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Obligatory Brag Side
Between May 8, 2015 and early Febuary 2016, we delivered:
● A brand new, from scratch*, driver
● Against a brand-new API
● With only 3-3.5 (average) people
● In 8 months
● We were conformant on Day 1
● We were open-source on Day 1

* When initially released, only the back-end compiler and core NIR were shared.
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What is the Vulkan API?
Vulkan is a new 3-D rendering and compute api from Khronos, the 
same cross-industry group that maintains OpenGL

● Redesigned from the ground-up; It is not OpenGL++
● Designed for modern GPUs and software
● Will run on currently shipping (GL ES 3.1 class) hardware



Why do we need a new 3-D API?
● OpenGL 1.0 was released by SGI in January of 1992

○ Based on the proprietary IRIS GL API
● Brian Paul released mesa in August of 1993
● Computers have advanced a lot in 24 years:

○ GPUs are more powerful and flexible
○ Memory has gotten cheaper
○ Multi-core CPUs are common

● OpenGL has done amazingly well over the last 24 years!



Why do we need a new 3-D API?
Not everything in OpenGL has stood the test of time:
● The OpenGL is API is a state machine
● OpenGL state is tied to a single on-screen context
● OpenGL hides everything the GPU is doing

This all made sense in 1992!



Why do we need a new 3-D API?
Much has changed since 1992:
● Multithreading is now common-place

○ A state machine based on a singleton context doesn’t thread well
● Off-screen rendering is a thing

○ Why do I need to talk to X11 to get a context?
● GPU hardware is much more standardized

○ You don’t need to hide everything
○ App developers don’t want you to hide everything

OpenGL has adapted as well as it can



Why do we need a new 3-D API?
Vulkan takes a different approach:
● Vulkan is an object-based API with no global state

○ All state concepts are localized to a command buffer
● WSI is an extension of Vulkan, not the other way round.
● Vulkan far more explicit about what the GPU is doing

○ Texture formats, memory management, and syncing are client-controlled
○ Enough is hidden to maintain cross-platform compatibility

● Vulkan drivers do no error checking!



The Anatomy of a Vulkan Driver
Let’s look at vkCmdDraw...



GPU Memory Allocation
Vulkan provides much more explicit control of memory allocation
● Users are presented with a collection of “heaps”
● From those heaps, they allocate VkDeviceMemory objects
● VkImage and VkBuffer objects are placed at explicit offsets within 

a VkDeviceMemory object (client-controlled sub-allocation).
● Other objects have small bits of driver-allocated memory:

○ VkImageView, VkCmdBuffer, VkQueryPool, etc.

VkDeviceMemory maps nicely to a GEM bo but not to libdrm



GPU Memory Allocation

anv_device_memory

I915_GEM_CREATE

anv_state_pool anv_state_streamanv_bo_pool

anv_block_pool

I915_GEM_USERPTRSYS_memfd_create



Compression & Resolves
● Most hardware has some form 

of on-the-fly compression:
○ Compressed MSAA
○ HiZ for Depth
○ CCS for single-sampled color

● Require “resolves”
● Can’t do CPU-side tracking
● Vulkan provides render 

passes and layout transitions

vkCmdBeginRenderPass

vkCmdEndRenderPass

vkCmdNextSubpass

vkCmdDraw

vkCmdDraw

vkCmdDraw

vkCmdDraw

vkCmdNextSubpass
...



Is it easier to write a Vulkan driver?
Yes, very much so...
● No error checking!
● No vkVertex4f or polygon stipples
● SPIR-V is a little easier to handle than GLSL
● The Vulkan CTS is ~115k tests you don’t have to write

But some things are harder:
● No CPU-side object state tracking
● Apps have more power for stupid



Code sharing between Vulkan and GL
There are a few different options:
● Mega-API approach (i.e. gallium):

○ Vulkan and GL on Gallium
○ GL on Vulkan
○ GL and Vulkan on a new api (let’s call it Helium)

● Duplicate impunity
● Toolbox approach:

○ A bunch of different pieces that can be assembled into a driver
○ Similar to the way that NIR is designed



Code sharing between Vulkan and GL
The Intel driver-building toolbox:

src/intel/common/ Misc. common code

src/intel/genxml/ Autogenerated state packet fill-out code

src/intel/isl/ Surface layout calculations

src/intel/blorp/ Blit, clear, and resolve framework

src/compiler/nir/ Core compiler infrastructure

src/intel/compiler/* Back-end shader compiler

* The compiler has yet to be moved.  It still lives in src/mesa/drivers/dri/i965/ at the moment



Questions?


