
Lauri Peltonen

XDC, 8 October, 2014

EXPLICIT SYNCHRONIZATION

2

WHAT IS EXPLICIT SYNCHRONIZATION?

Fence is an abstract primitive that marks completion of an operation

Implicit synchronization

Fences are attached to buffers

Kernel manages fences automatically based on buffer read/write access

Currently used by DRM (dma-buf fences)

Explicit synchronization

Fences are passed around independently

Kernel takes and emits fences to/from user space when submitting work

Currently used on Android (sync fence fd's)

3

ADVANTAGES

Improved performance of bindless graphics APIs

Better alignment with user space graphics APIs

Allow parallel processing of user space suballocations

Fits in nicely with explicit buffer handoffs

4

BINDLESS GRAPHICS PERF IMPROVEMENTS

Bindless graphics and Compute APIs allow building very large working
sets that any given command buffer can reference

References can be by runtime-generated virtual address rather than slots or
enums

These working sets can be shared across multiple contexts or
command queues

Implicit sync may force serialization in these cases

Locking and updating fences for every active buffer is costly

Working set sizes can be thousands of buffers

5

ALIGNS WITH USERSPACE GRAPHICS APIS

Developers are demanding explicit control of the driver behavior and
hardware whenever possible

Current Generation OpenGL is defined in terms of explicit
synchronization

EGLSync, GLSync

“Hidden” ordering dependencies and stalls because of implicit sync
are at odds with these design philosophies

6

USER SPACE SUBALLOCATION

User space drivers and applications use suballocation for
performance reasons

By definition, kernel has no visibility into this process

Operations on separate portions of a buffer should be allowed to
proceed in parallel

Even if they reside in one kernel-visible buffer

7

EXPLICIT INTEROP HANDOFFS

Modern processors have many specialized engines

Video processing

3D/2D graphics

CPU cores

Each of these may have its own caches, memory compression engines, or
other specialized memory access quirks

When buffers are shared between them, engine-specific state transitions
may be needed

May be costly operations. May be difficult to perform just-in-time.

Simplest solution is for user space to request them explicitly

Might as well do explicit synchronization in the same code path

8

IMPLICIT SYNC EXAMPLE
Channel 1 Channel 2 Channel 3

9

IMPLICIT SYNC EXAMPLE
Channel 1 Channel 2 Channel 3

nouveau_pushbuf_kick(push1, chan1);

1

nouveau_pushbuf_kick(

 struct nouveau_pushbuf *push,

 struct nouveau_object *chan)

for (each buffer in working set)

 acquire ww mutex

for (each buffer in working set)

 program wait fence cmd

submit work

for (each buffer in working set) {

 store fence

 release ww mutex

}

10

IMPLICIT SYNC EXAMPLE
Channel 1 Channel 2 Channel 3

nouveau_pushbuf_kick(push1, chan1);

1

nouveau_pushbuf_kick(

 struct nouveau_pushbuf *push,

 struct nouveau_object *chan)

2

1 waiting

// push2 has no dependencies, but kernel enforces a wait

nouveau_pushbuf_kick(push2, chan2);

11

IMPLICIT SYNC EXAMPLE
Channel 1 Channel 2 Channel 3

nouveau_pushbuf_kick(push1, chan1);

1

nouveau_pushbuf_kick(

 struct nouveau_pushbuf *push,

 struct nouveau_object *chan)

2 waiting

// push2 depends on push1 only, but user space cannot

// express that to kernel

nouveau_pushbuf_kick(push3, chan3);

2

1 waiting

// push2 has no dependencies, but kernel enforces a wait

nouveau_pushbuf_kick(push2, chan2);

12

EXPLICIT SYNC EXAMPLE
Channel 1 Channel 2 Channel 3

13

EXPLICIT SYNC EXAMPLE
Channel 1 Channel 2 Channel 3

int fence1 = -1;

nouveau_pushbuf_kick_fence(push1, chan1, -1, &fence1);

// now fence1 ==

1

1

nouveau_pushbuf_kick_fence(

 struct nouveau_pushbuf *push,

 struct nouveau_object *chan,

 int waitFenceFd,

 int *emitFenceFd)

14

EXPLICIT SYNC EXAMPLE
Channel 1 Channel 2 Channel 3

int fence1 = -1;

nouveau_pushbuf_kick_fence(push1, chan1, -1, &fence1);

// now fence1 ==

1

1

nouveau_pushbuf_kick_fence(

 struct nouveau_pushbuf *push,

 struct nouveau_object *chan,

 int waitFenceFd,

 int *emitFenceFd)

2

2

int fence2 = -1;

nouveau_pushbuf_kick_fence(push2, chan2, -1, &fence2);

// now fence2 ==

15

EXPLICIT SYNC EXAMPLE
Channel 1 Channel 2 Channel 3

int fence1 = -1;

nouveau_pushbuf_kick_fence(push1, chan1, -1, &fence1);

// now fence1 ==

1

1

nouveau_pushbuf_kick_fence(

 struct nouveau_pushbuf *push,

 struct nouveau_object *chan,

 int waitFenceFd,

 int *emitFenceFd)

2

2

int fence2 = -1;

nouveau_pushbuf_kick_fence(push2, chan2, -1, &fence2);

// now fence2 ==

1

// the last operation depends on only

nouveau_pushbuf_kick_fence(push3, chan3, fence1, NULL);

1

waiting

16

EXPLICIT SYNC EXAMPLE
Channel 1 Channel 2 Channel 3

int fence1 = -1;

nouveau_pushbuf_kick_fence(push1, chan1, -1, &fence1);

// now fence1 ==

1

1

nouveau_pushbuf_kick_fence(

 struct nouveau_pushbuf *push,

 struct nouveau_object *chan,

 int waitFenceFd,

 int *emitFenceFd)

2

2

int fence2 = -1;

nouveau_pushbuf_kick_fence(push2, chan2, -1, &fence2);

// now fence2 ==

1 2 // the last operation depends on and

int merged = sync_merge(fence1, fence2);

nouveau_pushbuf_kick_fence(push3, chan3, merged, NULL);

2 1 waiting +

17

RESIDENCY AND PINNING

When we need to swap out or unmap a buffer, we need to wait until
it is no longer accessed by hw

This is not the perf-critical case, so we can be conservative in order
to optimize the critical path. For example, on Nouveau:

Store one fence to channel vm at each submit

Use that fence when evicting or unmapping buffers

No need to lock / update fences to every buffer individually at submit?

All this is driver specific logic, not common DRM

18

PATH FROM IMPLICIT SYNC -> EXPLICIT SYNC

No need to disrupt existing model

If a particular device is happy with implicit sync, it can keep using it

Allow kernel and user space drivers that prefer explicit to opt-in:

Allow user space to handle intra-driver synchronization explicitly

Allow user space to associate synchronization primitives with buffers for
backwards compatibility with current APIs and drivers

Move towards tracking working sets rather than individual buffers for object
lifetime/work completion/paging purposes

19

THANKS!

drivers/staging/android/sync.c

[RFC] Explicit synchronization for Nouveau (+ RFC patches)

dri-devel@lists.freedesktop.org, nouveau@lists.freedesktop.org

Let’s discuss more over lunch/dinner!

20

BACKUP

21

DEADLOCKS?

Circular dependencies can be avoided, if fences are only generated
in kernel when work is submitted

This guarantees that user space cannot ask kernel to wait for a fence whose
work will be submitted later

Deadlocks can be avoided, if additionally all submitted work
completes in finite time

This assumption might fail for implicit fences also

Timeout mechanisms

22

EXPLICIT SYNC VS. ANDROID SYNC FD’S

Could also be a process local handle?

But should support conversion to and from Android sync fd’s

