

Dirty Tricks for Moar FPS on Tilers

Batch Reordering and Resource Shadowing

Rob Clark
Red Hat

(freedreno)

Problem Statement

● Tiler GPU’s optimize/reduce memory bandwidth
requirements by rendering per-tile with mrt/color and
depth/stencil in small internal tile buffer

● But many anti-patterns exist in GL programs that cause
unnecessary flush/restore
– Unnecessary FBO switches

– Mid-frame texture uploads or UBO updates

● With some driver cleverness we can reduce this
– Batch reordering (aka job reshuffling)

– Resource shadowing (aka ghosting)

Example super-awesome FPS
game: triangle-quad

Traditional GPU:

Clear Draw Quad Draw Tri

Traditional GPU:

Clear Draw Quad Draw Tri

Traditional GPU:

Clear Draw Quad Draw Tri

Tiler GPU:

Clear Draw Quad Draw Tri

Tiler GPU:

Clear Draw Quad Draw Tri

Tiler GPU:

Clear Draw Quad Draw Tri

Tiler GPU:

Clear Draw Quad Draw Tri

Tiler GPU:

Clear Draw Quad Draw Tri

Tiler GPU:

Clear Draw Quad Draw Tri

Tiler GPU:

Clear Draw Quad Draw Tri

Tiler GPU:

Clear Draw Quad Draw Tri

Tiler GPU:

Clear Draw Quad Draw Tri

Tiler GPU:

Clear Draw Quad Draw Tri

Tiler GPU:

Clear Draw Quad Draw Tri

Tiler GPU:

Clear Draw Quad Draw Tri

But…

● This is a super-modern game using a UBO to
pass color to FS
– Mid-frame UBO update to change color

● Similar scenario for mid-frame texture uploads
– but this was an easier example to draw

● Typically a non-tiler GPU driver would use a
staging buffer to upload new data to modified
buffer

Traditional GPU:

Clear Draw Quad Draw TriStaging->UBO

UBO:
Staging
Buffer:

Traditional GPU:

Clear Draw Quad Draw TriStaging->UBO

UBO:
Staging
Buffer:

Traditional GPU:

Clear Draw Quad Draw TriStaging->UBO

UBO:
Staging
Buffer:

Traditional GPU:

Clear Draw Quad Draw TriStaging->UBO

UBO:
Staging
Buffer:

But...

This doesn’t work so well for a tiler gpu

Tiler GPU:

Clear Draw TriDraw Quad Staging->UBO

UBO:
Staging
Buffer:

Naive/Previous Solution…

● Flush on mid-frame resource (UBO/texture/etc) update
● But this is expensive

– RGBA8 @1080p => 8MB

– z24s8 @ 1080p => 8MB

– MRT and/or higher bpp formats (float16/float32) formats increase this
proportionally

● Each unnecessary flush has a corresponding restore
– To move data back into tile buffer..

– So simple RGBA8 + z24s8 => each extra flush costs 16MB write
bandwidth for flush, and 16MB read bandwidth for restore

– With MRT (multiple render targets) and/or “exotic” formats this goes up

So… to the dirty tricks

● We need to shadow resources
– Buffers: UBOs, textures, etc

● Re-order rendering in case of FBO switches
– This includes internally genrated u_blitter stuff like resource shadowing

back-blits and mipmap level generation

● These two tricks are related
– We don’t have a separate dma pipe for blits / mipmap generation / etc

– u_blitter → everything looks like FBO switch!

● Fortunately, solving it this way handles FBO switches too
– vs. special casing blits

But how to implement? (1)

● Split out “batch” object
– vc4 calls this a “job”

● Basically a “tile pass”

– Tracks command-stream and all state related to gmem/tile pass
● Which render target buffers (mrt & z/s) are cleared
● Stats which we use to decide about tiling/gmem vs bypass
● Accumulated scissor (lets us skip many tiles for UI type workloads)
● Patch-lists
● Query result bo’s

– Some tiler gpu’s handle this more automatically
● But adreno requires the driver to handling the tiling in the driver via explicit cmdstream to

handle restore and resolve
● So all this state must move from context → batch so that it is still around / valid later

when we flush and construct gmem/tiling cmdstream

But how to implement? (2)

● Batch Cache
– Construct a hash table key from

pipe_framebuffer_state

– Can’t use pfb as-is because transient pipe_surface
ptrs

● On FBO switch (ctx→set_framebuffer_state())
– Hashtable lookup to find exsisting unflushed batch

– Otherwise create new batch and add to hash table

But how to implement? (3)

● A bunch of dependency tracking
– We need to track per resource:

● N batches that read a resource
● 1 batch that writes a resource

– Per draw, look at dependencies of read and written resources
● Textures, UBOs, VBOs, TF stream-out buffers, query result buffers, etc
● Resources written by draw → dependency on other batches that read or write
● Resources ready by draw → dependency on batches that write

● Need to ensure batches are executed in correct order
– ie. the batch that writes a resource must run before the one that reads it

● For example batch that writes TF streamout buffer must run before batch that uses it as VBO
● Or batch that writes MRT buffer must run before batch that uses it as texture

– And the batch that overwrites a resource must run after any that read the previous version

– So, per batch, track the N dependent batches

● Also needed to ensure the correct batches are flushed before a transfer_map(READ) or
transfer_map(WRITE)

First try..

● Track per pipe_resource
– last_read_batch

– write_batch

● Track single dependent batch per batch
● Low overhead (avoids hash set per bo)
● But introduces too many artifical dependencies

Solving dependency tracking properly..

● Per batch
– hash set of dependent batches

– hash set of used (read/write) resources

● Per resource
– hash set of batches that read the resource

– single batch that writes the resource

● Hash sets are O(1) but big O(1) and lots of extra memory
allocations
– You can have 100’s of resources (or more) involved in rendering a

frame

– And many 100’s to 1000’s of draws.. so overhead adds up

But, 32 batches should be enough

● We anyways want to limit unflushed batches during
game/level startup during texture uploads

● And it is enough for 2x mipmap gen for largest
possible texture
– Normal u_blitter batches flushed immediately

● so never come close to 32 upper limit

– But needed transiently for back-blits

● This turns every hashset of batches into a 32b
bitmask!

Nice things about bitmasks..

● Hash set ops:
– insert → |= (1 << batch->idx)

– test → & (1 << batch->idx)

– remove → &= ~(1 << batch->idx)

– iterate → loop of ffs() (ie, u_bit_scan())

● When you have many 100’s of draws per batch,
and up to 16 textures / 32 vbo’s / N ubo’s / TF
streamout bo’s, quero bo’s, etc, it is nice to keep
the overhead down

So basically..

● All hash sets go away except batch->resources
– Tests for inclusion guarded by & (1 << batch->idx)

● So only do hash set insert for resources that aren’t
already referenced by the batch

– Probably could go away if we merged
libdrm_freedreno and gallium

● vc4 does something like this..
● But that would mean throwing away kgsl and a2xx

support
● Probably worth doing eventually, but not yet

Results

● supertuxcart: +30%
– new render engine has mid-frame UBO updates

● manhattan: +20%
– mid-frame texture upload + generate-mipmap

● glmark2
– desktop: +7%

– shadow: +20%

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

