
Performance Analysis and 
Frame Debugging with 
FrameRetrace
Mark Janes, September 20, 2017

mark.a.janes@intel.com



2

● Working on Linux platforms since 2004, with a background on 
embedded devices.

● Contributed to Intel’s Graphics Performance Analyzers tools for 
Android OpenGLES applications 2011-2014.

● Joined Mesa in 2014, working on performance tools and 
automation.

About me:



3

● Investigate system bottlenecks first

– top, gputop, rapl

– 100% GPU utilization with lower CPU utilization indicates 
a GPU-bound workload

– TDP limited workloads cause GPU clock rate to fall.

– MESA_DEBUG=perf

GPU Performance Analysis Workflow



4

● CPU Bound workloads have traditional tools

– perf, callgrind, cachegrind, sysprof

● GPU performance analysis has a sparse landscape of Linux tools

– AMD GPU PerfStudio, Nvidia Linux Graphics Debugger, QApiTrace 

– Leverage GPU hardware counters to quantify the cost of asynchronous 
GPU operations.

– Live experimentation to see the effect on performance.

– Deeply investigate a graphics workload.

GPU Performance Analysis Workflow



5

● Generally hardware-specific

● Mostly closed source

● Linux support is an afterthought

● Tracing/retracing not reliable

● Low numbers of users

● Mesa support for GPU performance counters

GPU Tools stumbling blocks



6

● Widely used and high quality trace/retrace

● https://github.com/janesma/apitrace

● Cross-platform: Linux and Windows

● Upstream GPU Counter support in Mesa and Kernel for Haswell and 
later.

● Leveraged by Intel Mesa team to identify and fix several 
performance issues in i965.

FrameRetrace: frame analysis based on ApiTrace



7

● GPU Metrics for each render

● Render target visualization and experiments

● Api log

● Batch disassembly

● Shader analysis, live editing, and assembly

● Uniform constant display and live editing

● Render experiments

FrameRetrace: frame analysis based on ApiTrace



8

Demo



9

● Windows support provides important leverage for open source driver teams seeking to 
find Mesa performance gaps.

● Proposed features:

– Display and modify GL State

– Display texture state, with mip clamp experiment

– Display geometry mesh

– Depth buffer visualization

– Overdraw / hotspot rendertarget visualization

– UI improvements

– Support for more hardware

Other features



10

● Currently a one-person side project, with help

– Thanks to Laura Ekstrand, Robert Bragg, Lionel Landerwelin, Eero 
Taminen, Pekka Jylhä-Ollila

● Experiments require intricate state tracking

● Some workloads do not have single-frame run loops

Caveats



Questions?

11




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

