Status of Broadcom’s vc4 and vc5 Drivers

Eric Anholt
2017-09-21
Quick vc4 history

• Broadcom released BSD-licensed 21553 vc4 driver and spec in February 2014
• Started Mesa/DRM vc4 project in June 2014
• Merged to Mesa in August, kernel in October
3D support

- Exposes GLESv2 and GL 2.1
- Supports BCM283x (Raspberry Pi) and Cygnus
- Does not support Capri, other V3D 2.x platforms
3D difficulties

• No MMU means shader and command list validation for security
• Missing compatibility features for GL 2.1
• Loops are hard and slightly broken (dEQP failures)
• No register spilling means your allocator had better be good (dEQP failures)
3D performance: glmark2 on vc4 vs closed stack
VC4 Display
Display support: HDMI

- HDMI Audio
- CEC
- Power management
Display support: SDTV

• PAL and NTSC modes
Display support: DPI
Display support: DSI
Display support: SPI?

- Not directly part of the VC4 display stack
- Supported by Noralf’s tinydrm
- Build a vc4+tinydrm renderonly driver?
- DMA directly from VC4 HVS to SPI?
Display support: HVS (Plane compositing)

- Supported by DRM atomic interfaces
- No fixed limit, just structures in a bit of RAM
- Scaling, rotation, YUV conversion, blending
- Currently exposing 8 planes
Display support: Future work

- Use planes in X11
- Support SAND-modifier YUV planes from media decode
- Rotation
- Upstream 7” DSI panel driver
- Writeback connector
- Plane resource limit calculations (pixels/second and memory bandwidth)
VC4 status in distributions

• Fedora supports Raspberry Pi 2/3 with gnome-shell
 - Full KMS driver implementation, vc4 3d driver

• Raspbian has 3 options:
 - Closed-source GL and display stack on fbdev (default)
 - Full KMS implementation with vc4
 - Closed source display stack but vc4 3D

• Debian
 - Kernel and userspace have vc4 support
 - No official installer with RPi support

• Others
 - Generally closed source GL and display stack
Getting Raspbian switched to vc4

• firmwarekms mode is the first target
 - Keeps existing config.txt settings working, just adds vc4 3D
 - CMA memory management is a struggle

• Full KMS mode is the eventual goal
 - Opens the possibility of eliminating most of the closed source firmware
 - Needs equally reliable HDMI
 - Needs i2c input driver for DSI panel
 - Needs overlays and panel drivers for misc DPI panels
What’s new in VC5

- V3D 3.3 in BCM7268 (Set top box platform)
- GLES 3.1 and Vulkan HW support
- MMU means we no longer need CMA!
- GMP lets us mask buffers between clients
- Better shader ISA (no more register banks!)
- So much FP16
VC5 kernel interface

• Client gets an offset within the MMU at buffer create/import time
• Client gets uses that offset however it feels like in command lists
• Command list submission takes a list of buffers that must be in the MMU, without relocation information
• Shared 4MB (contiguous) MMU page table
• 8KB GMP table per client for which of the buffers in the MMU they can see
• ABI still unstable
 − need to add explicit fence support
 − need to add TFU (texture upload/download unit)
VC5 OpenGL

• Currently building a gallium driver for vc5
• Uses genxml based on the i965 driver for emitting state
 – XML describes hardware structs to generate C pack/unpack code
 – Prepack state structs at CSO creation time
 – OR together structs from CSOs at draw time
• Compiles NIR to VC5 QPU instructions
 – Based on vc4 compiler
 – Replaced most of the IR with unpacked QPU instruction
 – Minimal FP16 support so far
• Almost ready to merge
VC5 Vulkan ("bcmv")

- Started in early September
- Forking from the anv driver, using some shared code from radv as well
- Uses shared compiler with vc5 gallium driver
- Separate surface layout
- No blitter library yet
- Not even linking, be patient
Thank You