
James Jones, XDC 2017

GENERIC ALLOCATOR UPDATE

2 2

OVERVIEW

Current Design

Prototype Status

Problems Encountered

Next Steps

3

CURRENT DESIGN

4

ALLOCATOR’S SPOT IN THE ECOSYSTEM

Allocator

Vendor1 Drv

Vendor2 Drv ION Drv

Device 1 Device 2 Device 3 ION

Kernel

Userspace

Application:

Wayland Compositor

Application:

Wayland EGL Client

EGL/Vulkan DriverEGL/Vulkan Driver

DRM

5 5

ALLOCATOR OBJECTS

The desired width, height, and format of a
surface

ASSERTION
A single desired application of a surface,
such as rendering, on a single device

USAGE

An imposed surface limitation for a given
assertion and usage

CONSTRAINT
A supported surface feature for a given
assertion and usage

CAPABILITY

A valid combination of constraints and capabilities

CAPABILITY SET

6

CURRENT WORKFLOW

1. Initialize an allocator device from a device file descriptor

2. Query capability sets from the device given an assertion and list of usages

3. [Optional] Query capability sets from additional devices with the same parameters

4. [Optional] Merge capability sets of desired devices to find common capabilities

5. Try allocating a surface on available devices until allocation succeeds

6. Import surfaces to graphics APIs, mode setting APIs, video APIs, etc.

Based on USAGE.md on github project

7

PROTOTYPE STATUS

8

SUPPORTED/PLANNED FUNCTIONALITY

Creating Devices – IMPLEMENTED

Querying Capabilities and Constraints – IMPLEMENTED

Merging Capabilities and Constraints - IMPLEMENTED

Creating Allocations from Capabilities and Constraints - IMPLEMENTED

Exporting/Importing Allocations – TODO

Using Allocations in Vulkan/OpenGL - TODO

Using Allocations in DRM/Non-Graphics Devices - TODO

Goal is to Encourage and Substantiate Design Discussion

9

CAPABILITY SET MATH

Current set derivation algorithm: merge/union constraints, intersect capabilities

Capabilities can be “required”. If operation removes a required capability, it fails

Needs more validation. Throw your worst usage/constraints/capabilities at it!

Core of the Design

10 10

DEV_2 SET 1 [C] DEV_1 SET 2 [B] DEV_1 SET 1 [A]

CAPABILITY SET MATH EXAMPLE

Constraints:

1. Address aligned to 32B

Capabilities:

1. NVIDIA tiling/layout (*)

2. NVIDIA FB compression

Constraints:

1.  Address aligned to 32B

2.  Pitch aligned to 64B

Capabilities:

1.  Pitch-linear layout (*)

2.  Dev2 FB compression

Constraints:

1. Address aligned to 64B

Capabilities:

1. pitch-linear layout (*)

11 11

FAIL! DEV_2 SET 1 [C] DEV_1 SET 1 [A]

CAPABILITY SET MATH EXAMPLE

Constraints:

1. Address aligned to 32B

Capabilities:

1. NVIDIA tiling/layout (*)

2. NVIDIA FB compression

Constraints:

1.  Address aligned to 32B

2.  Pitch aligned to 64B

Capabilities:

Constraints:

1.  Address aligned to 32B

2.  Pitch aligned to 64B

Capabilities:

1.  Pitch-linear layout (*)

2.  Dev2 FB compression

+ =

12 12

NEW VALID SET DEV_2 SET 1 [C] DEV_1 SET 2 [B]

CAPABILITY SET MATH EXAMPLE

Constraints:

1. Address aligned to 64B

Capabilities:

1. pitch-linear layout (*)

Constraints:

1.  Address aligned to 64B

2.  Pitch aligned to 64B

Capabilities:

1. Pitch-linear layout (*)

Constraints:

1.  Address aligned to 32B

2.  Pitch aligned to 64B

Capabilities:

1.  Pitch-linear layout (*)

2.  Dev2 FB compression

+ =

13

PROBLEMS ENCOUNTERED

14

DEVICE ENUMERATION/CREATION/IMPORT

Device file doesn’t necessarily uniquely identify a logical device object

Device creation from FD implies lack of need for additional /dev/file access

Alternative of exporting devices from APIs is problematic too

Enumeration/Correlation using UUID from Vulkan/GL APIs would provide consistency

15

NO DEVICE-LOCAL CAPABILITIES

Ex: local caching

GPU may have on-chip cache. When to use it? When capabilities say so of course!

Other devices don’t necessarily need to be aware of this cache usage

Intersecting capabilities from other devices will remove this “local cache” capability

16

FORMAT SPECIFICATION

Still an open issue that needs to be resolved. Prototype assumes RGBA8888

Khronos Data-format spec, FOURCC, ???

Needs to handle HDR formats

Should there be supported format enumeration?

17

IMPORT TO EXTERNAL APIS

Unlike Vulkan/OpenGL import APIs, additional meta-data is needed

How should that meta-data be packaged? DRM format modifiers not sufficient

Does the capability set suffice? If so, see issue with device-local capabilities

Is some level of in-kernel meta-data preferred? Limits future suballocation usage

18

RELATIONSHIP TO DMA-BUF

Unclear if it should be required that import/export consume/produce DMA-BUF FDs

Might bake Linux-specific assumptions into the API or usage

Even FDs can be non-portable

Any value in using DMA-BUF when usage is limited to a single device or driver stack?

19

NEXT STEPS

20

USAGE TRANSITIONS

Vulkan introduced the idea of explicitly transitioning between various surface uses

Could be generalized across devices now that we can describe all usage explicitly

Apps could query usage transitions “meta-data” from allocator for usage pairs

That meta-data could then be passed into GPU APIs to perform transitions

21

MOTIVATION FOR USAGE TRANSITIONS

Alternative proposal

Justification

Problems

Re-allocate when usage changes

Simpler API

Steady-state is still optimal

Allocation can be expensive

Transitions have consistent cost

Usage may change at inconvenient times

22

USAGE TRANSITIONS (EXAMPLE)
// Some existing usage definitions!
extern const usage_t samplingUsage; !
extern const usage_t displayUsage; !
!
// Usage lists!
const usage_t sampling[] = { samplingUsage }; !
const usage_t samplingAndDisp[] = !
 { samplingUsage, displayNVUsage }; !
const usage_t dispOnly[] = { displayUsage }; !
void *transitionData; !
size_t transitionDataSize; !
!
// Query a usage transition from an allocator library device!
query_transition(dev, !
 ARRAYLEN(sampling), sampling, !
 ARRAYLEN(samplingAndDisp), samplingAndDisp, !
 &transitionDataSize, &transitionData); !
!

23

USAGE TRANSITIONS (EXAMPLE)
// Program the transition in Vulkan!
VkImageMemoryCrossDeviceBarrierEXT crossDeviceBarrierData = { !
 VK_STRUCTURE_TYPE_IMAGE_MEMORY_CROSS_DEVICE_BARRIER_EXT, // sType!
 NULL, // pNext!
 transitionDataSize, // dataSize!
 transitionData // data!
}; !
!
VkImageMemoryBarrier usageTransitionBarrier = { !
 VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // sType!
 &crossDeviceBarrierData, // pNext, takes precedence over oldLayout/newLayout members!
!
 ... !
}; !
!
vkCmdPipelineBarrier(..., 1, &usageTransitionBarrier);
!

24

WAYLAND INTEGRATION

Last year NVIDIA presented a vendor-agnostic EGL winsys client integration layer API

The sample implementation used EGLStream, but the API is mechanism-agnostic

Key functionality: Ability to build an EGLSurface from some lower-level primitive

How do we build an EGLSurface from allocator surfaces?

Getting Back to our Original Goal…

25

WHERE DOES THE ALLOCATOR CODE GO?

The prototype is a stand-alone library with runtime-loadable driver backends

However, the key mechanisms could live anywhere

Is it easier to move to this new library, merge functionality into GBM, or ???

If we keep the allocator library, does it need a better name than liballocator?

26 26

QUESTIONS
I ASKED:

1.  Any situations capability set math does not handle?

2.  How should device-local capabilities be handled?

3.  How should formats be defined?

4.  How should surface meta-data be represented?

5.  Is DMA-BUF a requirement? If so, why?

6.  How should EGLSurface integration work?

7.  Where does the allocator implementation live?

QUESTIONS & ANSWERS?

https://github.com/cubanismo/allocator
email: jajones ‘at’ nvidia.com

28

REFERENCES

https://github.com/cubanismo/allocator - Prototype Allocator Implementation & Documentation

https://github.com/cubanismo/allocator/blob/master/USAGE.md - Allocator Example Usage

https://www.khronos.org/registry/DataFormat/ - Khronos Data Format Spec

https://github.com/torvalds/linux/blob/master/include/uapi/drm/drm_fourcc.h - DRM FOURCC formats

https://www.khronos.org/registry/vulkan/specs/1.0-extensions/html/vkspec.html - Vulkan 1.0 spec

