
1

The X Font Library

Keith Packard, MIT X Consortium
David Lemke, Network Computing Devices

Copyright 1993 Network Computing Devices

Permission to use, copy, modify, distribute, and sell this software and its doc-
umentation for any purpose is hereby granted without fee, provided that the
above copyright notice appear in all copies and that both that copyright no-
tice and this permission notice appear in supporting documentation, and that
the name of Network Computing Devices not be used in advertising or pub-
licity pertaining to distribution of the software without specific, written prior
permission. Network Computing Devices makes no representations about the
suitability of this software for any purpose. It is provided “as is” without ex-
press or implied warranty.

Copyright 1993, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X
CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILI-
TY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be
used in advertising or otherwise to promote the sale, use or other dealings in
this Software without prior written authorization from the X Consortium.

July 27, 1991

Table of Contents
Requirements for the Font library ... 2
General Font Library Interface details. ... 3
Font Path Elements .. 3

(*name_check) .. 4
(*init_fpe) .. 4

The X Font Library

2

(*reset_fpe) ... 4
(*free_fpe) ... 5
(*open_font) .. 5
(*close_font) .. 5
(*list_fonts) .. 5
(*start_list_fonts_with_info) ... 5
(*list_next_font_with_info) ... 5
(*wakeup_fpe) ... 6
(*client_died) ... 6

Fonts ... 6
(*get_glyphs) ... 7
(*get_metrics) ... 8
(*get_bitmaps) ... 8
(*get_extents) .. 8
(*unload_font) ... 8
maxPrivate .. 8

Warning
This document has not been updated since X11R6, and is likely to be some-
what out of date for the current libXfont.

This document describes the data structures and interfaces for using the X Font
library. It is intended as a reference for programmers building X and Font servers.
You may want to refer to the following documents:

• “Definition of the Porting Layer for the X v11 Sample Server” for a discussion on
how this library interacts with the X server

• “Font Server Implementation Overview” which discusses the design of the font
server.

• “Bitmap Distribution Format” which covers the contents of the bitmap font files
which this library reads; although the library is capable of reading other formats
as well, including non-bitmap fonts.

• “The X Font Service Protocol” for a description of the constraints placed on the
design by including support for this font service mechanism.

This document assumes the reader is familiar with the X server design, the X pro-
tocol as it relates to fonts and the C programming language. As with most MIT pro-
duced documentation, this relies heavily on the source code, so have a listing handy.

Requirements for the Font library
To avoid miles of duplicate code in the X server, the font server and the various
font manipulation tools, the font library should provide interfaces appropriate for
all of these tasks. In particular, the X server and font server should be able to both
use the library to access disk based fonts, and to communicate with a font server.
By providing a general library, we hoped to avoid duplicating code between the X
server and font server.

Another requirement is that the X server (or even a font server) be able to continue
servicing requests from other clients while awaiting a response from the font server
on behalf of one client. This is the strongest requirement placed on the font library,

The X Font Library

3

and has warped the design in curious ways. Because both the X server and font
server are single threaded, the font library must not suspend internally, rather it
returns an indication of suspension to the application which continues processing
other things, until the font data is ready, at which time it restarts the suspended
request.

Because the code for reading and manipulating bitmap font data is used by the font
applications mkfontdir and bdftopcf, the font library includes bitmap-font specific
interfaces which those applications use, instead of the more general interfaces used
by the X and font servers, which are unaware of the source of the font data. These
routines will be refered to as the bitmap font access methods.

General Font Library Interface details.
To avoid collision between the #define name space for errors, the Font library de-
fines a new set of return values:

#define AllocError 80
#define StillWorking 81
#define FontNameAlias 82
#define BadFontName 83
#define Suspended 84
#define Successful 85
#define BadFontPath 86
#define BadCharRange 87
#define BadFontFormat 88
#define FPEResetFailed 89

Whenever a routine returns Suspended, the font library will notify the caller (via the
ClientSignal interface described below) who should then reinvoke the same routine
again with the same arguments.

Font Path Elements
At the center of the general font access methods used by X and xfs is the Font
Path Element data structure. Like most structures in the X server, this contains a
collection of data and some function pointers for manipulating this data:

/* External view of font paths */
typedef struct _FontPathElement {
 int name_length;
 char *name;
 int type;
 int refcount;
 pointer private;
} FontPathElementRec, *FontPathElementPtr;

typedef struct _FPEFunctions {
 int (*name_check) (/* name */);
 int (*init_fpe) (/* fpe */);
 int (*reset_fpe) (/* fpe */);

The X Font Library

4

 int (*free_fpe) (/* fpe */);
 int (*open_font) (/* client, fpe, flags,
 name, namelen, format,
 fid, ppfont, alias */);
 int (*close_font) (/* pfont */);
 int (*list_fonts) (/* client, fpe, pattern,
 patlen, maxnames, paths */);
 int (*start_list_fonts_with_info) (
 /* client, fpe, name, namelen,
 maxnames, data */);
 int (*list_next_font_with_info) (
 /* client, fpe, name, namelen,
 info, num, data */);
 int (*wakeup_fpe) (/* fpe, mask */);
 int (*client_died) (/* client, fpe */);
} FPEFunctionsRec, FPEFunctions;

The function pointers are split out from the data structure to save memory; addi-
tionally, this avoids any complications when initializing the data structure as there
would not be any way to discover the appropriate function to call (a chicken and
egg problem).

When a font path type is initialized, it passes the function pointers to the server
which are then stored in an FPEFunctionsRec. Each function is described below in
turn.

(*name_check)
Each new font path member is passed to this function; if the return value is Suc-
cessful, then the FPE recognises the format of the string. This does not guarantee
that the FPE will be able to successfully use this member. For example, the disk-
based font directory file fonts.dir may be corrupted, this will not be detected until
the font path is initialized. This routine never returns Suspended.

(*init_fpe)
Initialize a new font path element. This function prepares a new font path element
for other requests: the disk font routine reads the fonts.dir and fonts.alias files
into the internal format, while the font server routine connects to the requested font
server and prepares for using it. This routine returns Successful if everything went
OK, otherwise the return value indicates the source of the problem. This routine
never returns Suspended.

(*reset_fpe)
When the X font path is reset, and some of the new members are also in the old
font path, this function is called to reinitialize those FPEs. This routine returns Suc-
cessful if everything went OK. It returns FPEResetFailed if (for some reason) the
reset failed, and the caller should remove the old FPE and simply create a new one
in its place. This is used by the disk-based fonts routine as resetting the internal
directory structures would be more complicated than simply having destroying the
old and creating a new.

The X Font Library

5

(*free_fpe)
When the server is finished with an FPE, this function is called to dispose of any
internal state. It should return Successful, unless something terrible happens.

(*open_font)
This routine requests that a font be opened. The client argument is used by the
font library only in connection with suspending/restarting the request. The flags
argument specifies some behaviour for the library and can be any of:

/* OpenFont flags */
#define FontLoadInfo 0x0001
#define FontLoadProps 0x0002
#define FontLoadMetrics 0x0004
#define FontLoadBitmaps 0x0008
#define FontLoadAll 0x000f
#define FontOpenSync 0x0010

The various fields specify which portions of the font should be loaded at this time.
When FontOpenSync is specified, this routine will not return until all of the request-
ed portions are loaded. Otherwise, this routine may return Suspended. When the
presented font name is actually an alias for some other font name, FontNameAlias is
returned, and the actual font name is stored in the location pointed to by the alias
argument as a null-terminated string.

(*close_font)
When the server is finished with a font, this routine disposes of any internal state
and frees the font data structure.

(*list_fonts)
The paths argument is a data structure which will be filled with all of the font names
from this directory which match the specified pattern. At most maxnames will be
added. This routine may return Suspended.

(*start_list_fonts_with_info)
This routine sets any internal state for a verbose listing of all fonts matching the
specified pattern. This routine may return Suspended.

(*list_next_font_with_info)
To avoid storing huge amounts of data, the interface for ListFontsWithInfo allows
the server to get one reply at a time and forward that to the client. When the font
name returned is actually an alias for some other font, FontNameAlias will be re-
turned. The actual font name is return instead, and the font alias which matched the
pattern is returned in the location pointed to by data as a null-terminated string. The
caller can then get the information by recursively listing that font name with a max-

The X Font Library

6

names of 1. When Successful is returned, the matching font name is returned, and
a FontInfoPtr is stored in the location pointed to by data. Data must be initialized
with a pointer to a FontInfoRec allocated by the caller. When the pointer pointed
to by data is not left pointing at that storage, the caller mustn't free the associated
property data. This routine may return Suspended.

(*wakeup_fpe)
Whenever an FPE function has returned Suspended, this routine is called whenever
the application wakes up from waiting for input (from select(2)). This mask argument
should be the value returned from select(2).

(*client_died)
When an FPE function has returned Suspended and the associated client is being
destroyed, this function allows the font library to dispose of any state associated
with that client.

Fonts
The data structure which actually contains the font information has changed signif-
icantly since previous releases; it now attempts to hide the actual storage format
for the data from the application, providing accessor functions to get at the data.
This allows a range of internal details for different font sources. The structure is
split into two pieces, so that ListFontsWithInfo can share information from the font
when it has been loaded. The FontInfo structure, then, contains only information
germane to LFWI.

typedef struct _FontInfo {
 unsigned short firstCol; /* range of glyphs for this font */
 unsigned short lastCol;
 unsigned short firstRow;
 unsigned short lastRow;
 unsigned short defaultCh; /* default character index */
 unsigned int noOverlap:1; /* no combination of glyphs overlap */
 unsigned int terminalFont:1; /* Character cell font */
 unsigned int constantMetrics:1; /* all metrics are the same */
 unsigned int constantWidth:1; /* all character widths are the same*/
 unsigned int inkInside:1; /* all ink inside character cell */
 unsigned int inkMetrics:1; /* font has ink metrics */
 unsigned int allExist:1; /* no missing chars in range */
 unsigned int drawDirection:2; /* left-to-right/right-to-left*/
 unsigned int cachable:1; /* font needn't be opened each time*/
 unsigned int anamorphic:1; /* font is strangely scaled */
 short maxOverlap; /* maximum overlap amount */
 short pad; /* unused */
 xCharInfo maxbounds; /* glyph metrics maximums */
 xCharInfo minbounds; /* glyph metrics minimums */
 xCharInfo ink_maxbounds; /* ink metrics maximums */
 xCharInfo ink_minbounds; /* ink metrics minimums */
 short fontAscent; /* font ascent amount */
 short fontDescent; /* font descent amount */

The X Font Library

7

 int nprops; /* number of font properties */
 FontPropPtr props; /* font properties */
 char *isStringProp; /* boolean array */
} FontInfoRec, *FontInfoPtr;

The font structure, then, contains a font info record, the format of the bits in each
bitmap and the functions which access the font records (which are stored in an
opaque format hung off of fontPrivate).

typedef struct _Font {
 int refcnt;
 FontInfoRec info;
 char bit; /* bit order: LSBFirst/MSBFirst */
 char byte; /* byte order: LSBFirst/MSBFirst */
 char glyph; /* glyph pad: 1, 2, 4 or 8 */
 char scan; /* glyph scan unit: 1, 2 or 4 */
 fsBitmapFormat format; /* FS-style format (packed) */
 int (*get_glyphs) (/* font, count, chars, encoding, count, glyphs */);
 int (*get_metrics) (/* font, count, chars, encoding, count, glyphs */);
 int (*get_bitmaps) (/* client, font, flags, format,
 flags, nranges, ranges, data_sizep,
 num_glyphsp, offsetsp, glyph_datap,
 free_datap */);
 int (*get_extents) (/* client, font, flags, nranges,
 ranges, nextentsp, extentsp */);
 void (*unload_font) (/* font */);
 FontPathElementPtr fpe; /* FPE associated with this font */
 pointer svrPrivate; /* X/FS private data */
 pointer fontPrivate; /* private to font */
 pointer fpePrivate; /* private to FPE */
 int maxPrivate; /* devPrivates (see below) */
 pointer *devPrivates; /* ... */
} FontRec, *FontPtr;

Yes, there are several different private pointers in the Font structure; they were
added haphazardly until the devPrivate pointers were added. Future releases may
remove some (or all) of the specific pointers, leaving only the devPrivatesmecha-
nism.

There are two similar interfaces implemented - get_glyphs/get_metrics and
get_bitmaps/get_extents. Too little time caused the font-server specific interfaces
to be placed in the font library (and portions duplicated in each renderer) instead
of having them integrated into the font server itself. This may change. The X server
uses only get_glyphs/get_metrics, and those will not change dramatically. Each
of the routines is described below.

(*get_glyphs)
This routine returns CharInfoPtrs for each of the requested characters in the font.
If the character does not exist in the font, the default character will be returned,
unless no default character exists in which case that character is skipped. Thus, the

The X Font Library

8

number of glyphs returned will not always be the same as the number of characters
passed in.

(*get_metrics)
This is similar to (*get_glyphs) except that pointers to xCharInfo structures are
returned, and, if the font has ink metrics, those are returned instead of the bitmap
metrics.

(*get_bitmaps)
This packs the glyph image data in the requested format and returns it. The ranges/
nranges argument specify the set of glyphs from the font to pack together.

(*get_extents)
This returns the metrics for the specified font from the specified ranges.

(*unload_font)
This is called from the FPE routine (*close_font), and so should not ever be called
from the application.

maxPrivate
When initializing a new font structure, maxPrivate should be set to -1 so that the
FontSetPrivate() macro works properly with an index of 0. Initializing maxPrivate
to 0 can cause problems if the server tries to set something at index 0.

	The X Font Library
	Table of Contents
	Requirements for the Font library
	General Font Library Interface details.
	Font Path Elements
	(*name_check)
	(*init_fpe)
	(*reset_fpe)
	(*free_fpe)
	(*open_font)
	(*close_font)
	(*list_fonts)
	(*start_list_fonts_with_info)
	(*list_next_font_with_info)
	(*wakeup_fpe)
	(*client_died)

	Fonts
	(*get_glyphs)
	(*get_metrics)
	(*get_bitmaps)
	(*get_extents)
	(*unload_font)
	maxPrivate

