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PROBLEM

 Shaders are compiled in draw calls

‒Emulating certain features in shaders

 Drivers keep shaders in some intermediate representation

 And insert additional code based on the states

 While compiling, everything stops

 Number of state combinations is exponential
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EMULATED STATES

 Fragment shader:

‒Conversion to colorbuffer formats (RGBA32, RGBA FP16, …)

‒Alpha-test

‒Selecting between front and back colors

‒gl_FragColor

‒GL_ALPHA_TO_ONE

‒Polygon stippling

‒Line & polygon smoothing

‒Point smoothing

‒Fragment color clamping
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EMULATED STATES, CONT.

 Vertex shader:

‒Loading inputs from vertex buffers manually

‒Vertex color clamping
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IDEA

 Observation:

‒All states can be applied at the beginning or end of shaders

‒At link time, compile application shaders

‒At draw time, append any shader bytecode needed

 3 shader sections:

‒Prolog section

‒Main section (application shader)

‒Epilog section

 Concatenate them
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FRAGMENT SHADER EPILOG

Color outputs are expected in r0, r1, …

out0 = r0;

out1 = r1;
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FRAGMENT SHADER EPILOG

If we need alpha-test:

if (!alphafunc(r0.w, alpharef)) discard;

out0 = r0;

out1 = r1;
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FRAGMENT SHADER EPILOG

If we need color clamping:

r0 = clamp(r0, 0, 1);

r1 = clamp(r1, 0, 1);

if (!alphafunc(r0.w, alpharef)) discard;

out0 = r0;

out1 = r1;
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FRAGMENT SHADER EPILOG

If we need polygon stippling:

r0 = clamp(r0, 0, 1);

r1 = clamp(r1, 0, 1);

if (!alphafunc(r0.w, alpharef)) discard;

if (texture2D(stipple, gl_FragCoord.xy / 32).x < 0.5) discard;

out0 = r0;

out1 = r1;
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FRAGMENT SHADER EPILOG

If we need smoothing:

r0 = clamp(r0, 0, 1);

r1 = clamp(r1, 0, 1);

if (!alphafunc(r0.w, alpharef)) discard;

if (texture2D(stipple, gl_FragCoord.xy / 32).x < 0.5) discard;

r0.w *= coverageMask; // popcount(gl_SampleMaskIn) / gl_NumSamples

r1.w *= coverageMask;

out0 = r0;

out1 = r1;
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FRAGMENT SHADER EPILOG

If color conversion is required:

r0 = clamp(r0, 0, 1);

r1 = clamp(r1, 0, 1);

if (!alphafunc(r0.w, alpharef)) discard;

if (texture2D(stipple, gl_FragCoord.xy / 32).x < 0.5) discard;

r0.w *= coverageMask; // popcount(gl_SampleMaskIn) / gl_NumSamples

r1.w *= coverageMask;

r0.xy = vec2(packHalf2x16(r0.xy), packHalf2x16(r0.zw));

r1.xy = vec2(packHalf2x16(r1.xy), packHalf2x16(r1.zw));

out0 = r0;

out1 = r1;
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FRAGMENT SHADER EPILOG

If GL_ALPHA_TO_ONE is enabled:

r0 = clamp(r0, 0, 1);

r1 = clamp(r1, 0, 1);

if (!alphafunc(r0.w, alpharef)) discard;

if (texture2D(stipple, gl_FragCoord.xy / 32).x < 0.5) discard;

r0.w *= coverageMask; // popcount(gl_SampleMaskIn) / gl_NumSamples

r1.w *= coverageMask;

r0.w = 1;

r0.xy = vec2(packHalf2x16(r0.xy), packHalf2x16(r0.zw));

r1.xy = vec2(packHalf2x16(r1.xy), packHalf2x16(r1.zw));

out0 = r0;

out1 = r1;
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FRAGMENT SHADER PROLOG

 Only contains two-side color selection

 Decreases performance if done always

 3 scenarios:

‒Two-side colors are enabled:

‒Select colors based on gl_FrontFacing

‒Store them into registers r0, r1

‒Two-side colors are disabled:

‒Just copy front colors into r0, r1

‒No color inputs => prolog is empty

 Application shader should read colors from r0, r1
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COMPILING PROLOGS/EPILOGS

 Still have to be compiled in draw calls

‒Can be slow

 Use an assembler instead of the compiler

‒Our LLVM backend has an assembler too
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VERTEX SHADER INPUTS

 R600 had fetch shader

 Removed since GCN

 Current implementation:

‒One buffer per input

‒ Instance divisor == 0: Fetch BaseVertex + VertexID

‒ Instance divisor != 0: Fetch StartInstance + (InstanceID / instance divisor)
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VERTEX SHADER PROLOG

 Emulate fetch shader with prolog section

‒Drawback: can’t move loads to hide latencies, register usage

 Instead, only calculate load addresses:

‒Prolog writes the addresses to r0,r1, …

‒Main shader section executes the loads
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VERTEX SHADER EPILOG?

 Radeon has 3 ways to write VS outputs:

‒For rasterizer

‒For geometry shader

‒For tessellation control shader

 Don’t use an epilog

 OpenGL sometimes knows which shader follows

 If not, compile all 3 variants with 3 threads in parallel

 Piglit only: Compile on demand in draw calls

 Vertex color clamping: use conditional assignment
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MESA STATE TRACKER

 Middle-end, translates shaders from GLSL IR into TGSI

 Does that in draw calls

 State dependencies for draw calls:

‒Center vs sample interpolation

‒ Instead, select coordinates with conditional assignment

‒Vertex and fragment color clamping

‒GL rendering context

 Any dependencies should be dealt with in drivers

 Other drivers will benefit too

‒GLSL->TGSI always done at link time
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IF GAMES COMPILE TOO LATE

 Compiling at link time doesn’t help

 Use shader cache

 1 shader variant => shader cache in core Mesa

 If games compile early => don’t need it
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SKIP MESA OPTIMIZATIONS?

 Our LLVM backend can do most optimizations

‒No need to do them in Mesa

 Mesa/GLSL passes we do need:

‒Demoting inputs/outputs to local variables (dead code elimination?)

‒Function inlining

‒Breaking built-in input/output arrays into variables
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Questions?



THANK YOU
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