
X Session Management Protocol

X Consortium Standard

Mike Wexler

X Session Management Protocol: X Consortium Standard
by Mike Wexler
X Version 11, Release 7
Version 1.0
Copyright © 1992, 1993, 1994, 2002 The Open Group

Abstract

This document specifies a protocol that facilitates the management of groups of client appli-
cations by a session manager. The session manager can cause clients to save their state, to
shut down, and to be restarted into a previously saved state. This protocol is layered on top
of the X.Org ICE protocol.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated docu-
mentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

X Window System is a trademark of The Open Group.

iii

Table of Contents
1. Acknowledgments .. 1
2. Definitions and Goals .. 2
3. Overview of the Protocol .. 3
4. Data Types .. 5
5. Protocol Setup and Message Format .. 6
6. Client Identification String ... 7
7. Protocol ... 8
8. Errors .. 16
9. State Diagrams .. 17

Client State Diagram ... 17
Session Manager State Diagram ... 18

10. Protocol Encoding ... 21
Types .. 21
Messages .. 22

11. Predefined Properties .. 27

1

Chapter 1. Acknowledgments
First I would like to thank the entire ICCCM and Intrinsics working groups for the
comments and suggestions. I would like to make special thanks to the following
people (in alphabetical order), Jordan Brown, Ellis Cohen, Donna Converse, Vania
Joloboff, Stuart Marks, Ralph Mor and Bob Scheifler.

2

Chapter 2. Definitions and Goals
The purpose of the X Session Management Protocol (XSMP) is to provide a uniform
mechanism for users to save and restore their sessions. A session is a group of
clients, each of which has a particular state. The session is controlled by a network
service called the session manager. The session manager issues commands to its
clients on behalf of the user. These commands may cause clients to save their state
or to terminate. It is expected that the client will save its state in such a way that the
client can be restarted at a later time and resume its operation as if it had never been
terminated. A client's state might include information about the file currently being
edited, the current position of the insertion point within the file, or the start of an
uncommitted transaction. The means by which clients are restarted is unspecified
by this protocol.

For purposes of this protocol, a client of the session manager is defined as a connec-
tion to the session manager. A client is typically, though not necessarily, a process
running an application program connected to an X Window System display. Howev-
er, a client may be connected to more than one X display or not be connected to
any X displays at all.

This protocol is layered on top of the X Consortium's ICE protocol and relies on the
ICE protocol to handle connection management and authentication.

3

Chapter 3. Overview of the Protocol
Clients use XSMP to register themselves with the session manager (SM). When a
client starts up, it should connect to the SM. The client should remain connected for
as long as it runs. A client may resign from the session by issuing the proper protocol
messages before disconnecting. Termination of the connection without notice will
be taken as an indication that the client died unexpectedly.

Clients are expected to save their state in such a way as to allow multiple instanti-
ations of themselves to be managed independently. A unique value called a client-
ID is provided by the protocol for the purpose of disambiguating multiple instanti-
ations of clients. Clients may use this ID, for example, as part of a filename in which
to store the state for a particular instantiation. The client-ID should be saved as
part of the command used to restart this client (the RestartCommand) so that the
client will retain the same ID after it is restarted. Certain small pieces of state might
also be stored in the RestartCommand. For example, an X11 client might place a '-
twoWindow' option in its RestartCommand to indicate that it should start up in two
window mode when it is restarted.

The client finds the network address of the SM in a system-dependent way. On
POSIX systems an environment variable called SESSION_MANAGER will contain a list
of network IDs. Each id will contain the transport name followed by a slash and the
(transport-specific) address. A TCP/IP address would look like this:

tcp/hostname:portnumber

where the hostname is a fully qualified domain name. A Unix Domain address looks
like this:

local/hostname:path

A DECnet address would look like this:

decnet/nodename::objname

If multiple network IDs are specified, they should be separated by commas.

Rationale
There was much discussion over whether the XSMP protocol should use X as
the transport protocol or whether it should use its own independent trans-
port. It was decided that it would use an independent protocol for several
reasons. First, the Session Manager should be able to manage programs that
do not maintain an X connection. Second, the X protocol is not appropriate
to use as a general-purpose transport protocol. Third, a session might span
multiple displays.

The protocol is connection based, because there is no other way for the SM
to determine reliably when clients terminate.

It should be noted that this protocol introduces another single point of failure
into the system. Although it is possible for clients to continue running after
the SM has exited, this will probably not be the case in normal practice.
Normally the program that starts the SM will consider the session to be
terminated when the SM exits (either normally or abnormally).

Overview of the Protocol

4

To get around this would require some sort of rendezvous server that would
also introduce a single point of failure. In the absence of a generally avail-
able rendezvous server, XSMP is kept simple in the hopes of making simple
reliable SMs.

Some clients may wish to manage the programs they start. For example, a mail pro-
gram could start a text editor for editing the text of a mail message. A client that
does this is a session manager itself; it should supply the clients it starts with the
appropriate connection information (i.e., the SESSION_MANAGER environment vari-
able) that specifies a connection to itself instead of to the top level session manager.

Each client has associated with it a list of properties. A property set by one client is
not visible to any other client. These properties are used for the client to inform the
SM of the client's current state. When a client initially connects to the SM, there
are no properties set.

5

Chapter 4. Data Types
XSMP messages contain several types of data. Both the SM and the client always
send messages in their native byte order. Thus, both sides may need to byte-swap
the messages received. The need to do byte-swapping is determined at run-time by
the ICE protocol.

If an invalid value is specified for a field of any of the enumerated types, a BadValue
error message must be sent by the receiver of the message to the sender of the
message.

Type Name Description
BOOL False or True
INTERACT_STYLE None Errors or Any
DIALOG_TYPE Error or Normal
SAVE_TYPE Global Local or Both
CARD8 a one-byte unsigned integer
CARD16 a two-byte unsigned integer
CARD32 a four-byte unsigned integer
ARRAY8 a sequence of CARD8s
LISTofARRAY8 a sequence of ARRAY8s
PROPERTY a property name (an ARRAY8), a type

name, and a value of that type
LISTofPROPERTY a counted collection of PROPERTYs.

6

Chapter 5. Protocol Setup and
Message Format

To start the XSMP protocol, the client sends the server an ICE ProtocolSetup mes-
sage. All XSMP messages are in the standard ICE message format. The message's
major opcode is assigned to XSMP by ICE at run-time. The different parties (client
and SM) may be assigned different major opcodes for XSMP. Once assigned, all
XSMP messages issued by this party will use the same major opcode. The message's
minor opcode specifies which protocol message this message contains.

7

Chapter 6. Client Identification String
A client ID is a string of XPCS characters encoded in ISO Latin 1 (ISO 8859-1).
No null characters are allowed in this string. The client ID string is used in the
RegisterClient and RegisterClientReply messages.

Client IDs consist of the pieces described below. The ID is formed by concatenat-
ing the pieces in sequence, without separator characters. All pieces are padded on
the left with '0' characters so as to fill the specified length. Decimal numbers are
encoded using the characters '0' through '9', and hexadecimal numbers using the
characters '0' through '9' and 'A' through 'F'.

• Version. This is currently the character '1'.

• Address type and address. The address type will be one of

 '1' a 4-byte IPv4 address encoded as 8 hexadecimal digits
 '2' a 6-byte DECNET address encoded as 12 hexadecimal digits
 '6' a 16-byte IPv6 address encoded as 32 hexadecimal digits

The address is the one of the network addresses of the machine where the session
manager (not the client) is running. For example, the IP address 198.112.45.11
would be encoded as the string "QC6702D0B".

• Time stamp. A 13-digit decimal number specifying the number of milliseconds
since 00:00:00 UTC, January 1, 1970.

• Process-ID type and process-ID. The process-ID type will be one of

 '1' a POSIX process-ID encoded as a 10-digit decimal number.

The process-ID is the process-ID of the session manager, not of a client.

• Sequence number. This is a four-digit decimal number. It is incremented every
time the session manager creates an ID. After reaching "Q9999" it wraps to
"Q0000".

Rationale
Once a client ID has been assigned to the client, the client keeps this ID in-
definitely. If the client is terminated and restarted, it will be reassigned the
same ID. It is desirable to be able to pass client IDs around from machine to
machine, from user to user, and from session manager to session manager,
while retaining the identity of the client. This, combined with the indefinite
persistence of client IDs, means that client IDs need to be globally unique.
The construction specified above will ensure that any client ID created by
any user, session manager, and machine will be different from any other.

8

Chapter 7. Protocol
The protocol consists of a sequence of messages as described below. Each message
type is specified by an ICE minor opcode. A given message type is sent either from
a client to the session manager or from the session manager to a client; the appro-
priate direction is listed with each message's description. For each message type,
the set of valid responses and possible error messages are listed. The ICE severity
is given in parentheses following each error class.

RegisterClient [Client → SM]

 previous-ID: ARRAY8

 Valid Responses: RegisterClientReply

 Possible Errors: BadValue (CanContinue)

The client must send this message to the SM to register the client's existence. If a
client is being restarted from a previous session, the previous-ID field must contain
the client ID from the previous session. For new clients, previous-ID should be of
zero length.

If previous-ID is not valid, the SM will send a BadValue error message to the client.
At this point the SM reverts to the register state and waits for another Register-
Client The client should then send a RegisterClient with a null previous-ID field.

RegisterClientReply [Client ← SM]

 client-ID: ARRAY8

The client-ID specifies a unique identification for this client. If the client had spec-
ified an ID in the previous-ID field of the RegisterClient message, client-ID
will be identical to the previously specified ID. If previous-ID was null, client-ID
will be a unique ID freshly generated by the SM. The client-ID format is specified
in section 6.

If the client didn't supply a previous-ID field to the RegisterClient message, the
SM must send a SaveYourself message with type = Local, shutdown = False, in-
teract-style = None, and fast = False immediately after the RegisterClientReply
The client should respond to this like any other SaveYourself message.

SaveYourself [Client ← SM]

 type: SAVE_TYPE
 shutdown: BOOL
 interact-style: INTERACT_STYLE
 fast: BOOL

Protocol

9

 Valid Responses:
 SetProperties
 DeleteProperties
 GetProperties
 SaveYourselfDone
 SaveYourselfPhase2Request
 InteractRequest

The SM sends this message to a client to ask it to save its state. The client writes
a state file, if necessary, and, if necessary, uses SetProperties to inform the SM of
how to restart it and how to discard the saved state. During this process it can, if
allowed by interact-style, request permission to interact with the user by send-
ing an InteractRequest message. After the state has been saved, or if it cannot
be successfully saved, and the properties are appropriately set, the client sends a
SaveYourselfDone message. If the client wants to save additional information after
all the other clients have finished changing their own state, the client should send
SaveYourselfPhase2Request instead of SaveYourselfDone The client must then
freeze interaction with the user and wait until it receives a SaveComplete Die or a
ShutdownCancelled message.

If interact-style is None the client must not interact with the user while saving
state. If the interact-style is Errors the client may interact with the user only if
an error condition arises. If interact-style is Any then the client may interact with
the user for any purpose. This is done by sending an InteractRequest message.
The SM will send an Interact message to each client that sent an InteractRequest
The client must postpone all interaction until it gets the Interact message. When
the client is done interacting it should send the SM an InteractDone message. The
InteractRequest message can be sent any time after a SaveYourself and before
a SaveYourselfDone

Unusual circumstances may dictate multiple interactions. The client may initiate as
many InteractRequest - Interact - InteractDone sequences as it needs before it
sends SaveYourselfDone

When a client receives SaveYourself and has not yet responded SaveYourselfDone
to a previous SaveYourself it must send a SaveYourselfDone and may then begin
responding as appropriate to the newly received SaveYourself

The type field specifies the type of information that should be saved: Global Local
or Both The Local type indicates that the application must update the properties
to reflect its current state, send a SaveYourselfDone and continue. Specifically it
should save enough information to restore the state as seen by the user of this client.
It should not affect the state as seen by other users. The Global type indicates that
the user wants the client to commit all of its data to permanent, globally-accessible
storage. Both indicates that the client should do both of these. If Both is specified,
the client should first commit the data to permanent storage before updating its
SM properties.

Examples
If a word processor was sent a SaveYourself with a type of Local it could
create a temporary file that included the current contents of the file, the
location of the cursor, and other aspects of the current editing session. It

Protocol

10

would then update its RestartCommand property with enough information to
find the temporary file, and its DiscardCommand with enough information to
remove it.

If a word processor was sent a SaveYourself with a type of Global it would
simply save the currently edited file.

If a word processor was sent a SaveYourself with a type of Both it would
first save the currently edited file. It would then create a temporary file with
information such as the current position of the cursor and what file is being
edited. It would then update its RestartCommand property with enough in-
formation to find the temporary file, and its DiscardCommand with enough
information to remove it.

Once the SM has send SaveYourself to a client, it can't send another SaveY-
ourself to that client until the client either responds with a SaveYourself-
Done or the SM sends a ShutdownCancelled

Advice to Implementors
If the client stores local any state in a file or similar "external" storage,
it must create a distinct copy in response to each SaveYourself message.
It must not simply refer to a previous copy, because the SM may discard
that previous saved state using a DiscardCommand without knowing that it
is needed for the new checkpoint.

The shutdown field specifies whether the system is being shut down.

Rationale
The interaction may be different depending on whether or not shutdown is
set.

The client must save and then must prevent interaction until it receives a SaveCom-
plete Die or a ShutdownCancelled because anything the user does after the save
will be lost.

The fast field specifies whether or not the client should save its state as quickly
as possible. For example, if the SM knows that power is about to fail, it should set
the fast field to True.

SaveYourselfPhase2 [Client → SM]

 Valid Responses:
 SetProperties
 DeleteProperties
 GetProperties
 SaveYourselfDone
 InteractRequest

The SM sends this message to a client that has previously sent a
SaveYourselfPhase2Request message. This message informs the client that all oth-

Protocol

11

er clients are in a fixed state and this client can save state that is associated with
other clients.

Rationale
Clients that manager other clients (window managers, workspace managers,
etc) need to know when all clients they are managing are idle, so that the
manager can save state related to each of the clients without being con-
cerned with that state changing.

The client writes a state file, if necessary, and, if necessary, uses SetProperties to
inform the SM of how to restart it and how to discard the saved state. During this
process it can request permission to interact with the user by sending an Interac-
tRequest message. This should only be done if an error occurs that requires user
interaction to resolve. After the state has been saved, or if it cannot be successfully
saved, and the properties are appropriately set, the client sends a SaveYourself-
Done message.

SaveYourselfRequest [Client → SM]

 type: SAVE_TYPE
 shutdown: BOOL
 interact-style: INTERACT_STYLE
 fast: BOOL
 global: BOOL

 Valid Responses: SaveYourself

An application sends this to the SM to request a checkpoint. When the SM receives
this request it may generate a SaveYourself message in response and it may leave
the fields intact.

Example
A vendor of a UPS (Uninterruptible Power Supply) might include an SM client
that would monitor the status of the UPS and generate a fast shutdown if
the power is about to be lost.

If global is set to True then the resulting SaveYourself should be sent to all appli-
cations. If global is set to False then the resulting SaveYourself should be sent to
the application that sent the SaveYourselfRequest

InteractRequest [Client → SM]

 dialog-type: DIALOG_TYPE

 Valid Responses: Interact ShutdownCancelled

 Possible Errors: BadState (CanContinue)

During a checkpoint or session-save operation, only one client at a time might be
granted the privilege of interacting with the user. The InteractRequest message

Protocol

12

causes the SM to emit an Interact message at some later time if the shutdown is
not cancelled by another client first.

The dialog-type field specifies either Errors indicating that the client wants to
start an error dialog or Normal meaning the client wishes to start a non-error dialog.

Interact [Client ← SM]

 Valid Responses: InteractDone

This message grants the client the privilege of interacting with the user. When the
client is done interacting with the user it must send an InteractDone message to
the SM unless a shutdown cancel is received.

Advice to Implementors
If a client receives a ShutdownCancelled after receiving an Interact mes-
sage, but before sending a InteractDone the client should abort the inter-
action and send a SaveYourselfDone

InteractDone [Client → SM]

 cancel-shutdown: BOOL

 Valid Responses: ShutdownCancelled

This message is used by a client to notify the SM that it is done interacting.

Setting the cancel-shutdown field to True indicates that the user has requested
that the entire shutdown be cancelled. Cancel-shutdown may only be True if the
corresponding SaveYourself message specified True for the shutdown field and
Any or Errors for the interact-style field. Otherwise, cancel-shutdown must be
False.

SaveYourselfDone [Client → SM]

 success: BOOL

 Valid Responses:
 SaveComplete
 Die
 ShutdownCancelled

This message is sent by a client to indicate that all of the properties representing its
state have been updated. After sending SaveYourselfDone the client must wait for
a SaveComplete ShutdownCancelled or Die message before changing its state. If
the SaveYourself operation was successful, then the client should set the success
field to True otherwise the client should set it to False.

Protocol

13

Example
If a client tries to save its state and runs out of disk space, it should return
False in the success field of the SaveYourselfDone message.

SaveYourselfPhase2Request [Client → SM]

 Valid Responses:
 ShutdownCancelled
 SaveYourselfPhase2

This message is sent by a client to indicate that it needs to be informed when all the
other clients are quiescent, so it can continue its state.

Die [Client ← SM]

 Valid Responses: ConnectionClosed

When the SM wants a client to die it sends a Die message. Before the client dies it
responds by sending a ConnectionClosed message and may then close its connec-
tion to the SM at any time.

SaveComplete [Client → SM]

 Valid Responses:

When the SM is done with a checkpoint, it will send each of the clients a SaveCom-
plete message. The client is then free to change its state.

ShutdownCancelled [Client ← SM]

The shutdown currently in process has been aborted. The client can now continue
as if the shutdown had never happened. If the client has not sent SaveYourselfDone
yet, the client can either abort the save and send SaveYourselfDone with the suc-
cess field set to False or it can continue with the save and send a SaveYourselfDone
with the success field set to reflect the outcome of the save.

ConnectionClosed [Client → SM]

 reason: LISTofARRAY8

Specifies that the client has decided to terminate. It should be immediately followed
by closing the connection.

The reason field specifies why the client is resigning from the session. It is encoded
as an array of Compound Text strings. If the resignation is expected by the user,

Protocol

14

there will typically be zero ARRAY8s here. But if the client encountered an unex-
pected fatal error, the error message (which might otherwise be printed on stderr
on a POSIX system) should be forwarded to the SM here, one ARRAY8 per line of
the message. It is the responsibility of the SM to display this reason to the user.

After sending this message, the client must not send any additional XSMP messages
to the SM.

Advice to Implementors
If additional messages are received, they should be discarded.

Rationale
The reason for sending the ConnectionClosed message before actually clos-
ing the connections is that some transport protocols will not provide imme-
diate notification of connection closure.

SetProperties [Client → SM]

 properties: LISTofPROPERTY

Sets the specified properties to the specified values. Existing properties not spec-
ified in the SetProperties message are unaffected. Some properties have prede-
fined semantics. See section 11, “Predefined Properties.”

The protocol specification recommends that property names used for properties
not defined by the standard should begin with an underscore. To prevent con-
flicts among organizations, additional prefixes should be chosen (for example,
_KPC_FAST_SAVE_OPTION). The organizational prefixes should be registered with
the X Registry. The XSMP reserves all property names not beginning with an un-
derscore for future use.

DeleteProperties [Client → SM]

 property-names: LISTofARRAY8

Removes the named properties.

GetProperties [Client → SM]

 Valid Responses: GetPropertiesReply

Requests that the SM respond with the values of all the properties for this client.

GetPropertiesReply [Client ← SM]

 values: LISTofPROPERTY

Protocol

15

This message is sent in reply to a GetProperties message and includes the values
of all the properties.

16

Chapter 8. Errors
When the receiver of a message detects an error condition, the receiver sends an
ICE error message to the sender. There are only two types of errors that are used
by the XSMP: BadValue and BadState These are both defined in the ICE protocol.

Any message received out-of-sequence will generate a BadState error message.

17

Chapter 9. State Diagrams
These state diagrams are designed to cover all actions of both the client and the SM.

Client State Diagram

start:
 ICE protocol setup complete → register

register:
 send RegisterClient → collect-id

collect-id:
 receive RegisterClientReply → idle

shutdown-cancelled:
 send SaveYourselfDone → idle

idle: [Undoes any freeze of interaction with user.]
 receive Die → die
 receive SaveYourself → freeze-interaction
 send GetProperties → idle
 receive GetPropertiesReply → idle
 send SetProperties → idle
 send DeleteProperties → idle
 send ConnectionClosed → connection-closed
 send SaveYourselfRequest → idle

die:
 send ConnectionClosed → connection-closed

freeze-interaction:
 freeze interaction with user → save-yourself

save-yourself:
 receive ShutdownCancelled → shutdown-cancelled
 send SetProperties → save-yourself
 send DeleteProperties → save-yourself
 send GetProperties → save-yourself
 receive GetPropertiesReply → save-yourself
 send InteractRequest → interact-request
 send SaveYourselfPhase2Request → waiting-for-phase2

save-yourself:
 if shutdown mode:

State Diagrams

18

 send SaveYourselfDone → save-yourself-done
 otherwise:
 send SaveYourselfDone → idle

waiting-for-phase2:
 receive ShutdownCancelled → shutdown-cancelled
 receive SaveYourselfPhase2 → phase2

phase2:
 receive ShutdownCancelled → shutdown-cancelled
 send SetProperties → save-yourself
 send DeleteProperties → save-yourself
 send GetProperties → save-yourself
 receive GetPropertiesReply → save-yourself
 send InteractRequest → interact-request (errors only)
 if shutdown mode:
 send SaveYourselfDone → save-yourself-done
 otherwise:
 send SaveYourselfDone → idle

interact-request:
 receive Interact → interact
 receive ShutdownCancelled → shutdown-cancelled

interact:
 send InteractDone → save-yourself
 receive ShutdownCancelled → shutdown-cancelled

save-yourself-done: (changing state is forbidden)
 receive SaveComplete → idle
 receive Die → die
 receive ShutdownCancelled → idle

connection-closed:
 client stops participating in session

Session Manager State Diagram

start:
 receive ProtocolSetup → protocol-setup

protocol-setup:
 send ProtocolSetupReply → register

register:

State Diagrams

19

 receive RegisterClient → acknowledge-register

acknowledge-register:
 send RegisterClientReply → idle

idle:
 receive SetProperties → idle
 receive DeleteProperties → idle
 receive ConnectionClosed → start
 receive GetProperties → get-properties
 receive SaveYourselfRequest → save-yourself
 send SaveYourself → saving-yourself

save-yourself:
 send SaveYourself → saving-yourself

get-properties:
 send GetPropertiesReply → idle

saving-get-properties:
 send GetPropertiesReply → saving-yourself

saving-yourself:
 receive InteractRequest → saving-yourself
 send Interact → saving-yourself
 send ShutdownCancelled → idle
 receive InteractDone → saving-yourself
 receive SetProperties → saving-yourself
 receive DeleteProperties → saving-yourself
 receive GetProperties → saving-get-properties
 receive SaveYourselfPhase2Request → start-phase2
 receive SaveYourselfDone → save-yourself-done

start-phase2:
 If all clients have sent either SaveYourselfPhase2Request or SaveYourselfDone:
 send SaveYourselfPhase2 → phase2
 else
 → saving-yourself

phase2:
 receive InteractRequest → saving-yourself
 send Interact → saving-yourself
 send ShutdownCancelled → idle
 receive InteractDone → saving-yourself
 receive SetProperties → saving-yourself
 receive DeleteProperties → saving-yourself
 receive GetProperties → saving-get-properties

State Diagrams

20

 receive SaveYourselfDone → save-yourself-done

save-yourself-done:
 If all clients are saved:
 If shutting down:
 send Die → die
 otherwise
 send SaveComplete → idle

 If some clients are not saved:
 → saving-yourself

die:
 SM stops accepting connections

21

Chapter 10. Protocol Encoding

Types

BOOL
0 False
1 True

INTERACT_STYLE
0 None
1 Errors
2 Any

DIALOG_TYPE
0 Error
1 Normal

SAVE_TYPE
0 Global
1 Local
2 Both

ARRAY8
4 CARD32 length
n Listof-

CARD8, the
array

p = pad (4 +
n, 8)

2 Both
LISTofARRAY8

4 CARD32 count
4 unused
a ARRAY8 first array
b ARRAY8 second array
.
.
.
q ARRAY8 last array

PROPERTY
a ARRAY8 name
b ARRAY8 type (XPCS

encoded in
Latin-1, case
sensitive)

Protocol Encoding

22

c LISTofAR-
RAY8

values

LISTofPROPERTY
4 CARD32 count
4 unused
a PROPERTY first property
b PROPERTY second prop-

erty
.
.
.
q PROPERTY last property

Messages
XSMP is a sub-protocol of ICE. The major opcode is assigned at run-time by ICE
and is represented here by '?'.

To start the XSMP protocol, the client sends the server an ICE ProtocolSetup mes-
sage. The protocol-name field should be specified as "XSMP", the major version of
the protocol is 1, the minor version is 0. These values may change if the protocol is
revised. The minor version number will be incremented if the change is compatible,
otherwise the major version number will be incremented.

In ProtocolReply message sent by the session manager, the XSMP protocol defines
the vendor parameter as product identification of the session manager, and defines
the release parameter as the software release identification of the session manag-
er. The session manager should supply this information in the ICE ProtocolReply
message.

RegisterClient

1 ? XSMP
1 1 opcode
2 unused
4 a/8 length of re-

maining da-
ta in 8-byte
units

a ARRAY8 previous-ID
RegisterClientReply

1 ? XSMP
1 2 opcode
2 unused
4 a/8 length of re-

maining da-
ta in 8-byte
units

Protocol Encoding

23

a ARRAY8 client-ID
SaveYourself

1 ? XSMP
1 3 opcode
2 unused
4 1 length of re-

maining da-
ta in 8-byte
units

1 SAVE_TYPE type
1 BOOL shutdown
1 INTERACT_STYLEinteract-style
1 BOOL fast
4 unused

SaveYourselfRequest

1 ? XSMP
1 4 opcode
2 unused
4 1 length of re-

mainning da-
ta in 8-byte
units

1 SAVE_TYPE type
1 BOOL shutdown
1 INTERACT_STYLEinteract-style
1 BOOL fast
3 unused

InteractRequest

1 ? XSMP
1 5 opcode
1 DIALOG_TYPE dialog type
1 unused
4 0 length of re-

maining da-
ta in 8-byte
units

Interact

1 ? XSMP
1 6 opcode
2 unused
4 0 length of re-

maining da-

Protocol Encoding

24

ta in 8-byte
units

InteractDone

1 ? XSMP
1 7 opcode
1 BOOL cancel-shut-

down
1 unused

InteractDone

1 ? XSMP
1 7 opcode
1 BOOL cancel-shut-

down
1 unused
4 0 length of re-

maining da-
ta in 8-byte
units

SaveYourselfDone

1 ? XSMP
1 8 opcode
1 BOOL success
1 unused
4 0 length of re-

maining da-
ta in 8-byte
units

Die

1 ? XSMP
1 9 opcode
1 unused
4 0 length of re-

maining da-
ta in 8-byte
units

ShutdownCancelled

1 ? XSMP
1 10 opcode
2 unused
4 0 length of re-

maining da-
ta in 8-byte
units

Protocol Encoding

25

ConnectionClosed

1 ? XSMP
1 11 opcode
2 unused
4 a/8 length of re-

maining da-
ta in 8-byte
units

a LISTofAR-
RAY8

reason

SetProperties

1 ? XSMP
1 12 opcode
2 unused
4 a/8 length of re-

maining da-
ta in 8-byte
units

a LISTofPROP-
ERTY

properties

DeleteProperties

1 ? XSMP
1 13 opcode
2 unused
4 a/8 length of re-

maining da-
ta in 8-byte
units

a LISTofPROP-
ERTY

properties

GetProperties

1 ? XSMP
1 14 opcode
2 unused
4 0 length of re-

maining da-
ta in 8-byte
units

GetPropertiesReply

1 ? XSMP
1 15 opcode
2 unused

Protocol Encoding

26

4 a/8 length of re-
maining da-
ta in 8-byte
units

a LISTofPROP-
ERTY

properties

SaveYourselfPhase2Request

1 ? XSMP
1 16 opcode
2 unused
4 0 length of re-

maining da-
ta in 8-byte
units

SaveYourselfPhase2

1 ? XSMP
1 17 opcode
2 unused
4 0 length of re-

maining da-
ta in 8-byte
units

SaveComplete

1 ? XSMP
1 18 opcode
2 unused
4 0 length of re-

maining da-
ta in 8-byte
units

27

Chapter 11. Predefined Properties
All property values are stored in a LISTofARRAY8. If the type of the property is
CARD8, the value is stored as a LISTofARRAY8 with one ARRAY8 that is one byte
long. That single byte contains the CARD8. If the type of the property is ARRAY8,
the value is stored in the first element of a single element LISTofARRAY8.

The required properties must be set each time a client connects with the SM. The
properties must be set after the client sends RegisterClient and before the client
sends SaveYourselfDone Otherwise, the behavior of the session manager is not
defined.

Clients may set, get, and delete nonstandard properties. The lifetime of stored prop-
erties does not extend into subsequent sessions.

Name Type Posix Type Required?
CloneCommand OS-specific LISTofARRAY8 Yes
CurrentDirectory OS-specific ARRAY8 No
DiscardCommand OS-specific LISTofARRAY8 No*
Environment OS-specific LISTofARRAY8 No
ProcessID OS-specific ARRAY8 No
Program OS-specific ARRAY8 Yes
RestartCommand OS-specific LISTofARRAY8 Yes
ResignCommand OS-specific LISTofARRAY8 No
RestartStyleHint CARD8 CARD8 No
ShutdownCom-
mand

OS-specific LISTofARRAY8 No

UserID ARRAY8 ARRAY8 Yes

* Required if any state is stored in an external repository (e.g., state file).

CloneCommand This is like the RestartCommand except it restarts a copy of the
application. The only difference is that the application doesn't
supply its client id at register time. On POSIX systems the type
should be a LISTofARRAY8.

CurrentDirectory On POSIX-based systems specifies the value of the current di-
rectory that needs to be set up prior to starting the program
and should be of type ARRAY8.

DiscardCommand The discard command contains a command that when deliv-
ered to the host that the client is running on (determined from
the connection), will cause it to discard any information about
the current state. If this command is not specified, the SM will
assume that all of the client's state is encoded in the Restart-
Command On POSIX systems the type should be LISTofARRAY8.

Environment On POSIX based systems, this will be of type LISTofARRAY8
where the ARRAY8s alternate between environment variable
name and environment variable value.

Predefined Properties

28

ProcessID This specifies an OS-specific identifier for the process. On
POSIX systems this should of type ARRAY8 and contain the re-
turn value of getpid() turned into a Latin-1 (decimal) string.

Program The name of the program that is running. On POSIX systems
this should be the first parameter passed to execve and should
be of type ARRAY8.

RestartCommand The restart command contains a command that when deliv-
ered to the host that the client is running on (determined from
the connection), will cause the client to restart in its current
state. On POSIX-based systems this is of type LISTofARRAY8
and each of the elements in the array represents an element in
the argv array. This restart command should ensure that the
client restarts with the specified client-ID.

ResignCommand A client that sets the RestartStyleHint to RestartAnyway us-
es this property to specify a command that undoes the effect
of the client and removes any saved state.

Example
A user runs xmodmap. xmodmap registers with the SM,
sets RestartStyleHint to RestartAnyway and then ter-
minates. In order to allow the SM (at the user's request)
to undo this, xmodmap would register a ResignCommand
that undoes the effects of the xmodmap.

RestartStyleHint If the RestartStyleHint property is present, it will contain the
style of restarting the client prefers. If this flag isn't specified,
RestartIfRunning is assumed. The possible values are as fol-
lows:

Name Value
RestartIfRunning 0
RestartAnyway 1
RestartImmediately 2
RestartNever 3

The RestartIfRunning style is used in the usual case. The
client should be restarted in the next session if it is connected
to the session manager at the end of the current session.

The RestartAnyway style is used to tell the SM that the appli-
cation should be restarted in the next session even if it exits
before the current session is terminated. It should be noted
that this is only a hint and the SM will follow the policies spec-
ified by its users in determining what applications to restart.

Rationale
This can be specified by a client which supports (as MS-
Windows clients do) a means for the user to indicate

Predefined Properties

29

while exiting that restarting is desired. It can also be
used for clients that spawn other clients and then go
away, but which want to be restarted.

A client that uses RestartAnyway should also set the Resign-
Command and ShutdownCommand properties to commands that
undo the state of the client after it exits.

The RestartImmediately style is like RestartAnyway but in
addition, the client is meant to run continuously. If the client
exits, the SM should try to restart it in the current session.

Advice to Implementors
It would be wise to sanity-check the frequency which
which RestartImmediately clients are restarted, to
avoid a sick client being restarted continuously.

The RestartNever style specifies that the client does not wish
to be restarted in the next session.

Advice to Implementors
This should be used rarely, if at all. It will cause the
client to be silently left out of sessions when they are
restarted and will probably be confusing to users.

ShutdownCom-
mand

This command is executed at shutdown time to clean up after a
client that is no longer running but retained its state by setting
RestartStyleHint to RestartAnyway The command must not
remove any saved state as the client is still part of the session.

Example
A client is run at start up time that turns on a camera.
This client then exits. At session shutdown, the user
wants the camera turned off. This client would set the
RestartStyleHint to RestartAnyway and would regis-
ter a ShutdownCommand that would turn off the camera.

UserID Specifies the user's ID. On POSIX-based systems this will con-
tain the the user's name (the pw_name field of struct passwd).

	X Session Management Protocol
	Table of Contents
	Chapter 1. Acknowledgments
	Chapter 2. Definitions and Goals
	Chapter 3. Overview of the Protocol
	Chapter 4. Data Types
	Chapter 5. Protocol Setup and Message Format
	Chapter 6. Client Identification String
	Chapter 7. Protocol
	Chapter 8. Errors
	Chapter 9. State Diagrams
	Client State Diagram
	Session Manager State Diagram

	Chapter 10. Protocol Encoding
	Types
	Messages

	Chapter 11. Predefined Properties

