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Problem Statement

● Tiler GPU’s optimize/reduce memory bandwidth 
requirements by rendering per-tile with mrt/color and 
depth/stencil in small internal tile buffer

● But many anti-patterns exist in GL programs that cause 
unnecessary flush/restore
– Unnecessary FBO switches

– Mid-frame texture uploads or UBO updates

● With some driver cleverness we can reduce this
– Batch reordering (aka job reshuffling)

– Resource shadowing (aka ghosting)



  

Example super-awesome FPS 
game: triangle-quad
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But…

● This is a super-modern game using a UBO to 
pass color to FS
– Mid-frame UBO update to change color

● Similar scenario for mid-frame texture uploads
– but this was an easier example to draw

● Typically a non-tiler GPU driver would use a 
staging buffer to upload new data to modified 
buffer
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Clear Draw Quad Draw TriStaging->UBO
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But...

This doesn’t work so well for a tiler gpu



  

Tiler GPU:

Clear Draw TriDraw Quad Staging->UBO

UBO:
Staging
Buffer:



  

Naive/Previous Solution…

● Flush on mid-frame resource (UBO/texture/etc) update
● But this is expensive

– RGBA8 @1080p => 8MB

– z24s8 @ 1080p => 8MB

– MRT and/or higher bpp formats (float16/float32) formats increase this 
proportionally

● Each unnecessary flush has a corresponding restore
– To move data back into tile buffer..

– So simple RGBA8 + z24s8 => each extra flush costs 16MB write 
bandwidth for flush, and 16MB read bandwidth for restore

– With MRT (multiple render targets) and/or “exotic” formats this goes up



  

So… to the dirty tricks

● We need to shadow resources
– Buffers: UBOs, textures, etc

● Re-order rendering in case of FBO switches
– This includes internally genrated u_blitter stuff like resource shadowing 

back-blits and mipmap level generation

● These two tricks are related
– We don’t have a separate dma pipe for blits / mipmap generation / etc

– u_blitter → everything looks like FBO switch!

● Fortunately, solving it this way handles FBO switches too
– vs. special casing blits



  

But how to implement? (1)

● Split out “batch” object
– vc4 calls this a “job”

● Basically a “tile pass”

– Tracks command-stream and all state related to gmem/tile pass
● Which render target buffers (mrt & z/s) are cleared
● Stats which we use to decide about tiling/gmem vs bypass
● Accumulated scissor (lets us skip many tiles for UI type workloads)
● Patch-lists
● Query result bo’s

– Some tiler gpu’s handle this more automatically
● But adreno requires the driver to handling the tiling in the driver via explicit cmdstream to 

handle restore and resolve
● So all this state must move from context → batch so that it is still around / valid later 

when we flush and construct gmem/tiling cmdstream



  

But how to implement? (2)

● Batch Cache
– Construct a hash table key from 

pipe_framebuffer_state

– Can’t use pfb as-is because transient pipe_surface 
ptrs

● On FBO switch (ctx→set_framebuffer_state())
– Hashtable lookup to find exsisting unflushed batch

– Otherwise create new batch and add to hash table



  

But how to implement? (3)

● A bunch of dependency tracking
– We need to track per resource:

● N batches that read a resource
● 1 batch that writes a resource

– Per draw, look at dependencies of read and written resources
● Textures, UBOs, VBOs, TF stream-out buffers, query result buffers, etc
● Resources written by draw → dependency on other batches that read or write
● Resources ready by draw → dependency on batches that write

● Need to ensure batches are executed in correct order
– ie. the batch that writes a resource must run before the one that reads it

● For example batch that writes TF streamout buffer must run before batch that uses it as VBO
● Or batch that writes MRT buffer must run before batch that uses it as texture

– And the batch that overwrites a resource must run after any that read the previous version

– So, per batch, track the N dependent batches

● Also needed to ensure the correct batches are flushed before a transfer_map(READ) or 
transfer_map(WRITE)



  

First try..

● Track per pipe_resource
– last_read_batch

– write_batch

● Track single dependent batch per batch
● Low overhead (avoids hash set per bo)
● But introduces too many artifical dependencies



  

Solving dependency tracking properly..

● Per batch
– hash set of dependent batches

– hash set of used (read/write) resources

● Per resource
– hash set of batches that read the resource

– single batch that writes the resource

● Hash sets are O(1) but big O(1) and lots of extra memory 
allocations
– You can have 100’s of resources (or more) involved in rendering a 

frame

– And many 100’s to 1000’s of draws.. so overhead adds up



  

But, 32 batches should be enough

● We anyways want to limit unflushed batches during 
game/level startup during texture uploads

● And it is enough for 2x mipmap gen for largest 
possible texture
– Normal u_blitter batches flushed immediately

● so never come close to 32 upper limit

– But needed transiently for back-blits

● This turns every hashset of batches into a 32b 
bitmask!



  

Nice things about bitmasks..

● Hash set ops:
– insert → |= (1 << batch->idx)

– test → & (1 << batch->idx)

– remove → &= ~(1 << batch->idx)

– iterate → loop of ffs() (ie, u_bit_scan())

● When you have many 100’s of draws per batch, 
and up to 16 textures / 32 vbo’s / N ubo’s / TF 
streamout bo’s, quero bo’s, etc, it is nice to keep 
the overhead down



  

So basically..

● All hash sets go away except batch->resources
– Tests for inclusion guarded by & (1 << batch->idx)

● So only do hash set insert for resources that aren’t 
already referenced by the batch

– Probably could go away if we merged 
libdrm_freedreno and gallium

● vc4 does something like this..
● But that would mean throwing away kgsl and a2xx 

support
● Probably worth doing eventually, but not yet



  

Results

● supertuxcart: +30% 
– new render engine has mid-frame UBO updates

● manhattan: +20%
– mid-frame texture upload + generate-mipmap

● glmark2
– desktop: +7%

– shadow: +20%
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