

2

Agenda

Overview of client libraries and client-side dispatching.

Design for a new server-side interface.

Server-side vendor selection.

Server-side dispatching.

Open questions and future work.

GLVND CLIENT INTERFACE

4

Client-Side GLVND

GLVND defines a new ABI between OpenGL applications and implementations.

It allows multiple vendor implementations to coexist on the filesystem.

It allows multiple vendor implementations to coexist in the same process.

It allows EGL and GLX to coexist in the same process.

The client API libraries (OpenGL, OpenGL ES) work with GLX and EGL.

5

Client-Side GLVND, Continued

GLVND provides vendor-neutral versions of the application-facing libraries:
● libGLX.so
● libEGL.so
● libOpenGL.so
● libGLESv1_CM.so
● libGLESv2_CM.so
● libGL.so

Vendors provide implementation libraries:
● libGLX_${VENDOR}.so
● libEGL_${VENDOR}.so

6

Application

X Server

libGLX_VENDOR1.solibGLX.so

Dispatching GLX Functions

a) Application calls a GLX entry point in libGLX.so.

b) libGLX.so uses GLX_EXT_libglvnd to query the vendor name for each screen
from the server.

c) libGLX.so loads the vendor library and forwards the GLX function call to it.
● Each GLX entrypoint has a dispatch function that figures out which

screen number the call should go to.

(a)

(b)

(c)

libGLX_VENDOR2.so
(c)

7

Application

JSON Driver List

libEGL_VENDOR1.solibEGL.so

Dispatching EGL Functions

a) Application calls eglGetPlatformDisplay.
b) libEGL.so gets a list of vendors and loads each of them.

● Each vendor registers itself by putting a JSON file into a well-known directory.

c) libEGL.so calls into each vendor's eglGetPlatformDisplay implementation
until it finds one that succeeds.

● libEGL.so will dispatch functions that take an EGLDisplay handle to whichever
vendor created the handle.

(a)

(b)

(c)

libEGL_VENDOR2.so
(c)

8

Application

libGLX_VENDOR.so

libEGL.so

Dispatching OpenGL Functions

a) Application calls glXMakeCurrent or eglMakeCurrent.
b) libGLX.so/libEGL.so creates a dispatch table for the vendor, and assigns it

to the current thread in libGLdispatch.so.
c) Application calls an OpenGL entrypoint.
d) libOpenGL.so (or libGL.so, libGLESv2.so, etc) forwards the call to

libGLdispatch.so.
e) libGLdispatch.so finds the dispatch table from (b), and jumps through it to

the vendor library.

(a)
(b)

libEGL_VENDOR.so(c)

libGLX.so

libOpenGL.so

libGLdispatch.so
(a) (b)

(d)

(e)

(e)

GLVND SERVER INTERFACE

10

Why do we need server-side dispatching?

Direct rendering only works if the client-side vendor library matches the
server-side GLX module.

GLX in the server still exists as a normal extension module (libglx.so).

The server can only load one GLX module at a time, so you can't use different
drivers on different screens.

11

Design Goals

Be able to handle any and all GLX requests correctly.

Allow (at least) a different vendor on each screen.

Keep the differences between a GLVND and non-GLVND driver to a minimum.

12

Overall Structure

The GLVND layer registers the GLX extension.

During initialization, the X drivers call into GLVND to assign a vendor to each
screen.

When a GLX request comes in, GLVND figures out which vendor should handle
the request, and forwards it.

13

Vendor Registration

The X driver registers an initialization callback in GLVND, which GLVND calls from
InitExtensions.

The driver loads and initializes the appropriate GLX implementation from that
callback.

The driver passes that implementation as a function table to GLVND, which returns
an opaque vendor handle.

The driver then calls into GLVND to assign that handle to whichever screens it
supports.

Since GLVND only needs a function table, the GLX implementation doesn't have to
be a separate library.

14

Dispatching

Every request opcode has a dispatch stub
function.

The dispatch stub looks at the request to find
a screen number, context tag, or XID.

It uses that value to look up a vendor handle,
then calls into GLVND to forward the request.

The vendor libraries provide dispatch stubs
for any extension requests.

Most dispatch stubs can be generated.

Some requests need special handling.

Client

Server

GLVND

Vendor 1 Vendor 2

GLX Protocol Request

Normal Extension Dispatch
(by major opcode)

Dispatch Stubs
(by minor opcode)

15

Dispatching by screen

Each screen has a single vendor assigned to it, so just look up the vendor.

int dispatch_GLXQueryServerString(ClientPtr client)
{
 REQUEST(xGLXQueryServerStringReq);
 __GLXServerVendor *vendor = NULL;
 if (stuff->screen < screenInfo.numScreens) {
 ScreenPtr screen = screenInfo.screens[stuff->screen];
 vendor = GLVND->getVendorForScreen(client, screen);
 }
 if (vendor != NULL) {
 return GLVND->forwardRequest(vendor, client);
 } else {
 return BadValue;
 }
}

16

Dispatching by XID

GLVND keeps track of a vendor for each XID.

The dispatch stub is responsible for adding and removing client-specified XID's
from that mapping.

The vendor has to add any server-generated XID's to the map during
initialization.

One exception is GLXFBConfig ID's, because every request that has a
GLXFBConfig also has a screen number.

GLVND can look up a screen number and vendor for regular X windows.

17

Lookup by XID – GLXQueryContext

int dispatch_GLXQueryContext(ClientPtr client)
{
 REQUEST(xGLXQueryContextReq);
 __GLXServerVendor *vendor = GLVND->getXIDMap(stuff->context);
 if (vendor != NULL) {
 return GLVND->forwardRequest(vendor, client);
 } else {
 return GLXBadContext;
 }
}

18

Adding an XID – GLXCreateContext
int dispatch_GLXCreateContext(ClientPtr client)
{
 REQUEST(xGLXCreateContextReq);
 __GLXServerVendor *vendor = NULL;
 LEGAL_NEW_RESOURCE(stuff->context, client);
 if (stuff->screen < screenInfo.numScreens) {
 ScreenPtr screen = screenInfo.screens[stuff->screen];
 vendor = GLVND->getVendorForScreen(client, screen);
 }
 if (vendor != NULL) {
 int ret;
 if (!GLVND->addXIDMap(stuff->context, vendor)) {
 return BadAlloc;
 }
 ret = GLVND->forwardRequest(vendor, client);
 if (ret != Success) {
 GLVND->removeXIDMap(stuff->context);
 }
 return ret;
 } else {
 return BadMatch;
 }
}

19

Removing an XID – GLXDestroyContext

int dispatch_GLXDestroyContext(ClientPtr client)
{
 REQUEST(xGLXDestroyContextReq);
 __GLXServerVendor *vendor = GLVND->getXIDMap(stuff->context);
 if (vendor != NULL) {
 int ret = GLVND->forwardRequest(vendor, client);
 if (ret == Success) {
 GLVND->removeXIDMap(stuff->context);
 }
 return ret;
 } else {
 return GLXBadContext;
 }
}

20

Context Tags

GLVND selects context tag values to ensure that they're unique across vendors.

GLVND keeps a (void *) pointer for each context tag, which is used to store
arbitrary vendor-private data.

GLVND never dereferences that pointer, so vendors can also use it to hold
whatever tag value they would have used in a non-GLVND version.

21

MakeCurrent Requests

Vendors provide a separate function to handle MakeCurrent requests.

If a request switches between vendors, then GLVND calls into both of them.

GLVND passes the old and new context tags, and the old private data to the
vendor.

The vendor returns a new private data pointer.

After calling into the vendor, GLVND sends the reply.

22

Dispatching by Context Tag

int dispatch_GLXRender(ClientPtr client)
{
 REQUEST(xGLXRenderReq);
 __GLXServerVendor *vendor = NULL;
 GLVND->getContextTag(client, stuff->contextTag, &vendor, NULL);
 if (vendor != NULL) {
 return GLVND->forwardRequest(vendor, client);
 } else {
 return GLXBadContextTag;
 }
}

23

Other Special Case Requests

GLXQueryVersion – Doesn't take a screen number, but it's probably safe to
assume that every driver supports GLX 1.4.

GLXSwapBuffers – It has to look up a vendor by context tag if the tag is non-
zero, or else one vendor might try to dereference the private data from
another vendor.

GLXClientInfo – The request has to get forwarded to every vendor, not just
one.

24

Current Status

Implemented as a proof-of-concept right now.

Direct and indirect rendering work on two screens with different drivers, from
a single client.

No changes are needed in the client library.

25

Open Questions

Where should the GLVND code live?

Should the GLVND interface stay as extension module?

What about Xvfb, Xwayland, etc?

26

Future Work

Xinerama

With a single driver, Xinerama should work like it does now.

With different drivers, requests would currently get dispatched to just one of them.

Cross-vendor GPU offloading

Per-client vendor selection.

How would the client and server coordinate to pick a vendor?

How do we deal with X visuals?

What happens if the same XID is used between multiple clients?

How does communication and presentation between drivers work?

27

Links and Acknowledgements

Thank you to everyone who's contributed patches, comments, and bug reports.

Special thanks to Emil Velikov and Adam Jackson for their help in hashing out
the various interfaces.

GLVND is available at:

https://github.com/NVIDIA/libglvnd

https://github.com/NVIDIA/libglvnd

28

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

