
SOLUTION TO SHADER
RECOMPILES IN RADEONSI

SEPTEMBER 2015

2 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 20152 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 2015

PROBLEM

 Shaders are compiled in draw calls

‒Emulating certain features in shaders

 Drivers keep shaders in some intermediate representation

 And insert additional code based on the states

 While compiling, everything stops

 Number of state combinations is exponential

3 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 20153 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 2015

EMULATED STATES

 Fragment shader:

‒Conversion to colorbuffer formats (RGBA32, RGBA FP16, …)

‒Alpha-test

‒Selecting between front and back colors

‒gl_FragColor

‒GL_ALPHA_TO_ONE

‒Polygon stippling

‒Line & polygon smoothing

‒Point smoothing

‒Fragment color clamping

4 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 20154 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 2015

EMULATED STATES, CONT.

 Vertex shader:

‒Loading inputs from vertex buffers manually

‒Vertex color clamping

5 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 20155 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 2015

IDEA

 Observation:

‒All states can be applied at the beginning or end of shaders

‒At link time, compile application shaders

‒At draw time, append any shader bytecode needed

 3 shader sections:

‒Prolog section

‒Main section (application shader)

‒Epilog section

 Concatenate them

6 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 20156 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 2015

FRAGMENT SHADER EPILOG

Color outputs are expected in r0, r1, …

out0 = r0;

out1 = r1;

7 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 20157 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 2015

FRAGMENT SHADER EPILOG

If we need alpha-test:

if (!alphafunc(r0.w, alpharef)) discard;

out0 = r0;

out1 = r1;

8 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 20158 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 2015

FRAGMENT SHADER EPILOG

If we need color clamping:

r0 = clamp(r0, 0, 1);

r1 = clamp(r1, 0, 1);

if (!alphafunc(r0.w, alpharef)) discard;

out0 = r0;

out1 = r1;

9 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 20159 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 2015

FRAGMENT SHADER EPILOG

If we need polygon stippling:

r0 = clamp(r0, 0, 1);

r1 = clamp(r1, 0, 1);

if (!alphafunc(r0.w, alpharef)) discard;

if (texture2D(stipple, gl_FragCoord.xy / 32).x < 0.5) discard;

out0 = r0;

out1 = r1;

10 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 201510 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 2015

FRAGMENT SHADER EPILOG

If we need smoothing:

r0 = clamp(r0, 0, 1);

r1 = clamp(r1, 0, 1);

if (!alphafunc(r0.w, alpharef)) discard;

if (texture2D(stipple, gl_FragCoord.xy / 32).x < 0.5) discard;

r0.w *= coverageMask; // popcount(gl_SampleMaskIn) / gl_NumSamples

r1.w *= coverageMask;

out0 = r0;

out1 = r1;

11 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 201511 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 2015

FRAGMENT SHADER EPILOG

If color conversion is required:

r0 = clamp(r0, 0, 1);

r1 = clamp(r1, 0, 1);

if (!alphafunc(r0.w, alpharef)) discard;

if (texture2D(stipple, gl_FragCoord.xy / 32).x < 0.5) discard;

r0.w *= coverageMask; // popcount(gl_SampleMaskIn) / gl_NumSamples

r1.w *= coverageMask;

r0.xy = vec2(packHalf2x16(r0.xy), packHalf2x16(r0.zw));

r1.xy = vec2(packHalf2x16(r1.xy), packHalf2x16(r1.zw));

out0 = r0;

out1 = r1;

12 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 201512 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 2015

FRAGMENT SHADER EPILOG

If GL_ALPHA_TO_ONE is enabled:

r0 = clamp(r0, 0, 1);

r1 = clamp(r1, 0, 1);

if (!alphafunc(r0.w, alpharef)) discard;

if (texture2D(stipple, gl_FragCoord.xy / 32).x < 0.5) discard;

r0.w *= coverageMask; // popcount(gl_SampleMaskIn) / gl_NumSamples

r1.w *= coverageMask;

r0.w = 1;

r0.xy = vec2(packHalf2x16(r0.xy), packHalf2x16(r0.zw));

r1.xy = vec2(packHalf2x16(r1.xy), packHalf2x16(r1.zw));

out0 = r0;

out1 = r1;

13 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 201513 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 2015

FRAGMENT SHADER PROLOG

 Only contains two-side color selection

 Decreases performance if done always

 3 scenarios:

‒Two-side colors are enabled:

‒Select colors based on gl_FrontFacing

‒Store them into registers r0, r1

‒Two-side colors are disabled:

‒Just copy front colors into r0, r1

‒No color inputs => prolog is empty

 Application shader should read colors from r0, r1

14 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 201514 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 2015

COMPILING PROLOGS/EPILOGS

 Still have to be compiled in draw calls

‒Can be slow

 Use an assembler instead of the compiler

‒Our LLVM backend has an assembler too

15 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 201515 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 2015

VERTEX SHADER INPUTS

 R600 had fetch shader

 Removed since GCN

 Current implementation:

‒One buffer per input

‒ Instance divisor == 0: Fetch BaseVertex + VertexID

‒ Instance divisor != 0: Fetch StartInstance + (InstanceID / instance divisor)

16 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 201516 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 2015

VERTEX SHADER PROLOG

 Emulate fetch shader with prolog section

‒Drawback: can’t move loads to hide latencies, register usage

 Instead, only calculate load addresses:

‒Prolog writes the addresses to r0,r1, …

‒Main shader section executes the loads

17 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 201517 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 2015

VERTEX SHADER EPILOG?

 Radeon has 3 ways to write VS outputs:

‒For rasterizer

‒For geometry shader

‒For tessellation control shader

 Don’t use an epilog

 OpenGL sometimes knows which shader follows

 If not, compile all 3 variants with 3 threads in parallel

 Piglit only: Compile on demand in draw calls

 Vertex color clamping: use conditional assignment

18 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 201518 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 2015

MESA STATE TRACKER

 Middle-end, translates shaders from GLSL IR into TGSI

 Does that in draw calls

 State dependencies for draw calls:

‒Center vs sample interpolation

‒ Instead, select coordinates with conditional assignment

‒Vertex and fragment color clamping

‒GL rendering context

 Any dependencies should be dealt with in drivers

 Other drivers will benefit too

‒GLSL->TGSI always done at link time

19 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 201519 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 2015

IF GAMES COMPILE TOO LATE

 Compiling at link time doesn’t help

 Use shader cache

 1 shader variant => shader cache in core Mesa

 If games compile early => don’t need it

20 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 201520 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 2015

SKIP MESA OPTIMIZATIONS?

 Our LLVM backend can do most optimizations

‒No need to do them in Mesa

 Mesa/GLSL passes we do need:

‒Demoting inputs/outputs to local variables (dead code elimination?)

‒Function inlining

‒Breaking built-in input/output arrays into variables

21 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 201521 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 2015

Questions?

THANK YOU

23 | SOLUTION TO SHADER RECOMPILES IN RADEONSI | SEPTEMBER 17, 2015

DISCLAIMER & ATTRIBUTION

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product
releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the
right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL
DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2015 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational
purposes only and may be trademarks of their respective owners.

