
Unix Device Memory

James Jones
XDC 2016

Background

  Started with a Weston patch proposal

  Many strong views

  Much time invested in current software and APIs

  Thank you for keeping discussions civil

  Many areas for improvement identified

Problem Space

  Device-accessible Surface Allocation in Userspace

  Surface Handles

  Surface State/Layout Management

  Synchronization

Goals

  Consensus-based, forward-looking APIs

  Window System, Kernel, and Vendor Agnostic

  Minimal, Optimal driver interface

  Final destination: Optimized scene graphs for every frame

Prior Art: GBM

  Provides: Allocation, Arbitration, Handles
  Benefits:

  Incorporated in many codebases now
  Widely deployed and well exercised
  Minimal API & implementation
  Allocation-time usage specification for supported usages

  Current Shortcomings:
  Process-local handles only. Can import external handles, but not export
  Currently very GPU-focused
  Arbitration is within device scope

Prior Art: Chrome OS/Freon

  Attempted to add surface state management to GBM/EGLImage

  Failed to reach consensus optimal design

  Major point of contention: Level of abstraction.

Prior Art: Gralloc

  Provides: Allocation, Arbitration, Handles
  Synchronization via Android/Linux fence FDs
  Out-of-process handles require other components

  Benefits:
  Deployed, proven in field
  Allocation-time usage specification
  Support for non-graphics usage

  Current Shortcomings:
  No explicit surface state management
  Limited, usage-flag-based arbitration abilities
  Open Source, but proprietary API

Prior Art: EGLStream

  Provides: Allocation, Arbitration, Handles, State Management,
Synchronization
  Benefits:

  Deployed, proven in field
  Portable
  Comprehensive feature set and extensible

  Current Shortcomings:
  Open standard, but single vendor implementation in practice
  No cross-device support
  It is EGL-based
  Too much encapsulation
  Behavior loosely defined or undefined in some cases

Prior Art: DMA-BUF

  Provides: Handles

  Benefits:
  Supported by non-graphics devices

  Current Shortcomings:
  No centralized userspace allocation API
  Linux-only
  Does not describe content layout
  No arbitration
  Limited or no allocation-time usage specification

Prior Art: Vulkan

  Provides: Allocation, Detailed Usage, State Management,
Synchronization

  Benefits:
  Allocation-time usage specification for graphics/compute
  Image state management
  Extensible
  Portable

  Current Shortcomings:
  No Unix cross-process/cross-API/cross-device handles or arbitration
  Graphics/Compute and Display only

Important features identified

  Minimalism
  Portability
  Support for non-graphics devices
  Optimal performance in steady state
  Allocation-time usage specification
  Driver-negotiated image capabilities
  Good performance during usage transitions
  Multiple usages per image without reallocation
  Image layout transitions

Path Forward

  Suggest a focus on solving problems, rather than picking a
winner from existing APIs

  Focus on cross-driver, cross-engine, cross-device image/texture
arbitration first

  This has historically been where everything falls apart
  Simpler cases fall out naturally from this
  State transitions are also easier with well-described end points

  Also, Jason Ekstrand has put together some proposals for this

Assumptions

For the sake of simplifying initial discussions:

1.  Assume we are designing an ideal allocation API from scratch

2.  Think in terms of userspace API first

3.  Both API elegance and hardware capabilities are important

Image Sharing Proposals

  Define extensible capability descriptor lists
  Similar concept to Khronos data-format spec, but describing properties

other than sub-pixel data layout and interpretation

  Lists of capabilities could be queried from each “driver”
  List could be large. Some filtering mechanism would be employed

  Centralized mechanism mutexes the capability namespaces
  Could be a file in a git repo, Khronos, etc. Anything authoritative

  Image creation function intersects capabilities of relevant drivers

Proposal: How are capabilities filtered?

  Describe the desired usage
  Examples of usage: Format, operations, dimensions

  Leads to next question: How is usage described?
  Make use of Khronos data format spec for formats
  Some usage data, such as width/height have obvious representations
  Other data lend themselves to boolean flags, like those in Gralloc
  Some usage is specific to certain devices or engines
  Each driver ignores usages targeted only at other drivers
  Special device/engine target for basic usage properties: ALL

Proposal: How are capabilities intersected?

  First pass: Each driver eliminates incompatible capabilities
  Unrecognized or vendor-specific capabilities are inherently incompatible
  E.g., Intel driver would trivially eliminate all NVIDIA tiling formats

  Second pass: Sort the remaining capabilities
  Correct sorting is implementation and usage dependent
  Therefore, must be done by a driver, not common framework
  Which driver? Straw-man proposal: Let the app decide.

Proposal: Describing allocation result

  After an image is created, its chosen properties must be
described

  Can chosen capability data double as property definitions?

Image Capabilities Vs. Memory Capabilities

  Thus far, focused on image-level capabilities

  What about memory level capabilities?
  e.g., contiguous requirement

  Image capability mechanism should generalize to describe these

  Might be a separate but symmetric step in allocation machine

Questions?

Backup Slides

Backup Slides

Code: Capabilities and Usage Structure

#define VENDOR_BASE 0x0000!
// Remaining Vendor Namespace: 0x0001-0xFFFF!
!
typedef struct header { !
 uint16_t vendor; !
 uint16_t property_name; !
 uint32_t length_in_words; !
}; !
!
typedef struct header capability_header_t; !
typedef struct header usage_header_t;

Code: Capabilities

#define CAP_BASE_PITCH_LINEAR 0x0000 // upstream-controlled namespace!
typedef struct capability_pitch_linear { !
 capability_header_t header; // { VENDOR_BASE, CAP_BASE_PITCH_LINEAR, 1 }!
 uint32_t min_stride_in_bytes; !
} capability_pitch_linear_t; !
!
#define CAP_NVIDIA_TILED 0x0000 // NV-specific namespace!
typedef struct capability_nvidia_tiled { !
 capability_header_t header; // { VENDOR_BASE, CAP_NVIDIA_TILED, 1 }!
 uint16_t tile_width; !
 uint16_t tile_height; !
} capability_nvidia_tile_format_t; !
!
#define CAP_NVIDIA_COMPRESSED 0x0001 // NV-specific namespace!
typedef struct capability_nvidia_compressed { !
 capability_header_t header; // { VENDOR_BASE, CAP_NVIDIA_COMPRESSED, 1 }!
 uint32_t compressed; !
} capability_nvidia_compressed_t;

Code: Usage

#define USAGE_BASE_TEXTURE 0x0000 // upstream-controlled namespace!
typedef struct usage_texture { !
 usage_header_t header; // { VENDOR_BASE, USAGE_BASE_TEXTURE, 0 }!
} usage_texture_t; !
!
#define USAGE_BASE_DISPLAY 0x0001 // upstream-controlled namespace!
typedef struct usage_display { !
 usage_header_t header; // { VENDOR_BASE, USAGE_BASE_DISPLAY, 0 }!
} usage_display_t; !
!
#define USAGE_NVIDIA_DISPLAY 0x0000 // NV-specific namespace!
typedef struct usage_nvidia_display { !
 usage_header_t header; // { VENDOR_NVIDIA, USAGE_NVIDIA_DISPLAY, 1 }!
 uint32_t rotation; !
} usage_nvidia_display_t;

Code: App-supplied usage lists

typedef void* device_t; !
typdef struct usage { !
 device_t dev; !
 const usage_header_t usage; !
} usage_t;

Code: Application Usage

typedef void* surface_t; !
!
// Application-facing!
AllocSurface(device_t primary_device, !
 uint32_t width, !
 uin32_t height, !
 const void* khr_data_format, !
 uint32_t usage_list_length, !
 const usage_t *usage_list!
 surface_t* surface_out);

Code: Driver-side Usage

typedef struct driver_api { !
 void (*get_capabilities)(device_t dev, !
 uint32_t width, uint32_t height, const uint32_t* khr_data_format, !
 uint32_t usage_list_length, !
 const usate_t* usage_list, !
 uint32_t* capability_list_length_out, !
 capability_header_t** capability_list_out); !
!
 const capability_header_t* (*filter_capabilities)(device_t dev, !
 uint32_t width, uint32_t height, const uint32_t* khr_data_format, !
 uint32_t usage_list_length, !
 const usate_t* usage_list, !
 uint32_t capability_list_length_in, !
 const capability_header_t* capability_list_in, !
 uint32_t* capability_list_length_out, !
 capability_header_t** capability_list_out); !

Code: Driver-side Usage (cont.)

 surface_t (*alloc_surface)(device_t dev, !
 uint32_t width, uint32_t height, const uint32_t* khr_data_format, !
 uint32_t usage_list_length, !
 const usate_t* usage_list, !
 uint32_t capability_list_length, !
 const capability_header_t* capability_list); !
}; !

