
Arc++ Graphics
Rendering, Compositing and Window Management

David Reveman
reveman@google.com

Arc++

Arc++ is Android running alongside ChromeOS
and providing ChromeOS users with Play
Store Android apps without developer action.

Background

App Runtime for Chrome (ARC), was launched
September 2014 with a few curated applications.
Due to the heavy involvement of Google
Engineering team on curating those apps, in April
2015, we decided to open the program for
anyone to submit an app. Despite doing so, there
has not been a lot of developers submitting
applications.

Full Play Store access

Minimize Android Framework changes

Keep Chrome OS secure

Maintain Chrome’s update model

Arc++ Goals

Graphics Overview

Hardware-accelerated Canvas API

OpenGL ES 2.0 since Android 4.0

OpenGL ES (GLES) directly

Everything is rendered onto a "surface."

Producer side of a buffer queue that is consumed by SurfaceFlinger

The Gralloc HAL is used to allocate buffers for each buffer queue

ARC++

Gralloc and the GLES driver are using the Direct Rendering Manager (DRM)

Apps still have access to a fully accelerated GLES implementation

Apps using a different rendering API works too

Rendering

Android windows are backed by surfaces

Surfaces are sent to SurfaceFlinger for compositing onto the display

SurfaceFlinger uses GLES for compositing

HWComposer HAL

Allows the OEM to handle some surfaces using overlay hardware

ARC++

All surfaces are handled by HWComposer

Forwarded to Chrome for compositing together with the rest of the ChromeOS UI

Chrome compositor uses overlay hardware when available

Compositing

Shared between Android and Chrome

Chrome

Maximize, minimize and full-screen

Application switching, multiple profiles, screen magnifiers, etc.

Android

Absolute positioning

Resizing

Window Management

DRM/KMS

Direct Rendering Manager “DRM”

Used for rendering and buffer allocation on both Android and ChromeOS

Allows for efficient sharing of graphics resources (DMA Buffers) between the two platforms

Chrome is DRM-Master and can program a display-controller

Android doesn’t need mode-setting capabilities in ARC++

 Render-node access to the GPU is sufficient

DMA Buffer Sharing and PRIME

Linux kernel internal API designed to provide a generic mechanism to share DMA buffers

PRIME file descriptors are used for buffer sharing

Unix operating systems provide a safe way to pass them through an Unix domain socket using the SCM_RIGHTS semantics

Gralloc

Provides a type of shared memory on Android that is also shared with the GPU

Written to directly by regular CPU code

Used as a OpenGL texture

ARC++

Gralloc implementation that allocates buffers through the DRM API

Android “surfaces” are backed by DRM buffers and can be shared with Chrome using PRIME file descriptors

Ozone/Freon

Chrome platform abstraction layer beneath the Aura window system that is used for low level input and graphics

Supports underlying systems ranging from embedded SoC targets to new X11-alternatives on Linux such as Wayland

ChromeOS devices that run ARC++ uses the Freon graphics stack

Under the Freon driver model, the Chrome browser talks directly to the kernel's DRM/KMS APIs

GpuMemoryBuffer

Allows platform independent code in Chrome such as the compositor take advantage of low-level graphics buffers

Designed to support Chrome’s multi-process architecture and security model

Implementation backed by DRM buffers and PRIME file descriptors

Extended for ARC++ with support for importing of foreign graphics buffers

Used by ARC++ to have Gralloc allocated DRM buffers imported into Chrome as GMBs

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Pixel Formats

Format FourCC Compositing HW Overlay

HAL_PIXEL_FORMAT_RGBA_8888 DRM_FORMAT_ABGR8888 Enabled Enabled (Minnie)

HAL_PIXEL_FORMAT_RGBX_8888 DRM_FORMAT_XBGR8888 Enabled Disabled

HAL_PIXEL_FORMAT_BGRA_8888 DRM_FORMAT_ARGB8888 Enabled Disabled

HAL_PIXEL_FORMAT_RGB_565 DRM_FORMAT_RGB565 Enabled Disabled

HAL_PIXEL_FORMAT_YV12 DRM_FORMAT_YVU420 Enabled Disabled

For a DRM buffer to be imported into Chrome the pixel format needs to be supported by Chrome

Chrome’s support for pixel formats has been extended for ARC++

Exosphere
Chrome component that provides the functionality needed for an external

client to connect to Chrome

Protects Chrome from malicious clients

Efficient delivery and integration of graphics frames

Built on top of the GpuMemoryBuffer framework

Takes advantage of Chrome’s ability to import graphics buffers

Shared Window Mangement

Some WM operations handled by Chrome (Ash) some by Android WM

WM Operation Controller

Minimize Ash

Maximize Ash

Fullscreen Ash

Close Both

Activation Both

Position Android WM

Size Android WM

Chrome Compositor

Responsible for compositing contents from web pages and ChromeOS UI

Clients produce frames in the form of a set of quads

Each quad is typically backed by a GLES texture

GpuMemoryBuffer framework allows these textures to ultimately be backed by GMBs

Quads are rendered or scheduled as overlays by the compositor instance in the browser process

ARC++

Exosphere produces frames in the form of a number of quads

Quads are backed by GMBs that have been created by importing the graphics buffers allocated by Android

Synchronization
Preventing Android from reusing a buffer before GPU has finished reading from it

Wayland

Protocol for a compositor to talk to its clients as well as a C library implementation of that protocol

ARC++

Graphics, window management and input related communication between Android and Chrome

Benefits

De facto protocol for secure compositor communication by Linux apps
Provides well established interfaces for most of the communication needed between Android and Chrome
New interfaces are easily added as needed for ARC++
Existing world of Wayland clients provides an excellent set of examples and integration tests
Offers maximum code reuse and minimizes the attack surface if we were to enable more generic container support

Wayland Interfaces

In addition to the core wayland protocol, Chromium implements the following interfaces

wp_viewporter

xdg_shell_v5 (zxdg_shell_v6 experimental)

wl_drm

zwp_linux_dmabuf_v1

Chromium Wayland Interfaces
cr_alpha_compositing

Allows the client to specify the blending equation and alpha value used for compositing

cr_gaming_input

Provide secure access to gaming input devices for a given seat (limited to gamepads today)

cr_aura_shell (aka remote_shell)

Extension to xdg_shell that provides additional shell functionality needed for ARC++

cr_secure_output

Allow surfaces to be marked as only visible on secure outputs

cr_stylus

Allows a wl_pointer to represent an on-screen stylus

cr_vsync_feedback

Informs the client about vertical synchronization timing in a precise way and without unnecessary overhead

Future Wayland Interfaces

Explicit synchronization

Releasing buffers

Presentation timing

Protected buffers

Digital rights management

Building and Testing
Exosphere code:
src/components/exo/

Wayland bindings code:
src/components/exo/wayland/

Wayland extensions:
src/third_party/wayland-protocols/

$ gn args out/exosphere
Contents of args:
target_os = "chromeos"
use_xkbcommon = true

$ ninja -C out/exosphere exo_unittests chrome

$./out/exosphere/chrome --enable-wayland-server

Questions?

THANK YOU

