

NIR: A new IR for Mesa

Connor Abbott
cwabbott0@gmail.com

Background

● GLSL IR SSA work

– Yuck!

● Modify the IR?

– Basic blocks, flat, SSA, ...

● Make a new one?

Goals

● Flat, SSA-based

● Basic block based, but...

● Preserve original control structure (loops, ifs)

● Support high-level GLSL things, but...

– Linking, array splitting, structure splitting, etc.

● Also support low-level things

– DRY – don't make drivers copy optimizations unless they have to!

● Try and make it extensible, but...

● Don't try and support everyone's wacky HW!

Control Flow

while (...) {
if (...) {

foo = bar;
}

}

loop

if (...)if (...) ...(empty)(empty) (empty)

break; (empty) foo = bar; (empty)

Critical Edges

if (...) {
...

}
if (...) {

...
} else {

...
}

Critical Edges

if (...) {
...

}
if (...) {

...
} else {

...
}

Traditional Vec4 Model

● Gallium (TGSI), i965 FS/GS, Mali 400/600

● Dying out (yay!) except for mobile

● Everything: varying interpolation, variable
indexing etc. in terms of 4-vectors

Traditional Vec4 Pipeline

abs,
negate

abs,
negate

...

src0

srcN

vector ALU
(add, sub,
min, max,

etc.)

sat
masked

write
(dest)

swizzle

Vec4 + SSA = ??

● Masked writes not possible in SSA

– No partial updates allowed

● Need a way to combine two SSA values
– foo.xy = bar;

– Becomes...
– newFoo = vec4(bar, oldFoo.zw);

● Out of SSA becomes tricky

The Vec4 Pipeline/Modifiers in NIR

● Abs, negate, etc. easy for scalar backend

● But not for vec4 backends

● Don't want old backends to have to do more
than necessary

● Have to fold abs, neg, etc. before out-of-SSA

– Or keep around tons of metadata

● It's in there, but most of the time we can ignore
it

Variables

● Mostly copied from variables in GLSL IR
● Ways to use them:

– Intrinsics (load/store/copy, etc)

– Function arguments & return values

– Samplers for texture instructions (before lowering)

● Differences from LLVM
– Entirely logical (no notion of alignment)

– Can't take the address – no notion of pointers!

– Supports GLSL concepts without extra metadata

Registers

● Main goals:

– Make it easier for older backends that don't do SSA

– Sharing code for lowering arrays of structures or structures
with arrays

– Avoiding backend optimizations to do with array indexing

● Can create an array of given vector width and size

● Or a scalar array that can be accessed anywhere

● Indexing (stride, alignment, etc.) up to backends

Intrinsics

● Almost everything that can't be constant folded
● 4 arguments:

– Register/SSA value input

– Register/SSA value output

– Variables

– Constant integers (indices, sizes, etc.)

● Additional semantic bits
– Can we delete this intrinsic? Can we reorder it?

● Defined statically by macros (nir_intrinsics.c)

Todo

● Make i965 FS backend use SSA

● Add i965 Vec4 backend

● fp64?

● More precise semantics for intrinsics

● Optimizations!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

