact_style is SmInteractStyleNone the client must not interact with the
user while saving state. If interact_style is SmInteractStyleErrors the client
may interact with the user only if an error condition arises. If interact_style is
SmInteractStyleAny then the client may interact with the user for any purpose.
The client must send an “Interact Request” message and wait for an “Interact”
message from the session manager before it can interact with the user. When the
client is done interacting with the user, it should send an “Interact Done” message.
The “Interact Request” message can be sent any time after a “Save Yourself” and
before a “Save Yourself Done.”

If save_type is SmSaveLocal the client must update the properties to reflect its
current state. Specifically, it should save enough information to restore the state as
seen by the user of this client. It should not affect the state as seen by other users.
If save_type is SmSaveGlobal the user wants the client to commit all of its data
to permanent, globally accessible storage. If save_type is SmSaveBoth the client
should do both of these (it should first commit the data to permanent storage before
updating its properties).

The shutdown argument specifies whether the session is being shut down. The in-
teraction is different depending on whether or not shutdown is set. If not shutting
down, then the client can save and resume normal operation. If shutting down, the
client must save and then must prevent interaction until it receives either a “Die” or
a “Shutdown Cancelled,” because anything the user does after the save will be lost.

The fast argument specifies that the client should save its state as quickly as possi-
ble. For example, if the session manager knows that power is about to fail, it should
set fast to True.

Sending a Save Yourself Phase 2 Message
In order to send a “Save Yourself Phase 2” message to a client, use SmsSaveYour-
selfPhase2

void SmsSaveYourselfPhase2(sms_conn);

sms_conn The session management connection object.

The session manager sends this message to a client that has previously sent a “Save
Yourself Phase 2 Request” message. This message informs the client that all other
clients are in a fixed state and this client can save state that is associated with other
clients.

Session Management
Server (Sms) Functions

25

Sending an Interact Message
To send an “Interact” message to a client, use SmsInteract.

void SmsInteract(sms_conn);

sms_conn The session management connection object.

The “Interact” message grants the client the privilege of interacting with the user.
When the client is done interacting with the user, it must send an “Interact Done”
message to the session manager.

Sending a Save Complete Message
To send a “Save Complete” message to a client, use SmsSaveComplete.

void SmsSaveComplete(sms_conn);

sms_conn The session management connection object.

The session manager sends this message when it is done with a checkpoint. The
client is then free to change its state.

Sending a Die Message
To send a “Die” message to a client, use SmsDie.

void SmsDie(sms_conn);

sms_conn The session management connection object.

Before the session manager terminates, it should wait for a “Connection Closed”
message from each client that it sent a “Die” message to, timing out appropriately.

Cancelling a Shutdown
To cancel a shutdown, use SmsShutdownCancelled.

void SmsShutdownCancelled(sms_conn);

sms_conn The session management connection object.

The client can now continue as if the shutdown had never happened. If the client has
not sent a “Save Yourself Done” message yet, it can either abort the save and send
a “Save Yourself Done” with the success argument set to False or it can continue
with the save and send a “Save Yourself Done” with the success argument set to
reflect the outcome of the save.

Returning Properties
In response to a “Get Properties” message, the session manager should call SmsRe-
turnProperties.

Session Management
Server (Sms) Functions

26

void SmsReturnProperties(sms_conn, num_props, props);

sms_conn The session management connection object.

num_props The number of properties.

props The list of properties to return to the client.

The properties are returned as an array of property pointers. For a description of
session management properties and the SmProp structure, see section 7, “Session
Management Properties.”

Pinging a Client
To check that a client is still alive, you should use the IcePing function provided
by the ICE library. To do so, the ICE connection must be obtained using the Sms-
GetIceConnection (see section 6.12, “Using Sms Informational Functions”).

void IcePing(ice_conn, ping_reply_proc, client_data);

ice_conn A valid ICE connection object.

ping_reply_proc The callback to invoke when the Ping reply arrives.

client_data This pointer will be passed to the IcePingReplyProc callback.

When the Ping reply is ready (if ever), the IcePingReplyProc callback will be in-
voked. A session manager should have some sort of timeout period, after which it
assumes the client has unexpectedly died.

typedef void (*IcePingReplyProc)(ice_conn, client_data);

ice_conn A valid ICE connection object.

client_data The client data specified in the call to IcePing

Cleaning Up After a Client Disconnects
When the session manager receives a “Connection Closed” message or otherwise
detects that the client aborted the connection, it should call the SmsCleanUp function
in order to free up the connection object.

void SmsCleanUp(sms_conn);

sms_conn The session management connection object.

Using Sms Informational Functions
int SmsProtocolVersion(sms_conn);

SmsProtocolVersion returns the major version of the session management protocol
associated with this session.

int SmsProtocolRevision(sms_conn);

Session Management
Server (Sms) Functions

27

SmsProtocolRevision returns the minor version of the session management proto-
col associated with this session.

char *SmsClientID(sms_conn);

SmsClientID returns a null-terminated string for the client ID associated with this
connection. You should call free on this pointer when the client ID is no longer
needed.

To obtain the host name of a client, use SmsClientHostName. This host name will
be needed to restart the client.

char *SmsClientHostName(sms_conn);

The string returned is of the form protocol/hostname, where protocol is one of
{tcp, decnet, local}. You should call free on the string returned when it is no
longer needed.

IceConn SmsGetIceConnection(sms_conn);

SmsGetIceConnection returns the ICE connection object associated with this ses-
sion management connection object. The ICE connection object can be used to get
some additional information about the connection. Some of the more useful func-
tions which can be used on the IceConn are IceConnectionNumber and IceLastSe-
quenceNumber. For further information, see the “Inter-Client Exchange Library”
standard.

Error Handling
If the session manager receives an unexpected protocol error from a client, an error
handler is invoked by SMlib. A default error handler exists which simply prints the
error message (it does not exit). The session manager can change this error handler
by calling SmsSetErrorHandler.

SmsErrorHandler SmsSetErrorHandler(handler);

The error handler. You should pass NULL to restore the default handler.

SmsSetErrorHandler returns the previous error handler. The SmsErrorHandler has
the following type:

typedef void (*SmsErrorHandler)(sms_conn, swap, offending_minor_opcode,
offending_sequence_num, error_class, severity, values);

sms_conn The session management connection object.

swap A flag which indicates if the specified values need byte
swapping.

offending_minor_opcode The minor opcode of the offending message.

offending_sequence_num The sequence number of the offending message.

error_class The error class of the offending message.

severity IceCanContinue, IceFatalToProtocol, or IceFatal-
ToConnection

Session Management
Server (Sms) Functions

28

values Any additional error values specific to the minor opcode
and class.

Note that this error handler is invoked for protocol related errors. To install an error
handler to be invoked when an IO error occurs, use IceSetIOErrorHandler. For
further information, see the “Inter-Client Exchange Library” standard.

29

Chapter 7. Session Management
Properties

Each property is defined by the SmProp structure:

typedef struct {
 char *name; /* name of property */
 char *type; /* type of property */
 int num_vals; /* number of values */
 SmPropValue *vals; /* the list of values */
} SmProp;

typedef struct {
 int length; /* the length of the value */
 SmPointer value; /* the value */
} SmPropValue;

The X Session Management Protocol defines a list of predefined properties, sever-
al of which are required to be set by the client. The following table specifies the
predefined properties and indicates which ones are required. Each property has a
type associated with it.

A type of SmCARD8 indicates that there is a single 1-byte value. A type of SmAR-
RAY8 indicates that there is a single array of bytes. A type of SmLISTofARRAY8
indicates that there is a list of array of bytes.

Name Type POSIX Type Required
SmCloneCommand OS-specific SmLISTofARRAY8 Yes
SmCurrentDirecto-
ry

OS-specific SmARRAY8 No

SmDiscardCom-
mand

OS-specific SmLISTofARRAY8 No*

SmEnvironment OS-specific SmLISTofARRAY8 No
SmProcessID OS-specific SmARRAY8 No
SmProgram OS-specific SmARRAY8 Yes
SmRestartCom-
mand

OS-specific SmLISTofARRAY8 Yes

SmResignCom-
mand

OS-specific SmLISTofARRAY8 No

SmRestartStyle-
Hint

SmCARD8 SmCARD8 No

SmShutdownCom-
mand

OS-specific SmLISTofARRAY8 No

SmUserID SmARRAY8 SmARRAY8 Yes

* Required if any state is stored in an external repository (for example, state file).

• SmCloneCommand

Session Manage-
ment Properties

30

This is like the SmRestartCommand, except it restarts a copy of the application.
The only difference is that the application does not supply its client ID at register
time. On POSIX systems, this should be of type SmLISTofARRAY8.

• SmCurrentDirectory

On POSIX-based systems, this specifies the value of the current directory that
needs to be set up prior to starting the SmProgram and should of type SmARRAY8.

• SmDiscardCommand

The discard command contains a command that when delivered to the host that
the client is running on (determined from the connection), will cause it to dis-
card any information about the current state. If this command is not specified,
the Session Manager will assume that all of the client's state is encoded in the
SmRestartCommand. On POSIX systems, the type should be SmLISTofARRAY8.

• SmEnvironment

On POSIX based systems, this will be of type SmLISTofARRAY8, where the
ARRAY8s alternate between environment variable name and environment vari-
able value.

• SmProcessID

This specifies an OS-specific identifier for the process. On POSIX systems, this
should contain the return value of getpid turned into a Latin-1 (decimal) string.

• SmProgram

This is the name of the program that is running. On POSIX systems, this should
be first parameter passed to execve and should be of type SmARRAY8.

• SmRestartCommand

The restart command contains a command that, when delivered to the host that
the client is running on (determined from the connection), will cause the client to
restart in its current state. On POSIX-based systems, this is of type SmLISTofAR-
RAY8, and each of the elements in the array represents an element in the argv
array. This restart command should ensure that the client restarts with the spec-
ified client-ID.

• SmResignCommand

A client that sets the SmRestartStyleHint to SmRestartAnyway uses this proper-
ty to specify a command that undoes the effect of the client and removes any
saved state. As an example, consider a user that runs xmodmap which regis-
ters with the Session Manager, sets SmRestartStyleHint to SmRestartAnyway, and
then terminates. To allow the Session Manager (at the user's request) to undo
this, xmodmap would register a SmResignCommand that undoes the effects of
the xmodmap.

• SmRestartStyleHint

If the SmRestartStyleHint is present, it will contain the style of restarting the
client prefers. If this style is not specified, SmRestartIfRunning is assumed. The
possible values are as follows:

Session Manage-
ment Properties

31

Name Value
SmRestartIfRunning 0
SmRestartAnyway 1
SmRestartImmediately 2
SmRestartNever 3

The SmRestartIfRunning style is used in the usual case. The client should be
restarted in the next session if it was running at the end of the current session.

The SmRestartAnyway style is used to tell the Session Manager that the applica-
tion should be restarted in the next session even if it exits before the current
session is terminated. It should be noted that this is only a hint and the Session
Manager will follow the policies specified by its users in determining what appli-
cations to restart.

A client that uses SmRestartAnyway should also set the SmResignCommand and
SmShutdownCommand properties to commands that undo the state of the client
after it exits.

The SmRestartImmediately style is like SmRestartAnyway, but, in addition, the
client is meant to run continuously. If the client exits, the Session Manager should
try to restart it in the current session.

SmRestartNever style specifies that the client does not wish to be restarted in
the next session.

• SmShutdownCommand

This command is executed at shutdown time to clean up after a client that is no
longer running but retained its state by setting SmRestartStyleHint to SmRestar-
tAnyway. The client must not remove any saved state as the client is still part
of the session. As an example, consider a client that turns on a camera at start
up time. This client then exits. At session shutdown, the user wants the camera
turned off. This client would set the SmRestartStyleHint to SmRestartAnyway and
would register a SmShutdownCommand that would turn off the camera.

• SmUserID

Specifies the user ID. On POSIX-based systems, this will contain the user's name
(the pw_name member of struct passwd).

32

Chapter 8. Freeing Data
To free an individual property, use SmFreeProperty

void SmFreeProperty(prop);

prop The property to free.

To free the reason strings from the SmsCloseConnectionProc callback, use Sm-
FreeReasons

void SmFreeReasons(count, reasons);

count The number of reason strings.

reasons The list of reason strings to free.

33

Chapter 9. Authentication of Clients
As stated earlier, the session management protocol is layered on top of ICE. Authen-
tication occurs at two levels in the ICE protocol:

• The first is when an ICE connection is opened.

• The second is when a Protocol Setup occurs on an ICE connection.

The authentication methods that are available are implementation-dependent (that
is., dependent on the ICElib and SMlib implementations in use). For further infor-
mation, see the “Inter-Client Exchange Library” standard.

34

Chapter 10. Working in a Multi-
Threaded Environment

To declare that multiple threads in an application will be using SMlib (or any other
library layered on top of ICElib), you should call IceInitThreads. For further infor-
mation, see the “Inter-Client Exchange Library” standard.

35

Chapter 11. Acknowledgements
Thanks to the following people for their participation in the X Session Management
design: Jordan Brown, Ellis Cohen, Donna Converse, Stephen Gildea, Vania Joloboff,
Stuart Marks, Bob Scheifler, Ralph Swick, and Mike Wexler.

	X Session Management Library
	Table of Contents
	Chapter 1. Overview of Session Management
	Chapter 2. The Session Management Library
	Chapter 3. Understanding SMlib's Dependence on ICE
	Chapter 4. Header Files and Library Name
	Chapter 5. Session Management Client (Smc) Functions
	Connecting to the Session Manager
	The Save Yourself Callback
	The Die Callback
	The Save Complete Callback
	The Shutdown Cancelled Callback

	Closing the Connection
	Modifying Callbacks
	Setting, Deleting, and Retrieving Session Management Properties
	Interacting With the User
	Requesting a Save Yourself
	Requesting a Save Yourself Phase 2
	Completing a Save Yourself
	Using Smc Informational Functions
	Error Handling

	Chapter 6. Session Management Server (Sms) Functions
	Initializing the Library
	The Register Client Callback
	The Interact Request Callback
	The Interact Done Callback
	The Save Yourself Request Callback
	The Save Yourself Phase 2 Request Callback
	The Save Yourself Done Callback
	The Connection Closed Callback
	The Set Properties Callback
	The Delete Properties Callback
	The Get Properties Callback

	Registering the Client
	Sending a Save Yourself Message
	Sending a Save Yourself Phase 2 Message
	Sending an Interact Message
	Sending a Save Complete Message
	Sending a Die Message
	Cancelling a Shutdown
	Returning Properties
	Pinging a Client
	Cleaning Up After a Client Disconnects
	Using Sms Informational Functions
	Error Handling

	Chapter 7. Session Management Properties
	Chapter 8. Freeing Data
	Chapter 9. Authentication of Clients
	Chapter 10. Working in a Multi-Threaded Environment
	Chapter 11. Acknowledgements

