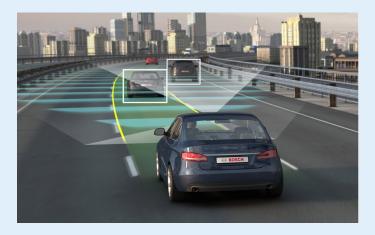


Motivating preemptive GPU scheduling for real-time systems (...and the need for better models)

Roy Spliet (Roy.Spliet@cl.cam.co.uk)

Computer Laboratory University of Cambridge


Preemptive task scheduling on GPUs

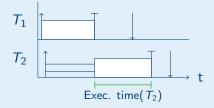
The need for better models

Conclusion

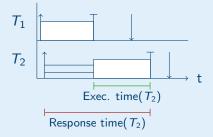
Real-time systems - Use-case

Figure: ©Bosch

Primary concern is bound latency.


Then we also care about performance, power consumption...

- ► WCET: Worst-case *execution* time.
- ► WCRT: Worst-case response time. → WCET + maximum blocking time



- ► WCET: Worst-case *execution* time.
- ► WCRT: Worst-case *response* time.
 - \rightarrow WCET + maximum blocking time

- ► WCET: Worst-case *execution* time.
- ► WCRT: Worst-case *response* time.
 - \rightarrow WCET + maximum blocking time

System: set of tasks $T_i = \{C_i, D_i, P_i\}$

- C_i: Cost, WCET.
- D_i: Deadline.

P_i: Period, minimum interval between successive job releases.

Utilisation of a "task set":

$$U = \sum_{i=0}^{n} \frac{C_i}{P_i}$$

Given a set of tasks $\{T_1...T_n\}$, a scheduling method (fixed-priority, earliest-deadline first) and its parameters, can all tasks be guaranteed to *always* make their deadline?

Or: for every task in a task set, is the WCRT smaller than its deadline?

Preemption for real-time systems is a trade-off between:

- Lower WCRT for high-priority tasks, and
- Higher context switching overhead.

Can the higher overhead be justified by lower WCRT?

Experiment: determine schedulability of random tasksets under preemptive vs. non-preemptive scheduling.

Steps:

- 1. Determine WCRT of non-preemptive context switch.
- 2. Estimate conservative WCRT of preemptive context switch.
- 3. Compare schedulability.

Step 1: Determine WCRT of non-preemptive context switch.

NVIDIA (2009): "The Fermi pipeline is optimized to reduce the cost of an application context switch to below 25 microseconds."

Step 1: Determine WCRT of non-preemptive context switch.

- NVIDIA (2009): "The Fermi pipeline is optimized to reduce the cost of an application context switch to below 25 microseconds."
- But Nouveau cannot change Fermi memory clock.

Step 1: Determine WCRT of non-preemptive context switch.

- ► Variety of Kepler GPUs (2012-2014) with different:
 - Context size,
 - Maximum memory bandwidth.
- Same conditions:
 - Nouveau: max clockspeed,
 - ► Samples: 20,000,000/run,
 - ▶ Resolution: 1600×1200,
 - ▶ Workload: 1024×768 OpenArena windowed timedemo.
- ▶ (Intrusive measurement, max. observed overhead 224ns.)

Preemptive GPU scheduling - results

NVIDIA GPU (SMs)	Max bw	State	Time (µs)			Avg. utilisation	
	GiB/s	KiB	min	avg	max	GiB/s	%
GeForce GT 710 (1)	14.4	\sim 63.9	9.2	21.5	80.1	2.83	(19.6%)
GeForce GT 640 (2)	28.5	\sim 68.2	13.6	26.5	43.7	2.45	(8.6%)
GeForce GTX 650 (2)	80.0	\sim 68.2	12.7	23.2	36.0	2.71	(3.4%)
GeForce GTX 780 (12)	288.4	~ 268.6	9.7	20.0	28.6	13.76	(4.8%)

Preemptive GPU scheduling - results

NVIDIA GPU (SMs)	Max bw	State	Time (µs)			Avg. utilisation	
	GiB/s	KiB	min	avg	max	GiB/s	%
GeForce GT 710 (1)	14.4	\sim 63.9	9.2	21.5	80.1	2.83	(19.6%)
GeForce GT 640 (2)	28.5	\sim 68.2	13.6	26.5	43.7	2.45	(8.6%)
GeForce GTX 650 (2)	80.0	\sim 68.2	12.7	23.2	36.0	2.71	(3.4%)
GeForce GTX 780 (12)	288.4	~ 268.6	9.7	20.0	28.6	13.76	(4.8%)

NVIDIA's 25μ s claim roughly holds on Kepler.

Preemptive GPU scheduling - results

NVIDIA GPU (SMs)	Max bw	State	Time (µs)			Avg. utilisation	
	GiB/s	KiB	min	avg	max	GiB/s	%
GeForce GT 710 (1)	14.4	\sim 63.9	9.2	21.5	80.1	2.83	(19.6%)
GeForce GT 640 (2)	28.5	\sim 68.2	13.6	26.5	43.7	2.45	(8.6%)
GeForce GTX 650 (2)	80.0	\sim 68.2	12.7	23.2	36.0	2.71	(3.4%)
GeForce GTX 780 (12)	288.4	~ 268.6	9.7	20.0	28.6	13.76	(4.8%)

NVIDIA's 25μ s claim roughly holds on Kepler.

Worst case up to $\sim 3.7 \times$ average...

Step 2: Estimate conservative WCRT of preemptive context switch.

Assumption: WCRT grows linear with size of context. Each SM:

- 256KiB registers
- Max. 48KiB local memory

Ex: GeForce GT 640 (2×SM) full-preemption context size:

 $68.2 + 2 \times (256 + 48) = 676.2 \text{KiB}$

Results in following (conservative) estimates:

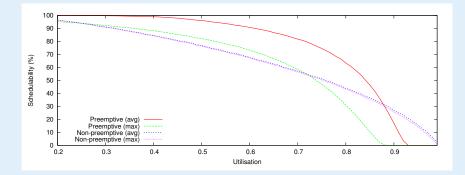
Ctxswitch type	Avg (μ s)	Max (μ s)
Non-preemptive (68.2KiB)	26.5	43.7
Preemptive (676.2KiB)	262.7	433.3

Step 3: determine schedulability of random task sets.

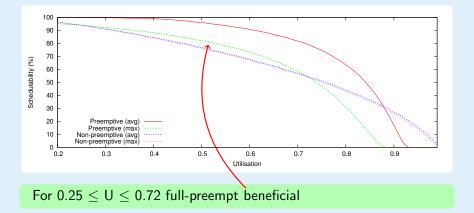
Parameters:

- Uniprocessor EDF scheduling policy.
- ▶ 8.1M random tasksets (UUniFast).
- Taskset: two tasks, $1000\mu s \le P_i < 15000\mu s$.

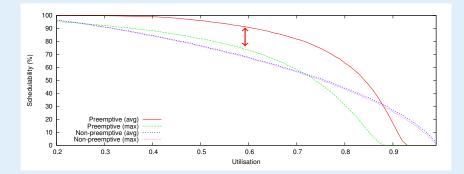
Ctxswitch type	Avg (μ s)	$Max\left(\mus ight)$
Non-preemptive (68.2KiB)	26.5	43.7
Preemptive (676.2KiB)	262.7	433.3



Step 3: determine schedulability of random task sets.


Assumptions:

- ▶ NVIDIA Tegra K1-like system (28.5GiB/s, 2×SM).
- ▶ Non-preemptive context switch: 1 context switch/job.
- ▶ Preemptive context switch: 2 context switches/job.



For $0.25 \le U \le 0.72$ full-preempt beneficial

Reduce preemptive ctxswitch overhead \rightarrow higher schedulability.

Preemptive GPU scheduling - summary

Preemption for real-time systems is a trade-off between:

- Lower WCRT for high-priority tasks, and
- Higher context switching overhead.

Can the higher overhead be justified by lower WCRT? \rightarrow Yes

Preemptive GPU scheduling - summary

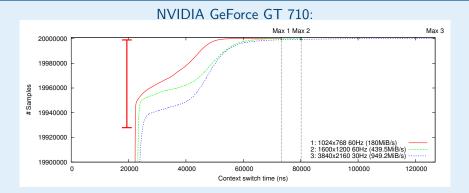
Preemption for real-time systems is a trade-off between:

- Lower WCRT for high-priority tasks, and
- Higher context switching overhead.

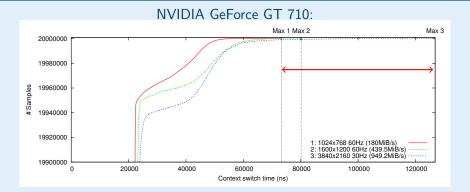
Can the higher overhead be justified by lower WCRT? \rightarrow Yes... under real-time task(/shader/compute kernel) scheduling.



NVIDIA GPU (SMs)	Max bw	State	Time (μ s)			Avg. utilisation	
	GiB/s	KiB	min	avg	max	GiB/s	%
GeForce GT 710 (1)	14.4	\sim 63.9	9.2	21.5	80.1	2.83	(19.6%)
GeForce GT 640 (2)	28.5	\sim 68.2	13.6	26.5	43.7	2.45	(8.6%)
GeForce GTX 650 (2)	80.0	\sim 68.2	12.7	23.2	36.0	2.71	(3.4%)
GeForce GTX 780 (12)	288.4	~ 268.6	9.7	20.0	28.6	13.76	(4.8%)


NVIDIA's 25μ s claim roughly holds on Kepler.

Worst case up to $\sim 3.7 \times$ average. Why?



Tail \sim 0.3% of all samples.

Tail $\sim 0.3\%$ of all samples.

Maximum correlates with display resolution \rightarrow interference!

The need for better models - summary

- ► Tasks on GPUs susceptible to performance interference.
- Ex.: display scan-out interferes with context switch.
- ► Need models to distinguish WCET from WCRT!

Conclusion

Preemptive GPU scheduling for real-time systems

- ► Use-cases for parallel accelerators in RTS.
 - Autonomous robotics driving force.
- ► Preemptive scheduling: improved WCRT outweighs overhead.
- ► We need:
 - More control over task(/shader/compute kernel) scheduling policies.
 - More accurate performance interference models.

