
Analysis of the X Protocol
for Security Concerns

Draft Version 2

David Wiggins

Analysis of the X Protocol for Security Concerns: Draft Version 2
by David Wiggins
conversion from tex to docbook: Matt Dew
Copyright © 1996 X Consortium

Abstract

This paper attempts to list all instances of certain types of security problems in the X Protocol.
Issues with authorization are not addressed. We assume that a malicious client has already
succeeded in connecting, and try to assess what harm it can then do. We propose modifica-
tions to the semantics of the X Protocol to reduce these risks.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

X Window System is a trademark of The Open Group.

iii

Table of Contents
1. Definition of Threats ... 1
2. General security concerns and remedies .. 2

Access to Server Resources ... 2
Denial of Service .. 3

Memory Exhaustion .. 3
CPU Monopolization ... 4

3. Security concerns with specific window attributes ... 5
Background-pixmap .. 5
ParentRelative and CopyFromParent ... 5
Override-redirect .. 6

4. Security concerns with specific requests .. 7
CreateWindow .. 7
ChangeWindowAttributes ... 7
GetWindowAttributes ... 8
DestroyWindow, DestroySubwindows .. 8
ChangeSaveSet .. 8
MapWindow .. 9
Window Operations .. 9
GetGeometry .. 10
QueryTree .. 10
InternAtom ... 10
GetAtomName .. 11
ChangeProperty ... 11
DeleteProperty ... 11
GetProperty .. 11
RotateProperties .. 12
ListProperties ... 12
SetSelectionOwner ... 12
GetSelectionOwner .. 12
ConvertSelection .. 13
SendEvent .. 13
Keyboard and Pointer Grabs .. 13
ChangeActivePointerGrab .. 14
GrabServer ... 14
QueryPointer .. 14
GetMotionEvents .. 14
TranslateCoordinates ... 14
WarpPointer .. 15
SetInputFocus .. 15
GetInputFocus .. 15
QueryKeymap ... 15
Font Requests .. 15
CloseFont .. 16
SetFontPath .. 16
GetFontPath .. 16
CreatePixmap ... 17
FreePixmap .. 17
CreateGC .. 17
CopyGC .. 17
ChangeGC, SetDashes, SetClipRectangles .. 17
FreeGC ... 17

Analysis of the X Proto-
col for Security Concerns

iv

Drawing Requests .. 18
GetImage .. 18
CreateColormap ... 18
FreeColormap ... 18
CopyColormapAndFree .. 19
InstallColormap, UninstallColormap .. 19
ListInstalledColormaps ... 19
Color Allocation Requests .. 19
FreeColors .. 20
StoreColors, StoreNamedColor .. 20
QueryColors, LookupColor ... 20
CreateCursor, CreateGlyphCursor ... 20
FreeCursor ... 20
RecolorCursor .. 20
QueryBestSize .. 21
ListExtensions, QueryExtension ... 21
Keyboard configuration requests ... 21
Keyboard query requests ... 21
ChangePointerControl, SetPointerMapping ... 21
GetPointerControl, GetPointerMapping ... 21
SetScreenSaver .. 22
GetScreenSaver .. 22
ForceScreenSaver .. 22
ChangeHost .. 22
ListHosts .. 22
SetAccessControl ... 22
SetCloseDownMode ... 23
KillClient ... 23
Clean Requests .. 23

5. Events .. 24
KeymapNotify ... 24
Expose .. 24
GraphicsExposure .. 24
VisibilityNotify .. 24
ReparentNotify ... 24
ConfigureNotify .. 25
ConfigureRequest ... 25
SelectionClear .. 25
SelectionRequest .. 25
MappingNotify .. 25

6. Errors .. 26
7. Future Work .. 27
8. References ... 28

1

Chapter 1. Definition of Threats
We analyze the X protocol for the following threats.

Theft occurs when a client gains access to information owned by an-
other client without explicit permission from that other client.
For this analysis, we take a broad view of ownership: any
information that exists in the server due to the actions of a
client is considered owned by that client. Furthermore, the
client that has input focus owns keyboard events, and the
client that owns the window that the pointer is in owns mouse
events. This view may reveal certain instances of "theft" that
we don't care to stop, but we think it is better to identify all
potential candidates up front and cull the list later than to do
a partial analysis now and plan on reanalyzing for remaining
holes later.

Denial of service occurs when a client causes another client or the user to lose
the ability to perform some operation.

Spoofing occurs when a client attempts to mimic another client with
the hope that the user will interact with it as if it really were
the mimicked client. A wide variety of requests may be used
in a spoofing attack; we will only point out a few likely can-
didates.

Destruction occurs when a client causes another client to lose information
in a way that the client or user is likely to notice. (This does
not count expected forms of destruction, e.g., exposures.)

Alteration occurs when a client causes another client to lose informa-
tion in a way that the client or user is unlikely to notice. e.g.,
changing one pixel in a drawable.

The line between alteration and destruction is subjective. Security literature does
often distinguish between them, though not always explicitly. Alteration is often
considered more insidious because its effects may not be realized until long after
it has occurred. In the intervening time, each time the altered data is used, it can
cause more damage.

2

Chapter 2. General security concerns
and remedies

The following sections discuss security problems intrinsic to the X Protocol. A state-
ment of each problem is usually followed by potential remedies. A few words here
about possible remedies will help frame the specific ones described below.

If a client attempts a threatening operation, the server may take one of the following
actions, listed roughly in order of severity:

1. Execute the request normally. This is the right choice when we decide that a
particlar threat is not serious enough to worry about.

2. Execute the request in some modified form, e.g., substitute different values for
some of the request fields, or edit the reply.

3. Arrange to ask the user what to do, given some subset of the other choices in this
list. This must be used sparingly because of the performance impact.

4. Treat the request as a no-op. If the client will probably not notice, or if it seems
likely that the intent was benign, this is a good choice.

5. Send a protocol error to the client. If the client will be confused enough by the
other options that it will probably crash or become useless anyway, or if it seems
likely that the intent was malicious, this is a good choice.

Kill the client. This might be the right action if there is no doubt that the client
is hostile.

In most cases we present the one option that seems most appropriate to counter
the threat, taking into account the seriousness of the threat, the implementation
difficulty, and the impact on applications. Our initial bias is to err on the side of
stronger security, with the accompanying tighter restrictions. As we uncover impor-
tant operations and applications that the new restrictions interfere with, we can
apply selective loosening to allow the desired functionality.

In some cases we will suggest returning an Access error where the X protocol does
not explicitly allow one. These new Access errors arise when a client can only per-
form a (non-empty) subset of the defined operations on a resource. The disallowed
operations cause Access errors. The resiource at issue is usually a root window.

Access to Server Resources
The X protocol allows clients to manipulate resources (objects) belonging to other
clients or to the server. Any request that specifies a resource ID is vulnerable to
some of the above threats. Such requests also provide a way for a client to guess
resource IDs of other clients. A client can make educated guesses for possible re-
source IDs, and if the request succeeds, it knows it has determined a valid resource
ID. We call this "resource ID guessing" in the list below.

One likely defense against these problems is to have the server send an appropriate
protocol error to deny the existence of any resource specified by a client that doesn't

General security con-
cerns and remedies

3

belong to that client. A variation on this policy lets cooperating groups of clients
access each other's resources, but not those of other groups. The Broadway project
will initially use a less general form of this idea by having two groups, trusted and
untrusted. Trusted clients can do everything that X clients can do today. They will
be protected from untrusted clients in ways described below. Untrusted clients will
not be protected from each other. Though this will be the initial design, we need to
make sure there is a growth path to multiple (more than two) groups.

Most of the time, applications never access server resources that aren't their own,
so the impact of disallowing such accesses should be minimal. There are a few no-
table exceptions, most of which will be discussed under the relevant protocol re-
quests. They are: ICCCM selection transfer, Motif drag and drop, and server-global
resources like the root window and default colormap. Another major exception is
the window manager, which routinely manipulates windows of other applications.
The solution for window managers is to always run them as trusted applications.

The implementation difficulty of limiting access to resources should not be large.
All resource accesses eventually funnel down to one of two functions in <dix/
resource.c>: LookupIDByType and LookupIDByClass. A few lines of checking at the
top of these functions will form the heart of this defense. There is a small problem
because these functions are not told which client is doing the lookup, but that can be
solved either by adding a client parameter (probably as a new function to preserve
compatibility), or by using the server global requestingClient.

Note
ISSUE: are we really going to be able to get away with hiding trusted re-
sources, or will things like Motif drag and drop force us to expose them? (Ei-
ther way, the operations that untrusted clients can do to trusted resources
will have to be limited.) Is there something in Xt or the ICCCM that breaks
if you hide resources?

Denial of Service

Memory Exhaustion
Any request that causes the server to consume resources (particularly memory) can
be used in a denial of service attack. A client can use such requests repeatedly until
the server runs out of memory. When that happens, the server will either crash or
be forced to send Alloc errors. The most obvious candidates are resource creation
requests, e.g., CreatePixmap, but in reality a large percentage of requests cause
memory allocation, if only temporarily, depending on the server implementation.
For this reason, the list of requests subject to this form of denial of service will be
necessarily incomplete.

To address this form of denial of service, the server could set per-client quotas on
memory consumption. When the limit is surpassed, the server could return Alloc
errors. The application impact is minimal as long as the application stays within
quota. The implementation difficulty is another story.

Conceptually, it seems easy: simply have a way to set the limit, and on every memory
(de)allocation operation, update the client's current usage, and return an error if the
client is over the limit. The first problem is something we've already touched on: the

General security con-
cerns and remedies

4

allocator functions aren't told which client the allocation belongs to. Unlike resource
lookups, allocations are done in too many places to consider a new interface that
passes the client, so using the global requestingClient is practically mandatory.

The problems run deeper. The logical thing for the allocator to do if the client is
over its limit is to return NULL, indicating allocation failure. Unfortunately, there
are many places in the server that will react badly if this happens. Most of these
places, but not all, are "protected" by setting the global variable Must_have_memory
to True around the delicate code. We could help the problem by skipping the limit
check if Must_have_memory is True. The best solution would be to bullet-proof the
server against allocation failures, but that is beyond the scope of Broadway. Another
consideration is that the additional checking may have a measurable performance
impact, since the server does frequent allocations.

A third problem is that there is no portable way to determine the size of a chunk
of allocated memory given just a pointer to the chunk, and that's all you have in-
side Xrealloc and Xfree. The server could compensate by recording the sizes itself
somewhere, but that would be wasteful of memory, since the malloc implementa-
tion also must be recording block sizes. On top of that, the redundant bookkeeping
would hurt performance. One solution is to use a custom malloc that has the needed
support, but that too seems beyond the scope of Broadway.

Considering all of this, we think it is advisable to defer solving the memory exhaus-
tion problem to a future release. Keep this in mind when you see quotas mentioned
as a defense in the list below.

CPU Monopolization
Another general way that a client can cause denial of service is to flood the server
with requests. The server will spend a large percentage of its time servicing those
requests, possibly starving other clients and certainly hurting performance. Every
request can be used for flooding, so we will not bother to list flooding on every re-
quest. A variation on this attack is to flood the server with new connection attempts.

To reduce the effectiveness of flooding, the server could use a different scheduling
algorithm that throttles clients that are monopolizing the server, or it could simply
favor trusted clients over untrusted ones. Applications cannot depend on a partic-
ular scheduling algorithm anyway, so changing it should not affect them. The Syn-
chronization extension specifies a way to set client priorities, and a simple priority
scheduler already exists in the server to support it, so this should be simple to add.

5

Chapter 3. Security concerns with
specific window attributes
Background-pixmap

Clients can use windows with the background-pixmap attribute set to None (here-
after "background none windows") to obtain images of other windows. A back-
ground none window never paints its own background, so whatever happened to be
on the screen when the window was mapped can be read from the background none
window with GetImage. This may well contain data from other windows. The Cre-
ateWindow and ChangeWindowAttributes requests can set the background-pixmap
attribute set to None, and many window operations can cause data from other win-
dows to be left in a background none window, including ReparentWindow, MapWin-
dow, MapSubwindows, ConfigureWindow, and CirculateWindow.

Background none windows can also be used to cause apparent alteration. A client
can create a window with background none and draw to it. The drawing will appear
to the user to be in the windows below the background none window.

To remedy these problems, the server could substitute a well-defined background
when a client specifies None. Ideally the substituted background would look differ-
ent enough from other windows that the user wouldn't be confused. A tile depicting
some appropriate international symbol might be reasonable. We believe that there
are few applications that actually rely on background none semantics, and those
that do will be easy for the user to identify because of the distinctive tile. Implemen-
tation should not be a problem either. Luckily, the window background cannot be
retrieved through the X protocol, so we won't have to maintain any illusions about
its value.

Note
ISSUE: Some vendors have extensions to let you query the window back-
ground. Do we need to accomodate that?

Note
ISSUE: Will this lead to unacceptable application breakage? Could the server
be smarter, only painting with the well-defined background when the window
actually contains bits from trusted windows?

ParentRelative and CopyFromParent
Several window attributes can take on special values that cause them to reference
(ParentRelative) or copy (CopyFromParent) the same attribute from the window's
parent. This fits our definition of theft. The window attributes are class, back-
ground-pixmap, border-pixmap, and colormap. All of these can be set with Cre-
ateWindow; all but class can be set with ChangeWindowAttributes.

These forms of theft aren't particularly serious, so sending an error doesn't seem
appropriate. Substitution of different attribute values seems to be the only reason-

Security concerns with
specific window attributes

6

able option, and even that is likely to cause trouble for clients. Untrusted clients are
already going to be prevented from creating windows that are children of trusted
clients (see CreateWindow below). We recommend that nothing more be done to
counter this threat.

Override-redirect
Windows with the override-redirect bit set to True are generally ignored by the
window manager. A client can map an override-redirect window that covers most or
all of the screen, causing denial of service since other applications won't be visible.

To prevent this, the server could prevent more than a certain percentage (config-
urable) the of screen area from being covered by override-redirect windows of un-
trusted clients.

Override-redirect windows also make some spoofing attacks easier since the client
can more carefully control the presentation of the window to mimic another client.
Defenses against spoofing will be given under the section called “MapWindow” .

7

Chapter 4. Security concerns with
specific requests

To reduce the space needed to discuss 120 requests, most of the following sections
use a stylized format. A threat is given, followed by an imperative statement. The
implied subject is an untrusted client, and the object is usually a trusted client.
Following that, another statement starting with "Defense:" recommends a counter-
measure for the preceding threat(s).

Resources owned by the server, such as the root window and the default colormap,
are considered to be owned by a trusted client.

CreateWindow
Alteration: create a window as a child of another client's window, altering its list
of children.

Defense: send Window error. Specifying the root window as the parent will have to
be allowed, though.

Theft: create an InputOnly window or a window with background none on top of
other clients' windows, select for keyboard/mouse input on that window, and steal
the input. The input can be resent using SendEvent or an input synthesis extension
so that the snooped application continues to function, though this won't work con-
vincingly with the background none case because the drawing will be clipped.

Defense: send an error if a top-level InputOnly window is created (or reparented
to the root). Countermeasures for background none and SendEvent are discussed
elsewhere.

Note
ISSUE: The Motif drag and drop protocol creates and maps such a window
(at -100, -100, size 10x10) to "cache frequently needed data on window prop-
erties to reduce roundtrip server requests." Proposed solution: we could on-
ly send an error if the window is visible, which would require checking in,
MapWindow, ConfigureWindow, and ReparentWindow.

Theft: resource ID guessing (parent, background-pixmap, border-pixmap, colormap,
and cursor).

Defense: send Window, Pixmap, Colormap, or Cursor error.

Denial of service: create windows until the server runs out of memory.

Defense: quotas.

Also Chapter 3, Security concerns with specific window attributes

ChangeWindowAttributes
Alteration: change the attributes of another client's window.

Security concerns
with specific requests

8

Theft: select for events on another client's window.

Defense for both of the above: send Window error.

Note
ISSUE: The Motif drop protocol states that "the initiator should select for
DestroyNotify on the destination window such that it is aware of a potential
receiver crash." This will be a problem if the initiator is an untrusted win-
dow and the destination is trusted. Can the server, perhaps with the help
of the security manager, recognize that a drop is in progress and allow the
DestroyNotify event selection in this limited case?

Note
ISSUE: The Motif pre-register drag protocol probably requires the initiator
to select for Enter/LeaveNotify on all top-level windows. Same problem as
the previous issue.

Theft: resource ID guessing (background-pixmap, border-pixmap, colormap, and
cursor).

Defense: send Pixmap, Colormap, or Cursor error.

Also Chapter 3, Security concerns with specific window attributes

GetWindowAttributes
Theft: get the attributes of another client's window.

Theft: resource ID guessing (window).

Defense for both of the above: send Window error.

DestroyWindow, DestroySubwindows
Destruction: destroy another client's window.

Theft: resource ID guessing (window).

Defense for both of the above: send Window error.

ChangeSaveSet
Alteration: cause another client's windows to be reparented to the root when this
client disconnects (only if the other client's windows are subwindows of this client's
windows).

Defense: process the request normally. The trusted client gives away some of its
protection by creating a subwindow of an untrusted window.

Theft: resource ID guessing (window).

Security concerns
with specific requests

9

Defense: send Window error.

MapWindow
Spoofing: map a window that is designed to resemble a window of another client.
Additional requests will probably be needed to complete the illusion.

Defense:

We consider spoofing to be a significant danger only if the user is convinced to
interact with the spoof window. The defense centers on providing enough informa-
tion to enable the user to know where keyboard, mouse, and extension device input
is going. To accomplish this, the server will cooperate with the security manager,
an external process. The server will provide the following facilities to the security
manager:

1. A way to create a single window that is unobscurable by any window of any other
client, trusted or untrusted. It needs to be unobscurable so that it is spoof-proof.

Note
ISSUE: is a weaker form of unobscurability better? Should the window be
obscurable by trusted windows, for example?

Note
ISSUE: does unobscurable mean that it is a child of the root that is always
on top in the stacking order?

2. A way to determine if a given window ID belongs to an untrusted client.

The security manager will need to select for the existing events FocusIn, FocusOut,
EnterNotify, LeaveNotify, DeviceFocusIn, and DeviceFocusOut on all windows to
track what window(s) the user's input is going to. Using the above server facilities,
it can reliably display the trusted/untrusted status of all clients currently receiving
input.

Note
ISSUE: is it too much to ask the security manager to select for all these
events on every window? Do we need to provide new events that you select
for *on the device* that tell where the device is focused?

None of this should have any application impact.

The unobscurable window may be tricky to implement. There is already some ma-
chinery in the server to make an unobscurable window for the screen saver, which
may help but may also get in the way now that we have to deal with two unobscur-
able windows.

Window Operations
Specifically, ReparentWindow, MapWindow, MapSubwindows, UnmapWindow, Un-
mapSubwindows, ConfigureWindow, and CirculateWindow.

Security concerns
with specific requests

10

Alteration: manipulate another client's window.

Theft: resource ID guessing (window, sibling).

Defense for both of the above: send a Window error unless it is a root window, in
which case we should send an Access error.

GetGeometry
Theft: get the geometry of another client's drawable.

Theft: resource ID guessing (drawable).

Defense for both of the above: send Drawable error. However, root windows will
be allowed.

QueryTree
Theft: resource ID guessing (window).

Defense: send Window error.

Theft: discover window IDs that belong to other clients.

Defense: For the child windows, censor the reply by removing window IDs that be-
long to trusted clients. Allow the root window to be returned. For the parent window,
if it belongs to a trusted client, return the closest ancestor window that belongs to
an untrusted client, or if such a window does not exist, return the root window for
the parent window.

Note
ISSUE: will some applications be confused if we filter out the window man-
ager frame window(s), or other windows between the queried window and
the root window?

Note
ISSUE: the Motif drag protocol (both preregister and dynamic) needs to be
able to locate other top-level windows for potential drop sites. See also the
section called “Access to Server Resources” .

InternAtom
Theft: discover atom values of atoms interned by other clients. This lets you deter-
mine if a specific set of atoms has been interned, which may lead to other inferences.

Defense: This is a minor form of theft. Blocking it will interfere with many types of
inter-client communication. We propose to do nothing about this threat.

Denial of service: intern atoms until the server runs out of memory.

Defense: quotas.

Security concerns
with specific requests

11

GetAtomName
Theft: discover atom names of atoms interned by other clients. This lets you deter-
mine if a specific set of atoms has been interned, which may lead to other inferences.

Defense: This is a minor form of theft. We propose to do nothing about this threat.

ChangeProperty
Alteration: change a property on another client's window or one that was stored by
another client.

Theft: resource ID guessing (window).

Defense for both of the above: send Window error.

Note
ISSUE: Selection transfer requires the selection owner to change a property
on the requestor's window. Does the security manager get us out of this?
Does the server notice the property name and window passed in ConvertS-
election and temporarily allow that window property to be written?

Note
ISSUE: should certain root window properties be writable?

Denial of service: store additional property data until the server runs out of memory.

Defense: quotas.

DeleteProperty
Destruction: delete a property stored by another client.

Theft: resource ID guessing (window).

Defense for both of the above: send Window error.

GetProperty
Theft: get a property stored by another client.

Theft: resource ID guessing (window).

Defense for both of the above: send Window error.

Note
ISSUE: should certain root window properties be readable? Proposed an-
swer: yes, some configurable list. Do those properties need to be polyinstan-
tiated?

Security concerns
with specific requests

12

Note
ISSUE: Motif drag and drop needs to be able to read the following prop-
erties: WM_STATE to identify top-level windows, _MOTIF_DRAG_WINDOW
on the root window, _MOTIF_DRAG_TARGETS on the window given in the
_MOTIF_DRAG_WINDOW property, and _MOTIF_DRAG_RECEIVER_INFO
on windows with drop sites. Additionally, some properties are needed that
do not have fixed names.

RotateProperties
Alteration: rotate properties stored by another client.

Theft: resource ID guessing (window).

Defense for both of the above: send Window error.

ListProperties
Theft: list properties stored by another client.

Theft: resource ID guessing (window).

Defense for both of the above: send Window error.

Note
ISSUE: should certain root window properties be listable?

SetSelectionOwner
Theft: Steal ownership of a selection.

Denial of service: do this repeatedly so that no other client can own the selection.

Defense for both of the above: have a configurable list of selections that untrusted
clients can own. For other selections, treat this request as a no-op.

Note
ISSUE: how does the security manager get involved here? Is it the one that
has the configurable list of selections instead of the server?

Theft: resource ID guessing (window).

Defense: send Window error.

GetSelectionOwner
Theft: discover the ID of another client's window via the owner field of the reply.

Defense: if the selection is on the configurable list mentioned above, return the root
window ID, else return None.

Security concerns
with specific requests

13

Note
ISSUE: how does the security manager get involved here?

ConvertSelection
Theft: this initiates a selection transfer (see the ICCCM) which sends the selection
contents from the selection owner, which may be another client, to the requesting
client.

Defense: since in many cases ConvertSelection is done in direct response to user
interaction, it is probably best not to force it to fail, either silently or with an error.
The server should rely on the security manager to assist in handling the selection
transfer.

Theft: resource ID guessing (requestor).

Defense: send Window error.

SendEvent
A client can use SendEvent to cause events of any type to be sent to windows of
other clients. Similarly, a client could SendEvent to one of its own windows with
propogate set to True and arrange for the event to be propogated up to a window
it does not own. Clients can detect events generated by SendEvent, but we cannot
assume that they will.

Defense: ignore this request unless the event being sent is a ClientMessage event,
which should be sent normally so that selection transfer, Motif drag and drop, and
certain input methods have a chance at working.

Note
ISSUE: does allowing all ClientMessages open up too big a hole?

Theft: resource ID guessing (window).

Defense: send Window error.

Keyboard and Pointer Grabs
Specifically, GrabKeyboard, GrabPointer, GrabKey, and GrabButton.

Denial of service/Theft: take over the keyboard and pointer. This could be viewed
as denial of service since it prevents other clients from getting keyboard or mouse
input, or it could be viewed as theft since the user input may not have been intended
for the grabbing client.

Defense: provide a way to break grabs via some keystroke combination, and have a
status area that shows which client is getting input. (See the section called “Map-
Window”).

Theft: resource ID guessing (grab-window, confine-to, cursor).

Security concerns
with specific requests

14

Defense: send Window or Cursor error.

ChangeActivePointerGrab
Theft: resource ID guessing (cursor).

Defense: send Cursor error.

GrabServer
Denial of service: a client can grab the server and not let go, locking out all other
clients.

Defense: provide a way to break grabs via some keystroke combination.

QueryPointer
Theft: A client can steal pointer motion and position, button input, modifier key
state, and possibly a window of another client with this request.

Defense: if the querying client doesn't have the pointer grabbed, and the pointer is
not in one of its windows, the information can be zeroed.

Theft: resource ID guessing (window).

Defense: send Window error.

GetMotionEvents
Theft: steal pointer motion input that went to other clients.

Defense: ideally, the server would return only pointer input that was not delivered
to any trusted client. The implementation effort to do that probably outweighs the
marginal benefits. Instead, we will always return an empty list of motion events to
untrusted clients.

Theft: resource ID guessing (window).

Defense: send Window error.

TranslateCoordinates
Theft: discover information about other clients' windows: position, screen, and pos-
sibly the ID of one of their subwindows.

Defense: send an error if src-window or dst-window do not belong to the requesting
client.

Theft: resource ID guessing (src-window, dst-window).

Defense: send Window error.

Security concerns
with specific requests

15

WarpPointer
A client can cause pointer motion to occur in another client's window.

Denial of service: repeated pointer warping prevents the user from using the mouse
normally.

Defense for both of the above: if the querying client doesn't have the pointer
grabbed, and the pointer is not in one of its windows, treat the request as a no-op.

Theft: resource ID guessing (src-window, dst-window).

Defense: send Window error.

SetInputFocus
Theft: a client can use this request to make one of its own windows have the input
focus (keyboard focus). The user may be unaware that keystrokes are now going
to a different window.

Denial of service: repeatedly setting input focus prevents normal use of the key-
board.

Defense for both of the above: only allow untrusted clients to SetInputFocus if input
focus is currently held by another untrusted client.

Note
ISSUE: this will break clients using the Globally Active Input model de-
scribed in section 4.1.7 of the ICCCM.

Theft: resource ID guessing (focus).

Defense: send Window error.

GetInputFocus
Theft: the reply may contain the ID of another client's window.

Defense: return a focus window of None if a trusted client currently has the input
focus.

QueryKeymap
Theft: poll the keyboard with this to see which keys are being pressed.

Defense: zero the returned bit vector if a trusted client currently has the input focus.

Font Requests
Specifically, OpenFont, QueryFont, ListFonts, ListFontsWithInfo, and QueryTextEx-
tents.

Security concerns
with specific requests

16

Theft: discover font name, glyph, and metric information about fonts that were pro-
vided by another client (by setting the font path). Whether it is theft to retrieve
information about fonts from the server's initial font path depends on whether or
not you believe those fonts, by their existence in the initial font path, are intended
to be globally accessible by all clients.

Defense:

Maintain two separate font paths, one for trusted clients and one for untrusted
clients. They are both initialized to the default font path at server reset. Subsequent-
ly, changes to one do not affect the other. Since untrusted clients will not see font
path elements added by trusted clients, they will not be able to access any fonts
provided by those font path elements.

Theft: resource ID guessing (font) (QueryFont and QueryTextExtents only).

Defense: send Font error.

Denial of service: open fonts until the server runs out of memory (OpenFont only).

Defense: quotas.

CloseFont
Destruction: close another client's font.

Defense: send Font error.

SetFontPath
Denial of service: change the font path so that other clients cannot find their fonts.

Alteration: change the font path so that other clients get different fonts than they
expected.

Defense for both of the above: separate font paths for trusted and untrusted clients,
as described in the Font Requests section.

Note
ISSUE: the printing project considered per-client font paths and concluded
that it was very difficult to do. We should look at this aspect of the print
server design to see if we can reuse the same scheme. We should also try
to reconstruct what was so difficult about this; it doesn't seem that hard on
the surface.

GetFontPath
Theft: retrieve font path elements that were set by other clients.

Use knowledge from font path elements to mount other attacks, e.g., attack a font
server found in the font path.

Security concerns
with specific requests

17

Defense for both of the above: separate font paths for trusted and untrusted clients,
as described in the Font Requests section.

CreatePixmap
Theft: resource ID guessing (drawable).

Defense: send Drawable error.

Denial of service: create pixmaps until the server runs out of memory.

Defense: quotas.

FreePixmap
Destruction: destroy another client's pixmap.

Defense: send Pixmap error.

CreateGC
Theft: resource ID guessing (drawable, tile, stipple, font, clip-mask).

Defense: send Drawable, Pixmap, or Font error.

Denial of service: create GCs until the server runs out of memory.

Defense: quotas.

CopyGC
Theft: copy GC values of another client's GC.

Alteration: copy GC values to another client's GC.

Defense for both of the above: send GC error.

ChangeGC, SetDashes, SetClipRectangles
Alteration: change values of another client's GC.

Theft: resource ID guessing (gc, tile, stipple, font, clip-mask) (last four for
ChangeGC only).

Defense for both of the above: send GC error.

FreeGC
Destruction: destroy another client's GC.

Defense: send GC error.

Security concerns
with specific requests

18

Drawing Requests
Specifically, ClearArea, CopyArea, CopyPlane, PolyPoint, PolyLine, PolySegment,
PolyRectangle, PolyArc, FillPoly, PolyFillRectangle, PolyFillArc, PutImage, Poly-
Text8, PolyText16, ImageText8, and ImageText16.

Alteration: draw to another client's drawable.

Theft: resource ID guessing: ClearArea - window; CopyArea, CopyPlane - src-draw-
able, dst-drawable, gc; all others - drawable, gc.

Defense for both of the above: send appropriate error.

Note
ISSUE: The Motif preregister drag protocol requires clients to draw into
windows of other clients for drag-over/under effects.

Spoofing: draw to a window to make it resemble a window of another client.

Defense: see the section called “MapWindow” .

GetImage
Theft: get the image of another client's drawable.

Theft: resource ID guessing (drawable).

Defense: send Drawable error.

Theft: get the image of your own window, which may contain pieces of other over-
lapping windows.

Defense: censor returned images by blotting out areas that contain data from trust-
ed windows.

CreateColormap
Theft: resource ID guessing (window).

Defense: send Colormap error.

Denial of service: create colormaps with this request until the server runs out of
memory.

Defense: quotas.

FreeColormap
Destruction: destroy another client's colormap.

Defense: send Colormap error.

Security concerns
with specific requests

19

CopyColormapAndFree
Theft: resource ID guessing (src-map).

Defense: send Colormap error. However, default colormaps will be allowed.

Note
ISSUE: must untrusted applications be allowed to use standard colormaps?
(Same issue for ListInstalledColormaps, Color Allocation Requests, FreeCol-
ors, StoreColors, StoreNamedColor, QueryColors, and LookupColor.)

Denial of service: create colormaps with this request until the server runs out of
memory.

Defense: quotas.

InstallColormap, UninstallColormap
Theft: resource ID guessing.

Defense: send Colormap error.

Denial of service: (un)install any colormap, potentially preventing windows from
displaying correct colors.

Defense: treat this request as a no-op. Section 4.1.8 of the ICCCM states that
(un)installing colormaps is the responsibility of the window manager alone.

Note
ISSUE: the ICCCM also allows clients to do colormap installs if the client has
the pointer grabbed. Do we need to allow that too?

ListInstalledColormaps
Theft: resource ID guessing (window).

Defense: send Colormap error.

Theft: discover the resource ID of another client's colormap from the reply.

Defense: remove the returned colormap IDs; only let through default colormaps and
colormaps of untrusted clients.

Color Allocation Requests
Specifically, AllocColor, AllocNamedColor, AllocColorCells, and AllocColorPlanes.

Alteration/Denial of service: allocate colors in another client's colormap. It is denial
of service if the owning client's color allocations fail because there are no cells
available. Otherwise it is just alteration.

Security concerns
with specific requests

20

Theft: resource ID guessing (cmap).

Defense for both of the above: send Colormap error. However, default colormaps
will be allowed.

FreeColors
Theft: resource ID guessing (cmap).

Defense: send Colormap error. However, default colormaps will be allowed.

StoreColors, StoreNamedColor
Alteration: change the colors in another client's colormap.

Theft: resource ID guessing (cmap).

Defense for both of the above: send Colormap error. However, default colormaps
will be allowed.

QueryColors, LookupColor
Theft: retrieve information about the colors in another client's colormap.

Theft: resource ID guessing (cmap).

Defense for both of the above: send Colormap error. However, default colormaps
will be allowed.

CreateCursor, CreateGlyphCursor
Theft: resource ID guessing (source, mask or source-font, mask-font).

Defense: send Pixmap or Font error. However, the default font will be allowed.

Denial of service: create cursors until the server runs out of memory.

Defense: quotas.

FreeCursor
Destruction: free another client's cursor.

Defense: send Cursor error.

RecolorCursor
Alteration: recolor another client's cursor.

Theft: resource ID guessing (cursor).

Defense for both of the above: send Cursor error.

Security concerns
with specific requests

21

QueryBestSize
Theft: resource ID guessing (drawable).

Defense: send Drawable error.

ListExtensions, QueryExtension
Determine the extensions supported by the server, and use the list to choose exten-
sion-specific attacks to attempt.

Defense: extensions will have a way to tell the server whether it is safe for untrusted
clients to use them. These requests will only return information about extensions
that claim to be safe.

Keyboard configuration requests
Specifically, ChangeKeyboardControl, ChangeKeyboardMapping, and SetModi-
fierMapping.

Alteration: change the keyboard parameters that were established by another
client.

Denial of service: with ChangeKeyboardControl, disable auto-repeat, key click, or
the bell. With ChangeKeyboardMapping or SetModifierMapping, change the key
mappings so that the keyboard is difficult or impossible to use.

Defense for both of the above: treat these requests as a no-op.

Keyboard query requests
Specifically, GetKeyboardControl, GetKeyboardMapping, and GetModifierMapping.

Theft: get keyboard information that was established by another client.

Defense: This is a minor form of theft. We propose to do nothing about this threat.

ChangePointerControl, SetPointerMapping
Alteration: change the pointer parameters that were established by another client.

Denial of service: set the pointer parameters so that the pointer is difficult or im-
possible to use.

Defense for both of the above: treat these requests as a no-op.

GetPointerControl, GetPointerMapping
Theft: get pointer parameters that were established by another client.

Defense: This is a minor form of theft. We propose to do nothing about this threat.

Security concerns
with specific requests

22

SetScreenSaver
Alteration: change the screen saver parameters that were established by another
client.

Denial of service: set the screen saver parameters so that the screen saver is always
on or always off.

Defense for both of the above: treat these requests as a no-op.

GetScreenSaver
Theft: get screen saver parameters that were established by another client.

Defense: This is a minor form of theft. We propose to do nothing about this threat.

ForceScreenSaver
Denial of service: repeatedly activate the screen saver so that the user cannot see
the screen as it would look when the screen saver is off.

Denial of service: repeatedly reset the screen saver, preventing it from activating.

Defense for both of the above: treat these requests as a no-op.

ChangeHost
Most servers already have some restrictions on which clients can use this request,
so whether the following list applies is implementation dependent.

Denial of service: remove a host from the list, preventing clients from connecting
from that host.

Add a host to the list. Clients from that host may then launch other attacks of any
type.

Defense for both of the above: return Access error.

ListHosts
Theft: steal host identities and possibly even user identities that are allowed to
connect.

Launch attacks of any type against the stolen host/user identities.

Defense for both of the above: return only untrusted hosts.

SetAccessControl
Most servers already have some restrictions on which clients can use this request,
so whether the following list applies is implementation dependent.

Security concerns
with specific requests

23

Alteration: change the access control value established by some other client.

Disable access control, allowing clients to connect who would normally not be able
to connect. Those clients may then launch other attacks of any type.

Defense for both of the above: return Access error.

SetCloseDownMode
Denial of service: set the close-down mode to RetainPermanent or RetainTemporary,
then disconnect. The server cannot reuse the resource-id-base of the disconnected
client, or the memory used by the retained resources, unless another client issues
an appropriate KillClient to cancel the retainment. The server has a limited number
of resource-id-bases, and when they are exhausted, it will be unable to accept new
client connections.

Defense: treat this request as a no-op.

KillClient
Destruction/Denial of service: kill another currently connected client.

Destruction: kill a client that has terminated with close-down mode of RetainTem-
porary or RetainPermanent, destroying all its retained resources.

Destruction: specify AllTemporary as the resource, destroying all resources of
clients that have terminated with close-down mode RetainTemporary.

Defense for all of the above: return Value error.

Clean Requests
Other than denial of service caused by flooding, these requests have no known se-
curity concerns: AllowEvents, UngrabPointer, UngrabButton, UngrabKeyboard, Un-
grabKey, UngrabServer, NoOperation, and Bell.

24

Chapter 5. Events
The only threat posed by events is theft. Selecting for events on another client's
resources is always theft. We restrict further analysis by assuming that the client
only selects for events on its own resources, then asking whether the events provide
information about other clients.

KeymapNotify
Theft: the state of the keyboard can be seen when the client does not have the
input focus. This is possible because a KeymapNotify is sent to a window after every
EnterNotify even if the window does not have input focus.

Defense: zero the returned bit vector if a trusted client currently has the input focus.

Expose
Theft: discover where other clients' windows overlap your own. For instance, map
a full-screen window, lower it, then raise it. The resulting exposes tell you where
other windows are.

Defense: about the only thing you could do here is force backing store to be used
on untrusted windows, but that would probably use too much server memory. We
propose to do nothing about this threat.

GraphicsExposure
Theft: discover where other clients' windows overlap your own. For instance, use
CopyArea to copy the entire window's area exactly on top of itself. The resulting
GraphicsExposures tell you where the window was obscured.

Defense: see Expose above. We propose to do nothing about this threat.

VisibilityNotify
Theft: this event provides crude positional information about other clients, though
the receiver cannot tell which other clients.

Defense: The information content of this event is very low. We propose to do nothing
about this threat.

ReparentNotify
Theft: the parent window may belong to some other client (probably the window
manager).

Defense: If the parent window belongs to a trusted client, return the closest ancestor
window that belongs to an untrusted client, or if such a window does not exist,
return the root window for the parent window.

Events

25

Note
ISSUE: what is the application impact?

ConfigureNotify
Theft: the above-sibling window may belong to some other client.

Defense: return None for the above-sibling window if it belongs to a trusted client.

Note
ISSUE: what is the application impact?

ConfigureRequest
Theft: the sibling window may belong to some other client.

Defense: return None for the sibling window if it belongs to a trusted client.

ISSUE: what is the application impact?

SelectionClear
Theft: the owner window may belong to some other client.

Defense: return None for the owner window if it belongs to a trusted client.

SelectionRequest
Theft: the requestor window may belong to some other client.

Defense: Blocking this event or censoring the window would prevent selection trans-
fers from untrusted clients to trusted clients from working. We propose to do noth-
ing in the server about this threat. The security manager may reduce the exposure
of trusted window IDs by becoming the owner of all selections.

MappingNotify
Theft: discover keyboard, pointer, or modifier mapping information set by another
client.

Defense: Any tampering with this event will cause clients to have an inconsistent
view of the keyboard or pointer button configuration, which is likely to confuse the
user. We propose to do nothing about this threat.

26

Chapter 6. Errors
There appear to be no threats related to procotol errors.

27

Chapter 7. Future Work
The next steps are resolve the items marked ISSUE and to decide if the defenses
proposed are reasonable. Discussion on the security@x.org mailing list, prototyp-
ing, and/or starting the implementation should help answer these questions.

28

Chapter 8. References
Bellcore, "Framework Generic Requirements for X Window System Security," Tech-
nical Advisory FA-STS-001324, Issue 1, August 1992.

Dardailler, Daniel, "Motif Drag And Drop Protocol," unpublished design notes.

Kahn, Brian L., "Safe Use of X WINDOW SYSTEM protocol Across a Firewall", un-
published draft, The MITRE Corporation, 1995.

Rosenthal, David S. H., "LINX - a Less INsecure X server," Sun Microsystems, 29th
April 1989.

Rosenthal, David and Marks, Stuart W., "Inter-Client Communication Conventions
Manual Version 2.0," ftp://ftp.x.org/pub/R6.1/xc/doc/hardcopy/ICCCM/icccm.PS.Z

Scheifler, Robert W., "X Window System Protocol," ftp://ftp.x.org/pub/R6.1/xc/doc/
hardcopy/XProtocol/proto.PS.Z

Treese, G. Winfield and Wolman, Alec, "X Through the Firewall, and Other Appli-
cation Relays," Digital Equipment Corporation Cambridge Research Lab, Technical
Report Series, CRL 93/10, May 3, 1993.

	Analysis of the X Protocol for Security Concerns
	Table of Contents
	Chapter 1. Definition of Threats
	Chapter 2. General security concerns and remedies
	Access to Server Resources
	Denial of Service
	Memory Exhaustion
	CPU Monopolization

	Chapter 3. Security concerns with specific window attributes
	Background-pixmap
	ParentRelative and CopyFromParent
	Override-redirect

	Chapter 4. Security concerns with specific requests
	CreateWindow
	ChangeWindowAttributes
	GetWindowAttributes
	DestroyWindow, DestroySubwindows
	ChangeSaveSet
	MapWindow
	Window Operations
	GetGeometry
	QueryTree
	InternAtom
	GetAtomName
	ChangeProperty
	DeleteProperty
	GetProperty
	RotateProperties
	ListProperties
	SetSelectionOwner
	GetSelectionOwner
	ConvertSelection
	SendEvent
	Keyboard and Pointer Grabs
	ChangeActivePointerGrab
	GrabServer
	QueryPointer
	GetMotionEvents
	TranslateCoordinates
	WarpPointer
	SetInputFocus
	GetInputFocus
	QueryKeymap
	Font Requests
	CloseFont
	SetFontPath
	GetFontPath
	CreatePixmap
	FreePixmap
	CreateGC
	CopyGC
	ChangeGC, SetDashes, SetClipRectangles
	FreeGC
	Drawing Requests
	GetImage
	CreateColormap
	FreeColormap
	CopyColormapAndFree
	InstallColormap, UninstallColormap
	ListInstalledColormaps
	Color Allocation Requests
	FreeColors
	StoreColors, StoreNamedColor
	QueryColors, LookupColor
	CreateCursor, CreateGlyphCursor
	FreeCursor
	RecolorCursor
	QueryBestSize
	ListExtensions, QueryExtension
	Keyboard configuration requests
	Keyboard query requests
	ChangePointerControl, SetPointerMapping
	GetPointerControl, GetPointerMapping
	SetScreenSaver
	GetScreenSaver
	ForceScreenSaver
	ChangeHost
	ListHosts
	SetAccessControl
	SetCloseDownMode
	KillClient
	Clean Requests

	Chapter 5. Events
	KeymapNotify
	Expose
	GraphicsExposure
	VisibilityNotify
	ReparentNotify
	ConfigureNotify
	ConfigureRequest
	SelectionClear
	SelectionRequest
	MappingNotify

	Chapter 6. Errors
	Chapter 7. Future Work
	Chapter 8. References

